
Facilitating the Exploitation of Linked Open
Statistical Data: JSON-QB API Requirements

and Design Criteria

Dimitris Zeginis1,2, Evangelos Kalampokis1,2, Bill Roberts3, Rick Moynihan3,
Efthimios Tambouris1,2, and Konstantinos Tarabanis1,2

1 Information Technologies Institute, Centre for Research & Technology Hellas,
Thermi, Greece

2 University of Macedonia, Thessaloniki, Greece
{zeginis, ekal, tambouris, kat}@uom.gr

3 Swirrl IT Limited, 20 Dale Street, Manchester, M1 1EZ, United Kingdom
{bill, rick.m}@swirrl.com

Abstract. Recently, many organizations have opened up their data for
others to reuse. A major part of these data concern statistics such as
demographic and social indicators. Linked Data is a promising paradigm
for opening data because it facilitates data integration on the Web. Re-
cently, a growing number of organizations adopted linked data paradigm
and provided Linked Open Statistical Data (LOSD). These data can be
exploited to create added value services and applications that require
integrated data from multiple sources. In this paper, we suggest that
in order to unleash the full potential of LOSD we need to facilitate the
interaction with LOSD and hide most of the complexity. Moreover, we
describe the requirements and design criteria of a JSON-QB API that (i)
facilitates the development of LOSD tools through a style of interaction
familiar to web developers and (ii) offers a uniform way to access LOSD.
A proof of concept implementation of the JSON-QB API demonstrates
part of the proposed functionality.

Keywords: Linked data, statistical data, data cube, API, JSON, re-
quirements

1 Introduction

Increasingly, many governments, organisations and companies are opening up
their data for others to reuse through Open Data portals [12]. These data can
be exploited to create added value services, which can increase transparency,
contribute to economic growth and provide social value to citizens [9].

A major part of open data concerns statistics (e.g. economical and social
indicators) [2]. These data are often organised in a multidimensional way, where
a measured fact is described based on a number of dimensions. In this case,
statistical data are presented as data cubes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/211821702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Linked data has been introduced as a promising paradigm for opening up
data because it facilitates data integration on the Web [1]. Concerning statistical
data, standard vocabularies such as the RDF data cube (QB) vocabulary[4],
SKOS[17] and XKOS[3] enable modelling data cubes as Linked Open Statistical
Data (LOSD).

Although LOSD potential is high, their exploitation is low for two reasons.
First, using LOSD requires skills and tooling (e.g. RDF, SPARQL) that are
less widespread than some other web technologies (e.g. JSON, Javascript). For
example, there are many Javascript visualization libraries that consume JSON
data (e.g D3.js, charts.js), while there are just a few that consume RDF and
their functionality is limited. Second, many portals that use the standard vo-
cabularies often adopt different publishing practices [10], thus hampering their
interoperability. As a result it is difficult to create software tools that can be
reused across LOSD. Usually, developed tools assume that data are published
only in a specific form.

In order to unleash the full potential of LOSD there is a need to standard-
ize the interaction (i.e. input, output and functionality) with LOSD in a way
that facilitates the development of reusable software. This paper describes the
requirements and design criteria of a JSON-QB API that aims to exploit the
advantages of LOSD (e.g. easy data integration) while making data available in
a structure and format that is familiar to a larger group of developers. Some of
the flexibility, and associated complexity, of linked data is removed, in favour of
simplicity and ease of use. Moreover, the API offers a uniform way to access the
data, thus enabling the development of generic software tools that can be reused
across datasets.

The rest of the paper is organized as follows, section 2 explains the motivation
for the development of a JSON-QB API, section 3 presents related work, section
4 defines the requirements and design criteria for JSON-QN API. Section 5
presents a proof of concept implementation of the API. Finally, section 6 draws
conclusions.

