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ABSTRACT

This thesis introduces some general frameworks for studying problems in de-
cision theory. The purpose of this dissertation is two-fold. First, I develop
general mathematical frameworks and tools to explore different decision the-
oretic phenomena. Second, I apply my developed frameworks and tools in

different topics of Microeconomics and Decision Theory.

Chapter 1 introduces a notion of the classifier, to represent the different classes
of data revealed through some observations. I present a general model of clas-
sification, notion of complexity, and how a complicated classification procedure

can be generated through some simpler classification procedures.

My goal is to show how an individual’s complex behavior can be derived from
some simple underlying heuristics. In this chapter, I model a classifier (as a
general model for decision making) that based on observing some data points
classifies them into different categories with a set of different labels. The only
assumption for my model is that whenever a data point is in two categories,
there should be an additional category representing the intersection of the
two categories. First, I derive a duality result similar to the duality in con-
vex geometry. Then, using my result, I find all representations of a complex
classifier by aggregating simpler forms of classifiers. For example, I show how
a complex classifier can be represented by simpler classifiers with only two
categories (similar to a single linear classifier in a neural network). Finally,
I show an application in the context of dynamic choice behaviors. Notably,
I use my model to reinterpret the seminal works by Kreps (1979) and Dekel,
Lipman, and Rustichini (2001) on representing preference ordering over menus
with a subjective state space. I also show the connection between the notion
of the minimal subjective state space in economics with my proposed notion

of complexity of a classifier.

In Chapter 2, I provide a general characterization of recursive methods of
aggregation and show that recursive aggregation lies behind many seemingly
different results in economic theory. Recursivity means that the aggregate
outcome of a model over two disjoint groups of features is a weighted average

of the outcome of each group separately.
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This chapter makes two contributions. The first contribution is to pin down
any aggregation procedure that satisfies my definition of recursivity. The result
unifies aggregation procedures across many different economic environments,
showing that all of them rely on the same basic result. The second contribution
is to show different extensions of the result in the context of belief formation,

choice theory, and welfare economics.

In the context of belief formation, I model an agent who predicts the true
state of nature, based on observing some signals in her information structure.
I interpret each subset of signals as an event in her information structure. I
show that, as long as the information structure has a finite cardinality, my
weighted averaging axiom is the necessary and sufficient condition for the
agent to behaves as a Bayesian updater. This result answers the question
raised by Shmaya and Yariv (2007), regarding finding a necessary and sufficient

condition for a belief formation process to act as a Bayesian updating rule.

In the context of choice theory, I consider the standard theory of discrete
choice. An agent chooses randomly from a menu. The outcome of my model
is the average choice (mean of the distribution of choices) rather than the
entire distribution of choices. Average choice is easier to report and obtain
than the entire distribution. However, an average choice does not uniquely
reveal the underlying distribution of choices. In this context, I show that (1)
it is possible to uniquely extract the underlying distribution of choices as long
as the average choice satisfies weighted averaging axiom, and (2) there is a
close connection between my weighted averaging axiom and the celebrated

Luce (or Logit) model of discrete choice.

Chapter 3 is about the aggregation of the preference orderings of individuals
over a set of alternatives. The role of an aggregation rule is to associate with
each group of individuals another preference ordering of alternatives, repre-
senting the group’s aggregated preference. I consider the class of aggregation
rules satisfying an extended Pareto axiom. Extended Pareto means that when-
ever we partition a group of individuals into two subgroups, if both subgroups
prefer one alternative over another (as indicated by their aggregated prefer-
ences), then the aggregated preference ordering of the union of the subgroups

also prefers the first alternative over the second one.

I show that (1) the extended Pareto is equivalent to my weighted averaging

axiom, and (2) I derive a generalization of Harsanyi’s (1955) famous theo-
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rem on Utilitarianism. Harsanyi considers a single profile of individuals and a
variant of Pareto to obtain Utilitarianism. However, in my approach, I parti-
tion a profile into smaller groups. Then, I aggregate the preference ordering of
these smaller groups using the extended Pareto. Hence, I obtain Utilitarianism
through this consistent form of aggregation. As a result, in my representation,
the weight associated with each individual appears in all sub-profiles that con-

tain her.

In another application, I find the class of extended Pareto social welfare func-
tions. My result has a positive nature, compared to the claims by Kalai and
Schmeidler (1977) and Hylland (1980) that the negative conclusion of Arrow’s

theorem holds even with vN-M preferences.

Finally, in Chapter 4, I derive a simple subjective conditional expectation the-
ory of state-dependent preferences. In many applications such as models for
buying health insurance, the standard assumption about the independence of
the utility and the set of states is not a plausible one. Hence, I derive a model
in which the main force behind the separation of beliefs and state-dependent
utility comes from the extended Pareto condition. Moreover, I show that, as
long as the model satisfies my strong minimal agreement condition, we can

uniquely separate beliefs from the state-dependent utility.
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Chapter 1

A MATHEMATICAL THEORY OF CLASSIFIERS;
REPRESENTATIONS AND APPLICATIONS

1.1 Introduction
In this chapter, we introduce a mathematical framework to study the proper-
ties of classifiers. Our paper defines the notion of classifiers, complexity of a

classifier, and representation of a complex classifier through simpler classifiers.

Consider a data set in which each data points has different labels. Labels of
data sets allow us to classify data points into different classes, each class is

associated with the data points having some specific labels.

However, in many applications and data sets, we observe a classification rather
than the underlying reasons that give us the observed classification. Each class
may represent some data points with some properties. How can we understand
how these classes have been generated? What are the possible simple criteria
that classify the data set into the observed set of classes? If we have access to
simple procedures that can divide data set into two classes (binary classifiers),
then how many of them are needed to generate the same classification as the

one observed in our data sets?

Our paper presents a framework to answer all these questions. Generally
speaking, we try to understand the underlying structure of a complex classifi-

cation procedure.

In the Machine Learning literature, a neural network is built from a set of
simple linear classifiers. Given a data set and a set of labels, a researcher can
add many linear classifiers to build a large neural network that can shatter
data points to the correct classes. More generally, a researcher can combine
many different functions to form a complex function with lots of parameters
to shatter the set of data points into the correct classes. One of our goals is
to do the same in our abstract setup without any notion of a norm, distance,

or even a topology.

Our paper tries to formalize these ideas through some new characterization of

closure operators. Our results have the same intuitions that are behind the



duality of convex sets and support functionals in convex analysis.

The road starts with presenting some basic terms and primitives from abstract
convex geometry literature. Then, we formally define our notion of classifiers
using some motivational examples. In Section 1.4 we present our main char-
acterizations of classifiers. Then, we discuss different notions of complexity
associated with a classifier. We finish the section by providing a result on
how to find the minimal decomposition of a classifier into simple classification

procedures.

Finally, in a self-contained Section 1.5, we provide some applications of our
results in the context of dynamic choice. Notably, our results generalize and
shed some new lights on seminal papers by Kreps (1979), Dekel, Lipman, and
Rustichini (2001), and Gul and Pesendorfer (2001) regarding the representa-

tion of decision-maker’s preference ordering over a set of menus.

Our paper provides some new techniques and frameworks that have not been
fully developed and used in the economics literature. We think there are many

following questions, results, and consequences in decision theory.

1.2 Primitives and Axioms

The followings are standard definitions. Let X be a finite set of alternatives.
A set A € X is a menu of alternatives. We denote the set of all menus of X
by 2%. A binary relation > on X is a weak order on X, if it is transitive
(Vz,y,z€ X ifx > yand y % z then = % z), and complete (Vz,y € X whether
x xzyoryxx);itis partial order on X, if it is reflexive (Vx € X = % x),
transitive, and anti-symmetric (Vz,y € X if x > y and y > x then x = y). A

partial order which is complete is called total order or linear order.

Let (X, %) be a partially ordered set and ¥ < X. We say that (Y, %) is a
chain if it is a totally ordered set; it is an anti-chain if no two distinct
element of Y are comparable. An element x € X is said to be an upper
bound of Y if x % a for every a € Y. We denote the lowest upper bound
or join of Y (if it exists) by \/ Y. Similarly, we denote the greatest lower
bound or meet of Y by A\ Y.

A partially ordered set (X, %) is called a lattice if each z,y € X has a join
and a meet, denoted by x v y and x A y respectively. Let (X, X) be a lattice
and Y € X. We say that Y is a sublattice of (X, ) ifzvy,xzAnyeY for
all z,ye Y.



The following two definitions are the main definitions of our paper.

Definition 1. A closure operator on X is a map f : 2% — 2% that satisfies

the following properties:

1. extensivity: A< f(A) and (&) = &.
2. idempotence: f(f(A)) = f(A).

3. monotonicity: A < B implies f(A) < f(B).

There are two special closure operators. We define the 1dentity operator as
the closure operator I : 2% — 2% such that I(A) = A for every A € 2X. The
trivial closure operator is defined as the closure operator f : 2%X — 2%
such that f(A) = X for every nonempty A € 2.

Definition 2. A set A < X is closed with respect to a closure operator
f 2% =5 2% if f(A) = A. We denote the set of all closed sets with respect to
the closure operator f on X as S(X, f).

There is a connection between the set of closed operators and the set of menus
that are closed under intersection. We do not know who first noticed this
1

observation However, it is a known fact in topology. We are using the

following lemma throughout our paper.

Lemma 1. Let f : 2% — 2% be a closure operator on X, then the set of closed
sets S(X, f) is closed under intersection and contains & and X. Moreover, if
S is any subset of 2% which is closed under intersection and contains & and
X, there is a unique closure operator fg: 2% — 2% such that S(X, fs) = S.

Proof. The proof is simple. However, to be complete we add it here. Let
A,B e S(X,f) and C = An B. We need to show that C € S(X, f). If
C = &, by extensivity we are done. Otherwise, monotonicity, idempotence,
and closedness of A, B imply that f(C) < f(A) n f(B) = An B = C. Thus
by extensivity we get that f(C) = C.

In the context of convex geometry, the result has been noticed in Edelman and Jamison
(1985).
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For the other direction, assume that S < 2% is closed under intersection and
contains ¢ and X. Define f for any A € X as follows:

A= = (1.1)

{s|Acs,seS}
It is straightforward to check that f is a closure operator with S(X, f) = S.

]

The above lemma shows that by understanding the set of closed sets, we can

uniquely understand the closure operator associated with it.

Finally, given any closure operator f : 2X — 2% the set S(X, f) endowed with
the meet and join operators AA B=An B and Av B = f(Au B) becomes
a lattice which is bounded by ¢ and X.

Remark 1. The basic concepts of abstract convex geometry and combinatorial
convex hull operator are given in Edelman et al. (1985). Any closure operator
f: 2% — 2% with anti-exchange property defines a combinatorial convex
hull operator. We say that f satisfies the anti-exchange property if given
any closed set A and two unequal points x,y € X\ A, then z € f(Auy) implies
that y ¢ f(Au x).

A combinatorial convex hull operator is the abstraction of the regular convex
hull operator in the Euclidean spaces. Any closed set of a combinatorial convex
hull operator defines a convex set. An element x € X is said to be an extreme
point of A if f(A\x) # f(A). The anti-exchange property captures the idea
that if y is an extreme point of f(Auy) and if x ¢ f(A) and z € f(AUy) then
x cannot be an extreme point. In other words, any convex set can be generated
using the set of extreme points inside the set. This is the combinatorial version

of the Krein—-Milman theorem 2.

The connection between the combinatorial convex hull operators and the path
independent choice functions has been studied in Koshevoy (1999). He shows
that for any combinatorial convex hull operator, the extreme point operator
(the set of extreme points of a set with respect to the convex hull operator),

satisfies the heritage and outcast properties. He shows that the reverse

2Let X be a locally convex Hausdorff topological vector space. Also, let A be a compact
convex subset of X. Then, the theorem states that A is the closed convex hull of its extreme
points.
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is also possible, which means that given a choice function with heritage and

outcast properties, we can derive the associated convex hull operator.

In a nutshell, the heritage property states that if A < B, then ext(A4) 2
ext(B) n A. This property is just the a property of Sen (1977).

The outcast property states that if ext(A) € B < A, then ext(A) = ext(B).
This property is the weaker form of property 5 of Sen (1977).

These properties mentioned above have been well studied in choice theory.

The connection between convex hull operator and a choice function through
extreme point operator allows for connecting propositions in the literature of

both choice theory and abstract convex geometry.

In particular, a characterization of a combinatorial convex hull operator through
a set of primitive orderings has been studied in Richter and Rubinstein (2018).
Using their representation, they propose a notion of competitive equilibrium

in an abstract environment.

A part of the goal of this paper is to generalize the work of Richter et al. (2018)
for the class of closure operators. We show that the closure operator has a
simple representation similar to the representation of the regular Euclidean
convex hull operator through continuous linear operators. Moreover, we show
how to find an additive representation of a decision-maker’s preference ordering
of a set of menus with some underlying revealed closure operator (we explain
the notion in section 1.5). The representation sheds light on the connection
between the seminal works of Kreps (1979) and Dekel, Lipman, and Rustichini

(2001) regarding the representation of preferences over menus.

As mentioned before, the closure operator is a generalization of the convex
hull operator. Before going to the details of our characterization, we present
a simple environment that captures our interpretations of closure operators.

We derive our results for our proposed environment.

1.3 Labeling Correspondences and Classifiers
Let X denote the set of data points. A finite set L represents a set of labels.
A labeling correspondence on X using the set of labels L is a set value

function ® : X =3 L that associates with each data point x € X a subset of

labels ®(z).
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Given a labeling correspondence ® : X =3 L, we define a classifier as a
function f : 2% — 2% with f(A) = {z]lzv € X, [),.4 P(y) < ()} for every
AcX.

yeA

The interpretation of a labeling correspondence is straightforward. It attaches
a set of labels to each data point. We interpret each label as a single feature
or property attached to each data point. Hence, attaching two different labels
l1,lo € L to a data point = € X, ®(x) = {ly, [y}, is interpreted as if the data
point x has both of those properties.

To understand the definition of a classifier, assume that the classifier f, asso-
ciated with a labeling correspondence ®. Given a data point x € X, ®(x) is
the set of all labels associated with the point x. To find the set of data points
that are in the same class (or category) as x, we need to consider all data
points that have at least all the labels of the data points x. This is precisely
the definition of f(x).

More generally, for a given set of data points A € X, f(A) is the set of all
data points that at least have all the labels that are in common with all points
in A. The idea is that if a decision-maker wants to find all data points that
are in the same class as the observed data points in A (without any other

information), she should consider all points f(A).

Remark 2. Notice that any classifier related to a labeling function is a closure
operator. The extensivity and monotonicity properties are simple to check.
To check the idempotence, just notice that by monotonicity f(A) < f(f(A)).
Hence, we only need to show that f(f(A)) < f(A).

Assume that x € f(f(A)). By the definition of f, we have ﬂyef(A) O(y) < O(x).
Again, by the definition of f, we know that for every y € f(A) we have

Noca ®(2) € (y). Hence, (.04 P(2) S (ep0a) P(y) € @(x). Thus, z € f(A).
As a result, f satisfies the idempotence property.

As a result of the above remark, the set of closed sets, S(X, f), represents all
possible different classes of data points, and f(A) is the smallest class that
contains A as a subset. By considering Lemma 1, we know that the set of
classes is closed under the intersection. Moreover, there is a lattice structure

associated with the labeling correspondence.

To understand both concepts, we provide the following example.



{a,b,c,d}

{a,b,d}

{a, b} {a,c}

>

{a}

{b} {c} {d}

\T/

Figure 1.1: The lattice associated with the labeling correspondence ®.

Example 1. Consider a set of four data points X = {a,b,c,d}. The set of
labels is defined as L = {human, cat, black, white, female, male, car}. Assume

that the labeling correspondence ® : X =3 L is as follows:

d(a
O(b
®(c) = {cat, white, female}
®(d) = {car, black}

{human, black, female}

) =

) = {human, black, male}
) —

)

The classifier associated with the above labeling correspondence has eight
classes. Classl={a} associated with the labels {human, black, female}, Class2={b}
associated with the labels {human, black, male}, Class3={c} associated with

the labels {cat, white, female}, Classd={d} associated with labels {car, black},
Classb={a,b} associated with the labels {human, black}, Class6={a,b,d} as-
sociated with the labels {black}, Class7={a,c} associated with the labels
{female}, and the last class is Class8={a,b,c,d} associated with all data points

in the set X.

Figure 1.1 depicts the structure of the classifier and the associated lattice

structure.

It is important to notice that we can have another interpretation of a classifier

through the set of classes. Consider the set of data points X, and a set of
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classes or categories S < 2%. Let z € X be in two classes A, B € S, which
means that it has both properties of the classes A and B. Then, there should
be another class C' € S, with both properties of the classes A and B, such
that x € C'. The class, C, represents the data points with both properties
of class A and class B. Thus, with the interpretation mentioned above, the
set of classes should be closed under intersection. Moreover, we assume that
there is a trivial class X, which represents the set of all data points with every

possible property. Thus, through the eye of Lemma 1, there is a unique closure
operator f with S(X, f) = S.

As a result of the above interpretation, we can define a labeling function
® . X 35, which takes its labels from the set of classes S. For each data
points x € X, let ®(x) = {s| s € S, x € s}. Thus, for each data point z € X, ¢
attaches all the labels of each class that contains x. Interestingly, the classifier

associated with the labeling correspondence ® is exactly the unique closure

operator f such that S(X, f) = S.

We summarize the above observations in the following proposition.

Proposition 1. Let X be a set of data points. We have the followings:

1. Let L be a set of labels and ® : X =3 L be a labeling correspondence.
Then, the unique classifier f : 25 — 2% associated with ® (as defined
above) is a closure operator. Moreover the set of classes are closed under

intersection.

2. Let f: X — X be a closure operator on X. Then, there exists a set of
labels L, and a labeling correspondence ® : X =3 L such that the classifier
associated with ® is f. Moreover, one choice of L and ® is achieved by
defining L = S(X, f) and ® : X =3 L with ®(x) = {s| s € S(X, f),z €
s}.

Proof. We have already proved the first part in remark 2. To prove the second
part, we define L = S(X, f) and ® : X =3 L with ®&(z) = {s| se€ S(X, f),z €
s}. Based on the proof of the first part, we know that the classifier g : 2% — 2%

associated with ® is a closure operator. Thus, we only need to prove that
g=1

First, we prove that g(A) = f(A) for every A€ 2%. Let A€ 2X and x € g(A).
By the definition of g, [, 4 ®(y) < ®(z). Then, by definition of ®, we have

yeA
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{seS(X,f)| Yye A,ye s} < {seS(X, f)| ©€s}. Hence,if se S(X, f) with

A C s, then x € s.

Now, consider the set s = f(A). By monotonicity of the closure operator we
have A € s. Since s € S(X, f) and A < s, then we obtain that = € s. This
means that x € f(A). Thus, g(A) < f(A) for every A e 2%.

For the other side, we need to show that f(A) < g(A) for every A € 2%. Let
A€ 2X and z € f(A). By the definition of ® and g, it remains to show that
(Nyea @) = {s € S(X, f)|A € s} < ®(x) = {s € S(X, f)| z € s}. Thus, it
remains to show that if s € S(X, f) and A < s, then we would have z € s.
However, f is monotonic and s is a closed set respect to f. Thus, since A C s
then, f(A) < f(s) = s. Moreover, we assumed that z € f(A). As a result, we

have z € s. O

In the second part of the above proposition, the labeling correspondence is
not unique. However, using the second part of the proposition, we can get one

choice of labeling correspondence.

Consider the classifier associated with Example 1. There are eight classes other
than . Let define L = {Classl, ..., Class8}. Using the result of Proposition 1,

one choice of labeling correspondence is as follows:

O (a
o (b
d(c
o(d

{Classl, Classb, Class6, Class7, Class8}
{Class2, Classb, Class6, Class8}
{Class3, Class7, Class8}

) =
) =
) =
) = {Class4, Class6, Class8}

The above labeling correspondence is different that the original one in the
example. However, they both have the same classifier with the same set of
classes. In section 1.4.5, we show how many labels are needed to represent any

given classifiers.

As mentioned in the introduction, in the Machine Learning literature, a neural
network is built from a set of simple classifiers. Given a data set and a set
of labels, a researcher can add many linear classifiers to build a large neural
network that can shatter data points to the correct classes. More generally, a

researcher can combine many different functions to form a complex function
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with lots of parameters to shatter the set of data points to the correct classes.
One of our main goals is to do the same in this abstract setup without any

notion of a norm, distance, or even a topology.

One of the primary results of the next section is to show that how a complex
classifier (whether with lots of classes or with a complex structure of the
underlying lattice) can be decomposed into simpler classifiers®. For example,
how any classifier can be obtained by combining only binary classifiers,
which is the simplest non-trivial classifier. A binary classifier is a closure
operator with only two different classes (other than the ¢¥). One class is
the set of data points that satisfies a single property, and the other class is
all data points. Any binary classifier is obtained by considering a labeling
correspondence with only a single label. One class is the set of all data points
that have the label, and the other class is the set of all data points. In this
sense, a binary classifier can understand if a data point has that single label
or not. In other words, it can understand if a single point is in a specific class

or not. Combining these simple classifier can build any complex classifier.

In the next section, we show a general result on how any classifier can be
decomposed into simpler classifiers (not only into the binary ones). Moreover,
we find all possible decompositions. We also obtain the minimum number of

simple classifiers that can generate a given classifier.

1.4 On Representation of Classifiers

In this section, we show how to decompose a classifier into many simpler
classifiers. Our decomposition is closely related to the generation of standard
convex hull operator using continuous linear functionals. Before going to the
details of our results, let us remind our readers of the basic results of standard

convex geometry and describe the relevant interpretation for our setup.

1.4.1 Linear Classifiers in Simple Euclidean Environment

Let A < R". We denote by Conv(A) the set of all convex combinations of
vectors in A and cl(A) as the closure of A. Let consider the linear functional
f : R" — R. By the Fréchet-Riesz theorem any linear functional can be
represented as an inner product with a vector. In other words, for any linear

functional f, there exists a vector vy € R™ such that f(-) = (-, vy), where {-,-)

3We describe the notion of complexity in the next section. However, one might think of
a lattice with lots of nodes and a large anti-chain as a complex structure.
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represents the inner product in R™. Hence, we use the term linear functional

f and the corresponding inner product representation (-, v) interchangeably.

Let A be a bounded subset of R™. We define the support function of A
in the direction v € R™ by hs(v) = supyeay,v). The support hyper plane
{y € R"| {y,v) = ha(v)} is the hyperplane tangent to A with the slope v. We
denote the closed lower half-space that contains A and is tangent to A with
the slope v by H(v, hs) = {y € R"| {y,v) < ha(v)} and we call it the support
half-space.

By using the Separating Hyperplane Theorem (SHT), if A is a closed convex
set and x € R™\ A, then there exists a linear functional f : R™ — R that strictly
separates A and z. In other words, there exist a positive number ¢ > 0 and a
vector v € R™ such that f(-) =< -,v > and Yy € A f(y) < ¢ < f(x). Hence,
x¢ H(v, ha).

As a result of the previous discussion, if A is a closed convex set, we can write
it in terms of the intersection of supporting half-spaces. More generally, for

any bounded set A € R"™ we have the following dual property:

c(Conv(A)) = ﬂ H(v, hy). (1.2)
veR™

There is a nice interpretation of Equation 1.2 related to the purpose of our
paper. Assume that a decision-maker tries to classify different shapes in R™.
If she has only access to the support functions, then she can distinguish two
shapes that have different convex hulls. However, if two different shapes have
the same convex hull, then from her perspective there is no difference between
them.

In another more intuitive interpretation, a simple linear classifier is a
closed half-space H(v,a) = {y € R"|{y,v) < a} for some v € R" a € R. Given
a data point x, a simple linear classifier can detect if the point is inside or
not. More generally, given a set of point A € R”, it can recognize if the whole
set A is inside or not. A decision-maker that has access to all simple linear
classifiers can detect differences between two shapes with the different convex
hulls. However, any two different shapes with the same convex hull are similar

through the eyes of any simple linear classifiers.
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Notice that based on the above discussion, if a decision-maker wants to detect
two different shapes with the same convex hull, she needs to have access to
more complex classifiers (something that is not built using only linear classifiers
in the above sense). However, before going to the details of our main results

consider the following example.

Example 2. Let consider a decision-maker that tries to classify bounded
shapes in R%2. Assume that she has access to simple linear classifiers in the di-
rection of v; = (1,0),ve = (0, 1). In other words, given any bounded set A € R?
and any closed half-space H(v,a) = {y € R"| {y,v) < a} with v € {v;,v2} and
a € R, she can detect if A is inside H(v,a) or not. Then from her perspective,
there is no difference between the unit circle at the origin and a rhombus with
congruent diagonals of length two which is centered at the origin. From her
perspective, both are similar to a square with length two which is centered at

the origin.

She can classify previous two shapes into two different classes, if she can access

to another linear classifier in another direction, such as the direction of v3 =
(1,1).

However, using only vy, vs she can still classify many different shapes, as long
as they are different from the perspective of at least one of the linear classifiers
of the form H(v,a) = {y € R"| {y,v) < a} with v € {v1,v2} and a € R. Given
two bounded data sets A, B < R?, she first finds the smallest rectangle f4 that
contains A, and the smallest rectangle fp that contains B. Then, she compares
fa with fg. If both f4 and fg are the same, then from her perspective A and

B are the same. Otherwise, she classifies them as different categories.

