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The Legitimacy of Data Partnerships for Sustainable 

Development 

 

Abstract:  

This paper examines the legitimacy attached to different types of multi-stakeholder data 

partnerships occurring in the context of sustainable development. We develop a framework to 

assess the democratic legitimacy of two types of data partnerships: open data partnerships 

(where data and insights are mainly freely available) and closed data partnerships (where data 

and insights are mainly shared within a network of organizations). Our framework specifies 

criteria for assessing the legitimacy of relevant partnerships with regard to their input legitimacy 

as well as their output legitimacy. We demonstrate which particular characteristics of open and 

closed partnerships can be expected to influence an analysis of their input and output 

legitimacy.  
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INTRODUCTION 

The Global Mobile Industry Association (GSMA), an industry association representing 

approximately 800 mobile operators, estimates that close to a billion people, mostly in 

developing countries in Africa and Asia, will come online in the next three years (GSMA, 

2016). The evolution in volume and resolution of new private data sources is starting to have a 

transformational effect on development policies. Development analyses increasingly 

supplement small-sample survey data with an examination of continuous data sources with 

large or sometimes close to universal population coverage (Einav & Levin, 2014). These new 

data sources have received considerable attention in the international development space due 

to their potential for better monitoring and assessing the Sustainable Development Goals 

(SDGs) (see e.g., Madsen et al., 2016; Melamed, 2014; Steele et al., 2017).  

One of the most recent organizational forms to collect, analyse, and distribute 

development-related data that rests on these new data sources are Big Data Partnerships for 

Sustainable Development (hereafter “data partnerships”). Such partnerships occur among 

multiple actors, including, but not limited to: private companies, international organizations, 

national governments, non-governmental organizations (NGOs), as well as academic 

institutions (Flyverbom et al., 2017). With the rise of the internet and communication 

technology (ICT) industries and the concurrent evolution of the SDGs, the hyperconnectivity 

of the data revolution makes such partnerships a powerful asset that has awakened utopian 

dreams of it being a new “public commons” (Lohr, 2013). The number of data partnerships 

with an ambition to address sustainable development has increased markedly. Much hope has 

been expressed by governments, civil society actors, and businesses for such partnerships to 

positively impact sustainable development due to their ability to handle data that is 

characterized by high volume, high velocity, and high variety (Etter et al., 2017; United 

Nations, 2013; Wesolowski et al., 2015).  
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Consider the following example of the UN collaborating with Twitter. The UN Global 

Pulse initiative analyzed large amounts of tweets commenting on the price of rice in Indonesia. 

The analysis showed that the quantity of tweets on the topic followed the official inflation for 

the food basket in the country, indicating that social media data can be used as a predictor of 

price trends on local markets (UN Global Pulse, 2014; UN Global Pulse and Crimson Hexagon, 

2011). Such predictors, in turn, can help to ensure food safety. Because Twitter data is sourced 

and analyzed in real-time, it can provide insights for regions where it is difficult, costly, and 

time consuming to collect data. Considering the potentially evasive impact of such partnerships, 

and their subtle institutionalization as a key mechanism to address social development, our main 

research question is: What are the conditions that lead to the legitimation and delegitimation 

of data partnerships for sustainable development?  

Our analysis is motivated by the observation that, because of their increasing relevance 

for policy makers and international institutions, data partnerships depend on being recognized 

as legitimate tools to collect, analyze, and distribute data in support of sustainable development. 

Yet, despite their growing relevance for advancing sustainable development, little is known 

about what legitimizes such collaborative agreements. While the work of international 

organizations and national governments is legitimized by reference to direct or representative 

democracy (Scharpf, 1997), data partnerships cannot refer to such democratic mechanisms 

(e.g., as they include non-elected private actors). Although the literature on multi-stakeholder 

partnerships has discussed legitimacy (see e.g., Bäckstrand, 2010; Bitzer & Glasbergen, 2015; 

Mena & Palazzo, 2012), existing results cannot be easily applied in the context of data 

partnerships. The main difficulty is that data partnerships exist on a continuum between “open” 

initiatives (in which the data that is used for the analysis and the results are, more or less, freely 

available) and “closed” initiatives (in which the sourcing of data and the dissemination of 
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results are restricted). As we show below, the open or closed nature of a partnership influences 

the way in which initiatives can legitimize themselves.  

Our paper makes two key contributions to the emerging discussion of data partnerships 

in the context of sustainable development. First, we introduce the distinction between open and 

closed data partnerships and show that both types differ with regard to three criteria (i.e., how 

membership is regulated, how data is sourced, and how insights are shared). Although this 

distinction outlines two ideal types of data partnerships and therefore obscures some nuances, 

it helps scholars working in this field to acquire a better understanding of their unit of analysis. 

As Susha et al. (2017) argue, we need an improved understanding of different types of data 

partnerships to describe and analyse relevant initiatives in a systematic manner. Second, we 

develop a conceptual framework to show which criteria are likely to influence the input and 

output legitimacy of both types of partnerships. Our discussion also demonstrates which 

particular characteristics of open and closed partnerships can be expected to influence an 

analysis of their input and output legitimacy. Although we show the relevance of our theoretical 

claims by discussing selected examples, we caution that our analysis is not based on a large-

scale empirical assessment of a whole population of partnerships. Nevertheless, our theoretical 

study can be used as a springboard for future research.  

While we develop a framework to analyse the democratic legitimacy of data partnerships, 

our discussion rests on an acknowledgment that such legitimacy is contextually dependent 

(Suddaby et al., 2017). Our analysis is focused on data partnerships in the context of sustainable 

development, and it does therefore not cover data partnerships as a general phenomenon (e.g., 

when such partnerships are used by companies to gain better consumer insights; McAfee & 

Brynjolfsson, 2012). We therefore view data partnerships for sustainable development as a 

distinct unit of analysis, which also differs in various ways from the general notion of cross-

sector partnerships for sustainable development (see our discussion below).  
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Our analysis proceeds as follows. The next section defines big data, as it underlies the 

discussion of relevant collaborations, and then conceptualizes two ideal types of data 

partnerships: open and closed agreements among multiple stakeholders. Section three develops 

a conceptual framework for assessing the input and output legitimacy of open and closed data 

partnerships. We first develop criteria to judge the input and output legitimacy of relevant 

partnerships and then show which particular characteristics of open and closed partnerships can 

be expected to influence the analysis. Section four discusses the implications of our analysis: 

(a) by showing in how far our framework differs from legitimacy assessments of partnerships 

for sustainable development that are not tied towards big data analyses and (b) by outlining 

future research challenges that arise from our study, both in terms of possible research topics 

and appropriate methods.  

