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Abstract

Modern nonlinear dimensionality reduction (DR) techniques project
high dimensional data to low dimensions for their visual inspection.
Provided the intrinsic data dimensionality is larger than two, DR nec-
essarily faces information loss and the problem becomes ill-posed. Dis-
criminative dimensionality reduction (DiDi) offers one intuitive way
to reduce this ambiguity: it allows a practitioner to identify what is
relevant and what should be regarded as noise by means of intuitive
auxiliary information such as class labels. One powerful DiDi method
relies on a change of the data metric based on the Fisher information.
This technique has been presented for vectorial data so far. The aim
of this contribution is to extend the technique to more general data
structures which are characterised in terms of pairwise similarities only
by means of a kernelisation. We demonstrate that a computation of
the Fisher metric is possible in kernel space, and that it can efficiently
be integrated into modern DR technologies such as t-SNE or faster
Barnes-Hut-SNE. We demonstrate the performance of the approach
in a variety of benchmarks.

1 Introduction

Digital data sets are increasing rapidly as regards size as well as dimen-
sionality. Hence technical support, which enables humans to inspect such
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data intuitively, becomes indispensable. Besides fully automated classifica-
tion and data mining, interactive data visualisation plays a prominent role
in the context of intelligent data analysis: it enables an inference of hypothe-
ses generation and initial explorative data analysis in the case of complex
heterogeneous settings [15, 27, 2.

Nonlinear dimensionality reduction (DR) embeds a given high-dimensional
data set into low dimensions, this way enabling a direct visual inspection of
the overall structure of the given data set in the form of a scatter plot. In
this display, phenomena such as grouping, outliers, or any relevant overall
topological structure can be spotted intuitively. Modern DR techniques have
enabled striking applications e.g. in biomedical data analysis [5, 14, 17, 24,
32, 35].

Many modern DR methods are phrased as non-parametric techniques [8];
this allows a high degree of nonlinearity when projecting the data, since
no prior parametric form restricts the degree of nonlinearity of the overall
mapping. While this nonlinearity constitutes a crucial prerequisite for their
success, their high flexibility causes the risk to display spurious aspects of
the data rather than relevant information especially for high-dimensional
or noisy data. Different prominent DR technologies provide quite different
visual displays depending on their respective mathematical objective [8]. In
general, DR constitutes an ill-posed problem whenever data dimensionality
is higher than the dimensionality of the projection space; correspondingly,
the results of DR technologies severely differ depending on the used method
and even partially depending on its parameterisation.

Discriminative dimensionality reduction (DiDi) offers a very intuitive way
to regularise DR technology: in DiDi methods, explicit auxiliary information
stratifies in an intuitive way, which aspects of the data are regarded as rel-
evant and which aspects can be discarded when projecting the data to low
dimensionality. Technically, a practitioner specifies auxiliary information
such as class labels; then DiDi methods subtract all information irrelevant to
those aspects from the visual display. This effectively exchanges the original
data representation by an alternative one where all aspects irrelevant to the
auxiliary labels are divided out. In consequence, this new representation re-
lates to a lower dimensional intrinsic data dimensionality, since it abstracts
from quite a few irrelevant aspects. Hence the DR problem becomes more
well-posed for this new setting. The result enables an answer to crucial ques-
tions as regards the interrelation of data and relevant class labels, such as the
following: Do data include any information which relates to the given classes?
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Does the data representation offer enough information to robustly separate
these classes? Do there exist mis-labellings in the data? Note that, due to its
explorative character, DiDi is quite different from data classification itself. It
answers the question whether a classification is possible and where potential
problems are located rather than inferring a classification itself. Interestingly,
DiDi technology can be extended to a full classifier visualisation framework
[30].

One particularly powerful general DiDi technology is based on the Rie-
mannian tensor induced by the local Fisher information matrix [10, 23, 26].
The underlying idea is to change the Euclidean metric of the data manifold lo-
cally such that feature dimensions which are relevant for the given labelling
are emphasised. This defines a Riemannian tensor on the data manifold,
hence it induces a Riemannian metric which preserves the underlying Fu-
clidean manifold structure only insofar as it affects the labelling. We refer to
this metric as Fisher metric in the following. This metric can be integrated
in any DR method which operates on distances only, such as t-SNE [33].

