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ABSTRACT 

 
The Traveling salesman problem (TSP) is proved to be NP-complete in most cases. The genetic algorithm 

(GA) is one of the most useful algorithms for solving this problem. In this paper a conventional GA is 

compared with an improved hybrid GA in solving TSP. The improved or hybrid GA consist of 

conventional GA and two local optimization strategies. The first strategy is extracting all sequential 

groups including four cities of samples and changing the two central cities with each other. The second 

local optimization strategy is similar to an extra mutation process. In this step with a low probability a 

sample is selected. In this sample two random cities are defined and the path between these cities is 

reversed. The computation results show that the proposed method also finds better paths than the 

conventional GA within an acceptable computation time.  
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1. INTRODUCTION 

 
The GA maps a set of individual objects or elements, each with a specified value, into a new set 

of the population [1]. This algorithm attempts to find an approximately good solution to the 

system by genetically breeding the set of individuals over a series of iterations [2, 3]. The GA 

algorithm starts by choosing a random set defined as initial population of individuals (a set of 

solutions) and precedes them in a generational way [4]. During each generation, individuals 

with high fitness value in the current population are selected to be part of the population formed 

in the next generation [5, 6]. Generally, the algorithm stops after a fixed number of generations 

or when an acceptable fitness level has been reached for the last population [7]. The aim of 

traveling salesman problem (TSP) is to find the shortest tour that passed each city once and 

exactly once in a known map with different distances between cities. TSP has been widely 

studied in the fields of artificial intelligence, graph theory, mathematics and computer science 

due to its applications in real world [14, 15].  However, there are no polynomial algorithms for 

the NP Complete problems [16]. Exact, approximate and very intelligent methods are 

extensively designed for TSP. The exact methods waste time and memory and usually are 

unreachable so local search rules are used to find an approximately good answer. This local 

search rules are efficient and able to find the shortest or semi shortest path in a polynomial 

computation time. The local search rules, such as the neighbourhood information [17], may be 
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trap into the local minima and do not find a good answer. Therefore, the quality of the solutions 

cannot be evaluated due to its random nature and the lack of answer.  The intelligent algorithms 

such as GA are other methods for solving TSP.  They find the best or approximate solutions 

based on the evolutionary rules that differ from the local search rules. In the meantime 

analytical and some of other intelligent methods can be combined with GA for enhancing its 

performance. The genetic algorithm is improved by [18] with the reinforcement mutation which 

relies on the reinforcement learning. The genetic algorithm, firefly method, simulated annealing, 

ant colony, bee and particle swarm optimization are some of intelligent methods that can be 

combined with GA for solving TSP [19]. The disadvantage of GA based methods is trap into the 

local minima. Simple or traditional mutation cannot correct this problem, for this reason GA 

shortest path is usually has so bigger than the best path. In this paper two local optimization 

strategies try to improve GA accuracy.  

 

The article is organized as follows. In section 2 GA algorithm phases including crossover and 

mutation operator studied in TSP. Two local optimization strategies are described with details in 

Section 3. Section 4 provides an overview of results on a standard TSP dataset. Section 5 

highlights the main results of proposed method and indicates further research. 

 

2. The genetic algorithm 

 
For solving the TSP with a genetic algorithm, we need a coding, a crossover method, and a 

mutation method. First of all, algorithm should generate a permutation of integer numbers that 

each number refers to the ith city in the tour. In this permutation every number may only occur 

exactly once and belong to interval [1 k], otherwise we do not have a complete tour [8, 9]. The 

conventional GA one-point crossover method is not inappropriate to do this [10] and some other 

crossover methods compatible with TSP suggested in [11, 12, 13]. 

 

2.1. Crossover 
 

2.1.1. Partially Mapped Crossover 
 

Partially mapped crossover (PMX) tries to keep Childs as similar as parents. To achieve this 

goal, a substring is swapped look like two-point crossover and the values in all other non-

conflicting situations are kept. The conflicting positions are changed with the values which 

swapped to other positions.  

