
Adaptive Execution of Compiled Queries
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Abstract—Compiling queries to machine code is a very efficient
way for executing queries. One often overlooked problem with
compilation is the time it takes to generate machine code.
Even with fast compilation frameworks like LLVM, generating
machine code for complex queries often takes hundreds of
milliseconds. Such durations can be a major disadvantage for
workloads that execute many complex, but quick queries. To
solve this problem, we propose an adaptive execution framework,
which dynamically switches from interpretation to compilation.
We also propose a fast bytecode interpreter for LLVM, which
can execute queries without costly translation to machine code
and dramatically reduces the query latency. Adaptive execution
is fine-grained, and can execute code paths of the same query
using different execution modes. Our evaluation shows that
this approach achieves optimal performance in a wide variety
of settings—low latency for small data sets and maximum
throughput for large data sizes.

I. INTRODUCTION

Compiling queries to machine code has become a very
popular method for executing queries. Compilation is used
by a large and growing number of commercial systems (e.g.,
Hekaton [1], [2], MemSQL [3], Spark [4], and Impala [5])
as well as research projects (e.g., HIQUE [6], HyPer [7],
DBToaster [8], Tupleware [9], [10], LegoBase [11], ViDa [12],
Vodoo [13], Weld [14], Peloton [15], [16]). The main advantage
of compilation is, of course, efficiency. By generating code for
a given query, compilation avoids the interpretation overhead
of traditional execution engines and thereby achieves much
higher performance.

One obvious drawback of generating machine code is
compilation time. Consider, for example, the following meta
data query:

SELECT c.oid, c.relname, n.nspname
FROM pg_inherits i
JOIN pg_class c ON c.oid = i.inhparent
JOIN pg_namespace n ON n.oid = c.relnamespace
WHERE i.inhrelid = 16490 ORDER BY inhseqno

This query touches only a very small number of tuples,
which means that its execution time is negligible (less than
1 millisecond in HyPer). However, before HyPer can execute
this query, it needs to compile it to machine code. With
optimizations enabled, LLVM takes 54ms to compile this
query. In other words, compilation takes 50 times longer
than execution. Assuming a workload where similar queries
are executed frequently, 98% of the time will be wasted on
compilation. And this query is still fairly small; compilation
times can be much higher for larger queries. Compilation of
the largest TPC-DS query, for example, takes close to 1 second.

Of course, for large data sizes, compilation does pay off as
the resulting code is much more efficient than interpretation.

In this work, we focus on database systems that compile
queries to LLVM IR (“Intermediate Representation”), which is
afterwards compiled to machine code by the LLVM compiler
backend. This approach offers the same machine code quality
as compiling to C/C++, while reducing compilation time by
an order of magnitude [7]. The compilation times of the
LLVM compiler may be low enough for some workloads, for
example those consisting of long-running ad hoc queries or pre-
compiled stored procedures. For other applications, however,
long compilation times are a major problem.

The example query shown above is one of the queries
sent by the PostgreSQL administration tool pgAdmin. On
startup, pgAdmin sends dozens of complex queries (up to
22 joins), all of which access only very small meta data tables.
Compiling these queries causes perceptible and unnecessary
delays. Caching the machine code (e.g., after stripping out
constants) might improve subsequent executions, but would not
improve the initial user experience. More generally, because
the human perception threshold is less than a second, the
additional latency caused by compilation can lead to a worse
user experience for interactive applications. Finally, business
intelligence tools occasionally generate extremely large queries
(e.g., 1 MB of SQL text), which de facto cannot be compiled
with standard compilers.

For the workloads just mentioned, the user experience
of a compilation-based engine can be worse than that of
a traditional, interpretation-based engine (e.g., Volcano-style
execution). Thus, depending on the query, one would sometimes
prefer to have a compilation-based engine and sometimes an
interpretation-based engine. Implementing two query engines
in the same system, however, would involve disproportionate
efforts and may cause subtle bugs due to minor semantic differ-
ences. In this work, we instead propose an adaptive execution
framework that is principally based on a single compilation-
based query engine, yet integrates interpretation techniques that
reduce the query latency. The key components of our design
are a (i) fast bytecode interpreter specialized for database
queries, (ii) a method of accurately tracking query progress,
and (iii) a way to dynamically switch between interpretation
and compilation. Without relying on the notoriously inaccurate
cost estimates of query optimizers, this dynamic approach
enables the best of both worlds: Low latency for small queries
and high throughput for long-running queries.

Our adaptive execution framework is directly applicable to
many compilation-based systems. Furthermore, our approach
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Fig. 1. Architecture of compilation-based query engines.

is non-invasive, i.e., the query engine itself does not have to
be rewritten. Our system always generates LLVM IR code
for the incoming query but does not immediately compile it
to machine code. Rather, it adaptively ensures that the query
is executed as fast as possible using runtime feedback and
without relying on cost estimates from the query optimizer.

II. QUERY EXECUTION VIA COMPILATION

Executing a SQL query in a relational database system
involves a complex multi-step process that is illustrated in
Fig. 1. The SQL text is first parsed into an abstract syntax
tree (“Parser”). The AST is translated into an unoptimized
query plan (“Semantic Analysis”) that is optimized afterwards
(“Optimizer”). Traditional engines directly execute this query
plan (e.g., using Volcano-style iteration). Compilation-based
engines, in contrast, translate the optimized query plan into
some imperative, low-level, machine-independent language
(“Code Generation”) that is optimized again (“LLVM Opt.
Passes“) and finally compiled to machine code (“LLVM Comp.
Optimized”). Some compilation-based systems have multiple
intermediate languages between the relational algebra and the
low-level imperative representation (LLVM IR in our case).
This does not really affect our discussion, as machine code
generation generally takes longer than these additional phases.
In the following, we describe the major challenges faced by
compilation-based query engines that compile to machine code.

A. Latency vs. Throughput Tradeoff

This paper is based on HyPer, which executes queries by
compiling them to the LLVM IR. LLVM is a widely-used open
source compiler framework for ahead-of-time and just-in-time
compilation. Fig. 1 shows the execution times of each stage
for TPC-H query 1 in our system using LLVM. The numbers
show that most time is spent in the final two LLVM compiler
phases (“LLVM Opt. Passes” and “LLVM Comp. Optimized”),
while the preceding code generation, query optimization, and
analysis phases are negligible. Therefore, to optimize overall
latency, we need to focus on making machine code generation
cheaper (or avoid it completely).

