
International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol. 4, No.4, August 2014

DOI : 10.5121/ijcseit.2014.4405 47

AN IMPROVED GENETIC ALGORITHM WITH A

LOCAL OPTIMIZATION STRATEGY AND AN EXTRA

MUTATION LEVEL FOR SOLVING TRAVELING

SALESMAN PROBLEM

Keivan Borna

1
 and Vahid Haji Hashemi

2

1
Faculty of Mathematics and Computer Science, Kharazmi University, Tehran, Iran

2
Faculty of Engineering, Kharazmi University, Tehran, Iran

ABSTRACT

The Traveling salesman problem (TSP) is proved to be NP-complete in most cases. The genetic algorithm

(GA) is one of the most useful algorithms for solving this problem. In this paper a conventional GA is

compared with an improved hybrid GA in solving TSP. The improved or hybrid GA consist of

conventional GA and two local optimization strategies. The first strategy is extracting all sequential

groups including four cities of samples and changing the two central cities with each other. The second

local optimization strategy is similar to an extra mutation process. In this step with a low probability a

sample is selected. In this sample two random cities are defined and the path between these cities is

reversed. The computation results show that the proposed method also finds better paths than the

conventional GA within an acceptable computation time.

KEYWORDS

Travelling salesman problem, Genetic algorithm, mutation, complexity, NP-complete.

1. INTRODUCTION

The GA maps a set of individual objects or elements, each with a specified value, into a new set

of the population [1]. This algorithm attempts to find an approximately good solution to the

system by genetically breeding the set of individuals over a series of iterations [2, 3]. The GA

algorithm starts by choosing a random set defined as initial population of individuals (a set of

solutions) and precedes them in a generational way [4]. During each generation, individuals

with high fitness value in the current population are selected to be part of the population formed

in the next generation [5, 6]. Generally, the algorithm stops after a fixed number of generations

or when an acceptable fitness level has been reached for the last population [7]. The aim of

traveling salesman problem (TSP) is to find the shortest tour that passed each city once and

exactly once in a known map with different distances between cities. TSP has been widely

studied in the fields of artificial intelligence, graph theory, mathematics and computer science

due to its applications in real world [14, 15]. However, there are no polynomial algorithms for

the NP Complete problems [16]. Exact, approximate and very intelligent methods are

extensively designed for TSP. The exact methods waste time and memory and usually are

unreachable so local search rules are used to find an approximately good answer. This local

search rules are efficient and able to find the shortest or semi shortest path in a polynomial

computation time. The local search rules, such as the neighbourhood information [17], may be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/211817601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol. 4, No.4, August 2014

48

trap into the local minima and do not find a good answer. Therefore, the quality of the solutions

cannot be evaluated due to its random nature and the lack of answer. The intelligent algorithms

such as GA are other methods for solving TSP. They find the best or approximate solutions

based on the evolutionary rules that differ from the local search rules. In the meantime

analytical and some of other intelligent methods can be combined with GA for enhancing its

performance. The genetic algorithm is improved by [18] with the reinforcement mutation which

relies on the reinforcement learning. The genetic algorithm, firefly method, simulated annealing,

ant colony, bee and particle swarm optimization are some of intelligent methods that can be

combined with GA for solving TSP [19]. The disadvantage of GA based methods is trap into the

local minima. Simple or traditional mutation cannot correct this problem, for this reason GA

shortest path is usually has so bigger than the best path. In this paper two local optimization

strategies try to improve GA accuracy.

The article is organized as follows. In section 2 GA algorithm phases including crossover and

mutation operator studied in TSP. Two local optimization strategies are described with details in

Section 3. Section 4 provides an overview of results on a standard TSP dataset. Section 5

highlights the main results of proposed method and indicates further research.

2. The genetic algorithm

For solving the TSP with a genetic algorithm, we need a coding, a crossover method, and a

mutation method. First of all, algorithm should generate a permutation of integer numbers that

each number refers to the ith city in the tour. In this permutation every number may only occur

exactly once and belong to interval [1 k], otherwise we do not have a complete tour [8, 9]. The

conventional GA one-point crossover method is not inappropriate to do this [10] and some other

crossover methods compatible with TSP suggested in [11, 12, 13].

