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Introduction

Motivation and research questions

Financial stability is indispensable for a robust economic system. However, the financial system

is exposed to systemic risk. Extensive cascade effects might expand initially financial crises

to the entire economic system as in the Global Financial Crisis (GFC). Although causes seem

to be limited to the financial sector, effects on the real economy were serve. After the collapse

of Lehman Brothers in September 2008, tightened credit conditions in the financial sector

transmitted to the real economy. Companies struggled to roll over debt and were confronted

with higher interest rates and shorter terms. Campello et al. (2010) suggest that 57% of

U.S. American corporations were concerned by tighten credit conditions. Due to limited access

to credit markets, smaller companies were severely affected. These corporations are critical for

the U.S. American labor market as they employ 40% of the workforce. As consequence, reported

unemployment rate increased to 10.1% in October 2009. Combined with the depressed housing

and stock markets, household net wealth decreased by 17 trillion USD. In this context, Brian

Moynihan (CEO, Bank of America) stated that ”[...] we, as an industry, caused a lot of damage.

Never has it been clearer how poor business judgments we have made have affected Main Street.” (see

Financial Crisis Inquiry Commission, 2011). In the final report, the Financial Crisis Inquiry

Commission concludes that the GFC was avoidable. Inter alia, they mention failures in financial

regulation and supervision and malfunctions in the risk management of systemically important

banks as causes of the GFC (see Financial Crisis Inquiry Commission, 2011).

As reaction to the crisis, the Basel Committee on Banking Supervision and the Bank of Interna-

tional Settlement adapted regulations of capital requirements (Basel II, see Basel Committee

on Banking Supervision, 2006) to prevent future crises. These regulations are referred to as

1
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Basel III (see Basel Committee on Banking Supervision, 2010). Just recently, the post-crisis

reform was finalized (see Basel Committee on Banking Supervision, 2017). Failures causing

crises might not only be found in the regulatory framework but also in the risk management of

systemically important banks. Credit risk is the most substantial type of risk for the majority of

financial institutions (see European Banking Authority, 2016b). In the advanced Internal Rating

Based (IRB) approach of the Basel regulations, banks are permitted to use own empirical models

to quantify capital requirements for credit risk. These capital requirements are calculated

based on three central credit risk parameters – the Probability of Default (PD), the Loss Given

Default (LGD), and the Exposure At Default (EAD). While own empirical models for the PD are

allowed under the foundation IRB approach, own LGD and EAD estimates are reserved for

the advanced IRB approach. Compared to PD modeling (see, e.g., Altman, 1968; Martin, 1977;

Campbell et al., 2008; Hilscher and Wilson, 2017; Das et al., 2007; Duffie et al., 2009), the topic

of LGD and EAD modeling is rather sparse in academic literature.

This thesis aims to shed light on the topic of LGD modeling. Most of the LGD literature is based

on market-based LGDs (see, e.g., Qi and Zhao, 2011; Loterman et al., 2012, for comparative

studies). These are calculated as one minus the price of defaulted debt instruments 30 days after

default (share to par value). Market-based LGDs are available for traded debt such as bonds.

Considering loan contracts, only workout LGDs are available in most of the cases. Workout

LGDs are calculated based on actual recovery cash flows during the resolution process. Thus,

characteristics of workout LGDs differ considerably compared to market-based LGDs. First,

workout LGDs are shaped by an even more extreme distributional form. Multi-modality seems

to be more pronounced and, thus, higher probability masses at the extremes of no loss (LGD = 0)

and total loss (LGD = 1) occur. Both modes are shaped by bindings, i.e., LGD values which are

exactly zero or exactly one. Second, systematic effects among average LGDs differ due to the

underlying process. While market-based LGDs arise at a certain point in time, i.e., 30 days after

default, workout LGDs develop over a longer time period – the Time To Resolution (TTR) or

Default Resolution Time (DRT).1 This hardens the identification of economically and statistically

significant (evident) systematic variables, e.g., macro(-economic) variables, as the economic

surrounding during the entire resolution process might impact workout LGDs. However,

the identification of systematic variables is crucial as LGD predictions are required to reflect

economic downturn conditions (see Basel Committee on Banking Supervision, 2006, 2005).

Third, workout LGDs are shaped by the resolution bias. Assuming positive dependencies of

DRTs and LGDs, bad loan contracts are characterized by long DRTs and high LGDs. These

1 In this thesis, both terms – TTR and DRT – are used as synonyms.
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loans are underrepresented at the end of the observation period as only LGDs of loans with

short DRTs and, thus, low LGDs, are observable. This might entail parameters distortions and,

consequently, an underestimation of LGDs.

Given the characteristics of workout LGDs, the consideration of the resolution process seems

to be crucial in the context of defaulted loan contracts. This thesis pursues an comprehensive

empirical analysis of the two central parameters of the resolution process – the DRT and the

LGD. Hereby, it aims to answer following research questions.

Research question I |What are the drivers of DRTs?

The first paper of this thesis (see Chapter 1, What drives the time to resolution of defaulted bank

loans?), aims to answer the question concerning general drivers of DRTs. Loan-specific and

macro(-economic) variables are considered as covariates. Positive dependency structures of

DRTs and LGDs emphasize the importance of DRTs in credit risk management. Long DRTs are

accompanied with higher uncertainty regarding the timing of recovery cash flows. Furthermore,

long resolution processes increase liquidity and interest rate risk.

Research question II | How are systematic effects among DRTs?

The second paper of this thesis (see Chapter 2, Macroeconomic effects and frailties in the resolution

of non-performing loans), aims to answer the question concerning systematic effects among DRTs.

Observable and unobservable systematic factors are considered. Systematic movements in

DRTs might imply time-dependent correlation structures, i.e., averagely higher (lower) DRTs at

certain points in time. Financial institutions might be able to compensate single defaulted loan

contracts with high DRTs, however, correlations might increase the systematic risk of credit

portfolios and, thus, further burden liquidity in crises periods.

Research question III | How are systematic effects among LGDs?

The third paper of this thesis (see Chapter 3, Systematic effects among LGDs and their implications

on downturn estimation), aims to answer the question concerning systematic effects among

LGDs. Following Basel Committee on Banking Supervision (2006, 2005), LGD predictions

are required to reflect economic downturn conditions. Thus, the identification of systematic

factors is crucial. However, common macro(-economic) variables might not be suited due

to the complexity of identifying reasonable observable variables considering workout LGDs.

3
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Unobservable systematic factors in terms of random effects are applied to analyze their ability

to generate sufficiently conservative downturn predictions.

Research question IV | How are the dependency structures among DRTs and LGDs?

The forth paper of this thesis (see Chapter 4, Time matters: How default resolution times impact

final loss rates), aims to answer the question concerning the dependency structures among DRTs

and LGDs. A combined modeling approach is developed to deeply examine the dependence

structure among DRTs and LGDs allowing for a direct and an indirect channel. Furthermore,

effects of the resolution bias are quantified on an in sample and out of sample perspective

comparing a pure (standard) LGD model with the combined modeling approach.

Literature

Although the DRT is crucial considering default resolution and, thus, the LGD, of defaulted loan

contracts, most of the literature refers to the resolution of bankruptcy. Furthermore, a majority

of publications relate to U.S. data, i.e., the resolution of Chapter 7 and Chapter 11 bankruptcies.

Bandopadhyaya (1994) applies a hazard rate model to analyze the time spend under Chapter 11,

whereas, Helwege (1999) uses Ordinary Least Square (OLS) regression to examine borrower

specific influences on the DRT. Bris et al. (2006) run OLS and Heckman models to compare

Chapter 7 and Chapter 11 resolutions. Partington et al. (2001), Denis and Rodgers (2007), and

Wong et al. (2007) apply survival analysis.2

In contrast, the literature on LGD modeling has widened considerably in the last decades (see,

e.g., Qi and Zhao, 2011; Loterman et al., 2012, for comparative studies). Given the demand for

LGD predictions which reflect economic downturn conditions (see Basel Committee on Banking

Supervision, 2006, 2005), the identification of systematic variables is crucial in an LGD modeling

context. A common tool to consider systematic effects are observable, i.e., macro(-economic),

variables. However, the identification of economically and statistically significant (evident)

variables is ambiguous. Thus, some authors completely neglect systematic variables (see Bastos,

2010; Bijak and Thomas, 2015; Calabrese, 2014; Gürtler and Hibbeln, 2013; Matuszyk et al.,

2010; Somers and Whittaker, 2007). In other publications, univariate significance (evidence)

can not be confirmed in a multivariate context (see Acharya et al., 2007; Brumma et al., 2014;

Caselli et al., 2008; Dermine and Neto de Carvalho, 2006; Grunert and Weber, 2009). Reasons

might be found in non-linear impacts of observable systematic variables on LGDs. Acharya et al.

2 A comprehensive literature review regarding the DRT can be found in Chapter 1 (Section 1.1, Introduction) and
Chapter 2 (Section 2.1, Introduction).
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(2007) find statistical significance of industry distress dummies, but not for continuous variables.

Using quantile regression techniques, Krüger and Rösch (2017) identify statistically significant

macro(-economic) variables on the inner quantiles of the LGD distribution. Again, this can be

traced back to non-linear influences. In parts of the literature, statistical significance (evidence)

is not reported (see Altman and Kalotay, 2014; Tobback et al., 2014; Yao et al., 2015). Statistical

significance (evidence) might be found where data sets of bonds (see Jankowitsch et al., 2014;

Nazemi et al., 2017; Qi and Zhao, 2011), credit cards (Bellotti and Crook, 2012; Yao et al., 2017),

or mortgages (Leow et al., 2014; Qi and Yang, 2009) are applied. Bond data sets are usually

characterized by market-based LGDs, thus, the identification of economically and statistically

significant (evident) macro(-economic) variables might be more straightforward as the LGD is

not the result of a complex resolution process, but determined 30 days after default occurred.

Credit cards and mortgages belong to the bulk businesses of financial institutions. Hence,

resolution processes might be standardized to a higher extend compared to corporate loans.3

To the best of my knowledge, no publication exists so far which covers the dependency structures

of DRTs and LGDs. However, the importance of DRTs in an LGD modeling context is indicated

in the related literature. Dermine and Neto de Carvalho (2006) apply mortality analysis

on a data set of defaulted loan contracts, whereas, Gürtler and Hibbeln (2013) are, inter alia,

concerned with the resolution bias. They suggest to restrict the data set to avoid biased estimates.

Chapter 4 (Time matters: How default resolution times impact final loss rates) of this thesis analyzes

the possibility to diminish effects of the resolution bias by considering censored observations,

i.e., unresolved loan contracts, by a combined modeling approach for DRTs and LGDs. In

the credit risk literature, joint modeling approaches are common for PDs and LGDs. Hereby,

multivariate random effects are applied to consider time-dependent comovements. (see Bade

et al., 2011; Rösch and Scheule, 2010, 2014)

Contributions

Related to research questions I, II, III, and IV which are stated above, the main contributions of

this thesis can be structured by the independent research papers which are presented in the

individual chapters of this thesis (see Chapter 1, 2, 3, and 4).

Contribution I |What drives the time to resolution of defaulted bank loans?

Research question I refers to general drivers of the DRT – i.e., the aim of the first research

paper What drives the time to resolution of defaulted bank loans? is to analyze which loan-specific

3 A comprehensive literature review regarding the LGD can be found in Chapter 3 (Section 3.2, Literature review).
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and macro(-economic) variables impact the duration of the resolution process. Using OLS re-

gressions, collateralization, seniority, industry, nature of default, and the macro(-economic)

environment are identified as important drivers of the DRT. The analysis is conducted for

Germany, the United States, and Great Britain. By this means, two major bankruptcy regimes

are compared. The German insolvency codes are creditor friendly, whereas, the Anglo-American

regulations are rather debtor orientated. The most striking deviations in causalities refer to

collateralization and seniority. This can be traced back to the insolvency codes of the considered

countries. While the access to collateral in the event of default is straightforward in Germany, it

is more complicated in the United States and Great Britain. As consequence, collateralization

reduces the DRT to a higher degree in Germany. Creditors seem to be aware of this divergence

and seek for the best security mechanism in the limits set by local insolvency codes. Thus,

collateralization appears to be more common in Germany, while Anglo-American creditors

demand higher ranks in the seniority order.

By the inclusion of year fixed effects, first indications of time-dependent comovement in DRTs

arise. Average DRTs seem to be higher (lower) during downturns (upturns). This is also true

considering the LGD as dependent variable. Furthermore, LGDs are driven by similar variables,

particularly, collateralization and macro(-economic) variables. Significant year fixed effects

indicate similar time patterns in LGDs compared to DRTs.

Contribution II |Macroeconomic effects and frailties in the resolution of non-performing loans

Research question II refers to systematic effects among DRTs. As first indications of time-

dependent comovement in DRTs arise (see Contribution I or Chapter 1), the second research

paper Macroeconomic effects and frailties in the resolution of non-performing loans aims to analyze

systematic effects among DRTs in more detail. Using Cox Proportional Hazard (PH) regressions,

three model specifications are compared. In the first specification (model I), loan-specific vari-

ables are applied to explain cross-sectional variation in DRTs. The second specification (model II)

additionally includes observable systematic effects, i.e., macro(-economic) variables, to account

for time-dependent variations. In the third specification (model III), unobservable system-

atic effects, i.e., frailty effects, are introduced. These unobservable systematic effects seem

to impact DRTs to a rather high extend even after controlling for common loan-specific and

macro(-economic) variables. Stated differently, DRTs seem to be clustered in the time line.

Economic consequences of clustered DRTs might be considerable. First, the liquidity of financial

institutions is burdened in downturn periods as DRTs are systematically longer. Aside from
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the direct availability of liquidity, the implementation of the Net Stable Funding Ratio (NSFR),

where additional medium and long term liquidity is demanded for certain facilities, e.g., non-

performing loans (see Board of Governors of the Federal Reserve System, 2016), adds additional

pressure on the liquidity of financial institutions. Second, portfolio loss distributions of non-

performing loan contracts are affected by clustered DRTs. Due to dependency structures of

DRTs and LGDs, systematic patterns in DRTs are transfered to the loss side. The portfolio loss

distribution is shifted towards higher values in downturn periods. Furthermore, the range of

the distribution is broadened independent of the economic surrounding. This indicates that

expected portfolio losses rise in downturns, while unexpected losses are constantly increased.

Contribution III | Systematic effects among LGDs and their implications on downturn estimation

Research question III refers to systematic effects among LGDs. Observable and, in particular,

unobservable systematic effects have considerable impacts on DRTs (see Contribution II or

Chapter 2). Thus, LGDs might be shaped by time-dependent comovements. This is of high

relevance considering the demand for LGD predictions which reflect economic downturn

conditions (see Basel Committee on Banking Supervision, 2006, 2005). Using a Bayesian

Finite Mixture Model (FMM) with a probabilistic substructure, LGD distributions depending

on covariates are estimated in the third research paper Systematic effects among LGDs and

their implications on downturn estimation. Time-dependent random effects are included in the

modeling framework to quantify the systematic nature of LGDs. By this means, deviations

among the considered regions, i.e., the United States and Europe, arise. While realizations of the

random effect seem to origin independently from an identical distribution in the United States,

systematic patterns are characterized by cyclical nature expressed by an autoregressive (AR)

process in Europe. The realizations of the random effects are compared with time patterns

of common macro(-economic) variables. Thereby, considerable discrepancies occur. These

deviations are emphasized when macro(-economic) variables are included in the modeling

framework as their impacts seem not to be evident or limited regarding their magnitude.

Furthermore, a methodology to generate appropriate downturn estimations based on random

effects is suggested and compared to approaches in the literature. The most common approach

refers to the use of macro(-economic) variables in the modeling framework. Due to the limited

evidence and magnitude, downturn estimates based on macro(-economic) variables seem to

underestimate the probability mass of high losses, while the suggested methodology delivers

sufficiently conservative estimates. Further approaches proposed by Calabrese (2014) and Bijak

and Thomas (2015) tend to be over-conservative.
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Contribution IV | Time matters: How default resolution times impact final loss rates

Research question IV refers to dependency structures of DRTs and LGDs. As an interconnection

of DRTs and LGDs appears descriptively (see Contribution I or Chapter 1 and Contribution II

or Chapter 2), dependencies of the two parameters are conceivable. In the fourth research paper

Time matters: How default resolution times impact final loss rates, a joint modeling approach for

DRTs and LGDs is developed. Therefor, an Accelerated Failure Time (AFT) model for the DRT

is combined with an FMM with probabilistic substructure for the LGD (see Contribution III

or Chapter 3). This approach allows for direct and indirect dependencies. To reflect direct

dependencies, the DRT is included into the LGD model. Multivariate normally distributed

random effects are implemented to display indirect dependencies, i.e., comovements in the time

line. Positive dependency structures of DRTs and LGDs arise which are even more pronounced

in extreme economic surroundings. In downturns (upturns), DRTs are longer (shorter) which

burdens financial market liquidity. Moreover, LGDs are even higher in downturns due to the

strengthened dependence.

The dependence of DRTs and LGDs introduces the resolution bias. In more recent time periods,

only LGDs of loan contracts with short DRTs are observable. These loans tend to exhibit

high LGDs due to the positive dependence. Thus, loans with long DRTs and high LGDs are

underrepresented towards the end of the observation period. Applying a pure (standard) LGD

model causes parameter distortions and, consequently, an underestimation of average LGDs

on an out of sample perspective. Effects of the resolution bias are diminished by the combined

approach. Thus, LGD predictions are adequate on an out of sample perspective.

Structure

This thesis consists of four independent research papers with varying co-authors.4 Chapter 1

presents the first paper (What drives the time to resolution of defaulted bank loans?). The second

paper (Macroeconomic effects and frailties in the resolution of non-performing loans) is subject to

Chapter 2. In Chapter 3, the third paper (Systematic effects among LGDs and their implications

on downturn estimation) is propound. The fourth and last paper (Time matters: How default

resolution times impact final loss rates) is comprised in Chapter 4. The Conclusion summarizes,

discusses, and provides an outlook.

4 The co-authors and the current state of the research papers are mentioned at the beginning of each chapter.
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Chapter 1

What drives the time to resolution

of defaulted bank loans?

This chapter is joint work with Ralf Kellner* and Daniel Rösch† published as:

Betz, J., R. Kellner, D. Rösch (2016). What drives the time to resolution of defaulted bank

loans? Finance Research Letters 18, 7–31.
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Abstract

Using a unique data base of Global Credit Data with individual loan information from small and medium

sized entities in Germany, Great Britain and the United States, we evaluate the time to resolution of

defaulted loans. A comparison across countries reveals country specific drivers for the resolution time

which can be explained fairly well by differences in the regulatory and legal framework. Lenders seem

to be aware of these differences and adjust their lending behavior in the limits set by these bankruptcy

systems of the countries.
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Chapter 1. What drives the time to resolution of defaulted bank loans?

1.1 Introduction

The time to resolution (TTR) of defaulted loan contracts is of great relevance to all kinds

of creditors. Following Hotchkiss et al. (2008), indirect costs – e.g. opportunity costs and

reputational losses – are characterized by a considerable magnitude and importance. However,

these cost are not directly captured in the loss rate. As they are challenging to measure, the

TTR might serve as a proxy (see, e.g., Franks and Torous, 1989; Bris et al., 2006; Annabi et al.,

2012). Furthermore, the TTR seems to be positively correlated with the loss given default (LGD)

of loan contracts. High TTRs increase uncertainty regarding the timing of cash flows during

resolution and, therefore, liquidity and interest rate risk. To the best of our knowledge, no

analysis exists so far which deeply examines drivers for the TTR on a transnational basis even

though a profound understanding of it seems crucial in an international setting. A reason for

missing studies in this field of literature might be found in the lack of data availability. Thus,

our paper uses access to a unique loss database provided by Global Credit Data (GCD)1 and

conducts a detailed and comprehensive analysis of the TTR across Germany, Great Britain, and

the United States. We provide insights which components of loans contribute to a short TTR

and to which extent it depends on external factors such as the macroeconomic environment.

Thereby, substantial differences among Germany, Great Britain, and the United States arise.

These might be ascribed to discrepancies in the insolvency regimes.

While there exists a variety of analyses which examine drivers and estimation methods for

the loss rate (see, e.g., Grunert and Weber, 2009; Qi and Yang, 2009; Bastos, 2010; Qi and

Zhao, 2011; Loterman et al., 2012), the literature regarding the TTR is more limited even

though its importance is indicated in the related analyses. Using a database from a Portuguese

bank, Dermine and Neto de Carvalho (2006) analyze recovery rates (RRs) by means of survival

time analysis. Their results show the importance of the resolution process as the impact of

determinants of RRs change over time. In addition, they point out the importance of the timing

of cash flows during the resolution process in the presence of interest rate risk. Gürtler and

Hibbeln (2013) empirically find LGDs to be positively correlated with the TTR and quicker

resolution times for defaulted loans which return back to performance. Davydenko and Franks

(2008) detect transnational discrepancies caused by varying legislations with respect to the

LGD. This might hold true for the TTR. However, previous analyses are restricted to individual

1 GCD is a non profit initiative which aims to help banks to measure their credit risk by collecting and analyzing
historical loss data. They are formally known as the Pan-European Credit Data Consortium (PECDC). See
http://www.globalcreditdata.org/ for further information.
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countries while data sets are usually specific regarding their origin, i.e, banks or courts. Most

studies consider the bankruptcy system in the United States – in particular Chapter 11. Helwege

(1999) analyzes the TTR of junk bonds using ordinary-least-square (OLS) regressions. In

contrast to our analysis, he focuses on borrower specific characteristics and uses a bankruptcy

portfolio of minor debtor quality. Bris et al. (2006) use a data set of bankruptcies in Arizona

and New York. They run OLS and Heckman models with the log transformation of the TTR as

dependent variable and find that the outcome of bankruptcy (reorganization vs. liquidation)

has no influence on the TTR. Denis and Rodgers (2007) and Wong et al. (2007) apply survival

methods for examining the TTR of Chapter 11 bankruptcies. Overall they detect firm size,

pre-default performance and the macroeconomic environment to be important drivers for TTR

while accounting information seems to be less relevant. Few analyses have been made with

respect to the TTR in other countries. Focusing on Portugal, the main interest of Bonfim et al.

(2012) is on access to credit after default. They find that large firms tend to have shorter TTR.

This contradicts with results in the United States from Denis and Rodgers (2007) and indicates

country specific differences regarding the TTR. Dewaelheyns and Van Hulle (2009) examine

bankruptcies in Belgium and observe that, among others, secured debt and industry conditions

play an important role for the TTR. However, non of these analyses examine transnational

differences with respect to the TTR.

Hence, we try to fill this gap and contribute to the literature in three ways. First, we investigate

important drivers for the TTR of loan contracts using a database containing loans of small and

medium sized entities (SMEs) from Germany, Great Britain, and the United States. Thereby,

we cover two major bankruptcy regimes, i.e., Germany being traditionally creditor friendly

and the Anglo American area more debtor orientated. In a second step, we examine whether

deviations in the insolvency codes impact the determinants of the TTR on an inner-country basis

and, thus, whether adjustments of lending regularities arise. This approach is motivated by

Davydenko and Franks (2008) who show how differences in creditors’ rights impact the general

lending behavior in France, Germany, and the United Kingdom. Third, we analyze effects of

the macroeconomic environment on the TTR. By including defaults from 2000 until 2014, our

analysis covers at least one complete economic cycle.

After controlling for explanatory variables, we find that the resolution process in Germany

is shortest compared to Great Britain and the United States. The TTR of American (British)

loan contracts is c.p. on average 0.1 (0.5) years longer. This is in line with a higher degree of

efficiency regarding the resolution of insolvency in Germany that is assigned by the World Bank.
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For the overall dataset, we find seniority, nature of default, collateralization, industry, and the

macroeconomic environment to be important determinants for the TTR. Additionally, we exam-

ine significant differences across countries. The most important results refer to collateralization

and its impact on the seniority order. This seems to be driven by varying regulations regarding

access to collateral during resolution and the importance of the seniority order during the

bankruptcy proceeding given a certain access to collateral. Assuming easy access to collateral

during resolution, its existence should reduce the TTR. In Germany, real estate backed loans as

well as loans secured by other collateral types are resolved faster by 0.1 and 0.2 years, respectively.

The access to collateral seems to be more complicated in the Anglo American counties as other

collateral enhances TTR by 0.1 years and real estate is insignificant in the United States.

It seems that creditors are aware of these country specific features as they seek for the best

safety mechanism in the limits set by the insolvency code by adjusting their lending behavior.

As the access to collateral is easier in Germany compared to Great Britain and the United States,

a majority of German loans is collateralized (72% general, 53% real estate). On the contrary,

collateralization in Great Britain (67% general, 42% real estate) and the United States (64%

general, 12% real estate) is less usual. Creditors in the Anglo American area seem to compensate

this by demanding the highest rank in the seniority order (super senior). In Great Britain (44%)

and the United States (84%), a higher fraction of loans exhibit the super senior status while

German creditors do not depend on being the one and only preferred claimant (5% super senior).

This seems to work for creditors in Great Britain as the super senior status reduces TTR by 1.2

years. In the United States it suffices to be among preferred claimants as no significant difference

regarding TTR occurs among situations with one single and more than one (pari-passu) preferred

claimants. However, being not among preferred claimants increases the TTR by 1.4 years.

The remainder of this paper is structured as follows. Section 1.2 provides the data description

and descriptive statistics. Section 1.3 presents our main analysis. Section 1.4 provides several

robustness tests. Section 1.5 concludes.