Compilation time and execution time differ depending on
the compiler and optimization settings used. Fig. 2 shows the
compilation and execution time of TPC-H query 1 on scale
factor 1 under different settings1. As the figure shows, LLVM
has a similar throughput as the handwritten C++ query while

1The experimental setup is described in Section V.
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Fig. 2. Single-threaded query compilation and execution time for different
execution modes on TPC-H query 1 on scale factor 1.

requiring a much lower compilation time2. Disabling all LLVM
optimizations results in significantly lower compilation times
at the cost of (slightly) higher execution times. The figure
also shows the built-in LLVM interpreter (“LLVM IR”), which
directly interprets the LLVM IR module, and our bytecode-
based interpreter (“LLVM bytecode”), which we describe in
Section IV. These numbers show that only interpreters can
achieve very low latency but, unsurprisingly, this is achieved
by sacrificing throughput.

Fig. 2 clearly shows that there is a tradeoff between latency
and throughput. For long-running queries, compilation to
machine code with a maximum optimization level is often
preferable, while for quick queries an interpreter would be
best. Unoptimized machine code lies in between and offers a
good tradeoff between these two extremes. Depending on the
complexity of the SQL query and the amount of data accessed,
different execution schemes are optimal. In this work, we
therefore propose to dynamically adapt the query execution
by switching between a LLVM bytecode interpreter and the
LLVM compiler with optional optimization passes.

Another relevant aspect is that not all code paths of a query
are equally important. A query consisting of an in-memory
hash join between a very small build relation and a large
probe relation, might be best executed by interpreting the hash
table build code and compiling the hash probe code. Thus,
for different parts of the query, different execution modes can
be ideal. Let us also note that compilers are single-threaded,
while modern query engines are generally multi-threaded. Thus,
while compilation is ongoing, all but one CPU cores are idle,
whereas an interpreter could start utilizing all available cores
much earlier.

B. Compiling Large Queries

A compilation time of 59ms for TPC-H query 1 may still be
considered low enough for some applications. However, query
1 is still fairly small in terms of its resulting code size and
larger queries take much longer to compile. The compilation
time of the largest TPC-H and the largest TPC-DS query are
146ms and 911ms respectively.

Furthermore, we observed for very large, machine-generated
queries (e.g., from business intelligence tools), that the com-

2Note that the handwritten version does not implement overflow checks,
which explains its slightly faster runtime.
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Fig. 3. Execution modes and their compilation times.

pilation times grow super-linearly with the query size. The
compilation times may thus become significantly longer and
queries may not finish at all (cf. Section V-E). While such
queries are not common, any industrial-strength system must be
able to execute them—in particular, since traditional database
systems do not have this problem.

III. ADAPTIVE EXECUTION

We argue that compilation-based engines should support the
3 execution modes shown in Fig. 3. Bytecode interpretation
enables very low latency for quick queries, unoptimized
machine code is a good tradeoff for medium-sized queries,
and optimized machine code achieves peak throughput for
long-running queries. A system that supports these modes, can
provide an optimal user experience if it chooses the right mode
for a given query.

One possible way to decide between the different execution
modes is to rely on the cost estimates computed by the query
optimizer. Cardinality estimates as well as cost models are
often inaccurate [17], [18], which may result in unnecessary
compilations or long-running queries being executed in the
interpreter. The effects of a wrong decision can be severe as the
bytecode interpreter can be slower by an order of magnitude
and compilation can easily take hundreds of milliseconds.
Furthermore, the compilation itself is single-threaded so
compiling up-front leaves all remaining threads idle until the
compilation is finished.

Our adaptive execution approach is dynamic, as we avoid any
up-front decision about the execution mode. Instead, we always
start executing every query using the bytecode interpreter and
all available threads. We then monitor the execution progress
to decide whether (unoptimized or optimized) compilation
would be beneficial. If this is the case, we start compiling
on a background thread, while the other threads continue the
interpreted execution. Once compilation is finished, all threads
quickly switch to the compiled machine code. Because all
execution modes semantically execute the same instructions
on the same data structures, no work is lost when switching
between execution modes and the machine code can pick up
where the interpreter left off.

Our approach is fine-grained. The tracking and the decision
to compile is not done for the entire query, but for a specific
query pipeline (e.g., an expensive hash table probe). Therefore,
different pipelines might be executed using different execution

modes. This can be better than any static up-front decision
because optimized compilation is done only for very expensive
parts of the query. As we show later, in a multi-threaded
setting, it is also often beneficial to execute the same pipeline
by consecutively running all 3 modes.

To implement our dynamic approach we need a number
of mechanisms, which we describe in the following three
sections. First, it must be possible to track the progress of a
pipeline. Second, there must be a way to switch the execution
from bytecode to compiled execution without losing any work.
Finally, we need a model for deciding whether it is beneficial
to switch to compilation.

A. Tracking Query Progress

Fig. 4 illustrates the basic code structure for an example
query plan and the code structure that our compiler generates.
The entry point is the queryStart function, which, when
called, executes the query. queryStart is mainly responsible
for calling C++ initialization code and for launching the
different pipelines of the query. It can be fairly large in size,
but since this code is executed only once, it never pays off to
compile it. The actual data-dependent parts of the query are
always performed in the worker functions, each of which
computes the result of one pipeline. The query plan in Fig. 4
consists of 3 pipelines that are processed by the 3 worker
functions workerA, workerB, and workerC.

This code structure has been chosen with multi-core par-
allelization in mind. Each worker function requires two
arguments: the state (e.g., intermediate query processing
hash tables) and a morsel, which determines the range of
values to process. Intra-query parallelization is implemented by
running multiple worker threads on the same worker function,
but with different (non-overlapping) morsels (e.g., of a relation).
In our parallelization framework, the threads use work stealing
and the range for each invocation is fairly small (e.g., 10,000
tuples), which avoids thread imbalances. This morsel-wise (or
block-wise) execution has been identified as fast model for
intra-operator parallelism in main-memory databases [19], [20]
and is also just the right granularity at which the progress of
a query can be monitored. After each morsel, worker threads
consult a work-stealing data structure anyway. At this point,
we added some extra monitoring code and timing information
to keep track of how many morsels have been processed per
pipeline. Additionally, we also record the total amount of work
whenever a pipeline starts (e.g., the size of the relation or hash
table being scanned). This information allows us to monitor
the query progress.

