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You can't say A is made of B
or vice versa.
All mass is interaction.

Richard Feynman

For my parents.
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Thesis overview and contributions 

Chapter 1 introduces post-transcriptional gene regulation and the composition, formation, dynamics 

and assumed functionality of stress-induced RNA-protein granules. Current research and insights are 

summarized and integrated into a testable working model. The scientific need for the application of 

single molecule RNA imaging in living cells to understand RNA-protein granule biology is highlighted.  

Chapter 2 describes how cis-acting elements direct mRNA localization and how mRNA behave relative 

to stress-induced RNA-protein granules. Stress granules do not seem to be required for mRNA 

localization into processing bodies, although mRNA movement between the two is possible. The trans-

acting protein factor LARP1 is identified as regulator of mRNA presence in stress-induced mRNPs and 

the effects of mRNA localization on translation and decay are tested. This chapter is a manuscript in 

preparation, deposited online on the bioRxiv pre-print server (doi: https://doi.org/10.1101/332502). I 

designed experiments for Fig. 1-6 and performed experiments and analyzed data for Fig. 1-4 and 6. I 

designed, performed experiments and analyzed data for all supplementary figures. 

Chapter 3 summarizes findings of a screen utilizing a small molecule library with known mode-of-

actions in order to identify molecules, which are able to negatively influence stress granule formation 

or stability. Several molecules were identified which do not affect eIF2α-phosphorylation, processing 

body integrity or translation and uncouple stress granule presence from translation regulation. The 

identified molecules negatively affect cell viability, presumably through apoptosis upregulation. Being 

able to modulate stress granule presence might be interesting in a number of disease contexts. This 

chapter is a manuscript in preparation. I designed experiments for Fig. 2-9 and performed experiments 

for Fig. 2 and 4-9. I analyzed data for Fig. 2 and 4-8. 

Chapter 4 focuses on the results obtained with an RNA-based biosensor to study the localization and 

the first round of translation of a single mRNA molecule inside of living cells (TRICK reporter) in different 

biological contexts. Relevant for this thesis is the finding that a subclass of mRNA molecules specifically 

localizes to processing bodies during the cellular stress response and remains translationally repressed 

there, even if translation in the surrounding cytoplasm is re-initiated. This work serves as an example for 

mRNP granule-modulated sub-cellular translation regulation. This chapter was published as an original 

research article with me as shared first author (Halstead et al., 2015). I performed experiments and 

analyzed data for Fig. 2, and participated in writing the paper.  
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Chapter 5 describes the design of a TRICK reporter. A protocol is provided to generate cell lines, which 

fulfill all requirements to perform RNA imaging. In addition, technical requirements and data analysis 

approaches are discussed. This chapter was published as methodological article with me as shared first 

author (Halstead et al., 2016).  I co-wrote the article with a focus on the microscopy and data analysis 

sections. 

Chapter 6 serves as a summary of the work described in this thesis and provides a refined working 

model, which describes mRNA localization during cellular stress. In addition, remaining open questions 

are discussed and potential experimental approaches to address these questions are presented.   
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Summary for non-biologists 

Every living organism consists of cells. All cells contain molecules that encode the building 

blocks of the cell. These molecules are called DNA and contain many genes. To retrieve this genetic 

information, a DNA molecules is converted into RNA molecules and RNA molecules are then 

TRANSLATED INTO PROTEINS. Proteins are the workhorses of the cell and perform most functions. 

However, one gene can give rise to many identical RNA molecules and even more proteins. This process 

is called GENE EXPRESSION. It has to be tightly controlled, because it is important for a cell to always 

have the right amount of proteins. Not too many and not too little. GENE EXPRESSION REGULATION 

becomes especially important when the environment of a cell changes, for example through heat, 

starvation, lack of oxygen, certain chemicals and many more things. Such a change of the environment 

is called CELLULAR STRESS. Cells need to adapt their GENE REGULATION during stress to survive. 

Sometimes, when the cell is very badly stressed, it can be better for the organism that some cells die so 

that other cells are protected. For example, when doctors treat a tumor using chemotherapy, this causes 

a lot stress for the tumor cells with the aim that they die. To understand how cells change their GENE 

EXPRESSION during CELLULAR STRESS is therefore a very important question. 

During the last few years I studied GENE EXPRESSION during CELLULAR STRESS. However, this 

is a very big field of science. I concentrated mainly on the question how RNA molecules are translated 

into proteins during CELLULAR STRESS. When cells encounter stress they often do two things. First, they 

stop to produce proteins from RNA molecules. Second, the form little clumps inside of themselves that 

contain RNA molecules and proteins. These clumps are called STRESS GRANULES and PROCESSING 

BODIES (picture below). Researchers do not understand very well how STRESS GRANULES and 

PROCESSING BODIES are connected to blocking translation of RNA into protein during periods of cell 

stress. For example, it is not clear where in a cell RNA molecules are blocked exactly and how this is 

regulated. Is RNA maybe blocked inside of STRESS GRANULES and PROCESSING BODIES during stress? 

Or do STRESS GRANULES and PROCESSING BODIES protect RNA so that it can be reused when the stress 

is over? 
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RNA molecules are very small. To study where RNA molecules are in a cell, how they move, and 

how they make proteins is not easy. You need very good microscopes and techniques to attach very 

bright other molecules to the RNA so that you can see them. You also need computer programs that 

help you to analyze if all the RNA molecules are inside or outside of STRESS GRANULES and PROCESSING 

BODIES. Together with other researchers, I used all of these techniques. I learned that when a cell is 

stressed some RNA molecules go into STRESS GRANULES and PROCESSING BODIES, but the translation 

of RNA into protein is off everywhere in the cell. It does not matter where the RNA is exactly. It gets more 

interesting when the cell recovers from the stress. Under such conditions, RNAs that are bound to 

PROCESSING BODIES cannot translate, but all RNAs outside can be translated into protein very well. I 

also observed that RNAs are still stable in the cell and that the cell does not get rid of them because they 

might be damaged.  

In summary, my work improved the knowledge about what RNA molecules do during cell stress 

and recovery from cell stress. Interestingly, I observed that not all RNA molecules are always inside of 

STRESS GRANULES and PROCESSING BODIES (picture). Does that mean that STRESS GRANULES and 

PROCESSING BODIES also have another role for some other processes that we do not know about? I did 

all of my experiments in human cancer cells, but STRESS GRANULES and PROCESSING BODIES have also 

been observed in nerve cells of patients with serious neurological diseases. What exactly do they do 

there? In science, answering one questions always leads to many more.  
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Zusammenfassung für Nicht-Biologen 

Jeder lebende Organismus besteht aus Zellen. Alle Zellen enthalten Moleküle, welche die 

Baupläne der Zelle enthalten. Diese Moleküle heißen DNA und enthalten viele Gene. Um diese 

genetischen Information zu erhalten, werden DNA-Moleküle in RNA-Moleküle umgewandelt. RNA-

Moleküle werden dann in Proteinen übersetzt. Proteine sind die Arbeiter der Zelle und erfüllen viele 

Aufgaben. Ein Gen kann jedoch viele identische RNA-Moleküle und noch mehr Proteine erzeugen. 

Dieser Prozess wird GENEXPRESSION genannt. Er muss streng kontrolliert werden, weil es für eine Zelle 

wichtig ist, immer die richtige Menge an Proteinen zu haben. Nicht zu viele und nicht zu wenige. Die 

Regulation der GENEXPRESSION ist besonders wichtig, wenn sich die Umgebung einer Zelle ändert, 

zum Beispiel durch Hitze, zu wenige Nährstoffe, Sauerstoffmangel, bestimmte Chemikalien und vieles 

mehr. Eine solche Veränderung der Umwelt wird ZELLSTRESS genannt. Zellen müssen ihre 

GENEXPRESSION während des Stresses anpassen, um zu überleben. Manchmal, wenn eine Zelle sehr 

stark gestresst ist, kann es für den Organismus besser sein, dass einige Zellen sterben, sodass andere 

Zellen geschützt werden. Zum Beispiel, wenn Ärzte einen Tumor mit Chemotherapie behandeln, 

verursacht dies natürlich eine große Belastung für die Tumorzellen mit dem Ziel, dass sie absterben. Zu 

verstehen, wie Zellen ihre GENEXPRESSION während ZELLSTRESS verändern, ist daher eine sehr 

wichtige Frage. 

In den letzten Jahren habe ich die GENEXPRESSION während ZELLSTRESS untersucht. Dies ist 

jedoch ein sehr großes Feld der Wissenschaft. Ich konzentrierte mich daher hauptsächlich auf die Frage, 

wie RNA-Moleküle während ZELLSTRESS in Proteine übersetzt werden. Gestresste Zellen tun oft zwei 

Dinge: Zuerst hören sie auf, Proteine aus RNA-Molekülen zu produzieren. Zweitens klumpen RNA-

Moleküle und Proteine zusammen. Diese Klumpen heißen STRESS GRANULES und PROCESSING BODIES 

(siehe Bild unten). Wir verstehen im Moment nicht gut, wie STRESS GRANULES und PROCESSING BODIES 

mit der Blockierung der Übersetzung von RNA in Protein während Zellstress verbunden sind. Zum 

Beispiel ist nicht klar, wo in einer Zelle RNA-Moleküle genau blockiert und wie dies reguliert wird. Kann 

RNA direkt innerhalb von STRESS GRANULES und PROCESSING BODIES blockiert sein? Oder schützen 

STRESS GRANULES und PROCESSING BODIES die RNA, damit sie nach dem Stress wieder verwendet 

werden kann? 
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RNA-Moleküle sind sehr klein. Es ist nicht einfach zu untersuchen, wo sich RNA-Moleküle in einer 

Zelle befinden, wie sie sich bewegen und wie sie Proteine bilden. Man benötigt sehr gute Mikroskope 

und Techniken, um sehr helle andere Moleküle an die RNA zu binden, sodass man die RNA sehen kann. 

Man benötigt außerdem Computerprogramme, mit denen man analysieren kann, ob sich alle RNA-

Moleküle innerhalb oder außerhalb von STRESS GRANULES und PROCESSING BODIES befinden. 

Zusammen mit anderen Forschern habe ich all diese Techniken genutzt. Ich habe herausgefunden, dass 

in einer gestressten Zelle, einige RNA Moleküle in STRESS GRANULES und PROCESSING BODIES 

wandern, aber die Übersetzung von RNA in Protein überall in der Zelle blockiert ist. Dafür spielt es keine 

Rolle, wo genau die RNA ist. Es wird interessanter, wenn sich die Zelle vom Stress erholt. Unter solchen 

Bedingungen können RNAs, die in PROCESSING BODIES  gebunden sind, nicht in Protein übersetzt 

werden, aber alle RNAs außerhalb können das sehr wohl. Ich habe auch beobachtet, dass RNAs in der 

Zelle nach dem Stress immer noch stabil sind und, dass die Zelle sie nicht los werden will, weil sie 

anscheinend nicht beschädigt sind. 

Zusammengefasst, verbesserte meine Arbeit das Wissen darüber, was RNA-Moleküle während 

des Zellstresses und der Erholung von Zellstress genau machen. Interessanterweise beobachtete ich, 

dass nicht alle RNA-Moleküle sich immer in STRESS GRANULES und PROCESSING BODIES befinden 

(siehe Bild oben). Bedeutet dies nun, dass STRESS GRANULES und PROCESSING BODIES auch eine 

Bedeutung für andere Prozesse haben, von denen wir noch nichts wissen? Ich habe alle meine 

Experimente in menschlichen Krebszellen durchgeführt, aber STRESS GRANULES und PROCESSING 

BODIES wurden auch in Nervenzellen von Patienten mit schweren neurologischen Erkrankungen 

beobachtet. Was machen sie da genau? In der Wissenschaft führt die Beantwortung einer Frage immer 

zu vielen neuen Fragen. 
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Chapter 1: mRNA localization & expression regulation during 

the cellular stress response 
 

 

This chapter introduces post-transcriptional gene regulation with a focus on translation in 

absence and presence of stress. Further, the composition, formation, dynamics and assumed 

functionality of stress-induced mRNP granules are described. Current research and models explaining 

how cells react to stress are summarized. This chapter concludes with a working model addressing 

unresolved questions concerning mRNA dynamics and regulation during the stress response. The 

scientific need for the application of single molecule RNA imaging in living cells to understand mRNP 

granule biology is highlighted. 
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1.1 Gene expression regulation on the post-transcriptional level shapes 

the proteome 
 

The expression of a gene from its DNA template into the final non-coding RNA or protein 

product is highly variable. Differentiated cell types are defined by their gene expression profiles, while 

at the same time gene expression can change drastically during certain biological processes for example 

stem cell differentiation, in response to environmental stimuli, such as a viral infection, or disease states, 

for example in tumor cells. The compartmentalization of eukaryotic cells into a nucleus and a cytoplasm 

allows gene expression to be regulated on several levels since certain proteins and their catalytic 

processes are localized to specific locations within the cell. As a result, a high degree of gene expression 

specificity and plasticity occurring at the same time can be achieved. 

In the nucleus gene expression regulation is achieved on the (pre-)transcriptional level. DNA 

packaging and modifications determine the accessibility of a gene to transcription factors and 

enhancers, while their interplay in combination with other proteins such as RNA polymerase II define 

the kinetics of transcription initiation and transcript elongation. In addition, co-transcriptional splicing 

and alternative splicing of the pre-mRNA occurs in the nucleus and gives rise to product variability 

originating from a single gene. 

Without doubt, gene expression regulation on the transcriptional level is essential for life and is 

highly regulated. Despite this, there is evidence that the correlation between mRNA and protein 

abundance is often poor. These observations imply that post-transcriptional gene expression regulation 

is an important mechanism to control biological processes and to specify cell identities. Early work by 

Aebersold and colleagues concentrated on the correlation between protein and mRNA abundance in 

yeast by comparing mass-spectrometry data to the yeast transcriptome. In total, the authors compared 

the expression levels of 106 genes and found Pearson correlations between 0.935 and 0.356, depending 

on whether the mRNA transcripts were expressed at high or low copy numbers, respectively (Gygi et al., 

1999). 

Schwanhäusser et al. measured absolute mRNA and protein abundance and turnover by parallel 

metabolic pulse labelling for more than 5,000 genes in mouse fibroblasts. They found that protein and 

mRNA half-lives are not correlated (R2 = 0.02) while mRNA copies and protein copies only correlate 

poorly (R2 = 0.41). This especially seemed to be the case for mRNAs expressed with less than 100 copies 
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per cell. Using a modelling approach they conclude that protein levels are best explained by translation 

rates, followed by transcription rates, mRNA degradation rates and protein degradation rates 

(Schwanhäusser et al., 2011).  

A study by Grün et al. quantifying mRNA and protein levels during the development of two 

evolutionary distant nematode species identified a high degree of correlation variability between 

transcript and protein abundances.  Pearson correlation was highest during the embryonic-larval stage 

transition (0.41). Very weak correlation was observed during all subsequent larval transitions (0.03-0.11) 

and subsequently increased to a modest correlation of 0.3 during the late L4/young adult stage. The 

authors conclude that, except for the embryonic stage, strong positive and negative transcript 

expression changes are dampened by posttranscriptional regulation (Grün et al., 2014). Comparing 

mRNA abundance to ribosome profiling data during the L1 larval stage Stadler & Fire narrowed the 

posttranscriptional regulation mechanism responsible for the poor correlations down to mRNA 

translation (Stadler and Fire, 2013) confirming both the conclusions of the above described studies of 

Grün et al. and Schwanhäusser et al. 

Taken together, the evidence obtained by the studies described above and several others, 

points into the direction that mRNAs itself are highly regulated. RNA export, transport and localization, 

mRNA stability and decay, and translation regulation all contribute to post-transcriptional gene 

expression (Fig. 1). All of these processes add a significant regulative layer on top of transcriptional 

control. Except for mRNA export, most post-transcriptional gene expression regulation occurs in the 

cytoplasmic compartment, highlighting the importance of compartmentalization for fundamental 

biological processes (Fig. 1). A good example for the high degree of interconnection between the 

different steps of post-transcriptional regulation is the Saccharomyces cerevisiae ASH1 mRNA. While still 

in the nucleus, the locasome complex forms on the ASH1 transcript. The proteins Puf6 and She2 bind 

already co-transcriptional to ASH1 (Gu et al., 2004; Shahbabian et al., 2014) while nuclear pore protein 

Nup60 binds during export (Powrie et al., 2011). In the cytoplasm, these and other locasome proteins 

are then required to bring the ASH1 mRNA to the bud tip via directed transport (see section 1.1.2) while 

keeping it translationally silent. In the newly forming daughter cell, ASH1 translates and plays an 

important role during the inhibition of mating type switching. Like all mRNAs, ASH1 is eventually 

degraded.  
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Fig. 1: Gene expression is regulated through the compartmentalization of the RNA lifecycle. Transcribed genes are 

immediately bound by RNA-binding proteins (RBPs) depending on the presence of cis-acting elements and spliced. The nuclear 

RNA interactome can be remodeled and RNAs undergo processing including the addition of a cap to 5′-end and a poly(A) tail 

to the 3′-end. Neither translation nor decay occurs in the nucleus. The nuclear RNA interactome determines how efficiently 

RNAs are exported. In the cytoplasm the RNA interactome is remodeled again and determines the rate at which RNAs are 

degraded, transported, localized and translated. To what extend transport and localization are coupled with translation and 

decay is an important question in cell and RNA biology. This PhD thesis addresses localization effects on RNA regulation. 

RNA export, transport and localization, as well as translation regulation are introduced in the 

first part of this introductory chapter. mRNA decay along with transcription and nuclear export, is the 

third determinant of transcript abundance in the cytoplasm (Fig. 1), but will not be specifically 

introduced here. Instead, mRNA stability is the focus of section 1.4.2 dealing with the debated role of 

mRNP complexes for mRNA decay. Nonetheless, mRNA stability is crucial for post-transcriptional gene 
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expression. Increasing evidence points into the direction that translation and decay are coupled 

processes (Pelechano et al., 2015). Possible mechanisms involve codon bias or a direct binding of decay 

factors to the ribosome. Codon bias can lead to decreased elongation rates and slowly moving 

ribosomes might be more prone to the binding of proteins such as yeast Dhh1 which can trigger mRNA 

decay (Hanson and Coller, 2018). In addition, the cryo-EM based observation of a direct interaction 

between the Ski-complex and the elongation competent 80S ribosome provides a mechanistic 

explanation for the coupling of translation and mRNA decay. In particular, the Conti laboratory observed 

that mRNA 3′-ends exiting the 40S ribosomal subunit can directly enter the helicase channel of Ski2 

(Schmidt et al., 2016). The Ski complex is a known exosome binding partner. Although not formally 

demonstrated, their interaction on the 80S ribosome could be a mechanistic explanation for the 

observed 3'-5' mRNA degradation during translation. At present, it is not clear how these observations 

fit into the picture of anti-correlated translation and decay rates. 

All post-transcriptional processes play important roles during the life of an mRNA molecule and 

offer regulative potential during changing conditions, such as biological, chemical, or physical stresses 

that a cell may face. In this PhD thesis, especially research describing mRNA localization and translation 

regulation during the eukaryotic stress response is described.  

 

1.1.1 mRNA export 

 

An mRNA is bound by a plethora of protein factors representing the current stage of its life. 

Increasing evidence indicates that the formation of mRNP complexes immediately after transcription 

already shapes the fate of an mRNA with regard to its export efficiency, localization, and eventually 

translation and degradation (Wickramasinghe and Laskey, 2015).  

The mRNA interactome forms for the first time when a nascent transcript is spliced and the exon 

junction complex (EJC) is deposited upstream of the splice site. The EJC serves as scaffold for serine and 

arginine-rich (SR) proteins and the transcription export complex (TREX) together forming a mature 

mRNP complex (Singh et al., 2012). At the same time poly(A) binding proteins (PABPs) can access the 

poly(A)-tail, which especially seems to regulate export during the stress response (details see below). 

Next, an export-competent mRNP is formed by the binding of nuclear export factor 1 (NXF1) and its 

cofactor p15. The transport of the export-competent mRNP from the site of transcription to the nuclear 
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periphery is the rate-limiting step of mRNA export and requires several minutes in metazoan cells. Once 

the NXF1-p15 dimer of the mRNP complex can directly interact with nuclear pore complex (NPC) 

components the actual mRNA export occurs (Bachi et al., 2000; Fribourg et al., 2001; Grant et al., 2002). 

Interestingly, this step is not rate limiting and occurs in less than 500ms. Single molecule mRNA imaging 

was crucial to obtain this knowledge (Grünwald and Singer, 2010; Mor et al., 2010; Siebrasse et al., 2012). 

Next to this canonical export mechanism, several selective mRNA export factors exist which are required 

for the export of subsets of mRNAs involved in several biological processes making mRNA export an 

important post-transcriptional gene expression regulatory step. Selective export to control gene 

expression involves transcripts such as RAD51 or CHEK1 playing a role in genome duplication and repair 

and is regulated through the interaction of the ALY or IPMK proteins with TREX (Wickramasinghe et al., 

2013). Interaction of THOC2 or THOC5 with TREX influences the export rates of NANOG, SOX2, and KLF4 

mRNAs and therefore plays an important role for the maintenance of pluripotency (Wang et al., 2013). 

Other biological processes influenced by selective mRNA export are translation (RPS23 mRNA), cell 

proliferation and survival (cyclin D1 and Myc mRNAs), and the immune response (MHCI, MHCII, CDK6 

mRNAs) (Wickramasinghe and Laskey, 2015).  

Next to regulation the biological processes described above, mRNA export is also an important 

post-transcriptional regulation step during the cell’s response to stress. Early work describes this 

mechanism in Saccharomyces cerevisiae during heat shock or membrane insult by ethanol (Saavedra et 

al., 1996). By in situ hybridization the authors show that most poly(A)+ mRNAs are retained within the 

nucleus,  while the heat-inducible mRNAs SSA1 and SSA4 can still be exported. Expressing other mRNAs 

from the heat inducible SSA4 promoter was not sufficient for export, while cloning sequences from the 

5' and 3' parts of SSA4 was sufficient to generate export competent mRNAs during heat shock. While it 

is still under debate how stress-responsive transcripts are specifically exported during the stress 

response, it is becoming clearer how the remaining transcripts are retained in the nucleus during stress. 

The nucleocytoplasmic shuttling protein poly(A)-binding protein 1 (PABP1) is known to accumulate in 

the nucleus during heat shock, UV irradiation or viral infection (Burgess et al., 2011; Harb et al., 2008; Ma 

et al., 2009) and seems to be responsible for mRNA retention (Kumar and Glaunsinger, 2010). Recent 

work in human cell lines shed more light on the transcript retention mechanism during nutrient 

starvation (Shan et al., 2017). The authors describe a nutrient sensing cascade involving the kinase AMPK 

activating SIRT1 which then deacetylates the nucleus-enriched PABP1 leading to its dissociation from 

poly(A)-tails. As a result, the PABP1-depleted transcripts seem to be export incompetent during stress 

which in turn reduces translation rates and conserves energy. 



18 
 

Under non-stress conditions and after the successful export from the nucleus, mRNPs are 

remodeled on the cytoplasmic face of the NPC by the ATP-dependent RNA helicase DBP5 and its 

cofactors. Rapid remodeling prevents re-entry into the nucleus and allows the mRNA to bind factors 

allowing immediate translation or transport.  

 

1.1.2 mRNA localization & transport 

 

The advent of subcellular mRNA imaging technologies through in situ hybridization in the 1980s 

(Akam, 1983) and in the late 1990s through live cell imaging (Bertrand et al., 1998) made it possible to 

study mRNA localization beyond nuclear/cytoplasmic fractionation experiments. Biological processes 

in which mRNA localization has been found to play a crucial role include axonal and dendrite plasticity, 

embryonic patterning, cell polarization and asymmetric division (Buxbaum et al., 2015; Jung et al., 2012; 

Medioni et al., 2012). Indications that these and probably more biological processes are connected to 

mRNA localization also in a single organism comes from a study by Lécuyer et al. in Drosophila embryos 

(Lécuyer et al., 2007). Of 2314 transcripts analyzed by in situ hybridization, more than 70% revealed a 

distinct localization pattern, making it highly likely that at least in Drosophila mRNA localization plays a 

role in almost every biological process.   

Linked to the mRNA localization is the question how mRNAs can locally concentrate in a non-random 

manner to fulfill tasks such as for example local translation. Next to localized protection from 

degradation and diffusion-coupled local entrapment, the directed transport along a polarized 

cytoskeleton is an important mechanism to localize transcripts (Medioni et al., 2012). One of the longest 

cells in the human body is the sciatic nerve. It spans about one meter from the posterior end of the spine 

to the big toe. Equation (1) can be used to approximately calculate the diffusing time t of a molecule 

over a distance x with diffusion coefficient D.  

Equation (1)      𝑡𝑡 ≈  𝑥𝑥
2

2𝐷𝐷
 

Assuming for simplicity reasons that diffusion occurs only in one dimension, the neuron’s 

nucleus and the most distant synapse in the toe are 1 meter apart, and that the mRNA molecule is 

diffusing with fast 1 µm2/s it would need almost 16,000 years to reach the synapse. Transporting mRNA 

as cargo in a directed manner is therefore highly favorable over diffusion as soon as cells have a 

polarized structure and distances of 100µm or more are present. Further, the specific localization of 
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mRNAs rather than proteins has several advantages (Medioni et al., 2012): First, transport costs are 

reduced since one mRNA can be the template for several proteins. Second, mRNA localization prevents 

protein activity at inappropriate sites before the destination is reached. Third, local translation aids the 

formation of high local protein concentrations, which can lead to the formation of macromolecular 

complexes or phase separations. Fourth, mRNA localization contributes to gene expression in a spatio-

temporal manner. For example, different splice variants of the same gene can be localized differently or 

localized translation can be activated through biochemical signals such as during fertilization, the 

release of guiding cues or neurotransmitters (Besse and Ephrussi, 2008). 

Most molecular details of the mRNA transport process stem from work on Saccharomyces 

cerevisiae ASH1 mRNA. During cell division ASH1 mRNA localizes to the bud tip of the daughter cell 

(Bertrand et al., 1998) where its protein product represses the transcription of the homothallic switching 

(HO) endonuclease. Consequently, mating type switching is inhibited in the daughter cell, but not the 

mother cell due to the lack of ASH1 mRNAs (Long et al., 1997; Takizawa et al., 1997). Both cis- and trans-

acting factors have been identified. The cis-acting elements within the ASH1 mRNA are also known as 

“zipcodes” and are all sufficient to specifically localize reporter mRNAs. One zipcode is present in the 

3'UTR while three more have been identified in the coding region (Chartrand et al., 1999). Except for a 

CGA-base triplet, surprisingly little sequence consensus can be found between the four zipcodes (Olivier 

et al., 2005). Despite this, secondary structure predictions of all four zip-code elements indicate the 

presence of stem loops (Chartrand et al., 1999; Niedner et al., 2014). The two proteins She2 and She3 act 

in trans to control ASH1 localization. She2p is able to bind each zipcode and requires She3p as an 

adaptor to bind to the myosin motor protein Myo4p (Böhl et al., 2000), which then transports the ASH1 

cargo along the actin skeleton to its destination in the bud tip.  

Another well-studied case of mRNA transport is β-actin transport into cellular filopodia. β-actin 

contains a 54-nt cis-acting element zipcode in the 3'UTR, immediately adjacent to the stop codon. This 

RNA element is both necessary and sufficient for β-actin transport (Kislauskis et al., 1994), when bound 

to the trans-acting zipcode binding protein 1 (ZBP1). ZBP1 contains six RNA-binding domains (two RNA 

recognition motifs (RRMs) and four hnRNP K-homology (KH) domains) (Nielsen et al., 1999), of which the 

KH3 and KH4 didomain binds directly to the spacer-dependent recognition elements within the zipcode 

(Chao et al., 2010; Nicastro et al., 2017). ZBP1 associates with β-actin in the perinuclear space and 

orchestrates mRNA movement to the leading cell edge. This directed transport process is likely achieved 

by the microtubule motor KIF11 in a ZBP1-dependent manner (Song et al., 2015). Importantly, the β-

actin mRNP is kept translationally silent during transport. Only at its destination, Src kinase 
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phosphorylates the Tyr396 residue of ZBP1 causing its release from β-actin and allowing translation in 

fibroblasts (Hüttelmaier et al., 2005) and by a presumably similar mechanism in hippocampal neurons 

(Wu et al., 2015). The resulting local increase in β-actin concentration causes actin polymerization and 

leads to cellular remodeling and migration, while a loss of ZBP1 can lead to impaired filopodia 

formation, an aberrant cytoplasm, and weakened cell adhesion (Vikesaa et al., 2006). 

The extensive molecular details of the cis- and trans-acting factors controlling ASH1 and β-actin 

biology, have made both genes bonna fide examples for mRNA transport. Despite this, the transport of 

other mRNAs might function differently. Especially, a lack of known cis-acting localization elements 

impairs studying mRNA transport. Common sequence elements even of mRNAs localizing to the same 

cellular destination are difficult to identify. This might be due to the challenges to accurately predict 

RNA structures or the possibility that mRNAs contain several cis-acting elements which are redundant 

or can function differently in combination with so far unknown trans-acting adaptor proteins (Medioni 

et al., 2012). The concept of sequence-based zipcodes which universally “address” different mRNAs to 

the same cellular location might therefore be an oversimplification. 

Distinct mRNA localization patterns have also been observed during the response to stress. This 

often correlates with altered gene expression and has been observed in many different eukaryotic 

organisms ranging from yeast during nutrient deprivation to human tumors during chemotherapeutic 

treatment and protein aggregation-related neurological diseases (see section 1.5).  Since the regulation 

and biological function of mRNA localization during the stress response is still not well understood and 

both constitute the main research questions of this PhD thesis, these aspects of mRNA biology are 

discussed in more detail in section 1.4.   
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1.2 mRNA translation regulation  
 

1.2.1 Canonical mRNA translation initiation 

 

The translation process is the most energy demanding cellular process. Approximately 30% of 

the energy consumption of a differentiating mammalian cell and 50% of a rapidly growing bacterial cell 

can be attributed to translation (Buttgereit and Brand, 1995; Russell and Cook, 1995).  This energy 

demand is mainly due to the hydrolysis of several molecules of GTP and ATP per translation initiation 

event, during ribosome displacement on the mRNA and tRNA incorporation, as well as polypeptide 

release during translation termination (Leibovitch and Topisirovic, 2018), but also due to tRNA synthase 

activity. Cap- and ribosome scanning-dependent translation initiation at AUG start codons is the most 

efficient way eukaryotic cells produce peptides and seems to account for most proteins present in a cell 

at a given time (Ingolia et al., 2011; Kearse and Wilusz, 2017).  The molecular details of canonical 

eukaryotic mRNA translation are important in order to understand alternative modes of translation that 

can occur during biological processes such as mitosis or the stress response. These alternative modes 

of translation are introduced in section 1.2.2. 

Initiation 

Most cap-dependent translation occurs through ribosomal scanning from the cap through the 

5'UTR to the first start codon (Hinnebusch, 2014). Scanning requires formation of the 43S pre-initiation 

complex (PIC) (Fig. 2). The 43S PIC contains the following three components: the small 40S ribosomal 

subunit, eukaryotic translation initiation factors (eIF) 1, 3, 5, and the ternary complex (TC) which is 

composed of eIF2-GTP and tRNAMet. The 43S PIC is recruited to the mRNA by the eIF4F cap-binding 

complex (Fig. 2). eIF4F consists of eIF4A (DEAD box helicase), eIF4E (cap-binding protein), and eIF4G 

(scaffold connecting eIF4A and E). The interaction of eIF4F and 43S PIC allows the newly formed 48S PIC 

complex to undergo scanning (Fig. 2). eIF4E is left behind at the mRNA cap. 

Secondary structures in the mRNA 5'UTR have to be removed during scanning. This is achieved by the 

scanning 48S PIC component eIF4A at the expense of ATP. Upon binding to the start codon, eIF2-GTP 

becomes hydrolyzed causing its own dissociation and in addition the release of eIF1, 3 and 5. eIF2-GDP 

is then recycled by eIF2B. Next, the large 60S ribosomal subunit can bind to the previously scanning 40S 

subunit, a process that is stimulated by eIF5B-GTP (Fig. 2). In a final step, the 60S-bound eIF5B-GTP is 
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hydrolyzed and released. The 40S and 60S subunits remain on the mRNA and together form the 

elongation competent 80S ribosome (Fig. 2). In total this eukaryotic mode of translation initiation 

requires two GTPs for TC recycling and 80S ribosome formation and one ATP for mRNA activation 

through the eIF4F complex (Leibovitch and Topisirovic, 2018). mRNAs that are packaged into larger 

mRNPs and contain more secondary structures in their 5'UTR require several rounds of activation 

through eIF4F which is more energy demanding (Merrick, 2015). 

 

Fig. 2: Canonical mRNA translation initiation depends on protein binding to the RNA cap, pre-initiation complex (PIC) 

formation and scanning for the first start codon. mRNA is bound by the eIF4F complex (eIFs A/E/G) on its 5′-cap structure. 

In parallel, eIF2-GTP and tRNAMet form the ternary complex (TC), and bind to the small 40S ribosomal subunit together with eIFs 
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1, 3, and 5. The assembled 43S PIC can now bind to eIF4F on the mRNA, forming the 48S complex. Secondary mRNA structures 

are removed and the 43S complex initiates scanning. Scanning stops once the 43S PIC binds to a start codon. The large 60S 

ribosomal subunit joins the 48S PIC, eIFs are remodeled and the elongation-competent 80S ribosomal complex forms. The 

initiation process is followed by elongation, termination and recycling. Non-canonical translation often does not require a cap-

structure or relies on “leaky” scanning of the 43S complex to reach secondary open reading frames downstream of the first 

start codon (scheme uses graphical elements from Hinnebusch et al., 2016)). 

Elongation 

In eukaryotes elongation of the first methionine and all subsequent amino acids located at the 

ribosomal P-site starts when eukaryotic elongation factor (eEF) 1A-GTP delivers the next amino-acyl 

tRNA to the ribosomal A-site. Once the correct codon is recognized, eEF1B hydrolyzes the eEF1A bound 

GTP and a new peptide bond is formed. eEF1A and 1B are then released from the ribosome (Dever and 

Green, 2012).  

Ribosome translocation to the next codon is mediated by eEF2 and is GTP dependent. 

Translocation frees the A-site and moves the uncharged tRNA from the P-site to the E-site where it 

dissociates. The tRNA is recycled by the amino acyl synthetase complex which requires two steps of ATP 

hydrolysis to AMP (Dever and Green, 2012). Elongation is by far the most energy-demanding step during 

translation, requiring the equivalent of two ATPs and two GTPs per incorporated amino acid. From an 

evolutionary perspective, it is therefore not surprising that most translation regulation occurs at the 

initiation step before elongation begins. 

Termination & Recycling 

Release of the nascent polypeptide chain occurs when the ribosome reaches the end of the 

coding sequence and a stop codon enters the A-site. Eukaryotic release factors (eRF) 1 and 3 catalyze 

this termination process. At its N-terminus eRF1 has a tRNA-like shape which can recognize stop codons 

through a mechanism similar to codon:anticodon interactions (Song et al., 2000). The eRF1 C-terminus 

can interact with the second release factor eRF3-GTP (Merkulova et al., 1999). eRF3 accelerates peptide 

release and increases termination efficiency in a GTP-dependent manner, although its exact functioning 

is not entirely understood (Dever and Green, 2012). Together both release factors form the 

eRF1:eRF3:GTP ternary complex. Only when the termination ternary complex is present within the 

ribosomal A-site, eRF1-stimulated GTP hydrolysis can occur (Alkalaeva et al., 2006). GTP hydrolysis leads 

to the dissociation of eRF3-GDP and allows the binding of ABCE1 to the remaining eRF1. eRF1 then 

stimulates hydrolysis of the peptidyl tRNA present in the P-site causing the release of the peptide chain 

from the ribosome (Dever and Green, 2012).  
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The release of the peptide chain is coupled to the first step of ribosome recycling, where the 

80S ribosome is separated into the 60S subunit and the 40S subunit still bound to deacylated tRNA and 

mRNA. This process is likely mediated by eRF1-bound ABCE1 in an ATP depended manner involving two 

hydrolysis steps (Pisarev et al., 2010; Young et al., 2015). The remaining 40S-tRNA-mRNA complex is then 

further recycled by eIF1 and eIF3 so that the free 40S subunit becomes available again to form the 43S 

preinitiation complex for the next round of translation (Pisarev et al., 2007). In addition, recent work has 

shown that ABCE1 remains bound to the 40S subunit and might facilitate downstream translation 

initiation (Simonetti et al., 2016). This likely occurs through the formation of a novel preinitiation 

complex containing the initiation factors eIF2 and eIF3, the 40S ribosomal subunit and ABCE1-AMP 

(Heuer et al., 2017). Recycling and subsequent initiation are therefore highly coordinated processes. 

In total, each translation termination and recycling event in a eukaryotic cell requires the 

equivalent of one GTP and two ATPs. Together with a comparable energy demand for each initiation 

event and the enormous energy requirements during elongation, it is evident that cells benefit from 

translational down regulation in situations during which nutrients are limited or catabolic processes are 

inhibited. 

Importantly, this energy demand does not yet include the energy costs for the biosynthesis of 

amino acids or tRNAs. For a single amino acid, these energy requirements are in the range of 9.5 

(glutamate) to 75.5 (tryptophan) high-energy phosphate bonds (Craig and Weber, 1998; Wagner, 2005). 

The synthesis of ribosomes is costly as well. It has been known for a long time that an increased growth 

rate correlates with increased ribosomal fractions and vice versa (Schaechter et al., 1958). Interestingly, 

all ribosomal proteins and elongation factors are encoded by mRNAs containing a terminal 

oligopyrimidine (TOP) sequence in their 5'UTR adjacent to the cap and all show a growth-associated 

translational regulation (Iadevaia et al., 2008; Meyuhas and Kahan, 2014; Schibler et al., 1977). Next to 

the regulation of translation initiation, also the direct regulation of cellular TOP mRNAs therefore has a 

significant effect when energy becomes limiting. TOP mRNA biology and translation regulation during 

stress was specifically studied during this PhD project and will be introduced in more detail in section 

1.2.4.      

 

 



25 
 

1.2.2 Non-canonical modes of translation initiation 

 

Next to cap- and ribosome scanning-dependent translation initiating at AUG start codons 

within a single open reading frame (ORF), biological systems also utilize a wide range of non-canonical 

translation modes. They enable cells to selectively express genes during specific physiological 

conditions such as mitosis, infection, stress, or apoptosis. Alternative translation modes require distinct 

mRNA sequence architectures ranging from secondary structure elements and overlapping ORFs to 

start codon sequence contexts and alternative start codons.   

IRES-mediated translation 

Internal ribosome entry sites (IRESs) are cis-acting RNA elements which enable the formation of 

elongation competent ribosomes in a 5′-cap and 3′-end independent manner. IRES-driven translation 

has been extensively characterized in positive strand RNA virus families, helping the virus to overcome 

general cap-dependent and PKR-mediated translation repression during infection. The structural 

diversity of IRESs is large. Based on their sequence conservation and structural elements at least four 

different functional classes (Type I-IV) can be distinguished. Each IRES type has distinct requirements for 

translation initiation factors leading to different modes of AUG codon recognition by the elongation 

competent ribosome (Yamamoto et al., 2017). 

In brief, IRES translation of type I requires the binding of IRES trans-acting factors (ITAFs) to the 

IRES structural elements which recruits eIF4A, eIF4B and protease truncated eIF4G. Importantly, cap-

binding eIF4E is not involved in IRES-mediated translation. The IRES-bound factors serve as the base for 

43S PIC assembly, which scans in an eIF4A helicase-dependent manner until it reaches a downstream 

start codon, where then 60S joining and the formation of elongation-competent 80S ribosome takes 

place. Type II is similar to type I, but does not involve 43S PIC-scanning. Instead, the pre-assembled 

factors on the IRES structural elements guide the 43S PIC directly to the start codon. Type III IRES 

translation starts by direct binding of the 40S subunit to the IRES structure and the start codon. Only 

then, the required eIFs bind. Finally, type IV is similar to type III in that the 40S subunit directly binds to 

the IRES, but requires a “pseudo translocation” event by eEF2 to position the start codon inside of the 

ribosomal A-site.    