2.1. Crossover

2.1.1. Partially Mapped Crossover

Partially mapped crossover (PMX) tries to keep Childs as similar as parents. To achieve this

goal, a substring is swapped look like two-point crossover and the values in all other non-

conflicting situations are kept. The conflicting positions are changed with the values which

swapped to other positions.

An example:

p1 = (1 2 3 4 5 6 7 8 9) p2 = (4 5 2 1 8 7 6 9 3)

 Assume that positions 4–7 are selected for swapping. Then the two offspring’s are given as

follows if we omit the conflicting positions:

o1 = (* 2 3 | 1 8 7 6 | * 9) o2 = (* * 2 | 4 5 6 7 | 9 3)

Now we take the conflicting positions and fill in what was swapped to the other offspring. For

instance, 1 and 4 were swapped. Therefore, we have to replace the 1 in the first position of o1 by

4, and so on:

o1 = (4 2 3 1 8 7 6 5 9) o2 = (1 8 2 4 5 6 7 9 3)

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol. 4, No.4, August 2014

49

2.1.2. Order Crossover

Order crossover (OX) is based on this principle that the order of cities is important in compare

with its positions in the tour. Similar to PMX, OX swaps two aligned substrings. The

computation of the remaining substrings is done with the following way that differs from PMX

way. In order to illustrate the OX method, consider the above example (p1, p2) as for PMX.

Simply swapping two substrings and omitting all other positions, the result is:

o1 = (* * * | 1 8 7 6 | * *) o2 = (* * * | 4 5 6 7 | * *)

For computing the open positions of o2, let us write down the positions in p1, but starting from

the position after the second crossover site:

9 3 4 5 2 1 8 7 6

If we discard all those values which are already remain in the offspring after swapping (4, 5, 6,

and 7), the shortened result is:

9 3 2 1 8

Now OX insert this list into o2 starting after the second crossover position and the updated o2

will be:

o2 = (2 1 8 4 5 6 7 9 3).

Repeating the above process to o1 the following result obtained:

o1 = (3 4 5 1 8 7 6 9 2)

2.1.3. Cycle Crossover

PMX and OX usually introduce cities outside the crossover sites which have not been present in

either parent. As an example, for instance, the 3 in the first position of o1 in the OX example

appears neither in p1 nor in p2. Cycle crossover (CX) tries to overcome this problem and

guarantee that every string position in any tour belongs to one of the two parents. Let us

continue with the following example:

p1 = (1 2 3 4 5 6 7 8 9) p2 = (4 1 2 8 7 6 9 3 5)

CX starts from the first position of o1:

o1 = (1 * * * * * * * *) o2 = (* * * * * * * * *)

o2 may only have a 4 in the first position, because method do not want new values to be

introduced there:

o1 = (1 * * * * * * * *) o2 = (4 * * * * * * * *)

Since the 4 is already fixed for o2 first position, CX keep it in the same position for o1 in order

to guarantee that no new positions for the 4 are introduced. We have to keep the 8 in the fourth

position of o2 for the same reason:

o1 = (1 * * 4 * * * * *) o2 = (4 * * 8 * * * * *)

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol. 4, No.4, August 2014

50

This process must be repeated for all cities until end up in a value which has previously been

considered to complete a cycle:

o1 = (1 2 3 4 * * * 8 *) o2 = (4 1 2 8 * * * 3 *)

For the second cycle, CX can start with a value from p2 and insert it into o1:

o1 = (1 2 3 4 7 * * 8 *) o2 = (4 1 2 8 5 * * 3 *)

After the same computations, the result is obtained as following:

o1 = (1 2 3 4 7 * 9 8 5) o2 = (4 1 2 8 5 * 7 3 9)

The last cycle is a simple replication and the final offspring’s are given as follows:

o1 = (1 2 3 4 7 6 9 8 5) o2 = (4 1 2 8 5 6 7 3 9)

2.2 Mutation

Unlike the selection and crossover, in all GA variants similar to real life, the mutation

probability is set to a small value [8]. If the mutation probability is set to a large value, the GA

is rarely converged and if it is set to a small value, the GA will easily trap into local optima [8].

In this paper, we assign pm equal to 0.05. In the proposed mutation process a random number

assign to each city of a child. If this number is lower than pm, the corresponding city is changed

with the second defined city that has a random number lower than pm. If the number of cities

lower than pm in a child was odd, the last of them is discarded. In this process the mutated cities

is swapped with each other in a sequential order. This method ensure that no duplicate occur in

samples.