B. Switching Between Execution Modes

With adaptive execution, a morsel represents the smallest
unit of work that can be processed by the query engine. Besides
being useful to track the progress of a query, these morsels also
emerge as the crucial mechanism for dynamically switching
between different execution modes. Processing a single morsel
involves reading a specified range of values and operating
on a shared state like a hash table. Providing both—range
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  ...
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  ...

  schedule(             )
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workerB(state, morsel):

  for i in morsel:

    state.Hb.insert(B[i])

workerC(state, morsel):

  for i in morsel:

    for tb in state.Hb.lookup(C[i]):

      for ta in state.Ha.lookup(tb):

        ...

workerA(state, morsel):

  for i in morsel:

    state.Ha.insert(A[i])

schedule(worker):

  // assign morsels to threads

  ...

Fig. 4. Illustration of query plan translation to pseudo code. queryStart is the main function. Each of the three query pipelines is translated into a worker
function. The lower left corner shows that the work of each pipeline is split into small morsels that are dynamically scheduled onto threads.

B

dispatch(               , state):handleB

  nextMorsel = grabMorsel()

  if (handleB.isCompiled()):

    handleB.fn(state, nextMorsel)

  else:

    VM.execute(handleB.byteCode, state, nextMorsel)

  // switch execution mode?

  choice = extrapolatePipelineDurations(...)

  if (choice != DoNothing):

    runAsync(λ -> handleB.fn = handleB.compile(choice))

handleB.byteCode:
  0x00 load_i64 40 8 0
  0x14 load_i64 48 8 64
  0x28 icmp_ult_i64 56 40 48
  0x50 condbr 56 0x64 0xf0
  ...

handleB.fn:
  0x00 mov rax, [r12] 
  0x04 mov rbx, [r12+8]
  0x08 cmp rax, rbx
  0x0b jnl 0xf00
  ...

Fig. 5. Switching on-the-fly from interpretation to execution. The dispatch
code is run for every morsel.

and shared state—as input parameters to a worker function
simplifies the generated code and makes the processing of
morsels independent from each other.

This independence enables us to choose the execution mode
for an individual worker arbitrarily. It becomes semantically
equivalent to process either all morsels, every second morsel,
or no morsel with the bytecode interpreter and process the
remainder with a compiled worker function. We can further
compile a single worker function multiple times with different
optimization levels to improve the throughput of the function
step-by-step.

Fig. 5 illustrates the integration of this concept into the
morsel-driven parallelization framework. Instead of identifying
a worker function by its memory address, we introduce an
additional handle indirection. This object stores multiple
variants of the same function. For every single morsel, we
then choose the fastest available representation which could

either be bytecode or an address to compiled machine code.
Consequently, to change the execution mode, one only needs
to set a function pointer in this handle object. Once set, all
remaining morsels will be processed using the new variant
enabling seamless transitions between execution modes.

C. Choosing Execution Modes

We have already shown that a higher query throughput comes
at the cost of a higher query latency. We therefore always start
the execution of each worker function with the low-latency
bytecode interpreter and compile it only if the need becomes
evident. This, however, raises the question of how to determine
when compilation is beneficial. To make this decision, we
continuously evaluate the following options for every pipeline:

1) proceed with the current execution mode
2) compile the worker function to machine code without

compiler optimizations (unoptimized)
3) compile the worker function to machine code with

compiler optimizations (optimized)

Without compilation, the remaining time is entirely based
on the current processing speed (i.e., the speed of the bytecode
interpreter). We track this speed for every worker thread
individually by calculating the local tuple processing rate
whenever we finish a morsel. The total pipeline duration can
then easily be extrapolated based on the remaining tuples in
the pipeline, which is always known at that point in time, and
the number of active worker threads. We can further refine
this extrapolation by using a dynamically growing morsel size,
yielding a higher number of sample points.

With compilation, the remaining time of the pipeline also
depends on the expected compilation time as well as an estimate
of how much faster the compiled code would be. Another
aspect that needs to be incorporated is that, while compilation
is ongoing, the execution of the pipeline can continue in a
multi-threaded setting (using the bytecode or optimized code).
We thus have to compute the tuples that can be processed on
the remaining threads during the compilation and extrapolate
the time needed for the remainder afterwards.
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Fig. 6. LLVM compilation time for (un-)optimized machine code for TPC-H
and TPC-DS queries.

// f: worker function
// n: remaining tuples
// w: active worker threads
extrapolatePipelineDurations(f, n, w):

r0 = avg(rate in threadRates)
r1 = r0 * speedup1(f); c1 = ctime1(f)
r2 = r0 * speedup2(f); c2 = ctime2(f)
t0 = n / r0 / w
t1 = c1 + max(n - (w-1)*r0*c1, 0) / r1 / w
t2 = c2 + max(n - (w-1)*r0*c2, 0) / r2 / w
switch min(t0, t1, t2):
case t0: return DoNothing
case t1: return Unoptimized
case t2: return Optimized

Fig. 7. Extrapolation of the pipeline durations.

The compilation time and the speed-up of a worker
function depend on the generated query plan and are determined
empirically in our system. As Fig. 6 shows, the number of
LLVM instructions of a query correlates very well with its
compilation time for all TPC-H and TPC-DS queries. The
generated plans contain between 300 and 19,000 instructions
for which we observe a near-linear compilation time. For
the speed-ups between different execution modes, we use
empirical data (cf. Section V-D). While it is generally difficult
to forecast accurate query speed-ups and compilation times,
adaptive execution only requires rough extrapolations.

Fig. 7 shows the pseudo code for comparing the different
execution modes. In order to reduce the synchronization
overhead, the extrapolation is only performed by a single
worker thread. We delay the first evaluation by 1 millisecond
to increase the accuracy of the estimates and reevaluate after
every processed morsel thereafter. After every morsel, the
thread computes the average processing speed of all threads
and compares the remaining processing time of the execution
modes. If the transition to a new execution mode appears
beneficial, the thread compiles the worker function and resets
all processing rates. This allows one to eventually transition to
the fastest execution mode for every pipeline.

IV. FAST BYTECODE INTERPRETATION

As Fig. 2 shows, generating machine code takes a non-
trivial amount of time—even without compiler optimizations.
An interpreter is therefore a crucial part of our design.