 

An example: 

 

p1 = (1 2 3 4 5 6 7 8 9)      p2 = (4 5 2 1 8 7 6 9 3) 

 

 Assume that positions 4–7 are selected for swapping. Then the two offspring’s are given as 

follows if we omit the conflicting positions: 

 

o1 = (* 2 3 | 1 8 7 6 | * 9)    o2 = (* * 2 | 4 5 6 7 | 9 3) 

 

Now we take the conflicting positions and fill in what was swapped to the other offspring. For 

instance, 1 and 4 were swapped. Therefore, we have to replace the 1 in the first position of o1 by 

4, and so on: 

 

o1 = (4 2 3 1 8 7 6 5 9)     o2 = (1 8 2 4 5 6 7 9 3) 
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2.1.2. Order Crossover 
 

Order crossover (OX) is based on this principle that the order of cities is important in compare 

with its positions in the tour. Similar to PMX, OX swaps two aligned substrings. The 

computation of the remaining substrings is done with the following way that differs from PMX 

way. In order to illustrate the OX method, consider the above example (p1, p2) as for PMX. 

Simply swapping two substrings and omitting all other positions, the result is: 

 

o1 = (* * * | 1 8 7 6 | * *)    o2 = (* * * | 4 5 6 7 | * *) 

 

For computing the open positions of o2, let us write down the positions in p1, but starting from 

the position after the second crossover site:  

 

9 3 4 5 2 1 8 7 6 

 

If we discard all those values which are already remain in the offspring after swapping (4, 5, 6, 

and 7), the shortened result is: 

 

9 3 2 1 8 

 

Now OX insert this list into o2 starting after the second crossover position and the updated o2 

will be: 

 

o2 = (2 1 8 4 5 6 7 9 3). 

 

Repeating the above process to o1 the following result obtained: 

o1 = (3 4 5 1 8 7 6 9 2)  

 

2.1.3. Cycle Crossover 

 

PMX and OX usually introduce cities outside the crossover sites which have not been present in 

either parent. As an example, for instance, the 3 in the first position of o1 in the OX example 

appears neither in p1 nor in p2. Cycle crossover (CX) tries to overcome this problem and 

guarantee that every string position in any tour belongs to one of the two parents. Let us 

continue with the following example: 

 

p1 = (1 2 3 4 5 6 7 8 9)   p2 = (4 1 2 8 7 6 9 3 5) 

 

CX starts from the first position of o1: 

 

o1 = (1 * * * * * * * *)   o2 = (* * * * * * * * *) 

 

o2 may only have a 4 in the first position, because method do not want new values to be 

introduced there: 

 

o1 = (1 * * * * * * * *)   o2 = (4 * * * * * * * *) 

 

Since the 4 is already fixed for o2 first position, CX keep it in the same position for o1 in order 

to guarantee that no new positions for the 4 are introduced. We have to keep the 8 in the fourth 

position of o2 for the same reason: 

 

o1 = (1 * * 4 * * * * *)   o2 = (4 * * 8 * * * * *) 
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This process must be repeated for all cities until end up in a value which has previously been 

considered to complete a cycle: 

 

o1 = (1 2 3 4 * * * 8 *)     o2 = (4 1 2 8 * * * 3 *) 

 

For the second cycle, CX can start with a value from p2 and insert it into o1: 

 

o1 = (1 2 3 4 7 * * 8 *)    o2 = (4 1 2 8 5 * * 3 *) 

 

After the same computations, the result is obtained as following: 

 

o1 = (1 2 3 4 7 * 9 8 5)     o2 = (4 1 2 8 5 * 7 3 9) 

 

The last cycle is a simple replication and the final offspring’s are given as follows: 

 

o1 = (1 2 3 4 7 6 9 8 5)     o2 = (4 1 2 8 5 6 7 3 9) 

 

2.2 Mutation 
 

Unlike the selection and crossover, in all GA variants similar to real life, the mutation 

probability is set to a small value [8]. If the mutation probability is set to a large value, the GA 

is rarely converged and if it is set to a small value, the GA will easily trap into local optima [8]. 

In this paper, we assign pm equal to 0.05. In the proposed mutation process a random number 

assign to each city of a child. If this number is lower than pm, the corresponding city is changed 

with the second defined city that has a random number lower than pm. If the number of cities 

lower than pm in a child was odd, the last of them is discarded. In this process the mutated cities 

is swapped with each other in a sequential order. This method ensure that no duplicate occur in 

samples. 