Note that the Fisher metric resembles the important topic of metric learn-
ing in some way. The latter aims for machine learning models which adapt a
metric according to auxiliary information such that nearest neighbour based
retrieval becomes more accurate. Some overview articles on metric learning
are [4, 16, 36|, for example. Unlike the Fisher metric, these methods are
typically parametric, and they are not suited for nonlinear dimensionality
reduction for data visualisation. Another related topic falls under the um-
brella of multiple kernel learning [11]. Here the goal is the adaptation of a
similarity measure by means of a suitable linear combination of given (usu-
ally simple) kernels. Unlike the proposed as considered in this contribution,
the goal is usually an accurate classification or regression rather than data
visualisation.

In this article, we will focus on data visualisation by means of discrimi-
native dimensionality reduction based on the Fisher metric. Like most DiDi
methods, however, the existing Fisher-t-SNE technology [10] is restricted
to vectorial data. It is not applicable whenever complex, non-vectorial data
structures are dealt with. In this contribution we investigate an efficient tech-
nology to extend this DiDi method to more general, non-vectorial data struc-
tures. One particularly successful approach which enables machine learning
for more general objects is based on kernels, which constitute the interface
between the machine learning method and the possibly complex application
domain [20]. On the one hand, there do exist highly effective structure ker-



Preprint of the publication [29], as provided by the authors. 4

nels [1]. On the other hand, kernelisation enables a direct processing of a
given discrete Gram matrix [7].

In this contribution, we propose an extension of the Fisher metric to a
general kernel space, this way enabling powerful DiDi technologies for general
data structures which are described in terms of pairwise relations only. For
this purpose, we provide an efficient way how to compute the Fisher matrix
itself in kernel space. In addition, we investigate how efficient approximations
for the computation of the induced Riemannian metric, which have been
proposed in the context of its vectorial version [23, 34|, can be kernelised.
Finally, we integrate the resulting data description into t-SNE as well as
Barnes-Hut SNE for visual inspection. We demonstrate the feasibility of the
approach for several benchmarks where data are not given in vectorial form,
rather a similarity matrix is available only, including complex structured data
from the domains of music and java programming,.

This article is structured as follows: First, we recall the concept of the
Fisher metric and its efficient computation, which are well established in the
literature for vectorial data. Then, we demonstrate how it can be extended
to a kernel space, facing two problems: the kernelisation of the Fisher metric
tensor, and the kernelisation of its extension to distances by means of approx-
imations of path integrals. We explain how the result can be integrated into
t-SNE and Barnes-Hut SNE. We demonstrate the performance of the meth-
ods by investigating the discriminative power of the resulting Fisher metric
in the original data space, the discriminative behaviour of low-dimensional
projections, and their visual display. We conclude with a discussion.

2 Fisher metric

Assume data x; € X, i =1,...,p are given, which are elements in an input
space X = RP of dimensionality D. DR is concerned with a projection of
these data to low-dimensional counterparts y; = 7(x;) € Y = R? where
d < D, typically d = 2 for visualisation. This projection should preserve
as much information as possible. Provided the intrinsic data dimensionality
is larger than d, information loss, however, cannot be prohibited. For DiDi,
auxiliary information is given, which allows the practitioner to control in an
intuitive form, which types of information loss are acceptable. We assume
that auxiliary information takes the form of data labels ¢ = ¢(x) where
c is element of a finite number of class labels {1,...,C}. Note that an



Preprint of the publication [29], as provided by the authors. 5

extension to continuous labels is easily possible, see e.g. [31]. The goal is
to emphasise those aspects of the data x in the display which are relevant
for ¢(x). A key observation consists in the fact that popular DR methods
rely on pairwise distances of data only, i.e. auxiliary information can easily
be integrated by changing the metric according to the labels c¢. This idea
yields consistently superior results as compared to other techniques, which
combine discriminative information directly with DR technology [34], and it
is applicable for a wide range of DR techniques [30]. Hence, we focus our
investigations on this approach.