It is currently under debate whether IRES translation occurs also for transcripts of cellular rather 

than viral origin (Komar and Hatzoglou, 2011; Yamamoto et al., 2017). Most translation events of cellular 
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genes attributed to an IRES-like mechanism have been identified to “hidden” cap-dependent initiation 

events. These originated from cryptic/unknown promoters, truncated templates or unknown splice 

sites (Jackson, 2013; Shatsky et al., 2014). Despite these findings, evidence is increasing that at least for 

a small number of genes IRES-mediated translation is possible. One such case is DAP5 (also known as 

eIF4G2 or NAT1). DAP5 belongs to the eIF4G family, but lacks a binding site for the cap-binder eIF4E, 

raising the possibility that it is involved in IRES translation as an initiation factor regulating its own 

translation. DAP5 was found to fulfill requirements that define IRES translation (Henis-Korenblit et al., 

2000). Later, it was also shown that the autoregulatory DAP5 IRES is preferentially utilized during 

conditions under which cap-dependent translation is compromised, such as apoptosis or ER stress 

(Lewis et al., 2008). Further, DAP5 interacts with known IRES translation factors and seems to stimulate 

presumed IRES-dependent translation of some cellular mRNAs (Liberman et al., 2015). In addition to 

such single cases, a recent study identified thousands of putative IRES elements in the human genome 

which seem to be able to drive cap-independent translation (Weingarten-Gabbay et al., 2016). The 

authors selected candidate sequences from genomic 5′UTRs, cloned them in between a GFP and a RFP 

in a bicistronic reporter and performed FACS-seq. Reporters expressing GFP were driven by cap-

dependent translation, while RFP expression and follow-up sequencing indicated that certain cellular 

nucleotide sequences seem to be able to initiate cap-independent translation. Stringent follow-up 

studies will have to show if the discovered sequences fulfill all requirements for true IRES translation 

also in their genomic context. Although a compelling case, recent evidence points toward the 

possibility that DAP5 might not fulfill all of these requirements. Instead, DAP5 translation could be 

controlled by a non-AUG start codon (Tang et al., 2017). This mode of translation initiation can indeed 

be cap-independent, but does not necessarily require an IRES. How very long and highly structured 

5′UTRs of cellular transcripts are translated therefore remains an open question. 

uORF-mediated translation through reinitiation 

IRES-driven translation is special in its ability to proceed under conditions during which cap-

dependent translation is inhibited i.e. during eIF2α-phosphorylation or eIF4F complex inhibition. It is 

therefore surprising that IRES translation is not more widespread in eukaryotic cells. Instead, eukaryotic 

cells have evolved translation systems that rely on translation re-initiation within overlapping open 

reading frames (ORFs) that are partially or fully localized upstream of the main ORF (mORF) and are 

therefore termed uORFs. uORFs provide an important layer of repression, mediated by the titration of 

initiating ribosomes away from the downstream mORF. Several different types of uORF-mediated 

regulation exist and two of them will be described here (Fig. 3): 
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The simplest form are uORFs that contain a cognate or near-cognate start codon in a poor 

sequence context, and that are in frame with the downstream mORF (Fig. 3A). Two translational options 

are possible within this system: First, the scanning 43S PIC fully initiates and translates the uORF as 

elongation competent 80S ribosome, but fails to reinitiate at the following mORF due to the short 

spacing between the two ORFs. The other option is that the 43S PIC “leaky scans” the uORF due to its 

poor start codon and sequence context and therefore does not initiate translation at the uORF. The 43S 

PIC now continues scanning and receives the chance to initiate at the mORF, producing the main 

peptide. Cells can inhibit “leaky scanning” by increasing the expression of eIF5 resulting in more efficient 

joining of the 60S to the 40S subunit. Increased formation of elongation competent 80S subunits then 

prevents leaky scanning and mORF expression (Hinnebusch et al., 2016).  

A second type of uORF architecture (Fig. 3B) is used to control the expression of stress response 

genes such as yeast GCN4 (Hinnebusch, 2005) or mammalian ATF4 (Lu et al., 2004; Vattem and Wek, 

2004), CHOP (Palam et al., 2011) and GADD34 (Lee et al., 2009). This uORF system is functionally 

somewhat more complicated than the one described first. Here, at least two uORFs (uORF1 and uORF2) 

proceed the mORF. uORF1 is short and does not overlap with any of the other ORFs. Closely downstream 

follows uORF2 which is longer and overlaps in frame with the mORF (Fig. 3B). Counterintuitively, this 

uORF architecture ensures the expression of the mORF under stress conditions only. The molecular 

mechanism is assumed as follows: Under non-stress conditions, uORF1 is always translated. At the stop 

codon, the 60S subunit dissociates. However, the distance between uORF1 and uORF2 is so small that 

the 40S subunit together with TC and the relevant eIFs can immediately reinitiate at uORF2. Since uORF2 

overlaps in frame with the mORF, no correct mORF product is synthesized under unstressed conditions. 

In contrast, cellular stress conditions lead to a different uORF usage resulting in a higher chance for 

mORF expression: Stress ultimately leads to eIF2α phosphorylation, which drastically reduces the 

availability of TC. Reduced TC makes fast translation reinitiation events between uORF1 and uORF2 

unlikely. As a result, the 40S subunit completely dissociates from the mRNA and does not reinitiate at 

uORF2. If still some TC is present, this now opens the possibility for translation initiation at the mORF 

start codon. Although, mORF expression efficiency might not be extremely high, the relative likelihood 

of its expression is strongly increased under conditions preventing uORF2 translation initiation. 
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Fig. 3: Upstream open reading frame (uORF)-dependent translation relies on ribosomal scanning efficiency and 

successful reinitiation. (A, 1) Under normal conditions, the scanning 40S ribosome complex can initiate on the uORF and 

translate, but fails to reinitiate on the mORF, which is in frame with the previous uORF. (A, 2) Due to poor start codon context 

and reduced ternary complex (TC) levels during stress conditions, the scanning 40S ribosome complex fails to initiate at the 

uORF, but continues scanning and receives a second chance to reinitiate at the mORF. (B, 1) During normal conditions uORF1 

is always translated and (B, 2) the scanning 40S ribosome complex can reinitiate on uORF2 which represses the mORF. (B, 3) 

During stress, the short distance between uORF1 and uORF2 and low levels of TC make reinitiation unlikely and the scanning 

40S ribosome complex does not continue scanning and dissociates. Instead, the chance for a full reinitiation event at the mORF 

increases (adapted from Hinnebusch et al., 2016). 

A related and interesting, but seemingly understudied aspect of uORF biology is the role of the 

short peptides encoded by uORFs. Only a small number of studies addressed this question so far. Peter 

Walter’s lab recently developed a system to systematically detect unannotated peptides (Starck et al., 

2016). First, cells are supplied with DNA vectors containing presumably noncoding RNA elements, such 

as 5′UTRs. The cells will then proteolytically cleave any synthesized peptides and present the fragments 

on their cell surface through major histocompatibility complex class I (MHC I). The peptide epitope can 

then be detected by a T cell which recognizes the “novel” non-self antigen. In addition, the T cell 

expresses β-galactosidase upon recognition of the peptide–MHC I complex, thus allowing the use of a 

colorimetric assay to monitor under which conditions and how much peptide is translated. This method 

has the potential to aid the discovery of a wide range of novel peptides, which could then be analyzed 
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more systematically for their function. Early work by Jousse et al. concentrated on a peptide encoded 

by a uORF localized in the CHOP 5' leader sequence (Jousse et al., 2001). Mutational analysis showed 

that this 31 amino acid long peptide inhibits the expression of CHOP from the downstream mORF which 

partially explains why CHOP is so lowly expressed in unstressed cells. Unfortunately, the mechanisms 

involved to explain the inhibitory effects of the uORF-derived peptide on translation are still not 

understood. With the advent of next-generation sequencing and ribosome profiling, which together 

can map the positions and relative amounts of ribosomes on mRNA (Ingolia et al., 2009, 2011; Johnstone 

et al., 2016), it is becoming increasingly clear that the majority of mammalian mRNAs contain uORFs and 

that there might actually be more of them than classical mORFs. In the past, uORFs had often escaped 

computational annotation as coding sequences due to their short length or overlap with an already 

described mORF. In addition, uORFs frequently use alternative (non-AUG) start codons sometimes even 

without being in a Kozak sequence context (Ingolia et al., 2011), which further complicated their 

computational detection. Further, the small size of uORF peptides makes their detection by mass 

spectrometry challenging (Slavoff et al., 2013). This knowledge combined with novel detection 

algorithms will likely lead to the identification of many new and completely uncharacterized small 

peptides (Samandi et al., 2017) and novel insights into uORF biology. 

Translation initiation by alternative start codons  

It has been known for several decades that mRNA translation can initiate at codons other than 

AUG (Zitomer et al., 1984). Most of these codons resemble the canonical AUG, differing only at one base 

position and are consequently referred to as near-cognate start codons. Especially under non-mitotic 

and unstressed conditions, this mode of translation is much less predominant than AUG translation 

initiation. Still non-AUG initiation codons have differing efficiencies when compared to each other. CUG 

seems most efficient, followed by GUG, ACG, and AUU (Kearse and Wilusz, 2017). It is important to note 

that although translation initiation from these codons is not highly efficient; these events are not simply 

AUG recognition mistakes. Several transcripts are derived exclusively from non-AUG start codons. 

DAP5, already introduced above in the context of IRES translation, is one such case. DAP5 

translation was found to occur only from GUG start codons in mouse and human cells (Takahashi et al., 

2005; Tang et al., 2017). Other genes, such as the yeast tRNA synthetases GRS1 and ALA1, depend 

similarly on non-AUG codons (Kearse and Wilusz, 2017). In addition, genome-wide techniques to study 

the ribosomal presence on transcripts have provided evidence that non-AUG translation is very 

common in mammalian cells. Ribosome profiling identified that ≈30% of intra ORF translation and  
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≈75% of upstream ORF translation is controlled by near-cognate start codons  (Ingolia et al., 2011). It is 

important to note that these findings do not mean that non-AUG translation is more common in 

absolute terms. Translation initiation at canonical AUGs is at least a magnitude more efficient than non-

AUG translation and contributes the majority of synthesized peptides (Kearse and Wilusz, 2017). 

Considering the widespread nature of alternative start codons, still surprisingly little is known 

about their recognition to initiate the binding of elongation competent ribosomes. Assuming that the 

43S PIC (composed of 40S subunit; eIFs 1, 3, 5; ternary complex) scans the mRNA as it does for AUG-

initiated translation, non-AUG start codon recognition could occur in two ways. First, through changes 

of initiation factor binding affinities or second, through alternative ternary complexes containing no 

classical tRNAMet. There is currently evidence for both mechanisms:  

It is becoming increasingly clear that the start codon’s context nts (for example the “Kozak 

sequence”) and context secondary structures are differentially bound by eIF1, eIF1A, and eIF3. Together 

these initiation factors influence the overall conformation of the PIC, which in turn dictates the 

stringency of start codon recognition (Hinnebusch, 2017). A structurally altered PIC might therefore be 

able to recognize non-AUG codons without the need for additional protein factors. Next to this option, 

also an alternative ternary complex, normally containing eIF2-GTP and tRNAMet, could recognize non-

AUG codons. Despite this, early and recent work indicates that reporter and endogenous mRNAs 

containing alternative start codons give rise to full length peptides in a eIF2-tRNAMet dependent manner 

(Kearse and Wilusz, 2017). These observations argue more for non-AUG recognition through an altered 

PIC structure rather than modified ternary complexes. Interestingly, the discovery of eIF2A and eIF2D as 

initiators on non-AUG codons challenges this view (Kearse and Wilusz, 2017). eIF2A (not equal to eIF2α) 

can bind a multitude of tRNAs and not just tRNAMet . There are indications that eIF2A can bind to tRNALeu 

to drive initiation at CUG and UUG codons (Starck et al., 2012). Also eIF2D can bind multiple tRNAs and 

has been shown to initiate at GUG codons with tRNAVal (Dmitriev et al., 2010). 

Despite some molecular understanding how non-AUGs are recognized, it is still not fully 

understood under which biological conditions this mode of initiation becomes more attractive than 

canonical initiation. Ribosome profiling indicates that this could be the case during meiosis when ≈30% 

of ribosome footprints mapped outside of annotated ORFs (Brar et al., 2012). In addition, the cellular 

stress response seems to create conditions under which non-AUG translation becomes favorable. This 

was shown for heat shock and the unfolded protein response, for example for the protein BiP. BiP is an 

ER chaperone and important for protein folding homeostasis. BiP translation during stress is dependent 
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on the two codons UUG and CUG located in uORFs of the BiP gene based on a mechanism already 

described in the above section on uORF-mediated translation. In addition, BiP expression is eIF2A 

dependent, further highlighting the possibility that eIF2A-tRNALeu is responsible for the alternative start 

codon recognition (Starck et al., 2016). Interestingly, eIF2A itself is upregulated during various stresses 

including ER stress, viral infections and tumor growth increasing the relative contribution of non-AUG 

translation to the proteome (Kearse and Wilusz, 2017). 

Translation initiation by repeat-associated alternative codons 

Several genetic diseases, mostly affecting the nervous system, are characterized my massive 

expansions of short hexanucleotides (i.e. G4C2) inside of coding sequences, introns, or 5′- and 3′UTRs. 

The two most studied examples are amyotrophic lateral sclerosis (ALS) and frontotemporal dementia 

(FTD) in which repeat expansion occurs mainly in in the chromosome 9 open reading frame 72 gene 

(C9ORF72) (DeJesus-Hernandez et al., 2011; Renton et al., 2011). The size of the repeats within C9ORF72 

correlates with disease severity and onset age (Gijselinck et al., 2016). This is a relevant finding because 

abnormal disease-specific repeat proteins seem to be synthesized from both sense and antisense 

transcripts stemming from the C9ORF72 repeat expansions and have been detected in brain tissues of 

patients with ALS and FTD (Ash et al., 2013; Mori et al., 2013; Xu et al., 2013). The detected repeat 

proteins are produced by an unconventional translation mechanism called repeat associated non-AUG 

(RAN) translation. During RAN translation initiation can occur in any of the three reading frames within 

expanded repeats and in all known cases non-AUG start codons are used. In addition, RAN translation 

might occur internally within the transcript (Xu et al., 2013). RAN translation products are toxic by 

blocking the ubiquitin-proteasome system, influencing ribosomal RNA synthesis, and impairing nuclear 

import of proteins which might subsequently aggregate (Cleary and Ranum, 2017).  

Little is known about the initiation mechanism of RAN translation. Most insights stem from 

experiments performed with CGG repeats originating from expansions in the 5′UTR of FMR1 (Kearse et 

al., 2016). In a HeLa cell expressed reporter system RAN translation was several orders of magnitudes 

less efficient than canonical translation and preferentially utilized ACG and GUG as start codons. RAN 

translation might also utilize ribosomal scanning, as it is cap-, eIF4E-, and eIF4A-dependent (Kearse et 

al., 2016). Others have found that initiation rates are strongly influenced by repeat length (Mori et al., 

2013; Xu et al., 2013). Together these results argue for a secondary structure dependent initiation 

mechanism which is distinct from IRES translation because it is cap-dependent. Other kinds of repeat 

expansions might use different initiation mechanisms. In such cases, the presence of secondary mRNA 
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structures could inhibit PIC scanning and thereby promote the observed usage of downstream 

alternative start codons. To assess how different RAN translation is from the previously described and 

relatively well-characterized near-cognate start codon- or IRES-mediated translation it will be necessary 

to compare RAN translation dynamics in different repeat contexts and perform ribosome profiling to 

learn more about structure induced ribosome stalling and distribution on the repeat mRNAs.   

Cap-dependent, but scanning-free translation initiation 

Canonical translation involves mRNA cap recognition and ribosomal scanning, but there is 

evidence that mRNAs with extremely short or highly complex 5′UTRs can undergo cap-dependent, but 

scanning-free translation initiation. Prokaryotic mRNAs which only contain the Shine-Dalgarno 

sequence (AGGAGGU) in their 5′UTR can be translated in vitro by the eukaryotic translation system, 

suggesting the presence of a conserved scanning-free initiation mechanism also in eukaryotes (Grill 

Sonja et al., 2000). One explanation how scanning-free translation is achieved could lie in the sequence 

context around the start codon. Computational analysis of proximal promoter motifs lead to the 

identification of the Translation Initiator of Short 5′UTR (TISU) element (Elfakess and Dikstein, 2008). The 

TISU element contains 12 nucleotides including a start codon (C/GAAC/GAUGGCGGC). It is present in 

4.5% of protein-encoding genes, is enriched in transcripts bearing short 5′UTRs with a 12 nucleotide 

median length and was shown to drive their translation. Although there is some overlap with the Kozak 

sequence, the Kozak sequence alone is not able to drive translation from short 5′UTRs (Elfakess and 

Dikstein, 2008).   Ribosome interaction with the TISU element is cap dependent and involves AUG 

downstream nucleotides that seem to compensate for the absence of upstream UTR contacts. In 

addition, translation from TISU elements is eIF1- and eIF4A-independent, which led to the hypothesis 

that ribosomal scanning is not necessary for TISU containing mRNAs (Elfakess et al., 2011). This idea was 

further confirmed by the finding that the A-site ribosomal proteins RPS3 and RPS10e act as TISU binding 

proteins, directly recruiting the 80S ribosome to the start codon without the need for scanning (Haimov 

et al., 2017). It is currently unclear how frequently and efficiently TISU translation is used by cells. 

Potentially, conditions that limit canonical scanning-depended translation, such as energy stress, 

enhance the likelihood for TISU translation. Recent findings indicate that TISU translation is more 

resistant to eIF4E inhibition through mTOR regulated 4EBP during glucose starvation than canonical 

translation. The eIF4E-containing eIF4F complex is released from the mRNA cap upon formation of the 

48S ribosome on the TISU element (Sinvani et al., 2015). As a result, this might make subsequent 80S 

ribosome formation and TISU translation initiation less dependent on eIF4F and increase its relative 

contribution to overall translation during the stress response (Tamarkin-Ben-Harush et al., 2017). 
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Despite these findings, especially the molecular details of TISU translation are under debate. 

Important work by Kozak et al. showed that AUG start codons within a favored sequence require a 5′UTR 

of at least 20 nt for accurate translation initiation (Kozak, 1991). The possibility of TISU-driven translation 

is in conflict with Kozak’s results. In particular, it is not clear how a ribosome with a footprint of 

approximately 30-35 nt (Ingolia et al., 2009) could bind the AUG within the 12-nt TISU element to its P-

site in order to initiate translation. Even if downstream nucleotides or secondary structures compensate 

for the missing upstream contacts (Elfakess et al., 2011), the four nucleotides and the cap upstream of 

the TISU start codon do not provide enough space for ribosome binding. It remains a possibility that 

TISU translation can function in short (> 20 nt), but not extremely short (< 20 nt) 5′UTRs.  

Codon optimality and translation 

The 64 possible base triplet mRNA codons encode for “only” 20 amino acids and 3 stop codons. 

In principle, this redundancy should lead to a random distribution and usage of codons encoding for 

the same amino acid. Instead, a codon bias has been observed throughout multiple domains of life.   

Codon bias is the concept of a non-random codon distribution in the coding regions of genes. It is well 

stablished that codon bias correlates with tRNA levels in prokaryotes and eukaryotes, including humans. 

Functionally, an optimal codon usage could therefore speed up translation through a faster ribosome 

translocation since the fitting tRNA is readily available for each codon. How this is achieved exactly and 

whether “faster” ribosome translocation results in more protein product per transcript is under intense 

debate (Hanson and Coller, 2018; Novoa and Ribas de Pouplana, 2012; Quax et al., 2015). The discussion 

mainly revolves around the two concepts of “elongation rate” and “translational efficiency” which are 

not equal (Hanson and Coller, 2018). The elongation rate describes the number of amino acids that are 

incorporated into the nascent peptide chain per time interval. An approximation for this measure is the 

number of used codons per second. Translation efficiency, on the other hand, denotes how much 

protein is made per transcript in a given time. For example, a block of translation initiation decreases 

translation efficiency to zero, but leaves the ribosomal elongation rate unaffected. 

That codons could affect elongation rates had been suspected for several decades and was first 

shown by radio-labeled amino acid incorporation assays (Sørensen and Pedersen, 1991). It came as a 

surprise that the first genome-wide ribosomal profiling study did not confirm the initial findings. No 

clear correlation between tRNA abundances and ribosomal densities was found (Ingolia et al., 2009). 

However, a recent meta-analysis of several ribosome profiling studies showed that the cycloheximide 

treatment commonly used for such experiments does not immediately stall ribosome at their respective 
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location, but allows them to translocate further in many cases (Gerashchenko and Gladyshev, 2014; 

Hussmann et al., 2015). Ribosome distributions stemming from cycloheximide experiments therefore 

seem to dilute codon bias effects. Since then, three technically distinct experimental approaches have 

proven that an optimal codon distribution leads to increased elongation rates (Hanson and Coller, 

2018). First, ribosomal profiling performed with filtration and flash-freezing instead of cycloheximide 

treatment indicated that codons matching rare tRNAs are more slowly translated (Weinberg et al., 2016). 

Secondly, an experiment with an in vitro translated mRNA showed that optimal codons enhance the 

rate of translation elongation, whereas non-optimal codons slow elongation. Importantly, these 

experiments were not only performed as end-point measurements, but both effects were also observed 

within the tested mRNA (Yu et al., 2015). Lastly, evidence for codon-influenced translation rates comes 

from single mRNA molecule SunTag imaging. Here, small GFP-linked antibodies bind to nascent peptide 

epitopes and provide a read out for translation based on fluorescence intensity. The authors found that 

codon-optimized mRNA allows the ribosome to elongate at a rate of 4.9 codons/second versus 3.1 

codons/second in a non-optimized control (Yan et al., 2016). Despite these findings, it could be a 

mistake to focus too much on single codons since the ribosome binds more than one codon at a time. 

At least in yeast, evidence exists that codons can act in concert to influence ribosome dynamics (Gamble 

et al., 2016).  

How important codon bias is for translation efficiency or essentially the protein output per time 

is less clear. Codon bias is highest in strongly expressed genes and evolutionary codon conservation is 

more pronounced in such genes. Further, it is known that codon optimization improves heterologous 

expression, i.e. the expression of human genes in E. coli. Despite evidence for a relationship between 

codon-optimality and translation efficiency, there is no clear causal proof for the same effect when 

translation efficiency is directly measured for genes in their endogenous contex (Hanson and Coller, 

2018). How can it be that optimal codons clearly influence elongation rates, but not always translation 

efficiency? The problem is that many factors could evolutionary control codon usage. Those factors 

might negatively influence the multifaceted translation process as whole, but not necessarily the 

relatively isolated step of elongation. Several factors are currently under investigation that might 

explain this seemingly contradictory effect: Translation initiation is regarded as the rate-limiting step 

during the translation process. This means that any increase in elongation rate does not lead to more 

initiation, but only to faster ribosome run-off and would therefore not change the translation efficiency 

of a transcript. On the other hand, decreased elongation can results in a ribosomal “traffic jam” due to 

unchanged initiation rates and thereby block the space for newly initiating ribosomes. As a result, non-
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optimized codons could have a negative effect on translation efficiency, but medium-well optimized 

codons would have the same effect as highly optimized codons (Hanson and Coller, 2018). Another 

factor are secondary structures in the 5′-end of the coding sequence. They have to be weak and 

therefore AT-rich in order to allow for efficient translation initiation. In E. coli it was demonstrated that 

these structural requirements can coincide with non-optimal codons (Goodman et al., 2013). Non-

optimized codons might therefore even be beneficial for translation initiation, while confirming the 

correlation with decreased elongation rates.  

Next to these rather theoretical considerations, strong evidence exists that cells can utilize 

codon biases to translate or repress specific mRNAs under specific conditions. In yeast cells exposed to 

oxidative stress, the Trm4 methyltransferase methylates specifically tRNAs encoding leucine at the 

wobble position. This increases the proportion of leucine tRNAs with CAA anticodon. tRNACAA can then 

bind to the TTG codon-enriched mRNAs of ribosomal protein RPL22A which selectively upregulates this 

protein and helps the cell to survive oxidative stress. RPL22A’s paralogue RPL22B is not enriched for TTG 

codons and does not become upregulated (Chan et al., 2012). In HEK cells amino acid deprivation was 

shown to lower the charging of some tRNAs with amino acids, while not affecting other tRNAs. This 

increased the relative translation contribution of rare codon-containing ubiquitin-proteasome mRNAs 

(Saikia et al., 2016). Although mechanistically it is not entirely clear how codon bias influences the 

proteome, it becomes increasingly clear that codon optimality in concert with tRNA availability is a 

powerful way for cells to alter their posttranscriptional gene expression. 

 

1.2.3 The integrated stress response 

 

In response to external and internal chemical, physical or biological stressors, cells of all domains 

of life react by dramatically altering their gene expression. In eukaryotic cells, the nature of gene 

expression change is multifaceted and can involve many biochemical pathways. The best-studied 

reaction pattern of eukaryotic cells to stressors involves the integrated biochemical sensing of the 

stressor and subsequent translation-mediated transcriptional reprogramming to induce survival or 

apoptosis. This biological cascade is known as the integrated stress response (ISR) (Fig. 4A).  The ISR 

involves several well-studied and stress-specific parallel pathways, which all converge to phosphorylate 

eIF2α at Ser51. In turn, this phosphorylation event leads to the broad cellular translation down-

regulation, but can also translationally up-regulate a number of genes, many of which are transcription 
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factors, such as ATF4. Upon re-localization to the nucleus ATF4-mediated transcriptional 

reprogramming leads to the expression stress response genes, such as GADD34, which binds to 

phosphatase 1 (PP1), the catalytic subunit of the GADD34-PP1 complex. GADD34 can reduce eIF2α-

phosphorylation levels to restore homeostasis (Fig. 4A). Very severe or chronic stressors result in 

prolonged eIF2α-phosphorylation and can ultimately lead to apoptosis (Pakos‐Zebrucka et al., 2016). 

The most important upstream players of the ISR are the four stress-sensing kinases heme-regulated 

inhibitor (HRI), PKR-like endoplasmic reticulum kinase (PERK), protein kinase R (PKR), and general control 

non-depressible 2 (GCN2). All four kinases autophosphorylate their respective kinase domain and 

dimerize prior to being able to phosphorylate eIF2α (Pakos‐Zebrucka et al., 2016) (Fig. 4A). 

In metazoans, HRI expresses mainly in erythrocytes where it senses low heme levels due to iron 

deficiency and translationally represses globin-encoding mRNAs to prevent toxic aggregations (Han et 

al., 2013). In addition, HRI senses several other cytoplasmic stresses and in particular, sodium arsenite 

(SA) induced oxidative stress, which was mainly used in the work for this PhD thesis (McEwen et al., 

2005; Suragani et al., 2012). How oxidative molecules activate HRI is currently unknown. However, HRI 

is the only stress-responsive kinase required for translational inhibition and SG formation during SA 

treatment in mouse embryonic fibroblasts (McEwen et al., 2005).  

Endoplasmic reticulum (ER) stress, caused by unfolded proteins on the ER membrane, energy 

depletion or distorted ER calcium homeostasis, is sensed by the ER-localized PERK kinase. The classical 

model for PERK activation involves the displacement of BiP (also known as GRP78) from PERK during the 

unfolded protein response (UPR) allowing PERK to dimerize (Harding et al., 1999). An alternative model 

proposes the direct binding of unfolded proteins to the ER luminal protein IRE1 in order to activate it 

(Gardner and Walter, 2011). In yeast, activated Ire1 induces transcription factor Hac1 by unconventional 

splicing of its mRNAs. Hac1 then up-regulates the protein-folding machinery to resolve ER stress 

(Sidrauski and Walter, 1997). 

PKR is a stress-responsive kinase able to detect viral infections by means of double-stranded 

RNA (dsRNA) binding leading to its dimerization and activation (Lemaire et al., 2008). Independent of 

dsRNA, PKR can also be activated by several other stresses, such as oxidative and ER stress, growth factor 

deprivation, cytokines or bacterial infection (Pakos‐Zebrucka et al., 2016). 

Amino acid deprivation ultimately leads to increased levels of deacylated tRNAs which can 

directly bind GCN2 through a tRNA synthetase-like domain (Aldana et al., 1994). Several other stresses 

are also linked to GCN2 activation, but often seem to have secondary effects resulting in amino acid 
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depletion. Similar masking effects have also been observed for the other three stress-activated eIF2α-

targeting kinases. Next to one kinase reacting to several stimuli, some studies have specifically 

investigated whether one kinase’s function can be complemented by another one if the classical 

stressor is kept. Knocking out both alleles of PERK and GCN2, respectively, showed that GCN2 can fulfill 

PERK function during ER stress and vice versa during amino acid deprivation (Hamanaka et al., 2005; 

Lehman et al., 2015).     

The described unspecificity to classical stimuli and complex interplay between the known four 

ISR kinases led to the hypothesis that other eIF2α-targeting kinases might exist. A recent study found 

evidence that this is at least very unlikely. The authors used CRISPR-Cas9 to delete all four kinases 

simultaneously in mouse embryonic fibroblasts known to phosphorylate eIF2α. Then they stressed the 

knockout cells in 14 different ways and never observed any eIF2α phosphorylation. They conclude that 

no additional kinases exist that can directly phosphorylate eIF2α (Taniuchi et al., 2016). 

The formation of stress-induced mRNP complexes such as stress granules (SGs) and processing 

(PBs) often accompanies the ISR, but it is not fully understood whether such complexes are the cause or 

consequence of translational reprogramming during stress. In addition, SGs can be induced by eIF2α 

phosphorylation-independent mechanisms, which makes them not a required hallmark of the ISR. 

Small-molecular modulation of the ISR 

Considerable effort has been undertaken to develop PERK and PKR inhibitors due to their 

potential relevance for protein-missfolding during neurodegenerative diseases or the regulation of 

translation during viral infection. In addition, an HRI activator has been described inhibiting cancer cell 

proliferation (Chen et al., 2011). Such compounds and their mode of action are discussed in detail 

elsewhere (Pakos‐Zebrucka et al., 2016). Instead, here the focus will be on recently discovered 

compounds that modify the ISR independently of the four upstream kinases HRI, PERK, PKR and GCN2. 

Kinase-independent compounds that drastically prolong and intensify the ISR include 

molecules that actively prevent the dephosphorylation of eIF2α. Salubrinal (Boyce et al., 2005), 

guanabenz (Tsaytler et al., 2011), and Sephin1 (Das et al., 2015) bind to GADD34 and prevent its binding 

to PP1. As a result, GADD34-PP1 inhibition leads to higher eIF2α phosphorylation levels. Despite this 

attractive mode of action model, all three compounds seem to have additional targets. In addition to 

GADD34, salubrinal also prevents the binding of the constitutively expressed phosphatase subunit 

cAMP response element binding protein (CReB) to PP1. Broad inhibition of two PP1 subunits has several 
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non-ISR related effects (Boyce et al., 2005). Guanabenz does not target CReB, but has also additional 

targets besides GADD34. As agonist for adrenergic receptor, Guanabenz is an FDA-approved drug to 

treat hypertension in humans. In a mouse model for systemic lupus erythematosus (SLE) Guanabenz 

has also been shown to inhibit Toll-like receptor 9 (TLR9) which reduces the autoimmune response 

(Perego et al., 2018). Of all three GADD34 inhibitors, Guanabenz-derivate Sephin1 is the highest 

affinity binder (Das et al., 2015). Proteolytic cleavage experiments showed that Sephin1 binds to 

GADD34 and leads to conformational changes presumably preventing the binding of PP1 and eIF2α 

substrate recruitment (Carrara et al., 2017). Despite the insights into the molecular mechanism of 

Sephin1, its exclusive specificity for GADD34 has been questioned recently and even its inhibitory 

function as whole is under scrutiny. In vitro Sephin1 (and Guanabenz) was not able to decrease the 

stability of the GADD34-PP1 complex and showed no effect on the complex’ ability to dephosphorylate 

eIF2α. Further, the previously described effect of Sephin1 to restore protein folding during ER stress 

(Reid et al., 2016) is independent of GADD34 and eIF2α as shown by double knockout and a 

phosphorylation resistant mutation, respectively (Crespillo-Casado et al., 2017). In follow-up 

experiments the same group of authors demonstrates that the observed discrepancies do not stem from 

non-physiological protein and inhibitor concentrations or time regimes. Further, GADD34-PP1 is most 

active and insensitive to Sephin1 when in complex with globular actin (G-actin) presumably forming a 

tripartite G-actin-GADD34-PP1 holoenzyme (Crespillo-Casado et al., 2018). G-actin had been observed 

before to increase cellular ability to handle the ISR (Chambers et al., 2015; Chen et al., 2015). Taken 

together, the authors conclude that Sephin 1 and Guanabenz have no measurable effect on the rate of 

eIF2α dephosphorylation in cells, but that the compound-induced changes in gene expression during 

the ISR are likely due to non-GADD34 effects.  

Next to molecules that prolong and intensify the ISR, recently the Integrated Stress Response 

InhiBitor (ISRIB) has received attention (Fig. 4A). ISRIB was discovered in an attempt to identify PERK 

signaling inhibitors from a library containing 106,281 compounds and was found to reverse the effects 

of eIF2α phosphorylation while interestingly not affecting the phosphorylation itself (Sidrauski et al., 

2013). In the primary screen under ER stress-inducing thapsigargin treatment, ISRIB inhibited ATF4 

uORF-mediated Firefly luciferase reporter expression which is normally upregulated during conditions 

of reduced eIF2-GTP-tRNAMet ternary complex availability (see also section 1.2.2). In addition, the authors 

found that ISRIB abrogated the presence of SGs, but did not alter the number of PBs (Sidrauski et al., 

2015a). The guanine exchange factor (GEF) eIF2B was subsequently identified has an ISRIB target (Sekine 

et al., 2015; Sidrauski et al., 2015b) (Fig. 4A). eIF2B consists of the five α, β, γ, δ, and ε subunits and acts 
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as a dimer. eIF2B accelerates the exchange of guanosine 5′-diphosphate (GDP) for guanosine 5′-

triphosphatase (GTP) in the eIF2 complex. eIF2α phosphorylation normally blocks eIF2B’s GEF activity 

and thereby leads to translational arrest under stress. Mutational analysis showed that ISRIB binds to 

the two eIF2B δ subunits and thereby hyperactivates eIF2B, even in the presence of phosphorylated 

eIF2α (Sekine et al., 2015; Sidrauski et al., 2015b). Recently, two crystal structures of ISRIB-bound eIF2B 

have confirmed the previous findings that ISRIB binds the two δ subunits and presumably fuses them 

more tightly together (Tsai et al., 2018; Zyryanova et al., 2018). Despite this, no further insights have 

been attained into the mechanism of eIF2B. In particular, it would be important to directly demonstrate 

the binding of eIF2B-ISRIB to eIF2α-Ser51(phos). Further, ISRIB’s disassembly effect on SGs cannot be 

explained by translation upregulation during stress alone. During my work for this PhD thesis, I have 

found that SA-induced oxidative stress represses translation even in the presence of ISRIB, while SGs 

can still dissolve. ISRIB can therefore uncouple the presence of SGs from translational regulation. 

Further, ISRIB acts only as SG disassembly promoter, but not formation inhibitor (see also Chapter 3, Fig. 

1). It is therefore likely that ISRIB has at least one secondary target which directly influences SG integrity. 

One option would be the interference with phase separation of SG proteins containing low complexity 

domains (LCDs). Secondly, ISRIB might be able to block nucleo-cytoplasmic shutteling of SG proteins 

(Zhang et al., 2018). The goal of the screening approach described in Chapter 3 was to identify molecules 

that act similar to ISRIB. Extending this screen or combining a similar screen with ISRIB will likely yield 

insights into non-eIF2B targets of this molecule. 

ISRIB is also a good example for the potential medical relevance of ISR modulators. Using a 

hidden platform in a water maze, already the first report on ISRIB described an enhancement of 

cognitive memory in mice treated with ISRIB (Sidrauski et al., 2013). Later it was found that ISRIB-

mediated translation reactivation could prevent neurodegeneration in mice without any measurable 

side effects (Halliday et al., 2015). These observations were extended by the finding that cognitive 

decline in mice with traumatic brain injury can be reversed by ISRIB (Chou et al., 2017). A potential 

explanation for these effects could be the translation-mediated increased strength and persistence of 

neuronal connections upon ISRIB treatment (Placzek et al., 2016).  
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1.2.4 Translational down-regulation during stress 

 

In principle, translation can be down-regulated by affecting the levels or interactions of its three 

most fundamental players: mRNA, tRNA, and ribosomes. The ISR and eIF2α-phosphorylation lead to 

reduced levels of eIF2-GTP-tRNAMet ternary complex which makes the binding of tRNA to start codons 

in mRNA less likely.  Next to tRNA-based regulation, translation during stress can be downregulated by 

the reduction or sequestration of mRNAs, the prevention of initiation/elongation-competent ribosome 

formation on mRNA, or the reduction of the amount of ribosomes themselves. (mTOR inhibition, 

phosphorylation of eIF2α, interference with eIF4F complex) 

Reduced mRNA availability 

Although mRNA decay is often dependent on active translation, translation itself can also be 

down-regulated by reduced mRNA availability during the stress response. This can be achieved in two 

ways: Either by increased mRNA decay or sequestration of mRNAs making them unavailable for 

translation initiation. An example for stress-specific mRNA decay is rapid IRE1-dependent decay (RIDD) 

(Han et al., 2009; Hollien et al., 2009). As explained above, one model describing the activation of the 

unfolded protein response during ER stress involves the direct recognition of unfolded proteins by 

the ER membrane protein IRE1. During RIDD, IRE1 uses its endonuclease domain to cleave the mRNAs 

of ER-translated secreted proteins. Importantly, RIDD contrasts the generally observed stabilization 

of mRNA during the stress response.  

Secondly, the local sequestration of mRNAs in structures such as PBs and SGs might reduce mRNA 

availability during stress. However, this mechanism is debated since it could just be a consequence of 

arrested decay, but not a separate mechanism to repress translation. Nevertheless, mRNAs can most 

likely exit PBs and undergo translation during the recovery from stress (Bhattacharyya et al., 2006; 

Brengues et al., 2005; Halstead et al., 2015). mRNA sequestration and potential decay in PBs will be 

discussed in section 1.4 in more detail. 

Prevention of ribosome binding 

Nutrient starvation leads to an inactivation of the mTOR kinase complex (Fig. 4B). A well-studied 

effect of mTOR inhibition in the loss of eIF4E-BP phosphorylation. Unphosphorylated eIF4E-BP binds to 

eIF4E and prevents the formation of the cap-bound eIF4F complex. The absence of the eIF4F complex 

prevents the binding of the small ribosomal subunit-containing 43S PIC to the mRNA in order to initiate 
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scanning. Next to nutrient starvation, the eIF4F complex is disrupted in many other biological scenarios. 

For example, certain viruses have developed strategies to prevent the formation of eIF4F through 

inhibition of its subunits eIF4A, E, or G. Since some viruses depend only on IRESs to initiate their 

translation, a functional host eIF4F complex is not required for their life cycle (McCormick and 

Khaperskyy, 2017). Further, some chemotherapeutic agents can target eIF4F complex members 

(Anderson et al., 2015) (Fig. 4B), an aspect discussed in more detail in section 1.5. 

Recently, it was also reported that human tumor cells, containing mutant KRAS, can block eIF4F 

complex formation. In addition, these cells contain high number of SGs (Grabocka and Bar-Sagi, 2016). 

The mechanism leading to these observations involves the lipid signaling molecules 15-deoxy-delta 

12,14 prostaglandin J2 (PGJ2) which is secreted by mutant KRAS cells. PGJ2 can bind to eIF4A and 

thereby inhibits eIF4F (Kim Woo Jae et al., 2007). Importantly, PGJ2 is also able to block translation and 

induces SGs independent of eIF2α in cells lacking the KRAS mutation (Grabocka and Bar-Sagi, 2016). 

