
12th International Society for Music Information Retrieval Conference (ISMIR 2011)

NEXTONE PLAYER: A MUSIC RECOMMENDATION SYSTEM BASED ON
USER BEHAVIOR

Yajie Hu
Department of Computer Science

University of Miami
yajie.hu@umail.miami.edu

Mitsunori Ogihara
Department of Computer Science

University of Miami
ogihara@cs.miami.edu

ABSTRACT

We present a new approach to recommend suitable tracks
from a collection of songs to the user. The goal of the system
is to recommend songs that are favored by the user, are fresh
to the user’s ear, and fit the user’s listening pattern. We use
“Forgetting Curve” to assess freshness of a song and evalu-
ate “favoredness” using user log. We analyze user’s listen-
ing pattern to estimate the level of interest of the user in the
next song. Also, we treat user behavior on the song being
played as feedback to adjust the recommendation strategy
for the next one. We develop an application to evaluate our
approach in the real world. The user logs of trial volunteers
show good performance of the proposed method.

1. INTRODUCTION

As users accumulate digital music in their digital devices,
the problem arises for them to manage the large number of
tracks in them. If a device contains thousands of tracks, it
is difficult, painful, and even impractical for a user to pick
suitable tracks to listen to without using pre-determined or-
ganization such as albums, playlists or computationally gen-
erated recommendation, which is the topic of this paper.

A good recommendation system should be able to min-
imize user’s effort required to provide feedback and simul-
taneously to maximize the user’s satisfaction by playing ap-
propriate song at the right time. Reducing the amount of
feedback is an important point in designing recommenda-
tion systems, since users are in general lazy. We thus evalu-
ate user’s attitude towards a song from partitioning of play-
ing time. In particular, if a song is played from beginning
to end, we infer that the user likes the song and it is a sat-
isfying recommendation. On the other hand, if the song is
skipped while just lasting a few seconds, we assume that the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

user dislikes the song at that time and the recommendation
is less effective.

Using this idea we propose a method to automatically
recommend music in a user’s device as the next song to be
played. In order to keep short the computation time for rec-
ommendation, the method is based on metadata and user be-
havior rather than on content analysis. Which song should
be played next can be determined based on various factors.
In this paper, we use five perspectives: genre, year, favor,
freshness and time pattern.

The rest of this paper is organized as follows. In Section 2,
we introduce recent related work. In Section 3 we describe
our method for calculating recommendation. We will eval-
uate this method in Section 4. We conclude by discussing
possible future work in Section 5.

2. RELATED WORK

Various song recommendation approaches have been devel-
oped so far. We can categorize these approaches in different
views.

Automatical playlist generation focuses on recommend-
ing songs that are similar to chosen seeds to generate a new
playlist. Ragno [1] provided an approach to recommend
music that is similar to chosen seeds as a playlist. Sim-
ilarly, Flexer [2] provided a sequence of songs to form a
smooth transition from a start song till the end song. These
approaches ignore user’s feedback when the user listens to
the songs in the playlist. They have an underlying problem
that all seed-based approaches produce excessively uniform
lists of songs if the dataset contains lots of music cliques.
In iTunes, Genius employs similar methods to generate a
playlist from a seed.

Dynamic music recommendation improves automatic play-
list generation by considering the user’s feedback. In the
method proposed by Pampalk [3], playlist generation starts
with an arbitrary song and adjusts the recommendation re-
sult based on user feedback. This type of method is similar
to Pandora.

Collaborative-filter methods recommend pieces of music
to a user based on rating of those pieces by other users with

103

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/211823416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Poster Session 1

similar taste [4]. However, collaborative methods require
many users and many ratings and are unable to recommend
songs that have no ratings. Hence, users have to be well rep-
resented in terms of their taste if they need effective recom-
mendation. This principle has been used by various social
websites, including Last.fm, myStrands.

Content-based methods computes similarity between songs,
recommends songs similar to the favorite songs, and re-
moves songs that are similar to the skipped songs. In an
approach proposed by Cano [5], acoustic features of songs
are extracted, such as timbre, tempo, meter and rhythm pat-
terns. Furthermore, some work expresses similarity accord-
ing to songs emotion. Cai [6] recommends music based only
on emotion.