Now we formally define this Fisher metric. As a first step, a Riemannian
curvature tensor is defined. This constitutes the most common way to express
the curvature of a data manifold. In our case, this curvature follows the
information as contained in the class labels. A Riemannian tensor field is
given by a mapping which maps a point x on the data manifold, to a (pseudo-
Jmetric of the tangent space Tx M of the data manifold M at point x. This
metric can be characterised by a positive-semidefinite quadratic form. In our
case, this is the Fisher information matrix, which quantifies the influence of
the dimensions to a given class label:

36) = By {(gix g (e ) (5 logp<c|x>)T} W

where p(c|x) denotes the probability of the class information ¢ conditioned
on X and E denotes the expectation w.r.t this distribution. This matrix is a
positive semidefinite form.

As a second step, the Riemannian metric induced by this tensor field is
defined via minimum path integrals. Intuitively, given points x and x on the
manifold, their pairwise distance is computed by infinitesimal steps from x to
x. For those, the local form J(x) defines the distance, since local directions
are elements of the tangent space at x. Since the curvature changes along
the manifold, the straight line from x to X need not be optimum, rather the
optimal path has to be searched for. Formally, a differentiable path from x
to X is a mapping P : [0,1] — X with start P(0) = x and end P(1) = X,
which is differentiable with respect to t. For every parameter ¢ € [0, 1], the
tangent P'(t) = dP(t)/dt is an element of the tangent space T}, M, hence
its length can be evaluated using J(p(t)). For a given path P, its length is
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obtained by integration over infinitesimal pieces

1
length(P) — / PO I PP )dt @)
0
The distance between x and x is taken as the minimal achievable length
dy(x,%X) = ir};f{length(P) | P is a differentiable path from x to x}  (3)

By definition, dj; constitutes a Riemannian metric, hence its results can be
integrated into any distance-based DR method such as t-SNE or extensions
thereof. For the algorithmic realisation of this idea, two questions occur: (i)
How to compute p(c|x)? (ii) How to efficiently compute or approximate the
minimum integral (2,3)7

Kernel density estimation of the conditional probability

One generic way to obtain an estimate for a conditional probability dis-
tribution relies on a non-parametric density estimation by Parzen windows
or kernels. This realisation has successfully been used in the approaches
(34, 23, 30] for example. We select a subset S C {x,...,%,} of the given
data, which act as centres for Gaussians for the density estimation. These
are combined as an estimate p(c|x) of p(c|x) as

2 sies Oe=e; xp(=0.5][x — xi[|*/207)
2 xies XP(=0.5]x — x| /20?)

The bandwidth o is often determined by a rule of thumb from the data as
explained e.g. in [10]. The Fisher matrix of (4) yields the form

(4)

plefx) =

J(x) = B {b(x, c)b(x, c)T} /ot (5)

where b(x,¢) = Eeix,e){Xi} — Eeqx{x:} with empirical expectation £ and
probability distributions

. ~ Oec, exp(—0.5]|x — x,]|*/20?)
b = s eep (051 — x[F/20%) )

1x) = exp(—0.5||x — x;[|?/20?)
k) = S (0% — x;[2/207) @)
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see e.g. [23]. We would like to point out that, depending on the data di-
mensionality, a regularisation of the density estimation is crucial to avoid
overfitting, i.e. a misleading visual display. This is one of the reasons why we
typically choose S as a subset of all data only. In the experiments, we will
always complement the results by the baseline which is obtained when per-
muting the labels, to demonstrate the validity of the approach. The size of S
is chosen such that the baseline is as expected. Note that albeit strong con-
vergence guarantees exist for kernel density estimation provided the number
of samples is high [38], we face the challenge of a robust density estimation
in the context of a limited number of high dimensional data, a regime which
requires careful regularisation.

Efficient approximation of the minimum path integral

The computation of the integral (3) is intractable in general. Thus differ-
ent efficient approximations are commonly used. The article [23] empirically
investigates several paradigms in the context of their integration into a visu-
alisation pipeline, and demonstrates that good results can be obtained e.g.
with the so-called k-approximation in particular in the context of discrimina-
tive dimensionality reduction. Here we explain this technique in more detail,
since we aim for a kernelisation of this method in our approach.