Reduced levels of ribosomal proteins and translation factors through TOP mRNA regulation 

A third fundamental way to block translation independently of eIF2α phosphorylation involves 

the decreased expression of ribosomal proteins, all translation elongation factors, and some translation 

initiation factors (Fig. 4B). All of these proteins are encoded by mRNAs that contain a short stretch 4 to 

15 pyrimidines bases in their 5′UTR directly adjacent to the cap (Iadevaia et al., 2008; Meyuhas and 

Kahan, 2014). These mRNAs are referred to as 5′ terminal oligopyrimidine (5′TOP) mRNAs and are 

conserved in all vertebrates. 5′TOP-element containing mRNAs have been shown to localize to SGs 

(Damgaard and Lykke-Andersen, 2011) while at the same time being strongly repressed by 

mTOR/mTORC1 inactivation (Hsieh et al., 2012; Thoreen et al., 2012) which can occur during different 

kind of stresses including oxidative stress (Heberle et al., 2015; Sfakianos et al., 2018). To investigate 

whether local sequestration during stress has a direct effect on translation, mRNAs containing TOP 

elements were used in the mRNA imaging experiments leading to this PhD thesis. 5′TOP mRNAs will be 

specifically introduced here with a focus on recent advances concerning their translational regulation. 
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Fig. 4: Different stresses repress canonical translation initiation mainly via eIF2α-phosphorylation and eIF4F complex 

assembly inhibition. (A) Stress-activated kinases phosphorylate eIF2α leading to reduced ternary complex (TC) levels which 

represses canonical translation, but increases uORF-mediated translation, leading to a reduction eIF2α-phosphorylation via 

ATF4/CHOP induced GADD34 phosphatase. The Integrated Stress Response InhiBitor (ISRIB) can desensitize cells against eIF2α-

phosphorylation and dissolves stress granules (SG). (B) mTOR inhibition leads to loss of the deactivating phosphorylation on 

4E-BP, which can then bind to eIF4E and prevents the assembly of eIF4F. As a result, canonical translation initiation is inhibited 

and stress granules form. mTOR inhibition also leads to loss of phosphorylation on LARP1 which presumably represses terminal 

oligo pyrimidine (TOP)-element containing mRNAs and in turn reduces the expression levels of translation machinery 

components. Several inhibitors can block eIF4F formation directly, independent of mTOR.  

Although classical TOP elements are not present in yeast, nearly 50% of its RNA polymerase II 

transcription is devoted to production of ribosomal proteins (Warner, 1999). In mammalian cells, 

ribosome-encoding TOP mRNAs are thought to contribute 20% of all transcripts present in cells 

(Hornstein et al., 2001; Iadevaia et al., 2008). The concerted regulation of such mRNAs has therefore a 

strong effect on the abundance of the translation machinery proteins and cellular translation activity as 

a whole (Meyuhas and Kahan, 2014; Tang et al., 2001).  

Early “polypyrimidine tract” mRNA-involving experiments with the cell cycle arrest-inducing 

chemical compound rapamycin indicated that this class of mRNAs is subject to mTOR regulation 

(Jefferies et al., 1994), although the existence of mTOR had not been formally demonstrated at the time. 

Later, the concept of “TOP mRNAs” and their common translation regulation was further formalized 
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(Avni et al., 1997). mTOR and its downstream S6 kinase were identified as the first proximal kinase 

regulator of TOP mRNA translation (Jefferies et al., 1997) and also kinases upstream of mTOR such as 

phosphatidylinositol 3-kinase (PI3K) were considered as regulators (Tang et al., 2001). Using Torin1 as a 

more potent mTOR inhibitor than rapamycin, two genome wide ribosome profiling studies confirmed 

the role of mTOR/mTORC1 in 5´TOP control, but instead proposed eIF4E-BP as the most downstream 

TOP regulator  (Hsieh et al., 2012; Thoreen et al., 2012). These findings, however, were in contrast with a 

previous study, which had found that eIF4E overexpression alone is not able to rescue TOP mRNA 

translation repression (Shama et al., 1995). 

Recently, detailed insights have been gained into La-related protein 1 (LARP1) as trans-acting 

factor connecting TOP mRNA translation regulation with stress sensing through mTORC1 (Fig. 4B). 

However, there is controversy over the point whether LARP1 is a direct translation repressor, activator 

of constitutively repressed TOP mRNAs, or stabilizer of TOP transcripts. LARP1 was first identified as a 

TOP mRNA regulator in a quantitative proteomic screen to identify proteins that associate with the 

mRNA 5' cap in an mTOR-dependent manner (Tcherkezian et al., 2014). Although a direct binding to the 

TOP element was not demonstrated, the authors showed that LARP1 stimulates the presence of TOP 

reporter mRNAs in polysomes via interactions with PABP and eIF4E. Two other studies also observed a 

positive effect of LARP1 on TOP mRNA gene expression, but interestingly via mRNA stabilization instead 

of translation regulation. Both groups observed that LARP1-deficient cells have reduced TOP mRNA 

levels and they relate these effects to LARP1 binding to the poly(A) tail and the 40S ribosomal subunit, 

respectively, although the precise mechanism is not known (Aoki et al., 2013; Gentilella et al., 2017).  

Also translationally repressive functions have been attributed to LARP1. Fonseca et al. found 

that when mTORC1 is inactive LARP1 is released from mTOR complex member RAPTOR. Under such 

conditions, LARP1 can bind the TOP motif to repress translation via competition with the scaffolding 

protein eIF4G, inhibiting the formation of the eIF4F complex required for translation initiation (Fonseca 

et al., 2015). Another study also identified the binding of LARP1 to RAPTOR under non-stress conditions, 

but found that that LARP1 can inhibit eIF4E cap-binding (Lahr et al., 2015). The resulting inhibition of 

eIF4F formation is identical to Fonseca et al. results. A high-resolution crystal structure of the human 

LARP1 DM15 region in complex with a TOP motif and a capped cytidine (m7GpppC) showed 

convincingly for the first time how TOP mRNAs bind to LARP1. Although, the capped cytidine binds 

LARP1 physically isolated from the TOP motif in the crystal structure, importantly, the binding of both 

structures to the DM15 region confirms the model that LARP1 is a translation repressor by preventing 

cap-access of eIF4E (Lahr et al., 2017). The repressive activity of LARP1 is directly regulated through 
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stress-sensing by mTORC1 through phosphorylation, which allows LARP1 to be released from TOP RNAs 

(Hong et al., 2017). Another recent study was able to demonstrate a molecular connection between all 

important components of TOP mRNA regulation: LARP1 cap/TOP-binding, mTORC1 regulation, and 

translation repression. In a cell-free luciferase translation assay the authors show that LARP1’s DM15 

region is essential for TOP element- and cap-mediated repression. The sequence identity of the TOP 

motif with adjacent pyrimidines in immediate proximity to the cap are essential for LARP1-mediated 

regulation. In the same in vitro assay, LARP1 also shows an increased repressive activity when mTOR is 

inhibited by Torin1. In addition, the authors identify a previously unknown 200 amino acid regulatory 

region N-terminally adjacent to the DM15 region (Philippe et al., 2018). It remains therefore a possibility 

that mTORC1 can modify LARP1 at multiple sites or that another unidentified factor contributes to 

LARP1 regulation.  

Taken together, the recent functional and mechanistic insights into LARP1 and TOP mRNA 

regulation provide a compelling model how a general stress-induced reduction in protein synthesis can 

be coupled with increased repression of TOP mRNA encoded translation of ribosomal proteins  at the 

same time. Since LARP1 specifically localizes to SGs during translation initiation inhibition it remains a 

possibility that LARP1-mediated repression might have a localized component during the stress 

response. This option is specifically addressed in Chapter 2 of this PhD thesis. 

 

1.2.5 Selective translation during stress 

 

As discussed in the previous section, canonical cap-dependent translation is inhibited on 

multiple levels during stress. Cells therefore utilize non-canonical modes of translation (see section 

1.2.2) to allow translation specifically during the stress response. One of the best studied examples of 

selective translation involves the transcription factor ATF4 by a uORF-mediated mechanism. The 

translation during stress of it transcriptional targets such as CHOP and GADD34 follow similar rules as 

ATF4 translation (Pakos‐Zebrucka et al., 2016). The relevance of the ATF4-CHOP-GADD34 axis for the ISR 

has been already highlighted (section 1.2.3). In general terms, uORF-mediated translation seems to be 

the most important translation pathways for mammamlian cells to allow continued translation during 

stress (Andreev et al., 2015; Gao et al., 2015). Using ribosome profiling in HEK293T treated with sodium 

arsenite, a 5.4-fold general reduction of translation activity has been observed. Almost all repression 

resistant transcripts possessed at least one efficiently translated uORF in their 5′-leader, repressing 
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translation of the mORF under control conditions. Many of the discovered translating transcripts play 

an active role during the ISR (Andreev et al., 2015). 

IRES-dependent translation represents a second cellular strategy to specifically allow translation 

during the stress response, but its occurrence and significance in cells is not clear (see section 1.2.2). 

Transcripts that are thought to be translated by IRES- elements during stress and which also seem to 

require ITAFs include for example the hypoxia response factors HIF-1α and VEGF and the apoptosis 

regulator XIAP (Spriggs et al., 2010). Hypoxia-inducible factor (HIF-1α) mRNA is a good example for the 

challenging identification of IRES-mediated translation of stress-responsive genes (Spriggs et al., 2010). 

Initially, HIF-1α was shown to contain an IRES allowing efficient translation during hypoxia and control 

conditions (Lang et al., 2002). Later, it was discovered that HIF-1α can also become translated by an IRES-

independent mechanism, presumably due to cryptic promoter activity producing scanning-competent 

HIF-1α transcripts (Bert et al., 2006; Young et al., 2008). In addition, it was observed that several HIF-1α 

ITAFs not only bind to the IRES element, but also to the HIF-1α 5′UTR which makes a scanning-related 

translation mechanism more likely (Schepens et al., 2005; Spriggs et al., 2010). Such findings are in line 

with other observations that next to cryptic/unknown promoters, truncated templates or unknown 

splice sites contribute to the translation of transcripts thought to contain IRES elements (Jackson, 2013; 

Shatsky et al., 2014). An interesting remaining option is that IRES-mediated repression resistance might 

require the translation of a uORF since this would prevent the helicase-induced melting of the IRES 

structure during the ribosomal scanning process (Andreev et al., 2015). In principle, the two main 

cellular translation initiation options during the stress response could therefore be more closely related 

than previously thought. 
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1.3 The dynamic nature of stress-induced mRNP granules 
 

Various non-membranous messenger ribonucleoprotein (mRNP) complexes exist in eukaryotic 

cells and presumably catalyze mRNA metabolism in a localized manner (Banani et al., 2017). Some mRNP 

complexes increase in size and number when cells face an altered homeostasis for example during the 

cell cycle or the encounter with external biological, chemical, or physical stressors (Panas et al., 2016; 

Protter and Parker, 2016). The two most prominent representatives of stress-induced mRNP complexes 

are stress granules (SGs) and processing bodies (PBs).  

SG formation was first described as a consequence of stress-induced translational arrest during 

which mRNAs are released from disassembled polysomes, bind aggregation prone proteins and from 

cytoplasmic foci (Kedersha et al., 1999). Recently developed proximity labelling approaches and 

elaborate lysis and centrifugation protocols have allowed the in-depth characterization of the SG and 

PB proteomes and transcriptomes. It is now known that SGs are composed of more than 300 proteins 

that probably assemble in a two-step process first forming a dense and stable core, followed by the 

phase separation of a surrounding shell structure (Jain et al., 2016; Wheeler et al., 2016). SGs can 

dramatically vary in their composition, depending under which conditions they form. This has been 

demonstrated in detail for single candidate proteins in yeast and human cells (Aulas et al., 2015; Buchan 

et al., 2008) and recently also proteome-wide in human cells (Markmiller et al., 2018). Using G3BP1-APEX 

proximity labelling, this study showed that 20% of a SG’s protein composition is stress or cell-type 

dependent. SGs in Drosophila  neurons show a particularly complex assembly of chaperones and 

autophagy factors (Markmiller et al., 2018). 

While almost all expressed mRNAs can be detected in SG cores, only 10% of the total cellular amount of 

mRNA is present in SG cores. Interestingly, the recruitment efficiency per transcript varies from less than 

1% to more than 95% (Khong et al., 2017). The presence of an AU-rich element (ARE), long coding 

sequence (CDS), long untranslated region (UTR) or poor translation efficiency were identified as broad 

determinants for transcript targeting to SGs (Khong et al., 2017; Namkoong et al., 2018).  

 

Recent FACS-based purification of PBs led to an increased understanding of their protein and 

RNA composition. For example, 125 proteins were significantly enriched in PBs of which the majority 

was PB-specific compared to the SG core proteome. Interestingly, coding mRNAs were found to be more 

enriched in PBs than non-coding RNAs (Hubstenberger et al., 2017). Already before this study, the 
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presence of many components of the mRNA decay machinery inside of PBs, such as DCP1a and XRN1, 

had led to the idea that PBs represent centers for RNA decay (Decker and Parker, 2012). Others proposed 

that PBs function as sites for mRNA storage or protection from which mRNAs can return to polysomes 

(Bhattacharyya et al., 2006; Brengues et al., 2005). In Chapter 4, findings obtained by translation imaging 

of single mRNA molecules are described, which imply a translation repression function of PBs during 

stress recovery (Halstead et al., 2015). In addition, a dual role for mRNA storage and decay has been 

proposed (Aizer et al., 2014), while another recent study by our group did not detect any direct 

degradation events inside of PBs (Horvathova et al., 2017).  

 

The relevance of both PBs and SGs for mRNA dynamics (Chapter 2), cell survival (Chapter 3), and 

localized regulation of translation (Chapters 4 and 5), during stress have been studied during this PhD 

project. This section aims to give an overview about the dynamical nature of mRNP complexes, with a 

focus on SGs. Compared with SGs, only little information is currently available on formation and 

disassembly mechanisms of PBs (Franks and Lykke-Andersen, 2008). Several lines of evidence obtained 

during the last two decades supports the view that PBs and SGs are transient and dynamical structures 

whose formation and disassembly is regulated by several redundant pathways. 

 

1.3.1 Translation initiation block and early SG formation 

During stress, the phosphorylation of eIF2α inhibits the GEF activity of eIF2B and thereby 

depletes TC (eIF2-GTP-tRNAMet) required for translation initiation. While the eIF4F complex (eIF4A/E/G) 

is present on the mRNA cap, the depletion of TC prevents the proper formation of the 43S PIC. This leads 

to a non-canonical stalled 48S PIC on the mRNA containing most of the canonical components such as 

eIF3, eIF4A/E/G, the 40S ribosomal subunit and PABP, but no large 60S ribosomal subunit (Kedersha 

et al., 2002; Kimball et al., 2003). All of these components are detectable in SGs. Block of translation 

initiation via mTOR inhibition prevents the formation of the eIF4F complex and forms SGs in an eIF2α-

independent manner. Consequently, the composition of mTOR-induced SGs differs from eIF2α-

dependent SGs. Fig. 5 depicts schematically how translation initiation blocking can lead to SG 

formation. Small molecules targeting eIF4A such as pateamine A, hippuristanol and PGJ2 also lead to 

eIF4F complex inhibition and SGs that resemble SGs after mTOR inhibition (Panas et al., 2016). Following 

blocked translation initiation, elongating ribosomes run off the mRNA molecule and the mRNA 

becomes accessible for the binding of RBPs with low complexity domains (LCDs) such as G3BP1, TIA1 
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and others (Fig. 5). Presumably, due to their LCDs, these proteins can self-oligomerize on the mRNA and 

thereby seed early SGs (Kedersha et al., 2013). 

 

Fig. 5: Block of translation initiation and binding of aggregation-prone proteins to RNA initiates the formation of 

stress-induced RNA-protein granules. (1) Translation initiation block can be induced by stress or various small molecules. (2) 

Ribosome continue to elongate and run-off the mRNA. (3) mRNAs become susceptible to the binding of aggregation-prone 

stress granule (SG) proteins. In addition, the overexpression of such proteins or mutations during disease can cause SG 

formation independently of translation initiation block. (4) Several mRNAs bound by aggregation-prone proteins might 

assemble into early SG structures, referred to as cores, (5) followed by the phase separation driven formation of a shell structure 

which presumably contains a different proteome. (6) Processing bodies (PBs) also start to form after ribosome run-off (7) due 

to increased susceptibility to RNA decay factors. (8) Continued loss of translation factors and increased binding of more decay 

machinery components seeds PB formation. PBs can interact dynamically with SGs. Why some RNAs seed PBs while others seed 

SGs is not completely understood. The dynamic interactions of single mRNA molecules with PBs and SGs was specifically 

studied during this PhD project. 

Translation initiation blocking and SG formation are not necessarily linked processes. eIF3 

subunit depletion or the pharmacological inhibition of 60S subunit joining prevent SG formation while 

also inhibiting translation (Mokas et al., 2009; Ohn et al., 2008). The inverse is true as well and SG 
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formation can be inhibited downstream of translation initiation, for example through the binding of 

USP10 to the SG component G3BP1 (Kedersha et al., 2016). In addition, certain stresses can uncouple SG 

presence and translation. During the recovery from cold shock in human COS7 cells, SGs disassembled 

within minutes whereas polysomes fully reassembled only after 6 hours (Hofmann et al., 2012). In 

addition, mRNA-dependent SGs or SG-like structures can be nucleated by the overexpression of certain 

LCD-containing proteins such as TIA1 (Gilks et al., 2004; Kedersha et al., 1999), G3BP1 (Tourrière et al., 

2003), Caprin1 (Solomon et al., 2007), DDX3 (Shih et al., 2012), or TTP (Stoecklin et al., 2004) (Fig. 5). In 

summary, it is unlikely that SGs directly regulate translation. Instead, it is more probable that certain 

aspects of cellular translation regulation also lead to the formation of SGs. 

 

1.3.2 SG dynamics: Phase separation, docking and fusion  

 

Over the last 20 years, several translation-dependent and –independent pathways to form SGs 

have been identified. However, the molecular and biophysical mechanisms that lead from stalled 

translation initiation complexes via the intrinsically disordered domains of RBPs and phase separation 

to mature SGs have only been understood since recently (Protter and Parker, 2016). In brief, phase 

separation, also called liquid-liquid unmixing, occurs when molecules form a network of weak 

interactions strong enough for those molecules to concentrate into a separate phase within the 

preexisting environment. Phase separated structures are temperature dependent, do not contain a 

membrane and exhibit liquid like behavior, which means that two spherical structures can fuse into a 

single spherical structure with twice the volume. SGs and PBs fulfill most of these characteristics. The 

well-established concept that translationally stalled mRNAs provide a scaffold and require aggregation-

prone RBPs such as TIA1 and G3BP1 to form SGs fits into the phase separation theory of SG formation. 

In addition, live cell microscopy has provided evidence that SGs exhibit liquid-like behaviors and 

frequently fuse with each other (Fujimura et al., 2009; Wheeler et al., 2016). Mutational studies have 

shown that LCDs in SG-resident proteins are necessary for SG formation. Despite this, it is currently 

unclear if such intrinsically disordered domains can form a network of multivalent interactions required 

to fulfil the classical definition of phase separation or whether another unknown mechanism is 

responsible for LCD-driven SG formation (Alberti et al., 2017; Protter and Parker, 2016).  

 

Next to their formation, the ultrastructure of SGs has been intensely studied in the recent past. 

Specific cell lysis and centrifugation approaches allowed the partial purification of SG components (Jain 
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et al., 2016). Together with high resolution imaging studies of different SG-resident proteins, the picture 

emerged that SGs are composed of a relatively solid and stable core part, which is surrounded by a 

liquid-like shell which is in dynamic exchange with the cytoplasm (Niewidok et al., 2018; Souquere et 

al., 2009; Wheeler et al., 2016). The evolved biochemical knowledge of SG components together with 

recent imaging insights has led to the core-shell model of sequential SG formation (Protter and Parker, 

2016) (Fig. 5). Aggregation-prone RBPs are thought to condense on non-translating “naked” mRNAs into 

stable core structures, followed by the formation of a dynamic surrounding shell via high local 

concentrations of other secondary SG-resident proteins though phase separation. Currently, the core-

shell model has still several weaknesses and leaves important questions unanswered. First, the 

biophysical basis of protein aggregation in the context of SGs for phase separation is only incompletely 

understood. In particular, it is not clear how the LCDs of SG-resident proteins result in phase separation. 

Secondly, there is currently only little evidence for the existence of a shell structure. Although recent 

imaging studies (Niewidok et al., 2018; Wheeler et al., 2016) found evidence for a bipartite SG 

architecture, the liquid-like properties of SGs make it difficult to purify complete SGs. This would allow 

the biochemical characterization of cores and shells separately from each other. It is likely that the shell 

consists of a different proteome. Some known SG components, such as LARP1, were not identified in 

the core proteome. Consequently, they might be present in the shell structure.  Recently used G3BP1-

based APEX proximity labelling and subsequent proteomic analysis (Markmiller et al., 2018) might 

contribute to a better characterization of the SG shell. A third problem is that the core-shell model can 

currently not explain the observed phase separation-related formation of other mRNP complexes such 

as P-granules in C. elegans or PBs in human cells (Banani et al., 2017; Hubstenberger et al., 2017; Schütz 

et al., 2017).      

 

In stressed human cells PBs are often grouped around SGs and in close proximity to them 

(Kedersha et al., 2005; Wilczynska et al., 2005). A considerable proteomic overlap between both 

structures exists which has been detected early on by several immunofluorescence-based studies. 

Although SG composition is generally variably, proteins such as CPEB, hnRNPQ, Roquin, DDX3, TTP and 

others can be found in PBs and SGs (Buchan and Parker, 2009). Some of these proteins, such as TTP, 

enhance the interaction between PBs and SGs when overexpressed (Kedersha et al., 2005).  Mostly 

observed in yeast, the overexpression or knock-down of some PB components has been observed to 

lead to the relocalization of other PB components into SG-like structures, indicating that the 

development of one structure into the other one might be possible (Buchan and Parker, 2009). Based 

on the intriguingly close association of PBs and SGs and the shared presence of proteins and reporter 
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mRNAs in both structures, it has been proposed that mRNAs are sorted between SGs and PBs to 

undergo translational repression or decay, respectively. mRNA trafficking between SGs and PBs is also 

known as the “mRNA triage model” (Anderson and Kedersha, 2008; Kedersha et al., 2005). However, 

mRNA sorting is a disputed idea. With a combination of RNA MS2-MCP labelling and FRAP, Mollet et al. 

found that RNA residence times in SGs are only brief, compared to their total residence time in the 

cytosol. Consequently, the researchers regarded it as more likely that RNA transfer to PBs occurs mainly 

through the cytosol and not though SGs (Mollet et al., 2008). In addition, PBs and SGs remain distinct 

structures as shown by electron microscopy (Souquere et al., 2009) and recent proteomic studies 

(Hubstenberger et al., 2017; Jain et al., 2016). Despite this, mRNA sorting between SG and PBs is a 

frequently cited idea in the scientific literature, although experiments specifically testing mRNA transfer 

between both structures, using high resolution imaging, have not been performed. During my PhD 

project, I specifically tested the possibility of mRNA triage with a set of experiments described in Chapter 

2.  

 

1.3.3 Disassembly of SGs 

 

First indications how SG might disassemble came from experiments with the translation 

inhibitor cycloheximide. Cycloheximide specifically inhibits the ribosomal translocation step during 

translation elongation and leads to ribosomal stalling on the mRNA without subsequent disassembly. 

Kedersha et al. showed that the addition of cycloheximide to stressed cells disassembles SGs (Kedersha 

et al., 2000). The addition of cycloheximide seemed to trap SG components in cytosolic polysomes 

outside of SGs. The researchers therefore proposed a model in which SGs are in a dynamic equilibrium 

with polysomal mRNAs. During the recovery from stress, the out-rates of SG-trapped stalled translation 

machinery components and their re-binding to mRNAs might be higher than during stress. Ultimately, 

this might lead to SG disassembly and translation re-initiation. Although SGs are indeed highly 

dynamical structures, the frequently cited conclusions obtained by the original cycloheximide 

experiment have some caveats. First, the classical model of SG formation requires ribosomes to run off 

the mRNA in order for it to become accessible for aggregation-prone RBPs. Therefore, the existence of 

polysomes outside of SGs during the stress response is unlikely and would not allow the exchange of 

any components. Second, only translation incompent PICs are present in SGs, either lacking TC or eIF4F. 

It is unclear how such incompletely formed initiation complexes could bind to mRNA. Third, although 

not impossible, the rebinding of ribosomal components to mRNAs during the ongoing stress response 
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is unlikely due to the strong inhibition of translation initiation in the presence of stress. Taken together, 

the model that SGs are in constant exchange with polysomes in the surrounding cytosol might be an 

oversimplification. Despite this, it is indeed likely that this exchange can occur once cells are starting to 

recover from stress. Under such condtions, functional translation initiation complexes are forming, and 

the number of polysomes is increasing. Also small molecules like ISRIB (section 1.2.3) have been 

implicated in translation-dependent disassembly of SGs (Sidrauski et al., 2013), although the exact 

mechanism is currently unclear and might involve secondary unidentified targets next to eIF2B.  

In addition to the classical translation-centered model, other SG disassembly models have 

been proposed. For example, post-translational modifications on key stress granule components 

could lead to their disassembly. This has for example been demonstrated for G3BP1 by reversible 

phosphorylation on Ser149 (Tourrière et al., 2003). Phosphorylation seems to impair G3BP1’s ability to 

multimerize and form SGs. Recently, casein kinase 2 (CK2) has been described to regulate G3BP1 

phosphorylation on Ser149 (Reineke et al., 2017). Another kinase implicated in SG and PB disassembly 

in DYRK3. When DYRK3 is active, it allows stress granule dissolution, releasing mTORC1 from SGs 

(Wippich et al., 2013). Activated mTORC1 might then contribute to translation initiation and further 

promote SG disassembly. Furthermore, the methylation of RGG motifs, a loss of O-Glc-NAc 

glycosylation or acetylation have been implicated in SG disassembly (Protter and Parker, 2016). A third 

model for SG disassembly highlights the need for ongoing ATP-hydrolysis in order to maintain SGs 

actively as phase separated entities in the cellular environment (Jain et al., 2016). The proteomic 

analysis of SG cores identified several ATPases which might regulate SG stability. ATP-dependent 

HSP40/70 chaperonins, dead-box helicase DDX3, and VCP/Cdc48 ubiquitin segregase have all been 

found to regulate SG core proteins by chaperoning or post-translational modifications. In particular, 

the ATPase VCP/Cdc48 might provide a link to SG clearance via autophagy. Inhibition of VCP/Cdc48 

function in eukaryotic cells resulted in the accumulation of SG, while the activated enzyme led to SG 

targeting to vacuoles where autophagy can occur (Buchan et al., 2013). Interestingly, VCP/Cdc48 

activity seemed to be important for both SG and PB disassembly. Considering that autophagy allows 

the orderly degradation and recycling of unnecessary or dysfunctional cellular components, this PB 

and SG disassembly model is a very attractive one. 

Another recent report specifically addressed the disassembly of PBs involving a small 7-kDa 

human protein the authors called NoBody (D’Lima et al., 2017). NoBody colocalized with PBs and its 

expression levels anticorrelated with the presence of PBs. Tagged versions of NoBody were able to 

pull-down protein enhancer of decapping 4 (EDC4) which is a PB-resident protein. Whether the 
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interaction of NoBody with EDC4 is relevant for its PB-disassembly function is currently not clear. 

Taken together, the large variability of translation-dependent and –independent SG disassembly 

mechanisms make it unlikely that one single mechanism serves as the major regulator. It is more 

probable that SGs disassemble in a stress-, cell type- and disease-specific manner. 
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1.4 mRNP granules and localized mRNA biology 
 

Based on the above-described protein-biology centered observations, mRNP complexes seem 

to be highly dynamic and offer several potential entry points to regulate mRNA fate during the stress 

response. Despite this, it is currently an open question whether the mRNAs within a cell automatically 

follow the large number of RBPs which are present inside of PBs and SGs. In addition, there is only little 

mRNA-centered evidence, which roles mRNP complexes perform during the stress response and how 

these roles might be executed. Here, the focus therefore lies on findings that have been obtained by 

studies directly investigating the fate of mRNAs in PBs and SGs. 

 

1.4.1 mRNA-centered evidence for translation regulation inside of mRNP 

granules 

 

Translation repression within SGs has been proposed due to the striking correlation of the 

assembly of visible mRNP-complexes with general translation initiation repression and the presence of 

several eIFs, (eIF2, 3, 4A/E/G/B) inside of SGs (Decker and Parker, 2012; Stoecklin and Kedersha, 2013). In 

addition, the presence of inhibitory proteins, miRNAs or the steric block of ribosomal assembly have 

been implicated in repressing mRNA translation locally inside of SGs (Buchan, 2014). Only a small 

number of studies specifically concentrated on the translational fate of mRNAs inside of PBs or SGs. 

Early work by Brengues et al. showed that in yeast, several overexpressed mRNA species 

visualized by the binding of a fluorescent fusion protein to their 3′UTRs exit PBs in a translation-

dependent manner and are present in polysomal fractions (Brengues et al., 2005). The authors conclude 

that in eukaryotic cells translating and nontranslating pools of mRNAs are spatially segregated in the 

cytosol. Work by Bhattacharyya et al. extended these findings to human cells and showed that cationic 

amino acid transporter 1 (CAT-1) mRNA can be relieved from microRNA-induced translational 

repression during the stress response (Bhattacharyya et al., 2006). In particular, the authors show that 

Renilla luciferase reporters bearing the 3′UTR of CAT-1 become derepressed during starvation, protein 

folding and oxidative stress in Huh7 cells. Further, the binding of HuR to the CAT-1 3′UTR positively 

regulates the observed stress-Induced derepression. Using RNA FISH against CAT-1 mRNAs the authors 

observed that the derepression of CAT-1 mRNA is accompanied by its release from PBs and was present 
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in the polysomes, consistent with translational reactivation. HuR was also observed to localize from the 

nucleus into the cytosol during stress. As a model, the authors propose that higher cytoplasmic levels 

of HuR shift the PB-to-cytosol equilibrium of repressed mRNA thereby inducing their translation. 

Together the studies of Brengues et al. and Bhattacharyya et al. find for the first time indications that PB 

localization of mRNAs could cause their spatial translation repression. However, from a current 

standpoint, technical limitations at the time might make it necessary to reconsider their conclusions. 

First, both studies make use of overexpressed reporters which could have led to artificially high PB 

localization. Second, both used mRNA imaging approaches have a low resolution and likely only detect 

mRNAs that are localized in PBs due to their locally higher concentration. The majority of mRNAs outside 

of PBs are not detected and are not considered for the conclusion on local translation repression. Third, 

the observations of a coupling between mRNA release from PBs and translation onset are strictly 

speaking only of a correlative nature. Detection of derepressed mRNA translation through luciferase 

assays or polysome profiling does not necessarily imply that exactly those mRNAs have been localized 

and repressed in PBs before. Despite this, the important observation of PB-induced translation 

repression might still hold true under some conditions and for a sub-fraction of mRNAs. Work performed 

during this PhD project using the TRICK single molecule translation sensor showed that during recovery 

from stress mRNAs that are localized inside of PBs are translationally repressed, while freely diffusing 

mRNAs in the cytosol are undergoing translation (Halstead et al., 2015).   

mRNA-centered evidence for mRNA translation repression inside of SGs has been obtained for 

mRNAs bearing a 5′TOP element (Damgaard and Lykke-Andersen, 2011). Using an RNA 

immunoprecipitation assay, TIA-1/TIAR proteins were found to negatively regulate the translation of 

5′TOP element-containing reporter mRNA in luciferase assays and polysomal fractions. TIA-1/TIAR is also 

a SG-nucleating protein and 5′TOP mRNAs were found to localize to SGs during amino acid starvation 

by RNA FISH. This mechanism could in principle lead to a systemic control of protein synthesis through 

sequestration and repression of 5′TOP-encoded translation and ribosome biogenesis factors. However, 

also this study has several technical limitations preventing a thorough conclusion about SGs as hubs for 

localized 5′TOP mRNA translation repression. The authors find that GCN2 kinase activation and 

inactivation of mTOR signaling is required for 5′TOP mRNA translation repression, while their RNA FISH 

imaging has only sufficient resolution to detect the high local concentration of 5′TOP mRNAs inside of 

SGs, but not in the cytosol. The authors did not quantify the localization ratio between the two 

compartments. Taken together, it is therefore likely that translation repression of 5′TOP mRNAs occurs 

in a decentralized manner in the cytosol and not just inside of SGs. 
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1.4.2 mRNA-centered evidence for mRNA decay inside of mRNP granules  

 

Localized mRNA decay has mainly been implicated with PBs due to their high local 

concentration of RNA decay factors. In a landmark study, Sheth and Parker report that specifically 

aberrant mRNAs are targeted to PBs for nonsense-mediated decay (NMD) and undergo rapid decay 

(Sheth and Parker, 2006). Specifically, the authors show that the deletion of yeast NMD factor Upf1 

prevents the targeting of U1A-fluorescently labelled mRNA reporters with pre-termination stop codons 

to PBs. Interestingly, this Upf1-deletion phenotype excludes the excess localization of mRNAs to PBs 

even under low resolution RNA imaging conditions. Although it is possible that NMD occurs in PBs, 

Sheth and Parker do not demonstrate that Upf1-mediated NMD cannot occur outside of PBs. Such an 

experiment would be required to show that NMD or RNA decay in general is specific to PBs. The MS2-

MCP mRNA imaging system in combination with FRAP was used in living human cells to deduce RNA 

decay in PBs (Aizer et al., 2014). The researchers assumed that decay in PBs leads to a local depletion of 

mRNAs inside of PBs and therefore should result in fast mRNA-signal recovery rates after bleaching. 

Indeed, knockdown of DCP2, a PB-resident decapping protein, slowed RNA fluorescence recovery after 

PB-bleaching compared to control conditions. Despite these interesting results, a slowed fluorescence 

recovery is only weak evidence for direct mRNA decay inside of PBs. In addition, the used method lacked 

a readout to distinguish between degradation inside and outside of PBs.  

Next to the RNA imaging studies described above, arguing in favor of localized RNA decay in 

PBs, evidence is increasing that decay occurs predominantly outside of PBs. Using mRNA reporters with 

viral pseudoknots that stabilize decay intermediates, Horvathova et al. succeeded for the first time in 

the direct imaging of RNA decay in fixed and living cells. However, decay was only observed in the 

cytosol and not in PBs, even under conditions with enhanced RNA recruitment into PBs, such as stress 

or the use of ARE-containing mRNA reporters (Horvathova et al., 2017). The recently described 

purification of PBs from unstressed human cells by a FACS-like approach, allowed for the first time 

reporter-independent and transcriptome wide conclusions about RNA decay in PBs (Hubstenberger et 

al., 2017). Although, the purified structures might not include all components of PBs, RNA sequencing 

of the protein-bound transcripts delivered interesting insights. PB-positive RNA species where not less 

abundant overall when the total cellular mRNA content was assessed. Further, mRNA half-lives only 

poorly correlated with localization in PBs and no decay intermediates could be identified. Taken 
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together, these findings indicate that decay in PBs does not occur at all or only to a relatively small 

extend. Most mRNA decay therefore probably occurs outside of PBs.  

 

1.4.3 mRNA-centered evidence for localization, storage and protection of 

mRNAs inside of mRNP granules 

 

Oxidative damage or other chemical modifications during the stress response can have severe 

consequences for RNA half-lives or translation fidelity (Nunomura et al., 2017; Simms et al., 2014). 

Assuming that stress-induced mRNPs can protect RNAs from harmful conditions through a chaperoning 

effect, it is surprising that RNA imaging studies show that generally only between 1% and 10% of cellular 

RNAs localize to PBs and SGs (Sheinberger and Shav-Tal, 2017; Stöhr et al., 2006). Although some 

exceptions exist, these findings were generally confirmed by the recent partial purifications and 

transcriptomic analysis of PBs and SGs (Hubstenberger et al., 2017; Khong et al., 2017).  

Aizer et al. used the MS2-MCP mRNA imaging system in living human cells and showed that 

mRNAs accumulate inside of PBs during amino acid starvation (Aizer et al., 2014). Using a FRAP approach 

they show that during the ongoing stress response mRNA exchange kinetics with the surrounding 

cytosol are slow and that a large immobile fraction exists. mRNAs cleared gradually from PBs after stress 

is over. Although the majority of mRNA molecules in their experiments did not localize to PBs, the 

authors argue that the release of mRNAs from PBs during the relief from stress indicates a storage 

function for PBs. Currently, no published live cell data is available which clearly shows that mRNA 

localization to PBs or SGs significantly increases RNA half-life compared to their unbound counterparts. 

In Chapter 2, translation and decay RNA imaging experiments are presented which call a protective role 

of PBs and SGs into question. 
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1.5 mRNP granules and disease  

  

Through local enrichment of biomolecules stress-induced mRNPs are thought to influence the 

cellular biochemistry in two ways. First, the recruitment of catalytically active molecules into mRNP 

complexes results in a high local concentration. As a consequence, reaction equilibria are driven 

towards bound states, that can specifically enhance or block a reaction. Second, mRNP complexes can 

reduce molecular interactions in the cytosol through sequestration and physical separation of two 

binding partners. Experimental evidence exists for both models which are not mutually exclusive, but 

highly depend on the recruited molecules and the physiological situation (Protter and Parker, 2016). 

Connected to the above-described conceptual physiological roles, stress-induced mRNPs also seem to 

play roles in various human diseases. Here, the focus will mainly be on SGs rather than PBs since their 

relatively well-studied link with mRNA translation has led to large body of evidence connecting this 

granule type with altered cell physiology.  

SGs in neurological diseases and cancer 

Recently, SGs-like structures have been related to human neurodegenerative disorders defined 

by the presence of toxic insoluble protein aggregates. This link is strongest for amyotrophic lateral 

sclerosis (ALS) and frontotemporal dementia (FTD), where several disease-causing mutations also 

influence the dynamics of SGs. Mechanistic insights have not been obtained in great detail, but 

disturbed phase separation induced by LCDs of the proteins FUS and TDP-43 are increasingly in the 

focus (Haeusler et al., 2016). In addition, translation regulation can be severely disturbed the ALS/FTD 

context (see section 1.2.2 on RAN translation). SGs also frequently occur inside of solid tumors, 

presumably induced by nutrient starvation or hypoxia. In addition, several different types of eIF2α and 

eIF4F targeting chemotherapeutic agents have been shown to induce SGs (Anderson et al., 2015). What 

might seem an unimportant secondary effect could cause a severe resistance to cancer therapy. 

Chemotherapeutic drugs can induce apoptosis through the stress-activated p38 and JNK/MAPK (SAPK) 

pathways. Importantly, Arimoto et al. show that SGs negatively regulate the SAPK apoptotic response. 

Mechanistically, the signaling protein RACK1 becomes sequestered inside of SGs and cannot fulfill its 

SAPK-activating function anymore. As a result, apoptosis induction is inhibited (Arimoto et al., 2008). A 

similar discovery was recently made in tumor cells bearing a KRAS mutation. Here, the signaling 

prostaglandin molecule PGJ2 is produced in excess by the mutant cells, disrupts eIF4F complex 

formation and induces SGs, resulting in increased and unwanted tumor fitness (Grabocka and Bar-Sagi, 
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2016).  On the other hand, several chemotherapeutic reagents have been shown to induce eIF2α 

phosphorylation leading specifically to the stimulation of the immune system, which might help to 

counteract tumor formation (Bezu et al., 2018). Considering the large amount of correlative disease data 

on cancer and SGs (Anderson et al., 2015), it is surprising that relatively few published studies exist trying 

to identify unbiased or at least multidimensional ways to target SG integrity. The discovery of the 

molecule ISRIB is a notable exception and highlights the enormous scientific and therapeutic potential 

when existing chemical compound libraries are combined with a very specific stress response relevant 

readout (see also section 1.2.3 and Chapter 3).  

SGs in viral infections 

While excess SG formation might be harmful for cancer patients, some evidence points towards 

that boosting SG presence might be effective against viral infections. SG targeting and inhibition by 

viruses during their life cycles has been documented extensively (McCormick and Khaperskyy, 2017). 