 

BIG DATA PARTNERSHIPS FOR SUSTAINABLE DEVELOPMENT 

Big Data 

Big data is commonly defined as digital data that ranks high on a number of criteria; specifically 

characterised by large volume, high velocity of collection and processing, and increased variety 

(McAfee & Brynjolfsson, 2012). Big data is not a homogenous entity but can take a number of 

manifestations or levels of aggregation; for instance with regard to scale (various sample sizes 

vs. full dataset), scope (e.g. geospatial, time-series or cross-sectional), and level of analysis (e.g. 

individual-level data, aggregated data). Established big data sources are satellite data, mobile 

network data, social media data and data on internet behaviour, the majority of which are 

increasingly collected and accessed through private firms (Einav & Levin, 2014). The big data 

paradigm is defined by a high amount of available information flow, information storage, and 

information processing (Hilbert, 2013). Human-generated telecommunication flows, 

surveillance cameras, health sensors and the so-called “internet-of-things” are all central parts 
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of this increasing data stream that is today more easily exchanged in networks (Manyika, et al., 

2011). The resulting masses of data, coupled with the emergence of advanced data mining 

technologies and visualization techniques, constitute the foundation of big data.  

Big data makes it possible to render data in many areas where we have not been able to 

quantify before. Geographical location, words, friendships and sentiments are today datafied, 

and we are provided with large amounts of data rather than small samples on personal and 

collective preferences. With big data we are able to collect and analyse massive quantities of 

real-time information about events that are perhaps less precise than statistics but yet 

sufficiently precise to inform here-and-now decision-making to improve local conditions. 

Hence, big data has marked a change in how society processes information and how we think 

of the world. As a consequence, big data, as pointed out by Meyer-Schönberger & Cukier (2013, 

p.3), has made us understand that “many aspects of life are more probabilistic, rather than 

certain.” 

 

Data Partnerships for Sustainable Development 

Open and Closed Data Partnerships. Based on Waddock’s (1991) early definition of cross-

sector partnerships, we use the term data partnership to describe collaborative organizational 

arrangements in which actors from different sectors attempt to cooperatively address a 

sustainable development problem through the exchange, processing, and analysis of big data. 

A common defining characteristic among data partnerships for sustainable development is the 

involvement of partners from both the global North and the global South (Bull & McNeill, 

2007; Hilbert, 2013). Prior research on cross-sector partnerships has explored partners’ motives 

and strategies and has brought valuable insights to understand how to organize new types of 

collaborations (Buse & Hamrer, 2007; Austin & Seitanidi, 2012; van Tulder et al., 2016). Also, 

critical research has studied the challenges that such partnerships face to achieve the social 
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improvement they set out to address (Selsky & Parker, 2005; Utting & Zammit, 2009; Le Ber 

& Branzei, 2010). While this research has brought significant knowledge about potentials and 

challenges of partnerships for sustainable development in general, only limited attention has 

been given to the particular challenges that big data provides for such partnerships.  

Data partnerships for sustainable development change the way in which development-

related data is collected, analysed, and distributed. So far, international organizations and 

national governments primarily use survey-based data to create, monitor, and evaluate 

development policies (Ginsberg et al., 2009). The UN and the World Bank frequently use 

household surveys for collecting information on populations in developing and emerging 

economies (The World Bank, 2004; United Nations, 2005). These surveys provide data on a 

variety of topics, ranging from poverty to healthcare and education. Samman (2013) argues that 

such surveys are still the main “workhorse” of data collection for international development. 

However, she also recognizes that there are limits to survey-based data collection. Surveys have 

been proven to deliver results that are costly and delayed (Deaton, 2000; McAfee & 

Brynjolfsson, 2012). Further, surveys are often restricted to the head of the household, making 

it difficult to gather data on some topics (e.g., in-home violence). Data partnerships address 

some of these shortcomings (e.g., they usually provide results much quicker; Flyverbom et al., 

2017), but they also face problems on their own, some of which are highlighted in this paper.  

We distinguish between open and closed data partnerships. This distinction is an 

analytical one and it reflects two ideal types (Doty & Glick, 1994) of collaborative agreements. 

It is therefore important to highlight that the underlying difference between open and closed 

data partnerships is based on a continuum. In practice, the openness of partnerships is less 

dichotomous and more nuanced, depending on how exactly partnerships behave with regard to 

the criteria that are outlined below. For instance, the Flowminder/WorldPop partnership follows 

an open model when it comes to data souring and the sharing of insights, but the collaboration 
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itself is limited to an agreement between the University of Southampton and the Flowminder 

Foundation. We base our distinction between open and closed data partnerships on the more 

general discussion of open/closed data (see e.g., Janssen et al., 2012; Open Data Institute, 2013; 

Sa & Grieco, 2016). According to Dietrich et al. (2018), open data can be described as “data 

that can be freely used, re-used and redistributed by anyone – subject only, at most, to the 

requirement to attribute and share-alike.” This definition emphasizes an ideal type of open data 

– that is, data that can be completely freely used and (re)distributed without any restrictions. 

However, the openness of data within partnerships is often restricted, also because such 

collaborative agreements do not reflect fully open systems in which no organizational 

boundaries would exist.  

In order to better understand in what ways data partnerships can differ regarding their 

openness, we discuss three criteria. These criteria rest on a categorization of insights derived 

from recent discussions of such partnerships in the literature (see e.g., Madsen et al., 2016; 

Flyverbom et al., 2017; Susha et al., 2017; Verhulst & Sangokoya, 2015). First, the role of 

participation matters in the context of data partnerships. In some cases, everyone is able to 

access and distribute the data that is used and produced in the partnership, while in other cases 

the collaboration is limited to a few selected partners (Berrone et al., 2016; Susha et al., 2017). 

This shows that the openness of a data partnership depends on the way in which membership is 

regulated (i.e. on what grounds can organisations be included in the partnership, and who has 

decision authority?). Second, an initiative’s openness is also influenced by the way in which 

the data, that is necessary for the partnership to work, can be accessed by participants (Madsen 

et al., 2016; Janssen et al., 2012). In a fully open data partnership, the partners would make 

their data freely available, so that all participating organizations have unrestricted and equal 

access to the data that is used to produce insights for sustainable development. This shows that 
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the openness of a data partnership also depends on the way in which the relevant data is sourced 

(i.e. is data only provided to and from selected organizations or is it an open sourcing process?).  

Finally, the openness of data partnerships also depends on whether the results, which are 

created in and through the partnership, can be freely distributed and re-distributed (Flyverbom 

et al., 2017; Poel et al., 2015). For instance, Dietrich et al. (2018) highlight that open data 

implies that “the data must be provided under terms that permit re-use and redistribution 

including the intermixing with other datasets.” This emphasizes that the openness of a 

partnership is also influenced by the way in which insights are shared (i.e. are the resulting 

insights made openly available to the public or is it only a few organisations that get to apply 

the information?). Data partnerships are formed not only to enable the baseline sharing of 

relevant data, but also for joint processing and analysis, and the resulting output in the forms of 

data and insights are usually validated, analyzed, aggregated, and otherwise modified beyond 

the source data. Table 1 gives an overview of eight exemplary data partnerships and positions 

them as open or closed vis-à-vis the three criteria discussed above.  