All approximations as proposed e.g. in [23] sample points along the man-
ifold and evaluate the path integral along discrete line segments only. Math-
ematically, given a finite number of k points x = x1,Xs,...,X; = X, a path
which moves in line segments trough these points is considered. Assum-
ing that the metric tensor changes smoothly, the following approximation is
taken

k—1
length, g (X1, ..., X)) = Z \/(Xz’+1 - Xz‘)T J(xi) (Xi1 — %) (8)
i=1

which disregards changes of the metric tensor along the line segments. Note
that this definition does not necessarily lead to a symmetric form. If a
symmetric form is mandatory, as is the case in our setting, we resort to
the following variation: we assume an odd number of 2k + 1 points x =
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X1,Xs,...,Xo,11 = X. Then we evaluate symmetrically:

k
length (1, Xoket) = 3y (s —x1) | I061) (i1 — 1)
(9)

k
+ Z \/(X2k7i - X2k7i+1)T J(Xok—it1) (Xok—i — Xog—it1)
i=1

Having defined an approximation of the integral (2), the question occurs
how to optimise the path (3). The quality depends on the number k of
points and the set of considered paths. One prominent approach samples
points which are mutually connected by line segments, and then optimises
the overall path by taking minimum distances in the resulting neighbourhood
graph. Albeit classical algorithms such as Dijsktra’s algorithm address this
problem, the computational complexity is O(n*logn) for sparse graphs and
O(n?) for fully connected graphs, assuming n data points.

Therefore, commonly, a simpler approach is taken, which provides the
same quality empirically if combined with data visualisation [23]: The dis-
tance of x and x is computed via the line segment from x to x only, sampling
an odd number of points on the line. Formally, this so-called T-point ap-
proximation, for an even number 7', is defined as

x —x x —x x —x ,)

S 2. T - —=
T+1’XJr T+1’ X+ T+1’X
(10)

Obviously, this approximation has linear time complexity only. It has been
experimentally tested that it does not change the results of a subsequent
visual display significantly as compared to more fine grained but also more
costly alternatives [23]. This can be attributed to the fact that nonlinear di-
mensionality reduction methods focus on the preservation of local distances;
these are not significantly changed when using the T-point approximation
instead of a full optimisation scheme due to the fact that every differentiable
manifold is locally approximately flat by definition. Further, the paper [23]
evaluated the choice of T. They come to the result, that choosing 7" larger
than 5 does not improve the performance significantly. Hence, we employ
this value in our experiments. Having computed this distance matrix, we
can use any DR technology which is based on pairwise distances only for its
visual display.

dp(x,x') = length,, (X, X +
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3 Kernelisation

In this contribution, we aim for an extension of this approach towards data
which are characterised in terms of pairwise similarities only, i.e. kernel val-
ues. Hence the question occurs whether this DiDi approach can efficiently
be kernelised. In the sequel, we derive a method how these computations
can be done directly in kernel space without an explicit embedding of the
data. Thereby, the correspondence is exact in the sense that the vectorial
counterparts are recovered in case the kernel yields the identity, for more
general kernels, the vectorial operations are done in the underlying feature
space.

We assume that a similarity matrix K € is given with N being
the number of data points, entries are denoted as k;;. We assume symme-
try of K; hence an implicit vectorial embedding exists ® : x — ®(x) such
that k;; = ®(x;)" ®(x;) where the inner product is given by an appropriate
symmetric bilinear form in some embedding feature space [12]. Provided a
kernel is present, this form is positive semidefinite. For general symmetric
K, only bilinearity and symmetry can be guaranteed. In the following, we re-
quire non-negativity of all computed pairwise similarities to guarantee a valid
probability distribution for an estimation of the Fisher matrix. In particu-
lar, this covers the case of structure kernels for complex data structures [20].
Now we inspect in detail how to kernelise the parts required to approximate
the Fisher metric.