3. The two local optimization strategy

 3.1. First local optimization strategy

The first local optimization strategy is extracting all sequential groups including four cities of

samples and changing the two central cities with each other. The name of this strategy is four

vertices and three lines inequality, which is applied to all samples and the shortest path in each

sample, is selected. Based on only two changes in each sample in comparison with main

sample, it is not necessary to compute all distances in each process. As a heuristic only the three

distances of the selected group should be computed. If this number is lower than initial group,

the main sample is reconstruct with this new arrangement and if this number is higher than

initial group, algorithm check the next group. For a tour including N cities we have N-3 group

with four cities and only three computations is needed to compare sub samples with each other.

This means the computational burden of this step is acceptable and can be discarded in total

computation time.

3.2. Second local optimization strategy

In the ideal situation algorithm should extract and compare all sequential groups including 4 to

N-3 cities in each sample and checking all combinations of them with each other. In a large

grid this means a terrible run time. To reduce this complexity, we proposed a new mutation

scheme as second local optimization strategy. In the proposed method a random number is

assigned to each sample. If this number is lower than pm2, that is selected 0.02 in this paper, the

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol. 4, No.4, August 2014

51

sample was selected for this level of optimization. After selecting a sample, two integer random

number between 2 and N-1 are generated (N is the number of cities) and all cities between these

numbers will be reversed.

If this new sample tour is lower than initial group, the main sample is reconstructed with this

new arrangement and if this number is higher than initial group, algorithm discards it. In

simulation process, we can manage run time and accuracy with the pm2 value.

4. Simulation result

The main parameters of the GA set as follows:

 Initial samples are created randomly in search space. The number of initial samples is set to

256. Only N/2 samples with lower tour distance are chosen and other samples are discarded

(Ideal selection). We used partially mapped crossover that described in 2.1.1.

The mutation process is similar to 2.2 and pm is set to 0.05. In the second local strategy the

value of pm2 is equal to 0.02. Ftv170 as a standard complicated database is selected from

TSPLIB for testing the proposed method and we will compare its efficiency with traditional GA

methods. The main parameters for comparing two methods are runtime and answer accuracy.

Based on random nature of the total process, we run the two algorithms 30 times and the

average results are shows as final results.

Figure 1 shows this result for two algorithms. The tour length in modified method is about 30%

lower than its value in conventional GA and obviously shows the improvement in algorithm.

The average runtime of proposed method in 30 times run 1000 iterations, in a Core i5 CPU with

4GB ram is about 140.5 seconds that in compare with 70.4 seconds of conventional GA is about

two times higher. Notice that the total run time is negligible and thus the time is not a critical

parameter in this comparison.

5. Conclusion

In this paper an improved hybrid GA method is used for solving TSP. The proposed method

consists of conventional GA and two local optimization strategies. The first local optimization

strategy is extracting all sequential groups including four cities of samples and changing the two

The pseudo code of our proposed method
Choose initial paths

Evaluate each path's length

Determine path's average length

Repeat

 Select best-ranking paths to reproduce

 Mute pairs at random

 Apply crossover operator

 Apply level 1 mutation operator

 Apply level 2 mutation operator

 Evaluate each path's length

 Determine path’s average lengths

Until terminating condition

(E.g. until at least one path has the desired length or enough generations have passed)

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol. 4, No.4, August 2014

52

central cities with each other and is applied to all samples and the shortest path in each sample

is selected. The second local optimization strategy is similar to an extra mutation process. In this

step with a low probability a sample is selected. In this sample two random cities are defined

and the path between these cities is reversed. The computation results show that the proposed

method also find the better paths than the conventional GA within an acceptable computation

time. In the future we plan to use other meta-heuristic algorithms instead of GA and apply our

methods.

Fig. 1: The tour length vs. iteration number in proposed method and conventional GA

REFERENCES

[1] ESHELMAN, L., AND SCHAFFER, J. Real-coded genetic algorithms and interval-schemata. In Foundations

of Genetic Algorithms 2, L. D. Whitley, Ed. Morgan Kaufmann, 1993, pp. 187–202.