LLVM is a compiler framework that has been designed
to generate machine code, but it also contains an interpreter.
This interpreter directly executes the LLVM IR without any
additional compilation step. Thus, systems that compile to
LLVM IR could execute queries using this interpreter. However,
as can be seen in Fig. 2, the built-in interpreter is extremely
slow (over 800 times slower than the corresponding machine
code). The reason is that LLVM IR was designed as a versatile
and generic format for implementing optimization passes.
Its pointer-based in-memory representation allows easy code
transformations but is highly cache unfriendly. Furthermore, the
execution of an instruction involves a costly runtime dispatch
as there is only a single instruction (e.g., integer addition) for
all operand widths (e.g., 8, 16, 32, 64 bits).

To make interpretation a viable strategy, we therefore
translate the native LLVM IR into an optimized bytecode
format for a virtual machine (VM) that can be interpreted
much more efficiently. We have to address two key challenges
here: First, processing the bytecode should be as cheap as
possible in order to minimize the interpretation overhead.
Second, an efficient translation into this bytecode has to be
possible. The latter is particularly difficult as many standard
compiler techniques like liveness analysis have a super-linear
worst-case behavior, yielding unacceptable translation times
for very large queries. And finally, the VM must behave 100%
identical to native machine code as we want to seamlessly
switch between interpreted VM code and native machine code.
We therefore developed a virtual machine that mostly follows
the LLVM instruction set, but aims for cheap interpretation
and offers additional functionality for common constructs.

A. Virtual Machine

Our virtual machine is a register machine. When calling an
interpreted function, we allocate a register file that holds all
values computed during function allocation. This allocation
happens on the stack if possible, falling back to heap allocation
if the register file is too large. For now, we can pretend that
every value computed in the LLVM IR has one fixed position in
that register file. As we will see in Section IV-C, it is actually
undesirable to map values to registers like that, but for now
we just assume that all values exist somewhere in the register
file. The first two entries in the register file are initialized to 0
and 1, respectively, such that these constants are always readily
available in registers.

The instruction set of the VM is fixed length, statically typed,
and in most places mimics the LLVM IR instruction set. For
example, the small LLVM function

define i32 @add(i32, i32) {
%3 = add i32 %1, %0
ret i32 %3

}

will be translated into a very similar VM fragment:

add_i32 24 16 20
return_i32 24

The add i32 instruction loads the two function arguments from



while (true) {
switch ((++ip)->op) {
case Op::add_i32: *((int32_t*)(regs + ip->a1))=*((int32_t*)(regs + ip->a2)) + *((int32_t*)(regs + ip->a3)); break;
case Op::add_i64: *((int64_t*)(regs + ip->a1))=*((int64_t*)(regs + ip->a2)) + *((int64_t*)(regs + ip->a3)); break;
case Op::call_void_i32: (void(*)(int32_t))(ip->lit)(*(int32_t*)(regs + ip->a1)); break;
... // around 500 more instructions

}
}

Fig. 8. VM code fragment implementing the interpreter loop. ip points to the current instruction and reg points to the memory storing the registers.

compute liveness and order blocks
for each block b:
allocate registers for values that become

live in b
for each instruction i in b:

if i is not subsumed:
translate i into VM opcodes

propagate values in φ nodes
release register for values that ended in b

Fig. 9. Translation of LLVM IR into VM code.

the registers 16 and 20 (which are byte offsets into the register
file), and writes the result back into register 24. The return i32
instruction returns that value to the caller. Note that there is
not always a 1:1 correspondence between LLVM instructions
and VM instructions, like in this example. First, the LLVM
instructions are annotated with types, while the VM instructions
have the type baked into to the opcode itself. For example the
LLVM add is expanded into different add instructions during
translation depending upon the argument types. And second, we
sometimes collapse multiple LLVM instructions into one VM
instruction to handle frequently occurring instruction sequences
(cf. Section IV-F).

We use a fixed length encoding for the opcodes to improve
the decoding speed. This increases the memory footprint of the
translated function relative to native machine code, but it is still
much more compact than the original pointer-heavy LLVM IR.
As Fig. 8 shows, the VM code itself then consists of a large
switch statement that evaluates all supported instructions.

In total, the VM handles about 500 instruction/type com-
binations, each consisting of a single and fairly simple line
of C++ in the VM code. The bytecode interpreter code is
about 800 lines of code, which is surprisingly small for a
component that allows us to interpret arbitrary query plans
without modifying the query code generation. This is important
for the maintainability of the system as it would be highly
unattractive to maintain completely separate code paths for
both—native code and interpreted execution.

B. Translating into VM Code

The translation of LLVM IR code into VM code is shown
in Fig. 9. It starts by computing the liveness information for
register allocation, which is by far the most challenging step
of the translation, and therefore discussed below in detail.
Afterwards, we know when a value becomes alive within the
control flow and when it dies.

With that information, the transformation itself is simple.
Note that the transformation exploits the fact the LLVM
programs are in Single Static Assignment (SSA) form, i.e., a

value is produced exactly once, and never changes during the
lifetime of the program.

We iterate over all basic blocks of the program in the order
that the liveness computation has determined. For every block,
we then check whether values become alive even though the
producing instruction is not contained in the block itself (this
is rare, but can happen with a complex control flow). If so, we
immediately allocate a register for these values. The instructions
within the block are then translated into VM opcodes one
by one, except for cases where subsequent instructions are
subsumed by previous instructions, for example when folding a
sequence of instructions into one VM opcode (cf. Section IV-F).
At the end of the block we copy values into the φ nodes of
successor blocks if needed (i.e., if the successor block uses
φ nodes to unify different values in SSA representation), and
release registers for all values where the lifetime has ended. Just
as the allocation mentioned before, this is also an exception
caused by the control flow, as we will discuss below. For
the vast majority of cases we allocate registers on demand
and release them when the last user of that value is gone. In
summary, we consider block boundaries only when the control
flow forces us to extend the lifetime of a value.

After this translation step, the VM program is ready for
execution. It performs exactly the same work as the native
code would, including all function calls and all memory writes,
which is important for the switch between interpretation and
compilation. There are some engineering details here to make
that substitution possible. Calls to interpreted code, for example,
need to be patched during the translation to accept an additional
parameter (the VM program). However, that is similar to
standard compiler techniques for nested functions and does
not introduce too much complexity. Our translator has about
2,400 lines of code most of which are dedicated to the register
allocation. As the translation operates almost entirely on the
well defined LLVM IR language, the additional engineering
effort is not too high.