1.2 Data description

Our data set consists of a subsample of the unique loss data base composed by GCD. The

data base contains historical loss data from 44 member banks. In this paper, we analyze loans

of SMEs whose jurisdiction is located in Germany, Great Britain, and the United States. We
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focus on these countries as they represent two major bankruptcy regimes, i.e., Germany being

traditionally creditor friendly and the Anglo American countries more debtor orientated. The

time span of the entire data base reaches from September 1971 until Juli 2014. To ensure a

consistent default definition and, thereby, unbiased estimation results, we refer to the default

definition set by the Basel Committee on Banking Supervision (2006). A default occurs if an

obligor is ”unlikely to pay” or ”past due more than 90 days on any material credit obligation”

(§452).2 Pursuant to Brumma et al. (2014), this definition is implemented since the year 2000

which is why we restrict the time period from 2000 to 2014. Furthermore, we eliminate loans

with EADs smaller than 500 EUR to satisfy the materiality threshold of the European Banking

Authority (2016a). Despite the reference to borrower level, we apply the rule on loan level

as loans of this size seem unreasonable. To correct for minor input errors, we follow Höcht

and Zagst (2010) and Höcht et al. (2011) who developed selection criteria on cash flow basis.

We apply this approach with the distinction that we separately consider payments during and

after the resolution process. Hence, the first criterion is calculated as the sum of all relevant

transactions (including charge-offs) divided by the outstanding amount of the loan. Loans

falling below 90% or exceeding 110% are sorted out. To verify post resolution payments, we

evolve a second criterion. Thereby, the sum of all post resolution payments is divided by a

fictional outstanding amount at the resolution date. The barriers are set to −10% and 110%.

Finally, we eliminate loans with abnormal low and high LGDs (< −50% and > 150%).3 A subset

of 24,870 individual loans remains.

Figure 1.1 shows the relation between the average LGD and the TTR (in years) for the entire

data set and the three country subsets. The black lines display the average LGD for the specified

TTR buckets. The interquartile ranges are represented by the gray boxes, whereby, the black

dots are the medians. The quantity of loans in the buckets is given in brackets. Investigating the

general relation of credit losses and the TTR, the upper left panel of Figure 1.1 shows a positive

dependence between the average LGD and the TTR in the overall data set. A longer TTR comes

along with higher LGDs, and vice versa. The results differ if the same relationship is regarded

on country level. While the link between TTR and average LGD seems to increase monotonously

in Great Britain, the peak in the United States arises around four and a half years after default

occurs. In Germany, a slight drop in the average LGD appears for a TTR of four years.

Figure 1.2 shows histograms and corresponding kernel density estimates of the TTR for the

2 Note that we use default and financial distress in a synonymous way. The data set contains both, loans which are
subject to common resolution mechanisms (e.g., restructuring, liquidation) and cured loans which returned back
to performance after they got into financial distress.

3 Economic LGDs are employed. The calculation of the stated LGDs are summarized in the appendix.
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Figure 1.1: Relationship between the TTR and average LGD for the overall dataset and on
country level
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overall sample and on country level. The distribution of the TTR is asymmetric and extremely

skewed to the right. This indicates that most of the loans exhibit a rather short TTR, but very

long resolution times are probable with a certain (small) likelihood. Differences between the

countries under investigation can be observed. The overall sample, Germany, and Great Britain

show a unimodal distribution while the United States are characterized by bimodality with the

second modus around 1.7 years after default.

Descriptive statistics of considered quantities for the overall data set and on country level are

displayed in Table 1.1. The first row reports the sample size. Most of the 24,870 loans are

located in Germany (11,417 loans) followed by Great Britain (7,927 loans) and the United States

(5,526 loans). Hence, the overall data set may be dominated by German loans. Furthermore,

Table 1.1 contains descriptive statistics regarding dependent and independent variables of the

subsequent regression analysis.4 The mean of the TTR is lowest for the United States (1.26 years)

followed by Germany (1.52 years) and Great Britain (1.54 years).

4 See Section 1.3.

14



Chapter 1. What drives the time to resolution of defaulted bank loans?

Table 1.1: Descriptive statistics for the overall data set and on country level

Overall Germany Great Britain United States

n 24,870 11,417 7,927 5,526

Dependent variable

TTR Mean 1.4696 1.5225 1.5386 1.2616
Median 0.9333 0.8944 1.0639 0.8472
Standard deviation 1.5484 1.7079 1.4659 1.2755

Independent variables |Metric

EAD Mean 748,248.29 337,505.03 528,730.33 1,911,761.64
Median 100,326.80 61,487.05 89,000.41 477,962.81
Standard deviation 3,511,570.91 3,158,226.29 2,824,157.23 4,656,323.68

Number of collateral Mean 2.2944 2.2142 3.2623 1.0717
Median 1.0000 1.0000 1.0000 1.0000
Standard deviation 4.8586 2.9864 7.5875 1.5452

Equity index Mean 6.19% 9.84% 3.77% 2.14%
Median 12.71% 18.38% 9.01% 7.58%
Standard deviation 21.39% 23.45% 17.52% 20.74%

GDP Mean 2.99% 2.78% 3.59% 2.58%
Median 3.58% 2.26% 4.25% 3.59%
Standard deviation 2.35% 1.70% 2.69% 2.77%

Independent variables | Categoric

Facility type Medium term 53.19% 54.71% 48.67% 56.55%
Short term 30.60% 28.61% 45.45% 13.41%
Other / Unknown 16.21% 16.69% 5.88% 30.04%

Seniority code Pari-passu 60.34% 86.25% 55.48% 13.79%
Super senior 35.24% 5.47% 44.34% 83.71%
Non senior 1.62% 2.90% 0.16% 1.09%
Unknown 2.79% 5.39% 0.01% 1.41%

Nature of default 90 days past due 34.53% 37.71% 23.45% 43.85%
Unlikely to pay 14.69% 8.50% 14.75% 27.40%
Bankruptcy 8.79% 9.66% 11.81% 2.64%
Charge-off / provision 22.17% 31.79% 23.10% 0.94%
Sold at material credit loss 0.53% 0.20% 0.04% 1.92%
Distressed restructuring 5.34% 10.48% 1.27% 0.56%
Non accrual 11.39% 1.54% 18.10% 22.11%
Unknown 2.56% 0.11% 7.48% 0.58%

Guarantee indicator NO 68.05% 75.55% 65.89% 55.66%
YES 31.88% 24.44% 34.05% 44.14%
Unknown 0.07% 0.01% 0.06% 0.20%

Collateral indicator NO 31.13% 27.67% 32.75% 35.98%
Other collateral 28.58% 19.70% 25.15% 51.86%
Real estate 40.27% 52.63% 42.08% 12.12%
Unknown 0.01% 0.00% 0.01% 0.04%

Cured indicator NO 63.60% 64.26% 57.56% 70.88%
YES 36.40% 35.74% 42.44% 29.12%

Industry Finance, insurance, RE 18.42% 12.24% 28.98% 16.05%
Agriculture, foresty, fishing 1.33% 1.15% 1.67% 1.21%
Mining 0.32% 0.14% 0.37% 0.62%
Construction 8.79% 5.19% 13.18% 9.92%
Manufacturing 13.54% 11.93% 13.89% 16.38%
Transp., commu., sanitary services 3.68% 3.67% 3.38% 4.14%
Wholesale and retail trade 16.12% 13.73% 20.99% 14.04%
Services 24.94% 34.67% 16.34% 17.17%
Unknown 12.86% 17.27% 1.21% 20.47%

Notes: The table contains mean, median, and standard deviation for variables of metric nature and proportions for
variables of categoric nature, respectively.
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Figure 1.2: Histograms and kernel densities of the TTR for the overall data set and on
country level
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In Section 1.3, we additionally control for various potential input parameters. Classical metric

determinants are the exposure at default (EAD) and macroeconomic variables. We further

include the number of collateral as multiple types of collateral can be assigned to a single loan

contract. In our data set, loans located in the United States are on average considerably larger

(1,911,761.64 EUR) than their counterparts from Great Britain (528,730.33 EUR) and Germany

(337,505.03 EUR). The reason for this difference may be found in the heterogeneous ease of

getting credit. Since 2004, the World Bank published a score evaluating this topic. Amongst

other legal subjects, the series Doing Business covers – under the section Getting Credit – the ease

of receiving credit lines (see World Bank, 2015a,b,c,d). Thereby, not only the case of getting

credit is analyzed but also its achievable quantity. The score is survey based and expressed as

a distance to frontier with 100 representing the optimality. Regarding this score, the United

States reaches the second place with a score of 95.00 followed by Great Britain (75.00, 17th

place) and Germany (70.00, 24th place). Thus, the access to credit seems to be easier in the

United States compared to Great Britain and Germany. The differences in the average EADs

might reflect this consideration.
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Corresponding to the number of collateral, loans located in Great Britain are on average

collateralized with more assets (3.26) than those from Germany (2.21) and the United States

(1.07). However, since the median reveals one for all, the majority of loans seems to be secured

by a single collateral. To embed macroeconomic variables, several factors were tested with the

return of the equity index and of the gross domestic product (GDP) being top of the range

regarding the explanatory power in the affiliating analysis.5

In addition, several loan specific categoric variables are included – such as seniority, guarantee,

collateral type, and industry indicators. These are also common determinants in modeling LGD

(see, e.g., Acharya et al., 2007; Bastos, 2010). It is also controlled for the facility type, nature

of default, and if the loan is cured or not, i.e., if the loan returned to performing after being in

financial distress.6 Table 1.1 displays the shares of the corresponding categories for the overall

data set and divided by country. There are solely minor country differences concerning the

facility type. Approximately, half of the loans are medium term facilities, whereas the other

half is grouped amongst short term and other facilities. Great Britain exhibits the greatest share

of short term facilities in the data set (45.45%). Loans located in Germany and the United States

are characterized trough a slightly higher proportion in other facilities.

Regarding the seniority code, pari-passu is the prevailing type in the overall data set as well as

in Germany (86.25%) and Great Britain (55.48%). In contrast, loans from the United States are

mainly super senior (83.71%) and only a small fraction (13.79%) appears to be pari-passu.7 With

respect to the nature of default, only minor country differences are observable. A majority of the

loans entered default status due to the 90 days past due criterion (around one third). Whereas,

the proportion is highest in the United States (43.85%), followed by Germany (37.71%) and

Great Britain (23.45%). The default condition unlikely to pay in general is most common in

Great Britain. The United States are shaped through the rather precise payment delay. Thereby,

different default preconditions might be a reason. We return to this topic in more detail in

Section 1.3.

Guarantees seem to be more common in the United States (44.14%) and Great Britain (34.05%)

compared to Germany (24.44%). Overall, 31.88% of all loans are characterized by some kind of

guarantee. Generally, collateralization appears to be more familiar in all considered countries.

5 The market indices are represented by the DAX, the FTSE, and the Dow Jones for Germany, Great Britain, and the
United States.

6 Return to performing indicates that the loan continues to exist after default because the obligor is back to a sound
rating.

7 Super senior describes a priority order where only one creditor has prior claims. If there is at least another claimant
of equal rank, the seniority is defined as pari-passu.
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While real estate represents the dominating asset class in Germany (52.63%) and Great Britain

(42.08%), it seems considerably less important in the United States (12.12%). A reason for this

could lie in different legal and regulatory determinations regarding the handling of collateral

during the resolution process. A detailed analysis of this observation follows in Section 1.3.

Overall, around one third of the defaulted loans achieve the cured state, i.e., returned to

performing. This proportion is highest for loans located in Great Britain (42.44%), followed by

Germany (35.74%) and the United States (29.12%). Again, this might be ascribed to different

default preconditions (see Section 1.3). Regarding the industry, the overall data set is dominated

by loans in the service sector (24.94%) which is driven by great proportions in Germany (34.67%)

and the United States (17.17% – highest share of all industries expect unknown). However,

Great Britain is marked by high amounts in the industries finance, insurance, real estate (RE)

(28.98%) and wholesale and retail trade (20.99%). This partly corresponds with general industry

proportions. Table 1.2 contains the sector shares of the benchmark indices as of the 01.01.2014.

Table 1.2: Industry sectors regarding to equity indices

DAX FTSE Dow Jones (DJ)

Oil and gas 0% 4% 7%
Basic materials 20% 9% 3%
Industrials 13% 17% 17%
Consumer goods 20% 13% 10%
Health care 10% 5% 13%
Consumer services 3% 20% 13%
Telecommunications 3% 2% 3%
Utilities 7% 5% 0%
Financials 17% 24% 17%
Technology 7% 2% 17%

MDAX FTSE 250 DJ mid cap

Oil and gas 0% 4% 8%
Basic materials 16% 5% 5%
Industrials 30% 19% 26%
Consumer goods 14% 6% 16%
Health care 6% 4% 10%
Consumer services 16% 20% 14%
Telecommunications 0% 2% 0%
Utilities 0% 1% 0%
Financials 16% 36% 3%
Technology 2% 4% 18%

SDAX FTSE small cap DJ small cap

Oil and gas 0% 2% 5%
Basic material 0% 3% 8%
Industrials 38% 25% 25%
Consumer goods 18% 6% 8%
Health care 2% 3% 16%
Consumer services 22% 12% 15%
Telecommunications 0% 1% 0%
Utilities 0% 0% 0%
Financials 20% 42% 2%
Technology 0% 7% 21%

Notes: Proportions of the industry sector with respect to the equity indices in terms of the ICB (Industry Classification
Benchmark) code.
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Since we focus on SMEs it may be misleading to consider solely the DAX, FTSE, and the Dow

Jones as they contain the largest companies of the economies. Therefore, the corresponding small

and medium cap indices are taken into account. In Great Britain, financials is the dominating

sector (FTSE: 24%, FTSE 250: 36%, FTSE small cap: 42%) which meets the sector specification

finance, insurance, real estate (RE). Whereas, it is less marked in Germany and the United States.

In the GCD data base, Germany and the United States are characterized by a high proportion in

the services sector. However, Table 1.2 indicates that Germany and the United States are strongly

shaped by industrials with respect to SMEs.

1.3 Determinants of the TTR

In this section, regression models are applied to study determinants of the TTR in general

and to examine deviations on country level. Furthermore, qualitative analyses purpose to find

reasons for this differences. By this means, we aim to provide new insights into the resolution

process and what significant disparities might be relevant to creditors and regulators in distinct

countries.

In the multiple regression model, the TTR serves as the dependent variable8 while the quantities

of Table 1.1 are used as regressors. Standard errors are clustered by year. Table 1.3 and 1.5

contain the results of the regression models for the overall data set and on country level. Inde-

pendent variables are illustrated in the first column and according types (in case of categorical

variables) are given in the second column.9 In a first step, general drivers of the TTR are derived.

In the second part of this section, we focus on country specific differences.

1.3.1 General drivers of the TTR

Starting with the EAD, we find a significantly positive impact on the TTR in the overall data

set. This implies that loans of larger size demand on average a longer TTR. The impact could be

based on a higher level of complexity and administrative effort accompanied with the resolution

of larger loans. In the model, the natural logarithm of the EAD is implemented. Hence, the

relationship between the TTR and the loan size is characterized by a non-linear component.

8 Despite the non-negative restriction of the TTR, we apply the level specification of the linear regression due
to its higher explanatory power with respect to the adjusted R-squared compared to the log transformation.
Appendix 1.A shows that our general results remain stable when regressing on log transformed TTR.

9 Noteworthy, not all categories are integrated in the subset models since some types are nonexistent in these
samples. For example, there are no loans of German origin which defaulted in the year 2014.
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Table 1.3: Regression results of the TTR for the overall data set

Coef. SE

Intercept 3.694 *** (0.0782)

log(EAD) 0.062 *** (0.0045)

Time 2001 -1.401 *** (0.0723)
(2000) 2002 -1.706 *** (0.0638)

2003 -2.361 *** (0.0591)
2004 -2.330 *** (0.0622)
2005 -2.670 *** (0.0547)
2006 -2.555 *** (0.0544)
2007 -2.526 *** (0.0570)
2008 -2.279 *** (0.0710)
2009 -2.840 *** (0.0786)
2010 -2.492 *** (0.0599)
2011 -2.988 *** (0.0587)
2012 -3.243 *** (0.0585)
2013 -3.300 *** (0.0604)
2014 -3.602 *** (0.1069)

Country United States 0.115 * (0.0447)
(Germany) Great Britain 0.460 *** (0.0337)

Facility Short term -0.104 *** (0.0190)
(Medium term) Other -0.095 *** (0.0244)

Seniority Super senior -0.359 *** (0.0254)
(Pari-passu) Non senior -0.032 (0.0641)

Unknown -0.583 *** (0.0592)

Nature of default Sold at material credit loss -0.432 *** (0.1023)
Unlikely to pay 0.078 ** (0.0248)
Charge-off / provision 0.205 *** (0.0227)
Non accrual 0.483 *** (0.0277)
Distressed restructuring 0.526 *** (0.0384)
Bankruptcy 0.625 *** (0.0352)
Unknown -0.175 *** (0.0369)

Guarantee YES 0.096 *** (0.0177)
(NO) Unknown -1.295 *** (0.3912)

Collateral Other collateral -0.259 *** (0.0215)
(NO) Real estate -0.215 *** (0.0205)

Unknown -0.061 (0.6613)

Number of collateral -0.004 ** (0.0014)

Cured (NO) YES -0.569 *** (0.0176)

Industry Mining -0.415 ** (0.1299)
(Finance, insurance, RE) Transp., commu., sanitary services -0.199 *** (0.0436)

Services -0.078 ** (0.0239)
Wholesale and retail trade -0.046 . (0.0255)
Manufacturing 0.021 (0.0290)
Agric., forestry, fishing 0.155 ** (0.0580)
Construction 0.221 *** (0.0307)
Unknown 0.209 *** (0.0381)

Equity Index -0.534 *** (0.0605)

GDP -12.171 *** (0.7551)

Adjusted R-squared 43.80%
F-statistic 421.92
p-value 0.0000

Notes: Results of the multiple linear regression regarding the overall data set. Significance codes: *** 0.001, ** 0.01,
* 0.05, · 0.1. Standard errors (SE) are clustered by year.
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We include dummies for the default year of the loan contract to address two issues. Firstly, they

control for time varying effects on the TTR, such as level shifts even if they are of non-linear

nature. Additional impacts due to the macroeconomic environment that fail to be integrated

trough variables might be indirectly taken into account as adverse conditions could have a

worse impact than actually indicated by the GDP or equity indices. Secondly, time dummies

might absorb effects of a potential resolution bias.10 In the overall data set, the coefficients of

these dummies have significantly negative impacts implying that the TTR decreases compared

to the base year 2000. With exception of the years 2004, 2010, and the time period from 2006

to 2008, they are monotonously decreasing. This indicates a shorter resolution of distressed

loans in recent years. The years 2004, 2010, and the period from 2006 to 2008 are marked by

economic turmoil.11 The breaks of the monotony in these years seems to refer to a rather longer

TTR in a hard economic environment.

To analyze country specific differences, we primarily focus on the country dummies in this

section.12 In Section 1.2, we determined the on average shortest TTR in the United States

(1.26 years) and a rather longer one in Germany (1.52 years) and Great Britain (1.54 years).

After controlling for other variables, a different picture appears. With Germany being the

reference category, the coefficients of the country dummies show a significantly positive sign.

This suggests that the resolution time is ceteris paribus (c.p.) on average 0.1 years longer in the

United States and even 0.5 years longer in Great Britain compared to Germany. This results

seems to relate to the efficiency of default resolution. Again, we refer to the Doing Business

series of the World Bank (see World Bank, 2015a,b,c,d). Under the section Resolving Insolvency,

the efficiency of the regulatory framework regarding the resolution of an insolvent company is

evaluated. Thereby, a survey process is adopted and verified through a study of insolvency laws

and regulations. Several assumptions about the insolvent company, the case, and the parties

are made.13 The score is inspired by the methodology in Djankov et al. (2008) and expressed

as a distance to frontier with 100 representing optimality. It is calculated contingent on two

equally weighted indicators, namely, Recovery Rate and Strength of Insolvency Framework Index.

Thereby, the first is computed based on the reported time, costs, and outcome of the insolvency

proceeding. The latter arises from several legal and regulatory conditions. According to this

score, Germany reaches the third place with a score of 91.78 closely followed by the United

10 The resolution bias belongs to the topic of sample selection. Excluding loans which are not completely resolved
leads to averagely shorter TTR in the recent years and might cause distorted parameter estimates (see Section 1.4).

11 The time period from 2006 to 2008 represents the global financial crisis. The year 2010 is shaped by the European
debt crisis.

12 A deeper insight into the deviations among the countries is presented in Section 1.3.2.
13 See http://www.doingbusiness.org/methodology/resolving-insolvency for further information.
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States with a score of 90.12 (fourth place). Amongst the considered countries, Great Britain is at

the bottom of the range (82.04, 12th place). Thus, our results are confirmed by the World Bank

score even though it is a purely judgmental survey process.

The variable facility distinguishes between medium term and short term. Whereas, medium term

is defined as the reference. The short term category shows a significantly negative coefficient

indicating that these loans tend to exhibit a shorter TTR compared to the reference category. This

is noteworthy since we controlled for other more intuitive determinants, e.g., size, guarantees,

and collateral. Possible explanations might be found in higher efforts with respect to resolving a

medium term facility.

Regarding seniority, loans are divided in the categories super senior, pari-passu, and non senior.

The category non senior combines the original categories subordinated/junior and equity. This

pooling seems necessary owing to the quantity of both categories. The category pari-passu serves

as the reference. The coefficients of super senior and non senior show negative signs. However,

significance can only be observed for the first one. This indicates that loans of the category

non senior do not show a significantly different TTR compared to pari-passu. The seniority type

super senior, however, exhibits a shorter TTR which can be ascribed to the general nature of this

category. Among the differences in the insolvency procedures of Germany, Great Britain, and

the United States, a committee of creditors is involved leastwise at one point of the process.14

Being the one and only preferred claimant might grant this creditor comprehensive rights in

the considered committees which can result in a shorter TTR.

As stated in Section 1.2, our analysis is based on defaulted loan contracts according to the

definition set by the Basel Committee on Banking Supervision (2006). Thereby, default occurs

either if the debtor is ”unlikely to pay” or ”past due more than 90 days on any material credit

obligation” (§452). Thus, the main categories 90 days past due and unlikely to pay are integrated

in the model. In the data base, five additional categories are indicated. These are graded as

subcategories of the more general one unlikely to pay. Thereby, leeway in recording specific

loan contracts is granted since it can be chosen between the general nature of default unlikely to

pay or a more specific one (bankruptcy, charge-off/provision, sold at material credit loss, distressed

restructuring, non accrual). We do not to summarize these categories since they might supply

additional information in the model context. The default definition 90 days past due serves

as the reference category. All dummy variables show statistically significant coefficients. The

signs are mostly positive, except the one of sold at material credit loss. This corresponds with

14 See Insolvenzordung (§67, 69), Insolvency Act 1986 (4., 24., 98.), and Chapter 11 (§1102, 1126).
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economic intuition: Selling an engagement should be linked to a rather short resolution process

as the effort of either restructuring or liquidation is avoided. Loans defaulted due to bankruptcy

tend to have on average the longest TTR since the involvement of public institutions – like

courts – enhances the resolution process. Similar assumptions could be made regarding the

category distressed restructuring.

The guarantee indicator shows a significantly positive sign indicating that loans provided

with guarantees take on average longer to resolve. The fact that additional claims have to be

established against the guarantor could lead to the observed increase. According Table 1.1,

guarantees are more common in the United States (44.14%) than in Great Britain (34.05%) or

Germany (24.44%).

However, collateralization seems to be a more common protection mechanism compared to

guarantees. While 68.85% of all loan contracts exhibit segregation rights against one or more

specific assets, only 31.88% include additional protection in form of guarantees. The collateral

indicator is divided in the categories NO, other collateral, and real estate. Since the loans are

partly secured by several assets, real estate is indicated if at least one of them is a property.

Therefore, other collateral clarifies that there is no real estate among the related securities. The

coefficients of the categories other collateral and real estate show a significantly negative sign

implying that collateral in general yields to a shorter TTR. A reason for this could lie in the

simplicity and velocity of selling an identified asset compared to winding up the company or

engaging a restructuring procedure. The coefficient of the category other collateral is slightly

lower than the one of real estate. Accordingly, other assets seem to have a more decreasing effect

on the TTR. This is in line with the economic intuition since other collateral contains not only

common assets, e.g., machinery, but also cash and general accounts which are easier and faster

to liquidate compared to real estate. Investigating the impact for the number of collateral per

loan, we find a significantly negative impact.

The cured indicator provides information regarding the outcome of the resolution process. If

a loan contract is classified as cured, it returned to performing, i.e., the obligor is back to a

sound rating. This implies that outstanding claims – in the form of principal and interest

obligations – will be fulfilled nearby. In the model, NO serves as the reference category. The

cured indicator shows a significantly negative sign indicating a shorter TTR of loan contracts

which returned to performing. These findings are in line with the results found by Gürtler and

Hibbeln (2013), whose analysis is based on a data set provided by a German bank. They detect

loans returning back to performance exhibit a shorter TTR.
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The industry is determined by eight sectors. In the model, finance, insurance, real estate (RE)

serves as the reference category. The industry types construction, agriculture, forestry, fishing, and

manufacturing show on average a longer TTR compared to the reference category whereas the

coefficient of the latter one is not statistically significant. The industries mining, transportation,

communication, sanitary services, services, and wholesale and retail trade exhibit on average a

shorter TTR. This may be linked to industry specific features. Sectors such as mining or

transportation, communication, sanitary services attend fixed assets, e.g., mines or communication

networks, to a larger and more general extent. Selling these assets or whole divisions to one

of the rather few competitors seems to be easier. In contrast, sectors such as construction and

manufactoring are stamped by a rather wide range of specialization regarding the company

and its assets. Although more competitors exist, to whom assets could be sold, it may be more

difficult to find the appropriate counterpart. Furthermore, these sectors require a conversion of

stock in trade into salable products to satisfy their current contracts. In this context, Davydenko

and Franks (2008) show that a piecemeal liquidation is more likely for companies allocated in

these sectors than a sale as a going concern.