RNXN

Kernelisation of the approximation of path integrals

Assume two points ®(x;) and ®(x;) are given. The question is how to com-
pute dp(P(x;), P(x;)) based on the kernel matrix K only? We do not explic-
itly rely on the embedding space, but we make use of the fact that all points of
the line from ®(x;) to ®(x;) have the form ®(x(a)) := (1 —a)P(x;) +adP(x;)
where o € {0,1/(T+1),2/(T+1),...,T/(T+1),1}. Hence dp(®(x;), D(x;))
is a sum of terms of the form

(20 200) gy ()2

This has a computational complexity of O(T 4 1) - O (computation of the
quadratic form). Further, we face the question how to efficiently kernelise a
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quadratic form

((x;) — @(x;)) " I(P(x(c))) (D (1) — D(x;)) (12)

for data ®(x;), ®(x;) and their convex combinations ®(x((«)).

Kernelisation of the quadratic form
We find

(D(x;) — @(x;)) " T(R(x(a))) (D (1) — D(x;))
=(P(x;) — (%)) Eyein) {b(@(x(a)), 0)b(@(x(cr)), €)' } /o (@ (x:) — D(x;))

= S (el(x(0)) (@(x) — 2(x,)) (@ (x(). )

=3 (EUP(x(a)), €) - B(xi) T D(x1) —E(UD(x(a))) - B(x:) (1)) (15)
! kit kil
where the sum is taken over all support points in S for the density estima-
tion. Hence, this can be kernelised, provided we find kernel expressions for
the terms p(c|®(x(w))), (| P(x(a)), c), and £(I|P(x(cx))). These are combi-
nations of exponential functions, where the exponent depends on ®(x(«)) by
means of terms of the form

12(x1) — (x(a))]I* =

d(x))? + B(x;)* + (ID(Xj)2 —2a @(xi)T(I)(XZ) —2(1 — ) (IJ(Xj)T@(xl)

ku kii kj]' kil kjl
+2a(1 — ) &(x;) " ®(x;)
k
i

Hence, the full computation can be kernelised. The complexity to compute
this kernelised version of the quadratic form is C - |S]|.
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4 t-SNE and Barnes-Hut SNE

t-distributed stochastic neighbour embedding (t-SNE) and its efficient ap-
proximation, Barnes-Hut SNE, have been established as particularly pow-
erful nonlinear DR, technology in the last years [33, 32]. The methods are
particularly suitable to investigate the presence of cluster structures in high
dimensional data. t-SNE relies on probabilities in the original data space

pij = (PG + piry)/ (2m) where

pii = (exp(=lxi — x;11*/207))/ (O exp(—Ilx; — xi[*/207))  (17)
ki

The bandwidth o; is determined such that the effective number of neighbours
coincides with a priorly specified parameter, the perplexity (which is a robust
meta-parameter, typically chosen between 15 and 50). In the projection
space, probabilities are induced by the student-t distribution

g = (L+ lys = w317/ QoA+ llye = vl ™) (18)

k£l

to avoid the crowding problem by using a long tail distribution. The goal is
to find projections y; such that the difference between p;; and ¢;; becomes
small as measured by the Kullback-Leibler divergence. t-SNE optimises this
objective by means of a gradient based technique.

While t-SNE provides excellent results, its complexity scales quadratically
with the number of data points. Recently, the so-called Barnes-Hut approxi-
mation has been introduced (BH t-SNE) [32]. This relies on two ideas: In the
data space, p;; is substituted by a sparse probability matrix, with p;; = 0
if x; is not contained in a neighbourhood of x;. The neighbourhood size
is typically chosen as 3 - u with the perplexity u of t-SNE. These relevant
neighbours can efficiently be computed in averaged time O(N log N) for any
given metric using a vantage point tree [37].

The t-SNE gradient can be decomposed into two sums

4 (Z Pij0i; Z(Yi — Yj) — Z G Z(y1 — Yj)) (19)
G JF#i

where Z =37, /(1 + [lyx — yul[*)~"!. For sparse p;;, the first sum is efficient.
The second sum is approximated by exploiting the Barnes-Hut approximation
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for efficient n-body simulations [3]. Essentially, data in the projection space
are arranged along a Quadtree, and sets of points are substituted by only
one average of a cell provided the approximation is sufficient. On average,
the complexity is also O(N log N).