C. Register Allocation

As mentioned before, there is only one step during the
translation into VM code that is algorithmically challenging,
and that is the register allocation, i.e., the mapping of LLVM
values to register slots. Our problem differs slightly from
traditional register allocation, as we only use virtual registers
and therefore could allocate a (nearly) arbitrarily large number
of them. However, we clearly do not want to do this: The
register file is accessed very frequently during interpretation,
and therefore should always be in the L1 cache. A large register
file wastes precious L1 cache entries.



Our register allocation problem is therefore the following:

1) assign a register slot to every LLVM value in the program
2) make sure that a register is only shared between different

values if their lifetimes do not overlap
3) minimize the total number of registers
4) translate very large programs efficiently

In principle, register allocation is a well understood problem
in compiler construction [21]. In order to do register allocation
we need liveness information, i.e., we have to know for each
basic block which values are alive and which are dead. However,
computing this liveness information has super-linear runtime in
the number of basic blocks, which can make these algorithms
prohibitively expensive for large functions. And unfortunately,
some of our queries do compile into very large functions with
thousands of basic blocks and tens of thousands of values. This
is very different from handwritten programs, which tend to
consist of small functions. Register allocators try to avoid the
expensive liveness computation by splitting the life-ranges via
spilling to memory [22]. But this is not really an option for
us (in contrast to regular machine code), as we would then
have to find a mechanism to minimize the spill region, as
that would have to be cache-resident, too. Some JIT systems
therefore restrict the register allocation to values within a single
basic block (which is easy) or consider only a fixed number
of neighboring basic blocks. This approach is computationally
simple but can lead to a poor register allocation.

We developed a new linear-time register algorithm that
recognizes and utilizes loop structures to quickly approximate
the optimal register allocation. Finding the optimal register
allocation for a program in SSA form with an unbounded
number of registers is super-linear. Instead, our register allocator
may sometimes needlessly extend the lifetime of a variable
within the bounds of the innermost loop that contains all uses of
that value. In practice, however, this only occurs with complex
control flows, has imperceptible effects and serves as reasonable
trade off for the linear worst-case behavior.

Having a linear runtime algorithm is very important for the
adaptive execution framework. As we will see in Section V-E,
the regular LLVM compiler is de facto unable to compile some
very complicated queries due to the super-linear algorithms
used. Indeed, we have encountered machine-generated queries
where the largest function consists of 300,000 values and
thousands of basic blocks. An algorithm with super-linear
runtime for such functions thus leads to unacceptable compile
times (hours or even days).

To give an impression of different register allocation strate-
gies, we report the size of the register file for different allocation
strategies for the relatively large TPC-DS query 55: If we just
allocate values to registers without reuse we need 36 KB, which
is larger than our L1 cache. Using a greedy assignment strategy
instead where we consider a fixed window of basic blocks for
the lifetime, we need 21 KB. This is better and sufficient for
some JIT compilers, but still quite large. The algorithm that
we present below reduces this number to 6 KB, which is much
more reasonable.

Live range of v
in Cv

3 6

5

4

z = v

v = f() loop
head

1 2 7

Fig. 10. Computing the liveness of a variable x. The vertices are basic blocks,
which are connected by control flow edges (i.e., branch instructions).

// compute the liveness of values in function F
ComputeLiveness(F):
// find loop structures in F
label all basic blocks in F in reverse postorder
compute the dominator tree D for each basic block
label all nodes in D with pre-/postorder numbers
mark the first basic block in F as loop head
for each jump edge j : B → B′:
if B′ is ancestor of B in D:

mark B′ as loop head
for each basic block B:
associate B with the next dominating loop head

for each loop:
compute the first and last block of the loop
compute the next dominating loop head
label loop with nesting depth

// use the loop information to compute lifetimes
for each value v in F

B_v = set of basic blocks containing
definition and users of v

C_v = innermost loop containing all blocks in B_v
L_v = empty lifetime interval

for each B in B_v:
if C_v is innermost loop for B:

extend L_v with B
else:

extend L_v with outermost loop below C_v
that contains B

Fig. 11. Linear-time algorithm for liveness computation.

D. Linear-Time Liveness Computation

Our algorithm is based upon two key concepts: 1) we
compute that liveness of a value as a live-range with a start
block and an end block. The traditional method of computing
the liveness for each block individually inherently has O(n2)
runtime. And 2) we keep the live-range of each value as tight
as possible by labeling the blocks according to the control flow
and by explicitly handling loops. This is illustrated in Fig. 10:
The basic blocks in this figure are labeled in reverse postorder,
which matches the control flow order. The value x is created
in block 2 and consumed in block 5. Naively one could think
that the lifetime of x is therefore the interval [2,5], but this is
incorrect: Block 5 is part of a loop that starts in 3 and which
involves the blocks [3,6]. Any of these blocks can reach block
5. Therefore, we extend the lifetime to include the containing
loop of the reader, which results in the life range in [2,6].

The full algorithm is shown in Fig. 11. It operates in two
phases: In the first phase, it identifies all loops that occur in the
function and associates each basic block with the innermost
enclosing loop. With this information we can compute the
lifetime of a value by identifying all basic blocks that contain
definition or uses of a value and lifting these blocks to the level
of the innermost loop that contains all blocks. Conceptually,
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Fig. 12. Dominator tree annotated with pre-/post-order.

a value is alive from its definition to its last user, including
all blocks that might be traversed along the way due to loop
constructs.

We now look at the algorithm in more detail. It starts by
labeling (and ordering) all basic blocks in reverse postorder,
i.e., a block is placed after all its incoming blocks. Ignoring
loops this directly corresponds to the control flow order, and
for a human would be the “natural” way to order the blocks
in a programming language. This order is required for the
next algorithm step, and has the added advantage of making
sure that the block labels are meaningful regarding the control
flow. Using this labeling, we can compute the dominator tree
D efficiently [23], [24], which, for each basic block, tells us
the closest basic block that must have been executed before.
For lookup purposes we label all nodes in D with pre-/post-
order numbers [25]. This labeling allows us to determine
ancestor/descendant relationships in O(1). The dominator tree
for our running example is shown in Fig. 12. Using the
pre/postorder numbers we can immediately see that, e.g., block
2 transitively dominates block 6, as the interval [8,11] of block
6 is contained in the interval [2,13] of block 2.