Considering the above decision-maker, we define the function f from the set
of bounded subsets of R? to the set of rectangles in R?, which associates with
any bounded A < R? the smallest rectangle that contains A. It can be shown
that f is a closure operator. The class of each bounded shape A € R? is just

f(A). Hence, the decision-maker classifies different shapes according to f.

Now, we consider the reverse problem in example 2. Assume that we observe
that the decision-maker classifies different shapes using f. How can we decom-
pose f to simple linear classifiers built using v1, v9? The more general question

is that if a set of different classes revealed through the observation of the labels
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of a data set, how can we decompose the revealed classifier into its underlying

simpler classifiers?

In the next section, our goal is to answer the previous questions for any general

classifier in our abstract setup of section 1.3.

1.4.2 General Representation of Classifiers

In this section, we assume that X is a finite set of data points. Based on
our discussion of section 1.3, we use the terms closure operator and classifier
interchangeably. Our first proposition is rewriting the duality property of
Equation 1.2 for the class of abstract classifiers (closure operators). To do

that, we define the following notations.

Let > be a weak order on X and A € X. We denote the set of all weak orders
on X by R. The role of R for X is the same as the role of the dual of R"
(which is the set of all continuous linear functional, which in the case of finite
dimensional vector spaces is the space itself) for R". We define the support
function of A, ha : R — 2% by ha(x) = {v € A| z x y Vy € A}. Notice
that the definition is similar to the Euclidean case. However, instead of the
supremum of the inner product, we use all maximal elements of the set A with

respect to the direction %.

Similar to the Euclidean case, we define the support half-space of the set
A # ¢ with respect to the order > by H(x,ha) = {z € X| ha(x) X z}. We
define H(x,hg) = &.

Our first proposition is the general version of Equation 1.2 for our abstract
environment. The result characterizes any closure operator as a combination

of weak orders.

Proposition 2. Let f : 2% — 2% be a closure operator (classifier). Then

there exist some weak orders Zi,...,Z, on X, such that:
f(A) = ﬂ H(zi, ha). (1.3)
ie{l,....k}
Moreover, for any given set of week orders zi,...,%; on X, the operator

77777

Proof. First, we prove that if f is a closure operator, then there exists a set of

weak orders {X1,..., %} that generates it as in Equation 1.3. Consider the
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set of closed sets of f, which is S(X, f). For any C € S(X, f), we associate a

single weak order % as follows:

e for every x,y € C, let x ~¢ v,
e for every x,y € X\C, let © ~¢ y,

e for every x € C' and y € X\C, let x >¢ y.

For any given A € 2% and for any given > as as defined above, we have:

g itA=(,
H(zc,ha)=1C ifAcC, (1.4)

X otherwise.

We will show that {x>¢c | C' € S(X, f)} generates f, as in Equation 1.3.
Let A< 2% and C € S(X, f). Consider the following cases:

If A < C, then closedness of C' and monotonicity of f together imply that
f(A) < f(C) = C. Therefore, by Equation 1.4, H(X¢,ha) = C and f(A) <
H(zc, ha).

If A€ C, then H(x¢,ha) = X. Therefore, f(A) € H(Xc, ha).

As a result of the previous cases f(A) < ﬂCeS(XJ)H(zC,hA). Since f is
a closure operator, we have f(A) € S(X, f). Let Xy represents the weak
ordered associated with f(A). Since A < f(A), by Equation 1.4, H(Xs(a
ha) = f(A). Thus, Neegx ) H(Xe ha) € H(X pay, ha) = f(A). Therefore,
f(A) = ﬂCES(XJ) H(xc,ha). The last result completes the first part of the

proposition.

For the other direction, let {Xi,..., %} be a set of weak orders. We show

that the operator f, defined as in Equation 1.3, is a closure operator.
We will check all the properties of the closure operator.

By the definition of support half-space, H(X;, hy) = & for every i. Hence,
f(D) = &. Moreover, for every A and every i, we have A € H(X;, ha).

Therefore, f is extensive.
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Next, we show that f is monotonic. Let A € B and %€ {X1,..., X} By the
definition of support function, hp(x;) Z; ha(%;). Hence, H(x;, ha) € H(X;

,hp). Therefore, f is monotonic.

Finally, we show that f is idempotence. Since we have already shown that f
is monotonic, we only need to show that f(f(A)) < f(A) for every A.

Let z € f(f(A)). By the definition of f, we have x € H(Xx;, hy)) for every
ie{l,...,k}. As aresult, we have y x;  for all y € hya)(Z:)-

Let y € hyay(%zi). Notice that y € hp)(%;) implies that y € f(A) =
ﬂie{l,...,l} H(Zi,ha) © H(Zi, ha). Therefore, since y x; x and y € H(X;, ha),
then we have x € H(X;, ha). Therefore, v € (o, H(Zi ha) = f(A). The

last result completes the proof. ]

As a result of the above proposition, we say that the set of weak orders {x;

,---, X1} generates the closure operator f, if f(A) = (g o py H(Zi ha).

There are many useful properties of the closure operators generated by a single
weak order. To exploit them, consider € R. We denote the closure operator
generated by % by f». We call a closure operator (classifier) that generated
by a single weak order a simple closure operator or a simple classifier.
The first observation is that VA € 2%, f(A) = H(x,h4). Thus, the set of
closed sets (classes) is S(X, fx) = {H(A, ha)| A < X}. Moreover, S(X, fx) is
a single chain respect to the set inclusion. In other words, the lattice associated
with f- is a total order. Given any two classes of f-, one of them is the subset
of the other one. The role of simple closure operators in our setup is similar

to the role of continuous linear functionals in the previous section.

Interestingly, the reverse is also correct. If a lattice associated with a classifier
f is a single chain (total order), then it is generated by a single unique weak

order.

Lemma 2. The lattice associated with a closure operator is a single chain
if and only if a single weak order generates it. Moreover, the weak order

generating the lattice is unique.

Proof. If % generates f, then Proposition 2 guaranties that f is a closure
operator. By the definition of f, the set of closed sets is S(X, fx) = {H(%X
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,ha)| A< X}. Using the definition of support half-space, S(X, fx) is a single

chain respect to the set inclusion.

For the other side. If f is a closure operator such that S(X, f) is a single
chain, then define @ % b if and only if f(a) 2 f(b). Since S(X, f) is a total

order, > is a weak order.

To show that > generates f, we need to show that for every A € 2% we have
f(A) = H(Z, ha).

Notice that there should be some x € A with f(z) = f(A). Otherwise, since
S(X, f+) is a single chain, there should be a proper subset of f(A) which

contains all the closure of the singleton subsets of A, which is not correct.

Now, consider any y € f(A). Since f(y) € f(z), then z % y. Thus, y € H(x
yha). As aresult, f(A) < H(x, ha).

For the other side, since f(z) = f(A), then x should be a maximal element
in H(x,ha). Hence, for all y € H(x,ha) we have f(y) € f(x) = f(A). As a
result H(x,ha) < f(A). The last result completes the proof.

O

As a result of the previous lemma, there is no difference between the sets of
weak orders, classifiers with a single chain, and support half-spaces generated
by a weak order. All these three different sets are representing the class of

simple classifiers.

Considering lemma 1, we can rewrite Proposition 2 in a different way:

Corollary 1. Let f : 2% — 2% be a closure operator (classifier). Then there
exist some simple closure operators (simple classifiers) gi,..., g, on X, such
that:

= aa. (1)

Moreover, for any given set of simple closure operators gi,...,qg. on X, the

.....

Considering Proposition 2 and corollary 1, then the following observations are

immediate:
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Lemma 3. Let >q, -+, >y (or similarly the corresponding simple closure op-
erators gi,...,gx) generate the closure operator f and S(X, f) is the closed
sets of f. We have the following:

1. >1,...,>x (or similarly g1,...,gx) are not unique to get f.
2. YA€ 2® H(>;,ha) (or gi(A)) are all in S(X, f).

3. If {=4,-- , >4} is a subset of {>1,---, >k}, by defining the closure op-
erator h generated by >;,,-- -, >;, we have S(X,h) < S(X, f)

4. If z,, is a weak order and g is generated by {Z,} U {>1,...,>x}, then
g = f if and only if S(X, f,)) € S(X, ).

Proof. We are going to prove a more general version of the result in Proposi-
tion 4. O

The above observations are crucial to build the smallest number of weak orders

that can generate a closure operator f.

Before going into details of the minimal representation, we present a more

general representation of the closure operators.

Equation 1.5 gives us a hint to generalize the representations of the closure
operators. Consider a set of closure operators (classifiers) {g1,..., gx}, where
each g; is not necessary a simple closure operator. We define an operator f as

follows:

f@= (1 a). (1.6)
i€{l,....k}
The next proposition shows that f is a closure operator. As a result, we call

f the classifier generated by the set of classifiers {g1, ..., gx}-

Proposition 3. Consider any set of closure operators (classifiers) {g1,- .., gk}
on X. If f is the operator generated by them, as in Equation 1.6, then f is a

closure operator.

Proof. Extensivity and monotonicity of f come from extensivity and mono-
tonicity of each of ¢y, ..., gx. For the idempotence property, we need to show
that f(f(A)) = f(A). By monotonicity of f, we only need to show that

F(F(A) = F(A).
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Let z be in f(f(A)). By the definition of f, for all i e {1,... ,k} z € ¢g;(f(A)).

,,,,,

..........

.....

.....

the last result shows that = € f(A). Hence, f(f(A)) € f(A), which completes
the proof.

]

Both Proposition 2 and 3 are about the representation of closure operators.
However, they are silent on how to check if a set of closure operators {gi, . .., g}

generates a closure operator f or not.

The next proposition is the answer to the previous question. The following

result is the most general representation of the closure operators.

Proposition 4. Let f and gy, ..., gr be closure operators(not necessarily sim-

ple) on X. The closure operator f is generated by g1, ..., gx if and only if:

1. S(X,9:) € S(X, f) forallie{1,---  k},

2. If Ae S(X,f) and if x ¢ A, then there exists a closure operator g; €
{g1,..., 9k} such that x ¢ g;(A).

Proof. First, we show that if f is generated by closure operators gy, ..., g,

then we have both conditions.

To prove the first condition, observe that by Proposition 3, f is a closure op-
erator. Let g; € {g1,...,gr} and A € S(X, g;). Since every g; € {g1,...,gx} isa

closure operator, then g; is monotonic. Hence, for every g;, A < ¢;(A). More-

,,,,,

which means that A = f(A). Thus, A € S(X,f). Hence, for every i €
{1,...,k} we have S(X,¢;) < S(X, f).

To prove the second condition, let A € S(X, f) and x ¢ A. By the definition of

.....

such that = ¢ ¢;(A). Thus, we complete the proof of the second condition.
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For the other side of the proposition, we assume that both conditions are

.....

By the first condition, for all i € {1,...,k} S(X, g;) € S(X, f). Hence, for ev-
ery A e 2% and for every i € {1,...,k} we have A < g;(A4) < f(A). Therefore,

.....

.....

..........
.....
77777

----------

..........

sult completes the proof. ]

There are some comments regarding the above proposition. Assume that the
classifier f is generated by g1, ..., gx. By the first condition of the proposition,
the set of classes (or closed sets) of f is finer than any of the classifiers g;.
It means that f can separate data points into more classes than any of g;.

Moreover, there is no class that any of g; can detect and f can not.

The second condition is similar to the Separating Hyper Plane Theorem in
convex geometry. It means that if A is a class of f and = ¢ A, then there
should be a separating classifier g; € {g1, ..., gx} that detect that x is not in
the class of A respect to the classifier g; (which in the eyes of g;, the class of
A is g;(A), which is not necessarily f(A)).

The previous set of propositions let us fully understand different structures be-
hind closure operators (classifiers). As a result, we have the following hierarchy

of classifiers.

1.4.3 Hierarchy of Classifiers
A classifier f : 2% — 2% is more complex than a classifier g : 2% — 2% if
S(X,g) < S(X, f). In other words, in a virtue of Proposition 4, by combining

some other classifiers with g we can generate f.

We have already defined a simple classifier f as a closure operator with a
single chain structure underlying its associated lattice S(X, f). More generally,

we say that f is a simple classifier with length k, whenever the number



20
of closed sets (classes) generated by f, |S(X, f)|, is k + 1. Notice that S(X, f)

always contains ¢ and X. Hence, a simple classifier with length k& has k

nonempty different classes.

The trivial classifier is the closure operator with only two closed sets ¢
and X. The trivial classifier does not classify data points at all. It only
understands that we have a data set X. It might represent a data set with no
label or a data set with all data points having the same labels. As a result,

there are no differences between our data points.

The simplest possible non-trivial classifier is a classifier with length two, which
we call the binary classifier. Any binary classifier can be built using a
labeling correspondence with only one label. The binary classifier can detect
if a data point has a single property or not. In other words, it can detect if a

data point is in a single class associated with a single property or not.

Remark 3. Using the proof of Lemma 2, any simple classifier with length £ is
associated with a unique weak order with £ different indifference classes. Let
{Aq,..., A} be a partition of X into the indifference classes of a weak order
%> with # > y whenever y € A;,x € A; such that i < j. Then, {A;,(4; U
Ay)y.ooy (A1u, Ay U el ouy Ag) s the set of closed sets of a simple classifier

with length k. The reverse can be done in the same way.

Remark 4. Consider a binary classifier f : 2% — 2%, Assume the that the
corresponding set of closed sets is S(X, f) = {J, A, X}. Hence, the corre-
sponding weak order > is x X y iff v € A,y € X\ A. From the perspective of
the classification there is no difference between f and another binary classifier
g with S(X,g) = {, X\A, X}. The weak order associated with g is the re-
verse order of . From The perspective of labeling correspondence, one can
build the classifier f by attaching a single label [; to the points in A. The
second one, g, can be built by attaching Iy to X\ A, representing not having
ly.

Assume that we can infer a classifier f through a set of data points X. As
discussed in the previous section, we want to find a representation of f using
the simpler classifiers. For example, we may ask a decision-maker about dif-
ferent classes of goods in a supermarket. However, she might classify object
through different labels or different criteria like different brands, sizes, colors,

being closer to the entrance of a supermarket, and many more. Her complex
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classifier can be built based on simple classifiers that combine these single di-
mensional properties. Proposition 4 help us to identify all different possible

representations.

Example 3. Let us revisit Proposition 2. We have already proved that any
given classifier f can be generated by some weak orders %1, ..., X;. However,
we want to use Proposition 4 to build some binary classifiers {g1,...,gr} to
generate f. One simple way is to notice that for any binary classifier g;,
S(X, g;) should be a subset of S(X, f). Moreover, for any class & # A €
S(X, f)and = ¢ A, there should be one of g; to separate x and A. Hence, if we
consider all binary classifiers g4 for every class A in S(X, f), both requirements

of Proposition 4 will be satisfied.

In the example above, the representation generated uses many binary classi-
fiers. In fact, we used |S(X, f)| — 1 binary classifiers. In the next section, we
show how we can get the minimum number of binary classifiers to generate
a complex classifier. However, we can decrease the number of classifiers, if
instead of using only binary classifiers we use simple classifiers with different

lengths.

One way to do that (although it is not the best way) is to decompose the
lattice S(X, f) into chains. Consider sublattices of S(X, f), each starting
with ¢ and ends with X with only a single chain structure. If we consider
some of the mentioned sublattices that cover the whole S(X, f), the associated

simple classifiers can generate f.

Consider the following example.

Example 4. Let X = {a,b,c} be a set of data points and f
2X — 2% be a closure operator with the set of closed sets S(X, f)
{T,{a}, {b}, {c},{a, b}, {a,b,c}}. We consider the following three chains:

S(X,91) = {J, {a}, {a, b}, {a, b, c}}
S(X. 92) = {, {b}, {a, b}, {a, b, c}}
S(X,gs) = {, {c} {a,b,¢}}

Notice that, since both conditions of Proposition 4 are satisfied, then

{91, g2, g3} generates f. Figure 1.2 illustrates the decomposition.
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{a,b,c}
|
{a, b}
el
{a} {b} {c}
7

{a,b,c} {a,b,c} {a,b,c}
I I
{a,b} {a,b}

e I
{a} {b} {c}
I

Figure 1.2: The lattice associated with the closure operator f is in the top.
The associated decomposition into g1, g2, g3 is in the bottom.

The above example illustrates one way to find the underlying simple classifiers
that can generate a closure operator. In section 1.4.5, we discuss how many
simple classifiers are needed in the minimal representation. Before that, we

provide some comments on the notion of complexity that we defined.

1.4.4 Some Comments on the Notion of Complexity

In the previous section, in the virtue of Proposition 4, we define the notion
of complexity over the set of classifiers which are defined over a given data
set X. We say that, the classifier f is more complex than a classifier g if
S(X,g) < S(X, f). This notion of complexity induces a reflexive and transitive
order over the set of classifiers defined over X. However, it is not a complete
order. To be able to compare different classifier, there might be different ways

to make it complete. We explain some.

First approach, for every classifier the associated lattice gives us some hints

on how to define the order “more complex classifier”. There are some constants
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associated with every lattice (or more generally with every partially ordered
set).

e The first one is the number of non-empty closed sets (classes) that f can
detect, which is |S(X, f)| — 1. We might think that a classifier that can
detect a larger number of classes is a more complex classifier than the
other one which can detect less. Any classifier over the data set X can

detect at most 2% — 1 number of nonempty classes.

e The second one is the length of the largest chain, not including the
empty set, in the lattice associated with a classifier, which we call it the
depth of the classifier. The depth of the classifier depends on the
maximum number of subcategories which the classifier can detect. The

largest possible depth of a classifier over the set X is | X|.

e The third one is the length of the largest antichain in the associated
lattice, which we defined as the width of the classifier. Through
Dilworth’s theorem (we will cover it in the next section), this number
depends on the minimum number of chains that can cover the structure
of the lattice. If we think of a single chain as a one-dimensional property,
the width of a classifier is kind of the dimension of a classifier (as a

decomposition into the minimum number of chains)

Depending on applications, one might use one or many of the numbers men-
tioned above to compare two different classifiers. For example, the sum of all
three numbers is one possible choice. Notice that all three respect the notion
of complexity that we defined at first. In other words, if f is more complex
than g, in the sense of S(X,g) € S(X, f), then the number of classes that
f can detects, depth of f, and width of f is more than the corresponding

numbers associated with g.

Second approach is through the lens of Proposition 2. As we have seen, any
simple classifier on X is generated through one weak order over X. Hence,
one notion of complexity might be defined as the minimum number of weak
order (MINWO) that can generate a classifier. As we see in the next section,
the minimum number of weak order that can generate a classifier is bounded
by the width of the classifier, but not necessarily the same. This notion of

complexity also respects our first notion of complexity. Again, if f is more
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complex than g, in the sense of S(X, g) < S(X, f), then the minimum number
of weak order needed to generate f is more than the minimum number of weak

order to generate g.

The last approach is through the lens of Example 3. Any classifier can
be generated with a finite number of binary classifiers, which are the simplest
possible non-trivial classifiers. As a result, another notion of complexity might
be defined as the minimum number of binary classifiers (MNBC') that can
generate a classifier. Again, this notion of complexity also respects our first

notion.

Remark 5. The last notion of complexity, through the decomposition into
binary classifiers, is a trade-off between all other notions of complexity. For
any given classifier f, it depends on the number of the classes of f, depth of
f, width of f, and even the minimum number of simple classifiers that can

generate f.

For example, it is not hard to show that any simple classifier with length &
has depth &, width one, and the minimum number of binary classifiers needed
to generate it is K — 1. In the other direction, for any classifier with width &
and depth two , the minimum number of binary classifiers needed to generate
it is k.

Let us present some examples.

Example 5. Let X = {a,b,c,d} be the set of data points. Consider the

classifiers fi, f defined as follows:

S(X7 fl) = {Qa {a}v {b}7 {a>b7 ¢ d}}
S(X7 f2) = {@7 {CL}, {a7b}7 {a’7 b, c, d}}

Figure 1.3, illustrates the underlying lattice structures. The classifier f; has
depth two and width two. The number of nonempty classes that it can detect
is three. The minimum number of simple classifiers that can generate it is two.

Finally, the minimum number of binary classifiers that can generate it is two.

The classifier f has depth three and width one. The number of non-empty

classes is three. The minimum number of simple classifiers that can generate
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{a,b,c,d}

{a,b,c,d} {a,b}

- - {0} {T}
|
\/

Figure 1.3: The lattices associated with the closure operator f; (the left one)
and fg.

{a}

it is one. The minimum number of binary classifiers that can generate it is

two.

All numbers are easily seen through the lattices associated with fi, fo. We
can observe that both have the same number of classes and the same MNBC
(minimum number of binary classifiers that can generate it). Moreover, the

sum of their width and depth is also the same.

However, in some cases, the numbers are not as easy to compute as fi, fo.
Notably, in case of the minimum number of binary classifiers that are needed
to decompose a classifier. The following classifiers have interesting associated

values.

Consider the following classifiers f3 and fy:

S(X7 f3) = {@7 {a}> {CL, b}v {(I, 6}7 {CL, b, c, d}}
S(X, f1) =1{, {a},{a, b}, {a,b,c},{a,b,c,d}}

Figure 1.4, illustrates the associated lattices. The width, depth, and the num-
ber of classes can easily be seen. The classifier f3 has depth three, width two,
and four nonempty classes. Similarly, the classifier f, has depth four, width

one, and four nonempty classes.

Both have the same number of classes. Moreover, both have the same sum of
width and depth. Two simple classifiers can generate the classifier f3, and the

classifier f; can be generated by one simple classifier.
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{a,b,c,d} {a,b,c}

{a, b}

e ™S
{a,c} {a, b}
&\\\\\ /////” |
{a} {a}
| |

Figure 1.4: The lattices associated with the closure operator f3 (the left one)
and fy.

However, when it comes to the decomposition into the binary classifiers, we

need to be more careful.

The classifier f; can be generated with three binary classifiers. It is not hard
to see that the following classifiers are the only minimal representations of fy

through binary classifiers:

S(X> f4,1) = {@7 {a}7 {CL, b, c, d}}
S(X, f4,2) = {@7 {aab}a {aa b? C, d}}
S(X, f4,3) = {@7 {avb7 C}7 {a>b7 C, d}}

Proposition 4 is the reason why we need all three.

Now consider the classifier fs3. At first sight, we might think we need at least
three binary classifiers to generate it. However, surprisingly, in this case, we

only need two binary classifiers. We define the classifiers fs1, f52 as follows:

S(X, fs1) = {F,{a,b},{a,b,c,d}}
S(X, fs2) = {I,{a,c},{a,b,c,d}}

By the second condition in Proposition 4, since {a} = {a,b} N {a,c}, we can

see that fs51, f32 generate fs.
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Hence, if we think about MNBC' as a notion of complexity, then interestingly

fa is more complex than fs.

In the next section, we discuss in more detail how many simple classifiers and

binary classifiers are needed to generate a given classifier.

1.4.5 How Many Simple classifiers are Needed to Generate a Clas-
sifier?

Consider example 4 and the discussion right before that about how to de-

compose a classifier into simple classifiers that generate it. In this form of

decomposition, the minimum number of the simple classifiers needed to gener-

ate a closure operator f can be bounded using the minimum number of chains

that can cover the underlying lattice S(X, f).

However, it is well known how many chains are needed to decompose a partially
ordered set into chains that cover it. By using the Dilworth’s Theorem,
any finite partially ordered set has a maximal antichain with the same size as
the smallest chain decomposition. As a result of the mentioned theorem, the
width of a partially ordered set defined as the length of its largest antichain

or the size of the smallest chain decomposition.

As a result of the Dilworth’s Theorem, given any closure operator f, we can
decompose the underlying lattice to a chain covering with the size of the width
of the underlying lattice structure. Then, adding the (J as the smallest ele-
ment and X as the largest element to each of the chain in the smallest chain
decomposition makes each chain a simple classifier. Therefore, the minimum
number of simple classifiers needed to generate a classifier is bounded by the
width of the underlying lattice structure. Hence, we have our first bound as

follows.

Lemma 4. Let f be a classifier over the set of data points X. The minimum

number of simple classifiers needed to generate it is bounded by the width of

the lattice S(X, f).

However, the minimum number of simple classifiers that can generate a given
classifier f s mot necessarily the width of the underlying lattice structure.

Consider the following example.
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{a,b,c}

/ .

{a, b} {b, c}
SN 7N
{a} {b} {c}

\ T /

Figure 1.5: The lattice associated with the classifier f.

Example 6. Let X = {a,b, c} be a set of data points. We define the classifier

f as follows:

S(X, f) = {, {a}, {0}, {c}, {a, b}, {b, ¢}, {a, b, c}}

Figure 1.5 illustrates the lattice associated with f. The antichain with classes
{a}, {b}, {c} is the largest antichain in the lattice. Therefore, the width of
the lattice S(X, f) is three. As a result of the Dilworth’s Theorem, one can

decompose the lattice to three chains. For example, the three chains C] =
{H,{a},{a,b},{a,b,c}}, Co = {{c},{b,c}}, and C3 = {{b}}. Attaching & and

{a, b, c} to each of the three chains implies the following three simple classifiers:

S(X> fC1) = {Qv {a}> {avb}’ {aa b, C}}
S(Xa fcz) = {Qa {C}a {b7 C}, {aa b, C}}
S(Xv fCa) = {@7 {b}7 {a>b7 C}}

However, we can generate f by only two simple classifiers. Let the classifiers
f1, f2 be as follow:

S(Xa fl) = {Qa {CL}, {CL, b}> {av b, C}}
S(X’ f2) = {®> {0}7 {bv 6}7 {CL, b, C}}
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By using the second condition of Proposition 4, since {b} = {a,b} n {b,c}
then fi, fo can generate f. Therefore, the minimum number of weak order
(MNWO) generating f is only two, which is less than its width which is three.