To analyze the impact of the macroeconomic environment, the year-on-year (yoy) log-return of

the equity index and the GDP as of the default date are included in the model.15 Both show

a significantly negative sign. This meets the economic intuition since liquidating assets or

restructuring a company during favorable economic conditions seems to be more promising

than during economic turmoil. Correspondingly, a stressed economic situation causes a longer

TTR and exposes creditors to further interest rate and liquidation risks.

1.3.2 Country specific differences

In this section, we turn towards country specific deviations. Since the economic, legal, and

regulatory environment varies among Germany, Great Britain, and the United States, differences

regarding the determinants of the TTR possibly occur. This issue is motivated by Davydenko

and Franks (2008) who show how the lending behavior among various countries is affected by

their legal and regulatory framework. Table 1.4 gives an overview of the relevant legislations

with respect to insolvency proceedings in Germany, Great Britain, and the United States. The

examined legal systems show considerable differences.

15 Several additional macroeconomic variables were tested. The equity index and the GDP supplied the best results
with respect to the adjusted R-squared.
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Table 1.4: Insolvency codes in Germany, Great Britain, and the United States

Germany Great Britain United States

Code Insolvenzordnung (IO) Insolvency Act 1986 (IA 86) Titel 11 (T11)
Insolvency Act 2000 (IA 00) (particularly Chapter 7,11)
Companies Act 2006 (CA 06)

Start §13: Application by debtor/creditor CVA: §301: Voluntary cases
§14: Creditor → (IA 86) 1. By comp./adm./liqu. → By debtor
§15/15a: Duty of debtor Administration: §303: Involuntary cases
– (Immanent) illiquidity → (IA 86) 9. By comp./creditor → By creditor
– Over-indebtness Receivership:

→ (IA 86) 32. By creditor
Liquidation: [(IA 86) 73.]
→ Voluntary (IA 86) 84. ff.
→ By court (IA 86) 122. ff.
⇒ By comp./creditor

Aim §1: Satisfying creditor claims CVA: (IA 86) 1. Supporting Chapter 11:
(1) Utilization/distribution Administration: (IA 86) 8. Survival → Reorganization (§1101 ff.)
(2) Insolvenzplan, alternatively Receivership: Management, Liquidation Chapter 7:
→ §217 Restructuring, going concern Liquidation: (IA 86) 73. Winding up → Liquidation (§701 ff.)

Moratorium §21(3): Moratorium Administration: (IA 86) 10. and 11. §362: Automatic stay
→ Not immovables →Moratorium included
→ Not specific fin. assets

Stay §22: Temporary stay No §362: Automatic stay
→ Insolvency administrator
§259: Temporary stay
→ Debtor (application)

Management §27: Insolvency administrator Administration Chapter 11
→ §67/69: Supervision by creditors → (IA 86) 8. Adm. → Debtor-in-possession (§1103/1107)
→ Creditor-in-possession Receivership Chapter 7
Insolvenzplan: → (IA 86) 32. Receiver → §702: Trustee (elected by creditors)
→ Debtor-in-possession (§259) Liquidation

→ (IA 86) 91./100./135. Liqu.

Financing Insolvenzplan No §503/507: Super-priority-financing
→ §264: Super-priority-financing

(limited)

Common Liquidation Administration Chapter 11
→ Insolvenzplan rarely used → Sale as going concern → Reorganization

WB Code Overall: 79.64 (rank 15) Overall: 82.18 (rank 6) Overall: 82.15 (rank 7)
(2015) → Resolving Insolvency: 91.78 (rank 3) → Resolving Insolvency: 82.04 (rank 12) → Resolving Insolvency: 90.12 (rank 4)

→ Getting Credit: 70.00 (rank 24) → Getting Credit: 75.00 (rank 17) → Getting Credit: 95.00 (rank 2)

Notes: Common outcomes of the insolvency proceedings originate form Bonelli et al. (2014).

The corresponding code in Germany is the Insolvenzordnung (IO). The insolvency procedure

starts with an application by either the debtor or one of the creditors (IO §13). A special feature

of the German insolvency law is the explicit definition of the default event. According to §15

(IO) and §15a (IO), a debtor has the duty to file for insolvency if a company has to deal with

(immanent) illiquitity or over-indebtness. Neither the British nor the American legal system

includes such an exact definition or the debtor duty. In Germany, the main aim of the insolvency

process is to satisfy the claims of the creditors (IO §1). The survival of the company by means

of an Insolvenzplan is subordinated.16 A moratorium exists during the insolvency proceedings

whereas immovables and specific financial assets are excluded (IO §21). Furthermore, it is

possible for corporations to remain in a temporary stay (IO §22). However, the management is

held by the (temporary) insolvency administrator and a stay is only adopted by the application

of the debtor (IO §259). During the insolvency proceeding, the corporation is managed by the

insolvency administrator who is supervised by the creditors (IO §67 and §69). Such a process

is called creditor-in-possession. The construct of a debtor-in-possession generally exists under

16 An Insolvenzplan is a program to restructure the company.
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the assumption of an Insolvenzplan (IO §259). Super-priority-financing is limited to §264 (IO)

during restructuring. According to Bonelli et al. (2014) liquidation is the most common outcome

of the insolvency proceedings in Germany. Furthermore, the concept of the Insolvenzplan is

relatively new and rarely used in the legal practice.

The relevant codes in Great Britain involve the Insolvency Act 1986 (IA 86), the Insolvency

Act 2000 (IA 00) and the Companies Act 2006 (CA 06). In general, there are four independent

solution mechanism with respect to insolvency. Most of them can be employed separately or

in combination. The first one is described by the Company Voluntary Arrangement (CVA).17

This voluntary agreement can be applied by the debtor, the creditor, or the administrator if the

company is situated under Administration (IA 86, 1.). A CVA only has supporting nature and

does not have specific aims regarding the outcome of the insolvency proceeding. The concept of

Administration describes the second insolvency mechanism which starts by the application of

either the debtor or the creditor (IA 86, 9.). The main aim of this instrument is the survival of

the company (IA 86, 8.). The remaining two mechanisms are the Receivership and the Liquidation,

respectively. They are indicated either by a creditor (Receivership: IA 86, 32.) or by one of

the affected parties (Liquidation: IA 86, 73.). The aim of both procedures is the satisfaction

of the creditors’ claims. While Receivership focuses on the management of a company during

insolvency and the liquidation as a going concern, the Liquidation procedure is directing to wind

up the company (IA 86, 73.). The possibility of a moratorium is only given under Administration

(IA 86, 10. and 11.). However, there exists no regulation regarding a stay of a company after

filing for insolvency. The most common outcome of the insolvency proceeding in Great Britain

is a sale of the insolvent company as a going concern under the Administration regulations (see

Bonelli et al., 2014).

The corresponding laws in the United States are recorded under Title 11 of the US Code. With

respect to the resolution of a defaulted loan contract, particularly, Chapter 7 (Liquidation)

and Chapter 11 (Reorganization) are of interest. An insolvency proceeding starts by filing for

insolvency under a specific chapter. It is distinguished between voluntary cases (T11 §301),

initiated by the debtor, and involuntary cases (T11 §303) where one of the creditors files for

insolvency. In general, involuntary cases are considerably outnumbered by voluntary ones.

Under Chapter 7, the main aim is the liquidation of the company (T11 §701 ff.). Therefore, a

trustee is appointed by the creditors. In contrast, Chapter 11 focuses the reorganization of the

corporation (T11 §1101 ff.) where the debtor stays in possession (debtor-in-possession: T11 §1103

17 Alternatively, a Scheme of Arrangement (CA 06, 834.) could by applied. However, a company might not be actually
insolvent to adopt such a scheme.
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and §1107). Generally, there is an unlimited automatic stay during the insolvency proceeding

(T11 §362) and super-priority-financing is possible (T11 §503 and §507). The most common

outcome in the United States is the reorganization of the corporation under Chapter 11 (see

Bonelli et al., 2014).

With the legal and regulatory framework in each country in mind, we turn towards the results

on country level. Therefore, the data base is divided in three country subsets to investigate

whether the coefficients of the variables are subject to changes. The results are presented in

Table 1.5.18 We find the impact of the EAD, facility type, guarantees, number of collateral, cured

indicator, and macroeconomic variables to be similar compared to the overall model. While

the TTR tends to increase for higher values of the EAD and the availability of a guarantee, it

seems to decrease along with the remaining.19 With regards to the time dummies, seniority,

nature of default, collateral, and the industry type, considerable differences arise. These affect

the magnitude, the statistic significance and even the sign of the coefficients.

Figure 1.3 displays the progression of the time coefficients regarding the overall data set and

on country level. A general time trend is visible. However, the coefficients do not show a

monotonous decreasing course. In the year 2008, there is a considerable peak with respect to

the whole data base. This might be driven by the Anglo American subsets as the corresponding

coefficient for Germany does not increase. Although significance cannot be observed in the

United States regarding this particular year, these results indicate a stronger effect of the global

financial crisis on the TTR in the Anglo American area. Analogously, the second peak in the

overall data base in the year 2010 might be driven by the German subset. Whereas, the Anglo

American countries do not show an increase, the coefficients for Germany in the years 2010 and

2011 are significant and higher compared to previous years.20

Besides this general effect, the time coefficients may also partly capture the resolution bias.21

This phenomenon belongs to the issue of sample selection and describes the fact that the data

in the current time periods has not been completed yet. For example, only a proportion of

the loans which defaulted in the year 2013 has been fully resolved. Loans still being in the

resolution process are characterized by a rather long TTR. Excluding such loans may lead to

18 Note that not all categories appear in the country models. This is due to their non-existence in the subsets. There
are, e.g., no loan contracts in Germany which defaulted in the year 2014. Apart from that, the representation
meets the one of Table 1.3.

19 See Section 1.3.1.
20 These years are marked by the European debt crisis.
21 The inclusion of the finalization rate per cohort year as an additional variable does not affect the general trend of

the time dummies.
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Table 1.5: Regression results of the TTR on country level

Germany Great Britain United States

Coef. SE Coef. SE Coef. SE

Intercept 4.707 *** (0.0906) 3.574 *** (0.1768) 0.887 *** (0.2100)

log(EAD) 0.030 *** (0.0052) 0.036 *** (0.0080) 0.076 *** (0.0097)

Time 2001 -0.983 *** (0.0814) -0.366 ** (0.1161) 0.132 (0.1536)
(2000) 2002 -1.866 *** (0.0683) -0.357 ** (0.1173) -0.236 . (0.1379)

2003 -3.299 *** (0.0630) -0.145 (0.1381) -0.439 *** (0.1306)
2004 -3.323 *** (0.0664) -0.457 *** (0.1269) -0.590 *** (0.1339)
2005 -3.833 *** (0.0616) -0.441 *** (0.1216) -0.890 *** (0.1472)
2006 -3.890 *** (0.0674) -0.671 *** (0.1092) -0.985 *** (0.1295)
2007 -4.107 *** (0.0735) -0.836 *** (0.1117) -0.244 (0.1519)
2008 -4.380 *** (0.0749) -0.703 *** (0.1208) -0.117 (0.1554)
2009 -4.556 *** (0.1805) -1.340 *** (0.1576) -0.483 * (0.1916)
2010 -4.474 *** (0.1373) -1.875 *** (0.1121) -0.758 *** (0.1323)
2011 -4.380 *** (0.1900) -2.300 *** (0.1087) -1.032 *** (0.1325)
2012 -4.984 *** (0.1991) -2.380 *** (0.1160) -1.308 *** (0.1286)
2013 -5.033 *** (0.3256) -2.424 *** (0.1155) -1.579 *** (0.1392)
2014 -1.821 *** (0.1988) -1.308 *** (0.1801)

Facility Short term -0.050 * (0.0223) -0.082 * (0.0319) -0.093 . (0.0505)
(Medium term) Other -0.108 *** (0.0306) -0.760 *** (0.0781) -0.115 ** (0.0406)

Seniority Super senior 0.049 (0.0453) -1.153 *** (0.0493) -0.017 (0.0635)
(Pari-passu) Non senior 0.197 *** (0.0569) -1.246 *** (0.3597) 1.354 *** (0.1646)

Unknown -1.576 *** (0.0590) 0.026 (0.1561)

Nature of default Sold at material credit loss 0.312 (0.1958) 0.239 (0.6464) -1.184 *** (0.1326)
Unlikely to pay 0.755 *** (0.0392) -0.348 *** (0.0398) -0.146 ** (0.0459)
Charge-off / provision 0.665 *** (0.0218) -0.048 (0.0464) 0.691 *** (0.1464)
Non accrual -0.030 (0.0772) 0.444 *** (0.0467) -0.157 *** (0.0473)
Distressed restructuring 0.756 *** (0.0340) 0.729 *** (0.0981) 0.265 (0.1922)
Bankruptcy 1.223 *** (0.0399) -0.214 *** (0.0584) -0.057 (0.1125)
Unknown 0.705 ** (0.2406) -0.374 *** (0.0431) -0.168 (0.1894)

Guarantee YES 0.008 (0.0223) 0.059 . (0.0312) 0.227 *** (0.0360)
(NO) Unknown -0.125 (1.2012) 0.253 (0.7136) -1.325 *** (0.3996)

Collateral Other collateral -0.189 *** (0.0283) 0.085 * (0.0402) 0.111 * (0.0469)
(NO) Real estate -0.144 *** (0.0263) -0.063 . (0.0349) 0.074 (0.0593)

Unknown 0.531 (0.9635)

Number of collateral -0.003 (0.0036) -0.005 ** (0.0017) -0.061 *** (0.0117)

Cured (NO) YES -0.467 *** (0.0193) -0.697 *** (0.0355) -0.259 *** (0.0412)

Industry Mining -1.252 *** (0.2641) -0.176 (0.2313) -0.040 (0.1801)
(Finance, insurance, RE) Transp., commu., san. ser. -0.191 *** (0.0476) -0.435 *** (0.0860) 0.187 * (0.0875)

Services -0.095 *** (0.0267) -0.069 (0.0444) 0.220 *** (0.0559)
Wholesale and retail trade -0.063 * (0.0311) -0.064 . (0.0391) 0.150 ** (0.0582)
Manufacturing -0.010 (0.0345) -0.153 ** (0.0525) 0.329 *** (0.0588)
Agric., forestry, fishing 0.202 ** (0.0764) 0.010 (0.0833) -0.049 (0.1410)
Construction 0.156 *** (0.0425) 0.058 (0.0426) 0.449 *** (0.0678)
Unknown -0.217 *** (0.0536) 0.140 (0.1292) -0.184 ** (0.0591)

Equity Index -0.318 *** (0.0750) -0.115 (0.1429) -0.253 * (0.1205)

GDP -8.329 *** (1.2542) -4.671 ** (1.5663) -0.049 (1.8697)

Adjusted R-squared 73.49% 38.38% 22.90%
F-statistic 761.54 117.94 37.39
p-value 0.0000 0.0000 0.0000

Notes: Results of the multiple linear regression regarding the country subsets. Significance codes: *** 0.001, ** 0.01,
* 0.05, · 0.1. Standard errors (SE) are clustered by year.
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Figure 1.3: Progression for the time coefficients in the regression models for the overall data
set and on country level
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a systematic distortion in the parameters. By including time dummies, these effects can be

absorbed. This could be a reason for the decreasing nature of the coefficients, particularly in the

current years.22

Regarding the seniority type, considerable differences can be observed among Germany, Great

Britain, and the United States. While loans of the category super senior show a significant

shorter TTR compared to the reference category in the overall data set, this is only true with

respect to Great Britain. In general, the super senior status gives a single preferred claimant

creditor wide powers in the resolution proceeding which could lead to a shorter TTR. The

insignificance in Germany and the United States seems to be related to the authorization of

super-priority-financing during the insolvency process. This involves a dilution of super senior

claims by additional new debt which weakens the power base of the initially preferred creditors.

Still, being among preferred claimants seems to be vital in both countries as the non senior

status increases the TTR in both countries.

Overall, the TTR does not differ between the categories non senior and pari-passu. On the

contrary, non senior shows a significantly longer TTR in Germany and the United States, and a

shorter one in Great Britain. A longer resolution process regarding subordinated claims seems

22 Concerning the resolution bias, see Section 1.4.
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to be intuitive since these creditors are the last ones to be satisfied out of the insolvency assets.

However, the category pari-passu demands on average the longest TTR in Great Britain which

might be ascribed to a more complex approval structure that accompanies with claims of equal

rank.

The collateral types other collateral and real estate exhibit significantly negative signs in the

overall data set. In Germany, the coefficients show the same direction and a similar scale. This

corresponds with the legal framework. Although the possibility of a temporary stay exists

according to the regulations, it is only adaptable during an Insolvenzplan and associated with an

application by the debtor. Furthermore, restructuring is a rather rare outcome of the insolvency

proceeding. In the standard case of liquidation, the secured creditors have direct access to the

securities. A switch of the sign can be observed in Great Britain regarding other collateral. While

there is no stay regulation in the British insolvency law, a moratorium takes place during the

standard proceeding – the Administration. With the main aim of selling the company as going

concern, it might be more difficult to gain access on some of the assets. In the United States, the

coefficient of other collateral shows a significantly positive sign whereas the one of real estate is

insignificant. Considering the insolvency law with its automatic stay regulation, some time may

elapse until a creditor could liquidate securities. This seems to explain the insignificance with

respect to real estate and the significantly positive impact of other collateral.

Regarding seniority, guarantees, and collateral, differences among the countries already arise

in the descriptive statistics. In Germany, where we observe a positive impact of collateral in

general, 72.33% of all loans are additionally secured by collateral. This proportion is lower in

Great Britain (67.23%) and the United States (63.98%). Besides collateralization, guarantees

and seniority can be classified as further security mechanisms. Compared to Germany (24.44%),

a rather high proportion of guarantees can be found in the United States (44.14%) and Great

Britain (34.05%). Analogously, a considerably higher seniority level can be observed in these

countries.23 This indicates that creditors try to compensate the harder and longer liquidation

proceeding by alternative security mechanisms. However, rather unfavorable or negligible

effects of guarantees and seniority can be observed regarding the TTR. The coefficients of the

guarantee indicator are significantly positive in the Anglo American subsets and the one of

super senior is insignificant in the United States. While positive effects are limited with respect

23 Proportion of super senior among the considered countries: Germany (5.47%), Great Britain (44.34%), and the
United States (83.71%).
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to the TTR, they arise considering the LGD as the dependent variable (see Section 1.3.3).24

With respect to the nature of default, differences among the considered countries can be

observed. In the overall data set, all coefficients – except the one of sold at material credit loss –

are significantly positive. In Germany, the results tend to be consistent. Contrary to the overall

data set, the coefficients of unlikely to pay and bankruptcy show a significantly negative sign in

Great Britain.25 Generally, the separate interpretation of unlikely to pay is rather ambiguous

since it is constructed as a main category for the remaining default types – except 90 days past

due. Since relatively more loans are characterized by this category, there it seems possible that

systematic differences compared to Germany occur. The term ”bankruptcy” only applies to

individuals (including sole proprietors) in Great Britain. It seems intuitive that the resolution of

individual entrepreneurs is less entangled and, therefore, shorter. In the United States, sign

switches can be observed for unlikely to pay and non accrual.26 The separate interpretation of

unlikely to pay remains ambiguous. The latter may also be related to general business practices.

Since restructuring is the main outcome of insolvency proceedings, waivers on accruals seem to

be rather common during financial distress to quickly reduce the pressure on the debtor.

While the industry dummies regarding Germany and Great Britain are rather similar to those

of the overall data set, differences can be observed in the United States. The impacts of the

categories transportation, communication, sanitary services, services, and wholesale and retail trade

exhibit a significantly positive impact. These results reflect the divergence of import industrial

sectors among countries.

Regarding Table 1.3 and 1.5, the impact of the cured indicator is similar among countries.

However, discrepancies in terms of descriptive statistics in Table 1.1 are remarkable. Overall,

36.40% of all loans are cured. The highest proportion can be observed in Great Britain (42.44%),

followed by Germany (35.74%) and the United States (29.12%). At first glance, this seems

to be counterintuitive since restructuring – or at least going concern – is the main aim of the

insolvency law in the United States. However, one should not mix up the concept of cured loan

contracts with the survival of a corporation. Its relatively high proportion may be an indication

that rather proficient debtors are pushed into insolvency. In this context, Germany with its

24 For example, while the guarantee indicator shows a coefficient of −0.077 (***) in Great Britain with the transformed
LGD as the dependent variable, the one of super senior is with −0.052 (**) also significantly negative in the United
States (LGDs are transformed by the inverse of normal distribution function, see Section 1.3.3). Results are
available from the authors upon request.

25 The significance of sold at material credit loss and charge-off / provision disappears. This might be due to a inferior
importance of these categories in Great Britain.

26 The significance of distressed restructuring and bankruptcy disappears. This might be due to a inferior importance
of these categories in the United States.
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explicitly formalized default definition might serve as a reference. In the United States, rather

less debtors may enter insolvency since the voluntary case is the norm and there is no duty

to file for insolvency. Contrary, the application might be done more often by the creditors in

Great Britain. They have minor insight in the corporations and may be rather inclined to file for

insolvency.

1.3.3 Comparison to general drivers of LGD

In addition to the TTR as a proxy for the indirect costs, we analyze drivers for the LGD.

Noteworthy, the loss rate only captures parts of the indirect cost as opportunity costs and

reputational losses might not fully be included in the LGD. Significant differences regarding the

determinants of both cost categories may arise. A consideration of the TTR and the LGD is thus

essential to correctly evaluate the effects of specific loan characteristics, e.g., collateralization or

guarantees. Otherwise, positive impacts might be overvalued and negative ones underestimated.

Figure 1.4: Boxplots of LGDs on country level
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(mean 13.83%) (mean 19.70%) (mean 23.37%)

Figure 1.4 displays boxplots of the LGD divided by country27 while means are given below

country names. The average LGD of German loans is 13.83% and, thus, lower than in Great

Britain (19.70%) and the United States (23.37%). Analogously to the TTR, deviations might arise

27 As we are dealing with economic LGDs, i.e., workout LGDs, values lower than 0 and higher than 1 arise.
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Chapter 1. What drives the time to resolution of defaulted bank loans?

Table 1.6: Determination of ε

ε Adjusted R-sqared

1.00E-50 27.4208%
1.00E-45 27.4208%
1.00E-40 27.4208%
1.00E-35 27.4208%
1.00E-30 27.4208%
1.00E-25 27.4208%
1.00E-20 27.4208%
1.00E-15 27.4208%
1.00E-10 27.4208%
1.00E-05 27.4202%
1.00E-04 27.4140%
0.001 27.3521%
0.01 26.7287%
0.1 20.1767%

Notes: ε of the Inverse Gaussian Regression with the corresponding adjusted R-squared. Resulting ε is written in
bold.

when comparing descriptive statistics for LGDs and results from a modeling framework.28 Thus,

we apply a multiple linear regression model for the LGD using similar regressors as in the case

of the TTR model. LGD values are caped to the interval [0,1]. To address common characteristics

of the distribution, the LGDs are transformed by the inverse of the normal distribution function.

Since the inverse is not defined at the points 0 and 1, a small positive value ε is determined

which is added to 0 and subtracted from 1. Regarding the choice of ε, a trade off arises. A

very small ε leads to values close to −∞ (LGD = 0) and∞ (LGD = 1) on the transformed scale

and, thus, probably to a poor model fit. Higher values of ε imply larger deviations from the

actual LGDs which could come along with a poor model fit. Accordingly, sensitivity has to

be examined in the final choice of ε (see, e.g., Qi and Zhao, 2011; Hu and Perraudin, 2006).

Table 1.6 contains various possible values of ε and the adjusted R-squared of the corresponding

transformed regression. We elect ε = 1.00E-11 since the adjusted R-squared remains constant as

ε is further decreased.

The results of the transformed multiple linear regression are displayed in Table 1.7. In general,

analogy in the sign and significance of the coefficients with respect to the TTR (see Table 1.3)

emerge. Large parts of the time dummies also follow a decreasing course. However, some of the

coefficients are subject to sign switches. These arise particularly in years of financial turmoil

indicating higher LGDs during harsh economic times.29 Furthermore, we observe a different

order of the country dummies. Germany shows the lowest TTR followed by Great Britain and

28 According descriptive statistics in Table 1.1 the shortest TTR on average is observed in the United States. In the
model context, loans located in Germany appear to exhibit the shortest resolution process (see Table 1.3).