Hybrid approaches, which combine music content and
other information, are receiving more attention lately. Don-
aldson [7] leverages both spectral graph properties of an
item-base collaborative filtering as well as acoustic features
of the music signal. Shao et al. [8] use both content features
and user access pattern to recommend music.

Context-based methods take context into consideration.
Liu et al. [9] take the change in the interests of users over
time into consideration and add time scheduling to the mu-
sic playlist. Su et al. [10] improve collaborative filtering us-
ing user grouping by context information, such as location,
motion, calendar, environment conditions and health condi-
tions, while using content analysis assists system to select
appropriate songs.

3. METHOD

We determine whether a song is to be recommended as the
next one in the playlist from five perspectives: genre, year,
favor, freshness and time pattern.

We use time series analysis of genre and year to predict
these attributes of the next song rather than to select the song
with similar genre and year to the current song. The reason
is that some users like listening similar songs according to
genre and year while others perhaps love mixing songs and
the variance on genre and year. Hence, we cannot assume
that a similar song to the current one can be reasonably seen
as a good choice for recommendation. Prediction using time
series analysis caters better to a user’s taste.

Obviously, the system should recommend users’ favorite
songs to them. How many times a song has been actively
played and how many times the song has been completely
played can be used to infer the strength of favor to the song.
We collected user’s behavior to analyze the favor of songs.

In common sense, a few users dislike listening to a song
many times in a short period of times, even though the song
could be the user’s favorite. On the other hand, some songs
that the user favored many months ago may be now old and
a little bit insipid. However, if the system recommend them

Figure 1. Genre taxonomy screenshot in AllMusic.com

at right time, the user may feel it is fresh and enjoy the expe-
rience. Consequently, we take freshness of songs into con-
sideration.

Due to activities and biological clock, users have differ-
ent tastes in choosing music. In a different period of a day
or a week, users tend to select different styles of songs. For
example, in the afternoon, a user may like a soothing kind
of music for relaxation and may switch to energetic songs
in the evening. This paper uses a Gaussian Mixture Model
to represent the time pattern of listening and compute the
probability of playing a song at that time.

3.1 Genre

The sequence of recent playing of a user represents the user’s
habit of listening so we analyze the playing sequence us-
ing a time series analysis method to predict the genre of the
next song. The system records recent 16 songs that were
played for at least a half of their length. Although most
of the songs record their genres and years are available in
ID3v1 or ID3v2 tags, a part of tags are notoriously noisy.
Hence, we developed a web wrapper to collect genre in-
formation from AllMusic.com, a popular music information
website, and use that information to retrieve songs’ genres.
The ID3v1 or ID3v2 tags will be used unless AllMusic.com
has no information about the song.

Furthermore, AllMusic.com not only has a hierarchical
taxonomy on genre but also provides subgenres with re-
lated genres. The hierarchical taxonomy and related gen-
res are shown in Figure 1. For example, Industrial
Metal, whose parent is Alternative Metal, is re-
lated to Alternative Pop/Rock.

We use the taxonomy to build an undirected distance graph,
in which each node describes a genre and each edge’s value
is the distance between two genres. The values of the graph
are initialized by a maximum value. The parent and related
relationship are valued at a different distance, which varies
by the depth in the taxonomy, that is, high level corresponds
to larger distance while low level corresponds to smaller dis-
tance. Then, we assume the distance is transitive and update
the distance graph as follows until there is no cell update.

104



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

Eij = min
k

(Eij , Eik + Ekj) , (1)

where Eij is the value of edge (i, j). Therefore, we obtain
the similarity between any two kinds of genre and the max-
imum value in the matrix is 6.

Now, the system converts the series of genres of recent
songs into a series of similarity between neighbor genres
using the similarity matrix. The series of similarity will be
seen as the input for time series analysis method and we can
estimate the next similarity. Then, the current genre and the
estimated similarity will give us genre candidates.

Autoregressive Integrated Moving Average (ARIMA) [11]
model is a general class of models in time series analysis.
An ARIMA(p, d, q) model can be expressed by following
polynomial factorization.