 

3. The two local optimization strategy 
 

 3.1. First local optimization strategy 
 

The first local optimization strategy is extracting all sequential groups including four cities of 

samples and changing the two central cities with each other. The name of this strategy is four 

vertices and three lines inequality, which is applied to all samples and the shortest path in each 

sample, is selected. Based on only two changes in each sample in comparison with main 

sample, it is not necessary to compute all distances in each process. As a heuristic only the three 

distances of the selected group should be computed. If this number is lower than initial group, 

the main sample is reconstruct with this new arrangement and if this number is higher than 

initial group, algorithm check the next group. For a tour including N cities we have N-3 group 

with four cities and only three computations is needed to compare sub samples with each other. 

This means the computational burden of this step is acceptable and can be discarded in total 

computation time. 
 

3.2. Second local optimization strategy 
 

In the ideal situation algorithm should extract and compare all sequential groups including 4 to 

N-3 cities in each sample and checking all combinations of them with each other.  In a large 

grid this means a terrible run time. To reduce this complexity, we proposed a new mutation 

scheme as second local optimization strategy. In the proposed method a random number is 

assigned to each sample. If this number is lower than pm2, that is selected 0.02 in this paper, the 
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sample was selected for this level of optimization. After selecting a sample, two integer random 

number between 2 and N-1 are generated (N is the number of cities) and all cities between these 

numbers will be reversed.  

 

If this new sample tour is lower than initial group, the main sample is reconstructed with this 

new arrangement and if this number is higher than initial group, algorithm discards it. In 

simulation process, we can manage run time and accuracy with the pm2 value. 
 

 

4. Simulation result 
 
The main parameters of the GA set as follows:  

 

 Initial samples are created randomly in search space. The number of initial samples is set to 

256.  Only N/2 samples with lower tour distance are chosen and other samples are discarded 

(Ideal selection). We used partially mapped crossover that described in 2.1.1. 

 

The mutation process is similar to 2.2 and pm is set to 0.05. In the second local strategy the 

value of pm2 is equal to 0.02. Ftv170 as a standard complicated database is selected from 

TSPLIB for testing the proposed method and we will compare its efficiency with traditional GA 

methods. The main parameters for comparing two methods are runtime and answer accuracy. 

Based on random nature of the total process, we run the two algorithms 30 times and the 

average results are shows as final results. 

 

Figure 1 shows this result for two algorithms. The tour length in modified method is about 30% 

lower than its value in conventional GA and obviously shows the improvement in algorithm. 

The average runtime of proposed method in 30 times run 1000 iterations, in a Core i5 CPU with 

4GB ram is about 140.5 seconds that in compare with 70.4 seconds of conventional GA is about 

two times higher. Notice that the total run time is negligible and thus the time is not a critical 

parameter in this comparison. 
 

5. Conclusion 
 

In this paper an improved hybrid GA method is used for solving TSP. The proposed method 

consists of conventional GA and two local optimization strategies. The first local optimization 

strategy is extracting all sequential groups including four cities of samples and changing the two 

The pseudo code of our proposed method  
Choose initial paths 

Evaluate each path's length 

Determine path's average length 

Repeat 

         Select best-ranking paths to reproduce 

         Mute pairs at random 

         Apply crossover operator 

         Apply level 1 mutation operator 

         Apply level 2 mutation operator 

         Evaluate each path's length 

         Determine path’s average lengths 

Until terminating condition  

(E.g. until at least one path has the desired length or enough generations have passed) 
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central cities with each other and is applied to all samples and the shortest path in each sample 

is selected. The second local optimization strategy is similar to an extra mutation process. In this 

step with a low probability a sample is selected. In this sample two random cities are defined 

and the path between these cities is reversed. The computation results show that the proposed 

method also find the better paths than the conventional GA within an acceptable computation 

time. In the future we plan to use other meta-heuristic algorithms instead of GA and apply our 

methods. 

 
 

Fig. 1: The tour length vs. iteration number in proposed method and conventional GA 
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