29 The sign switch regarding the year 2014 might be due to randomness as this year is rarely represented in the
sample.
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Table 1.7: Regression results of the LGD for the overall data set

Coef. SE

Intercept 0.446 *** (0.0162)

log(EAD) -0.008 *** (0.0011)

Time 2001 0.005 (0.0116)
(2000) 2002 -0.020 . (0.0108)

2003 -0.033 ** (0.0108)
2004 -0.065 *** (0.0112)
2005 -0.025 ** (0.0098)
2006 -0.027 ** (0.0097)
2007 -0.065 *** (0.0097)
2008 0.036 ** (0.0126)
2009 -0.002 (0.0157)
2010 0.016 (0.0116)
2011 0.008 (0.0117)
2012 -0.017 (0.0119)
2013 -0.009 (0.0143)
2014 0.407 *** (0.0666)

Country United States 0.114 *** (0.0098)
(Germany) Great Britain 0.074 *** (0.0077)

Facility Short term -0.007 (0.0045)
(Medium term) Other -0.135 *** (0.0057)

Seniority Super senior -0.026 *** (0.0060)
(Pari-passu) Non senior 0.142 *** (0.0151)

Unknown -0.045 *** (0.0123)

Nature of default Sold at material credit loss 0.125 *** (0.0259)
Unlikely to pay -0.042 *** (0.0063)
Charge-off / provision 0.050 *** (0.0054)
Non accrual 0.025 *** (0.0069)
Distressed restructuring 0.048 *** (0.0090)
Bankruptcy -0.014 . (0.0074)
Unknown -0.041 ** (0.0129)

Guarantee YES -0.049 *** (0.0041)
(NO) Unknown -0.172 * (0.0709)

Collateral Other collateral -0.060 *** (0.0050)
(NO) Real estate -0.137 *** (0.0051)

Unknown -0.347 * (0.1687)

Number of collateral 0.001 (0.0004)

Cured (NO) YES -0.280 *** (0.0043)

Industry Mining -0.112 ** (0.0341)
(Finance, insurance, RE) Transp., commu., sanitary services 0.011 (0.0107)

Services 0.053 *** (0.0061)
Wholesale and retail trade 0.035 *** (0.0065)
Manufacturing 0.013 . (0.0070)
Agric., forestry, fishing -0.012 (0.0162)
Construction -0.005 (0.0078)
Unknown -0.018 * (0.0084)

Equity Index 0.059 *** (0.0141)

GDP -0.609 *** (0.1678)

Adjusted R-squared 27.42%
F-statistic 204.41
p-value 0.0000

Notes: Results of the multiple linear regression regarding the overall data set with the LGD as dependent variable.
Significance codes: *** 0.001, ** 0.01, * 0.05, · 0.1. Standard errors (SE) are clustered by year.
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the United States. Although the resolution is faster in the United States, it is accompanied with

higher losses compared to Great Britain. This divergence could be ascribed to the insolvency

proceeding. In the United States, Chapter 11 characterized by its high borrower friendliness

might significantly reduce the TTR compared to the complex approval structures in the British

insolvency law. However, effects on the loss seem to be contrary. Results with respect to facility

types are similar, whereas, the significance of short term disappears. In addition, no significant

deviation occurs regarding collateral, the cured indicator and macroeconomic variables.30 The

significance of number of collateral vanishes.

Major breaches are detected in the remaining variables. The coefficient of non senior is signifi-

cantly negative indicating that seniority obtains a stronger effect on the LGD compared to the

TTR. Furthermore, statistically significant sign switches arise regarding the natures of default

sold at material credit loss, unlikely to pay and bankruptcy. The first category shows a positive,

the latter ones a negative, sign. Regarding sold at material credit loss, this meets the economic

intuition. Although, restructuring or the winding up of a company can result in a longer TTR,

waivers may be linked to the selling of an engagement. This would raise LGDs. In spite of

increasing the TTR, guarantees reduce the loss rate. This seems consistent as the assertion of

additional claims might enhance the resolution process. However, further payments may be

generated. Regarding industry, significant sign switches can be observed for the categories

services and wholesale and retail trade. Although reducing the TTR, they lead to an increase in

the LGD.

Generally, the negligence of the TTR as a considerable cost component might result in inaccurate

conclusions. For example, we find that guarantees seem to engage opposite effects. Solely

focusing on the LGD leads to an overestimation regarding benefits of guarantees as they reduce

the loss rate. However, they also result in a longer resolution process and additional risk

sources involved – such as opportunity cost and reputational losses or interest and liquidation

risks – may be obliterated.

30 Although, the GDP shows the expected sign, the coefficient of the equity index is significantly negative. As both
macroeconomic variables are implemented as of the default date, reasons for this discrepancy might be found in
the cyclical nature of the variables. While the GDP captures the main effect of the macroeconomic environment,
the remaining variable might reflect the economic framework during the resolution process which may be inverse
compared to the default date. Furthermore, this could catch an additional influence structure which can not be
measured by a single variable.
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1.4 Robustness

In this section, we examine the robustness of results presented in Section 1.3. We investigate

deviations from previous findings when applying varying methods. First, we use a log transfor-

mation of the TTR. In contrast to the level specification, the TTR is restricted to values greater

than zero. As stated in Section 1.3, the resolution bias is an issue of concern. Estimates of the

multiple linear regression might be biased due to the overrepresentation of loans with a rather

short TTR. If the exact number of missing observations, i.e., loans not completely resolved yet,

is known, censored regressions are adaptable to adress the resolution bias. However, as we are

not aware of the exact quantity, we apply truncated regressions. The results are compared with

the linear model in order to draw conclusions regarding possible distortions in the parameters.

Finally, we return to the multiple linear regression but use an alternative measure of the TTR as

the dependent variable.

Log transformation

The results regarding the log transformation are displayed in Table 1.A.1 (see Appendix 1.A).

Compared to the level specification, we find similar signs for almost all determinants. Dif-

ferences arise for the seniority non senior, the collateral real estate and the industries services

and wholesale and retail trade. However, these might be attributable to the modification of the

dependent variable and, particularly, to the variation of its distribution.31 Generally, the results

seem to be robust regarding the transformation of the TTR as the directions of the coefficients

are similar for most of the variables. Changes of the impacts can be explained through the log

transformation itself.

Truncated regression

Excluding incompletely resolved loan contracts entails a selection bias. At the time of writing

of this paper, the year 2015 marks the present and we do not have any information beyond

this point. Loans defaulted in, e.g., 2013 could exhibit a maximum TTR of two years while

those which are going to be resolved later on are neglected. Hence, including only resolved loan

contracts might yield in distorted parameter estimates. To analyze this bias, we adopt truncated

regressions on subsamples on yearly basis. The application on subsets seems necessary as the

limiting value of the data has to be unique in the samples. E.g., the limit regarding loans

defaulted in 2014 is one year, in 2013 two years, in 2012 three years, and so on. For the reason

31 See Appendix 1.A for further information.
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of comparability, truncated regressions on yearly basis are compared to their counterparts of

the linear regression.32

Generally, the coefficients in both models are almost similar regarding all years. For simplicity,

only the subsets with the highest deviations in the parameter estimates are displayed.33 Ta-

ble 1.B.1 and 1.B.2 (see Appendix 1.B) contain the results with respect to the years 2008 and

2009, where the coefficients of the year 2008 exhibit slightly higher deviations. Noteworthy,

these years mark the summit of the global financial crisis. This indicates that the resolution bias

is particularly pronounced during financial turmoil. At first glance, this may be counterintuitive

since we would expect the major manifestation in the most recent years. However, the global

financial crisis might have entailed a market shakeout. Rather poor debtors have defaulted in

crisis years yielding to a better credit quality regarding debtors afterwards. Therefore, short

resolution times are more frequent in the recent years and distortions due to longer TTR become

less likely.

Comparing the truncated and the linear regression, almost no variations emerge regarding the

sign or significance of the coefficients. This gives rise to the conjecture that the resolution bias

might not lead to misjudgments regarding the direction of the determinants. In the truncated

regression, the absolute values of the coefficients increase compared to the multiple linear model.

Therefore, neglecting the resolution bias can lead to an undervaluation of the impacts but not to

a misapprehension of the signs. Generally, the deviations are negligible indicating that either

the resolution bias does not distort the parameter estimates or its effect is absorbed by the time

dummies in the overall data set and the intercepts in the subsamples.

Alternative dependent variable

Besides the application of various models, the TTR is replaced by a different dependent variable

inspired by the bond duration. Generally, it is specified by the cash-flow-weighted average of

the payment dates and, therefore, expressed in years.34 We will refer to this measure as loan

duration:

D =
1
P

 T∑
t=1

t
Ct

(1 + r)t

 ,
whereby P denotes the present value of the cash flows and is calculated as P =

∑T
t=1

Ct
(1+r)t . The

parameter Ct describes the cash flow at time t and r the discount rate. Generally, only positive

32 Comparing regressions of the overall data set with the ones on yearly basis, several deviations among the
parameters arise. See Appendix 1.B for further information.

33 The results of the remaining subsets are available from the authors upon request.
34 The implied statement of price sensitivity to the interest rate is neglected.
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and cash-flow-related transactions enter the loan duration.

Table 1.C.1 (see Appendix 1.C) displays the results of the multiple linear regression with the

loan duration as the dependent variable. Compared to the results of Table 1.3, several deviations

among the coefficients arise. However, reverse signs are insignificant regarding the TTR or the

loan duration.35

1.5 Conclusion

This paper analyzes the TTR of defaulted loan contracts. By this means, we aim to determine

general drivers of the resolution time. Particularly, country specific deviations with respect to

the determinants are examined.

Our results show that the TTR is determined by loan specific characteristics as well as the

economic environment. While bad macroeconomic conditions extend the resolution process in

general, we find that medium term loans with high exposures exhibit the longest TTR. Equally

ranked claimants additionally decelerate the resolution process. Overall, collateralization

abbreviates the procedure, whereas guarantees seem to entail opposite effects. Furthermore, we

find Great Britain and the United States to reveal a higher TTR after controlling for additional

input parameters. American loans take on average 0.1 years longer to resolve compared to loans

located in Germany, British loans even 0.5 years longer. These findings are supported by a World

Bank score. Regarding the TTR, the insolvency code in Germany is most efficient amongst the

considered countries.

Based on these general findings, we deepen our analysis on country level. We find deviations in

the impact of seniority, nature of default, collateral, and industry among Germany, Great Britain,

and the United States. Several of these differences, e.g., regarding seniority and collateral, seem

to be caused by dissimilar regulations. The effect of collateralization is an important driver

regarding country specific differences. While both real estate and other collateral shorten the

resolution process in Germany by averagely 0.1 and 0.2 years, real estate is insignificant in

the United States and other collateral even exhibits an opposite impact in the Anglo American

countries, thus, extending the TTR on average by 0.1 years. This may relate to the creditor

friendly nature of the German insolvency law. While easy access to collateral is provided in

Germany, moratorium (Great Britain) and automatic stay regulations (United States) complicate

35 See Appendix 1.C for further information.

38



Chapter 1. What drives the time to resolution of defaulted bank loans?

the liquidation of individual securities in the Anglo American area. Additionally, general

business practices seems to be influenced by the legal frameworks. Such regulatory differences

seem to be known to creditors which leads to country specific lending adjustments, e.g., a more

frequent use of additional security mechanisms in Anglo American countries. Thus, higher

fractions of loan contracts secured by guarantees and / or preferred seniority arise in Great

Britain and the United States.

Our findings contribute to a better understanding of the TTR. Particularly, attributes are

determined leading to faster resolutions of defaulted loan contracts. Risk accompanied with

long resolution times might be avoided. Moreover, we find that considerable differences in

the legal frameworks lead to adjustments in the general lending behavior of creditors which

impacts the TTR of loans.
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1.A Appendix | Log transformation

Table 1.A.1 displays the results of the multiple linear regression with the natural logarithm of

the TTR as dependent variable. We find similar signs for almost all determinants compared

to the level specification (see Table 1.3). However, differences can be examined regarding the

seniority non senior, the collateral real estate, and the industries services and wholesale and retail

trade.

In the level specification, non senior exhibits an insignificantly negative sign whereas a signifi-

cantly positive impact can be observed in the log specification. The latter indicates a longer TTR

of non senior compared to the reference category. This might be due to the modification of the

dependent variable. Figure 1.A.1 presents the boxplots for the TTR and its log transformation

divided by seniority.36 Thereby, the altering nature of the natural logarithm is demonstrated.

While high values are reduced, negative ones appear wherever the level variable is below one.

This might be beneficial considering determinants discriminating amongst rather small values.

The category non senior might be of such kind. Focusing on the mean values, a positive impact

as revealed in the log specification might be expected since an averagely longer TTR is indi-

cated. Compared to the level variable, the difference in the means seems rather large in the log

specification. Therefore, the sign switch and the significance might be reasonable as the linear

regression minimizes the squared differences with respect to the mean.

A considerable variation can be observed regarding the collateral real estate. While the sign

is significantly negative in the level specification, the impact becomes significantly positive

applying the log transformation. Figure 1.A.2 displays the boxplots of the level variable and its

natural logarithm divided by collateral.37 Again, the log transformation reduces high values

and creates negative ones. Considering the means, a negative impact of real estate as revealed in

the level specification might be expected. In contrast to seniority, the difference in the means is

more pronounced regarding the level specification.

Regarding the industry, deviating signs can be observed in the categories services and wholesale

and retail trade. While both exhibit a significantly negative sign in the level specification, the

impacts are positive applying the log transformation. However, the coefficient of wholesale and

retail trade is not statistically significant. Figure 1.A.3 displays the boxplots divided by the

36 See Figure 1.A.1, p. 42.
37 See Figure 1.A.2, p. 42.
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considered industries.38 Regarding the mean values, a negative sign of services and a positive

(or insignificant) one of wholesale and retail trade might be expected in the level specification.

Considering the log transformation, a positive impact of both categories might be indicated.

While the expectation of services can be confirmed, we observe a significantly negative impact of

wholesale and retail trade in the level specification and an insignificant one applying the natural

logarithm. However, the coefficient in the level specification is quite small and only significant

on a rather high level. The deviating signs might be attributable to the modification of the

dependent variable and its distribution.

38 See Figure 1.A.3, p. 42.

41



Chapter 1. What drives the time to resolution of defaulted bank loans?

Figure 1.A.1: Boxplots of the TTR and its logarithm divided by seniority
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Figure 1.A.2: Boxplots of the TTR and its logarithm divided by collateral
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Figure 1.A.3: Boxplots of the TTR and its logarithm divided by industry
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Chapter 1. What drives the time to resolution of defaulted bank loans?

Table 1.A.1: Regression results of the log transformation of the TTR for the overall data set

Coef. SE

Intercept 0.771 *** (0.0585)

log(EAD) 0.034 *** (0.0039)

Time 2001 -0.638 *** (0.0391)
(2000) 2002 -0.696 *** (0.0335)

2003 -1.056 *** (0.0341)
2004 -1.078 *** (0.0374)
2005 -1.424 *** (0.0341)
2006 -1.299 *** (0.0320)
2007 -1.387 *** (0.0350)
2008 -1.354 *** (0.0461)
2009 -1.509 *** (0.0561)
2010 -1.115 *** (0.0387)
2011 -1.732 *** (0.0448)
2012 -2.159 *** (0.0464)
2013 -2.497 *** (0.0643)
2014 -2.715 *** (0.2074)

Country United States 0.366 *** (0.0361)
(Germany) Great Britain 0.711 *** (0.0291)

Facility Short term -0.276 *** (0.0169)
(Medium term) Other -0.118 *** (0.0211)

Seniority Super senior -0.170 *** (0.0221)
(Pari-passu) Non senior 0.165 ** (0.0543)

Unknown 0.061 (0.0428)

Nature of default Sold at material credit loss -1.169 *** (0.0998)
Unlikely to pay 0.068 ** (0.0241)
Charge-off / provision 0.440 *** (0.0201)
Non accrual 0.339 *** (0.0258)
Distressed restructuring 0.525 *** (0.0334)
Bankruptcy 0.442 *** (0.0268)
Unknown -0.485 *** (0.0541)

Guarantee YES 0.073 *** (0.0155)
(NO) Unknown -0.956 *** (0.2450)

Collateral Other collateral -0.107 *** (0.0188)
(NO) Real estate 0.040 * (0.0192)

Unknown -0.403 (0.6898)

Number of collateral -0.009 *** (0.0017)

Cured (NO) YES -0.672 *** (0.0163)

Industry Mining -0.503 *** (0.1247)
(Finance, insurance, RE) Transp., commu., sanitary services -0.172 *** (0.0405)

Services 0.044 . (0.0234)
Wholesale and retail trade 0.003 (0.0250)
Manufacturing 0.077 ** (0.0265)
Agric., forestry, fishing 0.046 (0.0649)
Construction 0.178 *** (0.0297)
Unknown 0.259 *** (0.0305)

Equity Index -0.403 *** (0.0480)

GDP -9.736 *** (0.6225)

Adjusted R-squared 38.77%
F-statistic 342.72
p-value 0.0000

Notes: Results of the multiple linear regression with log transformation regarding the overall data set. Significance
codes: *** 0.001, ** 0.01, * 0.05, · 0.1. Standard errors (SE) are clustered by year.
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1.B Appendix | Truncated regression

To consider the general nature of the data, we apply truncated regressions to subsets on yearly

basis. The subsampling seems necessary as the limiting value has to be unique. Comparing

the overall multiple linear regression (see Table 1.3) to the regressions on the subsamples (see

Table 1.B.1 and 1.B.2), deviations with respect to the signs and significances arise.39

In the year 2008, sign switches can be observed regarding the facility short term, the nature

of default bankruptcy, the collateral other collateral, several industries, and the GDP. However,

only other collateral is statistically significant. This might be due to the considerably higher

proportion of loan contracts located in Great Britain (34.92%) and the United States (49.22%)

in this particular year.40 Accordingly, the subsample might be driven by the Anglo American

countries where the coefficient of other collateral exhibits a significantly positive sign.

In the year 2009, significant sign switches can be observed regarding the natures of default un-

likely to pay, charge off / provision, and bankruptcy, and the collateral other collateral. Analogously,

reasons may be found in the varying proportions of the loan origins as the signs correspond to

the ones in the country subsets.

39 See Table 1.3, p. 20, Table 1.B.1, p. 45 (subset 2008), and Table 1.B.2, p. 46 (subset 2009).
40 Overall, these fractions amount to 31.87% (Great Britain) and 22.22% (United States).
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Table 1.B.1: Regression results of the TTR for the linear and the truncated regression (TR)
regarding 2008

linear TR

Coef. SE Coef. SE

Intercept -0.444 (0.3298) -0.501 (0.3461)

log(EAD) 0.076 *** (0.0214) 0.080 *** (0.0223)

Country United States 2.958 *** (0.2032) 3.062 *** (0.2127)
(Germany) Great Britain 2.426 *** (0.1404) 2.528 *** (0.1472)

Facility Short term 0.011 (0.0919) 0.014 (0.0968)
(Medium term) Other -0.498 *** (0.1232) -0.512 *** (0.1273)

Seniority Super senior -1.796 *** (0.1270) -1.908 *** (0.1345)
(Pari-passu) Non senior -0.092 (0.3351) -0.089 (0.3533)

Unknown -1.369 *** (0.3947) -1.444 *** (0.4068)

Nature of default Sold at material credit loss -2.125 (1.3811) -2.169 (1.4049)
Unlikely to pay 0.097 (0.1222) 0.098 (0.1273)
Charge-off / provision 0.359 ** (0.1301) 0.378 ** (0.1368)
Non accrual 0.432 *** (0.1121) 0.469 *** (0.1183)
Distressed restructuring 0.168 (0.4170) 0.154 (0.4296)
Bankruptcy -0.146 (0.1453) -0.159 (0.1507)
Unknown -1.876 . (0.9820) -1.985 * (1.0100)

Guarantee YES 0.107 (0.0869) 0.112 (0.0907)
(NO) Unknown -0.960 (1.3901) -1.006 (1.4249)

Collateral Other collateral 0.184 . (0.1020) 0.199 . (0.1069)
(NO) Real estate -0.233 * (0.1186) -0.248 * (0.1243)

Unknown -0.394 (1.4348) -0.404 (1.4672)

Number of collateral -0.016 (0.0138) -0.015 (0.0143)

Cured (NO) YES -0.254 ** (0.0924) -0.268 ** (0.0960)

Industry Mining -1.546 (1.3787) -1.543 (1.4022)
(Finance, insurance, RE) Transp., commu., sanitary services 0.265 (0.1986) 0.290 (0.2111)

Services 0.043 (0.1296) 0.045 (0.1353)
Wholesale and retail trade 0.055 (0.1202) 0.062 (0.1260)
Manufacturing 0.189 (0.1282) 0.195 (0.1341)
Agric., forestry, fishing -0.199 (0.4439) -0.221 (0.4606)
Construction 0.311 ** (0.1204) 0.337 ** (0.1278)
Unknown -1.609 *** (0.1777) -1.663 *** (0.1843)

Equity Index -0.587 (0.5311) -0.605 (0.5565)

GDP 3.892 (3.8913) 4.103 (4.1340)

Adjusted R-squared 37.48%
F-statistic 28.50
p-value 0.0000

sigma 1.394 *** (0.0280)
p-value -2515.79 (34)

Notes: Results of the multiple linear regression and the truncated regression regarding the year 2008. Significance
codes: *** 0.001, ** 0.01, * 0.05, · 0.1.
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Table 1.B.2: Regression results of the TTR for the linear and the truncated regression (TR)
regarding 2009

linear TR

Coef. SE Coef. SE

Intercept 1.100 *** (0.3066) 1.069 *** (0.3199)

log(EAD) 0.054 *** (0.0153) 0.056 *** (0.0160)

Country United States 0.598 * (0.2465) 0.644 * (0.2565)
(Germany) Great Britain 0.812 *** (0.2292) 0.876 *** (0.2388)

Facility Short term -0.099 (0.0660) -0.108 (0.0697)
(Medium term) Other -0.301 *** (0.0878) -0.305 *** (0.0907)

Seniority Super senior -0.882 *** (0.1003) -0.934 *** (0.1048)
(Pari-passu) Non senior -0.345 (0.2517) -0.357 (0.2637)

Unknown -0.891 ** (0.3215) -0.935 ** (0.3312)

Nature of default Sold at material credit loss -1.067 *** (0.1677) -1.052 *** (0.1720)
Unlikely to pay -0.339 *** (0.0815) -0.347 *** (0.0849)
Charge-off / provision -0.371 *** (0.1119) -0.395 *** (0.1173)
Non accrual 0.306 *** (0.0725) 0.348 *** (0.0771)
Distressed restructuring -0.209 (0.5166) -0.218 (0.5461)
Bankruptcy -0.662 *** (0.1241) -0.692 *** (0.1286)
Unknown 0.444 * (0.1990) 0.474 * (0.2151)

Guarantee YES 0.258 *** (0.0654) 0.276 *** (0.0692)
(NO) Unknown -2.674 ** (0.8516) -2.779 ** (0.8735)

Collateral Other collateral 0.119 . (0.0683) 0.128 . (0.0718)
(NO) Real estate -0.008 (0.0821) -0.004 (0.0864)

Number of collateral -0.013 (0.0119) -0.015 (0.0126)

Cured (NO) YES -0.545 *** (0.0574) -0.574 *** (0.0599)

Industry Mining 0.578 (0.4798) 0.585 (0.4966)
(Finance, insurance, RE) Transp., commu., sanitary services -0.053 (0.1452) -0.050 (0.1515)

Services -0.031 (0.0933) -0.032 (0.0981)
Wholesale and retail trade -0.234 ** (0.0825) -0.246 ** (0.0863)
Manufacturing 0.225 ** (0.0867) 0.241 ** (0.0914)
Agric., forestry, fishing -0.107 (0.2930) -0.116 (0.3080)
Construction 0.002 (0.0796) 0.000 (0.0839)
Unknown -0.467 *** (0.1313) -0.492 *** (0.1367)

Equity Index -0.702 *** (0.1683) -0.727 *** (0.1751)

GDP -3.460 (2.4724) -3.926 (2.5794)

Adjusted R-squared 28.44%
F-statistic 27.76
p-value 0.0000

sigma 1.169 *** (0.0198)
p-value -3208.28 (33)

Notes: Results of the multiple linear regression and the truncated regression regarding the year 2009. Significance
codes: *** 0.001, ** 0.01, * 0.05, · 0.1.
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1.C Appendix | Alternative dependent variable

Within the robustness analysis, the TTR is replaced by a different dependent variable – the loan

duration (See Table 1.C.1). As previously stated, several deviations among the coefficients arise

in comparison with the initial dependent variable.41

Sign switches can be observed regarding the facility short term, the nature of default unlikely to

pay, and the guarantee indicator. However, non of the mentioned is statistically significant with

respect to the loan duration. In contrast, significance emerge regarding the seniority non senior.

The coefficient is significantly positive indicating a backward shift of the cash-flow-centroid.

High payments might, therefore, reveal rather at the end of the resolution process.

In addition, discrepancies can be observed in the country coefficients. While Great Britain

exhibits the longest TTR, the highest loan duration arises in the United States. To examine the

significance of these findings, the regressions are re-estimated with Great Britain serving as the

reference category. With respect to the resolution time, the United States exhibit a coefficient of

−0.345 (***) indicating a significantly shorter resolution process. The corresponding coefficient

regarding the loan duration is 0.115 (***). This implies that the centroid of cash flows is rather

later in the resolution process in the United States compared to Great Britain.