================== 

Insert Table 1 About Here 

================== 

Although both types of data partnerships differ in various ways (e.g. in terms of their way 

to source data), we believe that it is possible and beneficial to compare them. First, both types 

reflect partnership arrangements that were created for similar purposes – that is, they reflect 

collaborative agreements in which actors from different sectors cooperatively address 

sustainability problems through the exchange, processing, and analysis of big data. Although 

open partnerships involve more actors and follow a more accessible approach towards data 

sourcing and analysis, there is still a high degree of cooperation among different partners. While 

the current literature does not explicitly distinguish between open and closed partnerships, it 
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still discusses both types as belonging to a common phenomenon: collaborative initiatives for 

producing and disseminating development data (see e.g., Flyverbom et al., 2017; Susha et al., 

2017). Second, we believe that the differences between both types of partnerships (e.g., their 

scale) makes a comparison vis-à-vis criteria to assess their democratic legitimacy valuable. It 

is the distinctive nature of both types of partnerships that influences how their legitimacy is 

either strengthened or impeded. In the following, we further characterize open and closed data 

partnerships and discuss some of the illustrative examples, which are listed in Table 1. 

Characterizing Open Data Partnerships. Open data partnerships designate collaborative 

agreements in which membership is rather less regulated and where data and insights are less 

frequently restricted by bilateral or network-based agreements. For instance, the Humanitarian 

Data Exchange (HDX), an increasingly independent project within the UN Office for 

Coordination of Humanitarian Affairs (OCHA), reflects a partnership where at the time of 

writing 924 organisations have openly shared over 6,000 datasets and indicators on 224 

locations (www.data.humdata.org). The partnership operates under less strict inclusion criteria 

and hence more liberal access policies, as it is open to all interested organizations (HDX & UN 

OCHA, 2017; Kessler & Hendrix, 2015). Not much different, the Global Open Data on 

Agriculture and Nutrition (GODAN) partnership is open to all interested parties as long as the 

organizations commit to a joint Statement of Purpose (GODAN, 2018).  

In terms of data sourcing, open data partnerships offer participating organizations the 

possibility to share/post data that is subsequently used to generate relevant insights. For 

instance, all members of the Humanitarian OpenStreetMaps (e.g., Google, Planet Labs, the US 

Humanitarian Information Unit) can contribute to the partnership and have unrestricted access 

to the data sources (Palen et al., 2015). In this sense, the partnership is based on an open 

sourcing process of the relevant data. The Flowminder/WorldPop partnership works in a similar 

way with the partnership being set up between the non-profit organisation Flowminder and the 
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WorldPop research team at the University of Southampton. The partnership produces geospatial 

open data on population and demographics in collaboration with organisations such as the Bill 

& Melinda Gates Foundation, the World Bank, and UN agencies that provide country data (e.g. 

survey data) and project funding. While the country level or regional data integration and 

production is project funded, the resulting outputs are made open access and publicly available. 

In terms of sharing of insights, open data partnerships are designed in a way that the generated 

insights can be shared freely with other organizations or interested individuals. All four 

exemplary initiatives listed in Table 1 share their insights without many restrictions. While 

HDX allows to share all created insights within the networks of participating members, the 

other three initiatives even follow a policy where results can be distributed to any interested 

organization (and can be also redistributed by these organizations).  

Characterizing Closed Data Partnerships. Closed partnerships are collaborative 

agreements that usually apply formal inclusion criteria and strictly regulate who participates. 

Membership is therefore deliberately regulated. For instance, the partnership between Facebook 

and the Columbia Center for International Earth Science Information Network (CIESIN) rests 

on an explicit agreement between the company, Columbia University, selected UN agencies, 

and International Committee of the Red Cross (ICRC) (Tiecke et al., 2017). Not much different, 

the data partnership between Twitter and the UN is only restricted to these two players 

(Crowell, 2016). These data partnerships therefore do not work with an open access policy. 

This is also reflected in how these partnerships source relevant data. The data that underlies 

these partnerships either comes from bilateral agreements between organizations (under strict 

contracts and confidentiality) or is shared within a network of organizations or through a trusted 

intermediary. For instance, the UN-Twitter partnership rests exclusively on anonymized data 

that is sourced from Twitter. Also, the GSMA Big Data for Social Good partnership only 

sources data that is provided by telecommunication operators who participate in the initiative.  
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With regard to sharing of insights, the results that are generated by these partnerships are 

either exclusively accessible to organizations that are part of the initial contractual agreements 

or the distribution of results to other organizations is tightly regulated. For instance, the 

Facebook-CIESIN partnership produces population maps with higher resolution than any 

previous estimates (CIESIN, 2016). These maps allow to gather more accurate information on 

where people are living, which can be used by selected agencies in the UN system (including 

The World Bank) when designing development initiatives and disaster response strategies. 

Although some of the results can be publicly accessed (https://ciesin.columbia.edu/data/hrsl/), 

the detailed methodology, the input data and deeper insights are retained within the partnership. 

Not much different, the UNICEF Magic Box partnership distributes the created insights only 

to selected UN agencies through UNICEF’s Office of Innovation.  

  

TOWARDS A FRAMEWORK TO STUDY THE  

SOURCES OF LEGITIMACY OF DATA PARTNERSHIPS 

The Input and Output Legitimacy of Data Partnerships  

Our study views data partnerships as governance arrangements that are in need of democratic 

legitimacy, regardless of whether they are open or closed. If partnerships are supposed to play 

an important role within the global sustainable development agenda (United Nations, 2013), 

we need to have a framework to assess their democratic legitimacy. Although analytically 

related, our research does not focus on the legitimacy of the organizations participating in these 

partnerships. We aim to develop a framework to study the legitimacy of the partnership itself, 

even though we acknowledge that potential legitimacy spillover effects between individual 

participants and the partnership as a whole exist (Haack et al., 2014). Research, which reaches 

beyond an analysis of the legitimacy of individual participants, remains scarce to date. Rueede 

and Kreutzer (2015, p. 42) confirm this perspective by stating: “Existing research has been 
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conducted from the perspective of the participating organizations with the organization as the 

unit of analysis […] but up to now research on legitimacy in CSSP [cross-sector social 

partnerships] has fallen short of analysing how the partnership itself gains legitimacy on a 

partnership level.”  

In its most general sense, legitimacy refers to the socially shared belief that “the actions 

of an entity are desirable, proper, or appropriate within some socially constructed system of 

norms, values, beliefs, and definitions.” (Suchman, 1995, p. 574). Democratic legitimacy, more 

specifically, refers to the acceptance or recognition of authority of a governing body by others 

(Wolf, 2005). We follow a process-based understanding of democratic legitimacy (Suddaby et 

al., 2017) and therefore emphasize that legitimacy is not something that data partnerships can 

simply possess or adopt (e.g., by aligning with dominant social values). Rather, the legitimacy 

of data partnerships is constantly negotiated between different actors, for instance among those 

actors that participate in the partnership and among relevant actors in the organizational 

environment. We deem such a process view to be an appropriate lens to study the legitimacy of 

data partnerships, as relevant initiatives operate transnationally and are therefore not bound to 

any particular society or even nation state that could act as a reference point for legitimization 

(see e.g., Ruef & Scott, 1998). Data partnerships can thus not easily align with an established 

shared background of community values that exist in their environment. Because such 

initiatives operate in a transnational environment characterized by a plurality of values and 

voices, their legitimization depends on ongoing processes of interactions among relevant social 

actors (see also Palazzo & Scherer, 2006).  