[2] FOGEL, D. B. Evolving Artificial Intelligence. PhD thesis, University of California, San Diego, 1992.

[3] FOGEL, D. B. Evolutionary Computation. IEEE Press, New York, 1995.

[4] GOLDBERG, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley,

Reading, MA, 1989.

[5] HERRERA, F., LOZANO, M., AND VERDEGAY, J. L. Tackling real coded genetic algorithms: Operators

and tools for behavioral analysis. Artificial Intelligence Review 12 (1998), 265–319.

[6] KOZA, J. R. Genetic Programming: On the Programming of Computers by Means of Natural Selection. The

MIT Press, Cambridge, MA, 1992.

[7] MICHALEWICZ, Z. Genetic Algorithms + Data Structures = Evolution Programs, third extended ed. Springer,

Heidelberg, 1996.

[8] J. Majumdar, A.K. Bhunia, "Genetic algorithm for asymmetric traveling salesman problem with imprecise

travel

times", Journal of Computational and Applied Mathematics, Vol.235, No.9, 2011, pp. 3063-3078.

[9] T.D.G wiazda, Genetic algorithms reference: Crossover for single-objective numerical optimization problems,

Berlin: Springer Press, 2006.

[10] C. Reeves, "Genetic algorithms and neighborhood search", Evolutionary Computing, AISB Workshop, Lecture

Notes in Computer Science, vol.865, 1994, pp. 115-130.

[11] M. Srinivas and L. M. Patnaik, “Genetic Algorithms: A Survey”, IEEE journal on Computer, vol. 27, No.6,

1994, pp.11-26.

[12] M. Črepinšek, S.H Liu and M. Mernik, “Exploration and exploitation in evolutionary algorithms: A survey”,

Computing Surveys (CSUR), ACM, Vol.45 No.3, 2013.

[13] A. Sharma and A. Mehta, “Review Paper of Various Selection Methods in Genetic Algorithm”, International

journal of Advanced Research in Computer Science and Software Engineering, vol. 3, No.7, 2013, pp.1476-

1479.

[14] A. Rodríguez, R. Ruiz, "The effect of the asymmetry of road transportation networks on the traveling salesman

problem", Computers & Operations Research, Vol.39, No.7, 2012, pp. 1566-1576.

[15] Y. Wang and J. H. Liu, "Chaotic Particle Swarm Optimization for Assembly Sequence Planning, Robotics and

Computer-Integrated Manufacturing, Vol.26, No.2, 2010, pp. 212-222.

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol. 4, No.4, August 2014

53

[16] P. Berman,M, Karpinski, "8/7-Approximation Algorithm for (1,2)-TSP", In: SODA’06, Miami, FL, 2006, pp.

641-648.

[17] Y.H. Liu, "Diversified local search strategy under scatter search framework for the probabilistic traveling

salesman problem", European Journal of Operational Research, Vol.191, No.2, 2008, pp. 332-346.

 [18] F. Liu, G. Z. Zeng, "Study of genetic algorithm with reinforcement learning to solve the TSP", Expert System

with Applications, Vol.36, No.3, 2009, pp. 6995-7001.

[19] S. M. Chen, C. Y. Chien, "Solving the traveling salesman problem based on the genetic simulated annealing

ant colony system with particle swarm optimization techniques", Expert System with Applications, Vol.38,

No.12, 2011, pp. 14439-14450.

Authors

Dr. Keivan Borna joined the Department of Computer Science at the Faculty of

Mathematics and Computer Science of Kharazmi University as an Assistant Professor in

2008. He earned his Ph.D. in Computational Commutative Algebra from the Department of

Mathematics, Statistics and Computer Science of the University of Tehran; where he

previously received an M.Sc. in the same field. He also was a visiting scholar in the

Dipartemento di Matematicha, Universita' di Genova- Italia and the Department of

Mathematik and Informatik at Essen University, Germany, from Sep. 2007 to Apr. 2008. His research

interests include Computer Algebra, Cryptography, Approximation Algorithms, and Computational

Geometry. He is the author of the "Advanced Programming in JAVA" (in Persian) and is a life member of

"Elite National Foundation of Iran".

Vahid Hajihashemi is currently a master student of Computer Engineering at Faculty of

Engineering at Kharazmi University of Tehran. His research interests include artificial

intelligence and evolutionary computations.