The above example shows that for some classifiers their MNWO is less than
their widths. The reason lies behind the observation that, if any class is
the same as the intersection of some other classes detected by some simple
classifiers, then the class will be detected without adding it to any simple

classifier. Formally, consider the following discussion.

Let f be a classifier and the set of classifiers {gi, ..., gr} generates it. Using

our Proposition 4, every class of f which is not the intersection of some other

different classes of gi,..., gr should appear in at least one of the classifiers
g1, - - -, gx. However, any other class does not necessarily need to be a class in
one of gq,...,gr. As a result, we have the following procedure.

We remove all the classes that are the intersections of some other classes from
the lattice S(X, f). In other words, every class that has an out-degree of
more than two, in the lattice S(X, f), will be removed. The remaining set is
a partially ordered set, with respect to the set inclusion. By the Dilworth’s
Theorem, the MNWO should be the width of the remaining partially ordered

set. Therefore, we have the following proposition.

Proposition 5. Let f be a classifier defined over the data set X. Let S(X, f)
denote the set of classes. The partial ordered P(X, f) generated by removing
the classes in S(X, f) which are the intersections of some other classes. The

manimum number of weak orders needed to generate f is equal to the width of

PX, ).

Example 7. Consider Example 6. If we use the procedure introduced in
Proposition 5, then the partially ordered set P(X, f) will be obtained be re-
moving the classes ¢ and {b} from S(X, f). Figure 1.6 illustrates the structure
of P(X, f). The width of P(X, f) is two, which is the same as the MNWO of

f.

The same observation and technique work to find the minimum number of
binary classifiers needed to generate a given closure operator. The following

proposition explains the result.
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{a,b,c}

{a, b} {b, c}

7 AN
{a} {c)

Figure 1.6: The lattice associated with P(X, f).

Proposition 6. Let f be a classifier defined over the data set X. Let S(X, f)
denote the set of classes. The partial ordered B(X, f) generated by removing
the classes in S(X, f) which are the intersections of some other classes and
also removing the classes & and X. The minimum number of weak orders with

two indifference classes that are needed to generate f is equal to |B(X, f)].

In the above proposition, since both ¢§ and X are generated through any
binary classifier, we can remove them from S(X, f). Every other class in the
remaining partially ordered set B(X, f) should be contained in one of the

binary classifiers.

Example 8. Consider Example 5. By using Proposition 6, the partially or-
dered set B(X, f) is equal to {{a, b}, {b, c}}. The cardinality of B(X, f) is two,
which is the same as MNBC of the classifier f.

In the next section, we discuss some applications of our results in the context of
preference ordering over menus. Moreover, we show an additive representation

of our results in the same context.

1.5 Preference Ordering Over Menus

1.5.1 Overview

Kreps (1979) introduced the concept of preference ordering over menus to
study the dynamic choice behavior of a decision-maker. Up to Kreps’ work, in
most standard models of decision making, a decision-maker has a preference
ordering (weak order), X, over a set of alternatives X. As a result, her prefer-
ence ordering induces another preference ordering, %', over the set of menus,

2% as follows:
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A %' Biff Vb e B,3a € A such that a X b. (1.7)

As Kreps mentioned, the preference ordering X’ satisfies the following prop-

erty:

A %' B implies A ~" A U B for every menus A and B. (1.8)

In other words, the decision-maker does not care to have an option to have a

larger menu A U B instead of the smaller menu A.

However, in many applications, a decision-maker might have the desire to
have the flexibility of choices. For example, consider a decision-maker
that has an option first to decide which menu she wants to select for tomorrow’s
lunch. Then in the next day, she can decide which meal she wants to eat from
the selected menu. In this scenario, the decision-maker might like to have the
option of the larger menu, since she is not sure about her tomorrow’s mood or

taste.

As a result, Kreps relaxed the assumption in Equation 1.8. He replaced it by

the following two axioms.

1. Desire for flexibility: B < A implies A X’ B,

2. Ordinal submodularity: A ~" A U B implies that for all C, A v C ~/
AuBuC.

Kreps’ main result is as follows:

Theorem 1. (Kreps, 1979)

Let X is a finite set of alternatives. A binary relation %' is a weak order
satisfies the desire for flexibility and ordinal submodularity if and only if there
exist a finite set S and a function U : X x S — R such that

v(A) = Z[max Ua,s)] (1.9)

acA
seS

represents %'.
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The representation captures the idea that the decision-maker has a subjective
state space S, and in each state s € S, she has a preference ordering represented
by U(.,s) over the set of alternatives. Therefore, whenever she compares two
menus, she compares the expected values of the menus with respect to her

state-dependant utility.

Kreps also has another result to prove his main theorem, which is an interesting

result by itself.

Theorem 2. (Kreps, 1979)

Let X is a finite set of alternatives. A binary relation %' is a weak order
satisfies the desire for flexibility and ordinal submodularity if and only if there
exist a finite set S, a function U : X x S — R, and a strictly increasing
function u : RS — R such that

u([max Ula, s)]ses) (1.10)

agA

represents z'.

Following Kreps (1979), the seminal papers by Dekel, Lipman, and Rustichini
(2001)(DLR) and Gul et al. (2001) extend the domain of the set of alternatives
to the set of simple lotteries, A(X). In their models, the preference ordering
is over the set of menus of lotteries. Their setup not only considers the desire
for flexibility, but also the desire for commitment. Consider the following

example as a motivation behind the desire for commitment.

Again, consider a decision-maker that wants to select a menu for tomorrow’s
lunch. Assume she knows that if there is a heavy meal in a menu, she will be
tempted to select it. As a result, she might select a smaller menu to control

herself from her future temptation in the following day.

The paper by DLR is demanding more than Kreps’ axioms. As oppose to
Kreps, their representation also heavily depends on tools from convex and
functional analysis. One of their core axioms is the indifference to ran-
domization (IR): for every menu A € A(X), A ~' Conv(A).

By assuming (IR), any given menu has the same ordering as its convex hull.

One of their main results is as follows:

Theorem 3. (Dekel, Lipman, and Rustichini, 2001) A binary relation X' is a

weak order, continuous, non-trivial, and satisfies (IR) if and only if there exist
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a set S and a utility function U : A(X) x S — R and a function u : RS — R
such that

u([rg&x Ul(a, $)]ses) (1.11)

represents %', continuous, each U(,s) is an expected-utility, and two other

conditions which are not crucial for our setup.

In the representation above, they show that adding the Kreps’ desire for flex-

ibility axiom makes the aggregator function u strictly increasing.

In other words, in their setup, they replaced the submodularity and desire for
flexibility with continuity, non-triviality, IR, and monotonicity (kreps’ desire

for flexibility) to get a similar representation.

They also show that by strengthening IR to independence axiom, then the
aggregator, u, attains an additive form. In other words, there exists a finitely

additive measure p (not necessarily positive) over S such that:

u([sup Ula, s)]ses) = J sup Ula, s) p(ds). (1.12)
acA S acA

In the above representation, adding the monotonicity axiom (Kreps’ desire for
flexibility) makes p to be a positive measure, which makes the representation

similar to the kreps’ representation in Equation 1.9.

However, in the more general representation of Equation 1.12, one can asso-
ciate the set of states which are positive, respects to the measure pu, to the
desire for flexibility. Similarly, the negative states are the ones associated with
the desire for commitment. Finally, as mentioned by DLR, the size of the
minimal state space can be a measure of the decision-maker’s un-
certainty about her future’s taste. Unlike the Kreps’ model, they can

construct the minimal state space uniquely.

One of our goals is to explain the finite setting of Kreps through a concept
similar to the DLR’s IR. In the next section, we show that our notion of a
preference ordering respecting a classifier gives us some interesting
results, even more general than both DLR and Kreps (in finite setting). More-
over, we have a bound on how many states needed to rationalize a preference
ordering over the set of menus. Finally, we prove an additive representation

similar to the DLR’s version for a finite setting of Kreps. We should mention
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that, as a corollary of our results, any preference ordering over the set of menus

can be rationalized through the additive representation.

1.5.2 A Preference Ordering Respecting a Classifier

In this section, let X be a finite set of alternatives. The preference ordering
>" is a weak order over the set of menus of X. We assume that a classifier
f 2% — 2% is revealed through some observations. Moreover, we assume

that the preference ordering %’ respects f in the following sense.

Definition 3. Let f : 2% — 2% be a classifier and >’ be a transitive preference
ordering over the set of menus of X. We say that the preference ordering

%' respects the classifier [ | if for every menu A € 2%, we have A ~' f(A).

The idea is that we learn some parts of the indifference classes of a prefer-
ence ordering through some observations. The part we have learned can be

represented by the classifier f.

Notice that every preference ordering always respects the identity classifier,
which is defined as I(A) = A for every A € 2%, In other words, if there is no
information available, we can only learn the identity classifier. In this case,

certainly every preference ordering respects the identity classifier.

Remark 6. In the DLR’s setting they put the IR axiom as their core axiom.
The closure operator is a generalization of the convex hull operator in our
abstract setup. However, we do not put it as an axiom. We assume that
there is always one choice of the classifier which is revealed through some
observations. If there is no such revelation, we consider the identity classifier
as a choice which every preference ordering respects it. Hence, our results are

as general as possible.

There are two applications of our definition in this paper. In the next section,
we show how to find an additive representation of a preference ordering that
has a revealed classifier f, with at most 2(|.S(X, f)| — 1) number of subjective

states.

In the rest of this section, we show the other application of our definition.
Consider the two main axioms in the Kreps’ setting. Assume that a preference
ordering %’ satisfies both the desire for flexibility and ordinal submodularity.

We define the operator f : 2% — 2% for every A € 2% as follows.
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f(A) = J B (1.13)

Be2X | A~'AUB

It follows easily from the definitions of the two axioms, or lemma 1 in Kreps
(1979), that:

1. fis a closure operator,
2. %' respects f,
3. A~"Au B if and only if f(B) < f(A),

4. f(B) < f(A), then A >' B.

The whole idea is that, if A ~" A U B, then by the desire for flexibility axiom
it will be revealed that A %' B.

Now, consider our results in section 1.4.2 and consider the following procedure.

Let the set of simple classifiers G = {g1, ..., g} generates f. Let the set {x;
,- .-, Xk} be the corresponding weak orders associated with the set G. Finally,
let a function U; : X — R be a representation of %; for every i € {1,...,k}.
Then, using our representations, it is not difficult to see that f(B) < f(A) if
and only if each coordinates of the vector (mazpepU;(b))icq1,....ky is less than or

equal to (maxeealU;(a))ieq1,... ky and the two vectors are not the same.

As a result, we can define the strictly increasing function u : R¥ — R such

that u((maxeeaU;(a))ieq1,... ky) represents .

It is not hard to see that every representation as in Equation 1.10 can be
derived using the procedure mentioned above. Using our Proposition 5, the

minimum number of states needed to represent X’ is precisely the width of
P(X, f), which is the MNWO of f.

We summarize the above discussions in the following proposition.

Proposition 7. Let a binary relation %' be a weak order and satisfies both the
desire for flexibility and ordinal submodularity, then =’ can be represented as
in Equation 1.10. Moreover, any representation in this form can be generated
using the procedure defined above. Finally, the minimum number of states
(cardinality of S) needed for the representation is precisely the MNWO of the
associated classifiers f defined as in Equation 1.13, which is |P(X, f)|.
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1.5.3 Additive Representation

In this section, we wrap up our discussion by presenting our last result on the

additive representation of a preference ordering that has a revealed classifier
f.

Let X be a set of alternatives. The classifier f has been revealed. For ev-
ery transitive preference ordering %’ that respects f we have the following

proposition.

Proposition 8. If the classifier f has been revealed, then for every transitive
preference ordering X' that respects f, there exist a state space S, where S =
ST U ST with ST nS™ = & and the cardinality of at most 2(|S(X, f)| — 1),
and a state-dependent utility U : X x S — R, such that:

U(A) = 2 maz Ula,s) — Z max Ula,s) (1.14)

seSt seS—

represents %'

Proof. We use the Mobius inversion formula to prove the result. Appendix A.1

explains the technique in more detail.

Consider the lattice S(X, f). Define the partial order % over S(X, f) by
reversing the partial order induced by the set inclusion. In other words, A > B
if and only if A € B. We can check that the meet and join of the lattice S(X, f)
will be swapped.

Since %’ is a transitive binary relation, we can make it a weak order over the
finite set 2%. Then there should be a representation by real-valued functions.

Consider any utility function U : 2¥ — R that represents x'.

We define the Mobius operator @ : (S(X, f))® — (S(X, f))¥ as follows:

of)(A)= Y UB). (L.15)
BESTRD

Mobius inversion formula guarantees that the Mobius operator is bijective
and the inverse is ®(g)(A) = X 4.5 (B, A)g(B), where p is the Mébius

function.
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As a result, if we define the function h : S(X, f) — R, for every A € S(X, f)

as:

h(A)= > wB,AU(B), (1.16)
RSO

Then for every A € S(X, f), U can be retrieved as follows:

UA) = >, h(B). (1.17)

A>B
BeS(X.f)

However, A > B if and only if A € B. Therefore, we have

UA) = >, h(B). (1.18)
BESTRf)

Notice that the above equation is only correct for A € S(X, f). However,

since =’ respects f and U represents ', then for every A € 2% we have

U(A) = U(f(A)). Therefore, for every A € 2%, since f(A) € S(X, f), we have

UA) =U(f(A)= >, h(B). (1.19)
Aes(x

Note that, since f is a closure operator, then A < B if and only if f(A) € B
for every A € 2% and every B € S(X, f). Therefore, for every A € 2% we have

UA) = > h(B). (1.20)
BESTRg)
We define h*(B) = max(0,h(B)) and h~(B) = max(0,—h(B)). Since h =

h™ — h™, then we have

v Y wm- Y hm) (121)
Beg%)?,f) B:S’%)?,f)

By comparing the above equation and Equation 1.14, we only need to make

some changes to make them equal. The trick is as follows.

We define functions U, U~ : (X x S(X, f)\&) — R as follows:
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—h*(B) ifzeB

Ut (z,B) =
0 ifx¢ B
—h~(B) ifzeB
U (z,B) =
0 ifr¢ B

Now, consider any A € 2% and B € S(X, f)\&. By our definition of U, U™,

we have

—h*(B) it Ac B

max U" (a, B) =

acA 0 otherwise
—h=(B) iftAcCB

max U~ (a, B) =

acA 0 otherwise

As a result of the above observation, we get the following result:

UA) = > h(B)- > n (B

ACB AcCB
BES(X,f) BES(X,f)
= ( Z —maz U"(a, B)) — ( Z —maz U™ (a, B))
ACB acd ACB acA
BeS(X, N\ BeS(X,f\I
=( Z —maz U*(a,B)) — ( Z —maz U (a,B))
Bes(XN\D Bes(XN
=—( Z maz U"(a, B)) + ( Z maz U™ (a, B))
Bes(x g Bes(x g
= ( 2 mazx U™ (a, B)) — ( Z maz U*(a,B))  (1.22)
pes(xpg pes(xe

Equation 1.22 and 1.14 are similar except their indexes. To make them
the same, we consider any two disjoint sets S, S~ < N *, with both have
|S(X, f)|—1 elements. We consider any two bijection index; : ST — S(X, )\, index, :
ST — S(X, HI\g. Let S =5 U S™. We define the function U : X x § - R

as follows:

4The choice of N is arbitrary. As long as S, S~ are disjoint and each has |S(X, f)] — 1
elements, our argument follows.
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U~ (x,index(s)) if se ST
Ut (z,indexs(s)) if se€ S~

Ulz,s) =

Then, using Equation 1.22 and our definition of function U, we have the fol-

lowing result:

U(A) = ( 2 max U™ (a, B)) — ( Z maz U (a, B))

aceA acA
BeS(X,\& BeS(X, )\
= Z magy Ula,s) — Z max Ula,s) (1.23)
seSt seS—
Equation 1.23 finishes our proof. m

Our previous proposition works for any choice of classifiers that respect the
preference ordering =’. However, the identity operator respects any given
preference ordering and |S(X, )| = 2|, Therefore, as a corollary to the

above proposition, we have the following result.

Corollary 2. For every preference ordering X' over the set of menus, there

exists a representation as in Fquation 1.1/ with at most 2 x (2|X‘ — 1) states.

Remark 7. Notice that the above representation is not a minimal additive
representation. For example, let a one-to-one utility function U : X — R
induces a preference ordering =’ over the set of menus. It is not hard to
see that the minimal classifier f that respects X’ has at least | X| nonempty
classes. Thus, our construction in Proposition 8 generates a representation
with at least 2(|.X| — 1) subjective states. However the original construction

only needs one state, which can be represented by U itself °.

1.6 Literature Review

The basic concepts of abstract convex geometry and combinatorial convex hull
operator are developed in Edelman et al. (1985). In decision theory, Koshevoy
(1999) studies the connection between the combinatorial convex hull operators

and the path independent choice functions. The closest paper is by Richter

5We are working on another paper which might provide an answer on how to build the
minimal additive representation.
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et al. (2018). They provide a characterization of a combinatorial convex hull
operator through a set of primitive orderings. Using their representation, they

propose a notion of competitive equilibrium in an abstract environment.

In the context of dynamic choice behaviors, following Kreps (1979), Dekel, Lip-
man, and Rustichini (2001)(DLR), and Gul et al. (2001) many papers study
different aspects of choice behaviors. However, the main related papers are
by Kopylov (2009), Kopylov (2018), and Gorno (2016). Kopylov (2009) de-
termines the number of positive and negative states in DLR’s setting. Gorno
(2016) shows that any preference ordering in Kreps’ setting has a represen-
tation as a DLR’s representation. Finally, Kopylov (2018) proposes a combi-
natorial model of subjective states. By relaxing axioms of Kreps’ setting, he

presents a weaker model of coherent aggregation.
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Chapter 2

A THEORY OF RECURSIVE AGGREGATION WITH
APPLICATIONS

2.1 Introduction

2.1.1 Overview

This paper presents a general model for studying aggregation in different eco-
nomic applications. The outcome of our model depends on aggregation of a
group of features. We focus on a recursive form of aggregation, where the ag-
gregate outcome for larger collections of features results from aggregating the
outcomes of smaller subsets. Specifically, the aggregate outcome of the union
of two disjoint collections of features is a weighted average of the outcome
of each collection of features separately. We show that this form of recursive
aggregation is a common structure that lies behind many seemingly unrelated

results in economic theory.

In our model, there exist a set of features and a set of conditional outcomes.
We associate each conditional outcome with a subset of features, representing
the outcome of the model conditional on aggregation of that subset of features.
Our central axiom, the weighted averaging axiom, is a simple formalization of
the recursivity. It imposes a structure on how the outcome of the union of
two disjoint subsets of features relates to the outcome of each of the subsets
separately. The axiom states that the outcome of a set of features can be
recursively computed by first partitioning the set of features into two disjoint
subsets. Then, the aggregated outcome is a weighted average of the outcome

of each of the two smaller subsets.

This paper makes two contributions. The first contribution is to find all ag-
gregation procedures that satisfy weighted averaging. The result unifies ag-
gregation procedures across many different economic environments, showing
that all of them rely on the same basic result. The second contribution is to
show extensions of the result in different domains of economics. Notably, we
show applications and extensions in the context of Belief Formation, Choice

Theory, and Welfare Economics.

In this paper, we model the dependency of the outcome on the set of aggregated
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features through what we call an aggregation rule. Formally, we define an
aggregation rule as a function on the set of subsets of features that maps each

subset of features to an outcome of the model.

Our main result finds all aggregation rules that satisfy recursivity in the form
of our weighted average axiom. We show that for any two disjoint subsets
of features as long as the outcome of their union is a weighted average (with
non-negative weights) of the outcome of each subset, then the aggregation rule

has a simple form (with a technical richness condition):

There ezist a strictly positive weight function and a weak order (a transitive
and complete order) over the set of features, with the outcome of any subset
of features being the weighted average of the outcomes of each of the highest-

ordered features of the subset separately.

The importance of the result is that the weight of each feature is independent of
the group of features which the model tries to aggregate. The role of the weak
order in the main representation is to partition the set of features to different
equivalence classes and rank them from the highest class to the lowest class.
If all features of a subset of features are in the same class, then the outcome
is the weighted average of the outcomes of each member of the set. However,
if some features have a higher ranking than others, then the aggregation rule

will ignore lower-ordered features.

Following the main result, we elaborate on two special cases of our main result.
In the first case, we propose the strict weighted averaging axiom to represent
the case where the outcome of the union of two disjoint subsets of features is
inside the “relative” interior of the outcomes of each subset separately. The
strict weighted averaging axiom captures the idea that the model cannot ignore

the role of one of the subsets in finding the outcome of their union.

We show that the strict weighted averaging axiom is the necessary and suf-
ficient condition that the weak order, in the main representation, has only
one equivalence class. Hence, the outcome of a subset of features is just the
weighted average (with strictly positive weights) of the outcomes of each fea-

ture separately.

In the second case, we look into applications where there is a similarity be-
tween some features. Specifically, we model the space of features as a subset

of a vector space. By considering the distance between vectors, we capture the
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notion of similarity or closeness of features. In this context, an appealing prop-
erty is that by replacing a feature in a subset of features with another closely
similar feature, the outcome of this new subset stays close to the outcome
of the previous one. Under this property, which we define as the continuity
axiom, all similar enough features attain the same ranking with respects to
the weak order. Moreover, the weight function is a continuous function over
the set of features. In other words, the weight between two close (or similar)
features should be close. In a special case, where the space of features is a
convex set, we show that all features attain the same ranking. In this case,
there is no difference between the weighted averaging and the strict weighted

averaging axiom.

Depending on the application, each feature and the aggregation rule may have
different interpretations. Each feature may represent a signal or an event
containing some information about the true state of nature. In this case, the
role of an aggregation rule is to form a belief about the true state of nature.
In the context of choice theory, features may represent choice objects, where
an aggregation rule behaves as a decision maker that selects a lottery or a
random choice out of a group of choice objects. Another interpretation is in the
context of welfare economics, where each feature represents a preference of an
individual over some alternatives. In this case, an aggregation rule represents
a social welfare function that associates with each preference profile, a single

preference ordering over the set of alternatives.

The most immediate interpretation of the result is in the case of modeling an
agent who makes a prediction about the true state of nature, conditional on
observing a set of events. In this context, each feature represents an event,
and the outcome of the model conditional on observing a set of events is the
belief about the true states of nature. The main result is the necessary and
sufficient condition that the belief formation process behaves as a Bayesian
Updater. Under the main axiom, there exists a conditional probability system
associated with the set of events, and the belief formation process conditional
on observing a set of events behaves as a conditional probability. The weak
order of the main result is capturing the idea that, conditional on observing
even a zero probability event, the belief formation still behaves as a Bayesian

updater.

To motivate the framework and results, sections 2.5, 2.6, 3.2, and 4.2 show
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applications and extensions of our main representations. We show that the
weighted averaging axiom is closely related to many known axioms in different
topics, from the Pareto axiom in Social Choice Theory to the path indepen-

dence axiom in Choice Theory.

2.1.2 Applications
2.1.2.1 Belief Formation

In Section 2.5, we interpret the set of features as signals. Each signal contains
some information about the distribution of states of nature. The role of an
aggregation rule is an agent who makes a prediction about the true state
of nature, based on observing some signals. In this context, the range of
an aggregation rule is the probability distributions over the states of nature.
Following Billot, Gilboa, Samet, and Schmeidler (2005), an aggregation rule
is a belief formation process that associates with each finite set of signals, a

belief over the states of nature.

The representation of the belief formation process under the weighted aver-
aging axiom is a straightforward application of the main results. Using our
representation, on the one hand, we propose an extension, where the timing
of signals may be important. We consider the case where an agent can receive
signals in different time zones in the past. The agent tries to form a predic-
tion at the present time, and it may perceive signals closer to the time of the
prediction as more credible. To capture the representation, we introduce the
stationarity axiom, in which a belief induced by a set of received signals and
their timing is the same as the belief induced by shifting the timings of all

signals by a constant number to the past.

Under stationarity, any belief formation process satisfying the strict weighted
averaging axiom has a weight function over the set of signals and an exponen-
tial discount factor over each time zone. The belief associated with a set of re-
ceived signals is the discounted weighted average of the beliefs associated with
each signal. In this case, the weight function captures the time-independent

value of each signal.

On the other hand, we interpret the set of signals as the information structure
of an agent who wants to predict the true state. We interpret each subset of
signals as an event in her information structure. We show that as long as the

information structure has a finite cardinality, the strict weighted averaging ax-



45

iom is the necessary and sufficient condition for a rich belief formation process
to appear as a Bayesian updater. This result answers the question in Shmaya
and Yariv (2007) regarding finding a necessary and sufficient condition for a

belief formation process to act as a Bayesian updating rule.

2.1.2.2 Average Choice Functions

In Section 2.6, the set of features is a subset of R”. We interpret each feature as
a choice object. The interpretation of the aggregation rule is a decision maker
that selects a choice randomly from a menu of choice objects. We model the
decision maker as an average choice function that associates with any menu
of choice objects, an average choice (mean of the distribution of choices) in
the convex combination of choice objects. Average choice is easier to report
and obtain rather than the entire distribution'. However, except for the case
where elements of a menu are affinely independent, average choice does not

uniquely reveal the underlying distribution of choices.