All this infrastructure is used to identify loops. To avoid
edge cases for blocks outside of loops, we pretend that the
whole function body is part of one large loop, and we mark the
first block of the function as the loop head (i.e., the entry point
of the loop). Now we look at all jumps between pairs of blocks
B and B′. If B′ is an ancestor of B in the dominator tree
D, we have found a loop, and we mark B′ as the loop heap.
In our example block 6 jumps to block 3, which dominates
6, and thus block 3 is a loop head, i.e., the entry point of a
loop. After identifying all loops, we associate each block with
their innermost containing loop, represented by the nearest
dominating loop head. We use a disjoint set data structure
with path compression here to make this computation fast. We
remember the first and the last block of a loop (according to
the block labels), and the loop in which it is nested. In our
example the loop starting at block 3 contains the block 3–6,
and is contained in the top-level (pseudo) loop starting at block
1. Finally, we compute the nesting depth for each loop.

While this computation is involved, and uses several non-
trivial algorithms, the overall complexity of each step is linear.
Indeed, most of the complexity stems from the fact that we
want to guarantee linear runtime: We could, for example, leave
out the pre/post-order labeling or the path-compression, but we

would the get super-linear runtime in subsequent steps. The
same is true for the choice of the dominator tree algorithms.

Using this loop information, the liveness computation for
each individual value v becomes simple. We identify the set
Uv of all blocks that contain either the definition or the uses
of v. If the containing loop was the same for all these blocks,
the lifetime would simply be the span from the first block to
the last block, according to the reverse postorder labeling. In
the general case, we identify the least common loop Cv that
contains all blocks from Uv. We extend the lifetime of v to
include the blocks from Uv within Cv that are not located
within nested loops. For every other block b in Uv , we extend
the lifetime of v to include all blocks of the outermost loop
within Cv containing b. In our example the containing loop
Cv for value v is the whole function, the definition of v in
block 2 is immediately in that loop, but the use of v in block
5 is one loop level deeper. As a result, the lifetime of v is the
interval [2,6]. This whole computation is very cheap due to
lookup structures we have prepared while analyzing the loops
in the first phase.

Note that some care is required for LLVM’s φ nodes: The φ
nodes are used for the Single-Static-Assignment (SSA) form,
and they pick a value depending upon the incoming edge that
has led to the basic block with the φ node. For the purpose of
lifetime computations, the arguments of φ are “read” at end of
the corresponding incoming block, and the φ node is “written”
immediately afterwards in the same block, and then “read” in
the block that contains the φ node. This is not particularly
difficult to implement, but one has to keep that in mind when
computing the liveness for φ nodes.

E. Interoperability

We interpret the original LLVM IR using our virtual machine.
Therefore, our bytecode interpreter behaves equivalently to
generated machine code (except for speed differences, of
course). This is important, because it allows us to seamlessly
switch between interpretation and machine code, without
modifying the rest of the system.

The interoperability between bytecode and machine code,
however, raises a problem. While a function pointer suffices
to run machine code, we need to interpret the bytecode with
the virtual machine. So instead of a direct function call we
need to call additional dispatch code (cf. Fig. 5) and pass to it
the function’s bytecode as an additional argument. We could
then differentiate both signatures by tagging the pointer and
dynamically call the respective function, but that would be quite
invasive and would introduce unnecessary branches. Instead,
we always pass an extra pointer argument to the function even
though it is redundant in the machine code case. This allows
us to transparently switch from interpreted to compiled code
by replacing the function pointer and inject the additional
argument.

The reverse direction is simpler as we can call existing
C++ code from both, generated machine code and from our
VM. We just have to make sure that a suitable call instruction
is available in our VM for every existing function signature.



Referring to Fig. 8, the opcode Op::call_void_i32 is
required to call C++ functions with a single 32 bit integer
parameter and no return value. As we know all exported C++
functions, we can identify missing opcodes at compile time.

F. Optimizations

While being possible, it is sometimes inadvisable to translate
LLVM instructions independent from each other. One example
for this is overflow checking. Any arithmetic that occurs within
a query is checked for overflows in order to report overflow
errors to the user. With LLVM, this check boils down to 4
instructions that are always executed in sequence. With the
bytecode interpreter, our translator recognizes this sequence,
and replaces it with a single VM bytecode that performs all four
steps at once. This greatly reduces the number of instructions
for some queries and decreases their execution time.

Another frequently occurring pattern is the GetElementPtr
(i.e., pointer arithmetic) instruction followed by a load or store.
These sequences are also recognized during the translation and
merged into one VM opcode to reduce the instruction count.

In general, it would make sense to translate a large corpus
of queries, and to check for frequently occurring sequences
of instructions in order to replace them by macro instructions.
One candidate for that could, for example, be NULL handling,
which also tends to create similar instruction sequences. In
future work, we will expand this mechanism to recognize more
of these constructs.

V. EVALUATION

In this section, we experimentally compare the adaptive query
execution framework discussed in Section III with different
statically chosen execution modes. We also devote special
attention on the bytecode interpreter introduced in Section IV
to answer the question whether query interpretation adds
additional value to compilation-based databases.

Our experiments are performed in HyPer, a database system
that directly generates LLVM IR, and, so far, always compiled
it to machine code. By default, optimized compilation was
used, which enables all machine-specific (backend) opti-
mizations after executing a number of hand-picked LLVM
IR optimization passes (peephole optimizations, reassociate
expressions, common subexpression elimination, control flow
graph simplification, aggressive dead code elimination). We
also implemented an unoptimized compilation mode, which
also generates machine code but disables most compiler
optimizations to improve compile times. Specifically, this
mode enables fast instruction selection, does not execute
any LLVM IR optimization passes, and uses a low backend
optimization level. Our interpreter translates the LLVM IR
directly into the bytecode discussed in Section IV. Finally, the
adaptive execution mode interleaves machine code generation
and execution as described in Section III.

The experiments have been performed on a desktop system
with an 8 core AMD Ryzen 7 1700X CPU, 32 GB of RAM,
LLVM 3.8 and Linux 4.11. We repeated all experiments on an
Intel CPU and observed similar results.
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Fig. 13. Geometric mean of all TPC-H queries including planning, compilation,
and execution using 8 threads for different scale factors and execution modes.

A. Static vs. Adaptive Mode Selection

Let us first investigate, whether an adaptive switching of the
execution mode can compete with a static up-front decision. In
this experiment, we run all 22 TPC-H queries on scale factors
ranging from 0.01 (around 10 MB) to 30 (around 30 GB).