Since the discovery that dsRNA causes activation of PKR and the induction of the ISR including 

translational repression, viruses have been studied in the context of SGs. Considering the large 

variations in viral structure, genome organization and replication strategies, it is surprising that all virus 

classes have been shown to be able to alter SG dynamics. Interestingly, viral SG suppression often occurs 

downstream of PKR and stress-induced translation arrest and strongly suggests that SGs have antiviral 

properties (McCormick, Nat Rev Immu, 2017). The most prominent role for SGs during viral infections 

could be the block of viral gene expression through translation inhibition, although not necessarily in a 

localized manner. Several viruses block PKR activation to prevent their detection. For example, Zika virus 

inhibits eIF2α-dependent SG assembly upstream eIF2 (Amorim et al., 2017) and also piconavirus has 

been shown to regulate SG formation via its protease 2A to specifically enhance the translation of its 

own mRNAs (Yang et al., 2018). Further, SGs have been shown to sequester antiviral factors which might 

make them a preferred target for viruses (McCormick and Khaperskyy, 2017). The viral block of SG 

formation can be surprisingly robust. HIV-1 Gag blocks SG assembly irrespective of eIF2α 

phosphorylation (SA & pateamine A were tested) and even when SG assembly is forced by 

overexpression of G3BP1 or TIAR (Valiente-Echeverría et al., 2014). Interestingly, cells can form anti viral 

granules (AVGs) upon viral infection that resemble SGs, but are not identical to them. AVGs are for 

example positive for the SG marker proteins TIA1 and G3BP1, but do not contain 40S ribosomal subunits 

and are cycloheximide resistant (Rozelle et al., 2014). Whether AVGs are the effect of an arms race 

between host cells and viruses, battling for SG stability, is currently unclear. In line with such a theory 

are findings by Ruggieri et al. The researches find that SG presence in human cells can oscillate upon 
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infection with dsRNA (Ruggieri et al., 2012). Potentially, this represents a mechanism for cells to 

minimize opportunities for viruses to downregulate SGs. Several translation-targeting antiviral 

approaches involving eIF4A helicase inhibitors exist. However, understanding the anti-viral role of SGs 

independently of translation might help to use the active and forced induction of SGs as an antiviral 

therapy without the need to disturb translation with all of its side effects for the host. Taken together, 

the clearly demonstrated activities of viruses to block SG formation or to promote their disassembly are 

one of the strongest overall indications that SGs have important functions for cellular homeostasis 

during the stress response. Which functions exactly, remains an open question. 
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1.6 Functional mRNA dynamics during stress are unknown – an 

experimental approach 
 

Reasearch on stress-induced mRNP complexes has come a long way since the discovery was 

made that translation repression is linked to SG formation (Kedersha, JCB, 1999). Knowledge about the 

transcriptomic and proteomic composition of PBs and SGs has dramatically increased  (Hubstenberger 

et al., 2017; Jain et al., 2016; Khong et al., 2017; Markmiller et al., 2018; Namkoong et al., 2018). Also the 

dynamics and architecture of proteins within PBs and SGs have been characterized in detail recently 

(Niewidok et al., 2018; Wheeler et al., 2016). Further, the macroscopic interaction of PBs and SGs is well 

documented (Decker and Parker, 2012; Stoecklin and Kedersha, 2013). Despite these recent advances, 

two important aspects of PB and SG biology have not been assessed in detail so far.  

mRNA dynamics relative to PBs and SGs are unknown 

Direct observations and quantification of mRNA interactions with stress-induced mRNPs at high 

resolution in living cells have not been performed. As a result, it is only incompletely understood during 

which phases of the stress response mRNAs enter PBs and SGs. Further, it is not known whether 

subpopulation of the same mRNA species interact differently with granules, i.e. what is the fraction of 

granule-bound mRNA compared to their unbound counterparts during the stress response. In addition, 

it is not clear whether these dynamics are differing between transcripts of different genes and which 

cis- and trans-acting elements could be responsible for their recruitment. It has also not been 

demonstrated at high resolution to what extend mRNA interactions differ between PBs and SGs. 

RNA regulation inside and outside of PBs and SGs has not been quantified 

It is unlikely that all mRNA regulation occurs in a granule-dependent manner, while the 

intriguing clustering of mRNA-binding proteins inside of granules points towards some localized 

regulation. Due to the lack of high-resolution insights into the localization pattern of mRNAs relative to 

PBs and SGs, it has not been possible to assesses in detail to what extend both structures contribute to 

mRNA biology. 

Experimental requirements for the study of localized mRNA regulation 

The reason for the lack of direct evidence for localized mRNA regulation during the stress response 

seems to be mainly of a technical nature. Requirements for the study of localized mRNA biology are 
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complex. Such experiments involve the sequential performance of imaging, quantification (detection, 

tracking and colocalization), and functional assessment of RNAs relative to their localization in real-time. 

To understand mRNA regulation relative to stress-induced mRNPs in a high-resolution and mRNA-

centered manner, the following experimental requirements are obligatory: 

1) Direct imaging of mRNAs is required instead of focusing on mRNA-regulating RBPs and inferring 

automatically linked mRNA dynamics.  

 

2)  Dynamic information is required and therefore imaging in living cells is necessary. 

 

3) mRNA localization assessment requires a high resolution; consequently single molecule 

imaging is obligatory. Currently, the MS2-MCP/PP7-PCP imaging systems offer the best trade-

off between high imaging throughput, small cellular perturbation, and sufficient brightness and 

stability for live cell single molecule imaging. 

 

4) mRNAs, PBs and SGs need be imaged in the same cell and at the same time to draw causal 

conclusions about localized regulation. This requires triple-color imaging involving high-quality 

fluorescent proteins and dyes as well as a suitable microscope setup with three parallel imaging 

channels. 

 

5) Thorough quantification approaches to study the spatio-temporal distribution of mRNA are 

important. A combination of semi-automated mRNA tracking and automated PB/SG image 

segmentation with automated 2D mRNA coordinate-based colocalization has proven to be 

useful. 

 

6) Functional sensitivity to detect relevant events in RNA biology, such as translation or decay, is 

necessary. The development of an mRNA imaging-based translation sensor is specifically 

described in this PhD thesis (Chapter 4 and 5, Halstead et al., 2015, 2016). Approaches 

developed by others have been used as well (Horvathova et al., 2017; Voigt et al., 2017; Yan et 

al., 2016). 

 

7) To infer effects of mRNP granules on mRNA biology, approaches are required which correlate 

functional imaging observations (6) to the previously determined spatio-temporal mRNA 
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localization patterns (5). However, functional mRNA single-molecule imaging with a high-

spatio temporal resolution is only possible for short time frames (< 1 minute). mRNA processing 

potentially occurs over longer periods of time. Correlation of mRNA localization to functional 

effects is therefore still a challenge, which I address in the discussion in Chapter 6. 

Others have skillfully developed most of these above-described individual approaches during the 

last years. The main contribution of the work leading to this PhD thesis is the demonstrated 

combination of all of the above-described experimental requirements yielding a description of dynamic 

mRNA localization and regulation in stressed human cells. 
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Upon stress, eukaryotic cells down regulate mRNA translation and form RNA and proteins 

containing cytoplasmic structures such as stress granules (SGs) and processing bodies (P-bodies, PBs). 

Direct high-resolution and spatio-temporal evidence for RNA biological functions of SGs and PBs is 

lacking. This chapter describes several dynamical and functional observations, obtained with various 

RNA single molecule imaging techniques during oxidative stress in human cells. We find that cis 

sequence determinants govern mRNA localization to SGs and PBs. Different mRNA species interact with 

these granules in different patterns and throughout the stress response. We identify LARP1 as a trans-

acting factor which maintains mRNA presence in SGs and PBs. Further, the quantification of mRNA 

localization relative to SGs and PBs allowed us to assess the contribution of these granules on mRNA 

decay and translation. The majority of mRNA molecules remains stable and undergoes normal 

translation during the cellular recovery from stress. Although mRNAs interact frequently and 

dynamically with SGs and PBs, most of the direct cytosolic mRNA expression regulation can occur in a 

decentralized manner during stress and recovery. 
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2. 1 Introduction 
 

Cells frequently face different kinds of stresses inflicted by their environment. To maintain 

homeostasis eukaryotic cells alter their gene expression especially on the translational level. Nutrient 

starvation and oxidative stresses can inhibit mammalian target of rapamycin (mTOR) which prevents 

the formation of the eukaryotic translation initiation factor (eIF) 4F complex (Panas et al., 2016; Sfakianos 

et al., 2018). Protein-folding stress, viral double stranded RNA, amino acid deprivation, heme levels and 

oxidative stress are sensed by PKR-like endoplasmic reticulum kinase (PERK), protein kinase R (PKR), 

general control non-depressible 2 (GCN2) or heme-regulated inhibitor (HRI), respectively. All four 

kinases phosphorylate eIF2α(Ser51) which reduces the availability eIF2-GTP-tRNAMet ternary complex 

(Pakos‐Zebrucka et al., 2016). Stress-induced decreased canonical translation initiation often coincides 

with a reorganization of cytosolic RNAs and proteins into microscopically visible and non-membrane 

delimited messenger ribonucleoprotein (mRNP) complexes. The two most prominent stress-induced 

mRNP complexes are stress granules (SGs) and processing bodies (P-bodies, PBs). 

 

SGs contain RNA, several eIFs and the small ribosomal 40S subunit. RNA binding proteins (RBPs) 

with low complexity domains (LCDs) such as TIAR and G3BP1 are also present in SGs. Presumably, these 

proteins aggregate on translationally stalled mRNAs to form early SG cores by phase separation, 

followed by the assembly of a more dynamic and liquid-like shell structure (Jain et al., 2016; Niewidok 

et al., 2018; Wheeler et al., 2016). While almost all expressed mRNAs can be detected inside of purified 

SG cores, the extent to which transcripts are present in SGs differs per gene. In total, 10% of all expressed 

mRNAs is present in SGs (Khong et al., 2017). Due to the striking correlation between the assembly of 

SG with general translation initiation repression and the presence of initiation factors eIF2, 3, 4A/E/G/B 

inside of SGs, it has been proposed that SGs act as local hubs for translation repression (Decker and 

Parker, 2012; Stoecklin and Kedersha, 2013). In addition, the presence of inhibitory proteins, miRNAs or 

the steric block of ribosomal assembly have been implicated in repressing mRNA translation locally 

inside of SGs (Buchan, 2014). PBs are present in unstressed cells and increase in number during stress. 

PBs contain RNAs and several RNA decay factors such as the decapping, exonuclease or helicase 

enzymes DCP1a, XRN1, and DDX6. This pointed towards a PB function for localized RNA decay (Decker 

and Parker, 2012). Others proposed that PBs function as sites for mRNA storage or protection from which 

mRNAs can return to polysomes (Bhattacharyya et al., 2006; Brengues et al., 2005) or where mRNAs are 

subject to an extra layer of translational repression during recovery from stress (Halstead et al., 2015). In 
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addition, a dual role for mRNA storage and decay has been proposed (Aizer et al., 2014), while another 

recent study did not detect any direct degradation events inside of PBs (Horvathova et al., 2017). 

Recently, the purification of PBs under unstressed conditions led to first insights into the PB 

transcriptome, which seems to include predominantly intact and coding mRNAs (Hubstenberger et al., 

2017). 

 

PBs and SGs have a varying composition depending on cellular context (Markmiller et al., 2018), 

fast formation and disassembly kinetics (Jain et al., 2016; Protter and Parker, 2016), and show frequent 

physical interactions with each other (Kedersha et al., 2005; Stoecklin and Kedersha, 2013). 

Despite this, little is known about the dynamics of individual protein or RNAs with the surrounding 

cytosol. The exchange kinetics of RBPs have been mostly studied by bulk fluorescence recovery after 

photobleaching (FRAP) (Buchan and Parker, 2009; Kedersha et al., 2005; Mollet et al., 2008). The majority 

of examined proteins possessed recovery rates in the order of minutes (Buchan and Parker, 2009). Using 

single-molecule localization microscopy a recent study addressed the spatio-temporal dynamics of two 

SG proteins in more detail and found that exchange kinetics depend on whether a protein is localized 

within the stable core or the more dynamic shell of a SG (Niewidok et al., 2018). Less is known about the 

RNA dynamics of PBs and SGs. Previous studies often used transcriptome wide RNA labelling with 

oligo(dT) probes (Kedersha et al., 2000) or MS2-MCP mRNA labelling, but in combination with bulk FRAP 

approaches lacking single molecule sensitivity (Aizer et al., 2014; Mollet et al., 2008). Although 

potentially obscured by these technical limitations, residence times of mRNAs in PBs and SGs were 

generally found to be in the order of minutes. 

 

Detailed and direct insights into mRNA dynamics and mRNA regulation relative to PBs and SGs 

are currently lacking. In particular, open questions are how dynamically mRNAs rather than proteins 

interact with granules during different stages of the stress response and whether mRNAs can exchange 

between different mRNP complexes. It is also unknown to what extend PB- and SG-attributed functions 

occur exclusively inside of these structures or also in the surrounding cytosol. Here, we applied live cell 

MS2-MCP single molecule mRNA imaging and tracking in combination with stably expressed 

fluorescent markers for PBs and SGs in human cells. We find that enrichment of mRNAs in granules 

occurs throughout the stress response and that a 5′ terminal oligo pyrimidine (5′TOP) cis-acting element 

enhances mRNA recruitment into PBs and SGs. We quantified the high and low variability of mRNA 

interactions with SGs and PBs, respectively, and identified low-frequency movement of mRNAs from 

SGs to PBs. Further, we show that La-related protein 1 (LARP1) plays a role as trans-acting factor in 
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stabilizing 5′TOP mRNA presence inside of granules. Using single molecule degradation (Horvathova et 

al., 2017) and translation imaging (Yan et al., 2016) we demonstrate that mRNAs outside of granules are 

not specifically degraded and translate equally well during stress recovery as they did before stress 

onset. In summary, we present direct evidence by single molecule imaging that the presence of mRNAs 

inside of PBs and SGs is uncoupled from their biological regulation.  
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2.2 Results 
 

In order to characterize the spatial and temporal localization of mRNAs in RNA-protein granules 

during stress, we engineered a HeLa cell line expressing fluorescent mRNAs, PB, and SG markers in three 

spectrally distinct colors to allow their simultaneous detection in living cells (Fig. 1A). First, G3BP1-GFP 

and DDX6-TagRFP-T were stably integrated into HeLa cells and served as SG and PB markers, 

respectively. Cells were then sorted for low GFP and TagRFP-T levels by fluorescence activated cell 

sorting (FACS) to prevent SG or excess PB formation in the absence of stress (Tourrière et al., 2003). After 

generation of this cell line, the cells were treated with 100µM sodium arsenite (SA) to confirm that eIF2α 

was phosphorylated on Ser51 (Fig. S1A) and that translation was inhibited (Fig. S1B) indicating the 

activation of the integrated stress response. The number of G3BP1-GFP and DDX6-TagRFP-T granules 

was similar to the levels observed for endogenous G3BP1 in the absence and presence of SA (Fig. S1C). 

Next, we confirmed that the size, number, and formation kinetics of both G3BP1-GFP and DDX6-TagRFP-

T granules were comparable with previous reports (Fig. S1D,E) (Ohshima et al., 2015; Wheeler et al., 

2016).  

To detect mRNAs in living cells we cloned 24 MS2 stem-loops into the 3′UTR of three different 

types of transcripts that we anticipated could have potentially different localization behaviors during 

the stress response (Fig. 1A). The first reporter mRNA contained Renilla luciferase in the coding 

sequence and was generated to represent a standard mRNA encoding a cytosolic protein. The second 

mRNA reporter was identical except for the addition the first 50 nts of the RPL32 5′UTR which contains 

a 5′TOP motif. The 5′TOP motif is found in all ribosomal proteins and many translation factors and 5′TOP 

mRNAs are thought to constitute ~20% of all transcripts present in cells (Hornstein et al., 2001; Iadevaia 

et al., 2008).  Based on previous observations by us and others (Damgaard and Lykke-Andersen, 2011; 

Halstead et al., 2015) we expected the 5′TOP Renilla reporter to accumulate more in SGs and PBs 

compared to the Renilla reporter. The third reporter contained Gaussia luciferase in the coding 

sequence, a secreted protein, instead of Renilla luciferase and was generated to represent an mRNA that 

is translated on the endoplasmic reticulum (ER)  (Voigt et al., 2017). Earlier reports suggested that ER 

localization protects mRNAs from entering SGs (Backlund et al., 2016; Unsworth et al., 2010).  Accurate 

detection and tracking of single mRNA molecules is facilitated by physiological expression levels. We 

therefore utilized doxycycline-inducible HeLa cells and stably integrated single-copies of the reporters 

(Weidenfeld et al., 2009). To visualize mRNAs, we stably co-expressed nuclear localization signal (NLS) 
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containing Halo-tagged MS2 bacteriophage coat protein (NLS-MCP-Halo) that binds with high affinity 

to MS2 stem-loops (Bertrand et al., 1998; Grimm et al., 2015; Wu et al., 2015). Together, this allowed us 

to image single mRNA molecules in live unstressed and stressed human cells. 

 

Fig 1: Triple-color live cell imaging identifies stress- and 5'TOP element-dependent mRNA localization to PBs and SGs 

(A) Scheme depicting the used mRNA reporters and HeLa cell line expressing DDX6-TagRFP-T as PB markers and G3BP1-GFP 

as SG markers. mRNAs were expressed from a doxycycline inducible single locus and were labelled with NLC-MCP-Halo. (B-D) 

All cell lines expressing one of the reporters, respectively, formed PBs and SGs after treatment with 100µM SA for 1h. mRNAs 

localization to PBs and SGs was reporter-dependent. (B) Cells expressing Renilla reporter mRNAs showed modest mRNAs 

localization to PBs and SGs. Larger mRNA clusters were absent. (C) Cells expressing 5'TOP Renilla mRNA reporters showed the 

most mRNA colocalization with PBs and SGs. (D) Most mRNAs in cells expressing Gaussia reporter mRNAs diffused freely 
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through the cytoplasm, but a fraction was localized to PBs and SGs. (E) Colocalization analysis and quantification of the data 

presented in (B-D). All tested mRNA reporters were able to localize to PBs and SGs during SA stress, but 5'TOP Renilla reporter 

mRNAs were significantly more enriched than Renilla or Gaussia mRNA reporters (arrows indicate mRNA colocalization with 

SGs; scale bars = 2µm; mean ± SEM; two-tailed, unpaired Student’s t-test; * = p < 0.05, ** = p < 0.01, *** = p < 0.001; >20 fields 

of view per time point and experiment, 3 biological replicates). 

After doxycycline induction, we imaged all three cell lines in the absence and presence of SA. In 

the absence of stress, Renilla reporter mRNAs rapidly moved throughout the cytoplasm, SGs were 

absent and PB numbers were low. After 1 hour of SA treatment, the majority of Renilla mRNAs still 

diffused freely in the cytosol, but a fraction of molecules localized to SGs and PBs, which reduced their 

mobility (Fig. 1B). In unstressed cells, the 5′TOP Renilla reporter mRNAs behaved similar to the Renilla 

reporter, however, a larger fraction of 5′TOP Renilla reporter mRNAs was localized to SGs and PBs during 

stress (Fig. 1C). Gaussia mRNA reporters moved less in the cytoplasm and were mostly static, which is 

consistent with a previous study that demonstrated their translation-dependent association with the 

ER (Voigt et al., 2017). Upon addition of SA, when translation initiation is inhibited, the majority of 

Gaussia reporters became mobile (Fig. 1D). Interestingly, a small fraction of Gaussia mRNAs did localize 

to SGs and PBs indicating that ER-association prior to stress does not prevent their entry into granules. 

Single molecule tracking and colocalization quantification of mRNA reporter localization to PBs (Fig. 1E) 

and SGs (Fig. 1F) demonstrated that the 5′TOP Renilla reporter mRNAs localized significantly more to 

both granules than Renilla or Gaussia mRNA reporters.  

In order confirm the localization patterns observed in living cells, we performed single molecule 

mRNA fluorescence in situ hybridization (smFISH) in HeLa cells with probes against the endogenous 

GAPDH and RPL32 transcripts, combined with IF against endogenous G3BP1 and DDX6 (Fig. S2A,B). 

Upon addition of SA, only a small fraction of GAPDH transcripts colocalized with PBs and SGs (Fig. S2A,C), 

which is similar to previous reports (Khong et al., 2017). Endogenous RPL32 transcripts accumulated in 

PBs and SGs similar to the levels we observed for the 5′TOP Renilla reporter (Fig. S2B,C). Taken as whole, 

our results demonstrate that cis-acting elements within transcripts can promote their association with 

granules during stress. 

After having observed the differential localization of Renilla and 5′TOP Renilla mRNA reporters 

to SGs and PBs, we next sought to understand how this pattern was established. In principle, the 

differential recruitment of mRNAs to stress-induced mRNPs could either occur during the formation of 

granules or only after mature granules had formed. To address this question, we quantified the co-

localization of Renilla and 5′TOP Renilla transcripts with SGs and PBs over time (Fig. 2A). For PBs we 
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observed that 5′TOP Renilla reporters entered these structures mainly during the first 30 minutes, after 

which the colocalizing mRNA fraction stayed constant until the end of the time course (Fig. 2B). In 

contrast, the Renilla reporter showed a significantly smaller time-dependent colocalization increase 

with PBs compared to 5′TOP Renilla reporters (Fig. 2B). mRNA recruitment kinetics to SGs were similar 

to the results obtained for PBs. 5′TOP Renilla reporters entered SGs faster and in higher numbers than 

the Renilla transcripts (Fig. 2C). Most mRNAs were recruited during the first 30 minute of SA stress, 

reaching a plateau phase afterwards. Renilla reporters showed only a modest increase in SG 

colocalization over time which was significantly smaller than the increase observed for 5′TOP Renilla 

mRNAs (Fig. 2C). Based on these results we show that 5'TOP element-dependent mRNA localization to 

PBs and SGs correlates with PB and SG formation during stress onset. Interestingly, the granule 

localization difference between 5'TOP Renilla and Renilla reporters arises already early during their 

formation and not after they have fully matured indicating that cis-acting elements within mRNAs can 

contribute to the rate at which different mRNAs localize  to stress-induced mRNP complexes.  

 

Fig. 2: 5'TOP element-dependent mRNA localization correlates with PB and SG formation during stress onset. (A) HeLa 

cells stably expressing G3BP1-GFP, DDX6-TagRFP-T, NLS-MCP-Halo and inducible 5'TOP Renilla reporter mRNAs were treated 

with 100µM SA for 2h and single cells were imaged at the indicated intervals. Cytoplasmic mRNAs dynamically bound to PBs 
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and SGs during and after their formation. (B) and (C) HeLa cell lines stably expressing G3BP1-GFP, DDX6-TagRFP-T, NLS-MCP-

Halo and either inducible Renilla or 5'TOP Renilla reporter mRNAs were treated with 100µM of SA for 2h and different cells were 

imaged over time and mRNA colocalization with PBs (B) and SG (C) was assessed. 5'TOP Renilla reporter mRNAs were rapidly 

recruitment to PBs and SGs. Renilla reporter mRNAs localized significantly less to PBs and SGs (scale bars = 10µm; mean ± SEM; 

two-tailed, unpaired Student’s t-test; ** = p < 0.01, *** = p < 0.001; >20 fields of view per time point and experiment, 3 biological 

replicates). 

In order to characterize the dynamics of granule localization during stress, we extracted 

directionality information from mRNA tracks relative to PBs and SGs (Fig. 3A). mRNA molecules that were 

overlapping with a PB or SG received a localization index value of 1 and mRNAs outside of granules 

received a value of 0. A change of localization index value within one mRNA track therefore indicated a 

change of direction relative to the granule. This analysis allowed us to distinguish four different 

categories of mRNA movement relative to PBs and SGs (Fig. 3A). mRNAs could either be classified as 

static during the observation period, they could show multiple transient interactions, or simply move 

inside or outside of a granule. Renilla reporters had lower levels for all interactions with PBs (Fig. 3B) and 

SGs (Fig. 3C) than 5'TOP Renilla reporters. In addition, no single movement class was significantly more 

prominent than the others. For the 5'TOP Renilla reporter, it was interesting to see that mRNAs behaved 

differently when interacting with either PBs (Fig. 3D) or SGs (Fig. 3E). Up to half of 5'TOP Renilla reporter 

localization behavior to SGs was explained by static mRNA interaction with the SG, while the other half 

was composed of mainly multiple transient interaction and, to smaller extend, unidirectional 

movements (Fig. 3E). The 5'TOP Renilla reporter interaction patterns with PBs were less dynamic. Here, 

between 70-85% of localization behavior to PBs was explained by static mRNA interaction with the PB. 

The remaining fraction was composed of similar amounts of transient and unidirectional movement 

(Fig. 3D). It is important to note that the distribution of movement patterns was similar at all time points 

indicating that interactions between granules and RNAs was constant throughout granule formation 

and maturation.   
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Fig. 3: mRNA tracking reveals recruitment dynamics into SGs and PBs. (A) Data analysis workflow to quantify the 

movement of mRNAs relative to PBs and SGs. A localization index change from 1 to 0 represented an outward movement, a 

change from 0 to 1 represented an inward movement relative to a PB or SG. mRNA tracks with localization indices of exclusively 

1, were considered to be static. Tracks with more than one entry and exit event were categorized as transient interactions. (B) 

and (C) HeLa cells stably expressing G3BP1-GFP, DDX6-TagRFP-T, NLS-MCP-Halo coat proteins and inducible Renilla reporter 

mRNAs were treated with 100µM SA for 2h and different cells were imaged over time and their mRNA movement patterns 

were analyzed. Renilla mRNAs had no predominant movement pattern relative to PBs (B) or SGs (C) during the stress time-
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course (>20 fields of view per time point and experiment, 3 biological replicates). (D) and (E) HeLa cells stably expressing 

G3BP1-GFP, DDX6-TagRFP-T, NLS-MCP-Halo coat proteins and inducible 5'TOP Renilla reporter mRNAs were treated with 

100µM SA for 2h and different cells were imaged over time and their mRNA movement patterns were analyzed. (D) PB-

associated mRNAs were mostly static. (E) SG-associated mRNAs were mostly static or showed transient interactions. (F) 5'TOP 

Renilla reporter mRNAs can move from a SG to a PB during SA stress (scale bars = 3µm). (E) Analysis of all mRNA movement 

patterns for shuttling events from SGs to PBs indicated that only a minor fraction of cytoplasmic 5'TOP Renilla reporter mRNAs 

move between both granules (mean ± SEM; two-tailed, unpaired Student’s t-test; *** = p < 0.001; >20 fields of view per time 

point and experiment, 3 biological replicates). 

The time course experiments indicated that mRNA recruitment to granules correlates with 

granule size and number (Fig. 2 & Fig S1), but that there is a significant amount of mRNA exchange 

between granules and the cytoplasm during earlier and later phases of stress (Fig. 3B-E). Since SGs and 

PBs have been found to interact very frequently and dynamically with each other (Kedersha et al., 2005), 

it has also been proposed that mRNAs can be sorted from SGs to PBs in a process referred to as “mRNA 

triage” (Anderson and Kedersha, 2008; Kedersha and Anderson, 2002). Since to our knowledge there is 

no direct mRNA-based evidence for the mRNA triage model, we specifically searched for mRNA tracks 

within our stress time course data set that moved from SGs to PBs. We were able to detect a small 

number of such events (Fig. 3F). Despite this, the frequency of these events across the entire duration 

of the 120-minute time course was extremely low. For, on average, ~600 detected mRNA tracks per cell 

we could only identify 1 event using the 5'TOP Renilla reporter (Fig. 3G). We also searched for mRNA 

movement events in the inverse direction from PBs to SGs, but were not able to detect such events.  

Presumably, this is due to the high static mRNA localization and low outside mRNA movement rates of 

PBs (Fig. 3B, right panel).   

 Since we observed that the 5'TOP sequence promoted mRNA localization to granules during 

the stress response, we then asked if there was a trans-acting factor that also contributed to this effect. 

Recently, the RNA binding protein La-related protein 1 (LARP1) has been shown to bind the m7G-cap 

and 5'TOP-element of mRNAs and to regulate their translation (Fonseca et al., 2015; Hong et al., 2017; 

Lahr et al., 2015, 2017; Philippe et al., 2018; Tcherkezian et al., 2014). In addition, LARP1 is present in SGs 

and PBs (Fig. S3A and (Hopkins et al., 2016; Merret et al., 2013; Nykamp et al., 2008).  We decreased levels 

of LARP1 in HeLa cells by 48h siRNA-mediated knock-down (KD) (Fig. 4A, Fig. S3A) and performed a 120-

minute time-course experiment identical to the one described previously. Importantly, LARP1 KD did 

not affect mRNA numbers as detected by single molecule imaging (Fig. 4B). Furthermore, LARP1 KD also 

did not alter the size or numbers of SGs, while PBs where slightly reduced in size (Fig. S3B,C). 

Interestingly, the association of 5'TOP Renilla mRNAs into PBs (Fig. 4C) and SGs (Fig. 4D) during the first 
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30 minutes of SA stress was unperturbed. At later time points, however, the fraction of 5'TOP Renilla 

mRNA in both granules was reduced indicating that LARP1 was necessary for anchoring 5'TOP Renilla 

within granules. In order to confirm that LARP1 also affected the localization of endogenous transcripts 

during stress, we performed IF against G3BP1 and DDX6 in combination with smFISH against either 

RPL32 mRNA or GAPDH mRNA (Fig. S4A). RPL32 mRNA localization to SGs, but not PBs, was reduced 

during LARP1 KD while GAPDH localization to granules was unaffected (Fig. S4A,B). These experiments 

indicate that RNA-binding proteins can control the localization of specific transcripts to SGs and PBs 

during stress and that this regulation can occur even after transcripts have already entered mRNP 

granules. 

 

Fig. 4: LARP1 knock-down decreases 5'TOP mRNA accumulation in SGs during the progressed stressed response. (A) 

Transfection of HeLa cells with siRNAs against LARP1 for 48h decreased LARP1 expression. (B) LARP1 knock-down did not 

decrease the number of tracked mRNAs across all time points. (C) and (D) HeLa cell lines stably expressing G3BP1-GFP, DDX6-

TagRFP-T, MCP-Halo coat proteins and inducible 5'TOP Renilla reporter mRNAs were transfected with siRNAs against LARP1 for 

48h and treated with 100µM SA for 2h. Different cells were imaged over time and the mRNA fraction colocalizing with PBs (C) 

and SGs (D) was analyzed (mean ± SEM; >20 fields of view per time point and experiment, 3 biological replicates). 

To what extend the sequestration mRNAs into granules has an effect on their decay and 

translation is currently unclear. Previously, we have found that translation and degradation of Renilla 

and 5′TOP Renilla mRNAs is inhibited throughout the cytoplasm, regardless of granule localization, 

during the stress response (Halstead et al., 2015; Horvathova et al., 2017).  It has, however, been 
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suggested that stress-induced PBs (Bhattacharyya et al., 2006; Brengues et al., 2005) and SGs (Kedersha 

and Anderson, 2002) could serve as sites for storage where mRNA molecules could be protected from 

the harmful effects of stress. Additionally, during the stress response the oxidation of mRNAs can also 

potentially lead to decreased mRNA half-lives through no-go decay (Nunomura et al., 2017; Simms et 

al., 2014). While only ~15% of 5′TOP Renilla mRNA reporters were found to be inside of PBs and SGs 

during stress (Fig. 2), this provided an entry point for exploring the effect of this localization on the fate 

of transcripts after stress has been relieved.  

To assess the potential protective effect of granule localization on mRNA decay we used 

3(Three)′-RNA End Accumulation during Turnover (TREAT) to quantify mRNA degradation with single-

molecule resolution (Horvathova et al., 2017). After doxycycline induction for 45 minutes, cells were 

stressed for 45 minutes with SA and then washed to remove both doxycycline and SA. Doxycycline 

removal stopped transcription of the mRNA reporter, so that only transcripts that experienced stress 

were monitored during the recovery phase. Cells were then fixed at different time points during an 8-

hour stress recovery time course and intact and stabilized 3′-end fragments were quantified by smFISH 

(Preliminary Fig. 5). These experiments are still on going, but preliminary analysis of the ratio between 

intact and stabilized 3′-end fragments across all time points showed two interesting findings. First, 

mRNA degradation remains inhibited during the first two hours of recovery from stress even though 

eIF2α has been dephosphorylated (Fig. S1A) and SGs have completely dissolved during the first hour of 

stress recovery (Fig. S5).  The single-molecule sensitivity of TREAT allows to exclude the possibilities of 

either rapid mRNA decay of cytosolic or granule-localized transcripts during the first two hours of stress 

recovery.  Based on the TREAT data, however, we cannot exclude the possibility that the small fraction 

of mRNAs within PBs (~5%) are rapidly degraded during stress relief, however, we previously detected 

5′TOP transcripts within PBs during stress relief suggesting that they are not actively degraded there 

(Halstead et al., 2015).  The second observation is that once mRNA decay resumes after two hours of 

recovery, the half-life of 5′TOP Renilla transcripts is similar to the stability measured in unstressed cells.  

These experiments, however, are ongoing experiments and they will clarify the effect of granule 
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localization on mRNA decay. 

 

Fig. 5: 5'TOP TREAT mRNAs do not rapidly degrade during the recovery from stress. (A) In HeLa cells the expression of 

5'TOP Renilla TREAT mRNAs was induced for 45 minutes followed by treatment with 100µm SA for 45 minutes and a washing 

step. Cells were then fixed at different time points during the recovery phase and RNA smFISH was performed. Intact 5'TOP 

TREAT mRNAs were detected as dual colored spots, while viral pseudoknot-protected stabilized 3′-end fragments were 

detected as single colored spots (mean ± SEM; two-tailed, unpaired Student’s t-test; ** = p < 0.01, *** = p < 0.001; > 200 cells / 

time point). 

 Since we did not observe a granule-localization effect on mRNA decay, we wanted to further 

test whether PBs and SGs might have a protective role during stress for translation after the stress is 

over. We utilized a recently developed nascent polypeptide-based translation imaging system, since it 

offers the possibility to quantify the fraction of translating mRNAs per cell, as well their individual 

translational activity (Morisaki et al., 2016; Pichon et al., 2016; Wang et al., 2016; Wu et al., 2016; Yan et 

al., 2016). This technique relies on the binding of the scFv-GFP to the nascent SunTag epitopes that 

emerge from the ribosome as a fluorescent measurement of translation per mRNA molecule. We fused 

a 24x SunTag repeat cassette to the N-terminus of the Renilla luciferase coding sequence of our reporter, 

giving rise to a 5'TOP SunTag Renilla reporter (Fig. 6A). We then genomically integrated a single copy of 

this reporter into the previously used doxycycline-inducible HeLa cells. In addition, single-chain 

antibodies fused to GFP (scFv-GFP) were stably integrated into the cells. Individual mRNAs were 

visualized by the binding of NLS-MCP-Halo to the MS2 stem loops in the 3′UTR of the reporter.  
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Fig. 6: 5'TOP SunTag mRNAs can undergo normal and mRNP granule-independent translation during recovery from 

stress. (A) Schematic depiction of the 5′TOP SunTag Renilla mRNA reporter. Single-chain antibodies fused to GFP (scFv-GFP) 

label the ribosome emerging SunTag peptide chain in a length-dependent manner. (B) Representative images for SunTag 

translation imaging in cells stably expressing scFv-GFP, NLS-MCP-Halo, and inducible 5’TOP SunTag Renilla mRNA reporters. 

Under non-stress conditions most mRNAs (NLS-MCP-Halo) colocalized with a translation site (scFv-GFP). 30min of 100µm SA 

treatment blocked translation. During recovery from stress translation sites colocalizing with mRNAs reappeared (scale bar = 

2µm). (C) Quantification of the fraction of 5’TOP SunTag Renilla mRNAs colocalizing with translation sites showed that mRNA 

translation fully resumed to pre-stress levels during the recovery from stress (mean ± SEM; 2 biological replicates). (D) The 

ribosomal occupancy distribution on mRNAs decreased during 30min of SA treatment and reached a pre-stress distribution 

after 180min of recovery from stress. For details on ribosome occupancy quantification, see Material and Methods. 
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We then used these cells to quantify the translation of individual mRNA molecules before, 

during and after stress. In the absence of stress, the majority of 5'TOP SunTag Renilla reporters (~80%) 

were undergoing active translation as detected by the colocalization of the SunTag GFP signal with the 

NLS-MCP-Halo signal (Fig. 6B,C). After 30 minutes of SA-induced stress, almost all mRNAs (> 95%) were 

translationally inhibited, indicated by the absence of scFv-GFP labelled translation sites on mRNAs (Fig. 

6B,C). Next, we used the colocalization frequency of scFv-GFP with NLS-MCP-Halo to quantify the 

fraction of mRNAs undergoing active translation for all time points during the stress and recovery time 

course (Fig. 6C). If only the 15% of 5′TOP SunTag Renilla mRNAs bound to stress-induced mRNPs would 

be protected from stress, we expected that during translational recovery we should not observe more 

than 15% of mRNAs undergoing translation. Our experiment, however, indicates that 44% of all 

cytoplasmic mRNAs had already resumed translation after only 30 minutes of translational recovery. 

Translation then gradually recovered over the next 2.5 hours to levels comparable to the pre-stress time 

point (Fig. 6C).  

Due to the binary readout of using colocalization for the determination of translation, it 

remained a possibility that oxidative stress-inflicted chemical modifications to non-sequestered mRNPs 

might decrease their translational efficiency, although not fully abrogating translation initiation. These 

potential defects in translation should be manifested in the number of ribosomes per mRNAs. SunTag-

based translation imaging allowed quantifying the ribosomal occupancy per mRNA. In brief, ribosomal 

occupancy was calculated by dividing the fluorescent intensity of the translation site by the fluorescent 

intensity of a mature SunTag Renilla protein. We analyzed the distribution of all translation site 

intensities for all stress and recovery time points and calculated the ribosome occupancy per mRNA (Fig. 

6D). In unstressed cells, each mRNA was bound by 4-5 ribosomes. After 30 minutes of stress, most 

mRNAs had no detectable translation sites. After 30 minute of recovery the fraction of translating 

mRNAs increased again and the average ribosome occupancy increased to 3 ribosomes per mRNAs. 

After 3 hours of recovery, most mRNAs had regained their full ribosome occupancy and were bound by 

4 ribosomes per mRNA. The ribosomal distribution per mRNA therefore showed that there was only a 

minor difference between pre-stress translation activity levels and recovery translation activity levels 

(Fig. 6D).  
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2.3 Summary and discussion 
 

How single mRNAs interact with stress-induced mRNP complexes and whether this has 

functional consequences is unknown. Here, we used single molecule mRNA imaging in SA-stressed 

living human cells to quantify the spatio-temporal as well as decay and translation dynamics of 

transcripts inside and outside of PBs and SGs. We find that 5′TOP Renilla reporter mRNAs are more 

enriched in stress-induced mRNP complexes than Renilla and Gaussia luciferase reporters lacking a TOP 

element in their 5′UTRs (Fig. 1). We demonstrate that mRNA recruitment to PBs and SGs occurs 

throughout the stress response. After 30 minutes of SA stress, the number of mRNA molecules in PBs 

and SGs stays constant (Fig. 2), while mRNA movement remains dynamic (Fig. 3). 5′TOP Renilla reporter 

mRNAs interact more dynamically with SGs than PBs, where the majority of interacting mRNAs is 

statically bound. mRNAs are able to move from SGs to PBs, but the frequency of such events is very low 

(Fig. 3). We further show that the known 5′TOP-element binding and SG-resident protein LARP1 is a 

trans-acting factor able to stabilize 5′TOP Renilla reporter mRNA presence in SGs during extended 

periods of stress (Fig. 4). Using mRNA reporters to detect localized decay and translation, we find that 

the majority of mRNAs, which have not been inside of PBs or SGs, have unchanged half-lives and 

translation rates during the recovery from stress (Fig. 5 and 6).  