Note that neither t-SNE nor BH t-SNE require data being euclidean.
Rather, any metric can be used, such as the Fisher metric. Therefore, we
can directly combine the kernel computation of the Fisher metric with these
two DR technologies. Note that a vantage point tree does not require the
computation of all pairwise distances, rather a quasilinear subset is sufficient.
Hence it is advisable to compute kernel values K and corresponding Fisher
distances on the fly when constructing the vantage point tree, which results
in an overall effort of O(N log N - T'C|S|), which is quasilinear in the size of
the data points, provided the size of the support set S for the kernel density
estimation is limited.

5 Experiments

We evaluate the proposed method for six benchmark data sets that are only
given as a similarity matrix. Naturally, for vectorial data, the proposed
method is identical to its vectorial counterparts provided the identity is used
as kernel. Hence we do not evaluate vectorial settings, rather we investigate
data which are characterised directly in terms of their pairwise similarity.
The data include the following:

Aural Sonar [25]: The data consist of 100 returns from a broadband active
sonar system. Their similarity is evaluated by human experts. Two
classes (target of interest versus clutter) are distinguished.

Patrol [7]: 241 members of seven patrol units are characterised by (partially
faulty) feedback of unit members naming five colleagues each.

Protein [13]: 226 globin proteins are compared based on their evolutionary
distances, four classes of different protein families result.

Voting [7, 19]: 435 either republican or democrat candidates are charac-
terised by 16 nominal attributes which characterise the key votes iden-
tified by the CQA, the value difference metric is used for comparison.
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Java Programs [21, 22]: 64 Java programs which implement bubble sort
or insertion sort, respectively, have been retrieved from the internet.
They are compiled with the Oracle Java Compiler API and compared
by alignment.

Sonatas [9]: 1068 sonatas in MIDI format from the online collection Kunst
der Fuge are transformed to graph structures and compared with the
normalised compression distance of their paths, labelling is given by
one of 5 composers from the classical / baroque era.

A more detailed description of the data can be found in [7, 9].

Each data set is characterised in terms of a symmetrised similarity matrix
K. Some of the data do not constitute valid kernel matrices, in such cases
pre-processing by clipping negative eigenvalues is possible. However, the
Fisher metric does not necessarily require a valid kernel, but only that all
computed pairwise distances of data points to be non-negative. We perform
the following experiments:

e plain t-SNE projection
e projection using Fisher t-SNE
e projection using BH Fisher t-SNE

All data are projected to two dimensions. As discussed before and sug-
gested by the literature [23], the parameter T for the T-point approximation
is chosen as 5. The perplexity is set to the default value 20. The band-
width for the kernel density estimation is chosen as the average bandwidth
determined by t-SNE based on the given perplexity. The size of the set S
of support points for the kernel density estimation is optimised such that
no overfitting occurs in a baseline. In order to have a reference projection,
we employ the basic methods kernel PCA [28] which applies the kernel trick
to classical PCA, aligning data such that maximum variance is preserved.
Further, we compare to the kernel Discriminant Analysis [6] which kernelises
classical LDA as a popular linear discriminative projection method. The
regularisation parameter of the latter is also tuned such that no overfitting
occurs in an according baseline.

We quantitatively evaluate the results by a 1-nearest neighbour (1-NN)
classification in the data space using Euclidean, Fisher, and approximated
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Table 1: 1-NN classification errors in percent for the investigated data sets

AuralS | Patrol | Protein | Voting | Java | Sonatas
original data 21 17 7 6 14 13
Fisher metric 8 15 0.9 5 11 10
VP approx. 8 14 9 ) 11 17
KPCA 18 28 12 7.6 12.5 26
KDA 15 29 1.4 4 14 20
t-SNE 18 87 31 7 15 10
Fisher t-SNE 11 16 4 4 12 9
BH Fisher t-SNE 12 17 6 5 13 13
baseline KDA 39 76 51 45 49 50
baseline Fis-t-SNE 40 81 48 43 45 49
baseline BH Fis-t-SNE 48 88 59 46 45 39