41 See Table 1.3, p. 20.
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Table 1.C.1: Regression results of the loan duration for the overall data set

Coef. SE

Intercept 2.164 *** (0.0927)

log(EAD) 0.078 *** (0.0051)

Time 2001 -0.807 *** (0.0966)
(2000) 2002 -0.917 *** (0.0860)

2003 -1.489 *** (0.0722)
2004 -1.440 *** (0.0742)
2005 -1.755 *** (0.0685)
2006 -1.716 *** (0.0675)
2007 -1.762 *** (0.0694)
2008 -1.549 *** (0.0806)
2009 -1.947 *** (0.0909)
2010 -1.668 *** (0.0749)
2011 -2.001 *** (0.0726)
2012 -2.230 *** (0.0720)
2013 -2.362 *** (0.0730)
2014 -2.509 *** (0.0878)

Country United States 0.377 *** (0.0519)
(Germany) Great Britain 0.262 *** (0.0369)

Facility Short term 0.014 (0.0213)
(Medium term) Other -0.383 *** (0.0275)

Seniority Super senior -0.080 ** (0.0288)
(Pari-passu) Non senior 0.123 . (0.0710)

Unknown -0.366 *** (0.0736)

Nature of default Sold at material credit loss -0.676 *** (0.1061)
Unlikely to pay -0.001 (0.0267)
Charge-off / provision 0.290 *** (0.0251)
Non accrual 0.142 *** (0.0295)
Distressed restructuring 0.486 *** (0.0446)
Bankruptcy 0.148 *** (0.0417)
Unknown -0.120 ** (0.0365)

Guarantee YES -0.022 (0.0200)
(NO) Unknown -1.149 * (0.5134)

Collateral Other collateral -0.221 *** (0.0243)
(NO) Real estate -0.181 *** (0.0226)

Unknown 0.100 (0.6333)

Number of collateral -0.009 *** (0.0014)

Cured (NO) YES -0.251 *** (0.0192)

Industry Mining -0.335 * (0.1490)
(Finance, insurance, RE) Transp., commu., sanitary services -0.215 *** (0.0473)

Services -0.071 ** (0.0253)
Wholesale and retail trade -0.062 * (0.0270)
Manufacturing 0.043 (0.0318)
Agric., forestry, fishing 0.155 ** (0.0601)
Construction 0.120 *** (0.0320)
Unknown 0.036 (0.0444)

Equity Index -0.371 *** (0.0686)

GDP -8.399 *** (0.8175)

Adjusted R-squared 21.75%
F-statistic 150.35
p-value 0.0000

Notes: Results of the multiple linear regression with an alternative dependent variable – the loan duration. Signifi-
cance codes: *** 0.001, ** 0.01, * 0.05, · 0.1. Standard errors (SE) are clustered by year.
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1.D Appendix | LGD concepts

Member banks and external partners receive two different LGD concepts (LGD1 and LGD2)

from GCD. Both of them show inexplicably extreme values. Therefore, we evolve a third concept

(LGD3) which is less shaped by outliers. Generally, LGDs are calculated as LGDi = 1 − RRi
regarding all concepts, whereby, RRi denotes the corresponding recovery rate:

RRi =
Pi
OAi

.

Hereby, Pi indicates the sum of the present values of the transactions and OAi the outstanding

amount of the loan. The three LGD concepts differ in the transaction types included in Pi and

OAi . Table 1.D.1 summarizes these types and how they influence the three measures. The

quote +P (−P ) indicates an increase (decrease) in the present value Pi and +OA (−OA) an increase

(decrease) in the outstanding amount OAi . The key feature of the first LGD concept is that

Table 1.D.1: GCD transaction types

Transaction type LGD1 LGD2 LGD3

Principal payment +P +P +P
Interest payment +P +P +P
Recorded book value of collateral +P +P +P
Post-resolution payment +P +P +P
Charge-off
Provision
Principal advance −P +OA+OA+OA +OA+OA+OA
Cash out on guarantee
Financial claim −P +OA+OA+OA +OA+OA+OA
Interest accrual +OA+OA+OA
Fees and commissions charged +OA+OA+OA
Fees and commissions received +P +P +P
Legal expenses −P −P −P
Administrator or receiver fees −P −P −P
Liquidation expenses −P −P −P
Other external workout costs −P −P −P
Waiver (off B/S commitment) +P +P +P

Notes: Transactions types associated with the resolution of a defaulted loan.

the outstanding amount remains unaffected by the transactions and equals the EAD. In the

second concept, two transaction types increase the outstanding amount instead of reducing

the present value. This corresponds to the economic intuition, since these types are actually

non-cash effective. Two additional transaction types are included in the third concept. This

seems consistent as their cash flow counterparts are included in the present value.
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Chapter 2. Macroeconomic effects and frailties in the resolution of non-performing loans

2.1 Introduction

The default resolution time (DRT) of non-performing loans1 is an important quantity owing

to several reasons. Firstly, longer resolution processes are empirically related to higher losses

(see Dermine and Neto de Carvalho, 2006; Gürtler and Hibbeln, 2013).2 This effect is driven by

higher discounting effects of later post-default payments and a negative relationship between the

length of DRT and the sum of non-discounted recovery cash flows. While banks can compensate

single outliers with long DRTs, systematic co-movements among DRTs might heavily increase

the risk of credit portfolios if the above effects simultaneously occur for a multitude of non-

performing loans in a portfolio. Secondly, high DRTs will burden the liquidity of financial

institutions due to supplemental funding needs emerging from future legal requirements.

Non-performing loans increase the required stable funding by definition and, thus, charge

institutions additional burden to fulfill the Net Stable Funding Ratio. This paper emphasizes

to take into account systematic effects on DRTs for predicting the reduction of clustered non-

performing loans during downturns, which is relevant for credit portfolio risk and future

liquidity management and regulation.

In the previous literature, most findings regarding DRTs stem from analyses which examine

different workout schemes. Helwege (1999) analyzes the length of time a junk bond spends in

default during the 1980s. He finds that the workout procedure as well as the bargaining power

of firms are main drivers for quick resolutions. Even though the DRT is often assumed to vary

with respect to the workout process, Bris et al. (2006) find no significant differences between the

time of Chapter 7 liquidations and Chapter 11 reorganizations. Bandopadhyaya (1994) uses a

hazard rate model and examines the time spent until a firm exits Chapter 11 protection. He finds

that firms spend less time under Chapter 11 if they have high interest amounts outstanding and

high capacity utilization. Moreover, he includes two macroeconomic variables (interest on short

term loans and rate of growth of the gross national product) which do not exhibit a significant

impact on the time spent under Chapter 11. Further contributions which, among other issues,

1 In this paper, we use a database that includes loans in default which is defined as “unlikely to pay” or “past due
more than 90 days on any material credit obligation”. The loans can either be resolved informally or through
the usage of a formal process and they can be reorganized/restructured or resolved by means of bankruptcy or
insolvency, respectively. Throughout the paper, the terms non-performing loans, defaulted loans and loans in
financial distress are used as synonyms.

2 Reasons for this might be diverse. Previous literature mostly holds increasing costs stemming from higher liquidity
and interest rate risks in combination with higher discounting effects accountable. In addition, Gürtler and
Hibbeln (2013) find that loans which return back to performance after default usually cause lower losses. At the
same these loans are typically the ones which can be resolved quickly. We also observe a negative relationship
between default resolution times and recovery rates for our data set (see Section 2.2 for more details).
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analyze the time spent under Chapter 11 filings are given by Partington et al. (2001), Wong et al.

(2007), and Denis and Rodgers (2007). They find firm size and pre-default performance to be

important drivers for the DRT. The authors also incorporate industry specific as well as two

macroeconomic variables (credit and term spreads), and detect significant influences. Most of

these papers use techniques from survival time analysis which seem to be natural choices for

DRTs.

However, the common systematic behavior of DRTs is rarely analyzed in the literature. Few

studies which consider systematic effects, e.g., in the form of macroeconomic variables, lead

to diverging conclusions regarding their impact. The aim of the paper is to close this gap and

examine common components in DRTs of non-performing loans. A profound understanding of

systematic effects is crucial as co-movements among DRTs originate from joint determinants.

Hence, DRTs are collectively higher or lower during certain time periods and, thus, might exert

additional pressure in downturn periods. Higher DRTs accompany with higher losses. The

systematic behavior is, thus, transfered to the recovery side. As the presence of non-performing

loans entails further funding needs in the future, high DRTs maintain the increased liquidity

burden on firm level. This depresses lending which might summit in a credit crunch if a majority

of financial institutions is affected. We analyze a data base of 17,395 non-performing loans in

the US, Great Britain, and Canada to deeply examine observable and unobservable systematic

effects among DRTs. We find that these common factors determine DRTs and demonstrate their

inference on the DRT itself and the loss involved.

A common approach in recent literature to incorporate systematic effects in risk models is

to include macroeconomic variables which impact all debtors at the same time. While these

variables might capture parts of the co-movement in DRTs, they might not be enough to model

unobservable stochastic shocks. Hence, we use continuous-time hazard rate models with a

stochastic frailty to include unobservable systematic effects besides observable variables. These

models have been successfully used for estimating default times, i.e., the time up to the default of

a bond or loan. Das et al. (2007) focus on the doubly-stochastic assumption for default time

models and find that defaults are clustered to a higher extent than expected. This might be

due to the impact of unobservable variables. Duffie et al. (2009) show that latent factors have a

significant impact on the default time even if macroeconomic and firm specific determinants

are included in the model. Thus, neglecting unobservable variables results in downward

biased assessments of credit portfolio risk. Applying a frailty approach for a credit risk model

incorporating market risk, Kuo and Lee (2007) underline the potential downward bias of risk
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assessment when ignoring dependencies between market and credit risk. Koopman et al. (2011)

use a default rate model including a dynamic latent (frailty) factor. They show that its impact

does not vanish even if the model already incorporates a large amount of macro-financial

covariates. Overall, their model shows improvements in out-of-sample forecasts in comparison

to models not allowing for unobservable covariates. In addition, Lee and Poon (2014) consider

global, parental-sector and sector specific factors in a portfolio loss model. Their results show

that also sector specific frailty effects determine loan defaults and that their impact on the

aggregated portfolio loss is greater compared to macroeconomic variables.

Our paper provides the following contributions. First, we thoroughly examine systematic effects

among DRTs of non-performing loans. To the best of our knowledge, we are the first to extend

the modeling scheme of DRTs to unobservable systematic factors using a doubly-stochastic

continuous-time hazard rate framework, similar to those used in default time modeling. Second,

we empirically measure these unobservable (frailty) factors for a unique and comprehensive data

set. Our results show that DRTs are significantly driven by common unobservable factors even

after controlling for individual specific and macroeconomic variables. This leads to collectively

higher DRTs in downturn periods. The average DRT of an exemplary portfolio consisting of

non-performing loans increases from 1.59 to 2.42 years. Third, we evaluate potential effects of

clustered DRTs on the loss of an exemplary portfolio consisting of non-performing loans. Long

resolution processes are empirically related to higher losses. This might be due to ascending

direct and indirect costs. Direct outlays, such as legal or liquidation expenses, increase either as

they are charged during longer time periods or as these costs are higher due to long and, thus,

complex resolutions. Indirect costs (administration expenses and opportunity costs) are also

likely to rise with time. The increase of the average portfolio DRT by about 0.83 years yields

to a rise in the average portfolio loss by about 5.05 percentage points which correspond to an

increase of about 17%. The effect is even more pronounced in the outer tail of the portfolio loss

distribution where the VaR (95%) increases by 32%. Forth, clustered DRTs are identified to put

additional pressure on banks’ liquidity in the future, because upcoming legal requirements will

demand for higher stable funding needs for non-performing loans.

The remainder of this paper is structured as follows. Section 2.2 provides an example for the

potential impact of systematic effects among default resolution times. Section 2.3 describes

our data and methodology. Section 2.4 provides the empirical results. Section 2.5 shows the

practical implications of these results. Section 2.6 concludes.
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2.2 Why care about systematic effects among DRTs?

Systematic effects involve longer or shorter average DRTs in certain time periods for non-

performing loans. This co-movement across time is due to the joint dependency on common

systematic factors. Banks have to deal with longer DRTs for all loans defaulted in crisis periods.

This is particularly problematic as default rates are higher in recessions. The co-movement

of DRTs has mainly two consequences for banks’ profitability. First, long DRTs have negative

impacts on the resolution process and, hence, on the loss. Besides from discounting effects, this

might be due to dependencies between the DRT and non-discounted recovery payments. The

DRT might serve as an indicator for the ease of resolution with long DRTs expressing complexity

associated with high losses. Systematic effects among DRT lead, therefore, to higher losses in the

aftermath of crisis periods. Second, liquidity will be restricted as loans stuck in the resolution

process and increase the upcoming legally required amount of liquidity. In this section, we aim

to quantify both – the impact of systematic effects among DRTs on the loss and liquidity.

Figure 2.1: Systematic movements in DRTs
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Notes: The figure illustrates the systematic movements of DRTs for resolved loans. Box plots of the DRTs per year
for the US, Great Britain, and Canada are displayed, whereas, outliers are hidden due to presentational purpose. The
black horizontal lines within the box plots mark the medians. The means are separately displayed by gray lines.
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Figure 2.1 displays box plots of yearly final DRTs in the US, Great Britain and Canada. Systematic

movements in accordance with economic conditions can be observed. Loans defaulted in crisis

periods, e.g., 2008, are characterized by rather long resolutions.3 This affects the recovery in the

aftermath of crisis periods.

Long lasting resolutions of non-performing loans might negatively impact realized recoveries.

Firstly, achievable recovery payments are more uncertain the further they reach into the future,

as general conditions may change over time. In addition, DRTs could be seen as an indicator for

the ease of resolution processes with complex resolutions exhibiting long DRTs and low feasible

recovery payments. Figure 2.2 shows box plots of the non-discounted recovery rate (RR) divided

by DRT buckets. The first bucket includes all loans with DRTs up to one year, the second one

Figure 2.2: Relation of DRT and non-discounted RR
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Notes: The figure illustrates the relation of the DRT and non-discounted RR. Box plots of the non-discounted RR
per bucket of DRT for the US, Great Britain, and Canada are displayed. The first bucket (marked with 1 on the
x-axis) includes loans with DRTs up to one year. The second bucket (marked with 2 on the x-axis) includes loans
with DRTs longer than one year up to two years and so on. In the last bucket (marked with > 5), loans with DRTs
greater than five years are summarized. The black horizontal lines within the box plots mark the medians. The
means are separately displayed by gray lines.

3 The increase of DRTs in Canada already starts in 2007 for at least some loans, which is caused by longer resolution
processes in general that push forward crises effects. A detailed description of the dataset is given in Section 2.3.
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Chapter 2. Macroeconomic effects and frailties in the resolution of non-performing loans

covers loans with DRTs higher than one but not higher than two years, and so on. In the last

bucket, loans with DRT higher than five years are summarized. A rather monotonous, negative

relation between DRTs and non-discounted RRs can be observed. Higher DRTs accompany with

lower mean and median non-discounted RRs. Secondly, DRTs are directly considered in the

final RR by discounting individual recovery cash flows.

In our comprehensive data set, the average DRT of US American loans amounts to 1.59 years.

Our empirical results show that systematic effects increase the average DRT to 2.42 years during

crisis periods. By assuming an exemplary loan with an exposure of default (EAD) of 1,000,000

USD and a constant risk adjusted interest rate of 5%, we evaluate the impacts of the DRT on the

loss. A DRT of 1.59 years implies an average, non-discounted RR of 72.72%, whereas it amounts

to 62.80% regarding a DRT of 2.42 years.4 Thus, the consideration of systematic effects leads

to an additional loss of 99,200.00 USD. After including discounting effects, the additional loss

increases to 114,858.30 USD.

Aside from the direct restriction of available liquidity by longer DRTs, DRTs will play an

important role with respect to future regulation standards. The US American implementation of

Basel III requires to fulfill the Net Stable Funding Ratio (NSFR) and oblige financial institutions

to provide additional amounts of medium and long term liquidity for certain facilities, e.g.,

non-performing loans, from 2018 on (see Board of Governors of the Federal Reserve System,

2016). The NSFR is defined by the ratio of the acquired stable funding (ASF) divided by the

required stable funding (RSF), where RSF is calculated as the sum of banks’ weighted assets.

The weighting of corporate loans varies between 10% and 85%. However, it is enhanced to 100%

if loans are rated as non-performing. As long as the non-performing status persists, banks need

to provide additional liquidity for the affected assets. Thus, these additional liquidity demands

persist, the longer defaulted loan resolutions last.

The analysis in Section 2.4.3 shows that DRTs systematically increase during times of financial

crisis. In addition, the ratio of non-performing loans is likely to increase at the same time.5

Both effects burden the banking industry with additional liquidity demands which are more

pronounced, the higher systematic effects among DRTs are. To exemplary show this effect

that may occur after the implementation of the NSFR, picture the following example. Given

additional required liquidity of 201.80 billion USD due to an increase in the ratio of non-

4 The above figures refer to an exemplary case in the US.
5 E.g., during the GFC the non-performing loan ratio in the banking industry reached with 5.64% its maximum

since the time series data started in 1984.
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performing loans.6 As before, we compare an average DRT without (1.59 years) and with (2.42

years) the consideration of systematic effects. Hence, non-performing loans retain their status

longer leading to a slower reduction in additionally required liquidity. Figure 2.3 displays

the profile of additional RSF for an average DRT of 1.59 (when neglecting systematic risk)

and 2.42 (when regarding systematic risk) years. The time a loan retains the non-performing

Figure 2.3: Additional required amount of stable funding
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Notes: The figure illustrates the development of the aggregated additional required amount of stable funding
for US American banks after the Global Financial Crisis. Assuming an average RSF of 50% for performing loans,
the additional required amount of stable funding amounts to 201.80 billion USD after the peak of crisis due to
an increased number of non-performing loans. Depending on the assumed DRTs, the development of additional
required liquidity is displayed. In the base case (black line), an average DRT of 1.59 years is assumed, whereas, in
the systematic case (gray line) the average DRT amounts to 2.42 years.

status is assumed to follow an exponential distribution. We imply two stylized tendencies to

resolution – without and with the consideration of systematic effects. Without systematic effects

(average DRT of 1.59 years) the additional required liquidity declines to 96.86 billion USD

after one year and to 42.34 billion USD after two years. After four years the additional amount

shrinks to 12.11 billion USD. Allowing for systematic effects among DRTs (average DRT of 2.42

6 This number is based on a scenario linked to the GFC. Even though discussions on the NSFR have been introduced
after the GFC, we treat this counterfactual analysis as if future regulation standards would have already been
present during the GFC. This is done to create an example for the impact of DRTs with representative values of a
severe financial crisis. Assuming an average RSF factor of 50% for performing loans, after the start of the GFC, the
RSF would have increased from its pre-crisis level of 4.11 trillion USD to 4.32 trillion USD after the peak of the
crisis due to a higher rate of non-performing loans. These numbers are taken from the public research data base
of https://fred.stlouisfed.org/. The time series are indexed by USTLLNUI and USNPTL.
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years), the reduction of additional RSF decelerates. It amounts to 139.24 billion USD after one,

94.85 billion USD after two, and even 46.41 billion USD after four years.

Higher RSF in the aftermath of financial crises might burden the real economy and extend re-

cessions. Confronting financial institutions with higher liquidity needs might restrict corporate

lending and favor the investment in save havens, e.g., government bonds or gold. These not only

exhibit a low weighting factor and, thus, reduce RSF, but also increase acquired stable funding

(ASF). Furthermore, King (2013) and Dietrich et al. (2014) both identify possible negative effects

of the NSFR on the profitability of banks. This example shows that systematic effects among

DRTs might introduce procyclicality of liquidity regulation standards.

In the light of the above, a profound understanding of systematic effects in the time loans

maintain non-performing is crucial. Systematic effects among DRTs entail co-movements, i.e.,

DRT are longer in certain time periods – namely during financial crises – for the entirety of

non-performing loans. Firstly, we find a lower RRs for long DRTs on average. This is why

the focus of this paper is laid on DRT and their systematic drivers instead of examining RRs

directly. Modeling this can be compared to latent impact factors leading to higher default rates,

longer DRTs, and smaller RRs during adverse economic scenarios and opposite effects during

good economic times. Secondly, this will burden the liquidity of financial institutions in the

future during downturns due to changes in the regulatory environment and may even dampen

upswings.

2.3 Methods and data

2.3.1 Methods

This section derives a formal model for the DRT T , which we define as the length of the time

period from a default date of a loan to its final resolution. Survival analysis provides established

methods for modeling lengths of time up to a certain event and is, therefore, well suited for

our purposes. A continuous-time approach takes into account that resolution may take place

at any time after default. Thus, we define the intensity of defaulted loan i that represents the

instantaneous tendency of resolution in the infinitesimally small interval [t; t +∆t], conditional
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on no resolution up to t, as

λit = lim
∆t→0, t>0

P ( t ≤ T < t +∆t | T ≥ t )
∆t

, (2.1)

In order to regress the intensity of resolution, we apply the Cox proportional hazards model.

Let xi be a vector containing a set of loan specific characteristics. The Cox model then takes the

following functional form

λit = λ0t exp(xiβ) , (2.2)

where, λ0t is the baseline hazard rate representing an underlying tendency in the hazard function

λit at baseline levels of the covariates xi . The baseline hazard rate has an arbitrary functional

form. Thus, the Cox model is a semi-parametric approach. The vector β includes the unknown

parameters of the covariates xi . In contrast to the method of ordinary least squares, we can

include censored, i.e., not yet completed resolutions in our model. The statistical background

and estimation procedure for the Cox model is given in Appendix 2.A. In the following, we refer

to Equation (2.2) as Model I. Since it only contains loan specific characteristics as covariates, it

serves as a reference model.

Figure 2.4: Resolution time levels

t̃
Q1 2004 Q1 2014

i = 1 :
t = 0 . . . t = 2

t̃(1)
=

Q1 2006

i = 2 :
t = 0 . . . t = 4

t̃(2)
=

Q2 2008

i = 3 :
t = 0 . . . t = 2

t̃(3)
=

Q1 2012

Notes: The figure illustrates the applied time stamps. Consider, e.g., loan i = 1 (upper part of figure). This loan
defaulted at time t̃(1) which corresponds to Q1 2006. Generally, the default time t̃ depends on the individual loan i.
Thus, systematic variables (i.e., macroeconomic and frailties) are indexed at the loan depended default time t̃(i).
Afterwards, the loan i = 1 remains two years in resolution. The resolution intensity λ1t depends on the time spend
in resolution t. The index of the time spend in default t and the default time t̃(i) are, thus, two deviating time scales
which is indicated by the different notation.

Next, we allow resolution processes to be additionally affected by the macroeconomy and include

observable macroeconomic variables in the Cox model. We add a calender time level t̃ to the

model and extend the Cox model to

λit = λ0t exp
(
xiβ + zt̃(i)γ

)
, (2.3)
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where zt̃(i) are macroeconomic variables at default time t̃(i) of loan i and γ is an unknown

parameter vector. In the following, we refer to Equation (2.3) as Model II. Figure 2.4 shows the

two time levels that we take into account. First, we control for the time t since default because

the tendency of resolution may change during the resolution process itself as we can see in the

baseline hazard rate λ0t. Second, we take into account the calendar time t̃ to investigate the role

of macroeconomic covariates over (calender) time. As the macroeconomy changes over time,

this model controls for some common co-movements in DRTs.

Finally, we extend the model to unobservable stochastic common factors which play an important

role in the credit risk literature for modeling default risk, in addition to observable common

factors. The unobservable factors yield the dependent variable to be stochastically correlated,

in contrast to only deterministic co-movements driven by observable factors. Let Ut̃(i) be a

normally distributed random variable with mean zero and variance σ2, i.e.,

Ut̃(i) ∼N (0,σ2) , (2.4)

commonly termed as frailty in the Cox model. Then Model III becomes

λit = λ0t exp
(
xiβ + zt̃(i)γ +Ut̃(i)

)
, (2.5)

where, σ2 is an additional parameter to be estimated. Frailties introduce stochastic correlation

into the modeling framework, i.e., a negative time t̃(i) realization of the frailty reduces the

hazard rate of all loans simultaneously and, thus, increases their DRT, et vice versa.

2.3.2 Data

This paper uses a subsample of the unique loss data base provided by GCD.7 This data base pools

loss information of 50 member banks around the world, including several global systemically

important banks.

To correct for minor input errors we apply the procedure of Höcht and Zagst (2010) and Höcht

et al. (2011) with the distinction that we evolve a second selection criterion for post-resolution

payments. The pre-resolution criterion is calculated as the sum of all relevant transactions

7 GCD is a non profit initiative which aims to help banks to measure their credit risk by collecting and analyzing
historical loss data. They are formally known as the Pan-European Credit Data Consortium (PECDC). See
http://www.globalcreditdata.org/ for further information.
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(including charges-offs) divided by the outstanding amount of the loan at default. The post-

resolution criterion, in contrast, is the sum of all post-resolution payments divided by a fictional

outstanding amount at resolution. The barriers are set to [90% , 110%] for the pre-resolution

criterion for resolved loans and to [−50% , 400%] for unresolved loans. The barriers of the

post-resolution criterion are set to [−10% , 110%]. This criterion is only adapted for resolved

loans. Loans found outside these intervals are excluded because of an extraordinary structure

of cash flows. Hereby, 2.0% of resolved loans in the overall data base are sorted out due to the

pre-resolution criterion and 0.2% due to the post-resolution criterion. Regarding unresolved

loans, we excluded 0.2%. Finally, we eliminate loans with abnormal high and low LGDs (¡ –50%

and ¿150%). Thereby, less than 0.1% of the overall data base is excluded.