First, using our main representation, we show that it is possible to uniquely
extract the underlying distribution of choices as long as the average choice

function satisfies the weighted averaging axiom.

Then, we illustrate two applications of the result. In one application, we con-
sider the class of average choice functions that can be rationalized by a Luce
rule, i.e., a stochastic choice function that satisfies the independence of irrel-
evant alternatives axiom (IIA) proposed by Luce (1959). We show that the
average choice functions satisfying the strict weighted averaging axiom are ex-
actly the ones that can be rationalized by a Luce rule. More generally, we
show that the class of average choice functions satisfying the weighted aver-
aging axiom is the same as the class of average choice functions rationalizable

by a two-stage Luce model proposed by Echenique and Saito (2018).

In the second application, we consider continuous average choice functions.
First, we show that any continuous average choice function under the weighted
averaging axiom is rationalizable by a Luce rule. This means that there is no
continuous average choice function that is rationalizable by a two-stage Luce

rule but not with a Luce rule.

!Check Ahn, Echenique, and Saito (2018) for the complete discussion on merits of
average choice.
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Then, we illustrate a connection of our result with the one by Kalai and
Megiddo (1980), regarding the impossibility of an average choice function to

satisfy both the path independence axiom and continuity.

2.2 Primitives and Axioms

Let X be a nonempty set of features. Observe that we make no assumptions
about the cardinality or topology of X. We denote the set of all real numbers
by R, and the set of all positive real numbers by R, . We represent n dimen-
sional real vectors by R". For any A € R", we denote by Conv(A) the set of
all convex combinations of vectors in A. Respectively, we denote the relative
interior and boundary of Conv(A) by Conv°(A) and ¢"(Conv(A)).

Definition 4. A set A < X is a coalition of features of X if it is a nonempty
finite subset of X. We denote the set of all coalitions of X by X*.

Definition 5. A nonempty set A € X is a sub-coalition of a set B < X if
AcB.

Definition 6. A binary relation > on X is a weak order on X, if it is

reflexive, transitive, and complete.

We denote the symmetric and asymmetric parts of a weak order > by ~
and >. Given a weak order > on X for any nonempty coalition A € X* we
define the set M (A, >) as:

M(A, >):={xeAlx >y Vye A} (2.1)

The weak order > captures a member ranking of the set X. Given any coalition
A, M(A,>) contains the highest-ranked features of A. Since A has a finite

number of features, M (A, >) is a nonempty subset of A.

Definition 7. An aggregation rule on X is a function f : X* — R", that

associates with every coalition A € X* a vector f(A) € R™.2

An aggregation rule captures how outcomes depend on each coalition of fea-
tures. In this paper, we focus on recursive aggregation rules. The idea is as

follows: the value of the aggregation rule over a coalition of features depends

2All discussions of this paper continue to hold if R” is replaced by any general (possibly
infinite dimensional) normed vector space.
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on the aggregated values of any two disjoint sub-coalitions. Specifically, the
aggregated outcome is a weighted average (with non-negative weights) of the

value returned by the aggregation rule for each of the two sub-coalitions.

The idea of recursive aggregation is embodied in the following axiom, which

is central to our analysis:

Axiom 1. (Weighted averaging) If A,B e X* and An B = J, then
f(A'u B) e Conu(f(A), f(B))

or equivalently:

Iae[0,1] s.t. f(AU B) = Af(A) + (1 — \) f(B).

In the axiom, there is no restriction on how the weights are connected to
each sub-coalition. The weight A may depend on A, B, and A U B. However,
the main result implies that there is a simple connection between the weights
(which are, furthermore, unique). But first, we will go over some special cases

of the weighted averaging axiom.

The weight A in the axiom can be any number between zero and one. There
are two special cases: strict and extreme. In the case of the strict version, A
cannot be zero or one. Therefore, the value of an aggregation rule over any
two disjoint coalitions must be strictly between the values of each separate
coalition. In the extreme case, A is either zero or one. In this case, the value
of an aggregation rule of the union of two disjoint coalitions becomes equal to

the value over one of the coalitions.

To capture the difference between the two special cases, we introduce the

following axioms:

Axiom 2. (Strict weighted averaging) If A/B € X* and An B = (J,
then
f(Au B) e Conv®(f(A), f(B))

or equivalently:
IXe(0,1)st. f(AuB)=Af(A)+(1—=)N)f(B).
Axiom 3. (Extreme case) If A, Be X* and An B = (¢, then

f(AuB)e{f(A), f(B)}
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or equivalently:

INe{0,1} st. f(AUB) = Af(A) + (1 - N f(B).

We provide two examples of rules satisfying the weighted averaging axiom.
Our examples clarify the strict and extreme cases. The first example is the
standard notion of rational choice, and illustrates the extreme version of the

axiom.

Example 9. Consider a complete strict order > on the set of features X.
Given any feature x € X, let f(z) € R™ be the outcome of the model based on
observing the single feature x. Given any coalition A € X*, there is a single
highest-ordered element M (A, >) in the coalition. We define an aggregation
rule f: X* — X over any coalition A € X* to be the outcome of the highest-

ordered elements of the coalition A. Formally, we have:

f(A) = fF(M(A,>)).
There are two observations. First, the aggregation rule satisfies the weighted

averaging. Second, it is an example of the extreme case. Due to the complete-

ness of the order >, for any two disjoint coalitions A, B € X™*, we have:

f(AuB) = f(A) if M(A', >) > M(B,>), 22)
f(B) otherwise.

The second example captures the case of strict weighted averaging. The ex-
ample has the same flavour as the standard Luce model of individual choice

behavior (section 2.6 covers average choice functions in more detail).

Example 10. Consider a weight function w : X — R, on a set of features.
Given any feature x € X, let f(x) € R™ be the outcome of the model based
on observing the single feature x. We define an aggregation rule f : X* — R”

over any coalition A € X* as follows:
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This form of aggregation also satisfies the weighted averaging axiom. The rea-

son is that given any two disjoint coalitions A, B € X*, we have the following

property:

> w() >, w()
fl(AuB) = % f(A) + % f(B).

yeAuUB yeAUB

In this case, since the weights are strictly positive, the aggregation rule satisfies

the strict weighted averaging.

These examples are two separate and simple forms of aggregation rules. Both
satisfy the weighted averaging axiom. The main result of the next section
shows that the combination of these two special cases is the whole class of

aggregation rules under the weighted averaging axiom.

We should mention that both the weighted averaging axiom and strict weighted
averaging axiom are closely related to the concatenation axiom of Billot et al.
(2005) in the context of case-based prediction, path independence or Plott’s
condition of Plott (1973), partial path independence of Ahn et al. (2018) in
the context of stochastic choice functions, extended Pareto axiom of Dhillon
(1998) and Baucells and Shapley (2008), and also the coherence aziom of
Skiadas (1997a) in the context of preference aggregation rules. Sections 2.5,

2.6, 3.2, and 4.2 describe the connections of these axioms.

But first, in Section 2.3, we provide the representation of aggregation rules
under the weighted averaging axiom and special cases. Then, in Section 2.4, by
providing a norm over the set of features, X, we define continuous aggregation
rules, and get our last representation for the case of continuous aggregation

rules.

2.3 Main Representation

This section presents our main representation. Examples 9 and 10 in Section
2.2, show two simple forms of aggregation satisfying the weighted averaging
axiom. Our main result, under a technical richness condition, shows that the
class of aggregation rules under the weighted averaging axiom consists of the

combination of these two simple forms of aggregation rules.
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Before stating our main result, we present the special case of the representation
under the strict weighted averaging axiom. We show that under a technical
richness condition, all aggregation rules satisfying the strict version have the

simple form of Example 10.

In this case, the richness condition determines that the range of the aggregation

rule should be more than a single line. Formally, we have:

Definition 8. An aggregation rule f : X* — R™ is rich if the range of f is

not a subset of a line.

The above condition means that we can always find three disjoint features

such that under the aggregation rule they form a triangle in R™.

The special case of our main result is as follows:

Theorem 4. Let an aggregation rule f : X* — R" satisfy the richness condi-

tion. The following are equivalent:

1. The aggregation rule f satisfies the strict weighted averaging axiom.

2. There exists a weight function w : X — R, such that for every A e X* :

2 w(z) f(z)
f(A) = AZW (2.3)

zEA

Moreover, the function w is unique up to multiplication by a positive number.

The strict weighted averaging axiom states that for any A, B € X*, there
exists a weight Aa g aup € (0, 1), possibly depending on A, B, and Au B, such
that f(AuU B) = Aapausf(A) + (1 — Aap.aup)f(B). However, this result
shows that there should be a %tri%t)ly positive weight function w over the set

of features and A\ paop = % The complete proof of the result is in

yeAUB
the appendix.
The previous representation is the building block of our main representation.

However, to get the representation, we need a stronger richness condition.

Definition 9. An aggregation rule f : X* — R" is strongly rich if for any

x € X there exist two other different features y, z € X such that:
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L f({,y}) ¢ {f(2), f(y)} and f({z, 2}) ¢ {f(2), f(2)}".

2. f({=}), f{y}), and f({z}) are not on the same line.

The condition states that for any feature, we can find another two features that
(1) their aggregated coalitions satisfy the strict weighted averaging axiom, (2)

they are non-collinear in the range of f.

The idea behind the strong richness condition and the richness condition fol-
lows from the main representation. We provide the discussion after the main

result.

Our main result shows that we can identify the class of aggregation rules
under the weighted averaging axiom as long as they satisfy the strong richness
condition. The representation is a combination of the rules in Example 9 and

10. The main representation is as follows:

Theorem 5. Let an aggregation rule f : X* — R™ be strongly rich. The

following are equivalent:

1. The aggregation rule [ satisfies the weighted averaging axiom.

2. There exist a unique weak order > on X and a weight function w : X —
R, | such that for every A e X*:

w(x)
fA) = > TS wly) f(z). (2.4)
zeM(4,2) yeM(A,>)
Moreover in this case, the function w is unique up to multiplication by a pos-

itive number in each of the equivalence classes of the weak order >=.

There are two forces behind the representation: one is captured by the weak

order >; the other is the weight function w.

The weak order plays the role it has in example 9. It partitions the set of
features into equivalence classes and ranks them from top to bottom. If all

features of a coalition have the same ranking, then the outcome is the weighted

3In the proof of our main result, we show that as long as f({z}), f({y}), and f({z}) are
?;E O)HJ‘E?eﬁame line, then f({z,y}) ¢ {f (), f(y)} and f({z, 2}) ¢ {f(z), f(2)} = f({y,2}) ¢
y), f(2)}.
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average of the outcomes of each member of the coalition. However, if some
features have a higher ranking than others, then the aggregation rule will

ignore the lower-ordered features.

Hence, the assessment of the aggregation rule has two steps. First, it only
considers the highest-ordered elements. Then, it uses the weight function and

finds the weighted average among the highest-ordered features.

The importance of the representation is that the weighted averaging axiom
states that for any A, B € X*, there exists a weight Ax g aup € [0, 1], possibly
depending on A, B, and A u B, such that f(Au B) = Aapausf(A) + (1 —
Aa.g.auB)f(B). However, Theorem 5 shows that there should be a weak order

> and a strictly positive weight function w over the set of features and for any
A, B e X*, we have:
2 w(x)

A zeM (A, >2)nM(AUB,>)
A,B,AuB —
” 2 w(y)

yeM(AUB,>)

The idea behind the proof is as follows. First, we define an order > over binary
coalitions. Given x,y € X, if f(x) # f(y) we define x > y if f({z,y}) # f(y).
Using the strong richness condition, we prove that this order is transitive.
Moreover, we can make it into a complete order. In the next step we show
that for any coalition A, f(A) = f(M(A,>)). This part of the proof is the
most difficult part. Finally, the strong richness condition states that in each
equivalence class of the weak order >, there should be three non-collinear
points. Hence, we use the result of Theorem 4 and in each equivalence class.
In other words, we can find the weight function that represents the rule in
each equivalence class. The conditions that (1) f(A) = f(M(A, >)) and (2)

all points in M (A, >) are in a same equivalence class, will complete the proof.

In both of the representations above, the richness condition is crucial. The
following example shows that without the richness, there are aggregation rules
that satisfy the strict weighted averaging axiom, but do not have a weighted

average representation.

Example 11. Let X = {z,y,z} with f({z}) = 0, f({y}) = 1/2, f({z}) =
Lz yy) = 1/4, f({y, 2}) = 3/4, f({z,2}) = 3/8, and [f({z,y,2}) = T/16.
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Assume that there exists a positive weight function on X, and the aggregation
rule over any coalition of X has a representation as a weighted average of its

elements.

Assume that w : X — R, is the corresponding weight function. In order

to have such a representation, we should have f({z,y}) = w(x)g Egijﬁéz;f W)
By considering the value of f({x,y}), f({z}), and f({y}), we get zgz; = 1.
Similarly, by considering the coalition {y, z} we get % = 1. By combining
these two observations, we get ng = 1. However, considering the coalition

{z,z}, and the representation f({z,z}) = w(m)ﬂigizgﬂz), we get % =5/3,

which is a contradiction. Hence, the representation does not work in this case.

The problem with the example is that the range of the aggregation rule is a
subset of a single dimensional vector space. Therefore, it does not satisfy the

richness condition.

The example also shows the reason behind the strong richness condition in
Theorem 5. To be able to define a weight function in each equivalence class
of the weak order >, the aggregation rule should satisfy the richness in each
equivalence class. This is precisely the idea behind the definition of the strong
richness condition: the first condition states that the three points are in a same

equivalence class. The second condition states that they are non-collinear.

Remark 8. In the case of aggregation rules under the strict weighted aver-
aging axiom, the richness condition is equivalent to the strong richness con-
dition. Since, if an aggregation f : X* — R” satisfies the richness condi-
tion, there exist three non-collinear vectors f({z}), f({y}), and f({z}) in
the range on f. Under the strict weighted averaging axiom, the vectors
F(d,y}) € Conv({£({a}), F{yh)}) and f({z, 2}) € Conv*({f({z}), F({=D}).
Therefore, f satisfies the strong weighted averaging axiom. This means that

Theorem 4 is a corollary of Theorem 5.

Remark 9. Note that, by the richness condition, the dimension of the range of
the aggregation rule should be at least 2. As a result, the dimension of R" in

the definition of aggregation rules should be strictly more than 1.

Remark 10. As a consequence of Theorem 4, for any two members of the space
X, the ratio of their weights in any coalition is constant. This observation
guarantees that by only considering the coalition of any two features, we can

get the ratio of their weights in any coalition containing them. Instead of the
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strict weighted averaging axiom, by fixing the ratio of weights of two features in
any coalition including them, we can get a similar result as Theorem 4. This
observation is closely related to the independent of irrelevant of alternative

axiom of Luce (1959), which is discussed in detail in Section 2.6.2.

The next section shows that for continuous aggregation rules over a convex
domain, the weighted averaging axiom is the same as the strict weighted av-
eraging axiom. Therefore, the weak order > in the main representation has

only one equivalence class.

2.4 Continuous Aggregation Rules

In this section, in order to discuss the closeness of members of coalitions, we
assume that X is a subset of a normed vector space. Two features of X are
close to each other if their distance, with respect to the norm on X, is close

to each other.

One appealing property of an aggregation rule would be that by replacing a
member of a coalition with another feature close to that member, the value
of the aggregation rule over this new coalition stays close to the value of the
aggregation rule over the previous coalition. To capture this idea, we define a

continuous aggregation rule as follows:

Axiom 4. (Continuity) An aggregation rule f : X* — R" is continuous
if, for any coalition A € X* U {J}, and any feature x € X\ A, if a sequence

(xn)r_, € X and x,, — z, then:

flAu{x,}) = f(A U {z}).

Remark 11. In the definition of the previous axiom, convergence in X is with
respect to the norm on X, and the convergence in the range of the aggregation

rule is with respect to the Euclidean norm of R".

By considering a continuous aggregation rule f : X* — R" and a single-
element coalition {x} € X*, if z, € X and z, — x, then by the definition of
the continuity, we should have: f({z,}) — f({z}). In other words, the value
of an aggregation rule over a feature close to a particular feature is close to

the value of the aggregation rule over that particular feature.

By adding the weighted averaging axiom, we can get the representation in The-

orem 5. The next theorem shows that for continuous aggregation rules under
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the weighted averaging axiom, the weight function in the representation is also
a continuous function. In other words, not only the values of the aggregation
rule of two close features are close, but also their weights are close. Moreover,
if two features are close enough, they are in the same equivalence class of the

weak order >. In other words, they have the same ranking. Formally, we have:

Theorem 6. Let X be a subset of a normed vector space and an aggregation
rule f : X* — R™ be strongly rich and satisfy weighted averaging axiom. By
Theorem 5 there exist a unique weak order > on X and a weight function
w: X — R, such that for every A e X*:

>, w(x)f(z)

xeM(A,>)

2 w(x)

xeM(A,>)

f(A) =

Moreover, if f is continuous, then:

1. The weight function w is continuous, i.e., for any r € X and a sequence

(xn)r_, € X such that x,, — x, then w(x,) — w(z).

2. For any v € X, there emwists a neighborhood N, of x such that for all
ye N, nX: y ~ x. In other words, YV v € X 3 ¢ > 0 such that
Vye Bz): y~x, where B(x) = {z|z € X, |z — z| < €}.

Next, we assume that X is a convex subset of a normed vector space. Our
next theorem shows that under this assumption, any continuous aggregation
rule on X under weighted averaging axiom can only have a single equivalence
class. To clarify, for any x € X , not only any feature close enough to x has

the same order as x, but also all other members of X has the same order as z.

The theorem states that under a convex domain, for continuous aggregation
rules, there is no difference between the weighted averaging axiom and strict

weighted averaging axiom.

Theorem 7. Let X be a convex subset of a normed vector space, and f : X* —
R™ a rich aggregation rule that satisfies weighted averaging and continuity
axtoms. Then, there exists a continuous weight function w : X — Ry, such
that for every A e X*:
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The proof is simple. Therefore, we include it here.

Proof. We prove Theorem 7 by contradiction. Assume that there exist z,y € X
such that = # y. Without loss of generality, we assume that f(z) # f(y).
Since if f(x) = f(y), by the strong richness condition there exists another

point z € X in which z ~ z and f(z) # f(z), and we can use z instead of z.

Hence, assume that = # y and f(x) # f(y). By convexity of X, the whole
segment [z,y] = {ax + (1 — a)y | a € [0,1]} should be in X. Define a
point oy € [0,1] as inf{a | a € [0,1], az + (1 — a)y # x}. The “inf’ is
well defined, since it is defined on a bounded subset of [0, 1] and additionally
x 2y, fle) # fy).

Consider the point z = ayx + (1 — ay)y. First, we prove that the point z is
different than x. By the result of Theorem 6, the point z has a neighborhood
Be(z) with all points in this neighborhood having the same order as z. By

considering B(z) n [z,y], z is different than z. Similarly, z is different than
Y.

By Theorem 6, there exists a neighborhood B, (z) of z such that all points in
the neighborhood have the same order as z. By considering the set B (2z) N
[z,y] and the fact that z # = and z # y, a; cannot be inf{a| a € [0, 1], ax +

(1 — o)y # x}, which is a contradiction.

The contradiction proves that all points in X have the same order with respect

to the weak order >, which completes the proof.
O

We can interpret the representation as an impossibility result. It means that
it is not possible to have the extreme case and continuity. This interpretation
is especially useful in the context of choice theory. We show that this is a
more general version of the impossibility result by Kalai and Megiddo (1980).

Section 2.6.3 covers the interpretation.

2.5 Belief Formation
In this section, we discuss an application of our main results in the context
of Belief Formation. The role of an aggregation rule is an agent who makes

a prediction about the true state of nature, based on observing some signals
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containing information about the true state. In this context, the range of an

aggregation rule is the probability distributions over the states of nature.

Section 2.5.1 provides the main definitions and application of our main result
in this context. In Section 2.5.2, we consider an extension where the timing of
signals changes their credibility. Finally, in Section 2.5.3, by interpreting the
set of signals as the agent’s information structure, we find the necessary and

sufficient condition that a belief formation is a Bayes updater.

2.5.1 Belief Formation Processes

Let 2 = {1,2,...,n} be aset of states of nature. Depending on the application,
there might be different interpretations of the elements of X as disjoint cases,
events, or experts such that each has some information about the true state.

To be consistent, we interpret the elements of the set X as disjoint signals.

The role of an aggregation rule over a finite subset of signals is to predict
the true state of nature by assigning probabilities to each state. Therefore,
following Billot et al. (2005), the aggregation rules can be interpreted as a belief
formation process, in which by observing a finite subset of signals it assigns a
belief to the set of states of nature. More precisely, let A(€2) be the set of all

probability distributions over the set of states of nature.

Definition 10. A belief formation process is a function f : X* — A(Q),
that associates with every finite set of signals A € X*, a belief f(A) e A(Q)

on the states of nature.

Theorem 5 shows that if the belief induced by the union of two disjoint finite
sets of signals is on the line segment connecting the beliefs induced by each set
of signals separately, then, under the strong richness condition, there exists a
strictly positive weight function and a weak order over the set of signals such
that the belief over any finite subset of signals is a weighted average of the

beliefs induced by each of the highest-ordered signals of that subset.

By enforcing the belief formation process to use both of the induced beliefs,
i.e., the belief induced by the union of two disjoint finite sets of signals is on
the “interior” of the line segment connecting the induced belief of each set of
signals separately, we can use Theorem 4 to find the representation. Formally,

we have:
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Corollary 3. Let a belief formation process f : X* — A(Q) be strongly rich

and satisfies weighted averaging axiom. Then, there exist a unique weak order

> on X and a weight function w : X — R, such that for every A e X*:

[TV S M S

eEM(A,>) xeM%,})

Moreover, if the function f satisfies the strict weighted averaging axiom, then

the weak order > has only one equivalence class and for every A e X*:

F) = X | sl o

zeA
The special case of the representation above, under the strict weighted av-
eraging axiom, is similar to the one in Billot et al. (2005). However, their
belief formation process is defined over “sequences” of signals, in which each
sequence can have multiple copies of the same signal. In contrast, we define
the belief formation process over “sets” of signals, and there can be only one
copy of a signal in each set. Billot et al.’s main axiom, concatenation axiom, is
defined over any two sequence of signals, and the role is to count the number
of each signals in each sequence. However, our strict weighted averaging axiom
does not allow the same signal to be in sub-coalitions, which is crucial for our

representation (otherwise, since we have the “union”, the representation does
not hold).

As a result, besides the conceptual differences, there is a mathematical dif-
ference between the concatenation axiom and our strict weighted averaging

axiom.

2.5.2 Role of Timing

In this section, we explore the role of the timing of signals. We assume that
an agent may receive signals in different time zones in the past. Among a
set of received signals, the agent may perceive a signal closer to the time of
the prediction as more credible compared to the same signal if it was received
further in the past. Therefore, the agent may add more weight to the belief
induced by that specific signal if it was received closer to the time of the

prediction.
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To capture the idea, in the rest of this section, we assume that a belief forma-
tion process receives signals in possibly different time zones in the past and it

tries to form a belief at the present time.

We show that if a belief induced by a set of received signals and their timing
is the same as the belief induced by a constant shift of timings of the same
received signals, then the belief formation process, under the strict weighted

averaging axiom, has a simple form:

There exist a weight function over each signal and an exponential discount
factor over the timing. The belief induced by a set of received signals is just
the discounted weighted average of the beliefs induced by each of the received

signals separately.

Formally, let X be the set of signals. The present time denoted by 0, and
time ¢t € N represents t units of time before the present time. For a given
finite subset of signals A € X*, let a function T4 : A — N, represent the
timing of each signal in the set A, i.e., for any signal x € A, Tx(x) is the
time of receiving the signal x. Given a ¢ € N, Ty + ¢ represents a time shift
of size ¢ over the timing T4 of a set of received signals A. Finally, the set
XT ={(A,Ty) | Ae X*, Ty : A — N} represents all possible realizations of
the received signals. In this context, a belief formation process is a function
f:XT - AQ).

Our main axiom, in addition to the strict weighted averaging axiom, is the
stationarity axiom. A belief formation process is stationary if a belief induced
by a set of received signals and their timing is the same as the belief induced

by a constant shift of timings of the same received signals. More precisely:

Axiom 5. (Stationary) If Ae X* T4: A — N, then for any c € N:

f(A,Ta+c¢)) = f(A Ta).

The stationarity axiom specifies that shift of the timing of signals, with the

number for all the signals, does not change the belief.

The next proposition characterizes the belief formation processes under both

the stationarity and strict weighted averaging axioms.

Proposition 9. Let a rich belief formation process f : XT — A(Q) satisfy the

strict weighted averaging and stationarity axioms. Then, there exist a unique
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discount factor q € (0,00) and a unique (up to multiplication by a positive
number) weight function w : X — Ry, such that for all (A, T4) € XT:

Y q"Pw() f(x)

ST = = g 29
zeA

The idea behind the proof is to use the uniqueness of the weight w in Theorem
4. Next, by using the stationarity axiom, we show that there is a constant ¢,
in which by moving the timing of any signal in a coalition A € X* to one
unit in the past and keeping the timing of others the same, its relative weight

compared to other elements scales by g.