The recently developed purification approaches for SG cores and tagged PB components, 

allowed the sequencing of the transcriptome of both granules and helped to determine which mRNA 

might preferentially enter PBs and SGs. Broader defined transcript features such as long coding 

sequences (CDS), long untranslated regions (UTR) or poor translation efficiency were identified next to 

cis-acting sequences such as AU-rich elements (ARE) or 3′UTR sequences (Hubstenberger et al., 2017; 

Khong et al., 2017; Namkoong et al., 2018). Based on these results, the educated testing of specific high 

and low abundant candidates by RNA smFISH showed a range of localization efficiencies (Khong et al., 

2017). In addition, reporter mRNAs bearing a 5′TOP element have been observed in SGs by RNA FISH 

(Damgaard and Lykke-Andersen, 2011).  Here, we observed up to 15% of 5′TOP Renilla MS2 and 4% of 

Renilla MS2 reporters in PBs and SGs after 1h of SA treatment, while the majority of transcripts were 

unbound and diffused through the cytosol (Fig. 1). RNA smFISH against endogenous TOP element 

harboring RPL32 mRNAs and GAPDH mRNAs showed similar colocalization levels (Fig. S2). Mollet et al. 

used β-Gal-MS2 bound by MCP-GFP to study mRNAs in SGs. Although lacking single molecule 

resolution, they found that 7% of MCP-GFP signal was overlapping with SG marker fluorescence (Mollet 

et al., 2008). Using transfected RNA-binding probes and MS2-MCP labelling, two other studies found 
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that ca. 4% of β-actin mRNAs localized to SGs in living human cells (Aizer et al., 2014; Zurla et al., 2011). 

Taken together, the mRNA recruitment levels observed in our study are similar to previously observed 

levels. The 5′TOP Renilla reporter is at least 2-fold more enriched than other previously tested non-TOP 

mRNAs, although mRNA species exist with even higher levels in SGs (Khong et al., 2017). Taken together, 

the 5′TOP element-dependent mRNA colocalization to stress-induced mRNP complexes is in line with a 

previous TOP RNA study (Damgaard and Lykke-Andersen, 2011) and complements recent findings that 

sequence elements determine RNA abundance in PBs and SGs (Hubstenberger et al., 2017; Khong et al., 

2017; Namkoong et al., 2018). 

The recently proposed two-stage assembly model describes that dense SG cores form first, 

followed by the phase separation of a more liquid-like shell surrounding the core. Core-shell structures 

can then fuse with each other forming mature and full-sized SGs (Jain et al., 2016; Wheeler et al., 2016). 

In Fig. 2 we show that mRNAs with different cis-acting elements bind to granules at different rates. This 

observation could explain the varying single time point enrichment levels of different mRNAs that have 

been observed by others (Hubstenberger et al., 2017; Khong et al., 2017; Namkoong et al., 2018).  . It will 

be interesting to see if single mRNAs can already bind the early forming SG core, or whether mRNAs can 

only bind to the fully assembled core-shell structure. We also show that mRNAs can enter and leave PBs 

and SGs after their maturation (> 30 minutes of SA stress) and identify subpopulations of mRNAs that 

interact differently with granules (Fig. 3). Approximately 50% of SG-interacting mRNAs are dynamic. 

These findings are in accordance with earlier ensemble FRAP experiments that had identified a mean 

MCP-GFP residence time of ca. 1 minute which is significantly shorter than mRNA residence time in the 

cytosol (Mollet et al., 2008). Taken together, these findings point towards a dynamic equilibrium model 

in which mRNA in-rates are higher during granule formation and reach an equilibrium with out-rates 

during the later phases of the stress response. It has been proposed that stress-induced mRNP 

complexes might act as sites for mRNA triage, where mRNAs can become sorted to undergo 

translational repression or decay in SGs and PB, respectively (Anderson and Kedersha, 2008; Kedersha 

et al., 2005). Although lacking single molecule resolution, this model was challenged early on when the 

majority of RNAs were found to localize outside of SGs and to enter PBs independently of SGs (Mollet et 

al., 2008). Using single molecule tracking, we confirm that the majority of mRNAs enter PBs directly 

through the cytosol, but we also observe the direct movement of mRNAs from SGs to PBs (Fig. 3F). 

However, these events are rare and might not fulfill a significant biological function. We were not able 

to detect mRNAs moving in the opposite direction from PBs to SGs. Presumably, this is the case due to 

the high static mRNA localization and low outward movement rates of mRNA bound to PBs (Fig. 3E). 
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Knock-down of LARP1 decreases 5'TOP Renilla mRNA presence inside of PBs and SG (Fig. 4). 

Interestingly, the initial mRNA recruitment into both structures during the early phase of the stress 

response is not affected, while the mRNA content only decreases after 30 minutes of SA treatment. 

LARP1 might therefore fulfill an mRNA anchoring instead of recruitment function. LARP1 is mainly 

present in SGs during SA stress (Fig. S3A), but has also been found to localize to PBs in plants, 

Caenorhabditis elegans, and human cells (Hopkins et al., 2016; Merret et al., 2013; Nykamp et al., 2008). 

Whether the decreased mRNA content of PBs is due to lower total mRNA transfer from SGs or a different 

mechanism is unknown. A presumably granule-independent regulative effect of LARP1 on TOP mRNA 

gene expression is becoming increasingly clear. The mTORC1-mediated regulation of the direct binding 

of LARP1 to the mRNA cap structure and the 5′TOP element has been recently demonstrated (Hong et 

al., 2017; Lahr et al., 2017; Philippe et al., 2018). Despite this, there is currently no consensus on LARP1 

being a translational repressor (Fonseca et al., 2015; Hong et al., 2017; Lahr et al., 2015; Philippe et al., 

2018) or activator (Tcherkezian et al., 2014). Via binding to the poly(A) tail of 5'TOP element-containing 

mRNAs LARP1 also possesses an mRNA stabilizing function in vitro (Aoki et al., 2013). In another study, 

depletion of LARP1 in human adult CD34+ bone marrow precursor cells decreased 5'TOP mRNA stability 

(Gentilella et al., 2017). At least in HeLa cells and during our 120-minute stress time-course experiment 

we did not observe any effect on the stability of 5’TOP Renilla reporters (Fig. 4B). SA treatment might 

mask a decay effect due to the strong mRNA decay inhibition during translation repression (Horvathova 

et al., 2017).  

To what extend the LARP1-mediated sequestration of approximately 15% of mRNAs has an 

effect on 5'TOP mRNA stability or translation is unclear. We show that during the recovery from stress 

no immediate mRNA degradation occurs (Preliminary Fig. 5). Further, we observe a 2-hour lag-time 

before degradation onset (Preliminary Fig. 5), while translation resumes immediately during the 

recovery from stress for all cytosolic mRNAs without a delay (Fig. 6). Independently of translation, SG 

require 2 hours to fully disassemble during the recovery from stress (Fig. S5A). We cannot fully exclude 

that the 15% of 5'TOP Renilla mRNAs residing inside of PBs and SGs are more protected from SA-induced 

stress and therefore might have longer half-lives or faster translation initiation rates (Arimoto-Matsuzaki 

et al., 2016; Simms et al., 2014). However, we can conclude that the 85% of mRNAs that have not been 

permanently bound to mRNP granules are not immediately degraded and have a similar half-life than 

mRNAs that have not been subject to SA stress (Horvathova et al., 2017). In addition, translation resumes 

for all cytosolic mRNAs to pre-stress levels and not just for a fraction of 15%. It is more likely that mRNAs 

are protected from the harmful effects of oxidative stress by chaperoning RBPs in a decentralized 
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manner in the cytosol (Nunomura et al., 2017), rather than being required to localize into visible 

aggregates of such chaperoning proteins. Taken together, our findings question a direct role of stress-

induced mRNP complexes for a localized regulation of mRNA biology including protection, decay and 

translation during or after the stress response.    

Decentralized (non-granular) roles for many SG/PB-related proteins in mRNA decay and 

translation are well established. Why these proteins accumulate into mRNP complexes and how they 

help cells to cope with stress remain open questions. The recruitment of catalytically active molecules 

into mRNP complexes results in a high local concentration. Consequently, reaction equilibria are driven 

towards bound states that can specifically enhance or block a reaction (Decker and Parker, 2012; Schütz 

et al., 2017). Secondly, mRNP complexes can reduce molecular interactions in the cytosol through 

sequestration and physical separation of two binding partners (Arimoto et al., 2008). It will therefore be 

interesting to develop experimental approaches to uncouple protein functions from their presence 

inside or outside of granule. Given the role that SGs seem to play in signaling (Grabocka and Bar-Sagi, 

2016; Wippich et al., 2013), apoptosis regulation (Arimoto et al., 2008), viral replication (McCormick and 

Khaperskyy, 2017) and potentially neurological diseases (Zhang et al., 2018), perturbing and further 

understanding the link between mRNA regulation inside and outside of granules will be crucial for the 

development of novel therapies.    
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2.4 Material and methods 
 

Generation of mRNA reporter cell line 

5′ TOP Renilla and  Renilla only mRNA reporters were expressed from a stably integrated single, 

tetracycline inducible locus in HeLa cells. A similar cell line generation procedure has been described 

previously in (Halstead et al., 2015, 2016). In brief, the tetracycline-inducible promoter and 5′ UTR of 

human RPL32 originating from rpL32-β-globin (Damgaard and Lykke-Andersen, 2011)  were cloned 5′ 

of a chimeric intron – Renilla luciferase – stop codon 24xMS2 stem-loop casette SV40 polyA. The Renilla 

only reporter was cloned without the RPL32 5′ UTR. Both reporters were flanked by FLP recombinase-

mediated cassette exchange (RCME) sites. The reporters were then stably integrated into a HeLa cell line 

expressing a rtTA2-M2 tetracycline reverse transactivator for tetracycline inducible expression and a 

single FLP RCME site as described in (Weidenfeld et al., 2009). In brief, RMCE of the hygromycin-

thymidine kinase (hygtk) positive-negative selection cassette in the target site for the desired reporter 

was achieved by co-transfecting 2 µg of reporter plasmid together with 2 µg of pCAGGS-FLPe-IRESpuro 

using Lipofectamine 2000 (Life Techonologies) according to the manufacturer’s protocol. 12 h post 

transfection, selection with 5 µg/ml puromycin (Sigma-Aldrich) was performed for 36 h to enrich for 

transfected cells. Surviving cells were treated with 40 µM ganciclovir (Sigma-Aldrich) for 10 days to 

select for cells having undergone RMCE. Surviving cells were pooled, single-cell sorted and expanded. 

Clones were tested by Renilla luciferase assays (Promega) for successful reporter expression. Unless 

noted otherwise, HeLa cells were cultured in DMEM supplemented with Tet-free FBS (Clonetech) and 

1%Pen Strep at 37°C and 5% CO2. 

As described previously (Halstead et al., 2015, 2016) NLS-MCP-Halo was stably integrated into reporter 

expressing clones by lentiviral transduction using standard protocols, followed by FACS to select for low 

expressing cells in order to reduce background fluorescence and allow single molecule RNA imaging. 

Generation of SG and PB reporter cell line 

In order to visualize SGs and PBs in living cells, G3BP1-2xGFP and DDX6-Tag-RFP-T fusion proteins were 

cloned into the pHAGE UbiC lentiviral vectors, respectively. Constructs were simultaneously and stably 

integrated by lentiviral transduction according to standard protocols. To prevent SG formation or excess 

PB formation in the absence of stress due to overexpression, FACS was utilized to identify only low 

expressing dual positive cells. Immunofluorescence against TIAR (1/100, cat. # 610352, BD Biosciences), 
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G3BP1 (1/200, cat. # ARP37713_T100, Aviva Systems Biology), DDX6 (1/300, cat. # A300-461A, Bethyl 

Labs) and DCP1a (1/300, cat. # 47998, Abcam) was performed to confirm physiological SG and PB 

numbers and behavior.  

Immunofluorescence  

HeLa cells were seeded two days prior to fixation at a concentration of 40x103 cells/ml on standard glass 

coverslips (18mm, Biosystems). Cells were then washed in PBS and fixed in 4% paraformaldehyde 

(PFA)/PBS (Electron Microscopy Science) for 15 minutes, washed again and permeabilized in 1% Triton-

X1000 (v/v)/PBS for 5 minutes at room temperature. Next, cells were PBS-washed three times for 5 

minutes each time. Blocking was performed with 1% BSA/PBS (Sigma-Aldrich) for 15 minutes. Primary 

antibodies were diluted in blocking solution and a drop of 50µL was pipetted into a Petri dish. Coverslips 

were removed from wells, placed cell-side down onto the primary antibody solution, incubated for two 

hours at room temperature and placed back into the well. Coverslips were placed back into a 12-well 

plate and washing was performed three times 5 minutes each in 0.2% BSA/PBS. Secondary antibodies 

(Alexa fluorophores, Life Technologies), were diluted in blocking buffer, added onto the coverslip for 30 

minutes and washed out three times with PBS for 5 minutes each time. Next, cells were DAPI stained 

(0.5 mg/L) and coverslips were mounted (ProLong Gold, Life Technologies) on glass slides and imaged. 

RNA smFISH combined with immunofluorescence 

HeLa cells were cultured on coverslips and fixed as described above. PFA was subsequently quenched 

by a wash in 25mM glycine/PBS. Cells were then washed twice with PBS and permeabilized with 1% 

(v/v) Triton-X1000/PBS for 5 minutes at room temperature, followed by three washes with PBS and 

incubation with prehybridization solution (2xSCC, 10% (v/v) formamide (Sigma) in PBS) for five minutes 

at room temperature. Coverslips were then placed cell-side down into a drop of 50µL of hybridization 

solution (2xSSC, 10% (v/v) formamide (Sigma), 10% (w/v) dextran sulfate, 0.5% (w/v) BSA in PBS) 

containing 250nM Renilla mRNA FISH probes (Quasar570, Biosearch Technologies), DDX6 antibody 

(1/300, cat. # A300-461A, Bethyl Labs)), and G3BP1 antibody (1/200, cat. # 611127, BD Biosciences)  

inside of a humidified Petri dish  for four hours at 37°C. After hybridization, coverslips were placed back 

into a 12-well plate and washing was performed in prehybridization solution containing secondary 

antibodies (goat anti-rabbit Alexa647, donkey anti-mouse Alexa488, Life Technologies) for 30 minutes 

at 37°C. Next, cells were washed again in prehybridization solution without secondary antibodies for 30 

minutes at room temperature. Prehybridization solution was washed out three times with PBS for 5 
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minutes each time. Cells were DAPI stained (0.5 mg/L) and coverslips were mounted (ProLong Gold, Life 

Technologies) on glass slides and imaged. 

Fixed cell imaging and data analysis 

Imaging 

For combined smRNA FISH and SG and PB immunofluorescence experiments slides were prepared as 

described above and imaged on a Zeiss Axioimager Z1 widefield microscope using a Plan-

APOCHROMAT 100x 1.4NA DIC oil immersion objective (Zeiss) and AxioCam MRc  camera with pixel size 

6.45µM x 6.45µM (Zeiss). An X-Cite 120 (EXFO) metal halide lamp was used as a light source together 

with filters for Cy5, Cy3 (AHF), GFP/Alexa488 and DAPI (Zeiss). Images were acquired as Z-stacks (3µM in 

0.2µM steps) with Zen software (Zeiss). 

Data analysis 

The quantification of mRNA colocalization in fixed cells with SGs or PBs has been described previously 

(Halstead et al., 2015). In brief, unprocessed image stacks were maximum intensity projected in FIJI 

(Rueden et al., 2017; Schindelin et al., 2012), spot detection was performed by a custom-written Matlab 

(Mathworks) script (available on request) and binary masks for PBs and SGs were generated by intensity 

thresholding (FIJI). Next, spot images and binary masks were assigned to opposing binary values and 

multiplied with each other. The remaining spots were then counted (FIJI) to determine the quantity 

inside and outside of subcellular structures. 

LARP1 knockdown 

Cells were seeded one day prior to the experiment at a concentration of 150x103  cells/ml in 6-well 

plates. A pool of human sequence LARP1 siRNAs (cat. # L-027187-00-0005, GE Dharmacon) was 

transfected with Lipofectamine RNAiMAX reagent (ThermoFisher) at a final concentration of 25 pmol 

per well according to the manufacturer’s protocol.  

# siRNA (LARP1) 

J-027187-05 GCAAGAAUACCUCGGCAAA 

J-027187-06 GAGAAGGGAGUGAUAGUAA 

J-027187-07 CACAACACGUCUACCAUAA 

J-027187-08 ACACAAGUGGGUUCCAUUA 
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6h after transfection cells were re-seeded. The knockdown was validated after 48h by western blotting: 

Cells were lysed in RIPA buffer and sonicated, 5% BSA(w/v)/PBS was used for blocking and the PVDF 

membrane was subsequently probed using a polyclonal LARP1 antibody (cat. # A302-087A, Bethyl) and 

a near-infrared secondary antibody (LI-COR Biosciences) according to the manufacturers protocol. 

mRNA colocalization imaging and data analysis in live cells 

Imaging 

HeLa cells expressing G3BP1-2xGFP, DDX6-Tag-RFP-T, NLS-MCP-Halo and either the 5′ TOP Renilla or 

Renilla only mRNA reporters were seeded 2 days prior to the experiment at a concentration of 25x103 

cells/ml on a glass bottom 35mm µ-Dish (Ibidi) and were cultured in DMEM, 10% (v/v) Tet-free FBS 

(Clontech) and 1% (v/v) Pen Strep at 37°C and 5% CO2 in a humidified incubator. On the day of the 

experiment 100nM of Janelia Fluor 647 (Grimm et al., 2016) was added to the cells to fluorescently label 

the mRNA-binding NLS-MCP-Halo protein and incubated  for 15 minutes at 37°C and 5% CO2. Cells were 

then washed 3x with 37°C warm PBS, followed by 90 minutes incubation with 1 μg/mL doxycycline in 

DMEM, 10% (v/v) FBS and 1% (v/v) Pen Strep at 37°C and 5% CO2 to induce reporter mRNA expression 

and ensure sufficient amounts of mRNAs in the cytoplasm. Induction was stopped by 2x washes with 

warm PBS and addition of FluoroBrite™ DMEM (Life Technologies) + 10% (v/v) FBS for imaging. Stress 

experiments were performed by incubating the cells in 100µM sodium arsenite (SA) (Sigma). 

Cells were imaged through a highly inclined and laminated optical sheet (HILO) setup (Tokunaga et al., 

2008) on a Nikon Eclipse Ti-E inverted widefield microscope equipped with a Total Internal Reflection 

Microscopy iLAS2 module (Roper Scientific), a Perfect Focus System (Nikon) and motorized Z-Piezo stage 

(ASI) using a CFI APO TIRF 100x 1.49NA oil immersion objective (Nikon). Images were collected on three 

precisely aligned back-illuminated  Evolve 512 Delta EMCCD cameras with a pixel size of 16µm x 16µm 

(Photometrics). A laser bank with combiner including 488nm (200mW), 640nm (150mW) (Toptica iBEAM 

SMART) and 561nm (200mW) (Coherent Sapphire) lasers was used as excitation source. Cells were 

constantly kept at 37°C and 5% CO2 during imaging through an enclosed microscope environmental 

control setup (The BOX (heating) and The CUBE2(CO2) (Life Science Instruments)). Images were acquired 

from a single plane every 50ms with Visiview software (Visitron).   

Spot detection & tracking 

For each movie a cytoplasmic ROI was manually defined to exclude nuclear mRNAs. Detection of mRNA 

spots in all frames and their linking into trajectories was performed with the FIJI suite plugin Trackmate 
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(Tinevez et al., 2017). The Laplacian of Gaussian (LoG) filter was used to perform sub-pixel spot detection 

for spots of an estimated size of 0.38µm. To guarantee optimal spot detection, the detection threshold 

was manually chosen due to high cell-to-cell variability. The Simple LAP tracker was used to calculate 

trajectories from spot detection data. Maximum distances for spot-to-spot linking between frames and 

gap-closing were chosen to be 0.6µm. The maximum allowed gap size was set to 2 frames. Spots in 

tracks statistics including spot and trajectory IDs and time and space coordinates were saved and served 

as input for the colocalization analysis. 

Colocalization of tracks with subcellular structures and mRNA track directionality analysis 

Automated segmentation of PBs and SGs, colocalization of mRNA tracks with those structures and the 

determination of track directionality was performed with a custom-built pipeline in the open-source 

Konstanz Information Miner (KNIME) software (Berthold et al., 2009). In brief, data analysis in KNIME 

relies on freely available computation nodes each with a different functionality, which can be arranged 

in any order to achieve the desired task.  

Here, the spot statistics files and the two unprocessed imaging channels containing SG and PB imaging 

data served as the three required inputs. Gaussian convolution was applied to smoothen images. Next, 

a Yen thresholder and a Mean Absolute Deviation (MAD) based spot detection algorithm was used to 

reliably detect PBs and SGs over multiple time points in different cells, respectively. The obtained binary 

masks were then transformed into a distance map, which contains the minimal distance of each 

foreground pixel to the nearest background pixel. Simultaneously, the spot statistics file was read as a 

third input and a binary image was created for every frame containing a single pixel representing the 

corresponding mRNA molecule. Next, the PB and SG distance maps were combined with the newly 

generated binary spot image and for each spot in each frame, the mean intensity in the distance map 

was measured. Whenever an mRNA spot would have positive value for >2 frames it was considered to 

be colocalized with the respective subcellular structure and for ease of calculation was given the value 

1. On the contrary, a negative value indicated that this mRNA molecule was outside of the respective 

subcellular structure and was given the value 0. As a result, each spot now contained two localization 

indices (LIPB and LISG) indicating whether at a given time it colocalized with a PB or SG. 

Next, the Cummulative Localization Index (CLI) for each trajectory was calculated by summing up all 

values of the spots belonging to that trajectory across all frames i. 

 

          

� 𝐿𝐿𝐿𝐿𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿𝐶𝐶𝑡𝑡𝐶𝐶𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐼𝐼𝐶𝐶𝐼𝐼 (𝐶𝐶𝐿𝐿𝐿𝐿)  
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑁𝑁

𝑖𝑖=𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0
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(1)            

 

Since each spot contained information on its position relative to a PB or SGs (LIPB and LISG), each trajectory 

also was assigned to two CLIs to describe its position (CLIPB and CLISG). A CLIPB
 
> 0   or CLISG

 
> 0   indicated 

that the whole track or parts of it were colocalizing with a PB or SG, respectively. This data was 

subsequently used to calculate the fraction of colocalizing trajectories per cell and for all cells across all 

time points.  

In addition, directionality information could be obtained from this data. Movement of an mRNA particle 

between a SG and PB and was detected by identifying trajectories which had both a CLIPB > 0 and CLISG 

> 0 at the same time. For all trajectories that did not fulfill this criterion and had either a CLIPB
 
> 0   or 

CLISG
 
> 0   the entry or leaving direction into PBs or SGs was determined by looking at the LI of its 

respective spot components and its change from one frame to another. 

(2)   LIt0 = 0 and LIt1 = 1  (mRNA moved inwards)                                                     

(3)   LIt0 = 1 and LIt1 = 0  (mRNA moved outwards)                                                     

In (2) a situation is shown in which an mRNA molecule had initially not been colocalizing while one 

frame later it did, meaning that it moved from the cytoplasm into the respective subcellular structure. 

In (3) the opposite scenario is shown. 

Cell line generation for SunTag translation site imaging 

The used reporter cassette is identical to the 24x SunTag Renilla luciferase reporter used by Voigt et al. 

(Voigt et al., 2017), except for an exchanged promoter region with a tetracycline-inducible promoter 

and 5′ UTR of human RPL32 originating from rpL32-β-globin (Damgaard and Lykke-Andersen, 2011). 

The reporter cassette was then stably integrated into HeLa cells containing a single FLP site 

constitutively expressed reverse tetracycline-controlled transactivator (rtTA2-M2) for inducible reporter 

expression as described above (Weidenfeld et al., 2009). MS2 stem loop-binding NLS-MCP-Halo to 

visualize the mRNA reporter and scFv-GFP (Yan et al., 2016) to visualize translation sites were stably 

integrated into the cells by lentiviral transduction as described above. To reduce fluorescent 

background, cells were FACS sorted and cultured under standard conditions as described above   

SunTag translation site imaging and data analysis in live cells 

Imaging 
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5'TOP SunTag Renilla reporter cell lines were prepared for imaging as described above, except for using 

Janelia Fluor 549 (Grimm et al., 2016) to fluorescently label the mRNA-binding NLS-MCP-Halo proteins. 

Cells were then imaged with the same HILO microscopy setup as described above. To detect translation 

sites (GFP) and mRNAs (NLS-MCP-Halo), images were acquired simultaneously with two cameras in a 

single plane for 100 consecutive frames with an exposure time of 46 ms. Reporter transcription was 

stopped before the stress/recovery time-course experiment by washing the cells 2x in PBS in the 

temperature controlled microscope chamber. Cells were stressed by incubation in FluoroBrite™ DMEM 

(Life Technologies) + 10% (v/v) FBS and 100µM sodium arsenite (Sigma). Stress recovery was achieved 

by 2x washes with PBS in the temperature controlled microscope chamber and incubation in 

FluoroBrite™ DMEM (Life Technologies) + 10% (v/v) FBS.  

Fraction of translating mRNAs  

Single particle detection and subsequent tracking was executed for both the GFP and NLS-MCP-Halo 

channels in the same manner as described above with the FIJI suite plugin Trackmate (Tinevez et al., 

2017). To determine the fraction of translating mRNAs, the obtained x, y, t coordinates per GFP and NLS-

MCP-Halo track were colocalized in a custom written script executed in KNIME (equation (4)). Details on 

the colocalization procedure can be found elsewhere (Voigt et al., 2018). In brief, only tracks with a 

minimum length of 5 frames were considered for the analysis. Tracks were called colocalized when they 

were within 3 pixels (321 nm) for at least two consecutive frames for both tracks. 

(4)    𝑇𝑇𝑇𝑇𝐶𝐶𝐿𝐿𝑇𝑇𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝐿𝐿𝑇𝑇 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇 =  # 𝑇𝑇𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇.  𝑇𝑇𝑖𝑖𝑠𝑠𝐹𝐹𝑇𝑇 𝑐𝑐𝑐𝑐𝑇𝑇𝑐𝑐𝑐𝑐.  𝑤𝑤𝑖𝑖𝑠𝑠ℎ 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇 
# 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇

 

mRNA ribosome occupancy 

The number of ribosomes per mRNA molecule was calculated based on the mean total fluorescence 

intensity of the first 5 frames of each detected GFP SunTag translation site colocalizing with an NLS-

MCP-Halo mRNA. In addition, the mean fluorescence intensity of single released SunTag-Renilla 

peptides was determined. Since the length of the emerging scFv-GFP labelled polypeptide chain is 

different for ribosomes on the 5′- and 3′-ends of mRNAs, simply dividing the total intensity by the 

intensity of the single released peptide does not suffice. We used a simplified model to calculate 

ribosome occupancy which was described previously (Voigt et al., 2017; Yan et al., 2016). In brief, a single 

correction factor is used to account for the ribosome position within the open reading frame (ORF). The 

correction factor is determined based on two assumptions: The Renilla luciferase fraction of the ORF is 

invisible to detection since it does not bind scFv-GFP, still the ribosome translates this region. Peptide 
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chains with the maximum number of bound scFv-GFPs are therefore overrepresented when 

considering the length of the SunTag cassette alone. Secondly, we assume that the ribsome moves with 

a constant speed through the ORF and is therefore homogenously distributed throughout the ORF. 

Based on the sequence length contributions of the SunTag element and the Renilla luciferase within 

the ORF the correction factor displayed in equation (5) is calculated. 

(5)   𝑚𝑚𝐶𝐶𝑅𝑅𝐿𝐿𝑇𝑇𝐿𝐿𝐶𝐶𝐶𝐶𝑇𝑇 𝑝𝑝𝐶𝐶𝑇𝑇 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑇𝑇𝑐𝑐𝑠𝑠𝐹𝐹𝑇𝑇 𝑖𝑖𝑇𝑇𝑠𝑠𝐹𝐹𝑇𝑇𝑇𝑇𝑖𝑖𝑠𝑠𝑖𝑖 𝑇𝑇𝑖𝑖𝑇𝑇𝑠𝑠𝑇𝑇𝐹𝐹 𝑠𝑠𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇.  𝑇𝑇𝑖𝑖𝑠𝑠𝐹𝐹
𝑇𝑇𝑐𝑐𝑠𝑠𝐹𝐹𝑇𝑇 𝑖𝑖𝑇𝑇𝑠𝑠𝐹𝐹𝑇𝑇𝑇𝑇𝑖𝑖𝑠𝑠𝑖𝑖 𝑇𝑇𝑖𝑖𝑇𝑇𝑠𝑠𝑇𝑇𝐹𝐹 𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝑟𝑟 𝑝𝑝𝐹𝐹𝑝𝑝𝑠𝑠𝑖𝑖𝑟𝑟𝐹𝐹 𝑥𝑥 0.70425

 

Using the correction factor, the total number of ribosomes on each mRNA molecule was then calculated 

using equation (5). 
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2.5 Supplementary figures 
 

 

Fig. S1: Cells stably expressing G3BP1-GFP and DDX6-TagRFP-T form stress-induced SGs and PBs with typical numbers 

per cell, size, and formation kinetics. (A) eIF2α is reversibly phosphorylated upon treatment with 100µM SA for 1h in HeLa 

cells. (B) Polysome profiling of HeLa cells subject to 100µM SA for 1h showed that translation is generally off during SA 

treatment (two replicates shown per condition). (C) After FACS, HeLa cells stably expressing G3BP1-GFP and DDX6-TagRFP-T 

did not form atypical levels SGs and PBs in the presence or absence of 100µM SA when compared to endogenous SGs and PBs 

detected by IF. (D) and (E) HeLa cells stably expressing G3BP1-GFP and DDX6-TagRFP-T and treated with 100µM SA formed SG 
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and PB with similar sizes (D), numbers per cell (E) and formation kinetics as previously described by others (Ohshima et al., 

2015; Wheeler et al., 2016). 

 

Fig. S2: RNA smFISH against endogenous RPL32 confirms 5’TOP-element dependent mRNA localization to SGs and PBs. 

(A) HeLa cells were control treated or stressed with 100µM SA for 1 hour, fixed, stained for G3BP1 and DDX6, and RNA smFISH 

against endogenous GAPDH mRNA was performed. (B) HeLa cells were control treated or stressed with 100µM SA for 1 hour, 

fixed, stained for G3BP1 and DDX6, and RNA smFISH against endogenous 5′TOP element-containing RPL32 mRNA was 

performed. (C) Colocalization-based quantification of the data presented in (A) and (B) showed that RPL32 mRNAs localized 

significantly more to PBs and SGs (scale bars = 10µm; mean ± SEM; two-tailed, unpaired Student’s t-test; * = p < 0.05; >100 cells 

per time point and experiment, 3 biological replicates). 
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Fig. S3: LARP1 KD decreases cytoplasmic LARP1 levels, but does not influence PBs and SG negatively. (A) HeLa cells were 

control transfected or transfected with siRNAs against LARP1 for 48 hours. Cells were then stressed with 100µM SA for 1 hour, 

fixed, and stained for LARP1, G3BP1 and DDX6. The reduction of LARP1 does not prevent the formation of endogenous PBs 

and SGs. (B) and (C) 48h LARP1 KD does not alter the size and number of PBs and SGs in HeLa cells stably expressing G3BP1-

GFP and DDX6-TagRFP-T. 
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Fig. S4: LARP1 KD reduces the number of endogenous 5’TOP element-containing RPL32 mRNAs in SGs after 2 hours of 

SA treatment. (A) RNA smFISH against endogenous GAPDH or RPL32 5’TOP mRNAs combined with IF against G3BP1 and DDX6 

in LARP1-depleted HeLa cells treated with 100µM SA for 2h showed lower RPL32 5’TOP mRNAs localization to SGs, but 

unchanged levels for GAPDH. (B) Colocalization analysis and quantification of the data presented in (A). LARP1 depletion led 

to a decrease of RPL32 5’TOP mRNAs colocalizing with SGs after 2h of SA treatment (scale bars = 10µm; mean ± SEM; two-

tailed, unpaired Student’s t-test; * = p < 0.05; >100 cells per time point and experiment, 2 biological replicates). 
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Fig. S5: G3BP1-GFP SGs fully disassemble during the recovery from stress. (A) HeLa cells expressing G3BP1-GFP were 

treated with 100µM SA for 1h, and washed with PBS. SG size was measured during a 2h time course. After a short lag-phase, 

SGs fully disassembled after 2h of recovery. 
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This chapter describes results obtained with a small molecule compound library with known mode-of-

actions in order to identify molecules, which are able to negatively influence stress granule formation 

or stability. Work on this project is still in progress and the long-term goal is to expand the screening 

approach to gain detailed and unbiased insights into the mechanisms of SG formation and function. 
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3.1 Introduction 

 

Cells prioritize their activities during various stresses in order to ensure survival, which occurs 

for example in solid tumors or neurological disorders involving protein aggregation. During the cellular 

stress response cap-dependent translation is downregulated and the cytoplasm is reorganized into 

microscopically visible stress granules (SGs) and processing bodies (PBs) (see also sections 1.2 and 1.3). 

Recently, the small molecule ISRIB (Integrated Stress Reponse InhiBitor) has been described to rapidly 

disassemble SGs and reactivate translation in mammalian cells in a eIF2α-independent, but eIF2B 

dependent manner (Sidrauski et al., 2013), (Sidrauski et al., 2015), (Sekine et al., 2015). PB integrity in 

stressed cells does not seem to be affected. ISRIB hyperactivates the guanine nucleotide exchange 

factor (GEF) eIF2B by binding to the two δ-subunits of the homodimer. As a result, eIF2B is still able to 

fulfill its GEF function by converting inactive eIF2-GDP to the active eIF2-GTP even if eIF2α is 

phosphorylated, which is one hallmark of the cellular stress response. eIF2-GTP can then contribute to 

an active ternary complex which allows the initiation of mRNA translation (Fig. 1). ISRIB presumably also 

has positive effects on cognition, dopamine-related learning processes and depression symptoms in 

mice (Sidrauski et al., 2013), (Placzek et al., 2016), (Kabir et al., 2017) and might be able to enhance 

memory formation after traumatic brain injury (Chou et al., 2017). Four scenarios are possible to explain 

the observed cell biological and brain physiological effects of ISRIB: The molecule might act due to (1) 

its disassembly effect on SGs, (2) its capability to reactivate translation, (3) a combination of both, or (4) 

an unknown non-eIF2B target.  
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Fig. 1: Do other small molecules with ISRIB-like effects exist? During the ISR ISRIB lends cells resistant to eIF2α-phosphorylation 

on Ser51, by hyperactivation of eIF2B, presumably through enhancing the dimerization of its two δ subunits. ISRIB treated cells 

can therefore still initiate translation and SG disassemble. Whether these two processes are linked and whether other 

molecules exist that can reduce the number of SGs and resume translation during stress in a PB- and eIF2α-phosphorylation-

independent manner is not known.  

Currently, it is under debate whether SGs have a pro-survival or rather pro-apoptotic effect 

during the cellular stress response (see section 1.7). It proved to be difficult to untangle the effects of 

stress-induced translational regulation and the presence of SGs themselves on this process. There is 

increasing evidence that SG presence and translation inhibition might not always be as tightly linked as 

previously thought. One study for example found that inhibition of the last step of translation initiation 

by blocking the recruitment of 60S ribosome either with 2-(4-methyl-2,6-dinitroanilino)-N-

methylpropionamideis or through depletion of the large ribosomal subunits protein L28 does not 

induce SG assembly (Mokas et al., 2009). Later the inverse was found to be true as well. USP10, when 

overexpressed, was observed to inhibit SG assembly downstream of polysome disassembly, most likely 

due to preventing mRNP condensation which is required for SG formation (Kedersha et al., 2016). We 

observed a third case highlightling the complexity of the relationship beween translation inhibition and 

SG formation. When adding ISRIB to thapsigargin (Tg)-induced  ER-stressed HeLa cells, we observed SG 

disassembly and reinitiation of translation measured by Renilla luciferase (Fig. 2a) similarly to what had 

been described in the original ISRIB paper (Sidrauski et al., 2013). When performing the same 

experiment under sodium arsentite (SA)-induced oxidative stress, ISRIB still dissolved SGs, but could 

surprisingly not reactivate translation (Fig. 2a). Independently of the Renilla luciferase readout, we 

observed the failure to initiate translation also more generally by polysome profiling (Fig. 2b). Here, the 
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combination of SA and ISRIB does not lead to reappearing polysomes comparable to the unstressed 

control. ISRIB might therefore fulfill two independent functions. Under some conditions the molecule is 

able to reactivate translation and dissolve SGs, while under more severe stress conditions ISRIB fails to 

reactivate translation, but still dissolves SGs. ISRIB might therefore have at least one more molecular 

target next to eIF2B. The knockdown of candidate proteins to address the uncoupling of translation and 

SG formation is challenging. Such experiments often influence both translation and SG integrity at the 

same time, making it difficult to draw any causative conclusions. To understand the beneficial effects 

and potential side effects of ISRIB or other small molecules on fundamental biological processes, it is 

crucial to fill this knowledge gap. Here, we therefore performed two imaging based screens to detect 

known small molecules with an unknown function to dissolve SGs in a PB- and eIF2α-phosphorylation-

independent manner. 

 

Fig. 2: ISRIB can uncouple translation repression from SG presence. (a) Renilla luciferase assays showed that ISRIB can reactivate 

translation and dissolve SGs when HeLa cells were stressed with 500 nM Tg for 2h and 100 nM ISRIB are added for another 1h. 

ISRIB failed to reactivate translation, but still dissolved SGs when cells were stressed with 100 µM SA. (b) Polysome profiling 

also showed that the combination of SA and ISRIB failed to reactivate translation. 

We identified a number of small molecules targeting a multitude of biochemical pathways, 

which all negatively modulate SGs. This allowed us to study SG effects on translation and cell survival 

from multiple targeting angles without the need to deplete SG-related proteins. We excluded 

compounds that broadly target all stress induced mRNPs complexes or the four already identified 

stress-activated kinases HRI, PKR, PERK, and GCN2. To achieve this, compounds were only selected when 

no or only minor negative effects on PB numbers or eIF2α-phosphorylation were present (Fig. 1). Using 

a Novartis mode of action (MoA) box containing 3078 small molecules each with a described target in 
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an imaging-based screen, we identified 23 compounds functioning as SG disassembly enhancers and 4 

compounds acting as SG formation blockers. Although all compounds compromised SG integrity, no 

rescue of cap- or uORF-dependent translation was observed. One GSK3 inhibitor (SB216763) resulted in 

a mild, but significant uORF-dependent translation up regulation. The majority of identified compounds 

decreased cell survival through apoptosis up regulation in the presence of ER stress, but not during its 

absence.   