2 Motivation

Currently, many LOSD have been made available on the Web through official
portals. For example Census data of 2011 from Ireland4 and Italy5 have been
published as linked data. The Department for Communities and Local Govern-
ment (DCLG)6 in the UK, the Scottish Government7, and the Statistics Bureau
of Japan8 opened up their statistics as linked data etc.

Although the above portals use the same standard vocabularies, they of-
ten adopt different publishing practices [10]. For example different practices are

4 http://data.cso.ie
5 http://datiopen.istat.it
6 http://opendatacommunities.org/data
7 http://statistics.gov.scot
8 http://data.e-stat.go.jp

adopted for the definition of multiple measures, for the definition of popular
dimension (i.e. time, geography) and their code lists etc. As a result, generic
tools that operate across LOSD datasets cannot be created. However, tools
which assume LOSD published only in a specific way have already been de-
veloped. Specifically, existing tools enable: i) the browsing of LOSD e.g. Data
Cube faceted browser[15], CODE Query wizard[8] ii) the performance of OLAP
operations like roll-up/drill-down, slice, dice e.g. OpenCube OLAP Browser [13],
QB2OLAP[22] iii) the performance of statistical analysis on LOSD e.g. Open-
Cube R statistical analysis tool[11] and iv) the visualization of LOSD e.g. Cube-
Viz[16], StatSpace[6].

In addition to the exploitation tools, complete platforms (e.g. PublishMy-
Data9) aim both to publish and exploit LOSD. In this case, published data can
be consumed only by tools of the same platform, since different publishing prac-
tices are adopted. This leads to the creation of LOSD system silos (software &
data) that cannot interoperate among each other.

Fig. 1. Traditional architecture for LOSD tools

All the above tools and platforms follow the same traditional architecture
(figure 1) where each tool has an integrated access layer. If several tools are
created for the same portal (i.e. same publishing practices), then each tool has
to develop separately a similar data access layer. In addition, if a tool has to be
used at another portal, then a new data access layer has to be created leading
to additional costs. More importantly, the development of data access layers
requires significant programming expertise in LOSD, a skill that is not widely
available between developers.

As a result, there is a need to standardize the interaction with LOSD in a way
that hides the LOSD complexity to the developers and offers a uniform way to
access the data. To achieve these objectives we adopt the following methodology:

9 http://www.swirrl.com/

(i) study the related work focusing on APIs that facilitate the interaction with
data cubes and statistical data and (ii) collect user requirements from developers
that create LOSD applications.

3 Related work

Currently, several APIs that standardize the interaction with multi-dimensional
statistical datasets have been developed. For example, SDMX has proposed the
SDMX-REST API [20] that offer programmatic access to data and metadata dis-
seminated in an SDMX-compliant source. This API is currently used by several
organisations including the Eurostat, OECD and World Bank. Eurostat offers
also the “JSON & UNICODE Web Services”10 to allow access to its data. This
service is complementary to the SDMX-REST API since it supports different
output formats (i.e. JSON and UNICODE). Another REST API that enables
the accessing of multidimensional databases is offered by PX-Web 11 internet
server application. The API is used by many National Statistics Offices includ-
ing Finland, Sweden, Estonia and Switzerland. Table 1 presents a summary of
the offered functionality of the above three APIs. The functionality is separated
to three main categories, namely “search”, “get meta-data” and “get data”.

These APIs focus on supplying metadata and data about a specific dataset
or cube. They do not address requirements regarding the combination of data
from multiple datasets or cubes. Although two of the APIs in Table 1 support
search functionalities, the search provides limited filtering options such as free
text search and search based on the category of the indicator. As a result they do
not support the discovery of datasets that are structural compatible to integrate.

Additionally, APIs that support advanced OLAP operations on data cubes,
such as aggregation, slice and roll-up/drill-down, have been proposed. For exam-
ple, the Oracle OLAP Java API [19] allows users to select, explore, aggregate and
perform analytical tasks on data stored in an Oracle data warehouse. Olap4j12 is
another Java API for accessing data cubes stored at OLAP servers. It supports
Multidimensional Expressions (MDX) that is the query language for OLAP.