As a consequence of the representation, under the assumption of the proposi-
tion, the weight over a received signal x € A can be separated into two separate
entities. One is the intrinsic value of the signal, captured by w(z). The other
one is the role of timing, captured by ¢”4(*). Moreover, the only discounting

that captures the role of the timing is the exponential form.

If ¢ = 1, the timing is not important. Hence, the belief formation process only
considers the intrinsic value of each signal. However, when ¢ # 1, the belief
formation process places relatively more weight, in the case of ¢ € (0, 1), and
less weight, in the case of ¢ € (1,0), on a signal received closer to the time of

the prediction.

2.5.3 Bayesian Updating

In this section, the set of signals represents the information structure of an
agent who wants to predict the true state of nature. We interpret each subset
of signals as an event in her information structure. We show that as long as
the information structure has a finite cardinality, the strict weighted averaging
axiom is the necessary and sufficient condition for a rich belief formation pro-
cess to appear as a Bayesian updater. In other words, the belief formation (1)
attaches a probability measure to each event; (2) by observing a set of disjoint

events, she updates her belief through the Bayes rule.

Formally, let (X, X* U {&}) be the measure space of events, where X has a
finite number of disjoint events. The space of events captures the information
structure of the belief formation process. Similarly, by considering the set {2 =

{1,...,n}, we denote (£2,2%) as the measure space of states of nature, where
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2 is the set of subsets of the set (. For any probability distribution d € A(£2)
and any subset of the state of nature B € ), let d(B) denote the probability
of B which is induced by the distribution d. Hence, d(B) = > 5 d(w).

Definition 11. A belief formation process f : X* — A(Q) is Bayesian, if
there exists a probability measure P on the space (€2 x X, 2%*¥)  such that

for every A e X* and B € 2° we have:

(F)(B) = 55, (2.0

where, Px is the marginal probability distribution of P over X.

The right hand side of the previous equation is the conditional probability
of B given A. Therefore, a Bayesian belief formation process f behaves as a
Bayesian updater: by observing an event A in her information structure X*,
her prediction about the probability of the true state being in a subset B € (2
comes from the Bayes rule. To put it differently, (f(A))(B) is equal to the
conditional probability P(B|A).

Our next proposition shows that our strict weighted averaging axiom is the
necessary and sufficient condition for a rich belief formation process to be
Bayesian. Since the result is an immediate consequence of our Theorem 4, we

put the proof right after the proposition.

Proposition 10. A rich belief formation process is Bayesian if and only if it

satisfies the strict weighted averaging axiom.

Proof. First, we prove the necessary part. Let the probability measure P
rationalize a belief formation process f : X* — A(Q). Consider two disjoint
events A;, Ay € X*. Since f is rationalized by P, we have (f(A; U As))(B) =
% for all B € 2. Since A; n Ay = &, we have P(B x (A4, U Ay)) =
P(Bx Ay)+ P(Bx As) and Px(A; U As) = Px(A;)+ Px(A). Hence, (f(A;u

A ))(B) _ P(Bx(A1v42)) _ Px (A;) P(BxA;) Px(A2) P(BxAy)
2 Px(A1UA3) Px (A1)+Px(A2) Px (A1) Px(A1)+ Px (A2) Px(Az)
By defining the A := % for all B € 29, we have ( (AU A,y )(B) =

)
/\(f(A1>)( ) (1 — /\) (f(Ag))( ) Therefore f(Al U Ag) = /\f( ) + (1 —
A)f(Az). Hence, f satisfies the strict weighted averaging axiom.

Since f is rationalizable by P, in equation 2.6, in order for f to be well de-
fined, the denominator should be positive, i.e., for all A € X* Px(A) > 0.
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Therefore, A > 0. As a result, f satisfies the strict weighted averaging axiom.

For the sufficient part, if a rich function f : X* — A(Q) satisfies the strict
weighted averaging axiom, then by applying Theorem 5, there exists a positive
weight function w : X — A(£), such that for all A e X*:
Z}q w(z) f(x)
f(A) = >ea o
2 w(x)

TreA

Therefore for all A€ X and B € 2 we have:

3w ((F@) )
() (B) = =

€A

(2.7)

Since the space X is finite, >, w(z) < o0. Hence, for every A € X* and B € 2%,
zeX

the probability measure P on the measurable space (Q x X, 2% x X*) can be

5 w(z)((f(w))(B))

defined as P(B x A) = =4 ETIE) . Since each f(z) is a probability
zeX
measure, the marginal distribution of P over X is just Px(A) = > w(z).
zeA

Therefore, by equation 2.7, for all Ae X* and B € 2%, we have:
P(B x A)
A))(B) = ————=.
(FA)B) = =5 3

This representation completes the proof. O

Note that the richness condition is crucial. Otherwise, as shown in Example
11, there are cases where a belief formation process satisfies the strict weighted

averaging axiom, but it is not a Bayesian updater.

Remark 12. In our proof, it is necessary that the set of disjoint events, X, be a
finite set. Otherwise, with the same technique, we can show that there exists a
finite additive measure P that rationalizes the belief formation process under
the strict weighted averaging axiom. However, the measure is not a probability

measure.

Remark 13. Since the range of a belief formation process is in the simplex
At = {p| peR", X" p; = 1}, the dimension of the range of f is at most
the dimension of A", which is n—1. Therefore, in order for a belief formation
process to satisfy the richness condition, the dimension of the space 2 should
be at least 3.
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We can show the more general form of the result by adding the strong richness
condition and weakening the strict weighted averaging axiom to the weighted
averaging axiom. In the more general form, it is possible to have zero prob-
ability events. The belief formation process behaves as a Bayesian updater
even conditional on observing a zero probability event. To capture the idea,

we need the following definition.

Definition 12. A class of functions {P4] P4 : 2% x X* — [0,1], A€ X*} is

a conditional probability system if it satisfies the following properties:

1. For every & # A € X*, P4 is a probability measure on €2 x X with
PA(Q X A) = 1.

2. For every disjoint events A;, Ay € X* and for every C € () x X, we have:

PA1uA2(C) = PAIUAQ(Q X Al)PAl (O) + PA1U/‘12(Q X A2)PA2(O)‘

In the definition above, the probability measure P, represents the agent’s ez-
ante prediction. Suppose the agent received information in the form of an
event A € X*. The probability measure P4 represents the agent’s ez-post
prediction, which is a conditional probability measure given the event A. It
means that for any set B € 0, P4(B x A) is the conditional probability of B
given A. Moreover, for any two events As < A; in X* P4, (Q x Ay) is the

conditional probability of event A, given A;.

In the definition, the first property states that the agent, conditional on real-
izing an event A in her information structure, does not put any probability on

the complement event A€.

The second property states that regardless of the ez-ante probability of an
event A; U Ay, conditional on observing A; U As, the Bayes updating rule
should be satisfied. It is important to mention that the ez-ante probability
of the event A; U As, which is Po(2 x Ay U Ay), might be zero. However,
conditional on observing the event A; U A,, the ez-post prediction measure

P4, 4, is the updated prediction.

A belief formation that is rationalizable by a conditional probability system
behaves as a Bayes updater regardless of what event it encounters (even if
the ex-ante probability of an event is zero). By adding the strong richness

condition, the next theorem shows that the weighted averaging axiom is the
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necessary and sufficient condition for rationalizing a belief formation process

by a conditional probability system.

Proposition 11. A strongly rich belief formation process is rationalizable by a
conditional probability system if and only if it satisfies the weighted averaging

axiom.

This proof is similar to the proof of proposition 10. The only difference is that
we use the representation under the weighted averaging axiom to derive the
result. First, we get a weak order and a weight function using Theorem 5.
Then, we can define the probability distribution over each equivalence class of
the weak order similar to the proof of Proposition 10 and put zero probability
over all lower-ordered events. Therefore, we can define the conditional proba-

bility system associated with the belief formation process.

Finally, we should mention that Shmaya et al. (2007) considers the problem of
characterizing the updating rules (in our context the belief formation processes)
that appear to be Bayesian. By providing an example, they show that their
soundness condition, our strict weighted averaging axiom, is not a sufficient
condition for an updating rule to behave as a Bayesian updater. However, we
show that the strict weighted averaging axiom is the necessary and sufficient

condition as long as the belief formation process satisfies our richness condition.

2.6 Average Choice Functions

2.6.1 Primitives

In this section, an aggregation rule represents an agent choosing randomly
from a given menu. The outcome of the aggregation rule is the average choice
(mean of the distribution of choices) rather than the entire distribution of
choices?. Average choice is easier to report and obtain rather than the en-
tire distribution. However, an average choice does not uniquely reveal the

underlying distribution of choices.

Our goal is to show that (1) it is possible to uniquely extract the underlying
distribution of choices as long as the average choice satisfies the weighted
averaging axiom, and (2) there is a connection between our weighted averaging

axiom and the Path Independent, Luce, and two-stage Luce choice models.

4Check Ahn et al. (2018) for the complete discussion of the merits of average choice.
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In this section, X is a nonempty subset of R", which is not a subset of a line.
In other words, the dimension of X, defined as the dimension of the smallest
linear variety that contains X, is greater than one. An aggregation rule in this
context is a average choice function, in which over any given menu of choice
objects, chooses an average choice in the convex combination of members of

the menu. Formally we have the following definition:

Definition 13. An aggregation rule f : X* — R" is called an average choice
function, if for any menu A € X*, f(A) € Conv(A).

Based on this definition, the choice over any single-element menu is the element
itself. In a larger menu, the value of an average choice function is a vector in
the convex combination of the elements of the menu, which can be viewed as

the mean of a probability distribution over the elements.

Since the choice from any single-element menu is the element itself, given
two different elements in X, the choice from each of them is different. This
property of the average choice functions is more restrictive than the previous
section where there was a possibility that the values of an aggregation rule

over two different single-element menu are the same.

Since average choice functions are a special form of aggregation rules; by
adding the strict weighted averaging axiom, the weighted averaging axiom,
or the continuity, we can get the representations of the previous section. In
this context, the weighted averaging axiom specifies that the choice from the
union of two disjoint menus is on the line segment joining the choices from

each of the menus.

Under the assumptions of Theorem 5, for any average choice function under
the weighted averaging axiom, with a minor richness condition, there exist a
weight function and a weak order over elements such that the choice from any
menu is just the weighted average (with respect to the weight function) of the

highest order (with respect to the weak order relation) elements of the menu.

Adding continuity requires the elements to have the same order with respect to
the weak order relation. Under the representation of Theorem 7, the average
choice from any given menu is just the weighted average of the menu. To be
more precise, and as a starting point for our discussion, we have the following

corollary:
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Corollary 4. Let an average choice function f : X* — Conv(X) be strongly

rich. The following statements are equivalent:

1. The average choice function f satisfies the weighted averaging axiom.

2. There exists a unique weak order > on X and a unique weight function
w: X — Ry, up to multiplication over equivalence classes of the weak

order such that for every A e X*:

weM(A,>) w(z)
f(A) = = 2 T (2:8)
w wl\x
xeMZ(.:A,>) ( ) 2eM(4,>) IEMZ(;LL>) ( )

Moreover, if the average choice function f satisfies continuity and the weighted
averaging axiom, the weight function w is continuous and the weak order > is

the equivalence order. In this case, for every Ae X*:

2 w(z)z
zeA wiT
f(A) = S - ZA % . (2.9)

zeA zeA
Using the results of this corollary, in the following two subsections, we look
into two forms of choice behavior captured by the weighted averaging axiom.
In Section 2.6.2, we give a necessary and sufficient condition for an average
choice function to be rationalizable by a Luce Model. Then, we generalize the
result and provide the class of all average choice functions rationalizable by a
two-stage Luce Model. In Section 2.6.3, we provide a stronger version of the
impossibility result by Kalai and Megiddo (1980), regarding the impossibility
of a choice function satisfying both the path independence axiom , proposed
by Plott (1973), and continuity.

2.6.2 Luce Rationalizable Average Choice Functions

In this section, we show that any average choice function under the weighted
averaging axiom can be rationalized by a two-stage Luce rule. As discussed in
Section 2.6.1, except for the case that elements of a menu are affinely indepen-
dent, average choice does not uniquely reveal the underlying distribution of
choices. However, we show that under the strong richness condition the two-
stage Luce model is the only choice model that satisfies the weighted averaging

axiom.
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In the rest of this section, first we consider a special case. We show that the
Luce model is the only choice model satisfying the strict weighted averaging
axiom. Therefore, the strict weighted averaging axiom is conceptually equiva-
lent to the Luce’s independence of irrelevant alternatives axiom, which states
that the probability of selecting one element over another in all menus con-
taining both of them should be the same. Following the first result, we show
the more general case, in which the two-stage Luce model is the only choice

model satisfying the weaker weighted averaging axiom.

The following definitions are standard definitions in the context of individual

decision making.

Definition 14. A stochastic choice is a function p : X* — A(X), that for
any Ae X* p(A)e A(A).

For an average choice function f : X* — Conv(X) and a menu A € X*,
f(A) € Conv(A). Therefore, there exists a stochastic choice p : X* — A(X)
(which may not be unique) that rationalizes the average choice function f,
i.e., f(A) = X cap(x, A)x, where p(x, A) is the probability of selecting the

element x from the menu A.

One appealing form of a stochastic choice function is the one that satisfies
Luce’s ITA, i.e., the probability of selecting an element over another element
is independent of any other element. Luce (1959) shows that stochastic choices

that satisfy the ITA axiom are in the form of Luce rules.

Definition 15. A stochastic choice p : X* — A(X) is a Luce rule if there

is a function w : X — R, such that:

w(z)

Pl 4) = ZyeA w(y)

Furthermore, if w is continuous, then p is a continuous Luce rule.

Definition 16. An average choice function f is rationalizable by a stochastic
choice p, if for all A e X*:

F(4) = 3 ol Az

€A

Furthermore, if there exists a Luce rule that rationalizes the average choice

function f, then f is Luce rationalizable.
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By considering our Theorem 4 and corollary 4, a choice f has a Luce form

representation, i.e, f(A) = > ( Zw(jgx))x if and only if it satisfies the strict

zeA z€A
weighted averaging axiom. As a result:

Corollary 5. An average choice function is Luce rationalizable if and only if
it satisfies the strict weighted averaging axiom. Moreover, the Luce rule that
rationalizes the average choice function is unique.

Furthermore, an average choice function is continuous Luce rationalizable if

and only if it satisfies the strict weighted averaging axiom and continuity.

In the Luce model, the decision maker selects each element of a given menu
with a strictly positive probability. However, this is not a plausible assumption
in many situation. The decision maker may always select a better choice
between two alternatives. We model this behavior by a two-stage Luce model.
Echenique et al. (2018) introduce the two-stage Luce model. In this model,
there exist a ranking order and a weight function over elements. A decision
maker facing a menu only selects the highest-ordered elements from the menu.
The probability of the selection of each highest-ordered element is related to

the weight associated with the element. Formally:

Definition 17. A stochastic choice p : X* — A(X) is a two-stage Luce
rule if there are a function w : X — R, and a weak order > over elements
of X, such that:

@ ifre M(A, >
p(x, A) = Dyen(a,») W) ( ) (2.10)

0 otherwise.

Given a menu A, the decision maker only selects the elements in M (A, >), that
are the highest-ordered elements of A. She chooses each element of M (A, >)
with a probability associated with its weight.

By considering our Theorem 5, any average choice function under the weighted

averaging axiom is rationalizable by a two-stage Luce rule.

Corollary 6. A strongly rich average choice function is two-stage Luce ratio-
nalizable if and only if it satisfies the weighted averaging axiom. Moreover, the

two-stage Luce rule that rationalizes the average choice function is unique.
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Remark 14. Note that by adding the continuity axiom using our Theorem
7, both the two-stage Luce model and Luce model are equivalent. The next

section discusses this observation in more detail.

2.6.3 Continuous Average Choice Functions

In this section, we consider the class of average choice functions satisfying
both the weighted averaging axiom and continuity. First, we reinterpret our
corollary 4 as an impossibility result. This means that no continuous average
choice function is rationalizable by a two-stage Luce model but not by a Luce
model. Then, we show the connection with the impossibility result by Kalai
and Megiddo (1980), regarding the impossibility of a choice function satisfying
both the path independence and continuity.

Plott (1973) extensively studies choice functions under the path independence
axiom. Plott’s notion of path independence requires a choice from the union of
two disjoint menu A U B, to be the choice between the choice from A and the
choice from B. Using his axiom, the choice from any menu can be recursively
obtained by partitioning the elements of the menu into disjoint sub-menus.
Then, the choice from the whole menu would be the choice from the choices

of each sub-menu. In our setup, for an average choice function f, we have:

Axiom 6. (Path Independence) If A,Be X* and An B = (J, then
f(Au B) = f({f(A), f(B)}).

The path independence axiom is stronger than our weighted averaging axiom.
In other words, any average choice function under Plott’s notion of path in-
dependence satisfies the weighted averaging axiom. More precisely, given a
choice function f : X* — Conv(X) and two disjoint menus A, B € X*, under
the path independence axiom, f(Au B) = f(f(A), f(B)). By the definition of
average choice functions, f({f(A), f(B)}) € Conv(f(A), f(B)), which shows

that the choice function f satisfies the weighted averaging axiom.

As discussed in Section 2.4, continuity is an appealing property of an average
choice function. It specifies that by replacing an element of a menu with
another element close to it, with respect to the norm of X, the average choice

of the new menu is close to the average choice of the previous menu.

Kalai and Megiddo (1980) show that there is no average choice function that

satisfies both path independence axiom and continuity. Here, we reinterpret
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the result of Corollary 4 to show a more general result for average choice

functions.

Corollary 4 states that for an average choice function f : X* — Conv(X)
under continuity and the weighted averaging axiom, as long as it satisfies the
strong richness condition, there exists a unique weight function w : X — R,
such that for any A € X™*:
w(z)
fA) =) (=)
oy RDIRTIC))

€A

There are two important observations regarding the representations above.

First, through discussions in Section 2.6.2, the representation shows that any
continuous average choice function that is rationalizable by a two-stage Luce
model is also rationalizable by a Luce model. Second, since the function w
is strictly positive, the average choice of any menu should be in the relative

interior of the convex hull of members of the menu.

As a result, our impossibility result specifies that for an average choice function
that satisfies the weighted averaging axiom, it is impossible to satisfy the
continuity axiom and also to have a choice from a menu that is on the relative
boundary of the elements of the menu. We summarize the observation in the

following corollary.

Corollary 7. If X is a nonempty convex subset of a vector space that contains
at least three non-collinear points, then an average choice function f : X* —

X that satisfies the weighted averaging axiom cannot be both continuous and
contains a menu A € X*, with f(A) € 0"(Conuv(A)).

To see the connection between our corollary 7 and the result in Kalai and
Megiddo (1980), it is enough to consider a menu with three non-collinear
members. Theorem 1 in Kalai and Megiddo (1980) shows that the average
choice of a path independent average choice function from any menu is the
average choice of the average choice function from a sub-menu of two members
of the menu. This shows that the average choice from a menu with three non-
collinear members is on the line segment connecting two of the member of the
menu. As a result, the choice should be on the relative boundary of the menu.

That is why it cannot satisfy continuity.
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2.7 Related Literature

Our methods are applicable to different areas of economic theory, and gen-
eralize existing ideas in those areas. In particular, instances of our weighted

averaging axiom appears in several different papers.

The theory of Case-Based Prediction is developed by the seminal works of
Gilboa and Schmeidler (1995) and Gilboa and Schmeidler (2012) and Billot
et al. (2005). In this context, the concatenation axiom proposed by Billot
et al. (2005), is closely related to the strict case of our axiom. However, there
are differences between the two axioms. As discussed in more detail in Section
2.5.1, their belief formation process is defined over “sequences” of cases, in
which each sequence can have multiple copies of the same case. The role of
the concatenation axiom is to count the number of each case. However, in
our framework, we define our axiom over “sets” of signals, in which in each
set there is only one copy of each signal. Moreover, our axiom is defined over
disjoint sets. By weakening our definition for any two general sets, our result

does not hold anymore.

In the paper by Shmaya et al. (2007), they provide an example, on binary state
space, to show that their soundness condition is not a sufficient condition for
an updating rule to behave as a Bayesian rule. However, we show that under
our richness assumption, the strict weighted averaging axiom (which is the
same as their soundness condition) is the necessary and sufficient condition
for an updating rule to behave as a Bayesian. We also generalize our result for
the class of updating rules that can be rationalized by a conditional probability

system.

In the context of choice theory, Ahn et al. (2018) introduce a model of contin-
uous average choice over convex domains. In this application, we generalized
their result in many ways. First, their result holds for the strict case of our
axiom. Moreover, continuity and convexity are the two important forces be-
hind their result. However, we show that the strictness of an average choice
function, continuity, or convexity of the domain are not the main forces be-
hind extracting the underlying distribution of choices. The main force is our
weighted averaging axiom. Moreover, we show that it is possible to rationalize
an average choice function by a two-stage Luce model, as long as it satisfies

our weighted averaging axiom.

The path independence choice functions are extensively studied by Plott (1973).
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Our representation of average choice functions under the weighted averaging
axiom and continuity, generalizes the results by Kalai and Megiddo (1980) and
Machina and Parks (1981), regarding the impossibility of a choice function un-
der both the path independence and the continuity.
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Chapter 3

EXTENDED PARETO AGGREGATION

3.1 Introduction

In this chapter, we consider the problem of aggregation of preference ordering
of a group of individuals to form a social preference ordering. The goal is to
find an aggregation procedure with some appealing properties. In our setup
each preference ordering satisfies the axiom of Von-Neumann and Morgenstern
(1944). The role of an aggregation rule is to associate with each coalition of

individuals another vIN-M preference ordering over the set of alternatives.

An appealing property of an aggregation rule, in this context, is to satisfy the
extended Pareto axiom. Shapley and Shubik (1982) introduced the extended
Pareto. It specifies that, if two disjoint coalitions of individuals, each prefers
an outcome over another outcome, then the union of the coalitions also should
prefer the same outcome over the other one. Moreover, if one of them strictly
prefers one outcome over the other one, then the union of the coalitions should

also strictly prefer the same outcome over the other one.

First, we show that under a normalization of cardinal utilities of individuals
and a minor richness condition, aggregation rules under the strict weighted
averaging (weighted averaging) axiom are exactly aggregation rules under the

extended Pareto (extended weak Pareto) axiom.

Following the equivalence, we use our main representation result on weighted
averaging aggregation rules as a technical tool to pin down the representation
of the extended Pareto aggregation rules. We show that the only possible
extended Pareto aggregation is to have a positive weight over each individual
in the society. Then, the aggregated preference ordering of a given group of

individual is the weighted sum of their preference ordering.

The representation can be considered as a generalization of the theorem by
Harsanyi (1955) on utilitarianism. Harsanyi considers a single profile of in-
dividuals and a variant of Pareto to get the Utilitarianism. However, in our
approach, we partition a profile to smaller groups. Then, we aggregate the

preference ordering of these smaller groups using the extended Pareto. Hence,
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we get the Utilitarianism through this consistent form of aggregation. As a re-
sult, in our representation, the weight associated with each individual appears

in all sub-profiles that contain her.!

We provide two more applications of this representation. One is a result with a
positive nature on social choice functions, which we discussed in Section 3.2.3.
The other application is to provide a subjective conditional expected theory

of state-dependent preferences, which we discuss in Section 4.2.

In Section 3.2.3, we extend our result on extended Pareto aggregation rules
to the class of generalized social welfare function. Unlike our previous model,
each individual may have any different preference ordering. Therefore, the
domain of the generalized social welfare function is a set of all different groups
(with all possible sizes) of individuals with each individual having all differ-
ent possible preference orderings. Our definition of generalized social welfare
function extends the standard definition used by Arrow (1963), in which the

domain is a set of fixed-length profiles of individuals.

For a technical reason, we restrict the set of vIN-M preferences to those which
all of them strictly prefer one fixed lottery to another fixed one. We show that
the only possible extended Pareto generalized social welfare functions are the
ones that associate a positive number to each individual’s preferences (unlike
the previous section, in which each weight depends on both the individual and
the whole profile) and it associates each coalition with the weighted sum of

their cardinal utility using the weight associated to their preferences.

The important observation is that, each positive weight in the representation is
independent of the other individuals in any profiles. The weight only depends

on each individual and her own preference ordering.

Our representation above has a positive nature, compare to the claims by Kalai
and N. Schmeidler (1977) and Hylland (1980) that the negative conclusion of
Arrow’s theorem holds even with vN-M preferences. Moreover, the represen-
tation provides an answer to the main concern of Borgers and Choo (2017a)
and Borgers and Choo (2017b) regarding the correctness of the main theorem
of Dhillon (1998).

1 Similar to the discussion of Weymark (1991) regarding the debate of Sen-Harsanyi,
our result is better to be interpreted as a representation rather than a justification of the
utilitarianism.
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Dhillon (1998) by considering a set of axioms, other than the ones by Ar-

row, provides one of the first axiomatizations of relative utilitarianism as a
possibility result. However, Borgers et al. (2017a) shows a counterexample to
their representation. Our representation fixes the error using our variant of
the extended Pareto axiom and our restricted domain of the generalized social

welfare function.

Finally, adding the anonymity and the weak ITA axiom of Dhillon (1998) gives
us the relative utilitarianism as one possible choice of the weight function.
However, the primary concern of our paper is to show that the weighted aver-
aging of preferences is the only generalized social welfare function that respects

extended Pareto. The possible choices of weights are not our focus in this

paper.