In summary, the identification and characterization of several small molecular compounds with 

known MoAs, allowed us to study the cellular stress response in the presence and absence of SGs 

without perturbing SG protein levels. We find that translation is regulated independently of SGs and 

that the absence of SGs correlates with increased apoptosis. These findings are consistent for a number 

of different biochemical targets and are in support of the notion that SGs fulfill a pro-survival function 

when unperturbed.  
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3.2 Results 
 

To study the effects of SGs on cellular physiology in a protein level independent manner, we 

chose to perform an imaging-based screening utilizing the Novartis MoA box containing 3078 small 

molecules each with a described target. HeLa cells stably expressing G3BP1-GFP and DDX6-TagRFP-T as 

SG and PB markers, respectively, were fixed and stained for eIF2α-phosphorylation (Ser51) and imaged 

after having been exposed to sodium arsenite (SA). SGs, increased numbers of PBs and increased levels 

of eIF2α-phosphorylation were only detectable in the presence of sodium arsenite. (Fig. 3a). To perturb 

SG integrity we designed two different experiments. The first experiment was aimed to identify SG 

assembly blockers, while with the second experiment we intended to identify SG disassembly 

enhancers (Fig. 3b and 2c). In the screen for SG assembly blockers, cells were first treated with the 

compounds at concentrations ranging from 0.01-100µM for 6 hours, stressed with 125µM SA for 0.5 

hours, fixed and immunostained for eIF2α-phosphorylation. Next SGs and PBs were segmented and 

quantified and eIF2α-phosphorylation stain intensity was determined (Fig. 3b). In the screen for SG 

disassembly enhancers, cells were pre-treated with 125µM SA for 1.0 hour and then exposed to the 

compounds at concentrations ranging from 0.01-100µM for 0.5 hours. Next, SGs, PBs, and eIF2α-

phosphorylation were quantified (Fig. 3c). In total 23 compounds were idenfied as PB- and eIF2α-

phosphorylation independent SG assembly blockers, while 4 compounds could be found acting as SG 

disassembly enhancers in two independent screening replicates. 
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Fig. 3: Automated screening for processing body and eIF2α-independent stress granule modulators in human cells. (a) HeLa 

cells expressing G3BP1-2xGFP and DDX6-Tag-RFP-T are treated for 1 hour with 125 µM sodium arsenite (SA), fixed and are 

positive for stress granules (SGs), P-bodies (PBs) and stress-induced eIF2α (Ser51) phosphorylation. (b) In the screen for SG 

assembly blockers cells are first pre-treated for 6 hours with small molecules from the Novartis Mode of Action library at 

concentrations ranging from 0.01 – 100 µM, then treated with 125 µM SA for 30 minutes and subsequently fixed. The presence 

of SGs, PBs and eIF2α (Ser51) phosphorylation is assessed for all compounds at all used concentrations by automated image 

analysis. 23 compounds fulfill the screening criteria. (c) In the screen for SG disassembly promoters cells are first treated with 

125 µM SA for 1 hour, treated with small molecules from the Novartis Mode of Action library at concentrations ranging from 

0.01 – 100 µM for 30 minutes and subsequently fixed. The presence of SGs, PBs and eIF2α (Ser51) phosphorylation is assessed 

for all compounds at all used concentrations by automated image analysis. 4 compounds fulfill the screening criteria.     
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Each of the 23 identified compounds received a reference number, which is used throughout 

this chapter to refer to the compound (Tab. 1, column 1). The identified compounds target enzymes 

over a large mode of action spectrum, although CDK1, CDK2, and CDK4 inhibitors are most common 

(Tab. 1, column 4). 20 compounds acted exclusively as SG assembly inhibitors, 1 compound promoted 

exclusively the disassembly of pre-formed SGs, and 3 compounds had both effects (Tab. 1, column 5). 

Only compounds exerting their maximum effect in the low µM range were considered for follow up 

experiments and are represented in the unmarked top half of Tab. 1. Of those compounds, the 

concentration with the approximate half maximal effect on SGs without affecting PBs and eIF2α-

phosphorylation was used for all experiments with the respective compound described here (Tab. 1, 

column 6). Compound #13 was excluded from follow up experiments due to intellectual property 

limitations. All other identified compounds are freely available.  
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Tab. 1: Overview of the 12 selected inhibitors obtained during the screen. The indicated concentrations were used for all 

follow-up experiments reported here.  Red: Remaining 12 compounds which have not been tested further. 

 

 

The 12 selected compounds mentioned in Tab. 1 were then validated for their effects on 

endogenous SGs stained for with a G3BP1 antibody (Fig. 4a). As identified in the screen, the majority of 

the compounds acted at least a SG assembly blocker reducing the size (Fig. 4a), the SG number per cell 

(Fig. 4b), or both when administered simultaneous with SA to HeLa cells. Compounds #6 and #7 led only 

to a modest decrease of endogenous SG size and have no significant effect on the SG number per cell.  

Treatments with 100 µM SA or DMSO served as positive and negative controls, respectively. 
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Fig. 4: Validation of screen hits by immunofluorescence. Multiple selected compounds negatively impact endogenous SG size 

and number. (a) All selected compounds reduce the size of SGs when treated over night, stressed for 1 hour with SA, fixed and 

stained for SGs with an G3BP1 antibody. Each dot represents one detected SG. Black horizontal bars represent medians. 30 

cells were analyzed per treatment condition. (b) Most tested compounds reduce the average number of SGs per cell when 

treated over night, stressed for 1 hour with SA, fixed and stained for SGs with an G3BP1 antibody. Error bars represent standard 

error of the mean (SEM). 

In order to test the effect of the 12 identified compounds on translation; we generated HeLa cell 

lines expressing stably integrated Renilla luciferase reporters from a single doxycycline inducible locus. 

Two different reporter systems were used. The first served the purpose to assess compound effects on 

canonical cap-dependent translation. This reporter contained a single start codon followed by the 

Renilla luciferase open reading frame (ORF) (Fig. 5a, top panel). The second reporter was designed to 

test compound effects on upstream ORF (uORF) mediated translation. uORF mediated translation is 

common for transcripts encoding for stress responsive proteins such as ATF4, CHOP or GADD34. For this 

reporter we utilized the ATF4 uORF structure and fused it to the main Renilla luciferase ORF (Fig. 5b, top 

panel). The reporter contains two uORFs of which the downstream one overlaps with the main Renilla 

luciferase ORF. Under stress conditions “leaky scanning” due to impaired translation reinitiation can 

occur resulting in the skipping of uORF2 and a higher chance for main ORF translation (see section 1.2.2). 

This second reporter would therefore be higher expressed during the stress response, while the first 

reporter would remain silent. 

Control experiments of HeLa cells expressing the cap-dependent translation reporter treated 

with DMSO showed reduced Renilla luciferase expression when stressed for 1.5h with the ER-stressor 

Tg (Fig. 5a, bottom panel). Unstressed cells were treated with DMSO instead and showed ca. 40% higher 
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Renilla luciferase expression levels. Despite being able to block SG formation none of the 12 tested 

compounds was able to rescue translation to levels comparable to unstressed cells treated only with 

compound.  Interestingly, compounds #2, #6 and #7 repressed translation even in the absence of stress. 

The three compounds are therefore functionally similar to the translation elongation blocker 

cycloheximide which is able to dissolve SGs and repress translation at the same time. 

 

Fig. 5: The majority of the selected small molecule inhibitors does not rescue translation during stress, while one GSK3 inhibitor 

upregulates stress-induced uORF-mediated translation. (a) Cap-dependent translation was assessed by Doxycyclin induction 

of a Renilla luciferase encoding reporter for 1.5h, followed by a PBS wash and a 1.5h treatment with compound and 1µM 

thapsigargin (prevention of measuring transcriptional effects of compounds). (b) uORF-mediated translation was assessed by 

Doxycyclin induction of a reporter containing the ATF4 uORF structure fused to Renilla luciferase for 1.5h, followed by a PBS 

wash and a 1.5h treatment with compound and 1µM thapsigargin (prevention of measuring the transcriptional effects of 

compounds). 

 

In contrast to cap-dependent translation, uORF-mediated translation was 3-fold up regulated 

in the Renilla luciferase reporter assay when cells were mock treated with DMSO and stressed with Tg 

(Fig. 5b, bottom panel). For compounds targeting translation initiation fidelity we expected a down 

regulation of translation when compound and stress were combined. In contrast to this hypothesis, we 

observed that the majority of the compounds seemed to block translation in the absence stress and did 



129 
 

not lead to a reduction of translation when compound and stress were combined. Compound #8 is an 

exception to this observation and behaves as expected. Furthermore, a GSK3 inhibitor (compound #4) 

shows an interesting expression pattern, since it’s uORF-mediated translation is mildly up regulated 

when stressed compared to equally stressed, but DMSO treated control cells.  

 

 

Since the compounds identified in our screen target a wide range of biochemical pathways 

(Tab. 1), we reasoned that testing the compounds in a viability assay would lead to insights concerning 

the proposed pro-survival role of SGs independent of a specific single biochemical pathway. By 

assessing Caspase 3/7 activity for all tested 12 compounds in the presence and absence of ER stress we 

were able to test if compounds alone are apoptosis inducing. In addition this experimental setup 

allowed us to study whether a compound in combination with cell stress leads to increased apoptosis. 

 

Fig. 6: The majority of negative SG modulators with differing targets upregulate apoptosis during stress. HeLa cells were 

seeded one day prior to experiment and then treated with small molecule inhibitors (Tab. 1) and 0.5µM thapsigargin for 48h. 

Cells were then stained with Hoechst and Caspase3/7 activity was assessed by imaging. The total cell count and the fraction of 

apoptotic cells was then quantified by automated-image analysis (FIJI macro). 

When we co-treated HeLa cells with each of the identified compounds in the absence of stress 

only compounds #2, #4, #8 seemed to be toxic for cells (Fig. 6, black bars). When each compound was 
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combined with the ER stress inducer thapsigargin an increase in Caspase 3/7 activity was observed for 

all compounds, except compound #8 (Fig. 6, blue bars). Especially compounds #1 and #5 are interesting 

in this context since they both show very low baseline toxicity and a dramatic apoptosis activation 

increase when combined with thapsigargin. Both compounds target cyclin depedent kinases (CDKs). 

The uORF-controlled and stress-induced transcription factor ATF4 is linked to the cellular stress 

response and its overexpression might induce apoptosis though the suppression of stress adaptation. 

Since compound #4 led to an increase in uORF reporter expression during ER stress (Fig. 5b), we decided 

to investigate it’s effects in more detail. Compound #4 is a GSK3 inhibitor and will be referred to as 

SB216763 from now on. To test whether GSK3 inhibition is responsible for the observed uORF-

controlled reporter upregulation we performed a luciferase assay with another GSK3 inhibitor called 

CHIR99021. HeLa cells expressing ATF uORF-controlled renilla luciferase were treated overnight for 16 

hours with either DMSO, SB216763 or CHIR99021 and then treated either with DMSO or with 

thapsigargin for 2 hours to induce renilla luciferase expression. During the absence of stress, neither 

SB216763 nor CHIR99021 led to an increase of uORF-mediated translation (Fig. 7a). When cells were 

treated with thapsigargin and SB216763 or CHIR99021, uORF-mediated translation increased mildly, 

but significantly for both compounds (Fig. 7a).  
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Fig. 7: Two GSK3 inhibitors upregulate uORF-mediated ATF4 expression, inhibit cell growth and induce apoptosis. Important 

to note: Only SB216763 (indentified in screen) negatively impacts SGs. CHIR99021 has no visible effect on SGs (see also Fig. 8). 

(a) HeLa cells treated with the indicated compounds for 16h followed by 2h of 0.5µM thapsigargin induced stress show 

hyperactivated uORF-mediated translation. (b) Endogenous uORF-translation-mediated ATF4 protein is also upregulated in 

compound treated and stressed HeLa cells. (c) 48h treatment with SB216763 + Tg reduces cell growth (Hoechst) and induces 

apoptosis (Caspase3/7). SB216763 alone does not lead to these effects. (d) The three stress-response modulators SB216763, 

CHIR99021 and ISRIB induce apoptosis only in the presence of 0.5µM thapsigargin. Cells were then stained with Hoechst and 

Caspase3/7 activity was assessed by imaging as in (c). The total cell count and the fraction of apoptotic cells was then quantified 

by automated-image analysis (FIJI macro). Three biological replicates were performed. 

Next, we tested whether SB216763 and CHIR99021 were able to upregulate endogenous uORF-

mediated ATF4 expression. Western blotting showed an increase of endogenous ATF4 expression when 

HeLa cells were co-treated with thapsigargin and either SB216763 or CHIR99021 (Fig. 7b). Each 

compound alone did not induce ATF4 expression in the absence of ER stress. It is important to note that 

only SB216763 was able to decrease the number of SGs, while CHIR99021 was not (Fig. 8). Since 
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increased levels of ATF4 might compromise a cells ability to survive stress, we next tested the effects of 

both GSK3 inhibitors on cell viability. As shown in Fig. 7c, after 48 hours of treatment with thapsigargin 

and SB216763 cell numbers where drastically reduced (Hoechst) and almost all remaining cells were 

positive for active Caspase 3/7. Although SB216763 treatment alone led to some Caspase 3/7 activation, 

cell proliferation was not affected. In a time course experiment these effects where confirmed further 

(Fig. 7d). In the absence of stress SB216763, CHIR99021 and the ATF4 repressor and SG dissolver ISRIB 

had no effect on the fraction of apoptotic cells (< 10%) (Fig. 7c, gray traces). Thapsigargin alone resulted 

in 33% Caspase 3/7 positive cells (Fig. 7c, red trace). The combination of either SB216763, CHIR99021, 

and ISRIB with thapsigargin caused higher apoptosis rates after 48 hours (Fig. 7c, blue traces). The 

screen-identified compound SB216763 resulted in the highest fraction of Caspase 3/7 positive cells 

(74%). 

As described in Fig. 7 both SB216763 and CHIR99021 treatment led to increased ATF4 

expression and decreased cell viability. Despite this, both compounds have opposing effects on SGs. 

While SB216763 decreases the number and size of SGs in the presence of SA stress (Fig. 3c, Fig. 4, Fig. 8) 

the other GSK3 inhibitor CHIR99021 fails to do so (Fig. 8). To investigate the discrepancy between shared 

ATF4 and apoptosis upregulation, but differing effects on SGs we decided to perform 

phosphoproteomics to identify shared and differing targets of both compounds.  

 

Fig. 8: Two GSK3 inhibitors have differing effects on SG integrity. HeLa cells were treated with 100µM SA for 1h, followed by 

2h of SA combined with either DMSO, SB216763, or CHIR99021. Then immunofluorescence was performed against the two SG 

markers proteins TIAR and G3BP1. Scale bar = 10µM. 
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HeLa cells were treated overnight for 16 hours with either SB216763, CHIR99021 or DMSO. The 

next day the cells were stressed with thapsigargin for 2 hours and processed for phosphoproteomics. 

Fig. 9 shows significant phosphopeptide abundance changes when DMSO + thapsigargin experiments 

were compared to compound + thapsigargin experiments. Changes are expected to be due to direct 

inhibition effects of GSK3, other unknown direct targets or due to indirect network effects. These 

significant abundance changes were then plotted for both compounds in the same graph. 

Phosphopeptides changing during SB216763 treatment are depicted on the x-axis and 

phosphopeptides changing during CHIR99021 treatment are depicted on the y-axis of Fig. 9. Peptide 

changes on an imaginary diagonal spanning from the lower left to the top right part of the graph 

correlate  between treatments. Since both compounds are GSK3 inhibitors, several GSK3 downstream 

targets are identified (GYS1, APC, AXIN1, DPYSL2, MACF1). In addition, the GSK3-targetted consensus 

sequence pSXXXpS is enriched in our dataset. Off-diagonal phosphopeptides are differentially 

regulated between both compound treatments. Among the interesting hits are for example ATXN2L 

(Ataxin-2-like), which has been implicated in SG regulation (Kaehler et al., 2012), or the two kinases MTK1 

and ZAK. Both are implicated in the suppression of apoptosis through MAPK pathways, potentially 

through sequestration within SGs (Arimoto et al., 2008). 
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Fig. 9: Phosphoproteome comparison between the two GSK3 inhibitors SB216763 (promotes SG disassembly) and CHIR99021 

(no effect on SG integrity). The plot shows significantly changing peptides of thapsigargin stressed HeLa cells treated with the 

respective compound versus HeLa cells that were only subject to thapsigargin stress and not treated with the compound. The 

cells were treated for 16 hours with the respective compound, then stressed with 1µM thapsigargin for 2h, lyzed, protoease 

treated, enriched for phosphopeptides and analyzed by mass spectrometry. The broken red line serves as guide for the eye for 

peptides that co-downregulated for both inhibitors. Three independent replicates were performed and only significantly 

changing peptides are shown. 
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3.3 Summary and discussion 

 

Here we describe several small molecule inhibitors which are able to negatively influence SGs 

in a PB and eIF2α-phosphorylation (Ser51) independent manner (Fig. 3 & Tab. 1). At a single tested 

concentration, all of the selected compounds also negatively influenced endogenous SGs, although to 

a varying extend (Fig. 4). Contrary to our initial expectation, the selected small molecule inhibitors did 

not rescue cap-dependent translation during stress. Interestingly, one GSK3 inhibitor upregulated 

stress-induced uORF-mediated translation, which plays a role for many stress-induced genes i.e. ATF4. 

Importantly, the disassembly or prevention of SGs though a variety of pathways does not necessarily 

result in translation re-initiation (Fig. 5). 11 out of the 12 tested compounds have a negative impact on 

cell viability in stressful conditions when compared to cell stress alone (Fig. 6). This finding supports the 

notion that SGs might fulfill a pro-survival function in cells facing stress. In this context, compound #1, 

a CDK2 inhibitor, could be a valuable tool to study the effect of SG dissolution on apoptosis due to its 

strong cellular responses both in the SG and apoptosis assays. 

When we focused on the GSK3 inhibitor SB216763 due to its capability to upregulate uORF-

mediated translation we were able to confirm this effect also for another GSK3 inhibitor called 

CHIR99021, which was not part of the screen. Interestingly, CHIR99021 does not fully dissolve SGs in 

contrast to SB216763 (Fig. 8). In a 48h time course experiment, both compounds resulted in increased 

apoptosis in stressed cells. ATF4 upregulation, disassembly of SGs or the combination of both might be 

useful to control cell viability during stress (Fig. 7). Due to their similar effect on ATF4 expression, but 

differing effect on SGs we performed phosphoproteomics for the two GSK3 inhibitors SB216763 and 

CHIR99021. Interestingly, we identify GSK3A as the strongest co-downregulated phosphopeptide in our 

dataset, suggesting an autoregulatory mechanism. Although in the absence of stress, previous work has 

shown that lithium, another GSK3 inhibitor, causes a GSK3 phosphorylation increase (Zhang et al., 2003). 

This presumably occurs through inhibiting the GSK-3-mediated activation of protein phosphatase PP1 

subunit I2. Blocking PP1 in turn upregulates GSK3 phosphorylation. Why we see the opposite effect on 

GSK3A phosphorylation levels during thapsigargin-induced ER stress is currently not clear. One 

possibility is that the observed ATF4 overexpression induces the transcription factor CHOP, which in 

turn induces the PP1 subunit GADD34 (Novoa et al., 2003), (Wortel et al., 2017). Whether PP1-GADD34 

can dephosphorylate GSK3 remains an open question. In addition, prolonged upregulation of the ATF4-

CHOP-GADD34 axis has been implicated in increased apoptosis, which is in line with our findings. This 
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occurs presumably due to dephosphorylation of eIF2α allowing the unwanted re-initiation of canonical 

translation under stress conditions (Kang et al., 2011), (Dennis et al., 2013), (Han et al., 2013), (Guan et 

al., 2014). However, it is also a possibility that the observed inhibitor effects are unrelated to GSK3 due 

to off-target effects. Off-target effects become more likely at high concentrations and/or prolonged 

incubation times. Interesting non-GSK3 related hits include the two MAPKKK kinases ZAK (also known 

as MAP3K20, MLT or MLTK) and MTK1 (also known as MAP3K4 or MEKK4).  

ZAK has been implicated in apoptosis upregulation in several cancers (Vin et al., 2013), 

(Markowitz et al., 2016). Since ZAK phosphorylation is specifically downregulated during SB216763 

treatment and not during CHIR99021 treatment, it will be interesting to see whether ZAK is localized to 

SGs and to what extend it changes its subcellular distribution during SB216763 treatment. MTK1 is 

another interesting hit and also a MAPKKK kinase. MTK1 is able to bind RACK1 which activates apoptosis 

through p38 and JNK. Interestingly, RACK1 is also able to prevent apoptotic responses by associating 

with SGs. Sequestration of RACK1 inside of SGs significantly reduces its ability to associate with MTK1 

and therefore inhibits the MTK1-dependent apoptosis activation (Arimoto et al., 2008). Liberating 

RACK1 from SGs through SB216763 could potentially explain the observed higher levels of apoptosis. 

Whether CHIR99021 is able to increase the free RACK1 pool is unclear. Further, it will be interesting to 

see if dephosphorylated MTK1, as observed by mass spectrometry, has elevated RACK1 binding capacity 

when treated with either SB216763 or CHIR99021. 

In summary, here we identify several small molecules with SG destabilizing and apoptosis 

inducing properties. These compounds might be a valuable resource to study the biological role of SGs 

without the need to perturb protein levels. 
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3.4 Material and methods 
 

Generation of SG and PB marker cell line 

In order to visualize stress granules and P-bodies in living cells, G3BP1-2xGFP and DDX6-Tag-

RFP-T fusion proteins were cloned into the phage UbiC lentiviral vectors, respectively. Constructs were 

simultaneously and stably integrated by lentiviral transduction according to standard protocols. To 

prevent stress granule formation or excess P-body formation in the absence of stress due to 

overexpression, FACS was utilized to identify only low expressing dual positive cells. 

Immunofluorescence against TIAR (1/100, cat. # 610352, BD Biosciences), G3BP1 (1/200, cat. # 

ARP37713_T100, Aviva Systems Biology), DDX6 (1/300, cat. # A300-461A, Bethyl Labs) and DCP1a 

(1/300, cat. # 47998, Abcam) was performed to confirm physiological stress granule and P-body 

numbers and behavior.  

Screen setup & analysis 

For both screens G3BP1-2xGFP and DDX6-Tag-RFP-T expressing HeLa cells were seeded in 

DMEM + 10% FBS in 1536-well plates one day prior to the experiment and incubated at 37°C and 5% 

CO2. In the screen for blockers of SG assembly each of the 3,078 Novartis Mode of Action library 

compounds was administered to the cells 6h prior to fixation at concentrations ranging from 0.01 – 100 

µM. Cells were then treated with 125 µM SA (Sigma) diluted in water for 30 minutes, followed by fixation 

in 4% paraformaldehyde (PFA). DMSO treated cells exposed to water and DMSO or SA and DMSO served 

as negative and positive controls, respectively (see also Fig. 3b for a schematic representation). After 

fixation cells were imaged. 

In the screen for enhancers of SG disassembly cells were first stressed with 125 µM SA (Sigma) 

for 1h, followed by the addition of each of the 3,078 Novartis Mode of Action library compounds at 

concentrations ranging from 0.01 – 100 µM.  Negative control cells were treated with DMSO  instead. 

Positive control cells were subject to two PBS washes, followed by the addition of fresh DMEM + 10% 

FBS. After 30 minutes of treatment cells were fixed in 4% paraformaldehyde (PFA) and imaged (see also 

Fig. 3c for a schematic representation). 

Image acquisition and liquid-handling during the initial high-content screen and the follow-up 

experiment was performed on a IN Cell 6000 (GE Healthcare Life Sciences) laser-based confocal imaging 

platform. High-content screening image analysis was performed with CellProfiler. Feature selection and 
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IC50 calculations were performed by a custom-built multi-parametric data analysis (MPDA) workflow 

(details available upon request). Image rendering, data visualization and analysis was performed in 

Spotfire (Tibco).   

Compounds capable of dissolving SGs or block their formation accounted for a total of 70 hits 

in both screening approaches. In a validation experiment the 70 hits were reassessed and their effect 

on eIF2α-phosphorylation during SA treatment was measured. Of those 70 compounds, 24 compounds 

were validated and in addition were found to have no significant effect on eIF2α-phosphorylation 

during SA treatment. Stress-induced eIF2α-phosphorylation on Ser51 was assessed by 

immunofluorescence (1/200, cat. # 3398, Cell Signaling), preceded by 20 minutes of 4% PFA fixation. Of 

those 24 compounds 12 compounds were selected for follow-up experiments (Tab. 1) based on low 

IC50 scores. 

Immunofluorescence & SG quantification 

HeLa cells were seeded two days prior to fixation at a concentration of 40x103 cells/ml on 

standard glass coverslips (18mm, Biosystems). Cells were then washed in PBS and fixed in 4% 

paraformaldehyde (PFA)/PBS (Electron Microscopy Science) for 15 minutes, washed again and 

permeabilized in 1% Triton-X1000 (v/v)/PBS for 5 minutes at room temperature. Next, cells were PBS-

washed three times for 5 minutes each time. Blocking was performed with 1% BSA/PBS (Sigma-Aldrich) 

for 15 minutes. Primary antibodies were diluted in blocking solution and a drop of 50µL was pipetted 

into a Petri dish. Coverslips were removed from wells, placed cell-side down onto the primary antibody 

solution, incubated for two hours at room temperature and placed back into the well. Coverslips were 

placed back into a 12-well plate and washing was performed three times 5 minutes each in 0.2% 

BSA/PBS. Secondary antibodies (Alexa fluorophores, Life Technologies), were diluted in blocking buffer, 

added onto the coverslip for 30 minutes and washed out three times with PBS for 5 minutes each time. 

Next, cells were DAPI stained (0.5 mg/L) and coverslips were mounted (ProLong Gold, Life Technologies) 

on glass slides and imaged. 

Luciferase assays 

Cell lines containing either Renilla luciferase reporters to assess cap- or uORF-dependent 

translation were seeded two days prior to the experiment at a concentration of 100x103 cells/ml in 12-

well plates in DMEM + 10% FBS at incubated at 37°C and 5% CO2. Cell were induced with doxycycline 

(1 µg/ml) for 1.5h, followed by a PBS wash. Next, cells were treated for 1.5h with compound and 1µM 
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thapsigargin (Life Technologies). Used compound concentrations are indicated in Tab. 1. Cells were 

then washed in ice-cold PBS, lysed, and processed according to the manufacturer’s protocol (Promega).  

Viability assay 

In a 96-well plate 5x103 cells/well were seeded one day prior to the experiment. Cells were then 

either treated with DMSO, 500µM thapsigargin (Life Technologies), compound only, or compound + 

500µM thapsigargin for 48h. Staining was performed with CellEvent™ Caspase3/7 reagent 

(ThermoFisher Scientific) and Hoechst 33342 (ThermoFisher Scientific) shortly before analysis on a 

Nikon widefield microscope. Images were analyzed in FIJI (Schindelin et al., 2012) by utilizing the Batch 

 Macro function and the following script: 

 

run("Subtract Background...", "rolling=10 stack"); 

run("Z Project...", "projection=[Max Intensity]"); 

setThreshold(0, 10000); 

setOption("BlackBackground", false); 

run("Convert to Mask"); 

run("Invert"); 

run("Analyze Particles...", "size=7-Infinity pixel show=Outlines display summarize"); 

 

Phosphoproteomics  

3x106 HeLa cells were seeded on Day 0 per 15cm plate and treated on Day 1 with 10uM 

SB216763, 3uM CHIR99021 or DMSO for 16 hours over night. On Day 2 cells were either stressed with 

1µM thapsigargin or treated with DMSO for 2h. The plates were then washed in ice-cold PBS, kept on 

ice at all times and cells were scraped off in PBS. The scraped cells were then lysed in lysis buffer (2% 

sodium deoxcholate (NaDOC), 10mMTris, 50mM NaCl, 1% NP40), sonicated, heated for 5 minutes 

heated at 95°C, and the protein concentration was measured by Bradford assay. Next cysteines were 

alkylated with CSA and TCEP in HEPES pH8.5. Samples were then diluted 2-fold and Lys-C digested for 

2h at room temperature. Next, Trypisin was then added at 1/300 of total protein per tube and samples 

were incubated over night at 37°C. On Day 3 samples were diluted 2-fold in HEPES pH8.5 and Trypsin 

was readded at 37°C for 3 hours. Sample preparation for mass spectrometry including acidification, 

phosphopeptide TiO2 enrichment (Thermo Scientific) and mass spectrometry measurements were 
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performed according to standard protocols. Phosphopeptide changes were normalized to 

corresponding proteomic changes.  
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The chapter describes the development and experimental application of an RNA-based 

biosensor to study the first round of translation of a single mRNA molecule inside of living cells (TRICK 

reporter) in different biological contexts. Relevant for this thesis is the result that it is possible to study 

translation on the single molecule level in different cell types and that mRNAs specifically localize to 

processing bodies (PBs) during the cellular stress response. The mRNAs remain translationally repressed 

inside of PBs, even if translation in the surrounding cytoplasm reinitiates during stress relief. This work 

serves as a specific example for RNA-protein granule-modulated sub-cellular translation regulation.  
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TRANSLATION

An RNA biosensor for imaging the
first round of translation from single
cells to living animals
James M. Halstead,1* Timothée Lionnet,2,3,4* Johannes H. Wilbertz,1,5* Frank Wippich,6*
Anne Ephrussi,6† Robert H. Singer,2,3,4† Jeffrey A. Chao1,2†

Analysis of single molecules in living cells has provided quantitative insights into the
kinetics of fundamental biological processes; however, the dynamics of messenger RNA
(mRNA) translation have yet to be addressed. We have developed a fluorescence
microscopy technique that reports on the first translation events of individual mRNA
molecules. This allowed us to examine the spatiotemporal regulation of translation during
normal growth and stress and during Drosophila oocyte development. We have shown that
mRNAs are not translated in the nucleus but translate within minutes after export, that
sequestration within P-bodies regulates translation, and that oskar mRNA is not translated
until it reaches the posterior pole of the oocyte. This methodology provides a framework
for studying initiation of protein synthesis on single mRNAs in living cells.

D
uring translation, mRNAs are bound by
the ribosome. Measurements of ribosome
occupancy ofmRNAsandprotein abundance
provide a genome-wide view of translation
regulation (1, 2). Fluorescence microscopy

complements these global approaches because it
allows analysis of gene expression with single-
molecule resolution in living cells and provides
mechanistic insights obscured by ensemblemea-

surements (3, 4). Imaging methods have been
developed that allow newly synthesized proteins
to be discerned from the preexisting population
or enable actively translating ribosomes to be iden-
tified within the cell; however, these approaches
are limited by low signal-to-noise ratio and lack
the resolution to correlate these events with spe-
cific mRNA molecules (5). Here, we describe a
single-molecule assay that allows untranslated
mRNAs to be distinguished unequivocally from
previously translated ones and provides a foun-
dation for investigating the spatiotemporal regu-
lation of translation in living cells.
Because the ribosome or its associated factors

must displace endogenous RNA-binding proteins
during the first round of translation, we reasoned
that it would be possible to construct an RNA bio-
sensor whose fluorescent signal would depend
on this process. The orthogonal bacteriophage
PP7 andMS2 stem-loops were used to label a tran-
script within both the coding sequence (PP7) and

the 3′ untranslated region (UTR) (MS2) with spec-
trally distinct fluorescent proteins (6). Simulta-
neous expression of the PP7 coat protein fused to
a nuclear localization sequence (NLS) and green
fluorescent protein (NLS-PCP-GFP) and the MS2
coat protein fused to an NLS and red fluorescent
protein (NLS-MCP-RFP) resulted in nuclear tran-
scripts labeled with both fluorescent proteins
(Fig. 1A). Upon export of the reporter mRNA, the
first round of translation displaces NLS-PCP-GFP
from the transcript, as the ribosome traverses the
coding region that contains the PP7 stem-loops.
The NLS limits the concentration of free NLS-
PCP-GFP in the cytoplasm, yielding translated
mRNAs that are labeled with only NLS-MCP-
RFP bound to the stem-loops in the 3′ UTR
(Fig. 1, A and B). We refer to this technique as
translating RNA imaging by coat protein knock-
off (TRICK).
Efficient translation of a 6xPP7 stem-loop cas-

sette required optimization of the distance between
adjacent stem-loops, stem-loop folding, and codon
usage so that they would not block or stall elon-
gation of the ribosome, which might elicit decay
of the transcript (7) (Fig. 1C). The polypeptide
encoded by the PP7 stem-loops has a molecular
mass of ~14 kD and is not homologous to any
known protein. Binding of NLS-MCP-RFP to the
3′UTR had no effect on translation, and binding
of NLS-PCP-GFP to the PP7 stem-loop cassette in
the coding region also did not result in reduced
translation of the reporter mRNA (Fig. 1C and
fig. S1). Similarly, binding of the fluorescent pro-
teins to the reporter mRNA also did not alter the
stability of the transcript (fig. S2).
TheTRICKreportermRNAwas expressed inaU-

2OShumanosteosarcomacell line stablyexpressing
NLS-PCP-GFP andNLS-MCP-RFP. Fluorescence-
activated cell sorting isolated cells with small
amounts of both fluorescent proteins, allowing
detection of all reporter mRNAs (figs. S3 and S4).
The cells were imaged on a fluorescence micro-
scope equipped with two registered cameras, al-
lowing simultaneous visualization of singlemRNA
molecules in both channels. In the nucleus, single
mRNAs were fluorescently labeled with both red
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and green proteins and thus appeared yellow
(Fig. 1D). In contrast, almost all of the mRNAs
appeared as red particles in the cytoplasm, indi-
cating that only NLS-MCP-RFP was bound (Fig.
1, D and E). Quantification of the steady-state
number of yellow mRNAs in the cytoplasm re-
vealed that ~94% of TRICK reporter mRNAs had
been translated at least once (Fig. 1, E and H). To
confirm that loss of NLS-PCP-GFP from cyto-
plasmic transcripts was translation-dependent,
we induced transcription of the TRICK reporter
by ponasterone A (ponA) in the presence of trans-
lational inhibitors (8). Adding either cycloheximide,
which inhibits elongation, or puromycin, which
causes premature termination, for 30 min before
induction of TRICK reporter mRNA expression
resulted in an increase in the number of untrans-
lated mRNAs in the cytoplasm (Fig. 1, F to H, and
movies S1 to S3). Consistent with the imaging,
polysome analysis indicated that NLS-PCP-GFP
was absent from actively translating mRNAs,
whereasNLS-MCP-RFP could be detectedwithin
polysomes (fig. S5). This demonstrated that trans-
lation of the PP7 stem-loops by the ribosome was
required for displacement of the green signal from
the mRNA.

Although translation is thought to occur exclu-
sively in the cytoplasm, recent studies suggest
that protein synthesis can occur in the nucleus
(9, 10). Because the TRICK assay can distinguish
between untranslated and translated mRNAs, we
imaged TRICK reporter mRNAs in the nucleus
30min after ponA induction. Single-particle track-
ing (SPT) of nuclear mRNAs determined that they
undergo both corralled (D = 0.02 mm2 s−1) and
random diffusion (D = 0.09 mm2 s−1), similar to
themovements observed for other nuclearmRNAs
(11, 12). We found 91.3 T 0.9% of mRNAs labeled
with both colors, which is not significantly differ-
ent from the fraction of double-labeled mRNAs
in the cytoplasm of cells treated with transla-
tional inhibitors (P = 0.75, unpaired t test) (fig. S6,
A and B, and movie S4). We cannot, however, ex-
clude the possibility that the fusion protein rebound
the PP7 stem-loops immediately after translation.
If translation were occurring in the nucleus, ad-
dition of small amounts of cycloheximide would
increase polysome formation, causing occlusion
of the PP7 stem-loops and thereby preventing
NLS-PCP-GFP from rebinding (13) (fig. S7A). Sim-
ilar to experiments in the absence of cycloheximide,
90.7 T 0.6% of nuclear mRNAs were labeled with

both colors when cells were treated with 1 mgml−1

cycloheximide (P = 0.44, unpaired t test) (fig. S7, B
and C, andmovie S5). Although it is possible that
nuclear translation could occur for specificmRNAs,
this was not observed for the TRICK reporter.
These findings are consistent with the previous
observation that mRNAs containing premature
stop codons are exported before undergoing de-
cay in the cytoplasm (14).
The rapid diffusion ofmRNAs in the cytoplasm

and photobleaching prevented us from imaging
a single mRNA from the time it entered the cy-
toplasm until it was translated (figs. S8 and S9).
UntranslatedmRNAs, however, could be detected
after export from the nucleus and were observed
throughout the cytoplasm (fig. S8). To verify these
live-cell observations, we measured the spatial
distribution of untranslated reporter mRNAs in
fixed cells, using a combined immunofluorescence–
fluorescence in situ hybridization (IF-FISH) ap-
proach.FISHprobes targeted to theMS2 stem-loops
allowed detection of all reporter mRNAs, whereas
a GFP nanobodywas used to identify the untrans-
lated ones (fig. S10, A and B). In agreement with
live-cell results, we observed a large percentage of
cytoplasmic translated mRNAs (93.7%). As mRNAs

1368 20 MARCH 2015 • VOL 347 ISSUE 6228 sciencemag.org SCIENCE

Fig. 1. Imaging translation of mRNAs in living cells. (A) Schematic of
TRICK assay. (B) Schematic of TRICK reporter transcript. 6xPP7 stem-loops
(PBS) inserted in-frame with the C terminus of a protein-coding sequence
and 24xMS2 stem-loops (MBS) in the 3′ UTR. (C) Expression of TRICK re-
porter mRNA in U-2 OS cells. The protein encoded by the TRICK reporter
(51.4 kD) is translated in U-2 OS cells, and expression is not affected by NLS-
MCP-RFP and NLS-PCP-GFP. (D) U-2 OS cell expressing TRICK reporter.
Arrows indicate untranslated nuclear mRNA and three untranslated mRNAs

detected in the cytoplasm. Scale bar, 10 mm. (E) Cytoplasmic region of
untreated U-2 OS cells. (F) Addition of cycloheximide (100 mg ml−1) and (G)
addition of puromycin (100 mgml−1) during ponA induction of TRICK reporter
mRNAs. Scale bar (E to G), 2 mm. (H) Percentage of untranslated TRICK
mRNAs in U-2 OS cells. In untreated cells, 5.8 T 1.4% of mRNAs colocalize
with both NLS-PCP-GFP and NLS-MCP-RFP compared to 91.0 T 3.0% for
cycloheximide-treated and 92.6 T 1.0% for puromycin-treated cells. n = 5
cells for each condition.
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diffuse away from the nucleus, their chances to
collide with the 43S preinitiation complex and
become translated increase over time. Indeed, we
observed that the fraction of untranslatedmRNAs
decreased gradually as the distance from the
nucleus increased (fig. S10C). Spatial profiles of
untranslated mRNAs demonstrated that some
mRNAs diffused micrometers away from the nu-
cleus before undergoing translation, indicating
that translation does not occur immediately upon
export, but occurs minutes after the mRNA has
entered the cytoplasm (the time before anmRNA
translates should scale as L2/D, where L ~ 5 mm is
the radial extent of the untranslated mRNA pro-
file and D = 0.02 to 0.13 mm2 s−1 is the range of
diffusion coefficients; fig. S9). Furthermore, we
find no evidence for enrichment or depletion at
specific cytosolic locations, suggesting that transla-
tion can occur homogeneously throughout the
cytoplasm.
We next investigated how stress conditions

affect translation.Upon a variety of cellular stresses,
signaling pathways inhibit translation through
phosphorylation of eukaryotic translation initia-
tion factor 2a (eIF2a), resulting in disassembly of
polysomes and formation of cytoplasmic stress
granules and processing bodies (P-bodies), cyto-

plasmic organelles whose role in RNA metabo-
lism is not well understood (15, 16). The mRNAs
and proteins that constitute these organelles are
dynamic and rapidly exchange with the cytosol
(17, 18). However, mRNAs containing 5′ terminal
oligopyrimidine (TOP)motifs accumulate in stress
granules upon amino acid starvation, suggest-
ing that certain mRNA classes may be differen-
tially regulated within these compartments (19).
To characterize the spatiotemporal regulation
of 5′ TOP mRNA translation during stress, a
tetracycline-inducible HeLa cell line expressing
a 5′ TOP TRICK reporter mRNA with green
(NLS-PCP-GFP) and red (NLS-MCP-Halo; JF549)
fluorescent proteins required for single-molecule
RNA imaging were stressed with arsenite. 5′
TOP TRICK mRNAs were detected as single
molecules distributed throughout the cytosol or
locatedwithin stress granules and P-bodies. Only
mRNAs sequesteredwithin P-bodies formed large
clusters. This association with P-bodies was spe-
cific for the 5′ TOP TRICK mRNAs because a re-
porter that lacked the 5′ TOP motif did not form
multimeric assemblies within these cytoplasmic
foci (Fig. 2, A to C).
To address the translational regulation of cy-

tosolic mRNAs and those clustered in P-bodies,

we induced transcription of the 5′ TOP TRICK
reporter mRNA for a short period before addi-
tion of arsenite. This resulted in an increase in the
number of untranslated mRNAs in the cytoplasm
to be detected compared to unstressed cells, con-
sistentwithan inhibitionof eIF2.GTP.Met-tRNAiMet

formation (Fig. 2, D and F). The untranslated
5′ TOP TRICK reporter mRNAs in the cytoplasm
were detected as either single mobile mRNAs or
static clusters within P-bodies. Photobleaching of
the clustered mRNAs indicated that they were
stably associated with P-bodies (fig. S11). Upon
removal of arsenite, 5′ TOP TRICKmRNAs in the
cytosol underwent translation; however, the clus-
tered transcripts retained in P-bodies remained
untranslated, indicating that these cellular struc-
tures can provide a distinct level of regulation
(Fig. 2, E and F, and movies S6 to S7).
Messenger ribonucleoprotein (mRNP) granules

form not only during cellular stress, but also as
part of normal regulatory pathways. InDrosophila,
localized expression of Oskar protein at the pos-
terior pole of the oocyte is essential for correct
body patterning and germ cell formation (20).
Precise spatiotemporal translational regulation
is crucial during long-range transport of oskar
mRNA (osk) from thenurse cells, where themRNA

SCIENCE sciencemag.org 20 MARCH 2015 • VOL 347 ISSUE 6228 1369

Fig. 2. P-bodies are sites of translation regulation during stress in HeLa
cells. (A and B) IF-FISH of cells expressing D5′ TOP TRICK reporter mRNA
[(A), gray] or 5′ TOP TRICK reporter mRNA [(B), gray] during arsenite stress
(0.5 mM) contain stress granules (TIAR, green) and P-bodies (DDX6, red).
Arrows: mRNA clusters in P-bodies. (C) Fraction of cytoplasmic D5′ TOP (n =
19 cells) and 5′ TOP (n =17 cells) mRNAs located within P-bodies after 60min
of arsenite (0.5 mM) stress (P = 0.0009, unpaired t test). (D and E) Live-cell
image of 5′ TOP TRICK reporter mRNA during arsenite stress (D) and relief of

stress (E). In stressed cells, mRNAs (red, green) in cytosol and P-bodies (cyan)
are untranslated. In relieved cells, many mRNAs (red, green) in cytosol have
been translated whereas mRNAs retained in P-bodies (cyan) remain untrans-
lated. Arrow: clusteredmRNAs. Scale bar (A, B, D, E), 10 mm. (F) Percentage of
untranslated mRNAs (cytosol and P-bodies) during stress (n = 9 cells) and
relief of stress (n = 10 cells). Upon relief of stress, 5′ TOP mRNAs in P-bodies
are not translated (P = 0.31, unpaired t test); mRNAs in the cytosol have
undergone translation (P < 0.0001, unpaired t test).
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is transcribed, to the posterior pole of the oocyte,
where Oskar protein first appears during mid-
oogenesis (stage 9) (21, 22). Additional mecha-
nisms ensure degradation of ectopically expressed
Oskar protein; hence, absence of the protein does
not indicate lack of translation of its mRNA (23).
To monitor translation, we generated an osk-

TRICK reporter mRNA by placing 12xPP7 stem-
loopswithin the coding region of a construct that
contained 6xMS2 stem-loops in the 3′ UTR (fig.
S12) (24). Introducing 12xPP7 stem-loops into the
open reading frame of oskmRNA did not inhibit
translation of the reporter transcript, and the fu-
sion protein was expressed at levels comparable
to that of thewild-type protein (Fig. 3A). In early-
stage oocytes of flies coexpressing osk-TRICK
mRNA, NLS-MCP-RFP, and NLS-PCP-GFP, osk-
TRICKmRNA was labeled by both NLS-PCP-GFP
andNLS-MCP-RFP, indicating translational repres-
sion consistent with the absence of Oskar protein
(Fig. 3B). In later stages, the NLS-PCP-GFP fluo-
rescent signal was reduced at the posterior pole
and Oskar protein was detected by immunofluo-
rescence, consistent with translation of a portion
of the transcripts (Fig. 3, B and C). This method-
ology provides a framework for analyzing the
cascade of regulatory mechanisms required for
local translation during Drosophila development.
It will also be informative in neurons where reg-
ulation of the first round of translation has been

shown to be important for local protein synthesis
in axons and dendrites (25, 26).
This methodology pinpoints the precise time

and place of the first translation event of single
mRNA molecules. It reveals the translation con-
trol of mRNAs sequestered within cytoplasmic
organelles or when and where the translation of
a key cell fate determinant occurs in an organism
undergoing development. The kinetics of transla-
tional regulation can now be coupled with single-
molecule imaging of proteins to provide insights
into mechanisms of regulation that were previ-
ously unapproachable by ensemble biochemical
or genetic approaches (27). Observing regulation
ofmRNA translation in single living cells will lead
to a better understanding of disease mechanisms.
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Determination of in vivo target search
kinetics of regulatory noncoding RNA
Jingyi Fei,1 Digvijay Singh,2 Qiucen Zhang,1 Seongjin Park,1 Divya Balasubramanian,3

Ido Golding,1,4 Carin K. Vanderpool,3* Taekjip Ha1,2,5,6*

Base-pairing interactions between nucleic acids mediate target recognition in many biological
processes.We developed a super-resolution imaging and modeling platform that enabled the
in vivo determination of base pairing–mediated target recognition kinetics.We examined a
stress-induced bacterial small RNA, SgrS, which induces the degradation of target messenger
RNAs (mRNAs). SgrS binds to a primary target mRNA in a reversible and dynamic fashion, and
formation of SgrS-mRNA complexes is rate-limiting, dictating the overall regulation efficiency
in vivo. Examination of a secondary target indicated that differences in the target search
kinetics contribute to setting the regulation priority among different target mRNAs.This
super-resolution imaging and analysis approach provides a conceptual framework that can
be generalized to other small RNA systems and other target search processes.