We use a subsample of the corrected overall data base consisting of small and medium sized

entities (SMEs) and large corporates (LCs) from the US, Great Britain, and Canada. We remove

loans with exposures at default (EADs) smaller than 500 USD, which corresponds to 11.6% of

the subsample data. With respect to corporate loans (SMEs and LC), loans of this size seem

negligible and might distort results.8 We further restrict the time period from 2004 until 2013

to ensure a consistent default definition due to the Basel accords and a minimum quantity of

data per year. Thereby, we exclude 16.5%. A subset of 17,395 loan remains.

DRT data

The data show country specific differences regarding the DRT. Table 2.1 displays descriptive

statistics for the DRT. The mean for resolved loans is 1.40 years compared to a median of 0.99

years which indicates a skewness of resolution processes. The present mean and median of the

unresolved loans are substantially higher with 4.39 and 3.99 years. From US American loans

13.7% are defaulted but not entirely resolved until March 2015. We include these censored

information by using a survival model in order to avoid a resolution bias. In Great Britain 7.4%

and in Canada 34.4% are not resolved yet.

Figure 2.5 shows the cumulative rate of resolution in years after default by using the inverse

Kaplan-Meier estimator and reveals country specific differences. For example, 71.5% of all

defaulted loans in the US are resolved after 24 months in contrast to 63.1% in Great Britain and

52.7% in Canada. It also provides evidence of a systematic component in resolution processes.

The figure distinguishes between loans defaulted within and out of economic downturns,

defined by the indicator of the OECD. Up to 24 months after default, the tendency of resolution

8 The magnitude of 500 USD is inspired by the materiality threshold of the European Banking Authority (2016a).
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Table 2.1: Descriptive statistics of DRT

Overall US GB CA

n 17,395 7,133 5,780 4,482

Resolved 83.07% 86.26% 92.65% 65.64%

Mean 1.40 1.17 1.74 1.24
Median 0.99 0.83 1.23 0.92
Standard deviation 1.37 1.18 1.61 1.10

Unresolved 16.93% 13.74% 7.35% 34.36%

Mean 4.39 4.20 4.50 4.48
Median 3.99 3.90 4.38 3.90
Standard deviation 2.07 1.90 1.56 2.28

Notes: The table summarizes the descriptive statistics (mean, median, and standard deviation) of DRTs for the
overall data set and separated for the US, Great Britain, and Canada. The presentation additionally distinguishes
between resolved and unresolved loans. The latter indicates that these loans are still in the resolution process.

is lower for loans that defaulted in a crisis. In the US and Great Britain the effects are still valid

for the following years. Especially in Great Britain, recession based defaults imply higher DRT.

For example, 66.4% of loans that did not default in recessions are resolved in two or less years.

The same proportions takes 23.1% longer for crises based defaults. In contrast, the ratio of

censorships for Canada is high with 34.4% and, thus, flat and close-lying courses result.

Loan specific variables

Table 2.2 summarizes loan specific characteristics in our data set. In the following analysis, they

are included to control for variation in the intensities caused by loan specific attributes. As

metric determinants, we include the logarithm of EAD in USD and the number of collateral. The

latter specifies the exact quantity of security assets which are assigned to the loans. Furthermore,

various categoric variables are used. The asset class defines whether the debtor is an SME

or LC. With the facility type, we distinguish between medium term, short term, and other

facilities. The seniority level is divided into the categories super senior, pari-passu, and non

senior. Super senior implies that the considered loan is the only preferred claimant. Pari-passu,

in contrast, indicates that more creditors share the highest rank to the debtor. Nature of default

controls for the two main default definitions set by Basel Committee on Banking Supervision

(2006), namely if a debtor is ”unlikely to pay” or ”past due more than 90 days on any material

credit obligation” (§452). The remaining categories – bankruptcy, charge-off / provision, sold at

material credit loss, distressed restructuring, and non accrual – may be seen as subcategories

of the more general one unlikely to pay. We do not summarize these categories as they might

supply additional explanation power. Furthermore, we include a guarantee indicator stating if

the loan is additionally secured by some form of guarantee. The collateral indicator is divided
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Figure 2.5: Observed resolution rates
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Notes: The figure illustrates the inverse Kaplan-Meier estimators of resolution separated for the US, Great Britain,
and Canada. Generally, the inverse Kaplan-Meier estimator displays the rate of resolution, i.e., the proportion of
loans which are resolved depending on the time spent in resolution. Defaulted but unresolved loans are included
as censorships by vertical marks. Confidence intervals are indicated at the 95%-level by dotted lines due to the
data set’s size. Furthermore, it is distinguished between non-crisis (black lines) and crisis (gray lines) periods,
whereby, crises are defined by the monthly recession dummy of the Organisation for Economic Co-operation and
Development (OECD).

into the categories NO, other collateral, and real estate. As loans might exhibit more than one

security, real estate indicates that there is at least one among the collaterals. The cured indicator

states if a debtor returned back to performance after entering default, i.e., if the debtor is back

to a sound rating. Finally, we control for various industries.

Macroeconomic variables

As explained in the previous subsection, observable macroeconomic risk factors are included in

Model II and III (see Equation (2.3) and (2.5)). All macroeconomic variables are defined on a

country specific quarterly basis. We include the year-on-year log return of the equity index to

capture the financial economy. The S&P 500 is used for the US, the FTSE 100 for Great Britain,

and the S&P TSX for Canada. The year-on-year log growth of industry production is included

as an indicator for the real economy. In order to capture long-term monetary expectations
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Table 2.2: Descriptive statistics of loan specific characteristics

Overall US GB CA

n 17,395 7,133 5,780 4,482

Metric

EAD Mean 2,131,389.29 4,238,878.41 925,714.09 332,210.97
Median 129,086.24 470,859.53 72,533.24 53,880.04
Standard deviation 20,826,299.90 31,945,773.20 5,773,926.64 2,042,389.08

Number of collateral Mean 1.53 1.09 2.85 0.55
Median 1 1 1 0
Standard deviation 3.99 1.71 6.01 2.62

Categoric

Borrower SME 76.97% 77.23% 89.95% 59.82%
LC 23.03% 22.77% 10.05% 40.18%

Facility type Medium term 51.78% 53.51% 45.38% 57.30%
Short term 27.47% 11.62% 46.04% 28.74%
Other / Unknown 20.75% 34.87% 8.58% 13.97%

Seniority code Pari-passu 39.00% 13.16% 63.91% 47.99%
Super senior 48.86% 82.80% 35.76% 11.76%
Non senior 0.37% 0.64% 0.33% 0.00%
Unknown 11.76% 3.39% 0.00% 40.25%

Nature of default 90 days past due 20.48% 31.11% 23.01% 0.31%
Unlikely to pay 18.76% 27.97% 15.73% 8.01%
Bankruptcy 7.27% 3.01% 12.49% 7.30%
Charge-off / provision 6.35% 1.51% 16.90% 0.45%
Sold at material credit loss 0.62% 1.50% 0.00% 0.00%
Disstressed resturcturing 1.21% 0.64% 2.85% 0.00%
Non accural 39.25% 31.61% 25.19% 69.52%
Unknown 6.06% 2.64% 3.82% 14.41%

Guarantee indicator NO 69.84% 61.14% 65.85% 88.84%
YES 30.00% 38.47% 34.15% 11.16%
Unknown 0.16% 0.39% 0.00% 0.00%

Collateral indicator NO 32.57% 36.65% 37.84% 19.30%
Other collateral 37.15% 47.55% 26.73% 34.02%
Real estate 18.29% 14.43% 35.43% 2.34%
Unknown 11.99% 1.37% 0.00% 44.33%

Cured indicator NO 78.59% 75.84% 75.12% 87.42%
YES 21.41% 24.16% 24.88% 12.58%

Industry Finance, insurance, RE 11.84% 15.97% 10.57% 6.92%
Agriculture, foresty, fishing 3.48% 1.33% 2.79% 7.81%
Mining 0.79% 0.91% 0.38% 1.14%
Construction 11.69% 10.63% 14.79% 9.37%
Manufacturing 16.90% 18.52% 15.10% 16.64%
Transp., commu., sanitary services 5.96% 6.27% 4.71% 7.07%
Wholesale and retail trade 22.17% 13.94% 30.31% 24.77%
Services 19.81% 16.87% 18.91% 25.66%
Unknown 7.36% 15.58% 2.44% 0.62%

Notes: The table summarizes the descriptive statistics (mean, median, and standard deviation) of metric independent
variables. For categoric independent variables, proportions of the categories are displayed. Generally, the variable
name is stated in the first column. For categoric variables, the categories are presented in the second column. The
presentation is done for the overall data set and separated for the US, Great Britain, and Canada.

we include the year-on-year change in term spread between 10-year long-term government

bonds and 3-month government securities. The stock market volatility index captures market

expectations of future economic conditions. We use the volatility indices of the CBOE for the US,

the FTSE for Great Britain and the S&P TSX for Canada.9 Figure 2.6 shows the macroeconomic

variables. The Global Financial Crisis results in increasing term spreads, volatility indices and

lower industry production and equity indices. Table 2.3 reports the corresponding pairwise

correlations which appear to be comparably high in absolute terms. This is important for

the interpretation of regression results in the next section. In general, interactions between

9 We have also tested other popular macroeconomic indicators, e.g., government bond rates, gross domestic product,
house price indices, inflation, the ratio of non-performing loans and the unemployment rate. None of these
performed as good as the chosen four variables in terms of goodness of fit, plausibility and significance. (see
Section 2.4.3)
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signs and significances may result when correlated independent variables are simultaneously

included in a model.

Table 2.3: Pairwise correlations of macroeconomic variables

US Great Britain Canada

IP VIX TS IP VIX TS IP VIX TS

Equity Index 0.79 -0.79 -0.68 0.76 -0.81 -0.56 0.50 -0.79 -0.47
Industry Production (IP) -0.64 -0.70 -0.65 -0.86 -0.51 -0.91
Volatility Index (VIX) 0.77 0.59 0.58

Notes: The table summarizes the pairwise correlations of macroeconomic variables which are included in Model II
as of Equation (2.3) and Model III as of Equation (2.5). Thereby, the year-on-year (yoy) log return of the country
specific equity index, the yoy log return of the country specific industry production (IP), the level specification of the
country specific volatility index (VIX), and the yoy log return of the country specific term spread are considered.

Furthermore, we include a World Bank score measuring the efficiency of default resolution (see

World Bank, 2015a). This score evaluates the efficiency of the regulatory framework regarding

the resolution of an insolvent company by adopting a survey process. The methodology is

inspired by Djankov et al. (2008).10

2.4 Results

2.4.1 Overview of formal and informal proceedings of resolution

Before we turn towards the results of Model I, II, and III, a brief introduction of formal insolvency

proceedings and informal resolution mechanisms in the US, Great Britain and Canada is

presented to derive creditor incentives and determine bargaining powers in resolution processes.

The relevant codes can be found in Title 11 of the United States Codes for the US, in the

Insolvency Act of 1986 (IA 86) and 2000 for Great Britain, and in the Company Creditor

Agreement Act (CCAA) and the Bankruptcy and Insolvency Act (BIA) for Canada (see Table 2.4).

Those statutory regulations are primary relevant in formal insolvency proceedings, however,

conclusions can be drawn towards informal resolution of non-performing loans, in particular

towards bargaining powers in negotiations.

The US insolvency code strongly focuses on the debtor. A comprehensive automatic stay (§362)

avoids enforcement of secured claims in formal insolvency. The debtor stays in possession

(debtor-in-possession, §1103 and §1107) during the process. Additional claims of higher priority

to existing debt (super-priority-financing) are possible by law. Informal resolution mechanisms

10 See http://www.doingbusiness.org/methodology/resolving-insolvency for further information.
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Figure 2.6: Descriptive statistics of macroeconomic variables
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Notes: The figure illustrates the time-series of macroeconomic variables which are included in Model II as of
Equation (2.3) and Model III as of Equation (2.5). Thereby, the year-on-year (yoy) log return of the country specific
equity index, the yoy log return of the country specific industry production (IP), the level specification of the country
specific volatility index (VIX), and the yoy log return of the country specific term spread are considered.

are commonly implemented by contract. Conceivable are among others debt refinancing, debt

for equity swaps, or exchange offers.

Historically, the British insolvency law favors senior secured creditors. Therefore, a restriction of

proceedings has to be approved by court (IA 86 285.). Generally, secured claims are enforceable

at any time during formal and informal workouts (IA 86 285. (4)). The management is transfered

to an Administrator (IA 86 8.), Receiver (IA 86 32.), or Liquidator (IA 86 91. ff) depending

on the kind of formal insolvency proceeding. There is no option of super-priority-financing in

insolvency. Informal resolutions are typically the result of negotiations post default. Except the

enforcement of fixed charges where a receiver can be appointed at any time during formal and

informal proceedings.

Although the Canadian insolvency code is rather similar to the US, the focus is shifted towards

creditors. Comprehensive stay regulations to avoid enforcement are also implemented by law

(CCAA §11.02 and BIA §69 ff), however, under the CCAA an unlimited stay has to be approved
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Table 2.4: Overview of formal and informal proceedings

United States Great Britain Canada

Focus Debtor Senior secured creditor Creditor

Stay Automatic stay (§362) Restriction of proceedings Stay regulations
by court (IA 86 285.) (CCAA §11.02 and BIA §69 ff)

→ Unlimited with court approval
(CCAA §11.02)

→ Unlimited (BIA §69 ff)

Enforcement Avoiding enforcement Secured claims enforceable Avoiding enforcement
→ Automatic stay (§362) (IA 86 285. (4)) → Stay (CCAA §11.02)

→ Stay (BIA §69)

Management Debtor-in-possession → Administrator (IA 86 8.) Debtor-in-possession
(§1103 and §1107) → Receiver (IA 86 32.) (CCAA §11.03 and BIA §69.31)

→ Liquidator (IA 86 91. ff) →Monitor (CCAA §23 ff)
→ Trustee (BIA §43)

Financing Super-priority-financing No Super-priority-financing
(§503 and §507) due to court permission

Informal Implemented by contract → Consensual Consensual
(e.g., debt refinancing) → Receivership (fixed charges) (approved by court)

Notes: The table gives an overview of the formal and informal proceedings of resolution for the US, Great Britain,
and Canada. The regulations regarding formal insolvency can be found in Title 11 of the United States Code for the
US, in the Insolvency Act 1986 (IA 86) and 2000 for Great Britain, and in the Companies Creditor Agreement Act
(CCAA) and the Bankruptcy and Insolvency Act (BIA) for Canada. The focus which is displayed in the first row of
the table is derived on basis of the insolvency codes.

by court (CCAA §11.02). In contrast to the US, the debtor-in-possession is subject to stronger

supervision by a monitor (CCAA §23 ff) or trustee (BIA §43). Super-priority-financing is not

implemented by law, but can be granted by court. Informal workouts are achieved on consensual

basis. Usually, the result of negotiations is additionally approved by court.

According to Haugen and Senbet (1978) and Haugen and Senbet (1988), all affected parties,

i.e., debtors and creditors, have incentives to prefer informal proceedings compared to formal

insolvency as informal workouts are less costly and more efficient. However, there exist con-

ditions lowering these incentives and induce debtors or creditors to file for formal insolvency.

This conditions are (i) dispersion of creditors, (ii) incomplete contracts, and (iii) information

asymmetries (see, e.g., Blazy et al., 2014). These conditions do not only increase incentives to

formal workout but also indirectly increase DRTs as they complicate informal negotiations and,

thus, lead to longer resolution processes. In the following, we discuss these three conditions

regarding the US, Great Britain, and Canada to conclude a profound theory regarding resolution

intensities among these countries.

Dispersion of creditors – or more broadly formulated dispersion of affected parties – lowers

incentives to informal proceedings which increases DRTs. Hereby, not the number of parties

involved but the bargaining powers of a single party or a homogeneous group of parties is
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of relevance (see Blazy et al., 2014). In the US, the focus of formal insolvency proceedings is

strongly set in favor of the debtor. The debtor might, thus, have strong bargaining powers

in pre-insolvency negotiations as the opportunity of threatening gestures exists. Not much

is going to change from a debtor perspective in formal insolvency proceedings (due to, e.g.,

automatic stay and debtor-in-possession). Therefore, debtors are able to threaten with filing for

Chapter 11 as creditors aim to avoid formal proceedings. In Great Britain, secured creditors

are historically favored by formal insolvency proceedings and informal resolution mechanisms

as the enforcement of claims is assured at any time during resolution. Therefore, bargaining

powers are concentrated on this rather homogeneous group. Although the Canadian insolvency

law is similar to the US, it is more creditor orientated (due to, e.g., more court involvement

and supervision to a higher extent). Bargaining powers are, thus, more disperse as not a

homogeneous group of creditors is focused.

Incomplete contracts further decrease incentives to informal resolution and increase DRTs. In

the US, informal proceedings are implemented by contract. Thus, rather complete contracts

can be assumed. This is not the case in Great Britain and Canada where informal workouts are

negotiated on consensual basis. Furthermore, negotiation results are usually approved by court

in Canada. Asymmetric information might be present in all considered countries to a rather low

extent as the quality of accounting standards is high in the US, Great Britain and Canada (see

La Porta et al., 1998). Creditors are, thus, informed in similar and adequate manner.

In summary, the US should be characterized by comparatively high resolution intensities and,

thus, short DRTs as the bargaining powers are concentrated in favor of the debtor and contracts

are rather complete. Contrary, Canada is shaped by dispersion of creditors as creditors in general

hold bargaining powers in formal insolvency proceedings and informal resolution mechanisms.

Furthermore, contracts are rather incomplete and courts are involved to approve negotiated

informal resolutions which additionally increases DRTs. Due to concentrated bargaining powers

in favor of secured creditors but rather incomplete contracts, Great Britain should exhibit longer

DRTs than the US, but shorter DRTs than Canada.

Besides the three discussed obstacles of informal resolution, systematic effects might influence

incentives of debtors and creditors. Although all affected parties exhibit strong incentives to

fast and efficient resolution, this may change in crises periods. Confronted with harsh market

conditions, debtors and creditors tend to let time pass by to realize better prices in liquidations

or to ensure more favorable conditions for restructuring efforts. In addition, creditors want to

avoid or delay recognizing losses to prevent rating downgrades, and thus, more expensive access
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to funding or supervisory intervention.11 Secondly, default rates are high in crises periods.

Thus, creditors are confronted with a considerably higher amount of non-performing loans. The

affected divisions might be at their capacity limits leading to decelerated internal proceedings.

Therefore, resolution intensities should be lower during crises periods and, thus, DRT increase.

2.4.2 Loan specific impacts on resolution

In the first part of our analysis, we investigate the role of loan specific characteristics in modeling

the DRT. Table 2.5 shows the estimation results for Model I, i.e., a Cox proportional hazards

model including loan specific covariates. A positive parameter estimate indicates a higher

Table 2.5: Regression results for Model I

United States Great Britain Canada

Coef. SE Coef. SE Coef. SE

log(EAD) -0.0524 *** (0.0070) -0.0855 *** (0.0077) -0.0212 * (0.0118)

Asset Class (SME) Large Corporates 0.2054 *** (0.0377) 0.1713 *** (0.0495) -0.1023 * (0.0586)

Facility Short term 0.1372 *** (0.0411) -0.1645 *** (0.0308) -0.0952 ** (0.0446)
(Medium term) Other -0.0495 (0.0333) 0.2238 *** (0.0546) 0.0711 (0.0582)

Seniority Super senior 0.1361 *** (0.0485) 0.7606 *** (0.0357) 0.6476 *** (0.1007)
(Pari-passu) Non senior 0.3548 ** (0.1581) 0.5463 ** (0.2348)

Unknown 0.2012 ** (0.0963) 0.7364 *** (0.1212)

Nature of default Unlikely to pay -0.2662 *** (0.0426) -0.0059 (0.0521) -0.5571 * (0.3077)
(90 days past due) Bankruptcy 0.1183 (0.0753) -0.1522 *** (0.0512) -0.3545 (0.3022)

Charge-off / provision 0.3608 *** (0.1064) -0.1769 *** (0.0451) 0.9064 ** (0.3713)
Sold at material credit loss 1.6991 *** (0.1023)
Distressed restructuring 0.3102 ** (0.1532) 0.0135 (0.0945)
Non accrual -0.0090 (0.0366) -0.2103 *** (0.0444) -0.4389 (0.2937)
Unknown -0.1240 (0.1288) 1.0943 *** (0.0796) -0.8234 *** (0.2983)

Guarantee Unknown 0.4043 (0.2485)
(NO) YES 0.1300 *** (0.0289) -0.1182 *** (0.0311) 0.1780 ** (0.0738)

Collateral Other collateral 0.0722 ** (0.0321) 0.0613 * (0.0371) 0.3963 *** (0.0799)
(NO) Real estate 0.0314 (0.0465) 0.1085 *** (0.0372) 0.2085 (0.1889)

Unknown -1.7936 *** (0.2424) 1.2859 *** (0.1139)

Number of collateral 0.0309 *** (0.0085) 0.0024 (0.0023) 0.0095 (0.0067)

Cured (NO) YES 0.4780 *** (0.0325) 0.8825 *** (0.0355) 0.9426 *** (0.0536)

Industry Agric., forestry, fishing -0.2189 * (0.1211) 0.2637 *** (0.0951) -0.1141 (0.1008)
(Finance, insurance, RE) Mining -0.0450 (0.1414) -0.0530 (0.2291) 0.5440 *** (0.1773)

Construction -0.3230 *** (0.0540) -0.3110 *** (0.0604) 0.2099 ** (0.0964)
Manufacturing -0.2453 *** (0.0464) 0.0959 * (0.0575) 0.2785 *** (0.0848)
Transp., commu., sanitary services 0.0242 (0.0617) 0.2421 *** (0.0773) 0.2322 ** (0.1019)
Wholesale and retail trade -0.1076 ** (0.0485) 0.0930 * (0.0512) 0.2460 *** (0.0833)
Services -0.0841 * (0.0462) 0.1479 *** (0.0551) 0.2070 *** (0.0798)
Unknown 0.2876 *** (0.0474) 0.2375 ** (0.0970) 0.0589 (0.2960)

LL -49,365 -40,620 -22,046
AIC 98,787 81,290 44,142
McFadden’s adjusted R2 0.0112 0.0234 0.0486
Cox & Snell’s R2 0.0223 0.0386 0.0486

Resolved Loans 6,153 5,355 2,942
Loans 7,133 5,780 4,482

Notes: The table summarizes regression results for country specific impacts of loan characteristics on the tendency
of resolution. The model specification fulfill Equation (2.2), i.e., neither frailties nor macroeconomic variables are
included. The first column contains covariate names and the second includes corresponding categories if the variable
is of categoric nature. The reference category is given in parenthesis. Significance is indicated at 10% (*), 5% (**)
and 1% (***). Standard errors (SE) are given in parenthesis. For completeness, results for a regression that uses all
observations jointly are given in Appendix Table 2.B.3.

intensity to resolution and, thus, a tendency to shorter resolution processes. Dermine and Neto

11 We would like to thank an anonymous referee for pointing this out.
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de Carvalho (2006) and Grunert and Weber (2009) do not study determinants of the length of

workout processes but of the resulting loan LGDs and give a general behavior of loan-specific

covariates on the workout process. The intuition behind those impacts can be mostly transferred

to DRT modeling.

The loan size lowers the resolution tendency and, thus, increases DRT. This can be explained by

more efforts and coordination problems for larger loans. Regarding seniority, the medium case

pari-passu indicates the lowest resolution rate compared to super senior and non senior loans.

Equally ranked debt seems to complicate the processing after default. In general, collateral

leads to a shorter resolution process. A higher resolution rate for real estate collateral can only

be identified for Great Britain. This may be justified by the comprehensive stay regulations

in the US (§362) and Canada (CCAA §11.02 and BIA §69 ff). The strong focus on senior

secured creditors in Great Britain ensures the enforcement of fixed charges at any time prior

and throughout formal insolvency (IA 86 285. (4)). The number of collateral results in an

acceleration in the US only. Some loans in default return to performing. Usually, these cures

occur shortly after default. Thus, they are identified as a factor for short resolution processes.

Some differences across countries in the effects of the covariates can be seen. While LCs show

significant higher resolution intensities in the US and Great Britain, the effect is negative in

Canada. However, the significance in Canada vanishes in Model III, i.e., after considering

systematic components.12 Short term facilities have lower resolution tendencies in Great Britain

and Canada, whereas, the influence of this category is significantly positive in the US. This

might be ascribed to country specific lending behavior. Other facility types significantly lead

to higher resolution rates in Great Britain. Furthermore, guarantees accelerate the resolution

process in the US and Canada but lead to a deceleration in Great Britain. Both directions might

be explained either by the possibility of direct access to a third party or the necessity to establish

additional claims in the resolution process. The actual causality might depend on the type

of guarantee. The nature of default and the debtor’s industry affiliation have several country

specific particularities. For example, FIRE affiliation seems to accelerate resolution processes in

the US but decelerates it in Great Britain and Canada.

In summary, loan specific characteristics seem to have a great impact on resolution processes.

Identified decelerators are the loan size and an equally seniority weighting of the loan. Collater-

alization is detected as an accelerator. The effects of nature of default and industry affiliation

strongly depend on the loan’s country of origin.