Fig. 13 presents the geometric means over all queries and
for all execution modes. Without having prior knowledge
about the exact data size, adaptive execution is able to always
compete with the best statically chosen execution mode. For the
scale factors 0.01 and 0.1, the superior strategy is determined
solely by the query latency which clearly favors interpretation
over compilation. At these data sizes, adaptive execution
never chooses to compile and performs just as well as pure
bytecode interpretation. Starting from scale factor 1, it becomes
viable to compile many of the pipelines, making unoptimized
compilation competitive. However, adaptive execution is still
able to outperform unoptimized compilation as fast pipelines
can still be processed as bytecode. Finally, at scale factor 30 the
queries run long enough to justify the optimized compilation.
Adaptive execution now picks the best out of three execution
modes per pipeline and outperforms both compilation modes
noticeably. At even larger scale factors, we expect this trend
to continue, with optimized compilation becoming the main
competitor for adaptive execution. However, we also expect
that adaptive execution will continue to have the overall lowest
processing time as there will still be cheap pipelines in the
query plans, that can be executed immediately.

B. Adaptive Execution in Action

In a next step, we investigate the adaptive behavior of
the framework based on TPC-H query 11 on scale factor
1 using 4 threads3. We compare adaptive execution with its
competitors using the dynamic execution trace shown in Fig. 14
which shows precise timing information about the morsels
being processed. Starting with the bytecode interpreter, the
figure shows that the database quickly uses all 4 worker
threads to process the pipeline morsels in parallel. It also
reveals that the amount of work is distributed very unequally
among the 7 pipelines and that most of the time is spent

3Query 11 has been chosen such that the individual morsels are graphically
distinguishable.
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Fig. 14. Execution trace of TPC-H query 11 on scale factor 1 using 4 threads.
The optimized mode is not shown, as its compilation takes very long (103ms).

on the processing of the pipelines “scan partsupp 1” and
“scan partsupp 2”. Unoptimized compilation, in contrast, uses a
significant proportion of the time for the initial single-threaded
compilation of the query plan. Afterwards, the morsels can
hardly be distinguished from each other as the processing
with compiled pipelines is much faster. The execution trace of
optimized compilation looks very similar to the one from
unoptimized compilation but is not shown for graphical
reasons, as the additional compiler optimizations lengthen the
compilation time to 103 milliseconds. In summary, unoptimized
compilation dominates the other statically chosen execution
modes for this query (at scale factor 1) due to being a good
tradeoff between an increased efficiency and a fast query
preparation. These observations already indicate, that the quality
of a static up-front decision highly depends on the complexity
of individual pipelines and the data that is being processed.

Fig. 14 also shows the execution trace of our adaptive exe-
cution mode which is able to outperform all of its competitors.
Very similar to the pure bytecode interpreter, adaptive execution
can immediately start to process the pipeline morsels on all
4 worker threads. After 1 millisecond, it determines for the
two largest pipelines that switching the execution mode is
worthwhile and therefore dedicates a worker thread to compile
them. As the compilation is restricted to a single function, it
only takes a fraction of the time we observed when transforming
the whole query plan. Once compiled, all worker threads
automatically shift gear to the newly-created machine code
and process the remaining morsels very efficiently. However,
the unequal complexity distribution favors the compilation of
only 2 out of 7 pipelines. Thus our framework processes the
remaining pipelines using the bytecode interpreter and finishes
the query 10%, 40% and 80% faster than the competitors (i.e.,
unoptimized compilation, bytecode interpreter and optimized
compilation).

TABLE I
PLANNING AND COMPILATION TIMES IN MS FOR TPC-H QUERIES ON

POSTGRESQL (“PG”), MONETDB (“MONET”), AND HYPER.

TPC-H plan HyPer

# PG Monet plan cdg. bc. unopt. opt.

1 0.1 0.8 0.2 0.7 0.4 6 42
2 1.0 0.7 0.7 1.5 1.2 23 149
3 0.3 0.5 0.4 0.9 0.7 10 69
4 0.2 0.4 0.2 0.7 0.4 7 47
5 1.2 0.8 0.7 1.2 0.9 15 104

max 1.9 1.0 0.8 1.5 1.2 23 149

TABLE II
EXECUTION TIMES OF TPC-H QUERIES ON SCALE FACTOR 1 ON

POSTGRESQL (“PG”), MONETDB (“MONET”) AND HYPER. THE
GEOMETRIC MEANS (“GEO.M.”) ARE OVER ALL 22 QUERIES.

TPC-H 1 thread 8 threads

# PG Monet bc. unopt. opt. bc. unopt. opt.

1 4908 484 858 161 77 170 34 16
2 254 5 94 13 8 25 5 3
3 1258 64 323 104 80 54 21 17
4 193 56 352 67 45 57 16 12
5 516 51 362 60 37 67 14 10

geo.m. 497 57 232 60 46 45 15 12

C. Planning and Compilation Time

Bytecode interpretation is a viable approach to provide a
low-latency execution mode in compilation-based databases. In
order to provide evidence for this statement, we evaluate the
planning and compilation times of HyPer and compare them
with PostgreSQL 9.6, which uses Volcano-style interpretation,
and MonetDB 1.7, which uses column-at-a-time processing.
Table I shows the planning times for TPC-H queries 1 through
5 and the maximum over all 22 queries. For TPC-H, plan
generation (labeled as “plan” in the table), which includes
parsing, semantic analysis, and query optimization, is very fast
in all systems. While MonetDB and PostgreSQL can directly
execute this plan, HyPer generates LLVM IR code in the code
generation phase (abbreviated as “cdg.” in the table). LLVM IR
generation typically takes slightly longer than planning, but is
still very fast (less than 2ms over all 22 TPC-H queries). The
next phase in HyPer is either bytecode (“bc.”), unoptimized
(“unopt.”), or optimized (“opt.”) machine code generation. The
table shows, that even unoptimized machine code compilation is
generally around 10x slower than planning and code generation.
Optimized compilation is even slower and takes up to 150 ms
for TPC-H. Bytecode generation, on the other hand, is very
fast and is always finished in less than 2 ms.

D. Performance of Interpreted and Compiled Code

Let us next compare the execution times of the bytecode
interpreter and the compiled machine code. Table II shows
the TPC-H performance on scale factor 1 for the different
execution modes and compares them with MonetDB as well
as PostgreSQL. Considering the geometric mean across all
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Fig. 15. Compilation times of queries with a large number of instruction
using optimized compilation, unoptimized compilation and interpretation.