Based on the literature discussing the democratic legitimacy of transnational governance 

arrangements (Bäckstrand, 2010; Risse, 2004; Scharpf, 1997), interactive processes of 

legitimization can have two distinct reference points. On the one hand, it is possible to look at 

the input side of relevant legitimization processes to study whether data partnerships are 



 14 

perceived as legitimate in terms of the design of underlying communicative structures. Prior 

research has referred to such a perspective as input legitimacy (Scharpf, 1997). On the other 

hand, it is possible to look at whether the outputs that arise from relevant interactions are seen 

to effectively solve those problems that are targeted by the partnership. Prior research has 

referred to such a perspective as output legitimacy (Mena & Palazzo, 2012). Whereas input 

legitimacy is concerned with governance by the people, output legitimacy is concerned with 

governance for the people. The distinction between input and output legitimacy is crucial, 

because partnerships with a high participatory quality do not necessarily need to be effective in 

terms of addressing a certain issue.  

We first develop criteria for assessing the input and output legitimacy of data 

partnerships. We then demonstrate why each criterion is relevant and which particular 

characteristics of open and closed partnerships can be expected to influence the analysis. Table 

2 summarizes our analysis.  

 

================== 

Insert Table 2 About Here 

================== 

 

Input Legitimacy  

Input legitimacy is concerned with the question of whether the authentic preferences of those 

who are affected by a governance arrangement are actually represented in the arrangement in 

some form. It refers to the belief that “decisions are derived from the preferences of the 

population in a chain of accountability linking those governing to those governed” (Mayntz, 

2010, p. 10). It thus mostly deals with the decision-making processes and governance structures 

that underlie data partnerships. We suggest three criteria to judge the input legitimacy of data 
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partnerships: the existence of participatory decision-making, the transparency of the 

partnership, and its deliberative quality. As our paper aims at opening a debate for the 

evaluation of the legitimacy of data partnerships, we do not argue that this list of criteria is 

necessarily exhaustive.  

Participatory Decision-Making. Participation is a key dimension of input legitimacy. It 

is widely accepted within the literature that legitimate governance arrangements need to include 

different stakeholder voices; ideally all those affected by relevant decisions (Bäckstrand, 2010; 

Dingwerth, 2007, Mena & Palazzo, 2012; Wolf, 2005). Theoretically speaking, the idea that 

higher levels of stakeholder inclusion positively affect input legitimacy rests on deliberative 

democracy thinking (Habermas, 1998; Young, 2000). This yields a number of important 

questions in the data partnership context: What are the patterns of exclusion and inclusion when 

partnerships make decisions? Are there some actors that dominate the partnership? Are there 

barriers to participation? In the data partnership context, participation refers to whether those 

organizations, which participate in a partnership and are affected by it, can also participate in 

relevant decisions (e.g. which sustainability issues to focus on). High levels of participation do 

not ipso facto yield high levels of input legitimacy, as the quality of the underlying deliberations 

are also important (see below).  

Participation is a relevant assessment criterion for data partnership’s input legitimacy, as 

it connects the scale of participation in a partnership to discussions around representation in 

decision-making structures. At first glance it seems that since open data partnerships have many 

participating organizations from different societal sectors and countries, it can be expected that 

such set-up favours the creation of inclusive participatory structures. For instance, HDX 

acknowledges that “[a]ll user groups will be considered when designing solutions, products and 

services.” (UN OCHA, 2016 p. 3) However, in practice such inclusiveness is limited by the 

large-scale nature of most collaborative agreements. Research in participatory decision-making 
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has shown that organizational structures, which contain a high number of heterogenous 

members, find it harder to set up high-quality engagement structures (Börzel & Risse, 2005; 

Boström, 2006; Goodin, 2000). An increase in the organizational complexity that underlies the 

partnership can therefore imply (a) that it becomes more difficult to couple participants and 

decision-makers, (b) that possibilities for participation are limited, and (c) that it becomes more 

difficult to move participation towards justification and beyond a mere expression of opinions 

(Parkinson, 2003; Pingree, 2006; Walzer, 1999).  

Participation in open data partnerships can therefore be expected to function mostly 

through advocates and hence indirect representation. For instance, Humanitarian 

OpenStreetMaps has chosen to create participatory structures through the election of voting 

members – these are “people in the HOT [Humanitarian OpenStreetMap Team] community 

who have shown commitment to the HOT mission.” (HOTOSM, 2018). Not much different, 

the GODAN partnership works with a Steering Committee consisting of selected 

representatives. While such representatives can ensure a certain level of inclusiveness, open 

data partnerships usually involve heterogenous sets of actors (e.g. organizations of different 

sizes, cutting across societal sectors and countries), which change frequently and rapidly (due 

to low entry barriers). These conditions can limit the degree of representation, which can be 

achieved through advocates, as it can make the identification of adequate representatives more 

difficult.  

Closed data partnerships have fewer organizational participants and usually depend on 

contractual agreements between a few actors. This puts limits on their ability to involve a 

representative set of participating actors when making decisions, especially as many closed data 

partnerships do not have formal governance structures (e.g., the Facebook-CIESIN partnership 

lacks formal governance and appears to be managed on a contractual basis; CIESIN, 2016, 

2018; Tiecke, 2016). Closed data partnerships can therefore either adopt a strategy of setting 
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up structures for stakeholder representation in their decision-making (which would enhance 

their perceived legitimacy) or to limit participation to just include those organizations that 

actually contribute to the collaboration (which would impede their legitimacy). The latter option 

can be expected to favour a homogeneity of ideas, as small group deliberation often impedes 

the deliberative ideal that numerous views and opinions are expressed and considered (Ryfe, 

2005).  

Transparency. We understand transparency as a partnership’s ability to make its 

“behaviour and motives readily knowable to interested parties” (Hale, 2008, p. 75). It covers 

access to information by stakeholders and also the general disclosure of relevant information. 

For data partnerships two aspects of transparency are particularly important: (1) transparency 

around how data was sourced, analysed, and distributed and (2) transparency around the 

decision-making structures that the partnership agrees to. For data partnerships this yields 

interesting questions, such as: What are the levels of transparency that the partnership agrees to 

in terms of sourcing and analysing data? What accountability structures are created? What 

information is accessible and by whom is it accessible? Transparency can be expected to 

facilitate stakeholder participation and hence strengthen democratic governance and 

accountability (Christensen & Schoeneborn, 2017; Scharpf, 1997). If important aspects 

concerning data partnerships (e.g. how decisions are reached) are transparent, affected 

stakeholders can better judge whether their preferences were respected. Whether or not data 

partnerships can be viewed as appropriate providers of insights into sustainable development 

challenges thus also depends on whether it is possible to evaluate their activities from the 

outside (Bernstein & Cashore, 2007; Black, 2008).  