12 The results are available from the authors upon request.
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2.4.3 The systematic movement of resolution processes

Legal and administrative reasons

In addition to loan specific characteristics, country specific legal conditions and bank practices

affect the time to resolution (see Section 2.4.1 for an overview). As stated in Section 2.3.1, the

Cox proportional hazard model is a semi-parametric approach because the baseline hazard

rate λ0t has an arbitrary functional form. Thus, it catches country specific particularities of

resolution processes. However, this baseline indicates an underlying resolution tendency in

the hazard function λit independent of covariates. In contrast to the frailty which expresses

time-dependent effects based on calender dates, the baseline hazard rate provides information

regarding effects that are caused by the resolution process itself.

Figure 2.7 displays the baseline hazard rates of Model I. The left panels show the step-like

cumulative baseline hazard rate Λ0t =
∫ t

0 λ0v dv. The bars in the right panels are the corre-

sponding non-cumulative baseline hazards, i.e., λ0t. We smooth these discrete baselines in

order to facilitate the interpretation. In a first step, we estimate cubic splines to approximate

cumulative baselines which are displayed as black lines in the left panels. In a second step, we

use the corresponding derivative as a smoothed (non-cumulative) baseline. The results show

a background intensity, i.e., a basic tendency of resolution depending on the time spent in

resolution.

Generally, more than 90% of all loans are resolved within five years after default. Thus, the

results in this time period might be of the most interest when focusing on DRTs. Note that this

statement can change when considering losses of loans at the same time. As already laid out at

the end of Section 2.2, loans exhibiting long DRTs usually come along with low recovery rates.

Among defaulted loans in our overall data set, we find that below the 10% quantile of recovery

rates (which equals the 90% quantile of losses given default), the fraction of loans with DRTs

higher than five years equals 19%, while this fraction corresponds to 7% for loans above the

10% quantile of recovery rates. Results derived for DRTs in this study should be kept in mind

when studying recovery rates. Precise credit risk assessment only seems possible if both risk

components and especially their linkage is taken into account holistically.

Regarding the analysis of DRTs, considerable differences across the US, Great Britain, and

Canada arise. Comparing the level, the US exhibits the highest non-cumulative baseline

intensity to resolution, closely followed by Great Britain. The baseline hazard rate of Canada is
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Figure 2.7: Baseline intensities of resolution
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Notes: This figure illustrates country specific baseline hazard rates of resolution for the US, Great Britain, and
Canada. In the left panels the cumulative, in the right panels the non-cumulative baseline intensity is displayed.
The estimated outcome is marked in gray. In the left panels, the black lines smooth the cumulative step functions
by cubic splines. Thus, we compress the discrete baselines in the right panels to informative continuous baseline
intensities which are derivatives of the smoothed cumulative baselines and represented by black lines.

72



Chapter 2. Macroeconomic effects and frailties in the resolution of non-performing loans

considerably lower. This corresponds with the theoretical considerations in Section 2.4.1. The

US and Great Britain are characterized by concentrated bargaining powers since the debtor (US)

or senior secured creditors (GB) are strongly favored by insolvency codes. This increases the

concentration of negotiation powers even in informal proceedings due to threatening gestures.

Nearly any harm occurs for US debtors in filling for insolvency due to the comprehensive

automatic stay (§362) and the debtor-in-possession setting (§1103 and §1107). Whereas, US

creditors aim to avoid long lasting formal proceedings. In Great Britain, senior secured creditors

can enforce their claims at any time in formal insolvency proceedings and informal resolution

mechanisms. Therefore, this rather homogeneous group holds comprehensive bargaining

powers in negotiations compared with the debtor or unsecured creditors, who would prefer

a going concern and, thus, avoid enforcements. Although the insolvency code of the US and

Canada is quite similar, Canadian law is more creditor orientated. The debtor-in-possession is

controlled to a higher extend (CCAA §11.05 and BIA §69ff). Unlimited stay (CCAA §11.02) and

super-priority-financing have to be permitted by court. However, favors are not granted to one

homogeneous group but to creditors in general as the enforcement of claims is avoided by the

stay. Negotiations might be rather complex in Canada and the tendency to formal proceedings

high. Completeness of contracts might also influence resolution intensities. An inclusion of

informal proceedings in loan contracts as in the US seems to accelerate resolution processes.

Negotiations follow a more prepackaged course and, thus, tendencies to informal workouts

are high. In Canada, resolution might be further slowed down by the involvement of courts in

informal proceedings.

Differences among the countries are also apparent regarding the course of the non-cumulative

baseline hazard rates. In Great Britain, the baseline hazard is slightly rising during the first

five years indicating an increasing resolution tendency with the time spend in resolution. I.e.,

the longer a loan spends in resolution the higher is its intensity of resolution. As loans have to

be resolved at some point in time, this meets the economic intuition. However, the baseline

hazard rate seems to decrease slightly in the US, i.e., the longer a defaulted loan is already in

resolution the lower is its future tendency of resolution. This might reflect the high tendency to

informal proceedings immediately after default in the US. The longer a loans stays in resolution,

the lower this tendency might be – leading to lower resolution intensities the longer a loan stays

in resolution. Furthermore, there is a peak 18 months after default. This might be caused by

loans which directly entered Chapter 11. As the data base contains both – formal and informal

workouts – the baseline hazard rate displays the average baseline intensity across proceedings.

Under Chapter 11 (§1121), the maximum timespan for a debtor to file a restructuring plan
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is set to 18 months after default. I.e., 18 month after default the latest, a plan has to exist

regulating the details of the restructuring procedure. If it succeeds, the debtor may exit common

resolution mechanisms. If it fails, the debtor might enter Chapter 7 and will be liquidated. In

Canada, the baseline hazard rate is rising during the first year after default. The rather low

baseline tendency directly after default might reflect the dispersion of bargaining powers and

the associated complex negotiations in informal proceedings. Thereafter, the baseline hazard

rate is decreasing. This might display loans which entered formal insolvency proceedings.

Macroeconomic conditions

In this section, we investigate the influence of macroeconomic conditions as a factor of syn-

chronous resolution processes. Therefore, we estimate Model II on country subsets and add

macroeconomic variables to the regression. Table 2.6 summarizes the country specific estima-

tion results. Compared to the results of Model I only minor differences regarding loan specific

impacts arise (see Table 2.5). Where sign switches occur either the parameter estimates of Model

I or II are not statistically significant. Statistically significant parameter estimates show the

expected sign.

In general, it is a challenging task to choose macroeconomic variables for the analysis of the

resolution process. First, good proxies for the economic environment need to be found and,

second, the number of macroeconomic factors that are simultaneously taken into account have to

be set reasonably. Hereby, a trade-off between parsimony and additional goodness of fit occurs.

We examine twelve different macroeconomic variables for our analysis, starting with regressions

only including a single variable at a time. Based on these results, we try various combinations of

macroeconomic variables13 which are simultaneously included in the regression. This procedure

leads to a model including five macroeconomic factors and exhibiting the highest additional fit

according to goodness of fit measures (see Table 2.6).

The industry production is a significant accelerator of resolution processes for each country.

Good economic conditions (measured by high growth values for the industry production)

increase the tendency of resolution and, thus, accelerate resolution processes. Stock market

growth plays a minor role for resolution compared to industry production which already catches

the general economic condition. We identify a significant but small effect for Canada which

vanishes when including the frailty. Financial and monetary expectations are modeled by

the volatility index and the term spread. The effect of the former is overlaid by the latter. In

13 Variables which show significance on individual basis were preferred for the model selection including more than
one variable.
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Table 2.6: Regression results for Model II

United States Great Britain Canada

Coef. SE Coef. SE Coef. SE

log(EAD) -0.0478 *** (0.0071) -0.0779 *** (0.0077) -0.0223 * (0.0118)

Asset Class (SME) Large Corporates 0.2384 *** (0.0382) 0.2349 *** (0.0501) -0.1100 * (0.0601)

Facility Short term 0.1423 *** (0.0412) -0.1392 *** (0.0310) -0.0946 ** (0.0446)
(Medium term) Other -0.0641 * (0.0335) 0.2942 *** (0.0547) 0.0742 (0.0584)

Seniority Super senior 0.1809 *** (0.0488) 0.7605 *** (0.0391) 0.6377 *** (0.1007)
(Pari-passu) Non senior 0.4018 ** (0.1582) 0.7276 *** (0.2353)

Unknown 0.1869 * (0.0963) 0.7243 *** (0.1216)

Nature of default Unlikely to pay -0.2969 *** (0.0425) -0.0683 (0.0524) -0.5796 * (0.3081)
(90 days past due) Bankruptcy 0.1285 * (0.0754) -0.0925 * (0.0520) -0.3706 (0.3026)

Charge-off / provision 0.3661 *** (0.1064) -0.1757 *** (0.0453) 0.8387 ** (0.3717)
Sold at material credit loss 1.6841 *** (0.1030)
Distressed restructuring 0.3014 ** (0.1533) -0.2382 ** (0.0948)
Non accrual -0.0249 (0.0367) -0.1554 *** (0.0452) -0.4495 (0.2941)
Unknown -0.1108 (0.1288) 0.8508 *** (0.0807) -0.8324 *** (0.2988)

Guarantee Unknown 0.4612 * (0.2489)
(NO) YES 0.1141 *** (0.0289) -0.1109 *** (0.0316) 0.1930 *** (0.0742)

Collateral Other collateral 0.1072 *** (0.0327) 0.0906 ** (0.0377) 0.3943 *** (0.0799)
(NO) Real estate 0.0649 (0.0466) 0.1115 *** (0.0373) 0.2238 (0.1889)

Unknown -1.7116 *** (0.2427) 1.3039 *** (0.1143)

Number of collateral 0.0279 *** (0.0084) 0.0034 (0.0024) 0.0095 (0.0067)

Cured (NO) YES 0.5061 *** (0.0328) 0.9439 *** (0.0357) 0.9515 *** (0.0539)

Industry Agric., forestry, fishing -0.2549 ** (0.1212) 0.1052 (0.0955) -0.1070 (0.1011)
(Finance, insurance, RE) Mining -0.0780 (0.1417) -0.3419 (0.2294) 0.5306 *** (0.1777)

Construction -0.3020 *** (0.0542) -0.3592 *** (0.0605) 0.2011 ** (0.0971)
Manufacturing -0.2575 *** (0.0464) 0.0337 (0.0577) 0.2850 *** (0.0855)
Transp., commu., sanitary services 0.0073 (0.0616) 0.1646 ** (0.0775) 0.2381 ** (0.1024)
Wholesale and retail trade -0.1313 *** (0.0486) 0.0009 (0.0514) 0.2457 *** (0.0837)
Services -0.1173 ** (0.0463) 0.0671 (0.0551) 0.2063 ** (0.0804)
Unknown 0.2855 *** (0.0475) 0.1109 (0.0974) 0.0637 (0.2955)

Equity index 0.0495 (0.1117) 0.0242 (0.1694) -0.3091 * (0.1687)
Industry production 1.5835 *** (0.3177) 1.8201 * (0.9372) 1.8491 ** (0.8651)
Volatility index -0.0005 (0.0024) -0.0043 (0.0028) -0.0041 (0.0038)
Term spread 0.0439 ** (0.0171) 0.0920 * (0.0486) 0.1171 ** (0.0546)
World Bank score 0.0256 *** (0.0064) 0.1988 *** (0.0103) 0.0293 (0.0228)

LL -49,319 -40,317 -22,041
AIC 98,705 80,695 44,143
McFadden’s adjusted R2 0.0120 0.0305 0.0486
Cox & Snell’s R2 0.0240 0.0500 0.0488

Resolved Loans 6,153 5,355 2,942
Loans 7,133 5,780 4,482

Notes: The table summarizes regression results for country specific impacts of loan characteristics on the tendency of
resolution. The model specification fulfill Equation (2.3), i.e., macroeconomic variables but no frailties are included.
The first column contains covariate names and the second includes corresponding categories if the variable is of
categoric nature. The reference category is given in parenthesis. Significance is indicated at 10% (*), 5% (**) and
1% (***). Standard errors (SE) are given in parenthesis. For completeness, results for a regression that uses all
observations jointly are given in Appendix Table 2.B.3.

combination with the industry production as indicator for general economic conditions, the term

spread captures the expectations of long-term economic conditions and is, therefore, important

for resolution processes. In the US and Great Britain, low expectations are identified to result in

significant lower resolution tendencies which lead to decelerated resolution processes.

The measures for the goodness of fit – AIC, McFadden’s adjusted R2, Cox & Snell’s R2 – improve

with regards to the US and Great Britain when including macroeconomic variables.14 This

suggests a systematic co-movement of DRTs caused by the macroeconomy in both countries. In

14 For instance, McFadden’s adjusted R2 increases from 1.12% to 1.20% (US) and from 2.34% to 3.05% (Great
Britain). Cox & Snell’s R2 changes from 2.23% to 2.40% resp. from 3.86% to 5.00%. In general, absolute values for
these measures should be treated with care. It is important to note that an increase can be considered as favorable
because this indicates a model better capturing given realizations, e.g., higher values for McFadden’s adjusted R2

imply an increase in the likelihood of a given model in comparison to a benchmark model.
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Canada, we do not find such evidence. The World Bank score, i.e., the efficiency of insolvency

regulations indicates an accelerated resolution process in the US and Great Britain but not

significantly for Canada.

As stated in Section 2.4.1, we expect lower default resolution intensities in crises periods due to

capacity limits in resolution devisions and a wait-and-see strategy of creditors in harsh economic

surroundings. This seems to be true for the US and Great Britain. However, DRTs in Canada

seem less influenced by the macroeconomy. This might be due to a lower crises susceptibility.

The Canadian banking system is rather homogeneous and, therefore, said to be less affected

by crises (see, e.g., Bordo et al., 2015). Furthermore, DRTs are generally rather high in Canada

due to disperse bargaining powers and court involvement even in informal proceedings. The

economic environment seems to influence the DRT to a lower extent.

In summary, the measured impacts are plausible and significant. However, various macroe-

conomic variables do not exhibit a significant impact when including them individually (see

Table 2.B.4) and the improvement for goodness of fit seems to be moderate even when including

macroeconomic variables simultaneously. Bandopadhyaya (1994) identify similar issues for

bankrupt US American firms when determining systematic variables for the time spent under

Chapter 11. A study of Grunert and Weber (2009) detects no significant effects of the macroe-

conomy on LGDs of defaulted loans from German companies. A reason for this behavior may

be ascribed to the complexity that appears when capturing systematic impacts on DRTs and

LGDs. Observations for those are treated as if they were known at default date at which the

condition of the macroeconomic environment can be observed. However, DRTs are influenced

by the macroeconomic environment at default date and macroeconomic conditions after the

default date during the resolution process, what is also mentioned by Grunert and Weber (2009).

This makes the quantification of systematic effects on DRTs very complex and challenging as

one needs to be aware of future macroeconomic conditions during default resolution to fully

capture all systematic effects. In addition, this might explain why macroeconomic variables can

only capture systematic effects on DRTs up to a certain degree.

Frailties as unobservable factors

Next, we estimate Model III and include stochastic time-dependent frailties. These capture

stochastic co-movements of resolution intensities by common unobserved factors. Table 2.7

summarizes the regression results. The changes in parameter estimates for loan specific variables

are minor.
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Table 2.7: Regression results for Model III

United States Great Britain Canada

Coef. SE Coef. SE Coef. SE

log(EAD) -0.0545 *** (0.0072) -0.0766 *** (0.0077) -0.0252 ** (0.0120)

Asset Class (SME) Large Corporates 0.2478 *** (0.0386) 0.3473 *** (0.0509) -0.0885 (0.0611)

Facility Short term 0.1087 *** (0.0415) -0.0812 ** (0.0316) -0.0949 ** (0.0449)
(Medium term) Other -0.0534 (0.0343) 0.4482 *** (0.0569) 0.0718 (0.0588)

Seniority Super senior 0.2164 *** (0.0497) 0.9269 *** (0.0436) 0.6240 *** (0.1016)
(Pari-passu) Non senior 0.4365 *** (0.1597) 0.8704 *** (0.2366)

Unknown 0.1056 (0.0993) 0.7252 *** (0.1222)

Nature of default Unlikely to pay -0.3034 *** (0.0428) -0.0501 (0.0535) -0.5747 * (0.3096)
(90 days past due) Bankruptcy 0.2071 *** (0.0767) 0.0394 (0.0546) -0.3583 (0.3044)

Charge-off / provision 0.4992 *** (0.1083) -0.1163 ** (0.0463) 0.8721 ** (0.3742)
Sold at material credit loss 1.9401 *** (0.1159)
Distressed restructuring 0.2621 (0.1618) -0.3562 *** (0.0988)
Non accrual -0.0340 (0.0374) -0.0793 * (0.0466) -0.4583 (0.2955)
Unknown -0.1681 (0.1292) 1.0076 *** (0.0827) -0.7400 ** (0.3026)

Guarantee Unknown 0.5355 ** (0.2496)
(NO) YES 0.1121 *** (0.0293) -0.0927 *** (0.0319) 0.2030 *** (0.0748)

Collateral Other collateral 0.1264 *** (0.0338) 0.0888 ** (0.0383) 0.3846 *** (0.0805)
(NO) Real estate 0.0724 (0.0474) 0.1036 *** (0.0378) 0.2006 (0.1895)

Unknown -1.6879 *** (0.2472) 1.3329 *** (0.1151)

Number of collateral 0.0240 *** (0.0086) 0.0062 ** (0.0026) 0.0090 (0.0070)

Cured (NO) YES 0.5411 *** (0.0334) 0.9685 *** (0.0366) 0.9615 *** (0.0552)

Industry Agric., forestry, fishing -0.2295 * (0.1223) 0.0343 (0.0971) -0.0599 (0.1026)
(Finance, insurance, RE) Mining -0.1980 (0.1452) -0.2885 (0.2307) 0.5405 *** (0.1783)

Construction -0.2932 *** (0.0547) -0.3495 *** (0.0612) 0.2109 ** (0.0976)
Manufacturing -0.2609 *** (0.0468) 0.0705 (0.0584) 0.2935 *** (0.0865)
Transp., commu., sanitary services -0.0042 (0.0624) 0.1649 ** (0.0783) 0.2455 ** (0.1036)
Wholesale and retail trade -0.1456 *** (0.0490) -0.0311 (0.0521) 0.2392 *** (0.0842)
Services -0.1041 ** (0.0470) 0.0345 (0.0558) 0.2112 *** (0.0810)
Unknown 0.2803 *** (0.0482) 0.0999 (0.0988) 0.0979 (0.2975)

Equity index -0.2939 (0.2419) 0.4607 * (0.2700) -0.3109 (0.2389)
Industry production 3.3437 *** (0.9261) -0.4466 (1.2467) 1.0775 (1.1402)
Volatility index -0.0107 (0.0088) 0.0022 (0.0079) -0.0023 (0.0059)
Term spread 0.1579 ** (0.0639) 0.0529 (0.1079) 0.0763 (0.0773)
World Bank score 0.0357 (0.0247) 0.2337 *** (0.0291) 0.0378 (0.0377)

Frailty volatility 0.3035 *** (0.0249) 0.2959 *** (0.0190) 0.1530 *** (0.0530)

LL -49,179 -40,141 -22,016
AIC 98,453 80,370 44,108
McFadden’s adjusted R2 0.0130 0.0326 0.0472
Cox & Snell’s R2 0.0275 0.0548 0.0491

Resolved Loans 6,153 5,355 2,942
Loans 7,133 5,780 4,482

Notes: The table summarizes regression results of country specific impact of frailties on the tendency of resolution.
The model specification fulfill Equation (2.5), i.e., with loan specific characteristics, macroeconomic information,
and frailties. Significance is indicated at 10% (*), 5% (**) and 1% (***). Using the likelihood ratio test for the frailty
where the null model is given by Model II. The standard error of the frailty is computed by bootstrapping with
resampling and replacement for 10,000 steps. For completeness, results for a regression that uses all observations
jointly are given in Appendix Table 2.B.3.

The frailty can be investigated by its estimated volatility. In the US and Great Britain, the

values are similar with around 0.30. In Canada, the frailty effect is considerably smaller with

a volatility of 0.15 but still greater than 0. This is in line with earlier findings. Generally,

systematic patterns seem to have less influence on the DRTs in Canada, compared to the US

and Great Britain.15 Reasons may be found in a rather low crises susceptibility and in the fact

that resolution intensities are rather low in Canada due to a high rate of court involvement even

in informal proceedings. The model fit – measured by AIC, McFadden’s adjusted R2, and Cox

15 Even though differences in macroeconomic variables are less pronounced in Figure 2.6, systematic tendencies
regarding credit dynamics in Canada seem to differ more clearly in comparison to the US and Great Britain. This
can be seen in Figure 2.B.1 in Appendix 2.B which shows that the lending behavior and resolution practices seem
to deviate among countries.
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& Snell’s R2 – improves for the US and Great Britain when including frailties.16 In addition,

we run a likelihood ratio test to check whether Model III increases the likelihood compared to

Model II. The null hypothesis of no improvement is rejected with p-values of lower than 10−4.

Thus, the results show clear evidence for an improvement in all three countries. This indicates

systematic dependencies among resolution intensities which can not be explained by covariates.

Next we analyse DRT changes due to varying frailty realizations to study the effect of unobserv-

able factors. Starting from a realization of the systematic frailty factor u0 the relative change of

the expected DRT due to a change of the frailty ∆u is given by

E(T |Ut̃(i) = u0 +∆u)

E(T |Ut̃(i) = u0)
− 1 =

λit|Ut̃(i)=u0

λit|Ut̃(i)=u0+∆u
− 1

=
λ0t exp

(
xiβ + zt̃(i)γ +u0

)
λ0t exp

(
xiβ + zt̃(i)γ +u0 +∆u

) − 1

= exp(−∆u)− 1 , (2.6)

when assuming a constant baseline hazard rate for the definition of Model III in Equation (2.5).

Table 2.8 shows the relative change for one standard deviation changes of the frailty. A decrease

of the unobservable factor by one standard deviation increases the mean DRT by approximately

35% in the US and in Great Britain, whereas, a one standard deviation rise decreases the mean

DRT by about 26%. In Canada, the impact is lower by 17% and −14%.

Table 2.8: Frailty impact on mean DRT

US GB CA

∆u = −1σ 35.46% 34.43% 16.53%
∆u = +1σ -26.18% -25.61% -14.19%

Notes: The table summarizes the impact of the frailty on the DRT as of Equation (2.6). The relative change of the
mean DRT for a frailty change of one standard deviation is displayed.

Generally, frailties represent the development of the systematic components over time. Figure

2.8 illustrates the curves of the estimated frailty realizations over time. Country specific

differences arise. In the US, we can see a decline in the crises years 2007 and 2008. This implies

lower resolution rates for loans defaulting at the beginning of the Global Financial Crisis and,

thus, longer resolution processes. The upwards shift for 2013 is caused by a low number of

defaults in this year and is thus less meaningful. In Great Britain, the unobservable systematic

16 For instance, McFadden’s adjusted R2 increases from 1.20% to 1.30% (US) and from 3.05% to 3.26% (Great
Britain). Cox & Snell’s R2 changes from 2.40% to 2.75% resp. from 5.00% to 5.48%.
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component shows a different pattern and the crisis affects it with a delay and a weaker impact.

The Canadian frailty is rather evenly spread. The correlations between country frailties show

a link of systematic resolutions in Great Britain and Canada with a correlation coefficient of

0.418 which is significantly different from zero with a p-value of 0.008. Neither the link of the

US to Great Britain is significantly different from zero (ρ=0.026, p-vlaue=0.873) nor to Canada

(ρ=0.098, p-vlaue=0.551). This shows that the unobservable systematic risk strongly depends

on country specific patterns.

Figure 2.8: Time-dependent frailties as systematic components of resolution
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Notes: The figure illustrates the course of estimated frailties over time for the US, Great Britain, and Canada.
The solid black lines displays the frailty, whereas, the dotted black line shows the 90%-confidence interval. The
confidence interval is computed by bootstrapping with resampling and replacement for 10,000 steps. We check
the assumption of normal distribution by a Kolmogorov–Smirnov test. As required, the null hypotheses of normal
distribution is not rejected for each country with p-values of 0.371 (US), 0.982 (GB) and 0.319 (CA). For completeness,
the estimated frailty for a regression that uses all observations jointly are given in Appendix Figure 2.B.3.

There are country specific changes in the significance of macroeconomic variables after including

the frailty. In the US, the effect of the industry production and the term spread are still significant

and even more pronounced. For Great Britain, the significance of both previously significant

variables vanishes. However, after including all systematic factors the stock market is the only

macroeconomic variable identified as significant. The picture is different for Canada where we

do not identify any observable systematic risk factor as significant trigger. The entire systematic
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risk in Canada is driven by the frailty.

The frailty represents unobservable systematic effects, but can also be triggered by time-varying

influences of loan- and borrower-specific as well as macroeconomic variables.17 For instance,

industry-specific effects may hold in recessions for certain industries, but not in expansions.

In order to check the robustness of unobservable systematic effects in this context, we studied

the divergence of parameter estimates and frailties for periods of economic recessions and

expansions as defined by country-specific recession dates of the Organisation for Economic

Co-operation and Development (OECD). In the Appendix, regression results and frailties for a

modification of Model III that includes interactions of all covariates to recessions at default date

(Figure 2.B.2, Table 2.B.1 and Table 2.B.2) are shown. Some parameter estimates significantly

change in recession. However, the course and the volatility of the frailty are not substantially

divergent, i.e., the measured unobservable systematic effects seem to be not triggered by time-

varying covariates.