22 queries, the bytecode interpreter is 3.6 times slower than
unoptimized machine code and 5.0 times slower than optimized
machine code. While interpreted code is slower than compiled
code, it is still 2.1 times faster than PostgreSQL and scales
just as well as compiled code when multiple cores are used.

E. Compiling Very Large Queries

In Section III, we introduced a linear cost function that
estimates the compilation time based on the number of
instructions in the pipeline. However, we derived this function
from the TPC-H and TPC-DS benchmarks which do not contain
particularly complex queries. Machine-generated queries, on
the other hand, can easily comprise multiple MB of SQL text
with very unpleasant properties for the query compiler. In our
last experiment, we therefore investigate the effects of very
large queries on our three execution modes and show that fast
translation into bytecode is indispensable for these workloads.

Our sample queries consist of a single table scan and an
increasing number of aggregate expressions. By scaling this
number from 10 to 1900, we receive query plans that contain
between 1,000 and 160,000 LLVM instructions, most of which
are in a single large function. Fig. 15 shows the compilation
times of these queries with the different execution modes.
Above all, the measurements show that optimized LLVM
compilation is no longer a viable approach for larger query
sizes. Its compilation times are characterized by an explosive
growth and exceed the 4 seconds mark already for 10,000
LLVM instructions. Without optimization passes, the query
compilation scales better but still requires 4.4 seconds for the
largest of our queries. In comparison, the bytecode interpreter
scales perfectly and is able to process this very large query in
only 0.9 seconds. This workload stresses the importance of the
fast bytecode translation that we introduced in Section IV. The
translation allows us to execute queries of (almost) arbitrary
size with the interpreter and adaptively compile parts of the
query whenever efficiency is needed.

VI. RELATED WORK

Many papers on compilation-based query processing only
report execution times without stating the time it takes to
generate the machine code itself. Those papers that do report
them, show compilation times between 5ms and 37ms when
LLVM IR is used as a target language [26] and closer to

1 second for compilation to C [11], [27]. As compilation is
becoming widespread, we expect that compilation times will
receive more attention as any industrial-strength system must
deal with very large queries. Indeed, our personal experience
has been that after transitioning from standard benchmark
queries, which are usually well-designed and “sane”, to real-
world customer queries, which are sometimes very “interesting”,
query compilation latency becomes a major problem. We
therefore believe that adaptive execution is a crucial component
for making query compilation truly practical—in particular
since traditional engines and modern columns stores (e.g.,
[28], [29], [30], [31]) do not have large compilation times. In
the following, we describe how adaptive compilation can be
integrated into other systems, and discuss other approaches for
reducing compilation time.

Adaptive execution has been designed for systems that
directly compile queries to LLVM IR, which includes HyPer [7]
and Peloton [15]. MemSQL is another system that is based
on compilation that would benefit from adaptive execution.
It originally compiled queries to template-heavy C++, which
resulted in very high compilation times. Likely for this reason,
recent versions compile to a high-level imperative language
called MemSQL Plan Language, which is then lowered down
via a mid-level intermediate language called MemSQL Bit
Code to LLVM IR [3]. Since the MemSQL Bit Code can be
interpreted, switching between interpretation and execution
could easily be implemented at that level. A similar approach
like adaptive execution could also be applied to systems like
LegoBase [11] and its successor system [27], both of which can
either execute queries through the Java VM or by compiling
to a low-level language like C. Adaptive execution might also
be useful for traditional (e.g., Volcano-style) systems that use
compilation to specialize the query engine code for a particular
query [32], [33], [5]. Microsoft Hekaton, which is part of
SQL Server, compiles stored procedures to C [2]. For this use
case, compilation times are arguably less important than for ad
hoc queries because stored procedures are generally defined
infrequently, but executed often.

Automatic plan caching, i.e., reusing query plans between
subsequent executions of the same (or a similar) query, is
another, orthogonal approach for reducing compilation times.
However, plan caching, like explicit prepared statements,
cannot hide the compilation time of the first incoming query.
For interactive applications this means that the initial user
experience of compilation-based systems is far from ideal.
Another disadvantage of plan caching is that recurring queries
are often not exactly the same, but, e.g., differ by the selection
constants. Our adaptive approach can re-optimize queries on
every execution, which has the advantage that the specific query
constants are visible to the query optimizer, potentially leading
to better query plans. Nevertheless, it would also be possible
to combine our approach with plan caching. Indeed, one could
extend adaptive execution to incorporate multiple executions of
the same query by keeping track of how often each pipeline is
executed. In this design, eventually all pipelines of frequently-
executed queries would be compiled with optimizations.



Adaptive execution bears similarities with the execution
engines of modern managed languages like Java (HotSpot),
C# (CLR), and JavaScript (V8, JägerMonkey). These sys-
tems initially execute code in an interpreter and then, for
hot code, dynamically switch to compilation. Our adaptive
execution framework can be considered a database-specific
implementation of similar ideas. However, for maximum
performance, database systems require precise control over
memory management and are therefore generally written in (or
generate) low-level languages. Therefore, databases cannot use
automatic solutions at the language level, which, to the best of
our knowledge, only exist for managed languages. On the other
hand, in contrast to a general-purpose programming language,
a database system knows much more about the code structure
and the instructions generated. This simplifies the design
and implementation of adaptive execution (e.g., we do not
implement LLVM IR instructions that we do not generate) and
allows database-specific optimizations (e.g., macro operations
for common operations like overflow checking).

VII. SUMMARY

We showed that interpretation and compilation are both
important building blocks for achieving low query latency and
high throughput. We also presented an adaptive execution
framework that dynamically and automatically adjusts the
execution mode of a query to minimize its overall execution
time. In this approach, all decisions are made at a pipeline
granularity and are based on runtime feedback instead of
having to decide up-front. We further proposed a bytecode
interpreter that features a linear-time translation of LLVM IR
into efficient bytecode. Using this interpreter and the existing
LLVM compiler with optional optimization passes, our system
was able to dynamically adapt to data sizes ranging from 10MB
to 30GB and outperform all statically chosen execution modes
for queries in the TPC-H benchmark.
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Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 725286).
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A. Shaikhha, “DBToaster: higher-order delta processing for dynamic,
frequently fresh views,” VLDB J., vol. 23, no. 2, pp. 253–278, 2014.

[9] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, U. Çetintemel, and S. B.
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