Φ (B) (1−B)
d
yt = δ + Θ (B) εt (2)

Φ (B) = 1−
p∑
i=1

φiB
i (3)

Θ (B) = 1 +

q∑
i=1

θiB
i (4)

,where yt is the tth value in the time series of data Y and B
is the lag operator; φ and θ are the parameters of the model,
which are calculated in analysis; p and q are orders of au-
toregressive process and moving average process, respec-
tively; And d is a unitary root of multiplicity.

The first step of building ARIMA model is model identi-
fication, namely, estimating p, d and q by analyzing obser-
vations in time series. Model identification is beneficial to
fit the different pattern of time series. The second step is
to estimate parameters of the model. Then, the model can
be applied to forecast the value at t+ τ , for τ > 0. As an
illustration consider forecasting the ARIMA(1, 1, 1) process

(1− φB) (1−B) yt+τ = (1− θB) εt+τ (5)

ε̂t = yt −

[
δ +

p+d∑
i=1

φiyt−i −
q∑
i=1

θiε̂t−i

]
(6)

Our system uses ARIMA to fit the series of similarity
and to predict the next similarity. The process is shown in
Figure 2.

We use Gaussian distributions to evaluate each possible
genre for the next track. We select the one with the biggest
probability.

3.2 Recording year

The recording year is similar to genre so we use ARIMA to
predict the next possible year and compute the probability
of a recording year.

Figure 2. Predict the next genre

3.3 Freshness

As a new feature of this paper, we take into consideration
freshness of a song to a user. Many recommendation sys-
tems [12] based on metadata of music and user behavior
cannot avoid to recommend same music under same situa-
tions. As a result, a small set of songs will be recommended
again and again. What’s worse is that these songs will still
be at the top of recommendation result since they have been
recommended and played many times and then are seen as
favorite songs. The iteration makes users fall into a “favorite
trap” and feel bored. Therefore, an intelligent recommenda-
tion system should avoid to recommend same set of songs
many times in a short period. On the other hand, the system
is supposed to recommend some songs that have not been
played for a long time because these songs are fresh to users
even though they once listened to them multiple times.

Freshness can be considered as the strength of strangeness
or the amount of experience forgotten. We apply Forgetting
Curve [13] to evaluate the freshness of a song to a user. For-
getting Curve is shown as follows.

R = e−
t
S , (7)

where R is memory retention, S is the relative strength of
memory and t is time.

The lesser the amount of memory retention of a song in a
user’s mind, the fresher the song to the user. In our work, S
is defined as the number of times the song has been played
and t is the distance of present time to the last time the song
was played. The reciprocal of memory retention is normal-
ized to represent the freshness.

This metric contributes towards selecting fresh songs as
recommendation results rather than recommending a small
set of songs repetitively.

3.4 Favor

The strength of favor for a song plays an important role in
recommendation. In playing songs, the system should give
priority to user’s favorite songs. User behavior can be im-
plied to estimate how favored the user feels about the song
based on a simple assumption: A user listens to a favorite
song more often many an unfavorite song and on average
listens to a larger fraction of the favorite song than the other.

We consider the favor of a song from four counts: ac-
tive play times, passive play times, skip times and delete

105



Poster Session 1

times. Passive play time means the song is played as a rec-
ommendation result or as the next one in playlist. The favor
is assessed by the weighted average of the four factors.

3.5 Time pattern

Since users have different habits or tastes in different peri-
ods of a day or a week, our recommendation system takes
time pattern into consideration based on user log. The sys-
tem records the time of the day and week that songs are
played. It then employs Gaussian Mixture Model to esti-
mate the probability of playing at a specific time. The play-
ing times of a song in different periods trains the model us-
ing Expectation Maximization algorithm. When the system
recommends songs, the model is used to estimate the prob-
ability of the song being played at that time.

3.6 Integrate into final score

A song is assessed whether it is a fit for recommendation
as the next song from the five perspectives described in the
above. In order to rank results and make a selection, the
scores should be integrated into a final score. At first, the
scores are normalized into the same scale. Since different
users have different tastes, these five factors are assigned
different weights at integration. Hence, we refer to Gradi-
ent Descent in order to match users’ need. However, it is not
user friendly to offer too many possible recommendation re-
sults and determine how to descent based on user’s interac-
tion. We use the recent recommendation results to adjust the
weights, which is initialized by (1.0, 1.0, 1.0, 1.0, 1.0). The
algorithm is shown in Algorithm 1.