Regarding the output, the APIs support many formats including, SDMX-
JSON [21], SDMX-ML, JSON-stat13, CSV, Unicode, PC-Axis etc. An interest-
ing JSON extension for encoding linked data is JSON-LD14. JSON-LD is not
currently used by existing APIs, however it is a candidate for a JSON-QB API.

Finally, APIs that hide the complexity of SPARQL endpoints have been
proposed. For example OpenPHACTS [7] and BASIL [5] propose approaches to
build Web APIs on top of SPARQL endpoints. Grlc is a lightweight server that
takes SPARQL queries curated in GitHub repositories, and translates them to
Linked Data APIs on the fly. These API, succeed in hiding the complexity of

10 http://ec.europa.eu/eurostat/web/json-and-unicode-web-services/
11 http://www.stat.fi/tup/pcaxis/px web ominaisuudet en.html
12 http://www.olap4j.org
13 https://json-stat.org/
14 https://json-ld.org

SPARQL to web developers, however they are generic and do not provide cube
related operations.

Table 1. Existing APIs used by national and international organisations

Functionality SDMX-REST JSON & Unicode
Web Service

PX-Web

Search Get cubes Filtering options:
– data provider
– API version

No Filtering options:
– free text search
– category search
– geography search

Get
meta-
data

Data structure Yes No Yes
Concept scheme
(qb:concept)

Yes No No

Code List Yes (including hier-
archical code lists)

No Yes

Data publisher Yes No No
Data category Yes No Yes

Get
data

Observations Filtering options:
– dimension values

(multiple values,
AND/OR, ALL)

– start/end date
– updateAfter
– data provider

Filtering options:
– dimension values

(multiple values,
AND)

– unit
– precision

Filtering options:
– dimension values

(multiple values,
AND)

Time series Yes No No
Compatible
data

Yes No No

4 Requirements and design criteria

The API should follow patterns and practices familiar to “mainstream” web
developers, to facilitate the creation of data-driven visualisations and interactive
applications. Moreover, it should be suitable for use by a wide range of statistics
publishing organisations, so that data users can have a standard interface to
LOSD. This will put constraints on the way that publishers manage their data,
however those constraints should be reasonable and manageable.

To collect the requirements, we established an ongoing interaction with de-
velopers that currently create applications for LOSD. The interaction mainly
occurs within the EU funded project OpenGovIntelligence15, which aims to ex-
ploit LOSD for improving the public services. To facilitate the collection of re-
quirements we organized a dedicated workshop in Manchester with participation
of relevant developers.

15 http://www.opengovintelligence.eu/

4.1 Search data cubes

The LOSD cloud currently contains many data cubes and their number still
increases. Thus, applications need to search for cubes based on some criteria. For
example, get cubes that measure unemployment, or get cubes for Greece. The
search criteria can be even more complex e.g. get cubes about unemployment
in Greece after 2010. Thus, the API should provide a flexible way to express
complex data queries. A parameter that should also be taken into consideration
is the support of multiple natural languages, for example in helping to match
search terms with concepts that could have multi-lingual labels.

The search functionality can also be extended to support not only user spe-
cific data queries, but also support the “automatic” search of compatible cubes
that could be processed together. For example, having a cube at hand search for
other cubes that are compatible for combined statistical analysis, for visualisa-
tion or for browsing. The compatibility search needs to access both the structure
and the data of the cube. However, the compatibility criteria is still an open issue
and is out of the scope of this paper.

4.2 Get cube meta-data

Once a cube has been identified (e.g. through the search functionality) the pro-
cessing application (e.g. cube browser) needs to initialize the user interface or the
analysis with information related to the cube structure. For example, populate
drop-down menus with the cube dimensions and measures. The QB vocabulary
clearly identifies the main elements of the structure that should be accessed
through the JSON-QB API:

– Dataset meta-data. They include information like the label, description, issue
date, publisher and license.