The openness of data partnerships can impact in how far relevant initiatives are 

transparent about how they source, analyse, and distribute development data. While the open 

data literature usually assumes that open data implies higher levels of transparency (Janssen et 
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al., 2012; Sa & Grieco, 2016), we caution that this does not need to be the case in the context 

of data partnerships. Although the push towards open data within government has resonated 

with calls for more transparency and accountability, one can have open data initiatives without 

much transparency (Lourenço, 2015). Just because data partnerships offer participating 

organizations the possibility to provide, access, use and share development data, they do not 

automatically have to enjoy high levels of transparency. First, the mere availability of open data 

says little about where the data comes from exactly (e.g. it could have been reposted) and how 

the analysis was performed (e.g. it is common that different datasets are combined within 

analyses; Hilbert, 2013). For instance, although most datasets provided by participating 

organizations in HDX are transparent, data providers cannot always be held accountable to 

insights created based on their data, as datasets are usually mixed within the analysis. Second, 

even if a data partnership is transparent regarding how data was sourced and analysed, it can 

still lack transparency regarding its governance structure. If key decision-making processes 

(e.g. how it was decided what sustainability issues the partnership wants to address) remain 

opaque, it becomes harder for outside audiences to judge whether the partnership really can be 

seen as an appropriate way to address sustainable development problems (see also Schouten et 

al., 2012).  

Deliberative Quality. The input legitimacy of a data partnership also depends on the 

quality of the communicative processes that underlie participation. Procedural demands are 

usually conceptualized as the deliberative quality of governance arrangements (Bäckstrand, 

2010; Ryfe, 2005). Such procedural elements are important, as data partnerships can be 

inclusive in terms of involving relevant parties but may not have processes in place that 

guarantee the fairness of argumentative procedures. The deliberative quality of data 

partnerships can be assessed by asking questions such as: Do participating stakeholders have a 

valid voice in decision-making processes? To what extend does a partnership live up to the 
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ideal of an unconstrained dialogue? Are participating actors able to achieve a consensual 

solution to the problem they are addressing? The deliberative quality of data partnerships is 

vital, as participating organizations usually come from different societal sectors and hence need 

to move beyond “bargaining solutions” that are likely to be influenced by power differences 

(Schouten et al., 2012).   

Deliberative theorists have focused on how deliberation ought to look like and what 

influences the successful creation of action-guiding consensus (see e.g., Dryzek, 2010; 

Karpowitz & Mendelberg, 2007; Risse, 2004). Two issues are particularly relevant in the 

context of data partnerships. First, deliberative quality is influenced by whether power 

differences between actors can be neutralized as much as possible (Habermas, 1998). Power, 

here, can be understood either as direct coercion of other actors or as the manipulation of what 

counts as the accepted boundaries of argumentation (Fleming & Spicer, 2014). While power 

differences will occur in open and closed partnerships, we can expect that the visibility and 

consequences of unequal power relations are particularly relevant in the context of closed 

partnerships that are based on bilateral agreements (e.g. Twitter and UN Global Pulse; 

Facebook and CIESIN). In such partnerships, there is a strong dependence on single actors, 

which makes it more difficult to neutralize power differences between the participating 

organizations. As Emerson (1962, p. 32) suggested: “power resides implicitly in the other’s 

dependency.” In such a situation, it will be harder to ensure that argumentative rationality rests 

on being persuaded by the better argument (Habermas, 1990; Hale, 2008). Rather, it is more 

likely that “argumentative power” is replaced with “bargaining power” in the sense that material 

resources and the threat to exit the partnership influence the mode of communication (Risse, 

2004).  

Second, the scale of deliberations can have an influence on the ability of participants to 

create action-guiding shared knowledge structures (Albrecht, 2006). Since deliberative theory 
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assumes that there is a direct exchange of arguments between different groups (Mansbridge et 

al., 2012), a high number of participants makes it more difficult to create argumentative 

procedures that result in a common understanding of problems and solutions (Goodin, 2000; 

Parkinson, 2003). Prior research has observed that participants in small-scale deliberations 

often find it easier to detect information or cues that enables them to create shared knowledge 

and eventually consensus (Ryfe, 2005). We can therefore expect that even though closed data 

partnerships may find it harder to set up deliberative processes in which numerous views and 

opinions are expressed, they should find it easier to create a framework for identifying common 

knowledge among participants. However, research has also shown that the existence of such 

consensual agreement can impede the conditions for future dialogue that legitimizes relevant 

decisions (e.g. because it may hamper future dialogue to reconsider or update decisions; 

Friberg-Fernros & Schaffer, 2014).  

 

Output Legitimacy  

Output legitimacy refers to the problem-solving capacity of a partnership and the results it 

creates; it couples the legitimacy of a governance arrangement to its ability to effectively 

address the problems that it claims to address (Levine et al., 2005; Wolf, 2005). Output 

legitimacy links legitimacy to the consequences of deliberations and therefore complements 

input legitimacy’s focus on elements of institutional design. One key strength of assessing the 

democratic legitimacy of data partnerships in this way is that it acknowledges that although 

some initiatives may show good degrees of input legitimacy, their problem-solving capacity 

might be disappointing (and vice versa). Based on insights from the partnership literature 

(Bekkers & Edwards, 2016; Schouten et al., 2012), we believe that two dimensions of output 

legitimacy are particularly relevant for judging the legitimacy of data partnerships: their outputs 

and their outcomes. Data partnerships’ outputs refer to the insights on sustainability problems 
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that are created, while their outcomes refer to the observed effects that these insights make to 

address the problem that motivated the creation of the collaboration (Gulbrandsen, 2005; 

Young, 2014).  

Outputs. The output dimension puts the analytical focus on whether data partnerships 

have the required activities and resources in place to produce relevant outcomes (Bäckstrand, 

2010). In other words, the focus is on whether the interactions among participants actually 

produce insights that help to address sustainability problems. For instance, a data partnership 

that provides insights to policy makers without following up on whether these insights help to 

shape decisions would not show a very high problem-solving capacity. In order to judge 

whether the outputs of a data partnership strengthen or limit its output legitimacy it is necessary 

to focus on questions such as: Does the partnership have the required resources in place to 

create relevant insights to policy makers? Does the partnership have feedback mechanisms in 

place to adjust its outputs? Are the created insights really used by others (e.g. to change 

policies)? This puts the focus on (a) how data partnerships produce insights and (b) whether 

these insights can be potentially translated into problem-solving outcomes (Mena & Palazzo, 

2012). While a partnership may produce a lot of insights into sustainable development issues, 

these insights may be inefficacious with regard to creating outcomes that benefit people or the 

natural environment. Alternatively, partnerships may produce viable insights, but international 

organizations or national governments may not use these insights (e.g. because they distrust big 

data as a source of expert knowledge; Flyverbom et al., 2017).  