3.7 Cold start

Cold start is a difficult problem to tackle for recommenda-
tion system. When a recommendation system begins with
no idea as to what kinds of songs users like or dislike, it
hardly gives any valuable recommendation. As a result, in
the cold start, the system randomly picks a song as the next
song and records the user’s interaction, which is similar to
Pampalk’s work [3]. After 16 songs has been played, the
system uses the metadata of these songs and user behavior
to recommend a song as the next one.

4. EXPERIMENT

The goal of the recommendation system is to cater to users’
taste and recommend the next song at the right time and in
the right order. Therefore, here, we focus on the user expe-
rience and compare users’ satisfaction between our method
and a baseline method, which randomly picks a song as the
next one. We notice that most of the songs in a user’s de-
vice are their favorite, but it doesn’t mean that every song

ALGORITHM 1: Adjust weights based on recent rec-
ommendation results

Input: Recent k recommendation results
<t (Rt−k+1, Rt−k+2, . . . , Rt−1, Rt) at time t.
Ri contains user interaction of this recommendation
χi, which is like or dislike, and the score of each
factor of the recommendation i is Λi.
Descent step δ, which is positive.
Current factor weights, W.
Output: New factor weights, W′.
Process:
if χt = dislike then

Initialize an array F to record the contribution of
each factor.
for i = Rt−k+2 to Rt do

∆Λi = Λi −Λi−1

max = arg max
j

(∆λj) , 1 ≤ j ≤ 5

min = arg min
j

(∆λj)

if χi = Like then
Fmax = Fmax + 1

end
else

Fmax = Fmax − 2
Fmin = Fmin + 1

end
end
inIndex = arg max

j
(F)

w′j =

{
wj + δ, j = inIndex
wj − δ/4, otherwise

, j = 1, 2, 3, 4, 5

deIndex = arg min
i

(F)

w′j =

{
wj − δ, j = deIndex
wj + δ/4, otherwise

, j = 1, 2, 3, 4, 5

end
else

W′ = W
end
return W′

is fit to be played at anytime. The feedback to random se-
lections represents the quality of songs in users’ devices and
the comparison result between our method and random se-
lection shows the value of our method.

4.1 Data collection

An application system, named NextOne Player 1 , is imple-
mented to collect run-time data and user behavior for this
experiment. It is developed in .NET Framework 4.0 using
Windows Media Player Component 1.0. In addition to the
functions of Windows Media Player, NextOne Player offers

1 Available at http://sourceforge.net/projects/nextoneplayer/

106



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

Figure 3. The appearance of NextOne Player

recommendation function using the approach described in
Section 3 and also collects data for performance evaluation.
The recommendation will work when the current song in the
playlist ends or NextOne button is clicked. The appearance
of the application is shown as Figure 3. The Like it and
Dislike it buttons are used to collect user feedback.
The proportion of a song played is recorded and viewed as
the measure of satisfaction of a user for the song.

In order to compare our method with random selection,
the player selects one of the two methods when it is loaded.
The probability of running each method is set to 0.5. Every-
thing is exactly the same except the recommendation me-
thod. In a contrasting experiment, users cannot realize which
method is selected.

We have collected data from 11 volunteers. They con-
sist of 9 graduate students and 2 professors and include 3
female students. They use the application in their devices
which recommend songs from their own collections so the
experiment is run on open datasets.

4.2 Results

First, we show the running time of recommendation func-
tion as it is known to have a major influence on the user
experience. The running time results appear to be in an ac-
ceptable range. We run the recommendation system for dif-
ferent magnitudes of the song library and at each size the
system recommends 32 times 2 . Figure 4 shows the varia-
tion in running time with the corresponding variations to the
size of song library. We observe that the running time in-
creases linearly with the increase in size of the song library.
In order to provide a user-friendly experience, the recom-
mendation results are processed near the end of the current
song that is playing, and the result is generated when the
next song begins.