– Dimensions. They include all the dimension properties of the cube (e.g. ref-
erence area, reference period).

– Measures. They include all the measure properties of the cube (e.g. unem-
ployment, poverty)

– Attributes. They include all the attribute properties of the cube (e.g. unit
of measure)

– Dimension values. They include all the values of a dimension (e.g. male,
female) that appear at the cube.

– Dimension levels. In the case of hierarchical data, dimension values are or-
ganized to hierarchical levels (e.g. region, district).

– Attribute values. They include all the values of an attribute (e.g. euro, dollar)
that appear at the cube.

Regarding the last three elements, the QB vocabulary does not offer a way
to retrieve the values / levels directly from the structure. Thus the API should
iterate over the cube observations, which is a time consuming task.

4.3 Slicing and filtering

There are already methods available for downloading entire data cubes but peo-
ple often want just small parts. Whole cubes are often too big to be well-suited
to interactive applications, and if the data updates frequently, then it’s impor-
tant for people to be able to retrieve up-to-date extracts of the data, rather
than keeping their own copies of full datasets up to date. The JSON-QB API
should provide a flexible way to applications to take exactly the data they need
by defining constrains (i.e. filters). For example it should support many filtering
options to the dimension values including:

– Single values e.g. refPeriod=2010.
– Multiple values e.g. refPeriod=[2010, 2011, 2012]
– Ranges e.g refPeriod=[2010 ... 2015]
– Greater/smaller than e.g. refPeriod>2010
– Hierarchical data filtering e.g. refArea=“all council areas in Scotland”

In many cases, applications do not need all the requested data at once, be-
cause they process them at bunches. For example, a cube browser shows a part of
the data allowing the user to navigate to the previous/next page of data. Thus,
the JSON-QB API should support paging and ordering of the results. The order-
ing of the results can be in ascending or descending order based on a dimension.
However, in some cases this is a complicated task e.g. ordering based on 2 ore
more dimension. Moreover, lexicographical ordering is not always appropriate
(e.g. for the days of the week), thus other types of ordering should be applied.

4.4 Ease of use

Linked data offer many benefits to web developers, including the easy integra-
tion on the web. However, linked data technologies (i.e. RDF, SPARQL) are
unfamiliar to many developers, thus hindering their adoption. The purpose of
the JSON-QB API is to exploit the advantages of linked data through a style
of interaction that is familiar to web developers, thus helping them create data
visualisations and applications. It is not necessary for the API to be a com-
plete “round-trippable” representation of the data, it is acceptable to lose some
information in favour of greater ease of use.

The ease of use of an API is related both to the input and the output.
Regarding the input of the API there are mainly two design options: i) use a
separate REST parameter for each input and ii) model all the input as a JSON
object. The first option was traditionally used by APIs, while the second is
recently becoming popular since it is more flexible and enables the creation of a
data query language for the API. For example, using JSON objects is easier to
express relations other than equality e.g. greater than, while using parameters
is more awkward as custom encoding conventions should be used which require
extra processing on part of the developer.

Regarding the output of the API, JSON is a popular, easy to use format. Usu-
ally, applications and visualizations do not require an n-array/ tabular response

(e.g. JSON-stat); an array of observations is sufficient and more straightforward.
In case that a tabular response is required, then it can easily be constructed from
the observations. While JSON-QB API aims in hiding some of the complexity
of linked data, responses should include URIs as identifiers of key entities (e.g.
JSON-LD), to retain the connection to data on the web and to support reliable
combining of data from different sources within a data consuming application.

4.5 Uniform data access

Currently many LOSD have been published, however a lot of them adopt differ-
ent publishing practices. The JSON-QB API should work on top of any of these
data, offering uniform access to the data. Obviously, this will require separate
implementations to comply with the different publishing practices.

Ideally, the standardization of the JSON-QB API specification will also con-
tribute to the formulation of an application profile for the QB vocabulary. The
profile will include best practices that can be used by data publishers to provide
data in a compatible way, facilitating in this way the development of generic
LOSD tools. This will add some constraints on the way that publishers manage
their data, however those constraints will lead to greater exploitation of the data.