What kind of outputs are created by open and closed data partnerships remains an 

empirical question. However, we can expect that the capacity of both types of partnerships to 

create non-predetermined outputs differs. Open data partnerships allow interested organizations 

to use the provided data to create insights that they deem useful vis-à-vis sustainability issues. 

Additional insights and innovative perspectives on a particular issue can be created, depending 
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on which user group accesses the data. This, in turn, means that the output of such partnerships 

is usually not predetermined. For instance, datasets about Nepal, which were stored on the HDX 

platform, were used by actors as diverse as the Red Cross and MapAction (Wilson, 2015). This 

is also why systems theory deems open systems to have a higher capacity to address problems 

than closed systems (Surowiecki, 2004). Although open partnerships may not necessarily 

provide better outputs than closed initiatives, we can expect that they often have the ability to 

create more heterogenous (and sometimes even unexpected) outputs that emerge from the 

diverse interactions of various participants.  

By contrast, closed data partnerships are usually designed for creating solutions that fit 

more narrowly (and usually predefined) purposes, also because the partnering organizations are 

likely to use the provided data to create knowledge of interest for their own purposes and 

potentially disfavouring other relevant interests. For instance, the Facebook-CIESIN 

partnership produces insights that are fit for the declared purpose; in this case to assist disaster 

response and humanitarian planning to the development of communications infrastructure 

(Tiecke et al., 2017). However, the commercial purpose of the partnership (e.g. long-term 

market creation for Facebook) cannot be neglected, and there is a long-term risk that the 

existence of such commercial interests could undermine the output legitimacy of data 

partnerships, as well as hinder the evolution of long-term sustainable access models for private 

data sources for public good (Klein & Verhulst, 2017). 

Outcomes. A partnership’s output legitimacy also depends on whether the created 

insights actually create outcomes that make a difference for final beneficiaries (Wolf, 2005). 

Outcomes usually relate directly to changes in actors’ behaviour. For instance, the 

Flowminder/WorldPop partnership provided unique information from mobile and satellite data 

analytics in support of the Nepal 2015 earthquake response (Shakya, 2015; Sneed, 2015). This 

data showed peoples’ movement after the disaster and hence enabled relief agencies to provide 
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food, shelter, and medicine at the right places. Focusing on outcomes implies to link a 

partnership’s legitimacy to the question of whether the created insights really help to address 

the problem that is supposed to be addressed and whether final beneficiaries are impacted. A 

partnership may be able to produce insights that allow for creating outcomes, but the outcomes 

may be less relevant when trying to solve the underlying sustainable development problem. 

This situation has been described as one of misfit (Galaz et al., 2008). The problem of misfit 

between a partnership’s outputs and its anticipated outcomes is often seen as impeding higher 

degrees of output legitimacy (e.g. because results are produced with a Western context in mind; 

Vogel, 2010). However, research has also shown that partnerships’ impact on outcomes can 

vary over time. Some initiatives start out as relatively ineffective tools to address problems but 

then gain strength through learning processes (Young, 2014).  

We can expect that open data partnerships are better equipped to overcome the misfit 

problem, particularly in those situations where achieving fit requires a testing of different 

insights. The ability of open partnerships to create non-predetermined insights (see above) 

enables these initiatives to launch experimentation processes that can align output and outcomes 

over time. Such experimentation increases the variety of available results and thus the 

likelihood that at least some of these results make a difference for final beneficiaries (an insight 

known from the open innovation literature; see West et al., 2014). Also, the speed of the 

availability of results increases the likelihood that there is a fit between the produced insights 

and relevant issues. For instance, HDX data was used as a springboard for a collaboration 

between UN OCHA and the World Food Program to visualize household food consumption in 

conflict-torn Yemen (United Nations, 2016). The swift availability of insights allowed the 

partnership to produce outcomes that were matched with the needs of relevant data users. Given 

that one key problem of current development data is that it is only available with significant 
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time lags (e.g., when conducted via household surveys; Deaton, 2000), the swift availability of 

results can enhance outcomes.  

While we can expect that closed data partnerships also deliver development data swiftly 

(because they use similar analytical techniques; Hilbert, 2013), they would overcome the fit 

problem through careful planning of specific data needs and integration of the competences of 

participants. For instance, the Facebook-CIESIN partnership addresses a very specific 

challenge – that of disaggregated population density estimates for developing countries (Tiecke 

et al., 2017) – an area where CIESIN is a highly regarded pioneering organisation and where 

Facebook has the relevant access and competences. In fact, Facebook was modelling 

developing country populations internally for several years as part of their mission to provide 

internet (and Facebook) access to more people globally (Hempel, 2018). 

 

DISCUSSION AND FUTURE RESEARCH 

To discuss the implications of our analysis, we first show in how far our framework differs 

from legitimacy assessments of partnerships for sustainable development that are not tied 

towards big data analyses (hereafter “traditional partnerships”). This discussion explores the 

boundary conditions of our framework and thereby also discusses its generalizability. Based on 

this, we outline a number of future research challenges that arise from our study, both in terms 

of possible topics and appropriate methods.  

 

The Legitimacy of Traditional Cross-Sector Collaborations and Data Partnerships 

What differences and commonalities occur when comparing how to assess the democratic 

legitimacy of data partnerships and more traditional collaborations? While we believe that some 

insights of our analysis can also be applied to a discussion of the legitimacy of traditional (i.e. 

non-data driven) cross-sector partnerships (see e.g., Bäckstrand, 2010; Rueede & Kreutzer, 
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2015), the legitimacy assessment of data partnerships contains a number of unique 

characteristics.  

One key difference relates to the scale of partnerships. Most traditional partnerships 

operate as closed collaborative agreements, either on a bilateral basis or between a few selected 

participants (Selsky & Parker, 2005). The open structure of some data partnerships therefore 

introduces a new, and so far unexplored, characteristic into the debate around cross-sector 

collaboration. Our analysis shows that the scale of data partnerships can strengthen their 

legitimacy (e.g., because it may allow for higher degrees of experimentation and hence the 

production of more viable outputs), while, at the same time, it can also undercut it (e.g., because 

it may impede the creation of participatory structures). Given that partnerships with such an 

open structure start to appear outside of the sustainable development domain – e.g. the idea of 

open government has witnessed the emergence of a number of collaborations (von Lucke & 

Große, 2014) – we believe that our insights are important and timely for an analysis of future 

types of cross-sector collaborations.  

The legitimacy assessment of data partnerships also differs from traditional partnerships 

because we can expect that the level of philanthropic engagement differs. Traditional 

partnerships are often motivated by concerns for creating a “business case” – that is, the 

collaborative agreement should yield a financial return to the participating firms (Hartman & 

Dhanda, 2018). Although it is likely that such motivations also matter with regard to data 

partnerships, at least indirectly when collaboration is thought to enhance a firm’s brand value, 

the role of philanthropic engagement can expected to be higher. The vast majority of firms 

donate their anonymized data and thus engage in “data philanthropy” (Kirckpatrick, 2011). 