B
ase-pairing interactions between nucleic
acids constitute a large category of target
recognition processes such as noncoding
RNA-basedgene regulation [e.g.,microRNAs
(1) and long noncoding RNAs (2) in eukary-

otes and small RNAs (sRNAs) in bacteria (3)],
bacterial adaptive immunity [e.g., the clustered
regularly interspaced short palindromic repeat
(CRISPR) system (4)], and homologous recombi-
nation (5). Although target search kinetics by tran-
scription factors has been studied in vivo (6), the
rate constants for target identification via base-
pairing interactions in vivo are not known for any
system. Here, we developed a super-resolution
imaging and analysis platform to assess the kinet-
ics of base-pairing interaction-mediated target
recognition for a bacterial sRNA, SgrS. SgrS is
produced upon sugar-phosphate stress, and its
function is dependent on an RNA chaperone pro-
tein Hfq. SgrS regulates several target mRNAs
posttranscriptionally through base-pairing inter-
actions that affect mRNA translation and stabil-
ity (7). We combined single-molecule fluorescence
in situ hybridization (smFISH) (8) with single-
molecule localization-based super-resolution
microscopy (9) to count RNAs and obtain infor-

mation on subcellular localization. High spatial
resolution is required for accurate quantification
of the high-copy-number RNAs and sRNA-mRNA
complexes. Here, simultaneous measurements of
sRNA, mRNA, and sRNA-mRNA complexes to-
gether with mathematical modeling allow deter-
mination of key parameters describing sRNA
target search and downstream codegradation of
sRNA-mRNA complexes.
We first studied the kinetic properties of SgrS

regulation of ptsG mRNA, encoding a primary
glucose transporter. SgrS binds within the 5′
untranslated region (UTR) of ptsGmRNA, blocks
its translation, and induces its degradation
(10). We induced stress and SgrS production in
Escherichia coli strains derived from wild-type
MG1655 (table S1) using a nonmetabolizable
sugar analog, a-methyl glucoside (aMG) (10, 11).
Fractions of cell culture were taken at different
time points after induction and fixed (12). Oligo-
nucleotide probes (table S2) labeled with photo-
switchable dyes, Alexa 647 and Alexa 568, were
used to detect SgrS (9 probes) and ptsGmRNA
(28 probes), respectively, using smFISH (8). We
then imaged the cells using two-color three-
dimensional (3D) super-resolution microscopy
(9, 12) (Fig. 1A; compare to diffraction limited
images in Fig. 1B).
In the wild-type strain (table S1), we observed

production of SgrS and corresponding reduction
of ptsGmRNA over a few minutes (Fig. 1A), con-
sistent with SgrS-mediated degradation of ptsG
mRNA (10). In a strain producing an SgrS that
does not base pair with ptsG mRNA due to mu-
tations in the seed region (13, 14) and in an Hfq
deletion (Dhfq) strain (table S1), ptsG mRNA re-

duction was not observed (figs. S1 and S2). To
quantify the copy number of RNAs in each cell,
we employed adensity-based clustering algorithm
to map single-molecule localization signal to in-
dividual clusters corresponding to individualRNAs
(12, 15, 16) (Fig. 1C and movies S1 and S2). The
absolute copy number quantification was vali-
dated by quantitative polymerase chain reaction
(qPCR) (12) (Fig. 1D).
We next built a kinetic model containing the

following kinetic steps: transcription of SgrS (with
rate constant aS) and ptsG (ap), endogenous deg-
radation of ptsG mRNA (with rate constant bp),
degradation of SgrS in the absence of codegrada-
tion with ptsG mRNA (bS,p), binding of SgrS to
ptsGmRNA (with rate constant kon), dissociation
of SgrS from ptsG mRNA (koff), and ribonuclease
E (RNase E)–mediated codegradation of SgrS-ptsG
mRNA complex (kcat) (Fig. 1E). We independently
measured bp and the total SgrS degradation rate,
including endogenous and mRNA-coupled degra-
dation [table S4, fig. S3, and supplementary mate-
rials section 1.9 (SM 1.9)]. Because ptsG mRNA
levels remained constant in the absence of SgrS-
mediated degradation, as observed in the base-
pairing mutant strain (fig. S1), we determined ap
as the product of bp and ptsG mRNA concentra-
tion before SgrS induction (table S4 and SM 1.10)
To determine kon and koff, it is necessary to

count the SgrS-ptsG mRNA complexes. Colocal-
ization of ptsG mRNA and SgrS at the 40-nm
resolution was rarely observed in the wild-type
strain (up to ~5%, similar to ~3% colocalization by
chance, estimated using the base-pairing mutant
as a negative control) (Fig. 2). This is possibly be-
cause SgrS regulates several other target mRNAs
(7) and/or the SgrS-ptsG mRNA complex may
be unstable due to rapid codegradation or dis-
assembly. In an RNase Emutant strain, in which
codegradation is blocked (17, 18) (table S1), ptsG
mRNA levels stayed the same as SgrS levels in-
creased (fig. S4) (17, 18), and a fraction of ptsG
mRNA colocalized with SgrS, increasing over
time to reach ~15% (Fig. 2 and fig. S5). A positive
control using ptsGmRNA simultaneously labeled
with two colors (Fig. 2 and SM 1.8) showed a high
degree of colocalization (~70%), similar to the
reported detection efficiency of colocalization by
super-resolution imaging (19).
We then applied these measured parameters

(ap and bp), used total SgrS degradation rate as a
constraint for bS,p, and determined the remain-
ing parameters (aS, bS,p kon, koff, and kcat) by
fitting equations (Fig. 1E) to the six time-course
changes of SgrS,ptsGmRNA, andSgrS-ptsGmRNA
complex in both the wild-type and the RNase E
mutant strains (Fig. 3A, table S4, and SM 1.10).
We further validated the model by changing
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Abstract

The life of an mRNA is dynamic within a cell. The development of quantitative fluores-
cent microscopy techniques to image single molecules of RNA has allowed many
aspects of the mRNA lifecycle to be directly observed in living cells. Recent advances
in live-cell multicolor RNA imaging, however, have now made it possible to investigate
RNA metabolism in greater detail. In this chapter, we present an overview of the design
and implementation of the translating RNA imaging by coat protein knockoff RNA bio-
sensor, which allows untranslated mRNAs to be distinguished from ones that have
undergone a round of translation. The methods required for establishing this system
in mammalian cell lines and Drosophila melanogaster oocytes are described here, but
the principles may be applied to any experimental system.

1. INTRODUCTION

Messenger RNA (mRNA) translation is tightly regulated to produce

protein at the correct time and place with appropriate abundance. While

many of the principles of translation regulation have been elucidated from

ensemble biochemical measurements, understanding the mechanisms con-

trolling where and when an mRNA is translated within a single cell is an

emerging research goal. Indeed, considerable evidence now suggests that

regulation of translation is devolved to specific cytoplasmic compartments,

and that well-timed mRNA translation at a defined location is critical to sev-

eral physiological processes, ranging from synaptic plasticity (Holt &

Schuman, 2013), axis specification (Kumano, 2012), and cell motility

(Liao, Mingle, Van DeWater, & Liu, 2015). Understanding the mechanistic

basis of localized translation regulation therefore requires spatial and tempo-

ral information to be extracted from single translation events in single living

cells.

While technical advances have expanded the toolbox available to mea-

sure translation, spatial and temporal information are rarely simultaneously

acquired. Ribosome profiling maps transcriptome-wide ribosome occu-

pancy to subcodon resolution, providing a powerful readout of translation
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on the timescale of minutes (Ingolia, Ghaemmaghami, Newman, &

Weissman, 2009). Spatial information, however, is either restricted to par-

ticular organelles (Jan, Williams, & Weissman, 2014) or lost altogether.

Imaging assays for translation provide broad spatial information by labeling

components of the translational machinery (Pan, Kirillov, & Cooperman,

2007), or the nascent polypeptide itself (David et al., 2012; Dieterich

et al., 2010; Terskikh et al., 2000). While these approaches have elegantly

demonstrated that protein production is locally regulated within subcellular

domains, they do not measure single translation events in real time.

Recently, the fluorescence of single protein molecules has been used to

detect local translation events; however, maturation of fluorescent proteins

(FPs) occurs several minutes after translation (Ifrim, Williams, & Bassell,

2015; Tatavarty et al., 2012; Yu, Xiao, Ren, Lao, & Xie, 2006).

To detect single translation events with high temporal and spatial reso-

lution in living cells, we developed an RNA biosensor that enables identi-

fication of untranslated mRNAs from ones that have undergone at least one

round of translation (Halstead et al., 2015). This technique relies on the ribo-

some removing a unique fluorescent signal from the coding sequence of a

transcript during the first round of translation. We refer to this methodology

as translating RNA imaging by coat protein knockoff (TRICK).

In this chapter, we describe the steps to design, express, acquire, and ana-

lyze data from the TRICK system. Particular attention is given to expressing

TRICK transgenes at levels appropriate for single-molecule RNA imaging

and to acquiring and analyzing two-color imaging data. Though emphasis is

given to establishing the TRICK system in mammalian cell lines and

Drosophila melanogaster, many of the principles described here are applicable

to other experimental systems.

2. DESIGN OF TRICK REPORTER mRNAs

Considering translation from the perspective of a transcript has the

advantage that robust methods have been developed that allow detection

of single molecules of mRNA in living cells using fluorescent microscopy.

The highly specific interaction between theMS2 bacteriophage coat protein

(MCP) and its cognate RNA stem-loop has been extensively used to image

RNAs in many experimental systems ranging from bacteria to mouse neu-

rons (Urbanek, Galka-Marciniak, Olejniczak, & Krzyzosiak, 2014). This

strategy relies on insertion of multiple copies of the MS2 stem-loop (usually

24) within the 30-untranslated region (UTR) of a transcript of interest and
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the binding of a chimeric fusion of MCPwith a FP to these sequences. Since

the transcripts are bound by many fluorescent MCP-FPs, the mRNAs

appear as bright diffraction-limited spots that can be detected above the

background of the unbound MCP-FP. The inclusion of a nuclear localiza-

tion sequence (NLS) to MCP-FP increases imaging sensitivity, because the

unboundNLS-MCP-FP is concentrated in the nucleus, which enables rapid

labeling of MS2 transcripts during transcription and reduces background in

the cytoplasm (Fusco et al., 2003).

In order to take advantage of the spectrum of FPs that have been created, a

number of other RNA–protein complexes have been engineered to visualize

mRNAs (Chen et al., 2009; Daigle & Ellenberg, 2007; Takizawa & Vale,

2000). Given the success of the MS2 system, we developed the PP7 bacteri-

ophage coat protein (PCP) that binds to a unique RNA stem-loop as an

orthogonal RNA-labeling system (Chao, Patskovsky, Almo, & Singer,

2008; Larson, Zenklusen, Wu, Chao, & Singer, 2011). Using the MS2 and

PP7 systems together allows simultaneous single-molecule RNA imaging

of two distinct species of transcripts within a living cell and also enables the

possibility of labeling a single mRNAwithin two different regions of the tran-

script (Coulon et al., 2014; Hocine, Raymond, Zenklusen, Chao, & Singer,

2013; Martin, Rino, Carvalho, Kirchhausen, & Carmo-Fonseca, 2013).

The act of translation requires that a ribosome traverses the coding

sequence of an mRNA thereby decoding the information contained within

a transcript in order to synthesize polypeptides. Consequently, any RNA-

binding proteins that are bound to the transcript within the coding sequence

must be removed by the ribosome. In particular, the exon junction complex,

a multiprotein complex deposited upstream of exon–exon boundaries dur-

ing splicing, is displaced by the ribosome during the first round of translation

and therefore identifies transcripts that have never been translated (Ishigaki,

Li, Serin, & Maquat, 2001). We reasoned that it should be possible to engi-

neer a fluorescent RNA biosensor based upon this principle that would

enable untranslated mRNAs to be distinguished from ones that had under-

gone at least one round of translation.

In order to construct an RNA biosensor to image the first round of trans-

lation, we designed PP7 stem-loops that could be translated by the ribosome

that permitted the labeling of a transcript within the coding sequence (PP7)

and the 30-UTR (MS2) (Fig. 1A).When this transcript is untranslated, it will

be bound by the two coat proteins fused to distinct FPs (eg, NLS-PCP-GFP

and NLS-MCP-RFP) and will appear yellow when imaged because it will

be labeled by both green and red FPs (Fig. 1B). During the first round of
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translation, however, the ribosomewill strip theNLS-PCP-GFP signal from

the transcript resulting in the appearance of a red mRNA that is labeled with

only NLS-MCP-RFP. Since the concentration of NLS-PCP-GFP is low in

the cytoplasm, rebinding of NLS-PCP-GFP is not favorable and the dis-

placed FP returns to the nucleus (Fig. 1C).

Open reading frame

24× MS2 stem-loops12× PP7 stem-loops 3�UTR5�UTRPromoter poly(A)

AAA(A)...
3’AUG

UAA

5’

Tandem GFPPromoter poly(A)Tandem PP7 coat proteinsNLS

Tandem RFPPromoter poly(A)Tandem MS2 coat proteinsNLS

A Reporter mRNA B Coat protein construct 

PP7 stem-loop

MS2 stem-loop

PP7 coat protein monomer

MS2 coat protein monomer

Nuclear localization sequence

RFP

AAA(A)... 3
�AUG

UAA

5�

AAA(A)... 3
�

AUG

UAA
5�

Untranslated reporter mRNAUntranslated reporter mRNA

Translated reporter mRNATranslated reporter mRNA

GFP

C Translating RNA imaging by coat protein knock off
PCP-GFP - Untranslated mRNAs

MCP-RFP - All mRNAs

Fig. 1 Translating RNA imaging by coat protein knockoff. (A) TRICK reporter transcript
contains translatable PP7 stem-loops in the open reading frame and MS2 stem-loops in
the 30-UTR. (B) PP7 and MS2 bacteriophage coat proteins are fused to spectrally distinct
fluorescent proteins (eg, NLS-PCP-GFP and NLS-MCP-RFP). The addition of nuclear local-
ization sequences (NLS) results in accumulation of unbound fluorescent proteins in the
nucleus. (C) Untranslated mRNAs are bound by both fluorescent fusion proteins while
translated mRNAs are labeled with only NLS-MCP-RFP. Dual-color RNA imaging can
distinguish single molecules of untranslated mRNAs that are fluorescent in both green
and red channels (yellow circles) from those that have been translated and are detected
in the red channel alone.
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Since it is possible to design translatable RNA sequences for any of the

RNA–protein complexes used to image RNAs, we have outlined the prin-

ciples we used to design the PP7 stem-loops. The first MS2 stem-loops used

to image RNAs were constructed by PCR by making two copies of the

stem-loops that could then be multimerized by ligation with DNA frag-

ments digested using restriction enzymes that generate compatible cohesive

ends (eg, BamHI and BglII) (Bertrand et al., 1998). Consequently, adjacent

MS2 stem-loops were spaced by 20 nucleotides due to limitations, at the

time, on the synthesis of large DNA oligonucleotides. A translating ribo-

some, however, produces a footprint of �30 nts on a transcript, and we

found that tight spacing of stem-loops results in a significant block of trans-

lation (Ingolia et al., 2009; Steitz, 1969). By spacing PP7 stem-loops farther

apart (40 nts), we found that the ribosome could efficiently translate through

them. Since the PP7 stem-loops will encode a polypeptide, we removed

stop codons from the open reading frame and optimized codon usage for

expression in mammalian cells by considering both codon frequency and

coding potential. RNA folding was assessed using the mfold software to con-

firm that all PP7 stem-loops were predicted to fold correctly (Zuker, 2003).

Initially, a cassette containing six copies of the PP7 stem-loops was syn-

thesized and tested for its translatability when fused to the C-terminus of a

reporter gene. While western blot analysis revealed that the PP7 stem-loops

were efficiently translated, imaging of this construct was difficult due to the

low signal-to-noise ratio resulting from the small number of stem-loops.

A 12�PP7 cassette was then generated which improved imaging of single

mRNA molecules without inducing adverse effects on translation. In

instances when addition of the polypeptide encoded by the PP7 stem-loops

is not desirable (eg, labeling of endogenous genes), the addition of self-

cleaving 2A sequences between the C-terminus of the protein of interest

and the stem-loops may be advantageous (Kim et al., 2011). We have also

found that it is possible to place the PP7 stem-loops within the N-terminus

of a reporter gene, which may facilitate experiments designed to measure

translation initiation rates by reducing the effect of ribosome elongation.

3. TRICK EXPERIMENT IN MAMMALIAN CELLS

3.1 Expression of TRICK Reporter Transcripts
The TRICK system provides a fluorescent readout from three transgenes, a

reporter mRNA and two coat proteins, each of which must be expressed at

appropriate levels in the same cell. Selecting the appropriate promoter to

drive expression of the reporter mRNA is therefore key to designing a
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TRICK experiment. As the TRICK system reports on the first round of

translation only, there are advantages to controlling precisely when the

reporter mRNA is expressed. While constitutive expression produces a

mixed population of reporter transcripts that have been transcribed at differ-

ent time points, including those transcribed and translated before imaging

began, an inducible promoter can provide a population of nascent mRNAs

whose pioneer round of translation is restricted to the experimental win-

dow. As a result, inducible expression of reporter mRNA is better suited

to many experiments, particularly those examining the temporal regulation

of translation. We found that both the tetracycline- and ponasterone

A-inducible systems are well suited for performing TRICK experiments

(Gossen et al., 1995; No, Yao, & Evans, 1996).

TRICK reporter mRNAs can be expressed from plasmids that are tran-

siently transfected or stably integrated into the genome. Transient transfec-

tion is relatively fast and simple, with constitutive reporter mRNA

expression peaking 24–48 h after transfection by lipid-based reagents, and

can allow different TRICK reporters to be rapidly tested. Delivery of

DNA plasmids by transient methods, however, can result in significant cell-

to-cell variation in expression levels that can complicate image analysis. As it

is possible to determine the translational status of every single TRICK

reporter mRNA within a cell, the most meaningful quantitative compari-

sons are between cells expressing similar numbers of transcripts and at levels

comparable to endogenous transcripts. It is possible to transiently transfect

and identify cells within a heterogeneous population that meet this criteria,

however, this limits data acquisition to a relatively small number of cells per

experiment. Instead, reproducible and more uniform expression is best

achieved by stably integrating the TRICK reporter into the cell genome

by either random or site-specific integration. We have found that site-

specific integration of an inducible TRICK reporter by recombinase-

mediated cassette exchange to be an efficient method for generating TRICK

cell lines. In this system, reporter mRNA expression is consistent across cells

thereby limiting experimental variability. We use a HeLa cell line that con-

tains both the rtTA2-M2 tetracycline reverse transactivator required for

doxycycline-inducible expression and a single RCME site that allows stable

integration of TRICK reporter mRNAs (Weidenfeld et al., 2009).

3.2 Expression of Coat Proteins Fused to Fluorescent Proteins
The crux of the TRICK experiment is to spectrally distinguish translated

and untranslated mRNAs. Consequently, the appropriate selection and
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expression of the coat protein (CP; PCP andMCP)–FP pairs is critical to the

success of the experiment. The CP-FPs used in the TRICK experiment

must be fused to spectrally distinct fluorophores that are suitable for single-

molecule RNA imaging. Both CP-FPs must also be expressed at cellular

levels that allow robust labeling of all reporter mRNAs and, importantly

for the TRICK experiment, do not favor rebinding of PCP-FP to the tran-

script once it has been displaced by the ribosome in the cytoplasm.

Single-molecule two-color imaging of mRNAs requires that the coat

proteins are fused to fluorophores that satisfy a number of criteria. Foremost,

as TRICK requires unambiguous separation of two fluorescent signals, spec-

trally distinct fluorophores must be selected to label each coat protein. Over-

lap of emission spectra and cross-excitation of overlapping absorption bands

can be avoided by judicial choice of fluorophores. As a result, optimal imag-

ing requires that distinct fluorophores are also matched to the light source

and filters that will be used to acquire data.

Within these criteria, brightness, the product of quantum yield and

extinction coefficient, and photostability, the decrease in emission over

sequential excitation events, are the leading properties for fluorophore selec-

tion. This is particularly important for single-particle tracking (SPT) exper-

iments because single mRNAs must be imaged multiple times and

photobleaching of one channel can bias analysis. Genetically encoded

FPs, such as GFP, exist in a range of spectra (Shaner, Steinbach, & Tsien,

2005) and have been successfully used in a number of single-molecule

RNA imaging studies. We have found that NLS-PCP-EGFP and NLS-

MCP-TagRFP-T are compatible with two-color RNA imaging with short

(�50 ms) exposure times. Other FPs can be used to suit other imaging

modalities, however, the properties must fit the experiment parameters.

For example, while tdTomato (extinction coefficient¼138,000M�1 cm�1,

quantum yield¼0.69) is brighter than TagRFP-T (extinction

coefficient¼81,000M�1 cm�1, quantum yield¼0.41), tdTomato is signif-

icantly less photostable and less suitable for time-lapse imaging (Shaner et al.,

2008). The recent development of alternative intracellular fluorescent label-

ing technologies, including the Halo-Tag, Snap-Tag, and Clip-Tag, can also

be used to conjugate chimeric coat proteins to inorganic dyes (Gautier et al.,

2008; Juillerat et al., 2003; Los et al., 2008). This approach allows the coat

proteins to be specifically covalently bonded to inorganic dyes such as

tetramethylrhodamine-based dyes, which are bright (extinction

coefficient¼101,000M�1 cm�1, quantum yield¼0.88) and significantly

more photostable than FPs (Grimm et al., 2015).
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While inducible promoters are useful for controlling acute and robust

reporter mRNA transcription, CP-FPs are best expressed constitutively at

low levels. A number of constitutive promoters are commonly used, includ-

ing SV40, CMV, UbiC, EF1a, PGK, and CAGG variants, of which PGK

and UbiC have been found to reproducibly give lower expression levels

(Qin et al., 2010). We have found that lentiviral transduction is an efficient

means to stably express CP-FPs (Lionnet et al., 2011). Cells can be coin-

fected with two viruses each encoding a different CP-FP and cells that

are double positive can be isolated by fluorescence-activated cell sorting

(FACS). Successive rounds of FACS followed by fluorescent microscopy

can be used to generate cell lines that express both CP-FPs at levels suitable

for two-color single-molecule RNA imaging. The use of tandem single-

chain dimers of the MS2 and PP7 coat proteins enables cells to be sorted

for very low levels of the FPs without disrupting the RNA-binding function

of the coat proteins (Wu, Chao, & Singer, 2012; Wu et al., 2015).

3.3 Considerations and Challenges of TRICK in Primary Cells
Balancing CP-FPs and TRICK reporter mRNA expression is particularly

challenging in primary cells. Unless the cells are derived from an animal sta-

bly expressing the TRICK transgenes, both the reporter mRNA and

CP-FPs must be introduced. While stable transgene integration followed

by FACS of positive cells is optimal in cell lines, many primary cells can only

be passaged a limited number of times and growing a sufficient number cells

from a sorted population may not be possible.

In particular, primary neurons present a number of challenges for esta-

blishing single-molecule two-color RNA imaging. First, neurons are

postmitotic and transient transfection rates are low. While other means of

delivering transgenes (eg, infection using lentiviruses or electroporation)

are more efficacious, a small percentage of cells will express the transgenes

at appropriate levels that must be individually identified by fluorescence

microscopy during each experiment. To increase the number of positive

cells in a primary culture, the both CP-FP constructs can be expressed in

a single bicistronic plasmid separated by an internal ribosome entry site

(IRES), or a 2A peptide sequence. It is necessary to ensure that the CP-FPs

are expressed properly because IRES-driven expression is typically lower

than cap-dependent translation (Mizuguchi, Xu, Ishii-Watabe, Uchida, &

Hayakawa, 2000) and 2A peptide sequences can produce chimeric fusion

proteins that will undermine TRICK analysis (Kim et al., 2011).
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3.4 Controls
To confirm that any TRICK construct gives a precise readout of translation,

it is necessary to test if the insertion of either of the stem-loops or the binding

of the CP-FPs perturbs reporter mRNA metabolism. The stability of the

TRICK reporter mRNA can be assessed by real-time PCR following inhi-

bition of transcription, either by small-molecules (eg, actinomycin D) or

washing away activators of inducible promoters. The translation of the

TRICK reporter construct should also be confirmed by western blotting

to demonstrate that a protein of appropriate molecular weight is produced.

It is also advantageous for the TRICK reporter to encode a protein with a

functional readout (eg, fluorescence, bioluminescence, or enzymatic activity).

We have found it useful for TRICK reporters to encode Renilla or Firefly

luciferase because translation can be measured using a common luciferase

assay that can be correlated with imaging data. Control experiments should

be performed both with and without stem-loops and with and without

coexpression of CP-FPs (Table 1). This approach will identify any element

of the TRICK construct that affects reporter stability or translation and

provides a starting point for troubleshooting.

4. MICROSCOPY

The success of a TRICK experiment largely depends on its accurate

imaging readout. The field of live-cell single-molecule imaging has utilized

different light microscopy variants, broadly characterized into epi-

fluorescence wide-field, confocal, and total internal reflection fluorescence

(TIRF) microscopy. Each of these microscopy setups offers certain advan-

tages and drawbacks when dual-color single mRNAs, as in TRICK, are to

be imaged in live cells.

4.1 Imaging Modality
A straightforward and cost-effective way of imaging single RNA molecules

in live cells is conventional wide-field or epifluorescence microscopy. Here,

a collimated/parallelized beam of light illuminates the entire thickness of the

sample, resulting in a large field-of-view and a high number of molecules

that can potentially be tracked. This advantage however comes at the price

of a large fraction of out-of-focus light, resulting in high background levels

and reduced single-molecule detection. Wide-field microscopy is therefore

especially suited for specimens with a low number of fluorescent molecules
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and a thin imaging volume (a few microns or less), causing low background

fluorescence. Consequently, cells with a small thickness such as yeast, bac-

terial, and epithelial cells or certain cellular extensions such as axons are well

suited to be imaged by wide-field microscopy.

As opposed to wide-field microscopy, a confocal illumination scheme

effectively reduces out-of-focus light and thereby enables the recording

of high-contrast images in all spatial dimensions. Focusing the laser beam

Table 1 Controls for TRICK Reporter mRNA Expression
Control
Experiment

Reporter mRNA
Expression CP-FP Expression Method

Is reporter

mRNA

stability

affected by

stem-loops?

1. TRICK reporter

lacking stem-loops

2. TRICK reporter

with stem-loops in

the coding region

and 30-UTR

None Measurement of

mRNA half-life by

real-time PCR.

Northern blotting

of mRNA

Is reporter

mRNA

stability

affected by

CP-FP

binding?

TRICK reporter with

stem-loops in the

coding region and

30-UTR

1. CP-FP bound to

the coding region

2. CP-FP bound to

the 30-UTR

3. CP-FPs bound to

both the coding

region and 30-UTR

Measurement of

mRNA half-life by

real-time PCR.

Northern blotting

of mRNA

Is reporter

mRNA

translation

affected by

stem-loops?

TRICK reporter with

stem-loops in the

coding region and

30-UTR

None Measurement of

protein MW and

levels by Western

blot

Is reporter

mRNA

translation

affected by

CP-FP

binding

TRICK reporter with

stem-loops in the

coding region and

30-UTR

1. CP-FP bound only

to the coding region

2. CP-FP bound only

to the 30-UTR

3. CP-FPs bound to

both the coding

region and 30-UTR

Measurement of

protein MW and

levels by Western

blot

Is the

translated

reporter

protein

functional?

TRICK reporter with

stem-loops in the

coding region and

30-UTR

CP-FPs bound to both

the coding region and

30-UTR

Functional readout

of protein activity

(eg, fluorescence,

bioluminescence,

enzymatic activity)
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to the size of a diffraction-limited spot and using a pinhole aperture that

rejects all light emitted outside of the focal volume are the two key elements

to the spatial filtering of out-of-focus light. However, the confocal illumi-

nation scheme suffers from two major drawbacks. Since only a single

diffraction-limited spot is illuminated at a time, the focal plane needs to

be scanned point-by-point by either moving the sample or the laser beam,

as in traditional laser scanning confocal microscopy (LSCM). Secondly, the

pinhole aperture filters out a large fraction of the total light used for sample

excitation. In combination, loss of emitted light and point-by-point

scanning lead to long pixel dwell times to collect enough photons and long

scanning times because relevant field-of-views typically require 105–106 pixels,
resulting in a low frame rate that can become limiting when imaging rapidly

moving mRNA molecules. Spinning-disk confocal microscopy has been

developed as a faster alternative, and we have successfully used it for TRICK

experiments. In spinning-disk microscopy, a first disk with a large number of

spirally oriented microlenses is rotating at high speed and essentially focuses

thousands of split laser beams on the sample. A second spinning disk, with a

spiral array of pinholes, is aligned to the first and blocks all out-of-focus light.

As a result, the fast, synchronized disk rotation and spiral orientation of

microlenses and pinholes enables the near-simultaneous scanning of a single

imaging plane. While allowing the high temporal resolution (subsecond

frame intervals) required for TRICK experiments, a spinning-disk confocal

microscope suffers from reduced fluorescence intensity detection due to

beam splitting and the use of pinholes. Rapid photobleaching due to out-

of-focus fluorescence excitation is another major limitation of all confocal

microscopy approaches.

Reducing photobleaching is imperative during TRICK experiments.

The pair of fluorophores that fluorescently label reporter mRNAs usually

have different sensitivities to photobleaching. If one fluorophore bleaches

faster than the other, the detection efficiency of the corresponding fluo-

rophore will vary over the time of one experiment and might result in a bias

toward incorrect identification of translational state. One way to reduce

photobleaching (as well background fluorescence due to out-of-focus exci-

tation) is to use an optical sectioning method called TIRF microscopy.

TIRF is based on the observation that a collimated laser beam propagating

through one medium when reaching a second medium is reflected at the

interface, if a large enough angle and appropriately different refractive indi-

ces of the two media are chosen. The reflection creates an exponentially

decaying evanescent wave in the z-direction within the sample, allowing
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only the excitation of molecules within a few hundred nanometers within

the sample and leading to an excellent reduction of bleaching and high con-

trast. While TIRF can be a good option for live-cell imaging, it allows only

the imaging of molecules close to the sample-glass interface, making it

impossible to image and detect TRICK transcripts deep inside of the cell.

Furthermore, the rapidly decreasing intensity of the evanescent wave with

increasing distance from the coverslip leads to a wide distribution of fluores-

cent particle brightnesses—a substantial challenge for quantitative analysis.

Another optical sectioning method is more widely applicable to imaging

TRICK reporter mRNAs and allows for the detection of translation in

all cellular compartments. Here, an inclined laser beam just below the critical

angle for TIRF is used. Instead of creating an evanescent wave, the laser

beam now passes directly into the sample, but in the form of a highly

inclined laminated optical sheet (HILO) with a thickness in the low

micrometer range (Tokunaga, Imamoto, & Sakata-Sogawa, 2008).

A rotating mirror ensures that the sample is illuminated from all angles.

Because any form of point scanning is not necessary, high frame rates can

be achieved.We have successfully applied HILO to perform TRICK exper-

iments in live cells. HILO offers low amounts of out-of-focus light, low

bleaching, and fast image acquisition rates.

4.2 Light Source
Since a large number of fluorophores with excitation–emission spectra rang-

ing from near-ultraviolet, visible, to near-infrared regions are currently

available (Kremers, Gilbert, Cranfill, Davidson, & Piston, 2011; Xia,

Li, & Fang, 2013), it is often most appropriate to match the required

fluorophores to the already existing illumination setup.

Two spectrally distinct lasers constitute the illumination source of choice

(especially for confocal imaging) since they provide a narrowly defined exci-

tation wavelength range, low divergence when passing through the optical

setup, and high excitation power. Gas lasers such argon or krypton ion lasers

or solid-state lasers such as diode lasers are most commonly used. For dual-

color imaging, the most important criterion when choosing a light source is

to maximize the fluorophores excitation efficiency while minimizing exci-

tation cross talk. For dual-color mRNA imaging with the described MS2

and PP7 system, 488 and 561-nm emitting lasers have been found to be

appropriate to excite the commonly used FPs such as GFP or RFP-variants

while providing sufficiently separated emission spectra. More information
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on how to optimize the laser excitation of various fluorophores for live-cell

imaging has been described elsewhere (Xia et al., 2013).

For wide-field microscopy, cost-effective alternatives to laser excitation

can be used, eg, arc-discharge lamps such as mercury or xenon arc lamps, or

more recently light-emitting diodes (LEDs) (Cho et al., 2013; Gerhardt,

Mai, Lamas-Linares, & Kurtsiefer, 2011; Higashida et al., 2008). The com-

monly used mercury-based arc lamps typically display intensity peaks at cer-

tain wavelengths and therefore do not provide an even intensity across the

full light spectrum. These considerations are important when deciding on a

light source for simultaneous dual-color imaging. Xenon-based arc lamps

display a more even intensity profile, but lack the shorter wavelength range

typically employed for fluorescent microscopy. A third form of arc-

discharge-based light sources is metal-halide lamps. This type of lamp

combines the properties of xenon and mercury, resulting in an even, high

intensity emission across the entire light spectrum from ultraviolet to infra-

red. The use of LEDs for dual-color RNA imaging is currently limited since

the detection of single molecules has so far only been demonstrated in the

close blue and green spectra (Gerhardt et al., 2011; Kuo, Kuyper, Allen,

Fiorini, & Chiu, 2004). Recently, white LEDs have been used for super-

resolution microscopy in live cells (Cho et al., 2013) and might represent

an attractive alternative to laser light sources for dual-color single-molecule

imaging in the future.

4.3 Signal Detection
For TRICK experiments, it is key to detect both fluorescence channels

unambiguously to avoid a systematic analysis bias toward one of the channels

and incorrect conclusions about the translation state. Signal bleed-through

due to overlapping fluorophore emission spectra can be effectively mini-

mized by appropriate design of the bandpass excitation and emission barrier

filters and should be controlled for. mRNA particles can travel relatively fast

with diffusion coefficients up to 3.42 μm2 s�1 (Ma et al., 2013) and transport

rates of�1.3 μm s�1 (Park et al., 2014). The mRNA’s image on the camera

chip can therefore move by one pixel or more between frames, even when

imaging at subsecond intervals. Consequently, it is crucial to image the two-

color channels simultaneously in order to unambiguously identify dual-

labeled particles. As a consequence, filter cube switching is not an option

for TRICK imaging. Instead, the best setup for the microscope emission

path is to first separate the emission light from the excitation source with
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a multiline dichroic mirror, followed by a second dichroic mirror that will

split the collected fluorescence in two beams (eg, GFP vs RFP fluorescence).

The two beams can then be imaged by two separate cameras or recombined

on the two halves of the same camera chip.

The two most used camera types include scientific complementary metal

oxide semiconductor (sCMOS) and electron multiplying charge coupled

device (EMCCD) cameras. Due to the coupling of photon detection and

voltage conversion at the physical pixel level on the chip, sCMOS cameras

allow for high-speed imaging of more than 100 frames s�1. The conse-

quence is a relatively high internally generated background (dark noise)

and readout noise, limiting the photon sensitivity under low light condi-

tions, as is the case for single-molecule RNA imaging. In contrast, EMCCD

cameras achieve single-photon sensitivity. Despite having a lower chip read-

out speed, which is generally still permissive for single mRNA tracking,

EMCCD cameras currently offer significant advantages over other types

of camera sensors, especially when applied under low emitted light

conditions.