3.2 Extended Pareto Aggregation Rules

In this section, each individual has a preference ordering of a set of alterna-
tives. The role of an aggregation rule is to associate with each group of in-
dividuals another preference ordering of alternatives, representing the group’s

aggregated preference.

We consider the class of aggregation rules satisfying the extended Pareto ax-
iom. This means that whenever we partition a group of individual into two
subgroups, if both aggregated preferences of subgroups prefer one alternative
over another, the aggregated preference of the union of the subgroups also

prefers the first alternative over the second.

Section 3.2.1 provides the main definitions. In section 3.2.2, we show that
(1) the extended Pareto is equivalent to the strict weighted averaging axiom,
and (2) Theorem 5 will imply a general version of Harsanyi (1955) famous
theorem on Utilitarianism. Harsanyi considers a single profile of individuals
and a variant of Pareto to obtain Utilitarianism. However, in our approach,
we partition a profile into smaller groups. Then, we aggregate the preference
ordering of these smaller groups using the extended Pareto. Hence, we model
Utilitarianism through this consistent form of aggregation. As a result, in
our representation, the weight associated with each individual appears in all
sub-profiles that contain her. Finally, section 3.2.3 generalizes the result of
section 3.2.2 for generalized social welfare functions by extending the domain

of aggregation rules to the set of all different groups of individuals with each
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individual having all possible preference orderings. We discuss the connection

to relative Utilitarianism at the end of the section.

3.2.1 Primitives and axioms
Let the set M = {0,1,...,m} represent m + 1 pure prospects. The simplex
L={(p1,....pm)| 2y pi < 1,p; = 0} represents the set of lotteries over the
set M. A lottery p € L associates the probability p; to the prospect i € M\{0}
and 1 — " p; to the prospect 0.

A uN-M preference over the set L is a preference relation that satisfies the
axioms of Von-Neumann et al. (1944), i.e., it is a weak order that satisfies
both the continuity and independence axiom. Hence, a vN-M preference has
an expected utility representation. We denote the set of all vN-M preferences
over the set of lotteries L, by R. We denote the strict part of the preference
ReR, by R.

Remark 15. Let R € R, be a vN-M preference over the set L. Using the
vN-M Theorem, there exists an affine representation of the preference R. For
notational convenience, we normalize all affine representations to have the
value 0 over the prospect 0. Therefore, there exists a utility u € R™ that
represents R, i.e., for any two lotteries x,y € L, xRy if and only if u-z > u -y,

W

where represents the inner product in R™. Moreover, the “unique” ray
U = {au| a > 0} contains all normalized affine utilities that represent the

vN-M preference R.

In this section, we interpret each feature as an individual. The set of features
X = {1,...,n} represents the set of all agents. The set X* represents the set
of all coalitions of agents. We denote the X-Fold Cartesian product of R, by
RX. Every RY € R defines a preference profile of the set of agents over the

set of lotteries.

The main representation of this section is about a specific form of aggregation

rules.

Definition 18. A group aggregation rule on X is a function f: X* - R,
that associates with every coalition of agent A € X* a vN-M preference f(A) €
R.

Let f : X* — R be a group aggregation rule and ¢« € X. We interpret

f(i) as the preference of agent i. For every coalition A € X*, we interpret



7

the preference f(A) as the aggregated vN-M preference of the members of
coalition A. By considering remark 15, for every coalition A € X*, we associate
the unique ray U, that represents the vN-M preference f(A). Every cardinal
utility u € Uy represents the vN-M preference f(A).

An appealing property of group aggregation rules is that whenever two disjoint
coalitions, e.g. A, B € X* both prefer a lottery x to another lottery y, then
their union, A U B, also prefers the lottery x to the lottery y. Formally, we

have:

Axiom 7. A group aggregation rule f : X* — R satisfies the extended
Pareto axiom if for all disjoint coalitions of agents A, B € X*, and for all

lotteries z,y € L,

v f(A)y,  f(B)y==z f(AuB)y (3.1)

 f(A)y, v f(B)y=2z f(Au B) y. (3.2)

The first condition, which we refer to as the extended weak Pareto axiom, states
that whenever two disjoint coalitions A, B € X* prefer lottery x to lottery y,
then the coalition formed as the union of A and B also prefers the lottery x to
the lottery y. The second condition states that if one of the coalitions strictly
prefers lottery x over lottery y, then the union of the coalition also strictly

prefers lottery x over lottery y.

Our last condition requires the existence of two lotteries in the set of lotteries,

in which all agents strictly prefers one over the other.

Definition 19. A group aggregation rule f : X* — R satisfies the minimal
agreement condition if there exist two lotteries 7, x € L such that for every

agent i€ X, T f(i)x.

Remark 16. Let a group aggregation rule f : X* — R satisfy both the min-
imal agreement and extended Pareto axiom. Given two agents 7,5 € X, by
applying the strict part of the definition of the extended Pareto axiom, we
have @ m z. Similarly, for every coalition of agents A € X*, recursively

using the strict part of the extended Pareto axiom, we can show that T f(A) z.

Remark 17. There is another useful equivalent definition for the minimal agree-
ment condition. Let the vector v € R™ be ¥ —x, where T, x are the two lotteries

in the definition of the minimal agreement condition. By considering remark
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15, let a cardinal utility u; € R™ represent the vN-M preference f(i). Hence,
T f(i) z if and only if u; - v > 0. Therefore, the definition of the minimal
agreement condition is equivalent to the existence of a direction v € R™ such

that for all i € X, u; - v > 0.

In the next section, first, we show that any group aggregation rule (under
the minimal agreement condition) satisfies the extended Pareto if and only
if it satisfies our strict weighted averaging axiom. Then, using the result
of Theorem 4, we characterize the representation of extended Pareto group

aggregation rules.

3.2.2 The Representation of Extended Pareto Group Aggregation
Rules

In this section, we assume that the group aggregation rule f : X* — R

satisfies the minimal agreement condition. In particular, we assume that all

agents strictly prefer the lottery T € L over the lottery x € L. By considering

remark 17, we define v = T — z as the direction that every agent agrees on.

Following the comments right after the definition 18, for a coalition of agents

A e X* the ray Uy represents the vN-M preference f(A).

We define the space H by H = {u € R™| u-v = 1}. The space H represents the
normalization of utilities in which the difference of the value of utility of the
lottery T and the lottery z is exactly 1. For every coalitions of agents A € X*
and for every cardinal utility us € Uy, by the minimal agreement condition
and remark 16, we have uy - v > 0. Therefore, for every coalition of agents

A e X* there is a unique cardinal utility 44 € Uy, such that 44 is in H.

For the rest of the section, for every coalition A € X*, we consider the unique
cardinal utility 44 € H to represent the vN-M preference f(A). Using this
representation, we can represent the group aggregation rule f : X* — R, by a

normalized group aggregation rule fy : X* — R™, where fy(A) = ta.

The role of fy is to “normalize” the cardinal utilities to be in H. In other
words, we represent each vN-M preference by a unique cardinal utility that

the difference of the utility between the lottery = and x is one.

Remark 18. Without loss of generality, we can assume that the lottery z in
the definition of the minimal agreement condition is just the lottery 0. In

that case, the space H is vN-M preferences with the value 0 for the lottery 0
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and the value 1 for the lottery Z. The role of fy is to normalize the cardinal

utilities to get the value 0 for the lottery 0 and the value 1 for the lottery Z.

The next proposition shows that under the representation of the vIN-M pref-
erence f(A) by the @4, the extended Pareto axiom is equivalent to the strict

weighted averaging axiom. Formally, we have:

Theorem 8. Let a group aggregation rule f : X* — R satisfy the minimal
agreement condition with v € R™ as the direction on which all agents agree.

Then, the following are equivalent:

1. f satisfies the extended Pareto axiom.

2. fu satisfies the strict weighted averaging axiom.

The idea behind the proof is as follows. Assume that A, B € X* are two disjoint
coalitions of agents. We select two utilities us € U4 and up € Ug. We assume
that usp represents the preference of the union of them, i.e., uaop € Uaop.
First, an immediate application of Farkas’ Lemma shows that w4 g should be
in the relative interior of the cone generated by the vectors u4 and ug. Then,
by intersecting the cone generated by u,4,up and the hyperplane H, we show

that 44,5 € Conv®({la,up}), which completes the proof.

Finally, using the result of Theorem 4, we immediately attain the representa-

tion of the extended Pareto group aggregation rules.

Corollary 8. Let a rich group aggregation rule f : X* — R satisfy both the
extended Pareto axiom and minimal agreement condition. Then, there exists a

weight function w : X — Ry, such that for every coalition of agents A € X*,

w(1) _
fu(A) = <~ = | (D) (3.3)
;4 > w(j)
jeA
Moreover, the weight function is unique up to multiplication by a positive num-

ber.

As shown in Example 11, the richness condition is crucial. The richness here
is equivalent to the existence of three non-collinear “normalized” cardinal util-

ities in the space H. Therefore, the richness in this case is equivalent to the



30

existence of three linearly independent cardinal utilities in the range of the

aggregation rule.?

The representation above finds the unique cardinal utility associated with the
f(A) in the space H. Hence, we can interpret the theorem as a generalization
of the main theorem of Harsanyi (1955) on Utilitarianism. However, our result
shows the connection between weights of individuals in different sub-coalitions

of the main profile.

To see the connection with Harsanyi’s result, we rewrite the theorem in an
additive form: let the group aggregation rule f : X* — R satisfy both the
extended Pareto axiom and minimal agreement condition. Then, there exists
a weight function w : X — R, such that for every coalition of agents A € X*,

f(A) has a representation as follows:

> w() fu (). (3.4)

€A
Moreover, it is important that the representation is unique up to multiplica-

tion.

By defining u(i) := w(i) fu (i) for i € X, we can rewrite equation 3.4 in a more

familiar additive form of:

> uli). (3.5)

€A
Moreover, if we consider only the representations with the value 0 for the
lottery 0, this representation is “unique” up to multiplication by a positive

number.

There are two immediate applications of corollary 8. First, Section 3.2.3 shows
an application in characterizing the class of extended Pareto generalized social
welfare functions and relative utilitarianism. Then, Section 4.2 covers the
other application, or interpretation, by providing a simple theory of subjective

conditional expected utility of state-dependant preferences.

3.2.3 The Representation of Extended Pareto Generalized Social
Welfare Functions
In this section, by using corollary 8, we provide the characterization of the

class of extended Pareto generalized social welfare functions. The represen-

2This is similar to the argument of remark 13.
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tation is a generalization of corollary 8, in which, unlike the previous model,
each individual can get any vN-M preference relation. The standard domain
of a social welfare function is a set of fixed-length profiles of individuals, where
each individual has all possible preference ordering. However, the domain of
our generalized social welfare function is the set of all different groups (with
all different lengths) of individuals, where each individual has all possible pref-

erence orderings.

The setup is the same as the one in the previous section. However, in order
to define the domain of generalized social welfare functions, we need some
definitions. Without loss of generality, we assume that the lottery x € L, in
the definition of the minimal agreement, is the vector 0. Let = € L be any
lottery other than 0. Define Rz < R as the set of all vIN-M preferences that
strictly prefer T to 0. Let R2 be the X-fold Cartesian product of Rz. Every
R e R defines a preference profile of the set of individuals. For any coalition
A e X* and for any preference profile R € RX, let R4 € R2 denote the
restriction of the profile R to the coalition A.

Based on remark 15, we can represent each preference R € R by a unique
ray Ur = {au| a > 0}, where u € R™ is a cardinal utility representing R.
Moreover, for any preference R € Rz, there should be a unique cardinal utility
ugp € Ug with ug - T = 1. Denote H = {u € R™| u.T = 1} as the space of
all cardinal utilities attaining value 0 at the lottery 0 and the value 1 at the
lottery . Let the function uy : Rz — H associate each preference R € Rz
with the unique cardinal utility uy (R) € H that represents it. This function is
a bijection associating each preference to the unique cardinal utility attaining

value 0 at the lottery 0 and value 1 at the lottery 7.

We denote Ry < RX as the set of all profiles where the representation
of individuals’ cardinal utilities in the space H is not a subset of a single
line. Formally, we define Ry = {R € RY| d({ug(R;)| i € X}) > 1}, where
d({um(R;)| ¢ € X}) is the dimension of the smallest linear variety containing
all ug(R;), i€ X.3

Finally, we denote R% = {Re R4| A< X, Re Ry} as all the profiles in Ry
and all sub-coalitions of those profiles. R% is the domain of our generalized

social welfare functions. Formally, we have:

3There should be at least four alternatives; otherwise, R x is the empty set.
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Definition 20. A generalized social welfare function on Ry is a func-
tion f : R% — R, that associates with any coalition A € X and any profile
R e RY a preference f(R4) € R. Moreover, we assume that for any individual
i€ X, and any profile Re R , f(R;) = R;.

In our setup, the domain of generalized social welfare functions is a rich set
of all sizes of profiles. Moreover, it satisfies the Individualism axiom, which

means that it associates any individual preference to the same preference.

The connection between profiles of different sizes is the extended Pareto
axiom. The extended Pareto states that if the associated preference ordering
of two disjoint coalitions of individuals, A and B, each prefer a lottery x to y,
then the associated preference ordering of the union of the coalition with the

same preference as before should also prefer = to y.

Definition 21. A generalized social welfare function f : R% — R satisfies
the extended Pareto axiom if for every preference profile R € Rx and for

any two disjoint coalitions A, B € X*, and for all lotteries x,y € L,

v f(Ra)y, © f(Rp) y = o f(Raun) ¥ (3.6)

v f(Ra) y, v f(RB) y =z f(Raun) v (3.7)

Our main result of this section characterizes the class of extended Pareto

generalized social welfare functions.

Theorem 9. Let X be a set of individuals with |X| = 4. The generalized
social welfare function f : R% — R satisfies the extended Pareto azxiom if and
only if there exists a weight function w : X x Rz — R ., such that for any
coalition A = X and any preference profile R € Ry, f(Ra) has the following

representation:

ui(f(Ra)) = Z %

JeEA

un(Ry). (3.8)

Moreover, the weight function is unique up to multiplication by a positive num-

ber.
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Note that the representation above finds the unique cardinal utility in the
space H, which is associated with the aggregated preference relation f(Rj4).
In other words, it normalizes the aggregated utility representation of f(Ra)

to have the value 0 at the lottery 0 and value 1 at the lottery .

Remark 19. We can rewrite the theorem to specify that the generalized social
welfare function f : R% — R satisfies the extended Pareto axiom if and
only if there exists a weight function w : X x Rz — R, ., such that for any
coalition A € X and any preference profile R € Rx, f(R4) has the following

representation:

> w(i, Ry)up(Ry). (3.9)

€A
It is important that each weight depends only on the associated individual’s

preferences and not on the other individuals.

Note that, based on corollary 8, for any fixed profile R € Ry, there exists a
weight function (depending on the whole profile R and each individual index)
satisfying equation 3.4. However, in equation 3.9, the weight function depends
only on each individual’s own preference and not the whole profile. The reason
the theorem works is the structure we put on the domain, R%, in the defini-
tion of generalized social welfare functions. The proof of the result is in the

Appendix.

The weight function in the representation depends on each individual’s index.
However, adding the classical Anonymity axiom makes the weight function

independent of individual’s indexes.

Axiom 8. An extended Pareto aggregation rule f : R% — R satisfies the
Anonymity axiom, if any permutation of the indexes of individuals does not

change the generalized social welfare function.

The anonymity axiom makes any extended Pareto generalized social welfare
functions independent of the individual’s indexes. Hence, the uniqueness of
the weight function in Theorem 9 makes the weight function, associated with
an anonymous extended Pareto aggregation rule, independent of the indexes.

Therefore, we have:
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Corollary 9. Let X be a set of individuals with |X| = 5. The extended Pareto

generalized social welfare function f : R% — R satisfies the Anonymity aziom
if and only if there exists a weight function w : Rz — R4, such that for any
coalition A < X and any preference profile R € Rx, f(Ra) has the following

representation:

uH(f(RA))ZZ ;1(1)—}(%}%]) ug (R;). (3.10)

Or in a more familiar way, f(Ra) has a representation as follows:

> w(R)ug(Ry). (3.11)
€A
Moreover, the weight function is unique up to multiplication by a positive num-

ber.

The representation above is the main result of this section. It is important
to point out the positive nature of our result, given the claims by Kalai and
N. Schmeidler (1977) and Hylland (1980) that the negative conclusion of the
impossibility theorem by Arrow (1963) holds even with vN-M preferences.
However, other than the differences between our model and theirs, we only
consider the restricted domain where all preferences prefer the lottery T over
the lottery x. As discussed before, the definition of our restricted domain is

crucial in corollary 9.

Remark 20. Adding different other axioms can restrict choices of the weight
function. For example, relative utilitarianism can be obtained by adding the
weak ITA axiom of the paper by Dhillon (1998). By adding the weak ITA, the
weight function normalizes each preference such that the difference between

the cardinal utility of the best alternative and the worst alternative becomes 1.

1

maz (up(R))j—min (up(R));"
J J

In other words, for any preference R € Rz, w(R) =

3.3 Related Literature
In the context of social choice, Dhillon (1998) and Baucells et al. (2008) study

variants of extended Pareto rules.

Baucells et al. (2008) study the extended Pareto rule over vN-M preferences

by relaxing the completeness axiom. Besides the technical and conceptual
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differences between the two approaches and results, their model depends on
their non-degeneracy condition. The condition is only satisfied when there is a
spanning tree over the preferences, and every three consecutive preferences in
the spanning tree are linearly independent. However, the richness condition of
our theorem only requires three linearly independent vectors among the whole
set of preferences. Moreover, our result can be applied even for the class of
extended weak Pareto aggregation rules, under our strong richness condition.
Note that our primary goal in this paper is to show that extended Pareto
and extended weak Pareto are special cases of our weighted averaging axiom

(under the minimal agreement condition).

The papers by Dhillon (1998), Dhillon and Mertens (1999), and Borgers et
al. (2017b) each by considering different sets of axioms, other than Arrow’s,
provide an axiomatization of relative utilitarianism as a positive result. The
paper by Dhillon (1998) is the closest one to ours. Dhillon considers a variant
of extended Pareto to get a weighted averaging structure. However, Borgers
et al. (2017a) show a counterexample to the representation. We restrict the
domain and use our definition of extended Pareto to get the weighted averag-
ing structure as a consequence of our main theorem on the representation of
weighted averaging aggregation rules. Finally, the technique we developed can
also be used to provide a representation of the extended weak Pareto social

welfare functions.
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Chapter 4

A SUBJECTIVE CONDITIONAL EXPECTED UTILITY
THEORY OF STATE-DEPENDENT PREFERENCES

4.1 Introduction

The choice-theoretic foundation of subjective expected utility was developed
by the seminal works of Ramsey (1931), Savage (1954), and Anscombe and
Aumann (1963). In the standard model, the decision maker has a ranking
over acts (state-contingent outcomes). The representation of this ranking con-
sists of a subjective probability over the set of states, capturing the decision
maker’s beliefs, and a cardinal utility representing the decision maker’s tastes
over the set of outcomes, independent of the realization of the true state. How-
ever, in many applications, such as models for buying health insurance, the

independence of the utility and the set of states is not a plausible assumption®.

In Section 4.2, we provide a simple theory of subjective expected utility of
state-dependent utility by reinterpreting our representation of extended Pareto
aggregation rules. We build our model using the framework of Anscombe et al.
(1963). In our model, the decision maker has a preference ordering over the
set of conditional constant acts. This means that given any fixed event, the
decision maker has a hypothetical conditional preference ordering over the set
of lotteries, representing her conditional preference condition on learning that
only that event is happening?. Each of these hypothetical conditional prefer-
ences satisfies the axioms of Von-Neumann et al. (1944), which means each
has an affine representation. We show that as long as the class of hypothetical
conditional preferences satisfies the extended Pareto axiom, there is a subjec-
tive probability measure over the set of states and a state-dependent utility
over the set of alternatives. The class of hypothetical conditional preferences
has a representation in the form of conditional expectation with respect to the

subjective probability and the state-dependent utility.

The result shows that the extended Pareto is the main force behind the sepa-

ration of the belief and the state-dependent utility. However, the representa-

1Check Arrow (1974), Cook and Graham (1997), and Karni (1985) for more discussions.
2TIn Section 4.2, we illustrate another interpretation of hypothetical conditional prefer-
ences by providing a preference ordering over the set of conditional constant acts.
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tion is not unique. Hence, the challenge is to provide meaning to a decision
maker’s prior beliefs, when utility is state-dependent. We get the uniqueness
by adding a stronger version of our minimal agreement condition. The strong
minimal agreement condition specifies that there exist two lotteries where one
is strictly preferred to the other, regardless of states. Moreover, the decision
maker’s conditional preference for each of them is independent of the set of

states.

We show that under the strong minimal agreement, the belief is unique. More-

over, the state-dependent utility is unique up to affine transformation.

4.2 Main Model and Results

4.2.1 Primitives

In this section, we develop a simple theory of subjective expected utility of
state-dependant utility by reinterpreting the results of sections 3.2.2 and 2.5.3.
We show that the extended Pareto is the main force behind the separation of
a subjective belief and a state-dependant utility. However, adding a stronger
version of our minimal agreement condition allows us to uniquely separate the

belief and the state-dependant utility.

Our model is built using the framework of Anscombe et al. (1963). Let §2 =
{1,2,...,n} be a finite set of states of nature. The finite set M represents
outcomes. The simplex L = A(M) represents the set of lotteries over the set

M. A lottery [ € L associates the probability [; to the outcome i € M.

In this model, the decision maker faces two levels of uncertainty. First, the de-
cision maker does not know which states will obtain. Second, after realization

of the state, she faces the distribution induced by the lottery over outcomes.

There is a single outcome O other than the outcomes of the set M. The

outcome O represents that the decision maker can ez-ante refuse any lottery.

In our setup, the objects of choice are conditional constant acts. For any
lottery [ € L, and any event A € 2\ (¥, the function f : Q — L U {O} such
that f(w) = [ for w € A and f(w) = O for w € A¢ is termed a conditional
constant act and denoted by f = (I, 4,0, A°). The interpretation is that if
event A is realized, the decision maker faces the lottery [. Otherwise, O will
be realized. We assume that the decision maker has a preference relation >,

and not necessarily a complete relation, over the set of conditional constant
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acts.

Let ' = {(I,A,0,A°)| & # A € 29 1 € L} represent the set of conditional
constant acts. For any event (§ # A € 2% let Fy = {(I,A, O, A°)|l € L} be
the set of all conditional constant acts attaining a lottery on the event A and
staying out on the event A¢. We represent the conditional preference ordering

of the decision maker over F4 by >4. For any two lotteries [, ls, we write

l1 =4 ly as a shorthand of (I1, 4,0, A°) > (I3, A, O, A°).

Our interpretation of conditional preference ordering is related to the mod-
els developed by Luce and Krantz (1971), Fishburn (1973), Skiadas (1997a),
and Karni and D. Schmeidler (2007). However, there is another interpreta-
tion of the conditional preference similar to the conditional decision model of
Ghirardato (2002). In this interpretation, we assume that the decision maker
may receive some information that only w € A can be realized. In this case,
> 4 represents the decision maker’s ez-post preference over the set of lotteries.
Similarly, >q represents her ex-ante preference over exactly the same set of

lotteries.

Regardless of the interpretation, the goal is to provide a theory that connects
the class of conditional preferences through the Bayes updating. Formally, our
goal is to find the condition that there exists a state-dependent utility function
u: 2 x M — R and a subjective probability measure P : Q2 — R, ., such that

for every two lotteries x,y € L, and any event A the following holds:

TFAY S Z P(w|A)E*[u(w, )] = Z P(w|A)EY[u(w,-)]. (4.1)
weA weA

In the equation above, E*[u(w, -)] represents the expected utility of the state-
dependent utility u in the state w and with respect to the lottery x. The right
hand side of the equation is comparing the conditional expectation utility of
the lottery x and y, with respect to the subjective probability measure P
and the state-dependent utility u. The importance of the result is that the
probability measure P depends on the event A through the Bayes rule.

4.2.2 Main Axioms and Representation
In order to get equation 4.1, we define the following axioms.

Axiom 4.2.1. (Weak Order) For any event A, the conditional preference

> 4 is complete and transitive.
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Axiom 4.2.2. (vIN-M Continuity) For any event A and for every z,y, z €
L,if x >4y >4 z, there exist «, 5 € (0,1) such that

ar+ (1 —a)z >4y >4 fr+ (1 - P)z.

Axiom 4.2.3. (Independence) For any event A, every x,y, z € L, and every
ae(0,1),
rray=ar+(l—a)z>4ay+ (1—a)z.

The first three axioms are the standard vN-M axioms. Together, they imply
that there is a representation of each conditional preference >4 in the form of
an affine utility function. However, the affine utility function in the represen-
tation depends on the event A. The next axiom is the main connection of the

class of conditional preferences.

Axiom 4.2.4. (extended Pareto) For any two disjoint events A, B, and for

every x,y € L,

T FA Y, T F Y= >a.B Y (4.2)

T >4 Y, T Zp Y=1T >auB Y (4.3)

This is the main axiom of the previous section. The role is the same as
before, to get the Bayesian form of aggregation. Theorem 8 connects the ex-
tended Pareto (extended weak Pareto) to the strict weighted averaging axiom

(weighted averaging axiom).

We add two more axioms, similar to the richness and minimal agreement

conditions of Section 3.2.

Axiom 4.2.5. (Minimal Agreement) There exist two lotteries, T,z € L,

such that for every we Q, 7 >, z.