Such philanthropic framing can change firms’ basis for argumentation in relevant interactions 

and thus enhance the deliberative quality of data partnerships. Börzel & Risse (2005), for 

instance, observed that traditional partnerships often need to live with “lowest common 
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denominator solutions”, as interests between business and non-business actors are poorly 

aligned. While we should not expect an unproblematic overlap of interests in the context of data 

partnerships, as it would be naïve to assume that large IT firms engage without any strategic 

motives, we can at least expect that philanthropic considerations help to move deliberations 

within such partnerships from a bargaining mode (which is focused on self-interest) to a more 

argumentative mode (which is focused on the common interest) (Risse, 2004).  

One area where we see commonalities in the legitimacy assessment of data partnerships 

and traditional collaborative agreements regards the involvement of international organizations. 

International organizations like the UN or The World Bank have participated in numerous 

cross-sector collaborations, both in the context of data partnerships (e.g., the UNICEF Magic 

Box and Twitter-UN Global Pulse) as well as more traditional partnership arrangements in 

support of sustainable development (Reed & Reed, 2009). Critics have pointed out that such 

mingling of the private sector with international organizations can contribute to a creeping 

commercialization of world politics (Nolan, 2005). Such fears can also be relevant in the 

context of data partnerships that involve international organizations, and it may threaten or even 

undercut their legitimacy in the long run, especially as the power of large IT giants like Twitter 

and Facebook is controversially discussed.  

The legitimacy assessments of data partnerships and more traditional collaborations also 

share another commonality: the difficulty to ensure that multiple actors participate in relevant 

decisions. One key critique brought up against traditional partnerships is their lack of 

inclusiveness – that is, a situation in which legitimacy is negatively affected by the inclusion of 

only selected participants into relevant decisions (Boström, 2006). Our discussion shows that 

we can expect open and closed data partnerships to face similar struggles; open partnerships 

because of the complexities involved in setting up participatory structures among a large set of 

actors and closed partnerships because of their more exclusive nature, lack of formal 
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governance, and limited consideration of actors outside of the small group of participants. We 

can therefore assume that data partnerships will find it hard to close the “participatory gap” 

(Börzel & Risse, 2005, p. 212) that has been observed with regard cross-sector collaborations 

in support of sustainable development.  

 

Future Research on the Legitimacy of Data Partnerships  

We need further insights into the dynamics of this rapidly evolving phenomenon to understand 

better its potentials and limits. While our analysis has unpacked some of the complexities 

surrounding the legitimacy of data partnerships, we see the need for future research in at least 

three key areas.  

First, we need to understand better how the legitimacy of individual organizations impacts 

the entire data partnership. How do legitimacy challenges of individual participants (e.g., firms 

or NGOs) impact a partnership’s legitimacy? Here, the literature on legitimacy spillover effects 

(Kostova & Zaheer, 1999) can provide important insights and a theoretical yardstick. Will 

public organizations still continue partnership agreements with companies that see their 

legitimacy challenged in significant ways (e.g. as Facebook did recently with the Cambridge 

Analytica scandal)? Would the legitimacy of a partnership as a whole be negatively influenced 

by such a situation? Such research needs to differentiate between positive and negative spillover 

effects (Haack et al., 2014), as highly trusted public organizations (e.g., the UN; Barnett & 

Finnemore, 2008) can also enhance the legitimacy of those organizations that it decides to 

partner with. 

Second, while our theoretical framework made a clear distinction between input and 

output legitimacy, there are likely to be interaction effects between both. Surprisingly little 

research has discussed such possible effects (for an exception see Bernauer et al., 2016). For 

instance, it would be relevant to know whether both sources of legitimacy can substitute each 
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other (at least in part). Does high input legitimacy make evaluators more supportive of rather 

poor outcomes? Or, conversely, does knowledge about superior outcomes make evaluators 

more tolerant towards restrictions with regard to a partnership’s input legitimacy? Research can 

also explore whether trade-offs between both sources exist. For example, “all-inclusive” 

partnerships may lead to reduced efficiency and may limit the problem-solving capacity of a 

collaboration (Börzel & Risse, 2005). Although research in this direction can rest on different 

methods, we believe that ethnographic techniques (e.g., via participant observation) are 

particularly suited to gain an in-depth understanding of how both sources of legitimacy interact 

in the context of a specific data partnership. Ethnographic inquires allow for a direct immersion 

in the lifeworld of those who participate in partnerships (Bourdieu, 1990) and thus emphasize 

the contextual embeddedness of those criteria that influence input and output legitimacy. For 

instance, finding out whether and in what ways power was exercised to influence important 

decisions often requires to study peripheral actors as well as everyday experiences (Rasche & 

Chia, 2009).  

Finally, future research needs to put more emphasis on studying the outcomes of data 

partnerships. Current research focuses a lot on the outputs of relevant initiatives (see e.g. 

Ginsberg et al., 2009 and Wesolowski et al., 2015), while it remains unclear what the observed 

effects of the outputs for final beneficiaries are. This type of research is rare as it faces one 

significant methodological challenge: it has to isolate those outcomes that can be attributed to 

the activities of a data partnership from those outcomes that cannot. In other words, there is a 

risk that the observed outcomes may not actually be due to the insights produced by a data 

partnership. This problem is further enhanced because many data partnerships also feed outputs 

into larger multi-stakeholder decision processes that depend on a number of information 

sources and stakeholders, creating the challenge of disaggregating the outcome attributable to 

a specific data source. In order to have robust assessments of the democratic legitimacy of data 
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partnerships, this problem needs to be addressed, as otherwise there is a risk that output 

legitimacy is under- or overvalued.  

We therefore suggest to more strongly consider counterfactual evaluation designs (White, 

2010) when studying outcomes. Such an approach would compare a partnership’s outcomes in 

the light of a (often-hypothetical) no-partnership counterfactual (i.e. a situation in which the 

partnership would have not addressed the issue at all). The main challenge is that 

counterfactuals can seldom be observed directly and hence need to be approximated (e.g. with 

reference to another group of beneficiaries). Approximations should be possible in the context 

of data partnerships, because relevant insights can often be created for particular regions or 

groups of people due to the granularity of the data (Hilbert, 2013). A counterfactual outcome 

analysis would then compare such data with groups or regions that did not face the intervention. 

 

CONCLUSION 

Data partnerships for sustainable development have created much hope among policy-makers, 

businesses, civil society organizations, and not least beneficiaries (United Nations, 2011). 

While many partnerships are still in emergence and we should not rush into conclusions at this 

stage, our analysis make two key contributions: (a) it introduces and justifies the distinction 

between open and closed data partnerships for sustainable development and (b) it develops a 

theoretical framework for analysing their input and output legitimacy. While our analysis makes 

no empirical claims regarding the legitimacy of relevant initiatives, it emphasizes which 

particular characteristics of open and closed partnerships can be expected to influence an 

analysis of their input and output legitimacy. We view this debate as necessary and timely. In 

2013, the UN-based High-Level Panel on the SDGs called for the creation of global 

partnerships on development data and thereby put further focus on these new collaborative 

agreements. At the same time, the Panel also recognized that without increased legitimacy and 
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accountability, data partnerships will not be able to change the way international organizations, 

governments, and NGOs make use of development data (United Nations, 2013).  
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Table 1: Open and Closed Data Partnerships for Sustainable Development  
 

 
  Description  Membership (Who 

participates in the data 
partnership?) 