TRICK experiments require the acquisition of both fluorescent channels

simultaneously in order to guarantee signal colocalization. The solution of

choice to image relatively large biological structures (eg, an entire mamma-

lian cell, typically tens of microns across) is to separately collect the fluores-

cence from the two channels on two well-aligned cameras. At a

magnification that permits the detection of single molecules, the use of

two cameras provides a large enough field-of-view in each fluorescent chan-

nel to fully capture the sample. A practical alternative to the costly dual-

camera approach is the use of a split chip on a single camera. Here, the image

is divided into two spatially equivalent, but separate halves on the camera

chip. Postimaging registration of both halves of the chip into a single image

can be performed.

4.4 Temperature and CO2 Control
Translation is very sensitive to changes in the extracellular environment.

TRICK live-cell experiments therefore require strictly physiological condi-

tions during imaging. Mammalian cells generally require an incubation tem-

perature of 37°C and a CO2 atmosphere of 5–7% to maintain an appropriate

pH, depending on the growth medium. The humidity level should also be

controlled in order to prevent excessive evaporation and drying. Several

commercial systems are available to keep the biological sample under these
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physiological conditions during imaging. A simple and inexpensive method

is to use heating elements directly adjacent to the objective and sample dish.

Repeated cycles of heating and cooling, however, lead to thermal move-

ments of the objective and the sample itself leading to a loss of focus over

time. While less economical, a Plexiglas incubation box, which fully

encloses the microscope body, is more suitable for live-cell imaging.

A second cover that seals with the stage can then be placed on top of the

specimen to regulate CO2 and humidity within this restricted volume.

5. DATA COLLECTION

The quantification of data obtained from TRICK experiments

involves two major steps. First, all mRNA particles per imaging frame need

to be detected in each of the two respective channels. Then the detected

particle positions in consecutive frames are combined to give individual

mRNA trajectories in a computational process termed SPT. To avoid detec-

tion biases toward one channel based on the different fluorophore proper-

ties, the acquired imaging data needs to be of high quality by fulfilling the

two following major criteria: first, the signal-to-noise ratio (SNR) needs to

be as high as possible, while, second, the imaging frame rate needs to be suf-

ficiently high to connect the positions of individual mRNAs over time

(Park, Buxbaum, & Singer, 2010).

5.1 Considerations for Single-Molecule Detection and Tracking
A major limitation of live-cell imaging experiments is that a high SNR and

frame rate will lead to rapid photobleaching and phototoxicity caused by an

excessive amount of photons hitting the specimen. Finding a balance

between frame rate, exposure time, and excitation power is therefore key

to being able to image and subsequently track single mRNAs in two colors

(Magidson & Khodjakov, 2013).

Because of the diffraction of light, individual fluorescent particles appear

as spots of a few 100 nm in size when imaged through a microscope. The

shape of the spot depends on the microscope and the fluorophore and is

called the point spread function (PSF). The spatial profile of the PSF on

the camera is nearly Gaussian, which makes it possible through fitting to

measure the position of each particle center with high accuracy (typically

�40 nm). If the PSF is spread onto a large number of camera pixels, each

spot becomes hard to separate from the background and readout noise. Con-

versely, if the spot on the image is concentrated onto a single pixel, it is hard
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to achieve a high localization precision through fitting. A high SNR is there-

fore typically obtained by combining a high numerical aperture objective

(which means a high light collection power), and a magnification optimized

for single-molecule imaging. In practice, magnifications that yield

100–200 nm per pixel tend to give optimal localization precision for single-

molecule tracking (Thompson, Larson, & Webb, 2002). As images of

mRNA labeled in separate colors need to be registered, chromatic aberra-

tions pose a significant challenge. They are minimized by using apochro-

matic objectives and can be corrected postacquisition using adequate

calibration techniques, eg, using multicolor beads or fiducial markers within

the sample (Grunwald & Singer, 2010).

Diffusion coefficients of mRNAs have been shown to range from 0.009

to 3.42 μm2 s�1 depending on the type of transcript and subcellular locali-

zation (Fusco et al., 2003; Ma et al., 2013; Mor et al., 2010; Shav-Tal et al.,

2004). Therefore, exposure times need to be long enough for a good SNR

while being short enough to prevent blurring of fast moving mRNA parti-

cles. In addition, the frame rate needs to be short enough to reliably track an

mRNA’s position from frame-to-frame. Exposure times and frame rates

should therefore be optimized based on each system’s dynamic range, ensur-

ing unbiased detection while minimizing oversampling and photobleaching.

In cases where very fast frame rates and short exposure times are crucial, but

the chip readout speed is limiting, it is possible to readout only a subarray of

the chip, thereby decreasing the total required readout time per frame at the

expense of a reduced field-of-view.

Besides optimizing the frame rate, other means to increase the SNR can

be used, such as pixel binning. During pixel binning a group of pixels on the

camera chip (eg, 2�2 pixels) are binned together and assigned to a single

pixel value during the readout of the chip. A 2�2 binning for example

increases the signal fourfold (four times more photons per pixel) at the cost

of a twofold lower resolution (pixel information is lost). Finally, optimizing

the camera gain and the chip readout speed can also improve the SNR and

dynamic range. Slower chip readout speeds result in lower readout noise and

can be compensated for by utilizing only a subarray of the chip, as described

earlier.

5.2 Considerations for Long Time-Lapse Experiments
The TRICK technique can be used to study translation regulation with sub-

cellular resolution over a wide range of time scales: from fast, single-

molecule dynamics movies (subsecond frame rates covering a few seconds
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to minutes) to longer, time-lapsed acquisitions matching the dynamics of

cellular responses (minutes to hours). Minimizing photobleaching by the

previously described imaging optimizations is key for successful longer time-

lapse experiments. Although the detailed mechanism of photobleaching is

not entirely known, photo-oxidation of the fluorophores is thought to be

caused by reactive oxygen species (ROS). The addition of chemical com-

pounds such as ascorbic acid (vitamin C) (Vigers, Coue, & McIntosh,

1988), trolox (a vitamin E derivative) (Rasnik, McKinney, & Ha, 2006),

mercaptoethylamine (Widengren, Chmyrov, Eggeling, Lofdahl, & Seidel,

2007), or enzymatic deoxygenation systems (Aitken, Marshall, & Puglisi,

2008) has been shown to delay photobleaching. Since oxygen plays an

important role in cell physiology, the use of ROS scavengers can have

unwanted effects that need to be taken into account.

Stage stability over long time periods in all three spatial dimensions is

crucial for long-term live-cell experiments. Especially when heated incuba-

tion chambers are used, it is important to thermally equilibrate the whole

microscope body, including the stage, prior to the experiment in order to

prevent thermal drift and to avoid permanent refocusing. Motorized Piezo

stages that are equipped with reflection-based rather than image-based auto-

focus systems minimize manual interventions during an experiment.

Some adherent cell types growing on coverslips can move extensively in

the x,y dimension even on the order of minutes and might require the use of

cell motion tracking (Rabut & Ellenberg, 2004). Several software packages

that can be coupled to the appropriate microscope hardware are currently

available by commercial suppliers.

6. ANALYSIS

Dual-color single-molecule mRNA imaging during a TRICK exper-

iment allows direct observation of two distinct translational states depending

on the presence of one or both fluorophores. In order to reconstruct the tra-

jectories of individual mRNA particles and determine their translation state,

multiple computational steps must be performed (Fig. 2). First one needs to

identify and localize discrete particles on each acquired image (Fig. 2A); this

step outputs a list of particle positions for each time point and color channel

(Fig. 2B). The second step consists of tracking the particles, which means

connecting together the spot positions that correspond to the same particle

at different times, yielding a list of trajectories for each color channel

(Fig. 2C). Finally, one sorts the trajectories present in both channels
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(corresponding to dual-labeled untranslated mRNA) from those present in a

single channel only (single-labeled translated mRNAs) (Fig. 2D and E). Mea-

suring the spatiotemporal evolution of single- vs dual-color-labeled mole-

cules then gives an indication about the localization and translational

status of the mRNAs.

6.1 Single-Molecule Detection and Tracking
Detection and tracking of single particles should be performed for each fluo-

rescent channel individually (Fig. 2A and B). A number of commercially and

freely available software packages exist that combine detection and tracking

A

B D

E

C

Fig. 2 Schematic depiction of the analysis workflow for a TRICK experiment in living
cells. (A) Each cell is imaged simultaneously in two colors, resulting in two fluorescent
channels. Here, the mRNAs labeled with NLS-PCP-GFP and NLS-MCP-RFP are depicted
by triangles and circles, respectively. (B) After image acquisition all mRNA diffraction-
limited spots in each imaging frame are detected. Spot detection is best performed indi-
vidually for each fluorescent channel. (C) Next, spot tracking is performed. Here, the spot
positions in each frame are taken into account and tracks for each mRNA molecule are
calculated. (D) The resulting tracks from both fluorescent channels originating from the
same cell are then assessed for colocalization. Red (dark gray in the print version) and
green (light gray in the print version) mRNA tracks represent the same dual-colored mol-
ecule when a significant overlap exists. (E) mRNAs that have been determined to be
dual-colored are considered to be untranslated, while single red (dark gray in the print
version) colored mRNAs have been translated at least once.
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of all single particles in each frame within a given image sequence in two

consecutive steps in a semiautomated manner. Different particle tracking

approaches have recently been extensively tested and reviewed by

Chenouard et al. (2014). In general particle detection and tracking should

be performed on unprocessed data that have been recorded according to

the earlier described principles in order to maximize the SNR and to fulfill

the Nyquist criterion on temporal sampling so that individual particles can

be tracked over time (Park et al., 2010). The precise particle detection and

tracking methodology needs to be chosen based on the data quality, particle

density, and intended tracking time frame. For the detection of single par-

ticles several approaches exist. Maxima-based detection relies on the iden-

tification of the highest local pixel values, which are then defined as spots.

Thresholding utilizes the principle of a particle’s higher intensity over the

surrounding background based on an appropriate intensity threshold. More

accurate (and computationally intensive) approaches involve PSF fitting and

centroid estimation. Fitting often relies on the PSF-based fitting of a Gauss-

ian intensity distribution to each spot candidate or uses other linear or

nonlinear models. Centroid estimation detects diffraction-limited spots by

determination of the radial spot center, which often does not coincide with

the local maximum and is a reliable method to distinguish neighboring spots

(Parthasarathy, 2012).

Once spots have been detected and their positions evaluated, one needs

to connect the spots in order to generate trajectories (Fig. 2C). The simplest

method to achieve this connects each spot with its nearest neighbor in the

next frame, allowing for only a limited displacement range (based on knowl-

edge of the typical transport properties of the biological species), and a given

number of gaps—false negatives are common in single-molecule tracking

because fluorescence of a particle might be intermittently obscured by noise

or background, resulting in amissed detection.Multiframe ormultitrack and

motion model-based tracking approaches are more sophisticated techniques

that go beyond frame-to-frame nearest-neighbor linking and are suitable for

live-cell mRNA imaging. They are robust against partial detection failures

and crossing trajectories. Multiframe or multitrack approaches take the

history of a tracked particle into account in order to match it to a future

estimated trajectory. Motion-based models fit the trajectories to typical

single-particle movement patterns such as Brownian motion, corralled

diffusion, or directed motion (Park et al., 2010). The most robust particle

tracking methods rely on a combination of several of the aforementioned

detection and tracking approaches (Chenouard et al., 2014). Because it is

technically difficult using wide-field epifluorescence or confocal microscopy
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to acquire 3D volumes at frame rates compatible with single-molecule track-

ing with sufficient SNR, single mRNA tracking has mostly been performed

in 2D planes where particle movement in and out-of-focus limits the obser-

vation time to a few seconds in ideal cases. However, innovative microscopy

approaches have recently been developed to overcome this issue and collect

3D trajectories of mRNA particles (Smith et al., 2015; Spille et al., 2015).

These imaging modalities circumvent the problem of particles moving out-

of-focus and are able to generate longer trajectories; the tracking analysis

techniques are conceptually identical to those used for 2D tracking.

Although long trajectories are ideal to investigate the fate of individual

mRNA molecules, short observations times are not necessarily limiting to

determine the translation state of a two-color-labeled mRNAs (Fig. 2).

Short trajectories of a few 100 ms are often sufficient to reliably determine

the degree of colocalization of an mRNA population within a cell.

6.2 Determining Colocalization of Tracked Two-Colored mRNA
Particles

The determination of colocalization between both fluorescent channels is

key to determine translation, as in the case of TRICK or other dynamic

properties probed by a two-color mRNA imaging experiment. Since every

field-of-view typically contains a large number of tracked mRNAs,

colocalization between the two trajectory data sets is best performed in

an automated fashion (Deschout et al., 2013; Dupont, Stirnnagel,

Lindemann, & Lamb, 2013; Koyama-Honda et al., 2005).

One important first step in colocalization is to ensure one can accurately

register the two-color channels. This calibration is usually performed by

imaging small (�100 nm) fluorescent beads or gold nanorods that emit a

broad spectrum of light spanning the two channels used in the experiment.

Each bead produces one diffraction-limited spot in each channel. By using

detection algorithms to measure the position of each bead image in the sep-

arate channels, one can calculate the spatial transformation needed to pre-

cisely map the position of the red beads onto the green ones. This

process corrects for systematic chromatic aberrations (specific to one micro-

scope because of the properties of its lenses, but invariant over time) andmis-

alignments. As microscopes can substantially drift over time, it is important

to perform these calibration routines frequently, ideally on a daily basis if one

desires to achieve high registration accuracies. Typical registration errors can

be as small as 5–10 nm. The spatial transformation generated during the cal-

ibration is then applied to the measured spots after the experiment, before

matching them to the second channel.
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Algorithms carrying out this kind of colocalization have been described

in more detail before (Espenel et al., 2008; Halstead et al., 2015). Although

in principle one could assess colocalization at each time point by matching

positions of green and red spots, this strategy is very sensitive to missed or

spurious detections, which are not uncommon when tracking individual

molecules in the low SNR regime.We found that a more effective approach

consists of matching trajectories rather than individual spot positions

(Fig. 2D). The reason is that tracking algorithms are designed to accommo-

date both false negatives (short gaps are usually allowed in trajectories) and

false positives (only trajectories longer than a few frames are considered,

which cleans up spurious detections). As a result, matching trajectories rather

than spots is a robust way to assess colocalization at the single-molecule level.

The algorithm to match trajectories consists of measuring the spatiotem-

poral overlap between all green and red trajectories. If two trajectories are

found to be within a certain distance threshold of one another (typical value

in our experiments is 100 nm) for a certain number of frames (typical value in

our experiments is three frames), then they are scored as colocalized. Even

though the number of frames used as our colocalization criterionmight seem

small, longer colocalized trajectories are usually visibly moving together for

their entire duration. Perfect trajectory overlap is often not achievable,

because of the uncertainty inmeasuring the position of each spot (in our con-

ditions, around 40 nm in x,y), and the error in registering the two channels

together (�15 nm). This algorithm works best when the particles are bright

and well separated in space, but is robust in a wide range of SNR and con-

centrations typical of single-molecule tracking. One advantage of TRICK is

that out of three potential trajectory combinations (red only, green only, and

colocalized red+green), one only expects to observe two: red only (30-UTR

label only for translatedmRNAs) and colocalized green+red (bothORFand

30-UTR label for untranslated mRNAs) because the 30-UTR red label

always remains bound to its target. Therefore, the measurement carries an

internal control: the number of colocalized trajectories over the total number

of green trajectories (green only and colocalized) is a direct metric of the

experimental sensitivity (typical values in our experiments 80–90%). The
results can be expressed as colocalization percentages per cell (Fig. 2E), indi-

cating for example the amount of translated mRNA at different time points

after reporter induction. Trajectories can then be analyzed separately to

investigate the relative importance of location, transport, and dynamic prop-

erties of various mRNA translation states.
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6.3 Controls
It is important to bracket imaging experiments with positive and negative

controls. Imaging and performing particle detection on cells lacking CF-FPs

should not reveal fluorescent signal. Similarly, imaging cells expressing

CF-FPs, but not the reporter mRNA, should show diffuse CP-FP signal

in the nucleus only, and no bright single particles. To determine if every

mRNA is detectable via live-cell imaging, TRICK can be combined with

single-molecule fluorescence in situ hybridization (mRNA FISH). In fixed

cells, multiple singly labeled fluorescent FISH probes robustly detect single

reporter mRNAs, which should correspond to the same number of mRNAs

detected in live cells by CP-FPs. Imaging the entire cell volume in a 3D stack

can confirm that every reporter mRNA is fluorescently labeled by coat

proteins.

Under steady state conditions in mammalian cells �6% of our standard

reporter mRNAs are untranslated and so fluoresce in both red and green

channels, while�94% of mRNAs are translated and appear in the red chan-

nel only. Imaging cells expressing only one CP-FP in both channels should

yield no colocalization and controls for fluorophore cross talk. As a positive

control for detection of colocalization, both stem-loop cassettes can be

inserted into the reporter 30-UTR, which should result in 100% of mRNAs

that fluoresce in both channels independent of translation. This is a partic-

ularly useful control for optimizing the colocalization of two-color trajec-

tories from SPT data.

Inhibitors of translation can demonstrate that the TRICK signal (loss of

fluorescence from the coding sequence) is translation-dependent and serve

as a powerful control. Small-molecule inhibitors affecting different steps of

translation can be used as complementary controls (eg, puromycin causes

premature termination and cycloheximide halts elongation).

7. TRICK EXPERIMENT IN HeLa CELLS TO DETERMINE
FRACTION OF UNTRANSLATED mRNAs

7.1 Preparation of Cells for Live-Cell Imaging
Materials

• Tetracycline-inducible HeLa cells stably expressing NLS-PCP-GFP,

NLS-MCP-Halo, and a TRICK reporter mRNA containing PP7 (cod-

ing region) and MS2 (noncoding region) stem-loops
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• Dulbecco’s Modified Eagle Medium (DMEM; Life Technologies,

10566-016) supplemented with 10% (v/v) Tet-free FBS (Clontech,

631106) and 1% (v/v) penicillin and streptomycin (pen/strep)

• 35 mm μ-Dish (Ibidi, 81158)

• Automated cell counter and counting slides (Biorad, D9891-1G)

• Doxycycline (Sigma, D9891-1G)

• JF549 (HHMI Janelia Research Campus)

Day 1

1. HeLa cells are grown using standard cell culture techniques as adherent

monolayers in DMEM+10% FBS+1% Pen/Strep.

2. Prepare a cell suspension of HeLa cells at a density of 20,000 cells mL�1

and ensure dissociation into single cells.

3. Seed 2 mL of cell solution per 35 mm imaging dish. Care should be

taken in order to obtain a homogenous distribution of cells within

the dish.

4. Incubate 2 days at 37°C and 5%CO2. Shorter incubation periods are also

possible depending on the time it takes for cells to attach and spread on

the surface of the imaging dish.

Day 3

1. Prewarm PBS and DMEM+10% FBS to 37°C.
2. Halo-label cells by addition of 1 mL 100 nM JF549 in DMEM

+10% FBS.

3. Return cells to incubator (37°C, 5% CO2) for 15 min.

4. Remove medium and wash cells 3� with PBS.

5. Replace medium with 37°C warm DMEM+10% FBS containing

1 μg mL�1 doxycycline to induce TRICK reporter expression.

7.2 Image Acquisition
Materials

• Olympus IX81 inverted microscope (Olympus) equipped with a

Yokogawa CSU-X1 scanhead (Yokogawa) and Borealis modification

(Andor)

• Dichroic beam-splitter in scanhead (Semrock Di01-T488/568-

13x15x0.5)

• 100� 1.45NA PlanApo TIRFM oil immersion objective (Olympus)

• Two back-illuminated EvolveDelta EMCCD cameras (Photometrics)

• Εmission filters for GFP (Semrock, FF01-617/73-25) and JF549
(Semrock, FF02-525/40-25) fluorescence
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• Βeam-splitter between cameras (Chroma, 565DCXR)

• Solid-state lasers (100 mW 491 nm and 100 mW 561 nm; Cobolt)

• Motorized X,Y,Z-Piezo controlled stage (ASI)

• Incubation box around microscope providing heating and CO2 regula-

tion (Life Imaging Services)

Day 3

1. Equilibrate microscope imaging chamber to 37°C and 5% CO2.

2. Select cells for imaging using MCP-Halo channel by identifying cells

that contain well-resolved diffraction-limited particles (spot width

�2 pixels). Image using low laser power to limit photobleaching before

acquisition of TRICK data.

3. Simultaneously image cells in both channels using laser powers, camera

gain, and exposure times compatible for SPT. Exposure times should be

40–50 ms or less, in order to ensure that fast moving mRNPs can still be

unambiguously tracked between subsequent frames. Laser power opti-

mization is a tradeoff: high laser powers result in bright, well-resolved

particles that are easier to track, but induce rapid photobleaching. Once

adequate exposure and laser power settings have been set, the camera

gain should be optimized to provide the largest possible intensity

dynamic range without saturating the detector.

7.3 Image Analysis
Materials

• Broad-emitting beads, Tetraspeck microspheres mounted on a slide

(ThermoFisher Scientific T-14792)

• ImageJ with TrackMate plugin

• Matlab (Mathworks) software and scripts

Day 4 (Tracking)

1. Ensure that both channels are precisely registered. Cameras should be

aligned prior to image acquisition using multicolor beads mounted on

a standard slide. Any residual systematic offset between channels can

be corrected using the translate function within ImageJ.

2. Particle tracking can be performed on a small number of frames (typically

3–5) to prevent biasing the analysis toward immobile particles.

3. Define a region of interest for analysis (eg, a single cell, nucleus, or

cytoplasm).

4. Filter out randomly distributed noise using the FFT bandpass filter

within ImageJ. Filter small objects below 3 pixels to reduce noise.
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5. Detect spots using the Laplacian of Gaussian (LoG) detector in

TrackMate (ImageJ). Spot size and thresholds should be optimized for

detection of single mRNA particles.

6. Detected spots can be joined into trajectories in TrackMate using the

linear assignment problem (LAP) tracker. The parameters linking max

distance, gap-closing distance, and gap-closing max frame gap should

be optimized as necessary to increase or reduce tracking stringency.

7. Use the visual inspector to ensure that particles are appropriately tracked.

8. Export tracking data as a spreadsheet.

Day 4 (Colocalization)

9. Colocalization analysis of trajectories is performed in Matlab

(Mathworks) with custom written scripts.

10. Two tracks are considered to be colocalized if at least two spots of the

green trajectory are within a pixel in x,y of a red trajectory.

11. Colocalization is then evaluated for accuracy by assessing individual

colocalized trajectories.

12. Orphan red channel trajectories are identified as the translated mRNA

fraction while the colocalized trajectories represent the mRNA fraction

that has remained untranslated.

8. TRICK EXPERIMENT IN DROSOPHILA

Maternally deposited mRNAs ofD. melanogaster encoding embryonic

axis determinants such as oskar, bicoid, gurken, and nanos are frequently used as

model systems to study mRNA transport and translational regulation. In the

past, transport of these mRNAs has been successfully studied using trans-

genic animals expressing MS2-tagged reporter mRNAs (Forrest & Gavis,

2003; Jaramillo, Weil, Goodhouse, Gavis, & Schupbach, 2008; Weil,

Forrest, & Gavis, 2006; Zimyanin et al., 2008). However, the insertion of

MS2-binding sites has to be planned carefully in order to not destroy impor-

tant cis-regulatory elements that are often located in the 30-UTR and essen-

tial for proper transport and translational control (eg, oocyte entry signal

(Jambor, Mueller, Bullock, & Ephrussi, 2014); translational control element

(Gavis, Lunsford, Bergsten, & Lehmann, 1996)). Notably, some mRNAs

such as oskar require splicing for transport and translational control

(Ghosh, Marchand, Gaspar, & Ephrussi, 2012; Hachet & Ephrussi, 2004).

We therefore always modify genomic DNA fragments.

To show the feasibility of imaging the first round of translation in Dro-

sophila, we chose the oskarmRNA, which is produced in the nurse cells and

transported over a long distance in order to localize to the posterior pole of
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the developing oocyte, where it is finally translated. We used a genomic res-

cuing construct of 6.45 kb (Ephrussi & Lehmann, 1992) in which 6�MS2

loops were inserted into the 30-UTR (Fig. 3A). This insertion has been pre-

viously used to study transport and has been shown to give rise to functional

Oskar protein (Lin et al., 2008). Using the endogenous oskar promoter

ensures that expression of the TRICK reporter is comparable to wild-type

levels. In order to generate the functional osk-TRICK reporter, we inserted

12�PP7-binding sites in frame into the coding region (Fig. 3A). To gener-

ate transgenic animals, the full genomic region was subjected to P element-

mediated germline transformation.

In order to provide the coat proteins necessary for labeling of the

TRICK mRNA in the nurse cell nuclei, we express NLS-MCP-RFP

and NLS-PCP-GFP fusion proteins under the control of a weak maternally

active promoter, such as the hsp83 promoter (Forrest & Gavis, 2003).

Importantly, only this moderate expression of the coat proteins ensures

no labeling artifacts, as seen by UAS-Gal4 driven constructs that produce

nonspecific motile particles even in the absence of MS2-labeled mRNA

(Xu, Brechbiel, & Gavis, 2013).

8.1 Imaging and Analysis
Materials

• 1� PBS

• 16% paraformaldehyde solution (Electron Microscopy Sciences, #15710)

• Tween20 (Sigma, T9284)

• Triton X-100 (Sigma, P1379)

• BSA (bovine serum albumin, Sigma, A2153)

• Glass slides and coverslips

• Mounting solution (eg, Shandon Immu-Mount, Fisher Scientific,

9990402)

Protocol for Drosophila Oocytes

1. Dissect ovaries from well-fed female flies expressing TRICK mRNA,

NLS-MCP-RFP, and NLS-PCP-GFP in 1� PBS.

2. Replace PBS with fixative (1� PBS supplemented with 4% parafor-

maldehyde) and incubate for 20 min.

3. Wash twice with PBST (1� PBS, 0.1% Tween20).

4. Permeabilize ovaries for 1 h in 1� PBS with 1% Triton X-100.

5. Wash twice with PBST (1� PBS, 0.1% Tween20).

6. Block with blocking buffer (1� PBST with 0.5% BSA) for 30 min.

7. Remove blocking buffer and add primary antibody (eg, anti-Oskar) in

blocking buffer for 2 h.
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Fig. 3 TRICK in Drosophila oocytes. (A) Schematic of a genomic osk-TRICK reporter con-
struct. The alternative translational start sites producing the long and short Oskar
isoforms (ATGL and ATGS), the insertion site of 12�PP7 in the coding region, 6�MS2-
binding sites right after the stop codon (TAA), and the position of the stop codon
mutation used for control experiments are indicated. (B) Imaging of individual mRNPs
in the ooplasm of an egg-chamber expressing osk-TRICK mRNA, NLS-MCP-RFP and
NLS-PCP-GFP using FP-booster, scale bar 5 μm. (C) Insertion of 12xPP7-binding sites
does not disturb translation of oskar mRNA. Western blot analysis of ovarian samples

150 J.M. Halstead et al.



8. Wash three times with PBST.

9. Incubate ovaries with secondary antibody conjugated to fluorophores

spectrally distinct from EGFP and TagRFP-T (eg, Cy5, Alexa 647) in

blocking buffer for 1 h.

10. Wash three times with PBST.

11. Separate individual egg-chambers, mount them on a glass slide using

mounting solution and cover with a coverslip.

12. Acquire images on a standard wide-field or confocal microscope.

13. Images are further processed and the fluorescent signals and oocyte size

of individual egg-chambers are measured using ImageJ (http://rsb.info.

nih.gov/ij/). The ratio of NLS-PCP-GFP per NLS-MCP-RFP is cal-

culated and plotted against the protein signal intensity and oocyte size.

Optional: Drosophila egg-chambers are relatively thick (from �50 to

>100 μm), which can present challenges for imaging. In order to

obtain a good SNR, immunostaining with direct-coupled antibodies

(eg, Anti-GFP-CF488A (Sigma, SAB4600051), RFP-booster (ChromoTek,

rba594-100)) against FPs of the coat proteins can help to overcome this issue

in fixed egg-chambers. This allows higher resolution imaging of individual

RNA–protein particles containing osk-TRICK mRNA by confocal micros-

copy followed by deconvolution (Fig. 3B). Single-particle analysis can be

carried out as described earlier.

8.2 Controls
As a first test for any defects in translation of the TRICK reporter transgenes,

we recommend to use western blot analysis to identify the fusion protein

derived from the osk-TRICK reporter, which appears with an increase in

molecular weight of approximately 30 kDa caused by the extra polypeptide

sequence derived from the 12�PP7-binding sites insertion (see Fig. 3C,

middle lane). The use of mutant alleles to deplete any wild-type protein

from wild-type flies, flies expressing osk-TRICK and osk-TRICK in an osknull background.
(D) Immunostaining against Oskar protein in an egg-chamber expressing osk-TRICK in
an osknull background shows exclusive synthesis of Oskar protein at the posterior pole of
the oocyte. (E) Quantification of fluorescent signals from NLS-PCP-GFP/NLS-MCP-RFP,
Oskar protein immunostaining and oocyte area (color- and size-coded) of individual
oocytes. The correlation of the TRICK reporter readout with Oskar protein and oocyte
area observed in osk-TRICK expressing egg-chambers (upper plot) is abolished by the
introduction of the STOP mutation prior the PP7-binding sites (lower plot). Pearson
correlation coefficient (r), scale bars 50 μm.
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allows standard immuno-fluorescence techniques and the use of well-

established antibodies to detect protein derived exclusively from the

TRICK reporter (Fig. 3C, right lane). This is important when considering

the use of constructs in which the coding region and the PP7 loops are sep-

arated by a self-cleaving 2A peptide, making reporter and wild-type protein

difficult to distinguish by mass.

Only at the posterior pole of the oocyte is translational repression of oskar

mRNA relieved andOskar protein produced. This process requires a precise

orchestration of the transport machinery and translational regulators. There-

fore, correct localization of Oskar protein exclusively at the posterior pole is

a significant indicator of undisturbed regulation of the localized translation of

the TRICK reporter construct. The use of mutant alleles (eg, osknull) and

standard immuno-fluorescence allows detection of Oskar protein solely

derived from the oskar-TRICK reporter mRNA and confirms the correct

localization of the protein independent of wild-type transcript and protein

(Fig. 3D). This demonstrates that the introduction of PP7- andMS2-binding

sites has no impact on the transport, translational repression, and translational

activation of osk-TRICK mRNA.

Oskar protein first appears during mid-oogenesis (Kim-Ha, Kerr, &

Macdonald, 1995), allowing a precise readout of the TRICK reporter per-

formance to report on the translational status of osk-TRICKmRNAof indi-

vidual egg-chambers during different developmental stages. A comparison

of oocyte area, fluorescent intensities of Oskar protein immunostaining,

and the NLS-PCP-GFP to NLS-MCP-RFP ratio shows the correlation

of loss of NLS-PCP-GFP signal with oocyte size and Oskar protein appear-

ance (Fig. 3E). In order to demonstrate that the observed loss of the

NLS-PCP-GFP signal in later stage oocytes depends on active translation,

introduction of a STOP codon by site-directed mutagenesis upstream of

the PP7-binding sites of the osk-TRICK mRNA (osk-STOP-TRICK)

should be used (Fig. 3E). Similar to TRICK experiments in cultured mam-

malian cells, small-molecule inhibitors of translation can also be used.

TRICK reporter mRNAs can be used to monitor the first round of

translation with single mRNP resolution in the animal model system Dro-

sophila, a powerful resource with established genetic toolboxes and well-

studied examples of localized translation.

9. OUTLOOK

The development of multiple orthogonal fluorescent labeling meth-

odologies for imaging single molecules of RNA in living cells has made it
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possible to perform more detailed analyses of RNA metabolism. RNA bio-

sensors, which go beyond simply being able to observe mRNAs, enable

direct measurement of specific events in an mRNA’s life. We have

engineered the TRICK system that reports on the first round of translation,

but we envision that conceptually similar approaches may also be applied to

mRNA turnover and other aspects of RNA metabolism. These advances

coupled to the revolution in genome engineering tools will allow the com-

plete lives of endogenous mRNAs to be imaged in living cells.
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Chapter 6: Thesis summary and future research perspectives 
 

 

The work presented in this PhD thesis sheds light on the spatio-temporal dynamics of mRNAs 

during the stress response in human cells (Fig. 1). The application of the TRICK translation biosensor 

showed that mRNA can be locally repressed inside of PBs under specific conditions, such as the recovery 

from stress. Using single molecule imaging, tracking and colocalization approaches, the dynamical 

movements of mRNAs relative to PBs and SGs were quantified during stress. Reporter mRNA localization 

was found to depend the 5′UTR cis-acting TOP element. The RBP LARP1 partially controls TOP mRNA 

localization inside of PBs and SGs. This quantitative knowledge about mRNA localization during stress 

in combination with functional single molecule mRNA imaging of translation, allowed us to draw 

conclusions about the relevance of PB and SG localization for mRNA biology. Overall, mRNAs seem to 

translate well and are not subject to rapid decay during the relief from stress even though they did not 

spend a significant time in stress-induced granules (Fig. 1). To address potential RNA-independent 

functions of stress-induced mRNP complexes we performed a small molecule-based screen and 

identified several negative SG modulators. Most increased apoptosis when added during the stress 

response.  

In summary, the technical approaches used and partially developed during this PhD project 

have the sensitivity to detect subcellular differences in mRNA decay and translation in living cells. For 

the majority of transcripts, the obtained evidence points towards granule-independent mRNA 

expression regulation during and after the stress response. Further, SGs might have important RNA-

independent functions for apoptosis regulation. 
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Fig. 1: mRNA interactions with stress-induced RNA-protein granules are regulated and mRNA expression regulation 

during stress and recovery is independent of RNA localization relative to granules. During stress, mRNAs do not undergo 

decay and are translationally repressed, regardless of their localization. Cis- and trans-acting factors determine RNA interaction 

patterns with stress granules (SGs) and processing bodies (PBs), although the majority of mRNAs localize outside of granules. 

During the recovery from stress, non-granule localized mRNAs do not undergo rapid decay and translate normally. mRNAs 

present in PBs remain translationally repressed. In summary, SGs and PBs do not seem to exert a permanent RNA storage or 

protection function since the majority of RNAs are unaffected by localization patterns. 

Technical considerations 

One key technical limitations of live cell single molecule approaches presented here are the 

short imaging time windows. Photobleaching becomes an important aspect of every experiment, when 

mRNAs are imaged for > 30 seconds. This is especially true for functional single molecule mRNA imaging 

where the loss of a fluorescent signal can lead to faulty conclusions. Short imaging time frames might 

also restrict the direct observation of transition events between SGs and PBs or the direct observation 

of localized decay or translation if those processes take significantly longer than the available imaging 

time. Furthermore, the current optical setup of most confocal or TIRF microscopes restricts fast imaging 

necessary for RNA tracking to a single z-plane. Rapidly diffusing RNAs, such as non-granular ones, are 

easily lost after a few imaging frames. Particularly in our case, it would be an enormous achievement if 

single mRNA could be tracked for extended periods of time. This would for example allow the direct 

assessment of granule effect on mRNAs. Does even brief granule localization have an effect on 

translation fidelity or decay rates? Do long mRNA residence times in granule correlate with a biological 
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effect? Such questions can currently not be answered and will require the significant improvement of 

chemical dyes and microscopy systems. Protein-bound chemical dyes with higher photon yield or lower 

activation threshold would increase brightness and therefore imaging times. Further, microscopy 

systems which can scan in the z-direction over extended periods of time are required. Technically the 

construction of such microscopes is already possible, but has not become the standard yet. 

Furthermore, the emergence of the CRISPR/Cas9 system will likely revolutionize live cell single molecule 

imaging. Although repurposed fluorescently tagged Cas9 can be used to target and image endogenous 

mRNAs, it currently lacks single molecule resolution (Nelles et al., 2016). Using CRISPR/Cas9 for the 

integration of MS2 or PP7 stemloop casettes into endogenous genes has already been used (Pichon et 

al., 2016) and will further strengthen the physiological relevance of single molecule imaging studies in 

the future. In addition, the advent of organoid systems or intravital single molecules imaging will help 

to understand how different cells within solid tumors or complex organs regulate RNA biology in a 

spatio-temporal manner. Although single-cell RNA sequencing and ribosome profiling have made 

significant technical progress, single molecule imaging will remain a fractionation-, purification-, 

crosslinking-, and population-independent key method to assess the subcellular localization, temporal 

dynamics and gene expression regulation of single transcripts in their native environment.  

Biological considerations 

Although data concerning SGs in disease or mRNA regulation contexts exists (Anderson et al., 

2015, Decker and Parker, 2012), most of it is of correlative nature and strong causal links are often 

missing. This limitation seems to be mainly due to two factors. First, it is technically and experimentally 

challenging two separate a biomolecular function from its localization. Gain of function or SG-tethering 

experiments often only capture a minor fraction of a molecule of interest, while the majority of non-

tethered molecules might still exert a different and more dominant function in the surrounding cytosol. 

The high-resolution quantification of protein and mRNA localization is therefore necessary to estimate 

the extent to which an observed granule-related effect also occurs outside of the granule. In addition, 

the depletion of endogenous proteins though CRISPR/Cas9 or RNAi while at the same time expressing 

codon-optimized degradation-resistant reporters of the same gene might be one way to experimentally 

shift reaction equilibria between cytosol and SGs to study their function. For example, a given well- 

characterized SG-resident protein could be mutated in a way that its catalytical function is still active, 

while localization to SGs is inhibited. Depleting its endogenous counterpart, which is catalytically active 

and localizes to SGs, would then allow a clear localization-based separation of function of the candidate 

protein.  
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The second reason SG physiology is hard to study, is that loss of function experiments such as 

knockdowns or SG dissolution/inhibition experiments always influence secondary pathways which 

might drastically obscure SG functioning. Since SGs are transient structures, no RNA or protein can be 

regarded as “exclusively SG specific”. Knockout, knockdown or overexpression experiments to induce 

or inhibit SG formation can therefore easily influence other cellular processes. For example, PABP levels 

might influence RNA stability and translation, which will feedback to SGs causing a variation of the 

“chicken and egg” problem that will make it hard to deduce cause and effect. Also small molecule-

induced SG formation through translation initiation blocking or the induction of SG dissolution through 

translation elongation blocking are unfortunately not very elegant ways to perturb granule biology. 

Secondary effects are difficult to control for when fundamental biological processes, such as translation, 

are affected. It will therefore be necessary to identify small molecules that can specifically target SG 

stability or formation without any or only minor off-target effects. Targeting LCD-driven phase 

separation processes during SG formation by shielding the molecular interactions of LCDs from each 

other could be one entry point.   

How will the SG and PB field develop in the future? Presumably, the answer to this question will 

mainly revolve around the characterization of granule heterogeneity and the resulting evidences for 

relevant physiological functions of SGs in different biological contexts.  SGs and PBs seem to be less 

important for the localized regulation of mRNA biology than previously thought. Despite this, studying 

specifically highly enriched transcripts while excluding “out-of-granule” regulation (see above) might 

lead to significant insights. A second promising field seems to be the role of SGs for multiple cell 

biological processes. Signaling (Kedersha et al., 2013), apoptosis regulation (Arimoto et al., 2008), 

(Grabocka and Bar-Sagi, 2016) and nucleo-cytoplasmic protein shuttling in neurological diseases 

(Zhang et al., 2018) have all been shown to be subject to SG-linked regulation. However, it will be crucial 

to establish direct and testable links with mRNP granules. Third, the phase separation and core-shell 

models for SG architecture will be tested more extensively in the future. In particular, it will be 

interesting to see to what extend RNA seeds granule cores and whether phase separation already plays 

a role during these early events. For an increased understanding of SG-formation, it will also be 

necessary to move from in vitro experiments into animal models. It will especially be important to study 

the physiologically relevant time scales for SG and PB formation and disassembly in neurons and 

tumors. An increased understanding of the biology of stress-induced mRNP granules could also have 

significant medical implications. Boosting or inhibiting SG and PB formation with combinatorial drug 

treatments might make viral infections and tumors more susceptible to treatment.  
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