4.6 High performance

The volume of LOSD is big, reaching the magnitude of million triples per cube.
Thus, SPARQL queries that iterate over all the observations tend to be slow.
For example, a query to get all the dimension values that appear at a cube needs
to iterate over all the observations.

The JSON-QB API can improve performance of demanding SPARQL queries
through efficient caching of the responses. The caching policy (e.g. Least Re-
cently Used, Least Frequently Used) plays an important role at the performance
improvement. Note that caching of API responses is much easier that caching of
arbitrary SPARQL queries. Allowing a SPARQL query to run on a collection of
data means that if any of the data changes, it is possible that the query response
changes. It is complex to analyse which queries touch a particular data cube or
particular part of the data, thus making cache clearing difficult. With the API
call, most requests will return data from individual data cubes, so it is easier to
know which cached responses must be invalidated when data is updated.

Another task that can improve the performance of the API is the pre-
computation of aggregations: i) across a dimension of the cube e.g. compute
the SUM of the sales over time and thus ignore the time dimension of the cube
and ii) across a hierarchy e.g. if a cube contains the election results at municipal-
ity level, then aggregations can be computed at region and at country level. The
pre-computation of the aggregations facilitates the execution of queries, because
there in not the need to compute the aggregations on-the-fly when requested.

Finally, the performance and network traffic can be improved by returning
exactly the data requested. This can be achieved through a flexible data query

language. In this way web applications can be fast and stable because they
control the data they get, not the server.

Fig. 2. JSON-QB API architecture overview

4.7 Access control

Many organisations have lots of not “fully” open data use cases. For example,
ethical and legal restrictions exist to the access of health and fitness data [14].
The restrictions may derive from: i) strict regulations that protect personal data,
ii) agreements that are specified in consent forms and iii) policies of stakeholders
owing the data. Thus there is a need for an access control mechanism that ensures
the availability of data only to authorized persons and prevent the unauthorized
and unintended withholding of data.

4.8 Extensibility

Finally, the JSON-QB API should be extensible, thus take future growth into
consideration minimizing the effort required for the extension. Extensions can be
implemented through the: i) addition of new functionality e.g. while the initial
aim is to build an API on top of RDF databases, other kinds of database could
be used, ii) modification of existing functionality e.g. support modified filtering
options and iii) the harmonisation with deployed solutions e.g. SDMX-REST.

5 Proof of concept implementation

The architecture of the JSON-QB API (figure 2) is simple and is developed as
a middle-ware between LOSD and the applications that consume the data. The
API receives the REST calls and translates them to SPARQL queries which are
executed at LOSD portals. Then, the returned results are transformed to JSON
format that can easily be consumed by applications.

We have developed a proof of concept implementation of the JSON-QB API16

which can be installed on top of existing RDF repositories that store data using
the QB vocabulary. Two options are currently examined for the input of the
API (see sec. 4.4). The first option is to use a separate REST parameter for each
input and the second to model the input as a JSON object. Results so far show
that the second option seems promising since it is more flexibile and extensibile.
Specifically, it enables the expression of complex search and filtering data queries
limiting the transmitted data to exactly what requested. Towards this direction
the implementation uses GraphQL17, which is a data query language proposed by
Facebook. Other technologies used by the API include the Jersey framework18 for
the implementation of the RESTful services, the Rdf4j19 for processing RDF data
and the Gson20 library to serialize Java Objects into their JSON representation.

Table 2 presents an example API call that returns a cube slice by filtering
the dimension values. Both options for API input are considered. The example
presents also the corresponding SPARQL query and the returned JSON result.