In the axiom, the two lotteries T, x are not necessarily the best and worst
lotteries. The decision maker, regardless of the realization of the states, always

prefers the lottery x to the lottery x.

The last axiom is the richness condition of Section 2.3.
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Axiom 4.2.6. (Richness) There exist three states wy,ws,ws € Q such that
for any w € {wy,ws,ws}, there exist two lotteries, z,y € L, where = >, y and

Y > T for ' € {wl,(JJQ,(JJg}\{W}'

The role of the axiom is similar to the role of the richness condition in Section
2.3. The axiom implies that there exists a representation of the class of con-
ditional preferences with affine functions having a dimension of greater than
two. It is another way of forcing the conditional preferences to satisfy the
definition of the Rx in Section 3.2.3.

By considering these six axioms, we can rationalize the behavior of the deci-
sion maker as a subjective expected utility maximizer with a state-dependent

utility.

Theorem 10. Suppose that the decision maker’s conditional preferences sat-
1sfy axioms 0.1-6.6, then there exist a function u : Qx M — R and a probability
measure P : Q) — R, such that for every two lotteries x,y € L, and any event
A, the following holds:

TEAY S Z P(w|A)E*[u(w, )] = Z P(w|A)EY|u(w,-)]. (4.4)

weA weA

The proof is similar to the proof of corollary 8.

It is important to note that the probability measure P is not unique. Let

Q : Q) - R, be any probability measure on €2; by defining a state-dependent

utility w(w, ) = “C(;(’Lf;), equation 4.4 continues to hold with @ and w. However,

if we change the minimal agreement axiom to a stronger version, we attain the
uniqueness. In the stronger version of the minimal agreement, we assume that
the decision maker’s preferences over the lotteries 7,z is indifferent to the

realization of the states. Formally:

Axiom 4.2.7. (Strong Minimal Agreement) There exist two lotteries
T,z € L such that for every w e Q, T >, x. Moreover, (T, {w;}, O, Q\{w,}) ~
(T, {wa}, O, N\{ws}) and (z,{w1}, O, N{w1}) ~ (z,{w2}, O, N\ {wa}) for all

w1, woy € £

Conceptually, this axiom is closely related to A.0 axiom by Karni and D.

Schmeidler (2007). However, unlike Karni’s axiom, we do not need these two
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lotteries to be the best and worst lotteries in the set of lotteries. Our model
only needs two lotteries with one strictly preferred to the other, regardless of
states. Moreover, the decision maker’s conditional preference for each of them

is independent of the set of states.

By replacing the minimal agreement axiom with the strong minimal agree-
ment axiom, we can “uniquely” separate the belief from the state-dependent

preference.

Theorem 11. Suppose that the decision maker’s conditional preferences sat-
1sfy axioms 6.1-6.7, then there exist a function u : Qx M — R and a probability
measure P : ) — R, ., such that for every two lotteries x,y € L, and every
event A, the following holds:

rraye Y PA)E uw )] > Y PA) B uw,)].  (4.5)

weA weA
Moreover, the probability measure P is unique and the function u is unique up

to affine transformations.

Proof. Based on Theorem 10, there exists a pair (P, u) satisfying equation 4.5.

To prove the uniqueness, we assume that (P, u;) and (P, ug) both represent
the same class of conditional preferences. By considering the conditional pref-
erence >, and the vN-M Theorem, we know that us(w,.) = a,ui(w,.) + Bu.
By using the strong minimal agreement axiom, we have u;(wy,T) = u;(wo, T),
ug(wy, T) = ug(we, T), ur(wr, ) = ui(we, x), and ug(wy, ) = us(ws, z) for any
two states wq,wy € €. Therefore, oy, = o, and B, = B, for all wy,w, € A

Hence, us(w,.) = auy(w,.) + B for all w e .

We consider an event A. Both (Pp,u;) and (P»,u2) represent the con-

ditional preference >,4. Considering the pair (P, us), >4 has the rep-

resentation ) Py(w|A)EV[ug(w,.)] = 3 Py(w]A)EV[aui(w,.) + ] =
weA

weA

a X Pa(wlA)EOus(w, )] + 6.

weA
Since, « 1is strictly positive, the last representation is the same as
> Py(w]A)EV[ui(w,.)]. However, using the other pair, (P, u;), we get the
weA
representation > Pj(w|A)EV[u(w,.)].

weA
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Therefore, for any event A, 3 Py(w]A)EQuy(w,.)]  and

weA
> P (w]A)EO[u;(w,.)] both represent the conditional preference > 4.
weA

Using the richness axiom, strong minimal agreement condition, and uniqueness

of corollary 8, we have P, = P,. This completes the proof.
O

The result shows that adding the strong minimal agreement allows us to

uniquely define the belief and the state-dependent utility.

4.3 Related Literature

There are many papers and different approaches to address the shortcomings
of subjective expected utility theory. Note that our goal, in this context, is to
explain the basic underlying structure that let us separate beliefs and state-

dependent utilities.

Karni, D. Schmeidler, and Vind (1983) and Karni and D. Schmeidler (2016) use
hypothetical preferences on hypothetical lotteries to obtain the identification
of the beliefs and state-dependent preferences. Dereze (1987), Dereze and
Rustichini (1999), and Karni (2006) present different theories to identify state-

dependent preferences in situations where moral hazard is present.

Luce and Krantz (1971) and Fishburn (1973) use preferences on enlarged choice
space of all conditional acts to model subjective expected utility of state-
dependent preferences. However, our paper only considers the hypothetical
conditional preferences on the set of conditional “constant” acts. We find the
necessary and sufficient condition that our conditional preferences are related

to each other through a subjective probability and a state-dependent utility.

The papers by Skiadas (1997a), Ghirardato (2002), and Karni and D. Schmei-
dler (2007) are closely (conceptually) related to our main result of Section 4.2.
However, there are many differences between each result. Moreover, our goal is
to build the model that only extended Pareto derives the separation of beliefs

and state-dependent preferences.

Skiadas (1997a) presents a nonexpected utility model, by considering hypo-
thetical preferences over the set of act-event pairs. His coherence axiom has
the same role as the extended Pareto axiom in our setup. However, he used

the solvability axiom to be able to apply the Debreu’s additive representation
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theorem. In our paper, we consider the class of conditional vN-M preferences.

As a result, we only require the extended Pareto for our representation.

Karni and D. Schmeidler (2007) presents a general model with a preference
ordering over the set of unconditional acts. Using the preference order, he
defines the set of conditional preferences over the set of all conditional acts.
Therefore, to connect the class of conditional preferences, the model needs the
existence of the constant-valuation acts. Moreover, the cardinal and ordinal
coherence axioms are the main forces behind obtaining the Bayesian updating
in his representation. However, in our more restricted domain, we only need

the extended Pareto to get our representation.

Finally, Ghirardato (2002), by replacing Savage’s sure thing principle by dy-
namic consistency, obtains a subjective expected utility theory that the con-
ditional preferences are connected through the Bayes rule. However, his rep-

resentation only holds for the state-independent preferences.
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Appendiz A

APPENDIX TO CHAPTER 1

A.1 Mobius Operator
The main technical tool for section 1.5 is the Mobius inversion formula !.
Let (X, %) be a finite partial ordered set. We define the Mdbius function
1 X x X — R as follows:

We set pu(z,y) = 0 whenever y % x, and pu(x,z) = 1 for all x € X. Then, we

define other values inductively as follows:

w(z,y) = — Z pu(z, z).

Y>2ZT

By above definition, we have:

1 ifz =y,
> e, z) =

Let (X)® denote the set of all functions from X to R. Then, the Mobius
operator @ : (X)* — (X)¥ is defined by @(f)(z) = 3, f(y). Mobius
inversion formula guarantees that the Mobius operator is bijective and the

inverse is ®7(g)(z) = szy w(w,y)g(y).

Theorem 12. (Mdbius inversion formula) Let (X, %) be a finite partial or-
dered set and p be its Mobius function. Let f,g: X — R. Then

g(@) =Y f(y)

implies that

Fla) = nly, 2)g(y).

XY

IFor an application of the technique in Kreps’ setting, check Nehring (2001). For a
complete study of the concept, see Chateauneuf and Jaffray (1989).
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Proof. To be complete, we add the proof.
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Appendiz B

APPENDIX TO CHAPTER 2

B.1 Proof of Theorem 4
The following two lemmas are the central ideas behind the proof. They help
us to first define the function w and then extend it from the binary sets to any

finite-cardinality sets.

Lemma 5. Select X as any nonempty set. Let X™* denote the set of all
nonempty finite subsets of X. Consider two functions fi, fo : X* — R" that
satisfy the strict weighted averaging axiom. Select four points a,b,c,d in the
space X* such that a b = cud and anb = cnd = . IfV x €

{a,b,c,d} fi(x) = fa(x) and not all {fi(a), f1(b), fr(c), f1(d)} are on a same
line, then fi(a ub) = fa(aub).

Proof. Since f satisfies the strict weighted averaging axiom and au b =cud
and a nb=cnd= ¢, thus fi(a ub) is on the line connecting fi(a), f1(b).
Also, since aub = cud, fi(aub) = fi(cud) should be on the line connecting
fi(c) and fi(d). But {fi(a), f1(b), f1(c), f1(d)} are not collinear, thus the line
connecting fi(a) and fi(b) and the line connecting fi(c) and fi(d) can only
intersect at most at a single point. But fi(a U b) is on the both lines, hence

this point must be the unique intersection of them.

Similarly, the same is true for f,. This means fy(a U b) must be the unique
intersection of the line passing through fs(a), f2(b) and the line passing through
fa(c), fa(d). But since Yz € {a,b,c,d} fi(x) = fa(x), fo(a U b) should be
the unique intersection of the line passing through fi(a), fi(b) and the line
passing through fi(c), fi(d). But we have already shown that f;(a U b) is also
the unique intersection of the line passing through fi(a), f1(b) and the line
passing through fi(c), fi(d). Thus, fi(a U b) = fa(a U b).

]
Lemma 6. Assume that {x,y,z} are three points in X such that

f(x), f(y), f(2) are not collinear. Let f satisfy the strict weighted averag-
ing aziom and f({x,y,z}) = a1f(x) + asf(y) + asf(z), then ai/ay must be
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independent of the choice of z, as long as f(x), f(y), f(z) are not collinear.
Moreover, if f({z,y}) = Af(z) + (1 = A)f(y), then 5t = 25

Proof. Since f(x), f(y), f(2) are not collinear, they should be affinely indepen-

dent. Hence, a1, as, az are uniquely defined.

By the strict weighted averaging axiom, there exists A\; € (0,1) such that
f{z,y,2}) = M f({z,y}) + (1 — A1) f({z}). Again by the strict weighted aver-
aging axiom there exists A € (0, 1) such that f({z,y}) = Af(x) + (1 = \)f(y).
Hence, f({z,5,2}) = MOM(@) + (1= NF ) + (1— \)f({z}). By affincly
independence of f(x), f(y), f(2), we should have a; = A\ and as = A\ (1 —\).

A
1-x°

of z, as long as f(x), f(y), f(z) are not collinear. O

This means that Z—; = which means that a;/as is independent of the choice

B.1.1 Proving the necessary and the uniqueness part
Assume that the weight function w exists. Therefore, f(A) = %

It shows that if A n B = ¢, then f(Au B) = % =
Spea (@) \(Syesw@) (@) Spenw(®) o Spepwle)f() o .
(S a@ (TS )+ (5w (S ew ) By defining
A = =0 e have f(A U B) = Af(A) + (1 — A)f(B). Thus, the

ZzeAuB w(x) ’

strict weighted averaging axiom satisfied.

Regarding the uniqueness of w, assume that there exist two wq, ws such that
f(A) = % = %. Since the range of f is not a subset of a
line, there exist at least three elements x,y,z € X such that f(x), f(y), f(2)
are not collinear. Thus, they are affinely independent. Hence, f({z,y,z}) =
ar f(z) + as f(y) + azf(z) has a unique solution ay, as, az. Hence, there should
be an « such that wy(p)/wa(p) = a Vp € {z,y,z}. We will show that for all

other point r € X, wy(r)/wa(r) = a.

Select a point r € X, based on the assumption on {x,y, z}, there should be at
least two points u,v in {x,y, z} such that f(r), f(u), f(v) are not collinear.
Without loss of generality, assume that {u,v} = {z,y}. Since f(r), f(z), f(y)
are affinely independent, f({z,y,7}) = by f(x)+baf(y)+ bsf(r) where by, by, bs
are unique. Therefore, there exists § such that wi(p)/ws(p) = B Vp € {z,y,r}.
But notice that a = wy(x)/wy(x) = 5. Hence, we should have wy(r) /wq(r) = «

and this is what we wanted to prove.
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B.1.2 Proving the sufficiency part

First, in order to define the function w, fix an element zy € X and put w(zg) =
1. Based on the strict weighted averaging axiom for any y € X\{zo} such that
f(y) # f(xo), we have a unique X € (0, 1) such that f({zo,y}) = \f(zo)+ (1 —

A)f(y). Let define w(y) = 152

To define the weight for any other y € X\{xo} with f(y) = f(zo), we fix
another point zg € X\{zo} such that f(z9) # f(xo). Since f(zo) = f(y),
we should have f(y) # f(z). By using the strict weighted averag-
ing axiom, we know that there exists a unique A € (0,1) such that
f({z0,y}) = Af(20) + (1 — N)f(y). Since the weight on z, has already
been defined, we define the weight of y such that “& — 1= Thys,

w(20) A
w(y) = w(z) x 2.

In the rest of this section, we are going to prove that w satisfies the repre-
sentation of the theorem. It means that by defining f*(A) = %, we

should have f*(A) = f(A).

First, in Step 1 we prove that the representation holds for any three points,
as long as the three points under f are not collinear. In Step 2, we prove
that the representation holds for any two points. In Step 3, (which is not
necessary, and we provide it for its simplicity to capture the main ideas of the
main part) we prove that for three points the representation holds. Finally,
in Step 4, by using induction on the cardinality of subsets of X, we show that

the representation holds for any subset of X.

Step 1: for any three points r, s, t such that f(r), f(s), f(t) are not collinear,

we have f({r,s,t}) = a1 f(r) +a2f(s) + a3 f(t), where a; are unique. Note that

it is enough to prove that Z—; = 38, because in the same way, we can also get

2 — M, a — @) There are two cases:
as w(t)? a1 w(r)

Case 1: [If xzy,r,s are such f(zo), f(r),f(s) are not collinear then
f({zo, 7, 8}) = bif(zo) + baf(r) + bsf(s). Based on Lemma 6, we know that

o= 2—§ But Again using the Lemma 6 and the way we define w, we know that
bo— L b — 1 which means that & = w(r) Hence, we have % =
b2 w(r)? bs w(s) bs w(s) az

w(r)
w(s)*

Case 2: If zg,7,s are such that f(xg), f(r), f(s) are collinear, in this case
f

both {f(xo), f(r), f()} and {f(z0), f(s),

(t)} are not collinear. By the same
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Z((:)) and 92 = % Hence, it

, which is what we wanted to prove.

technique as the first case, we get that Z—; =

a1 _ ar a3 _ w(r) wl) _ w(r)
means that o= o X = oD X w(s) = s

Step 2: Assume that ;s € X. We want to show that f*({r,s}) = f({r,s}).
If f(r) = f(s), then it is true. If f(r) # f(s), then by the richness condition,
there exists an element ¢ € X such that {f(¢), f(r), f(s)} are not collinear.
Based on Step 1, we know that f({t,r,s}) = f*({t,r,s}), also we have
ft) = f*(t), f(r) = f*(r), and f(s) = f*(s). Notice that, based on the
strict weighted averaging axiom, f({r,s}) is on the line connecting f(r) and
f(s). Also, it is on the line connecting f({¢,r,s}) and f(¢). The reason
is that by the strict combination axiom, there exist a A € (0,1) such that
ft,r,s}) = Af(t) + (1 — N)f({r,s}), which means that f({r,s}) is on the
line connecting f({t,r,s}) and f(¢). Similarly, everything holds for f* which
means that f*({r,s}) is on the line connecting f*(r) and f*(s) and also it
is on the line connecting f*({¢,r,s}) and f*(t). Since {f(¢), f(r), f(s)} are
not collinear the intersection of two line can have at most one solution and
since f({t,r,s}) = f*({t,r,s}), f(£) = f*(2), f(r) = f*(r), and f(s) = f*(s)
then by a similar argument as Lemma 5, we should have a unique inter-

section, which satisfies f*({r, s}) = f({r, s}). This is what we wanted to prove.

Step 3: (This part is the tricky part, and we provide it to capture the
main ideas. We will use the same technique in Step 4) We are going to prove
that for all three point r,s,t we have f*({r,s,t}) = f({r, s, t}).There are two

separate cases to be considered.
Case 1: If f(r), f(s), f(t) are not collinear, then by Step 1, it is correct.

Case 2: Assume that f(r), f(s), f(t) are collinear. If all of them are the same,
then by strict weighted averaging axiom f*({r,s,t}) = f({r,s,t}). Hence,

assume that they are not all the same.

Without loss of the generality, assume that f(s) # f(r), f(s) # f(t). Based
on the richness condition of f, we should have a point v € X such that not
all f(v), f(r), f(s), and f(t) are collinear. Note that, f(v), f(r), f(s) are not
collinear. Similarly, f(v), f(s), f(t) are not collinear. Based on Case 1, we
know that f*({v,r,s}) = f({v,r,s}) and f*({v,s,t}) = f({v,s,t}). Also,
we know that f*(v) = f(v), [*(r) = f(r), f*(s) = F(s), and f*(t) = £(t).

Using the strict weighted averaging axiom, we know that f({v,r,s,t}) is on
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the intersection of the line passing through f({v,r,s}) and f(t), and the line
passing through the f({v,s,t}) and f(r). Also, note that not all of f({v,r, s}),
f({v,s,t}), f(r), and f(t) are collinear, since otherwise f(v) must be on the
line connecting f(r) and f(s). Similarly, we have the same properties for

f*({v,r,s,t}). Based on the argument of the Lemma 5, we have f({v,r, s,t}) =
[*({v,r, s,t}).

By using the strict weighted averaging axiom, we know that f({r,s,t}) is on
the line passing through f({v,r,s,t}) and f(v), since there exists A € (0,1)
such that f({v,r,s,t}) = Af({r,s,t}) + (1 — N)f(v). Again, by using the
strict weighted averaging axiom, we know that f({r,s,t}) is on the line
passing through f({r,s}) and f(¢). Also, the same holds for f*. Moreover,
we have f({v,r,s,t}) = f*({v,rs,t}), f({r;s}) = [*({r;s}), f(v) = f*(v),
and f(t) = f*(t). Also, not all f({v,r,s,t}), f({r,s}), f(v), and f(t) are on
a same line, since otherwise f(v), f(r), f(s), and f(¢) are collinear which
is not correct. As a result, based on the argument of lemma 5, we have
f*({r,s,t}) = f({r,s,t}). The latter is what we wanted to prove.

Step 4 (The main Step): Up to here, we prove that for any A € X* if
|A| < 3 then f*(A) = f(A). To complete the proof, we will use an induction
on the cardinality of A. Assume that for all A € X* with |A| < k we have
f*(A) = f(A). We are going to show that for all A € X* with |[A| = k + 1,
we have f*(A) = f(A).

Fix a subset A with |A| = k + 1. Assume that A = {z1,...,2541}. There are

two separate cases to be considered.

Case 1: Assume that not all {f(z;)}*"' are collinear. Note that, by the
induction hypothesis, Yz € A and ¥V B € 24\#} we have f(B) = f*(B). Define
line(f(x), f(A\{z})) as the line passing through f(z) and f(A\{z}) for the
case where f(x) £+ f(A\{z}). However, if f(z) = f(A\{z}), then define it as
the single point f(z).

If there exists © € A such that f(x) = f(A\{z}), then based on the strict
weighted averaging axiom , there exists A € (0,1) such that f(A) = A\f(z) +
(1 = N f(A\{x}) = f(z). Similarly, f*(A) = f*(x). But, we know that
f(z) = f*(x), which means that f(A) = f*(A).

If Voe Aflx) £ f(A\{z}), then there exist z,y € A such that
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f(z), f(A\{x}), f(v), f(A\{y}) are not collinear. Beacuse otherwise all f(z;)

are on the f(z), f(A\{z}), which cannot be correct since we assumed
that not all {f(z;)}*f] are collinear. Considering z,y € A such that
f(x), f(A\{x}), f(y), f((A\{y}) are not collinear, based on the strict weighted
averaging axiom we know that f(A) is on line(f(x), f(A\{z})). Also, it must
be on line(f(y), f(A\{y})). Similarly, by the strict weighted averaging ax-
iom when applied to f*, we know that f*(A) is on line(f*(x), f*(A\{z})).
Moreover, it must be on the line(f*(y), f*(A\{y})).

Since (1) f(z) = [f*(z), f(A\{z}) = [f(A\{z}), Ply) = P*(y),
P(A\{y}) = P*(A\{y}) and, (2) not all f(z), f(A\{z}), f(y), and f((A\{y})
are collinear, based on the Lemma 5, we have f*(A) = f(A). Hence in the
case that not all {f(z;)}* are collinear, we showed that f*(A) = f(A).

Case 2: Assume that {f(x;)}*f] are collinear. Without loss of generality,
assume that f(z1), f(xry1) are the two extreme points on the line that contains

them, which means that all other points are between these two.

If f(z1) = f(zps1),then all {f(z;)}*! are the same. Using the strict weighted
averaging axiom, it shows that f(A) = f(z1) = f*(z1) = f*(A4).

If f(z1) # f(zk41), based on the richness condition of the aggregation
rule f, we can select a point y € X\A such that not all f(y), f(z1),
and f(xgy1) are collinear. Based on the previous Case 1, we know that
fly,z1,...,xr) = f*(y,x1,...,2x), since we have proved that f and f* are

coincided for any k + 1 not collinear points. Similarly, we have f(y,xs,

s ,Z‘k+1) = f*(y7x27 R ,.Tk+1).

Using the strict weighted averaging axiom, f({y,z1,...,2x1}) is on the
line(f({y, z1,...,xk}), f(xre1))- It is also on the line(f({y,xo,
"'7xk+1})7f(xl>>' AISO, not all f({y7$17"'7xk})7 f(karl))a f({y;an
.oy Try1}), f(x1)) are collinear, since f({y,xi,...,xx}) cannot be on

line(f(x1), f(xgr1)) otherwise f(y) must be on that line which is not correct.

Similarly, everything holds for the f*.

Since, f({y,l’l,...,xk}) = f*({ywrl""axk})’ f(xk+1> = f*(karl))
f({ya HI I 7xk+l}) = f*({yax% <. 7$k+1}>7 and f(‘rl) = f*(xl) then again
by using Lemma 5, we get f({y,z1,...,2x1}) = [*({y, 21, ..., T11}).

The point f({z1,...,Trs1}) is on the line(f(x1), f(zx)). It is also on the
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line(f(y), f{y,x1,...,2ks1})), since by the strict weighted averaging axiom

fly, 1, .. xe1}) = AMf(y) + (1 = N f({z1,...,2541}) for some X\ € (0,1).
Similarly, the same holds for f*. Finally, since (1) f(y) = f*(v), f({y, z1, ...,
Trar}) = (Y21, @eiad), f(@n) = f*(21) and, (2) f(@ee1) = [*(@re1)
and f(x1), f(xgs1), and f(y) are not collinear, then using the same types of
arguments in Lemma 5, we get f(A) = f*(A). This is what we wanted to

prove.

Hence, for all A € X* with cardinality k& + 1, we have f(A) = f*(A). Based
on the induction, we have f(A) = f*(A) for all A e X*. This completes the

proof.

]

B.2 Proof of Theorem 5

There are couple of steps in the proof. Defining the weak order:

Step 1: First, we define a binary relation > over every two different elements

x,y € X by:
Case 1: If f(z) # f(y), we define z > vy — f({z,y}) # f(y).

Case 2: If f(x) = f(y), then by the strong richness condition, we select
another point z € X, such that f({z,z}) ¢ {f(x), f(2)}. Hence, we have
f(2) # f(y). In this case, we define x >y < f({z,y}) # f(y).

To obtain reflexivity, for any x € X, we define z > x.

Step 2: We prove that > is a weak order. The reflexivity and the completeness
are trivial. We only need to establish the transitivity. Assume that x > y,y >

z. We will show that x > z.
The proof is by contradiction. Therefore, assume that z > x.

Case 1: Assume that f(z), f(y), f(z) are non-collinear. Since z > z, based

on the way we defined >, we have f(z,z2) = f(2).

Consider the coalition {z,y, z}. By using the weighted averaging axiom over
the sub-coalitions {x, z} and {y}, the vector f({x,y, z}) should be on the line
joining f(y) and f({z, z}) (which is the same as f(z)). Similarly, by considering
the sub-coalitions {z,y} and {z}, f({z,y,z}) should be on the line passing

through f({z,y}) and f(z). Since f({z,y}) # f(y) and f({z,y}), f(v), f(2)
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are non-collinear, we have f({z,y,z}) = f(z). However, by considering the
sub-coalitions {y, z}, {z} and the fact that f({y, z}) # f(z), this cannot be

happen. Therefore, z > z.