Sourcing of Data (Who 
can access data that the 
partnership rests on?) 

Sharing of Insights (Who 
gets access to the 
produced insights?) 

Open Data 
Partnerships for 

Sustainable 
Development 

UN OCHA HDX Foundation: 2014 
Scope: Global  
Focus area: diverse 
humanitarian data   

Open application, liberal 
signup criteria (open) 
 

All members have 
unrestricted access to data 
sources (open) 

Unrestricted sharing of 
insights (open) 

GODAN (Global Open 
Data on Agriculture 
and Nutrition) 

Foundation: 2013. 
Scope: Global. 
Focus area: agriculture and 
nutritional data  

All interested  
organisations can join 
(open) 
 

All members have 
unrestricted access to data 
sources (open) 

Unrestricted sharing of 
insights (open) 

Humanitarian 
OpenStreetMaps 
(HOTOSM) 
 

Foundation: 2010  
Scope: Global 
Focus area: map data in the 
context of crises responses 

Open for individuals and 
partner organisations 
(open)  

All members have 
unrestricted access to data 
sources (open) 

Unrestricted sharing of 
insights (open) 

Flowminder/WorldPop Foundation: 2010 
Scope: Global 
Focus area: diverse 
humanitarian data  

Uni. Southampton and  
Flowminder Foundation, 
selected other partners 
(closed) 

Open data (WorldPop), 
proprietary telco data, 
proprietary UN agency 
data (open) 

Unrestricted sharing of 
insights through 
WorldPop (open) 

Closed Data 
Partnerships for 

Sustainable 
Development 

Twitter-UN Global 
Pulse 

Foundation: 2016 
Scope: Global 
Focus area: diverse 
humanitarian data   

Bilateral agreement 
between UN and Twitter 
(closed) 
 

Sourced from Twitter 
only (closed) 

To UN agencies and other 
humanitarian agencies 
(closed) 

GSMA Big Data for 
Social Good 

Foundation: Launched in 2017. 
Scope: Global 
Focus area: mobile data for 
disaster responses  

Telecommunication firms 
and selected UN agencies 
only (closed) 
 

Telecommunication data 
from participants only 
(closed) 

To selected UN agencies 
and other humanitarian 
agencies (closed) 

UNICEF Magic Box  
 

Foundation: 2016 
Scope: Global 
Focus area: diverse 
humanitarian data   

UNICEF & selected data 
partners; Facebook, 
Telefonica, IATA 
(closed)  

Data partners provide data 
to be analysed in Magic 
Box (closed); some public 
sources are used 

To community of UN 
agencies (incl. their 
stakeholders) through 
UNICEF (closed) 

Facebook-CIESIN 
High Resolution 
Settlement Layer 
(HRSL) 

Foundation: 2016.  
Scope: Global 
Focus area: high resolution 
population estimates  

Facebook, selected UN 
agencies, ICRC & 
Columbia University 
(closed) 

Sourced from Facebook 
only (closed) 

To selected UN agencies 
(incl. their stakeholders), 
ICRC & Columbia 
University (closed) 
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Table 2 Input and Output Legitimacy of Data Partnerships 
 
Dimension Criterion Definition Key Questions  Expected Influence of Open/Closed Nature of Data 

Partnership on Criterion 
Input 
Legitimacy  

Participation  Data partnerships ability 
to include stakeholders 
affected by the 
outcomes of the 
partnership into relevant 
structures and decision-
making processes 

What are the patterns of exclusion 
and inclusion when partnerships 
make decisions? Are there actors that 
dominate the partnership? Are there 
barriers to participation? 

• Open data partnerships should find it more difficult to couple 
participants and decision-makers because of their underlying 
complexity 

• Representatives can ensure certain level of inclusiveness in open data 
partnerships, but suffer from heterogenous set of actors that change 
frequently  

• Closed data partnerships can be expected to face limits in terms of their 
ability to involve a diverse set of representative actors  

Transparency  Data partnerships ability 
to make their behaviour 
knowable to interested 
parties, both in the sense 
of answering inquires 
and also with regard to 
the general disclosure of 
relevant information  

What are the levels of transparency 
that the partnership agrees to? What 
accountability structures are created? 
What information is accessible and 
by whom is it accessible? 

• Open data partnerships do not necessarily need to offer high levels of 
transparency with regard to data sourcing and data analysis  

• Transparency may be blurred by unclarity about data sources (e.g., is 
the data reposted) and the combination of different datasets within 
analyses 

• Both, open and closed data partnerships can suffer from non-transparent 
decision-making processes (regardless of whether the underlying data 
sourcing and analysis is transparent)  

Deliberative 
Quality 

Data partnerships ability 
to facilitate a fair 
process of 
argumentation in which 
different stakeholders 
have a valid voice in 
relevant decision-
making processes  

Do participating stakeholders have a 
valid voice in decision-making 
processes? To what extend does a 
partnership live up to the ideal of an 
unconstrained dialogue? Are 
participating actors able to achieve a 
consensual solution to the problem 
they are addressing? 

• Power differences between actors can be expected to be most visible in 
closed data partnerships where a strong dependence on single actors 
exists  

• Closed data partnerships may therefore replace “argumentative power” 
with “bargaining power”  

• Small-scale deliberations in closed data partnerships can be expected to 
find it easier to create shared knowledge structures (because information 
cues can be exchanged easier)  

Output 
Legitimacy  

Outputs   Data partnerships ability 
to produce outputs that 
are perceived as 
relevant by policy 
makers  

Does the partnership have the 
required resources in place to create 
relevant insights to policy makers? 
Does the partnership have feedback 
mechanisms in place to adjust its 
outputs? Are the created insights 
really used by others (e.g., to change 
policies)? 

• The output of open data partnerships is less predetermined and hence 
can be more heterogenous and even unexpected. This can potentially 
improve the a partnership’s problem-solving capacity (although outputs 
themselves may not necessarily be better).  

• Closed data partnerships usually provide insights on pre-defined and 
more narrow purposes. This can potentially limit the problem-solving 
capacity of a partnership (although outputs may be of high quality).  

 
Outcomes  Data partnerships ability 

to create outcomes that 
help to address the issue 
that the partnership was 
set up to alleviate  

Does the partnership manage to 
produce outcomes that address the 
issue which the partnership aims to 
address?  

• Problem of misfit – i.e. a partnership’s outputs do not produce the 
desired outcomes – is overcome by open data partnerships through 
experimentation that can align outputs and outcomes  

• Closed data partnerships are likely to address misfit through more 
careful planning of data needs and competences  
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