The second option (GraphQL) is more flexible e.g. it enables the request
of the title and description of the cube except from the filtered observations.
However, the GraphQL approach raises some challenges that need to be ad-
dressed. For example it does not support namespaces, so all schemas exist in a
single global namespace. Thus, it’s hard to be sure that an extension added to
the schema doesn’t conflict with another extension. Another challenge is related
with the conversion of URIs into fields whilst retaining uniqueness, since the
characterset in GraphQL is very small. Finally, there isn’t really a standardised
schema serialisation for GraphQL, so you can’t detect that an endpoint supports
the data types you’re looking for.

16 https://github.com/OpenGovIntelligence/json-qb-api-implementation
17 http://graphql.org/
18 https://jersey.github.io/
19 http://rdf4j.org/
20 https://github.com/google/gson

Table 2. Example JSON-QB API call: get cube slice

Option
1: REST
parameters

GET /slice?dataset=http://example.com/cube/unemployment&

http://example.com/dimension/refPeriod=2016&

http://example.com/dimension/refArea=Greece

Option 2:
GraphQL

{dataset_unemployment{

title

description

observations(dimensions:{refPeriod:2016 refArea:Greece}){

ageGroup

unemploymentRate

}}}
SPARQL
query

PREFIX qb: http://purl.org/linked-data/cube#

PREFIX ex: http://example.com/cube/

select ?obs ?ageGroup ?unemploymentRate where {

?obs qb:dataSet ex:unemployment.

?obs ex:refPeriod "2016".

?obs ex:refArea ex:Greece.

?obs ex:ageGroup ?ageGroup.

?obs ex:unemploymentRate ?unemploymentRate.

}
JSON
result

{"title": "Unemployment", //only at option 2

"description": "Unemployed rate in EU", //only at option 2

"observations":[

{"@id":"http://example.com/observation/1",

"ageGroup" : "25-34",

"unemploymentRate": 0.34

},

{"@id":"http://example.com/observation/2",

"ageGroup" : "35-44",

"unemploymentRate": 0.29

},....]}

The API is still under development and the existing version implements only
a subset of the proposed functionality. A complete list of the currently imple-
mented functionality can be found at [18].

6 Conclusion

Currently, the LOSD cloud contains many datasets and their number still in-
creases. However, their exploitation remains low due to two reasons. First, skills
and tooling for linked data are not widespread among developers and second,
existing portals adopt different publishing approaches, thus hindering the devel-
opment of tools that can operate across LOSD datasets.

In this paper we describe the requirements and design criteria of a JSON-
QB API that standardises the interaction with LOSD aiming at their broader
exploitation. Specifically, the API facilitates the development of LOSD tools

through a style of interaction familiar to web developers. It also provides uni-
form access to LOSD data. However, in order to achieve the uniform data access,
either different implementation of the API should be created (one for each set of
publishing practices) or a set of best practices should be widely adopted by pub-
lishers to provide data in a compatible way. We anticipate that the standardiza-
tion of the JSON-QB API specification will contribute towards the formulation
of these best practices.

The proof of concept implementation of the JSON-QB API raises many is-
sues that need to be clarified, including: i) whether GraphQL covers the needs of
the API, ii) the part of JSON-LD that will be considered (currently only limited
functionality is included), iii) the relation with JSON-stat and whether it can
be used as an output format of the API and iv) technical details e.g. content ne-
gotiation, status codes, success/error responses. Moreover, there are open issues
related to the cube compatibility criteria and the ordering of the API results.

Acknowledgments. Part of this work was funded by the European Commission
within the H2020 Programme in the context of the OpenGovIntelligence project
(http://OpenGovIntelligence.eu) under grant agreement no. 693849.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

2. Capadisli, S., Auer, S., Ngonga Ngomo, A.C.: Linked sdmx data. Semantic Web
6(2), 105–112 (2015)

3. Cotton, F.: XKOS an skos extension for representing statistical classifications (un-
official draft). Tech. rep., DDI Alliance (January 2017)