Case 2: Assume that f(z), f(y), f(z) are collinear. By using the strong
richness condition, we can select a point w € X such that f(u) is not on the
line passing through f(x), f(y), f(2), and also f({u,z}) ¢ {f(z), f(u)} (this
means that © ~ u). First, using Case 1, by considering the coalitions {u, x, y},
{u,x,z}, we have u > y and z > u. Since {u,y, z} are non-collinear, by using
case 1, we have z > u,u > y = z > y. But this is a contradiction. Therefore,

x = Z.

The main part: proving f(A) = f(M(A, >)).

Up to here, we show that > is a weak order. Next, we will show that for any

coalition A € X* we have f(A) = f(M(A, >)).

We use the letter H for the highest-ordered elements of A, and L for the rest.
In other words, H := M(A, >), L := A\H. The proof is by a double-induction
on the cardinality of H and L. In Step 1, we will show that if x € X and L € X*
are such that Vz e L : x > y, then we should have f({z} u L) = f(x).

In Step 2, we show that for a given coalition H € X™, where all elements
of H are in the same equivalence class, and for all L € X* if for all
xeH, ye L:x >y, then we have f(H u L) = f(H). Using these two steps,
we will finish the proof.

Step 1: Fix an element x € X. By induction on the cardinality of L, where
Vye L, x >y, we prove that f({z} U L) = f(z).

We have already proved the case where |L| = 1. Assume that for all |L| < k
the result is correct. We will show that for all L with |L| = k£ + 1, the result

is also correct.

Fix a coalition L with |A] = k + 1 and such that Vy € L, x > y. Assume that
A= {y17 S 7yk+1}‘
If for all y € L : f(y) = f(x), then using the weighted averaging axiom

f({x}ulL) = f(z), which is what we wanted to prove. Similarly, if f(L) = f(z),
we have f({z} U L) = f(z).
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Therefore, consider the case that not all of them are the same and f(L) # f(z).

Using our definition of the line in the proof of Theorem 4, for each y € L we
consider line(f({z} u (L\{y})), f(y)). Using the weighted averaging axiom,
for all y € L, f({z} u L) € line(f({z} v L\{y}), f(y)). By using the induc-
tion hypothesis f({z} v L\{y}) = f(x). Therefore, Vy € L, f({z} U L) €

line(f(x), f(y))-

Similar to the proof of Theorem 4, we consider two separate cases.

Case 1: Consider the case where there exist two elements y;, yo € L such that
f(z), f(y1), f(y2) are non-collinear. We use the same technique as in the proof
of Theorem 4.

We know that f({z} u L) € line(f(z), f(y1)) as well as f({z} v L) €
line(f(x), f(y2)). Moreover, we know that f(z), f(y1), f(y2) are non-collinear.
Therefore, the intersection of the two lines should be f(x). This shows that

flay o L) = f(x).
Case 2: If all the vectors f(x), f(y1),.-., f(yrs1) are collinear. In this case,

the idea is to add a point 2’ € X such that 2/ ~ x and f(2’) is not on the line
containing all f(z), f(v1),..., f(yg+1). This is possible because of the strong
richness condition. By using the transitivity of the >, Vy e L : z' > v.

Fix a point yo € L such that f(yo) # f(z). This is possible since we already
assumed that not all f(y) ,with y € L, are the same as f(z).

Consider the coalition {z} U {2’} U L. By using the weighted averag-
ing axiom and the sub-coalitions {z, L\{yo}}, {2’,y0}, we have f({z} U
{'} U L) € line(f({x, L\{yo}}), f({«',40})). Using the induction hypothesis,
F({ I\go}}) = F(2) and F({a/,o}) = f(&'). Therefore, f({z} L ('} U L) €
line(f(x), f(2"))-

Next, we show that f({z} u {2’} U L) # f(x). Since x ~ 2" and f(x) # f(2'),
we have f({z,2'}) # f(2'). Moreover, based on the way we selected the point
', f({z,2'}) is not on the line containing f(z) and {f(y)|y € L}. Consider the
partition of {z} U {2’} U L into {z,2'} and L. Based on the choice of the L, at
the beginning of Step 1, f(L) # f(x). Since f({z,2'}) # f(z), f(L) # f(x),
and f(z), f(2), f(L) are non-collinear, we have f({z} u {2’} U L) # f(x).
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Finally, by partitioning {z} u {2’} U L into {2’} and {z} U L, the weighted
averaging axiom results in f({z} u {2’} U L) € line(f({z} U L), f(2)).
Therefore, f({z} u L) is on the line joining f({z} u {2/} U L) and f(2').
However, we have already shown that f({z} u {’'} U L) is on the line passing
through f(z) and f(2'). Thus, f({z} u L) should be on the line joining f(x)
and f(2’). However, the only intersection of line(f(xz), f(2')) and the line
containing all the points f(z), f(v1),..., f(yrs1) is the point f(x). Thus,
f({z} u L) = f(x), which completes the proof.

Step 2: In this step, by using induction on the cardinality of the set H, in
which all elements have the same order, we show that for any coalition L if
all elements of the set L have lower orderings compared to the elements of H,
then we should have f(H v L) = f(H).

Fix a set L. Based on Step 1, we know that for any x € X such that
Vy e L : x>y, we should have f({z} u L) = f(x). This is the starting point
of our induction. Assume that for all |H| = k, we have f(H v L) = f(H).
We will show that for any |H| = k + 1, we have f(H u L) = f(H).

For any x € H, by the weighted averaging axiom over the sub-coalitions {z}u L
and H\{z}, we have f(H u L) € line(f({z} U L), f(H\{z})). Based on step 1,
we know that f({z} U L) = f(x). Therefore, f(H U L) € line(f(x), f(H\{x})).
Similarly, by the weighted averaging axiom over the coalition H and its
sub-coalitions {z}, H\{z}, we should have f(H) € line(f(x), f(H\{z})).

Consider two cases:

Case 1: Consider the case in which not all members of {f(z)|lz € H}
are collinear. Hence, there should be at least two elements x,y € H that
f(x), f(H\{z}), f(y), and f(H\{y}) are not collinear. Therefore, the intersec-
tion of the lines joining f(x), f(H\{z}) and the line joining f(y), f(H\{y})
can have at most one intersection. Since f(H) is on both lines, the unique
intersection should be f(H). But f(H u L) is also on both lines. Hence, we
should have f(H u L) = f(H), which completes this case.

Case 2: Consider the case where all members of the set {f(z)|z € H} are on
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a line. By using the strong richness condition, there exists an element 2’ € X
such that f(z’) is not on that line. We consider the coalition {2’} U H U L.
By using the weighted averaging axiom over the sub-coalitions {z'} U L and
H, we should have f({z'} U H U L) on the line joining f({z'} U L) and f(H).
By the induction hypothesis, f({z'} U L) = f(z’). Hence, we should have
fl{a'} U H U L) € line(f(a'), f(H)).

Similarly, by partitioning the set {z'} U H U L into H u L and {z'}, we have
fa'y U H U L)€ line(f(2), f(H v L)).

Select an element z; € H. By partitioning the coalition {z'} U H U L between
the sub-coalitions {x,2'} and (H\{z1}) U L, using the weighted averaging
axiom, we obtain f({z'} U H u L) # f({z'}).

Finally, wusing (1) f({z'} v H v L) € lne(f(2),f(H)), and (2)
f{a’"yOHUL) € line(f(z'), f(HUL)), and (3) f({z'}UHUL) # f(2), we have
line(f(x'), f(H)) = line(f(2"), f(H v L)). But the intersection of the last
line with the line containing all the elements of H, can have at most one
intersection. Therefore, f(H v L) = f(H), which completes the proof.

Completing the proof:

Counsider a coalition H where all elements have the similar order. We consider
any two disjoint sub-coalitions Hy, Hy € H, where f(H;) # f(Hs). Using the
same technique of the previous part, we have f(H; U Hs) # f(Hy).

By using the result of Theorem 4, we can get the appropriate representation in
each equivalence class. Also by using the result of the previous part, f(A) =
f(M(A, >)). The combination of these two results completes the proof. [

B.3 Proof of Theorem 6

The following two lemmas help us prove the theorem.

Lemma 7. Given any two linearly independent vectors vy,vs in R™, there
exists a neighborhood of vy that any vector in that neighborhood is linearly
independent of vy. More generally, given any m wvectors {vi,..., vy} such
that vy is not in the linear space generated by the rest of the points, then

there exists a neighbor of vi such that any point in that neighborhood is not in

span({va, ..., vm}).
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Proof. Since K = span({va,...,v,}) is a closed set that is disjoint from the
vector vy, the distance between v; and K should be nonzero. Hence, there
exists a neighborhood of v; (for example the ball with radios dist(vy, K)/2
around v ) disjoint from K. As a result, any point in that neighborhood is

not in span({vy,...,v,}). O

Lemma 8. Let vi,vy € R" be two linearly independent vectors and v = avy +
(1 — a)vy, for some o € [0,1], is a vector between vy,vy. If the vectors v, =

U1+ (1 —ay,)vy are such that oy, € [0, 1], v8 — ve, and v, — v, then o, — a.

Proof. We prove it by contradiction. If it is not the case, there exists a sub-
sequence a,, of a, and some ¢ > 0, such that V n; : «,, ¢ B.(a). Based
on compactness of [0,1], there exist a subsequence Oy, of ay, that is con-
vergent to some § € [0,1]. Since a,, ¢ B.(a), we have 8 + «. Based on
the assumption of the lemma, since the sequence v, is convergent to v, the
subsequence Uny, also converges to v. Similarly, vg t3 converges to vy. Hence,
Uny, = Ony, U1 + (1-— ankj)v;kj — vy + (1 — B)vy and Uny,, = U As a result,
puvy + (1 — By = v = av; + (1 — a)vy. However, since vy, vy are linearly
independent, a and [ should be the same, which is a contradiction. The

contradiction shows that a,, — «. O

Using the lemmas mentioned above, we will complete the proof. Based on
Theorem 2.4, there exist a unique weak order > and a weight function w :
X — R, such that for any A e X*

xeM(A,>)

f(A) =

Let x € X be any given point. We need to prove that the weight function
is continuous around x and any point close enough to x has the same order,

respect to the weak order >, as x.

To complete the proof, assume that z,, € X and z, — x. We are going to
prove that:

1) w(zn) = w(z),
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2) 3N € N such that for alln > N : z,, ~ .

Proving these two completes the proof.

Based on the strong richness condition, there should be a point y € X such that

(1) f(z), f(y) are linearly independent, and (2) f({z,y}) = w(w)ﬁgizgzgf(y),

which means that z ~ y. The reason is that by the strong richness condition,

there should be at least two other points y, z with the same order as x, such
that not all of f(z), f(y), and f(z) are collinear. This means that f(z) and
at least one of f(y) or f(z) should be linearly independent. Without loss of

generality, we assume that f(x) and f(y) are linearly independent.

Given any two points a,b € X, we define the function 1,(b) as follows:

1 ifdb > a,
1a<b> =
0 Otherwise.

Consider the sequence of vectors f({z,,y}). By Theorem 5, we have
Ly (xn)w(zn) f(zn)+1s, (y)w 1, (zn)w(xn
fzn,y)) = y(@n)w(@n) f(@n)+1e, Wwy)f)  _ y(@n)w( zy)w(y)f(wn) +

Ly (zn)w(@n)+ 1y (Y)w(y) Ly(zn)w(zn)+1ay,

Loy, (Y)w(y) - .
lmn(y)w(y)fly(zn)w(%) f(y). Based on continuity of the aggregation rule f,

flan) — flz) and f({zn,y}) — f({z,y}). Since f(z) and f(y) are lin-

early independent, all conditions of Lemma 8 are satisfied. Hence, we have

L, (W) ) L) )
1y(zn)w(zn)+1a, (Y)w(y) w(z)+w(y 1y(zn)w(zn)+1a, (y)w(y) w(z)+w(y)

both w(z) and w(y) are strictly positive, we should have 1,(x,) — 1 and sim-

Since

) and

ilarly 1, (y) — 1. This means that for large n, x,, ~ y. Since y ~ z, for large

n we have x,, ~ x. This complete part 2 of the proof.

For the part 1, since we have already proved that for large n, x, ~ z ~ vy, the
Loy, (y)w(y) w(y) w(y) ., w)

convergence — o) becomes (

Ly (zn)w(@n)+ 1y (Y)w(y) w(z)+w w(zn)+w(y) w(z)+w(y)
This means that w(x,) — w(z), which proves that w is continuous at x.

Proving part 1 and 2 complete the proof.

B.4 Proof of Proposition 9

There are a couple of steps to prove the result.

Step 1: Assume that all signals arrive at time 1. By using Corollary 3, there

exists a unique (up to multiplication) weight function w : X* — R, ., such
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2 w(z)f(z)
that for all A e X* f(A,1) = % By using the uniqueness of w and
€A
the stationarity axiom, for any constant time shift ¢ and for all A € X* we

have:

f(A0) = e

€A

Consider two signals xg, yo € X, where f(zo) # f(yo). Let the timing of zy, yo
be Tizo o1 (T0) = 1, Tizg 401 (Y0) = 2. Using the strict weighted averaging axiom,
there exists a A € (0,1) where f({z0, %0}, Tizowo}) = M (x0) + (1= X) f(yo). We

w(yo)

w(zo)

In the rest of the proof, we show that these choices of w, ¢ attain the repre-

define ¢ such that 152 = ¢ x

sentation of Proposition 9.

Step 2: We show that for any signal z € X, the representation holds for the

coalition {x¢, 2z} and for the timing function T, .y (z0) = 1, Tiz,,:1(2) = 2.

Case 1: Consider any signal z € X, such that {f(zo), f(v0), f(2)} are not
collinear. We form the coalition {x¢,yo, 2} with the timing Tz, -} (®0) =
L, Tiwo 0,2} (0) = 2, Tiagyo,21(2) = 2. Using the strict weighted averaging
axiom, by considering the sub-coalitions {z¢} and {yo, 2z} and the fact that yo
and z has the same timing, Lemma 6, in the proof of Theorem 4, shows that

the representation holds for the coalition {x¢, 2z} with the timing T{,, .} (o) =
1,T{x0,z}(2) = 2.

Case 2: Consider any signal z € X, such that {f(zo), f(w), f(2)} are
collinear. By the richness condition, there exists a signal 2’ € X such
that {f(xo), f(yo), f(2), f(2')} are not collinear. We consider the timing
Tizo,90,2,23(0) = 1, Tiagyo,221 (W0) = 2, Tiwo oz (2) = 2, Tiwg o,z (2) = 2.
The representation holds for the sub-coalitions {z,y,z'} (by Case 1) and
{y,z, 7'} (since all have the same timing). Thus, by applying Lemma 6 first
on {y, z,2'} and then on {z,y, z’}, we can show that the representation holds

for the coalition {x¢, 2z} with the timing T, .} (z0) = 1, Tizy3(2) = 2.

Step 3: We show that the representation holds for any two signals u,v € X
with the timing function Ty, (u) = 1, Ty (v) = 2.

Case 1: If {f(z0), f(u), f(v)} are non-collinear, then we consider the timing
function Tz uu (20) = 1, Thzguwy (@) = 1, Tizguey (v) = 2. By applying Lemma

6 twice on {zg,u} and {xg,v} with their corresponding timings, we can show
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that the representation should holds for u,v € X with the timing function
T{uﬂ)} (U) = 17T{u,v} (U) = 2.

Case 1: If {f(xo), f(u), f(v)} are collinear, then by the richness condi-
tion, there exists a signal z € X such that {f(zo), f(u), f(v), f(2)} are not
collinear. Consider the timing function Ty uv-1(%0) = 1, Tizguw,:} (1) =
L, Tiwouwet (V) = 2, Tz uw:(2) = 2. By applying Lemma 6 for the sub-
coalition {xg,u,z} and their corresponding timing, shows that the represen-
tation holds for {u,z} and their timing Ty, .y(u) = 1,7 (2) = 2. Then,
by considering the coalition {u,v,z} and their corresponding timing, Lemma
6 shows that the representation holds for {w,v} and the timing function
Ty (u) = 1, Ty (v) = 2.

Step 4: In this step, we show that given any ¢ € N, the representation holds
for any two signals u, v € X and the timing function T, .y (u) = 1, Tjy,, (v) = t.
The proof is by induction on t. By Step 3, the representation holds for ¢ = 2.
Assume that the representation holds for all ¢ < k£ with k£ > 3. We will show
that it also holds for ¢ = k.

Case 1: If f(u) # f(v), then we consider a signal z € X such that
{f(u), f(v), f(2)} are not collinear. Let the timing function be Ti,, .3 (u) =
1,T{u7v7z}(v) =k+ l,T{u7v7Z}(Z) = k.

Consider any w(u, 1), w(v, k), w(z,k—1) € (0,1) such that f({u, v, 2}, Ty..) =
w(u, 1) f(u) + wv, k) f(v) + w(z,k — 1)f(z). By Lemma 6, induction hy-

pothesis, and the stationarity axiom, we have 2@k — _w(vk) wizk—1)

w(u,l) — w(z,k—1) X w(u,1)
(ngg)( h2wlz)y qk’_lﬁ. Thus, the representation holds.

w(u)

Case 1: If f(u) = f(v), then we consider two signals z,2’ € X such that
{f(u), f(v), f(2), f(2")} are not collinear (which is possible by the richness
condition). Let the timing function be Ty p . .y(w) = 1, Tjuwz (V) = k +
L, Tww,on(2) = Kk, Ty, (2') = k. By the uniqueness part of Theorem 4

and the induction hypothesis, the representation still holds in this case.

Step 4: Finally, for any coalition A € X* and any timing function T4, the
uniqueness of Theorem 4 and Step 4 establish that the representation should
hold with ¢, w.
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Appendiz C

APPENDIX TO CHAPTER 3

C.1 Proof of Theorem 8

Assume that the aggregation rule f : X* — R™ satisfies the minimal agree-

ment condition and v € R™ is the direction on which all agents agree.

Consider two disjoint coalitions A, B € X* with the corresponding cardinal
utilities ug € U4 and up € Up. Assume that uus,p € Uap is a cardinal utility
that represents the preference ordering of the union A U B. If uy = ug, then

the result is trivial. Hence, consider the case us # up.

First, by using the Farkas’ Lemma, we show that the extended Pareto is equiv-
alent to ua,p € Cone’(u4,up) (which Cone®(us,up) denotes the interior of

the cone generated by uy and up).

If wuaop € Cone’(us,up), then there exist a,8 > 0 such that
uaop = auy + Pup. Therefore, for any z,y € L if uy - > uy -y and
ug - x = ug -y, then ua,p - = uaop - y. Similarly, if ug - > uy -y and
ug - x = ug -y, then ua,p - > ua,p - y. This proves that the preference

ordering of A U B satisfies the extended Pareto axiom.

For the other side, if the utility of the union ws,p ¢ Cone’(ua,up), then
da, B > 0 such that ua,p = auy + Bup. The Farkas’ Lemma guarantees that

there exists a vector z € R™ such that z-us > 0,2 -ug >0 and z - ua,p < 0.

Consider a vector y € R™ that is in the interior of L. We select A > 0
such that y + Az € L. This is possible since we assume that y is in the
interior of L. By defining x = y + Az, we get x —y = Az. Since A > 0 and
z-up =20,z -ug =0, we have ug - > uy -y, and ug - x = up - y. But since
z-uasop < 0, we have uqop and x < ua,p - y. But by the extended Pareto

axiom, this cannot be true. Therefore, ua,p € Con®(ua,up).

Now consider the intersection of H = {x € R™| - v = 1} and Cone’(uy4, up).
Since uy - v > 0 and up - v > 0, there should be a unique t14 € Uy, up € Ug

both in H. It is trivial that Con®(ua,up) = Con’(ta, up).
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Since both u4.v > 0 and ug.v > 0, the intersection of the interior of the
cone generated by them and the linear variety H is the segment [t4,up| =
{Mia 4+ (1 —Nag| X € (0,1)}. Since ua,p € Con®(tig,up), we should have
v.ua,p > 0. Hence, there should be a i 4,5 € H representing u 4, g. Therefore,

Uaop € [ta, up]. This completes the proof.

C.2 Proof of Theorem 9
There are a couple of steps in the proof. Note that for any profile R € Rx, and

for any coalition A € X, R denotes the restricted sub-profile of the coalition

A.

Step 1: Fix a preference 7 € Rz. Using the corollary 8, for any profile R € R x
such that Ry = 7, we can uniquely define a weight function (which depends
on the full profile R) wf(i) : X — R,, with wf(1) = 1, such that for any

coalition A € X we have:

wn(f(8a) = X | oty [

First, we show that for any individual ¢ € X\{1} and for any two profiles
Ra,Rb € RX with (Ra>1 = (Rb)l = 7 and (Ra)i = (Rb)iy we have wR“(z’) =

w? (7). There are two separate cases:

Case 1: If (R,); = (Ry); # 7, then using (R,){1,5 = (R)1,:4 and the result of

corollary 8, we should have w® (i) = wf(i).

Case 2: If (R,); = (Rp); = 7, then by considering the definition of the
domain Rx, which require the existence of three non-collinear preferences
in each profile, there should be a profile R, € Ry and two individual
J1.J2 € X\{1,4} such that (R.); = (R.): = 7, (Re)j = (Ra)j, # T,
and (R.)j, = (Rp);, # 7. Using Case 1, we have w®e(j;) = wf(j;) and
wf(ja) = w(jy). Since (Ro)ujy = (Re)gy and wi(ji) = wf(j),
using corollary 8, we should have wf(i) = w®e(j). Similarly, we have
(Ro)ijsy = (Re)igey and wf(j2) = wfe(j). Therefore, we should have

w? (i) = whe(i). Hence, we have wf (i) = wf (7).
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By considering profiles of the form R € Ry with Ry = 7, we can define the
weight function w : X\{1} x Rz — R, such that w(i, R;) = w'(i) for all
i€ X\{1}. By the result of Step 1, this function is well defined. Moreover, we
define w(1,7) = 1.

At this point, for any preference profile R € Rx with Ry = 7 and for any

coalition A € X, we have:

ui(f(Ra)) = Z %

Step 2: We need to define w(1,r) for all r € Rz. We have already fixed the
value w(1,7) = 1. For any r € Rz\{7}, let R € Rx be a profile with Ry = r
and R, = 7. By corollary 8, there should be a unique function w’ : X — R, .
with wf(2) = w(2, 7). We define w(1,r) = wf(1).

Notice that for any two profile R,, R, € Rx with (R,); = (Ry)1 = r and
(Ra)2 = (Ra)2 = 7, if we normalize the value of the w'i*(2) = wf®(2) = w(2,7),
then we should have w’i (1) = w™(1). Hence, the value w(1,r) is independent
of the choice of the profile R.

At this point the function w : X x Rz — R, is fully defined. We only need

to show that it works.

Step 3: Select any profile R € Rx. We need to show that the representation
holds with the weight function defined above.

If Ry = 7, by the result of Step 1 the representation holds. Hence, fix any
T € Rz where 7 # 7. In the rest of the proof we show that the representation
holds for any R € Rx with R; =T.

Similar to Step 1, using the corollary 8, for any profile R € Rx such that
Ry = 7, we can uniquely define a weight function (depending on the full
profile R) w'f(i) : X — R, with w®(1) = w(1,7), such that for any coalition
A < X we have:
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In the same manner as Step 1, for any two profiles R,, R, € Rx with (R,); =
(Ry); = T and for every individual i € X, we should have w'® (i) = w'T(i).
Hence, by considering profiles of the form R € Ry with R; =7, we can define
the weight function w’ : X\{1} x Rz — R, such that for all i € X\{1} :
w'(i, B;) = w'(i). By the result of Step 1, this function is well defined.

Moreover, we fix w'(1,7) = w(1,r).

For every preference profile R € Rx with R; = 7 and for every coalition

A < X, we have:

. w’(i, Rl) w .
un(f(Ra)) = ;4 ;w’(j, R)) H(R).

To complete the proof, since we have w(1,7) = w'(1,7) , it remains to show
that for all 7 € X\{1} and for all r € Rz we have w(i,r) = w'(i,7).

Case 1: Since 7 # 7 and w(1,7) = w'(1,7), based on Step 2 we should have
w(2,7) = w'(2,7).

Case 2: Assume that r # 7 and i € X\{1,2}. Since N > 5, based on definition
of Rx, there exist R,, R, € Rx such that (R,); =7, (Ry)2 =7, (Ry); = r and

(Rp)r =T, (Ry)2 =7, (Ry)i = 7.

Since 7 # 7, (Ra)g2,4 = (Rp)g2,}, and by Case 1 w(2,7) = w'(2,7), then we

should have w(i,r) = w'(i,r).

Case 3: Assume that r = 7 and i € X\{1,2}. Since N > 5, we can select
an individual j € X\{1,2,7}. Based on the definition of Ry, there exist
R., Ry, € Rx such that (R,)1 = 7,(R,); =7, (Rs); =T and (Ry)1 =T, (Rp); =
7, (Ry)j =T

Since r =7 # T, (Ra)(ijy = (B)(i,j3, and by Case 2 w(j,7) = w'(j,7), then we

should have w(i, r) = w'(i, r).

Case 4: Finally, assume that ¢ = 2 and r # 7. Select an individual j €
X\{1,2}. We consider profiles R,, R, € Rx such that (R,); = 7, (Ry)2 =
T, (Ry); =7 and (Ry)1 =T, (Rp)2 =1, (R,); = 7. By Case 3, we have w(i,7) =
w'(i,7). Hence, since r # 7 and (R,)q2j; = (Rs)(2,;; we should have w(2,r) =
w'(2,7).

The last observation completes the proof. O