Fisher metric (which we also refer to as vantage point tree (VP) approxima-
tion), and in projection space using t-SNE and BH t-SNE and the standard
euclidean metric, respectively. Thereby we also report the result which we
obtain when applying Fisher t-SNE to data with randomly permuted labels,
which corresponds to the quality which is merely due to statistical effects of
the data. We refer to the 1-NN error in this setting as a baseline. Note that
it is not reasonable to evaluate the projections by the quality framework for
DR evaluation [18] since we do not aim to preserve neighbourhoods based on
euclidean distances.

Results are displayed in Tab.1. As can be seen, an integration of the
Fisher matrix constantly improves the cluster separability of the display. In
all cases, the BH approximation also yields comparative results, enabling
a computation in quasilinear time instead of quadratic complexity. As ex-
pected because kernel PCA is an unsupervised method, it performs mostly
much worse as measured by the nearest neighbour error. Kernel Discrim-
inant Analysis performs competitively on some data sets (on Protein it is
even better), but is clearly worse on three others. Here, the reason is the
smaller flexibility to follow highly nonlinear data structures as compared to
Fisher t-SNE.

The corresponding visualisations are displayed in Figs.1,2,3. It is clearly
visible that an integration of the Fisher information leads to a better em-
phasis of the cluster structures. An approximation with BH Fisher t-SNE
mostly preserves this overall impression, whereby there are details which do
not coincide with Fisher t-SNE — this is not surprising since the technique
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t-SNE: Aural Sonar

Fisher t-SNE: Aural Sonar

BH Fisher t-SNE: Aural Sonar
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Figure 1: Diverse t-SNE projections for the Aural Sonar data set (upper
four figures) and the Patrol data set (lower four figures). Four each quartet,
the display shows plain t-SNE (upper left), Fisher t-SNE (upper right), BH
Fisher t-SNE (lower right) and Fisher t-SNE applied for randomly permuted
labels (lower left).

constitutes an approximation. For all settings, the baseline obtained by ran-
dom permutation of the class labels yields a widely unstructured image, i.e.
structure emphasised by Fisher t-SNE can be attributed to information which
is available in the data rather than overfitting effects.

6 Conclusion

In this contribution we have reformulated one particularly popular approach
for discriminative dimensionality reduction such that it is applicable to non-
vectorial data given by similarities or kernel values. We have shown that
the computation of the Fisher metric can be kernelised, and the resulting
matrix can be used to drive t-SNE as well as the more efficient BH t-SNE
approximation. We evaluated this method with six data sets and obtained a
clear improvement as compared to unsupervised projections. The resulting
algorithm displays complexity O(N log N) provided the set of support vectors
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Figure 2: Diverse t-SNE projections for the Protein data set (upper four
figures) and the Voting data set (lower four figures). Four each quartet,
the display shows plain t-SNE (upper left), Fisher t-SNE (upper right), BH
Fisher t-SNE (lower right) and Fisher t-SNE applied for randomly permuted
labels (lower left).

for kernel density estimation is chosen of constant size.

The presented framework opens the door to further investigations: the
Fisher metric can be extended to auxiliary information which is real-valued
by means of a density estimation based on a suitable probabilistic regression
model such as a Gaussian process. Since the latter is kernelised, an extension
of the proposed framework to real-valued auxiliary information is immediate.

DiDi technology lies at the hart of a classifier visualisation framework
as proposed in [30]. It would be interesting to investigate an extension of
this framework to kernel values. This would allow practitioners to not only
inspect the given data but also a given classifier for complex data structures
such as a kernel machine based on structure kernels. This would enable the
intuitive interactive exploration of the demanding task of classifier design for
structured objects.
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Figure 3: Diverse t-SNE projections for the Java data set (upper four figures)
and the Music data set (lower four figures). Four each quartet, the display
shows plain t-SNE (upper left), Fisher t-SNE (upper right), BH Fisher t-SNE
(lower right) and Fisher t-SNE applied for randomly permuted labels (lower
left).
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