4. Cyganiak, R., Reynolds, D.: The RDF data cube vocabulary: W3C recommenda-
tion. Tech. rep., W3C (January 2014)

5. Daga, E., Panziera, L., Pedrinaci, C.: A BASILar approach for building web APIs
on top of SPARQL endpoints. In: Services and Applications over Linked APIs and
Data SALAD2015 (ISWC 2015),vol. 1359. CEUR Workshop Proceedings (2015)

6. Do, B.L., Wetz, P., Kiesling, E., Aryan, P.R., Trinh, T.D., Tjoa, A.M.: Statspace:
A unified platform for statistical data exploration. In: OTM Confederated Inter-
national Conferences, Rhodes, Greece, October 24-28. pp. 792–809 (2016)

7. Groth, P., Loizou, A., Gray, A., Goble, C., Harland, L., Pettifer, S.: API-centric
linked data integration: The Open PHACTS discovery platform case study. Web
semantics 29(1), 12–18 (2014)

8. Hoefler, P., Granitzer, M., Veas, E.E., Seifert, C.: Linked data query wizard: A
novel interface for accessing sparql endpoints. In: Workshop on Linked Data on
the Web (LDOW) (2014)

9. Janssen, M., Charalabidis, Y., Zuiderwijk, A.: Benefits, adoption barriers and
myths of open data and open government. Information Systems Management 29(4),
258–268 (2012), http://dx.doi.org/10.1080/10580530.2012.716740

10. Kalampokis, E., Roberts, B., Karamanou, A., Tambouris, E., Tarabanis, K.:
Challenges on developing tools for exploiting linked open data cubes. In: 3rd
International Workshop on Semantic Statistics (SemStats2015) co-located with
ISWC2015. vol. 1551. CEUR-WS (2015)

11. Kalampokis, E., Nikolov, A., Haase, P., Cyganiak, R., Stasiewicz, A., Karamanou,
A., Zotou, M., Zeginis, D., Tambouris, E., Tarabanis, K.: Exploiting linked data
cubes with OpenCube toolkit. In: ISWC 2014 Posters and Demos Track, vol. 1272.
CEUR-WS (2014)

12. Kalampokis, E., Tambouris, E., Tarabanis, K.: A classification scheme for open
government data: towards linking decentralised data. Int. J. Web Eng. Technol.
6(3), 266–285 (Jun 2011), http://dx.doi.org/10.1504/IJWET.2011.040725

13. Kalampokis, E., Tambouris, E., Tarabanis, K.: Ict tools for creating, expanding,
and exploiting statistical linked open data, statistical. IAOS 33(2), 503–514 (2017)

14. Kamateri, E., Kalampokis, E., Tambouris, E., Tarabanis, K.: The linked medical
data access control framework. Journal of Biomedical Informatics 50, 213 – 225
(2014), special Issue on Informatics Methods in Medical Privacy

15. Maali, F., Shukair, G., Loutas, N.: A dynamic faceted browser for data cube sta-
tistical data. In: W3C workshop on Using Open Data (2012)

16. Martin, M., Abicht, K., Stadler, C., Ngonga Ngomo, A.C., Soru, T., Auer, S.:
Cubeviz: Exploration and visualization of statistical linked data. In: Proceedings
of the 24th International Conference on World Wide Web. pp. 219–222 (2015)

17. Miles, A., Bechhofer, S.: SKOS simple knowledge organization system. Tech. rep.,
W3C (August 2009)

18. OpenGovIntelligence: D3.2: Opengovintelligence ict tools - 1st release (2016)
19. Oracle: Oracle olap developer’s guide to the olap api, 10g release 2 (10.2) (2006)
20. SDMX: Guidelines for the use of web services (version 2.1) (2013)
21. SDMX: Sdmx-json data message: syntax and documentation (2014)
22. Varga, J., Etcheverry, L., Vaisman, A.A., Romero, O., Pedersen, T.B., Thomsen,

C.: Qb2olap: Enabling olap on statistical linked open data. In: 32nd International
Conference on Data Engineering (ICDE). pp. 1346–1349. IEEE (May 2016)