2 CPU: Intel i7, RAM: 4GB, OS: Windows 7

Figure 4. Running time of recommendation function

Figure 5. Representing the user logs to express favordness
over a month

In order to evaluate the approach, the system records the
playing behavior of the user. We collected the user logs from
volunteers and calculated the average proportion of playing
song length, which means how much partition of a song is
played before it is skipped. Under the assumption that the
partition implies the “favoredness” of the song for a user, we
evaluate the recommendation approach by the partition as
shown in Figure 5, where the histograms represent the num-
ber of songs that were played on a day. The curves in the
graph represent the variation of the “playing proportion”.

Moreover, continuous skips have a significant influence
on the user experience, hence they can play an important
role in evaluating the approach. A skip is defined as chang-
ing to the next track by the user before playing 5% of the
length of the current track. The number of continuous skips
can be used as a measure of user dissatisfaction. Figure 6
shows the distribution of continuous skips using our method
and random selection.

From Figure 5 and 6, we can conclude that the recom-
mendation approach surpasses the baseline and our recom-
mendation is effective. Our approach is able to fit to a user’s
taste, and adjust the recommendation strategy quickly when-
ever user skips a song.

107



Poster Session 1

Figure 6. The distribution of continuous skips

5. CONCLUSION AND DISCUSSION

This paper presented a novel approach in recommending
songs one by one based on user behavior. The approach
considered genre, recording year, freshness, favor and time
pattern as factors to recommend songs. The evaluation re-
sults demonstrate that the approach is effective.

In further research, we can apply this technique to a mu-
sic database in a server. Also other users’ behavior can be
applied to recommend songs for a user. We can mix recom-
mendation of music in a local device and an online server
data to overcome the issue of cold start and hence obtain
new favorite songs.

6. REFERENCES

[1] R. Ragno, C. Burges and C. Herley: “Inferring similarity
between music objects with application to playlist gen-
eration,” in Proc. of 7th ACM Multimedia, Workshop on
MIR, pp. 73–80, 2005.

[2] A. Flexer, D. Schnitzer, M. Gasser and G. Widmer:
“Playlist generation using start and end songs,” in Proc.
of 9th ISMIR, pp. 173–178, 2008.

[3] E. Pampalk, T. Pohle and G. Widmer: “Dynamic playlist
generation based on skipping behavior” in Proc. of 6th
ISMIR, pp. 634–637, 2005.

[4] W. W. Cohen and W. Fan: “Web-collaborative filtering:
Recommending music by crawling the web,” Computer
Network, Vol. 33, pp. 685–698, 2000.

[5] P. Cano, M. Koppenberger and N. Wack: “An industrial-
strength content-based music recommendation system,”
in Proc. of 28th ACM SIGIR, pp. 673, 2005.

[6] R. Cai, C. Zhang, C. Wang, L. Zhang and W. Ma:
“MusicSense: Contextual music recommendation using

emotional allocation modeling,” in Proc. of ACM Multi-
media, pp. 553–556, 2007.

[7] J. Donaldson: “A hybrid social-acoustic recommenda-
tion system for popular music,” in Proc. of the ACM
Recommender Systems, pp. 187–190, 2007.

[8] B. Shao, D. Wang, T. Li and M. Ogihara: “Music rec-
ommendation based on acoustic features and user access
patterns,” IEEE Trans. on Audio, Speech And Language
Processing, Vol. 17, No. 8, pp. 1602–1611, 2009.

[9] N. Liu, S. Lai, C. Chen and S. Hsieh: “Adaptive music
recommendation based on user behavior in time slot,”
International Journal of Computer Science and Network
Security, Vol. 9, pp. 219–227, 2009.

[10] J. Su and H. Yeh: “Music recommendation using con-
tent and context information mining,” IEEE Intelligent
Systems, Vol. 25, pp. 16–26, 2010.

[11] G. E. P. Box, and D. A. Pierce: “Distribution of resid-
ual autocorrelations in autoregressive-integrated moving
average time series models,” Jour. of the American Sta-
tistical Association, Vol. 65, pp. 1509–1526, 1970.

[12] B. Logan: “Music recommendation from song sets,” in
Proc. of 5th ISMIR, pp. 425–428, 2004.

[13] H. Ebbinghaus: Memory: A Contribution to Experimen-
tal Psychology, Columbia University, New York, 1913.

108