In summary, the systematic co-movement of resolution processes can only partially be explained

by macroeconomic variables and the frailty represents a more important systematic compo-

nent.18 This observation leaves us with implications regarding the occurrence of observed DRTs

and with respect to risk quantification and forecasting. Creditors are in need to determine

risk of loans that default in the future. First, our results show that systematic factors play an

important role with this respect. However, only using observable factors may not be enough as

there seems to be some kind of systematic behavior among defaulted loans and their resolution

which can not be captured by contemporaneous macroeconomic observations. A reason for this

may be due to the fact that DRTs do not only depend on contemporaneous but also on future

conditions of the economic environment. Such future conditions are unobservable from todays

perspective which at first sight may seem disencouraging from a practitioners perspective.

Nevertheless, simply being aware of this attribute may improve risk assessment. In addition,

the estimation of frailty observations through Model III can be used to derive conservative

forecasts for future DRTs. Given the estimated frailty volatility, we can define a critical state

of the systematic environment, e.g., the 5% quantile of frailty distribution. Determining DRTs

under such a hypothetical critical scenario provides us insights what we need to expect during

critical conditions regarding possible realizations for DRTs. This type of analysis is not only

17 We would like to thank an anonymous referee for pointing this out.
18 This is in line with the study of Khieu et al. (2012) on loan LGDs that identifies systematic effects in addition

to macroeconomic influences by significant year dummies in its regressions. The literature on the correlation
between the probability of default and the LGD also mentions systematic effects on LGDs (e.g., Düllmann and
Trapp, 2004; Altman et al., 2005).
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relevant for the creditor itself, but also for regulators who nowadays often demand risk forecasts

under downturn or stressed economic scenarios.19

The relationship between DRTs and recovery rates

As already indicated by the descriptive analysis at the end of Section 2.2, there seems to be

a negative relationship between DRTs and recovery rates. In order to examine this in more

detail, additional analyses are conducted in which we change the point of view and use recovery

rates as dependent variables, and, among others DRTs as an explanatory variable. First, a linear

regression model is applied, second, we apply a logistic regression differentiating between no

losses and losses. Different set ups regarding the inclusion of loan specific and macro variables

are employed. Under each set up, we find DRTs to have a positive significant impact on recovery

rates. This indicates that loans with longer DRTs are more likely to come along with higher losses.

While such an analysis is of no use for forecasting purposes as both variables are unknown at

the time of default, it emphasizes the relationship between DRTs and recovery rates and may

motivate future research to model both variables simultaneously.20

2.5 Implications of systematic DRTs

Creditors need to determine the risk of their portfolio for their internal risk assessment as well as

for pricing and regulatory purposes. As stated earlier, DRTs represent a possible stochastic risk

factor for the overall credit loss which may be modeled according to approaches presented in this

paper. The better the model captures the nature of DRTs and their occurrence, the more precise

their risk assessment should be. Results from the previous sections give rise to the conjecture

that underestimating or neglecting systematic impacts (observable and especially unobservable)

of DRTs may lead to a false or poor evaluation of those. This section uses a representative

portfolio and a simulation analysis to show the possible extent of this misspecification.

The representative portfolio consists of 1,000 US American loans which are randomly sampled

from our data set. Firstly, we consider one of these loans to derive implications of systematic

factors on loan level. Secondly, we extend the analysis to portfolio level by including all of the

1,000 loans. The relation between DRTs and non-discounted RRs is explicitly taken into account

19 For instance, risk assessment under stressed market conditions is demanded for market risks under Basel III
(Basel Committee on Banking Supervision, 2010) and under economic downturn conditions for loss given defaults
(Basel Committee on Banking Supervision, 2005; Board of Governors of the Federal Reserve System, 2006).

20 All additional analyses are available from the authors upon request.
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in the second part of the analysis. Figure 2.9 shows the relation for the randomly sampled,

representative portfolio. Compared to the complete data sample only minor differences arise

(see Figure 2.2). Overall, the mean as well as the median of the non-discounted RRs follow a

decreasing course.

Figure 2.9: Relation of DRT and non-discounted RR (representative sample)
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Notes: The figure illustrates the relation of the DRT and non-discounted RR for the representative sample which
is adapted in the impact study. Box plots of the non-discounted RR per bucket of DRT for the US, Great Britain,
and Canada are displayed. The first bucket (marked with 1 on the x-axis) includes loans with DRTs up to one year.
The second bucket (marked with 2 on the x-axis) includes loans with DRTs longer than one year up to two years
and so on. In the last bucket (marked with > 5), loans with DRTs greater than five years are summarized. The black
horizontal lines within the box plots mark the medians. The means are separately displayed by gray lines.

2.5.1 Implications on loan level

Consider a single loan with resolution intensity according to Model I (λI ) which is time constant

because the linear predictor of the loan specific variables (xβ) is constant over time. In the

Cox Model, the time to an event follows an exponential distribution with rate parameter λ if

a constant baseline hazard rate λ0 is assumed.21 Thus, the probability density function of the

DRT in Model I is determined by

f IT (t) = λI exp(−λI t) , t ≥ 0 . (2.7)

In contrast, the resolution intensity in Model II depends on the default time t̃ of the considered

loan. Therefore, the resolution intensity might be lower in recessions and higher in expansions

depending on the linear predictor of the macroeconomic variables (zt̃γ). Given the default time

t̃ of the loan, the resolution intensity of Model II is fully specified because the realizations of

the macroeconomic variables are known at time of default. The DRT in Model II is, therefore,

21 To check for robustness, we derive the simulation also with the estimated time varying hazard rates following
Bender et al. (2005) and receive similar results. We would like to thank an anonymous referee for this remark.
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exponentially distributed with a constant rate parameter λII (t̃) for a given time of default t̃ and

its probability density function is

f IIT ,t̃(t) = λII (t̃) exp(−λII (t̃) t) , t ≥ 0 . (2.8)

As the resolution intensity of Model II varies over calendar time, longer DRTs might arise during

weak economic conditions and shorter DRTs in a favorable environment.

In Model III there is not such a simple expression for the probability density function of the

DRT as in Model I and II as the realization of the frailty is unknown at the time of default.

Conditioning on the frailty factor U = u, the conditional intensity of Model III λIII (t̃,u) is

constant, given the quarter of default t̃. Thus, the conditional probability density of the DRT is

determined by

f IIIT ,t̃|U=u(t) = λIII (t̃,u) exp(−λIII (t̃,u) t) , t ≥ 0 . (2.9)

The unconditional probability density function can be derived by the integral of the joint

probability density function over the frailty realizations u

f IIIT ,t̃ (t) =
∫ +∞

−∞
f IIIT ,t̃|U=u(t) fU (u) du , t ≥ 0 , (2.10)

where fU (u) is the density of the Normal distribution with mean 0 and variance σ2 (see Equa-

tion (2.4)). Equation (2.10) can be solved by numerical integration.

As the baseline hazard rate λ0 directly impacts the distribution of DRTs and, thus, its mean,

we calibrate it on the average DRT of 1.59 years (see Table 2.1). This ensures an average

simulated portfolio DRT in accordance with the empirical data. Thus, the average portfolio DRT

corresponds to 1.59 years for Model I. Regarding Model II and III, it amounts to 1.59 years in

an average economic scenario. The simulated DRTs might be higher relating to recessions and

lower in expansions. The calibration yields in a baseline hazard rate for Model I of λI0 = 1.08 as

well as λII0 = 0.12 for Model II and λIII0 = 0.07 for Model III.22

Figure 2.10 shows the probability density functions of the DRT in Model I, II, and III as of

Equation (2.7), (2.8), and (2.10) for an exemplary recession and expansion period.23 The left

panel of Figure 2.10 displays the probability density functions for a recession period. The

22 The deviations in the baseline hazard rates among the models seems adequate as the difference in levels also
emerges in the estimation of the models.

23 The realizations of the macroeconomic variables are assumed to match their values as of Q1 2009 for the recession
and Q2 2011 for the expansion period.
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Figure 2.10: Density of DRT
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Notes: The figure illustrates the probability density function of the DRT for Model I, II, and III according to
Equation (2.7), (2.8), and (2.10) in an exemplary recession (realizations of macroeconomic variables as of Q1 2009)
and expansion (realizations of macroeconomic variables as of Q2 2011) period. Under the assumption of constant
baseline hazard rates, the DRTs of Model I and II follows an exponential distribution with rate parameter λI for
Model I and λII for Model II. The density of Model III is derived by numerical integration.

underlying quarter (Q1 2009) is shaped by the Global Financial Crisis and includes inter alia

the crash of Lehman Brothers. Compared to Model I, the density of Model II is lower for

short DRT and higher for longer ones. The distribution is, thus, shifted towards higher DRTs.

This tendency is even more pronounced considering Model III as the frailty intensifies the

impact of the economic surrounding. Firstly, an unobservable systematic factor widens the

distribution of DRT. Secondly, impacts of the observable systematic factors are enhanced due to

the consideration of the frailty. The right panel of Figure 2.10 shows the probability density

functions for an expansion period. Considering favorable economic surroundings, opposite

effects appear. The distribution of DRT for Model II is shifted towards lower values compared

to Model I. Table 2.9 summarizes the median and 95% quantile of the distributions. Whereas

the difference is less pronounced in the median, it is apparent considering the 95% quantile. In

a recession period, there is an increase of this quantile by 54% comparing Model I and III.

Table 2.9: Inferences of systematic factors on the distribution of DRTs

Recession Expansion

Model I mean 1.16 1.16
95% quantile 3.48 3.48

Model II mean 1.47 0.95
95% quantile 4.42 2.84

Model III mean 1.70 0.78
95% quantile 5.35 2.45

Notes: The table summarizes the mean and 95% quantile of the DRT for Model I, II, and III according to Equa-
tion (2.7), (2.8), and (2.10) in an exemplary recession (realizations of macroeconomic variables as of Q1 2009) and
expansion (realizations of macroeconomic variables as of Q2 2011) period. The values arise from the probability
density functions illustrated in Figure 2.10.
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Generally, the distribution of DRTs for Model I is independent of the economic surrounding at

the time of default. In Model II, favorable economic conditions shift the distribution towards

lower values, adverse economic conditions shift it towards higher values indicating shorter

DRTs in expansions and longer ones in recessions. This effect is enhanced in Model III.

2.5.2 Implications on portfolio level

Systematic effects in modeling DRT might not only affect the DRT itself, but also the loss

involved. In Section 2.2 (see Figure 2.2), the relation between DRTs and the non-discounted RRs

has been shown.24 This indicates that recovery cash flows are lower the longer the resolution

process takes. Furthermore, the DRT directly enters the calculation of the LGD by discounting

the recovery cash flows. To put it simple, assuming a constant risk adjusted interest rate of 5%

and recovery cash flows being paid at the end of the resolution process, the LGD of a single loan

is derived as

LGD = 1− RRT
(1 + r)T

, (2.11)

where RRT denotes the time dependent non-discounted RR. Its value is set to the mean of the

related DRT bucket. Table 2.10 summarizes the six DRT buckets and the corresponding means.

For example, a loan with a DRT of two years is assigned with a non-discounted RR of 72.72%.

Table 2.10: Non-discounted RR by DRT buckets

DRT bucket non-discounted RR

0 <DRT ≤ 1 84.23%
1 <DRT ≤ 2 72.72%
2 <DRT ≤ 3 62.80%
3 <DRT ≤ 4 59.82%
4 <DRT ≤ 5 59.09%

DRT > 5 43.70%

Notes: The table summarizes the mean of the non-discounted RR per bucket of DRTs. The first row of the table
(0 < DRT ≤ 1) includes loans with DRTs up to one year. The second row (1 < DRT ≤ 2 ) includes loans with DRTs
longer than one year up to two years and so on. In the last row (DRT > 5) loans with DRTs longer than five years are
summarized. The means meet the ones illustrated in the upper left panel of Figure 2.2.

We further study the representative portfolio of the randomly sampled 1,000 loans by con-

sidering implications on portfolio level. The exposure weighted portfolio loss distribution is

generated via Monte-Carlo simulation. DRTs for the 1,000 loans are randomly drawn according

24 Figure 2.9 shows that this relation also holds for the representative portfolio.
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to Model I, II, and III, respectively.25 The corresponding LGDs are calculated by Equation (2.11).

Finally, the portfolio loss is given by:

LGDP F =
1

n EAD

n∑
i=1

(LGDi EADi) , (2.12)

where, EAD indicates the average EAD of the portfolio. The procedure is repeated 100,000

times to generate the portfolio loss distribution.

Table 2.11: Inferences of systematic factors on the distribution of portfolio DRTs

Recession Expansion

Model I mean 1.59 1.59
95% quantile 1.69 1.69

Model II mean 2.01 1.29
95% quantile 2.14 1.37

Model III mean 2.42 1.10
95% quantile 3.83 1.75

Notes: The table summarizes the mean and 95% quantile of the portfolio DRT for Model I, II, and III in an exemplary
recession (realizations of macroeconomic variables as of Q1 2009) and expansion (realizations of macroeconomic
variables as of Q2 2011) period. For every loan in the representative portfolio a DRTs is drawn according to the
underlying model. Afterwards, the mean of the random draws is calculated to generate the average portfolio DRT.
The procedure is repeated 100,000 times to generate the distribution of portfolio DRTs.

Table 2.11 summarizes the mean and the 95% quantile of the simulated portfolio DRTs. As

the baseline hazard rates are calibrated on the empirical mean of the DRTs (see Table 2.1), the

average portfolio DRT in Model I corresponds to this value for both economic scenarios. In

Model II, the mean is higher in a recession and lower in an expansion period. This effect is more

pronounced in Model III.

The portfolio loss distribution is simulated based on the portfolio DRTs and the non-discounted

RRs as of Table 2.10. Figure 2.11 displays the portfolio loss distributions for Model I, II, and III

for the exemplary recession and expansion period. In the left panel the portfolio loss distribution

of a recession is shown. Compared to Model I, the portfolio loss distribution of Model II is

shifted to the right and slightly wider. This indicates that not only the mean of the portfolio

loss but also its variation increases compared to Model I. This is mainly due to the exponential

distribution of the DRT. Since it is fully specified by one parameter, mean and variance of the

DRT are solely driven by this parameter and, thus, move in parallel. This effect is also reflected

in the portfolio loss. However, the difference to Model III is much more pronounced than the

difference between Model I and II. Through the frailty effect substantially more uncertainty

25 In Model III, we initially draw a frailty from the Normal distribution with mean 0 and variance σ2. This frailty
realization u is constant for all 1,000 loans. Given this realization, the resolution intensity is constant among the
loans in the homogeneous portfolio and we then draw the DRTs from the conditional distribution of the DRT, i.e.,
T , t̃ | U=u ∼ Exp(λIII (t̃,u)).
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Figure 2.11: Kernel density estimates of loss on portfolio level
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Notes: The figure illustrates the kernel density estimates of the exposure weighted portfolio loss distribution based
on simulated DRT of Model I, II, and III as of Equation (2.7), (2.8), and (2.9) in an exemplary recession (realizations
of macroeconomic variables as of Q1 2009) and expansion (realizations of macroeconomic variables as of Q2 2011)
period. For every loan in the representative portfolio a DRTs is drawn according to the underlying model. In Model
III, a frailty is drawn from the Normal distribution with mean 0 and variance σ2 for each run. The corresponding
loss is calculated. Afterwards, the mean of the losses is calculated to generate the average loss. The procedure is
repeated 100,000 times to generate the distribution of portfolio losses.

is introduced into the model and the portfolio loss distribution is characterized by a higher

mean and a much wider range. This indicates that not only the expected loss but also extreme

quantiles of the portfolio loss distribution rise. In the right panel of Figure 2.11, the portfolio

loss distribution of an expansion is displayed. The portfolio loss distribution of Model II is

shifted to the left and is narrower compared to Model I. Comparing Model I and II with Model

III, major differences arise. Although the distribution is shifted to the left of Model II, its wide

range persists. The expected loss of Model III is lower compared to Model I and II. However,

extreme quantiles are still higher.

While the former analysis considered exemplary portfolio loss distributions in a recession and

expansion period, we now extend it to all possible scenarios in the estimation sample to analyze

potential portfolio risk if similar scenarios arise in the future. Figure 2.12 displays the mean

(left panel) and the the VaR(95%) as well as the VaR(99%)26 (right panel) of the portfolio loss

distribution for all macroeconomic scenarios in the estimation sample for the three models. In

Model I, the mean is constant over time as the resolution intensity λI is constant. The mean of

Model II lies above the one of Model I in quarters characterized by adverse economic conditions,

e.g., Q1 2009. In favorable economic surroundings, e.g., Q2 2011, it lies below the one of Model

I. Comparing Model II and III, the mean of Model III seems to be more extreme in the majority

of the cases (e.g., Q1 2009 and Q2 2011). The right panel of Figure 2.12 shows the VaR(95%)

and the VaR(99%) of the portfolio loss distribution. As the resolution intensity and, thus, the

26 The VaR(95%) and VaR(99%) are the 95% and 99% quantiles of the portfolio loss distribution.
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Figure 2.12: Mean and VaR(95%) of loss on portfolio level
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Notes: The figure illustrates mean, VaR(95%) and VaR(99%) of the exposure weighted portfolio loss distribution
based on simulated DRTs of Model I, II and III as of Equation (2.7), (2.8), and (2.9) for all quarters in the estimation
sample. For every loan in the representative portfolio a DRTs is drawn according to the underlying model. In Model
III, a frailty is drawn from the Normal distribution with mean 0 and variance σ2 for each run. The corresponding
loss is calculated. Afterwards, the mean of the losses is calculated to generate the average loss. The procedure is
repeated 100,000 times to generate the distribution of portfolio losses.

portfolio loss distribution is constant over time regarding Model I, the corresponding extreme

quantiles are time-invariant. The course of the VaR(95%) and the VaR(99%) in Model II seems

strongly related to the course of its mean. In recessions, the extreme quantiles of Model II lie

above the ones of Model I, whereas, they lie below in expansions. This might be due to the

rather similar shape of the portfolio loss distributions of Model I and II. Although, the range

of the distribution of Model II slightly increases (decreases) if it is shifted to the right (left),

the deviation seems marginal. A clearer contrast emerges considering Model III where the

extreme quantiles are shifted upwards throughout. Generally, this shows that the stochastic

frailty introduces non diversifiable systematic risk and co-movement between DRTs. This could

have a substantial impact on losses on portfolio level.

2.6 Conclusion

This paper analyzes DRTs of defaulted loan contracts. The emphasis is laid on systematic effects

among DRT intensities - both observable and unobservable. The observable systematic factors

shift DRT intensities through time while the unobservable factors (frailties) lead to stochastic

correlations.

We use access to a large data base and analyze DRTs of 17,395 loans located in the US, Great

Britain, and Canada. Three models are taken into account, including loan specific; loan specific
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and macroeconomic; and loan specific, macroeconomic as well as unobservable variables.

Our results show that unobservable factors impact default resolution intensities and that this

influence remains when macroeconomic variables are additionally included in the model.

The impact of systematic effects leads to more skewed distributions of DRTs. Thus, given

good or adverse systematic conditions, a higher magnitude of more extreme DRTs occurs. An

implication exercise shows that this can lead to higher credit risk regarding the credit portfolio

loss distribution. In other words, neglecting systematic effects among DRTs might lead to a

flawed and poor risk assessment of the credit portfolio.

We show that the DRT can be of great importance in direct and indirect ways. While it immedi-

ately impacts liquidity of financial institutions it also plays an important role with regards to

credit costs, such as discounting costs and lower non-discounted RRs due to longer resolution

processes. Hence, the analysis of DRT helps us in better understanding the occurrence of credit

losses and, thus, improves risk assessments. Future research might lie in the development

of credit risk models which simultaneously determine DRTs as well as default and loss given

default estimates.
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2.A Appendix | Estimation of the Cox model

This section describes the theoretical background of the Cox proportional hazards model. First,

we show a likelihood approach to estimate Model I and II, i.e., without frailties. Afterwards, we

extend this by a time-dependent frailty.

From the definition of resolution intensities in Equation (2.1) it follows for Model I:

λit =
fT (t|xi)

1−FT (t|xi)
, (2.13)

(i = 1, . . . ,n), where fT (t|xi) is the probability density function of the resolution time at t and

1−FT (t|xi) is the probability that there is no resolution prior to time t.

The general likelihood for survival data is given by

L(β|x,δ) =
n∏
i=1

[
fT (ti |xi)δi (1−FT (ti |xi))1−δi

]
, (2.14)

with observed times after default ti and censor indicators δi (1, if i was resolved at time ti , 0

else). The first part describes the likelihood contributions of all resolved loans and the second

part the contribution of the censored observations.

Inserting Equation (2.13) into Equation (2.14) yields

L(β|x,δ) =
n∏
i=1

[
λδiit (1−FT (ti |xi))

]
(2.15)

=
n∏
i=1

[
(λ0t exp(xiβ))δi exp

(
−exp(xiβ)

∫ ti

0
λ0vdv

)]
(2.16)

The Cox model is a semi-parametric approach, i.e., the baseline rate λ0t is not specified. Thus,

Cox (1972) extends the likelihood of Equation (2.16) to

L(β|x,δ) =
n∏
i=1
δi=1

 exp(xiβ)∑n
j=i exp(xjβ)

λ0ti

n∑
j=i

exp(xjβ)

 n∏
i=1

exp
(
−exp(xiβ)

∫ ti

0
λ0vdv

)
(2.17)

where the observations i = 1, . . . ,n are ordered so that t1 < · · · < tn. For estimation of the unknown
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parameters the following partial likelihood is maximized

P L(β|x,δ) =
n∏
i=1
δi=1

exp(xiβ)∑n
j=i exp(xjβ)

. (2.18)

Afterwards, the baseline hazard rate can be estimated by

λ̂0ti =

 n∑
j=i

exp(xj β̂)


−1

. (2.19)

Model II additionally contains macroeconomic variables and the unknown parameter vector

γ . Thus, the partial likelihood and the baseline estimate only changes by extending the linear

predictor to xiβ + zt̃(i)γ .

Including a frailty leads to higher computational effort because a frailty is unknown. For a more

detailed description see Therneau et al. (2003). For Model III the conditional partial likelihood

given fixed frailty realizations changes to

CP L(β,γ,σ |x,δ,U = u) =
n∏
i=1
δi=1

exp(xiβ + zt̃(i)γ +ut̃(i))∑n
j=i exp(xjβ + zt̃(j)γ +ut̃(i))

, (2.20)

where U denotes a vector including all frailties for all default times. Because the frailty

realization u is unknown, we need to consider the conditional likelihood by integrating out the

normally distributed frailty:

UPL(β,γ,σ |x,δ) =
n∏
i=1
δi=1

∫ ∞
−∞

exp(xiβ + zt̃(i)γ +u)∑n
j=i exp(xjβ + zt̃(j)γ +u)

fUt̃(i)(u) du . (2.21)

Equation (2.21) is maximized to estimate the unknown model parameters β,γ,σ . Afterwards,

we use Equation (2.20) as CP L(u|x,δ, β̂, γ̂ , σ̂ ) to estimate the frailty vector. The baseline hazard

rate is again estimated by Equation (2.19) extended by the frailty term.
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2.B Appendix | Further analyses

Credit dynamics in the US, Great Britain and Canada

Figure 2.B.1: Behavior of loan portfolios and default incidence
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Notes: The figure shows the time-series of the year-on-year change in total credit volume to non-financial corporations
and the ratio of bank non-performing loans to gross loans. All data is taken from the public research data base of
https://fred.stlouisfed.org/. The time series are indexed by CRDQUSANABIS PC1, CRDQGBANABIS PC1,
CRDQCAANABIS PC1, DDSI02USA156NWDB, DDSI02GBA156NWDB and DDSI02CAA156NWDB.
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Covariate influences over time

Figure 2.B.2: Frailties when including interactions of covariates and recessions
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Notes: The figure illustrates the course of estimated frailties over time for the US, Great Britain, and Canada. In
the estimation covariate interactions to recessions are included. The solid black lines displays the frailty, whereas,
the dotted black line shows the 90%-confidence interval. The confidence interval is computed by bootstrapping
with resampling and replacement for 2,000 steps. We check the assumption of normal distribution by a Kol-
mogorov–Smirnov test. As required, the null hypotheses of normal distribution is not rejected for each country with
p-values of 0.3044 (US), 0.9555 (GB) and 0.8235 (CA).
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Table 2.B.1: Regression results for Model III when including interactions of covariates and
recessions (parameter estimates non-recession)

United States Great Britain Canada

Coef. SE Coef. SE Coef. SE

log(EAD) -0.0668 *** (0.0086) -0.0820 *** (0.0096) -0.0071 (0.0143)

Asset Class (SME) Large Corporates 0.2223 *** (0.0466) 0.3790 *** (0.0688) -0.0994 (0.0728)

Facility Short term 0.1591 *** (0.0483) -0.0198 (0.0391) -0.0979 * (0.0526)
(Medium term) Other -0.0134 (0.0403) 0.4570 *** (0.0763) 0.0790 (0.0687)

Seniority Super senior 0.1526 *** (0.0588) 1.0580 *** (0.0541) 0.6728 *** (0.1215)
(Pari-passu) Non senior 0.3005 (0.1858) 1.0925 *** (0.3123)

Unknown -0.1236 (0.1168) 0.7179 *** (0.1445)

Nature of default Unlikely to pay -0.3597 *** (0.0490) -0.0949 (0.0667) -0.5946 * (0.3382)
(90 days past due) Bankruptcy 0.1295 (0.1007) -0.0243 (0.0676) -0.3780 (0.3322)

Charge-off / provision 0.4855 *** (0.1370) -0.0986 * (0.0574) 0.7535 * (0.4317)
Sold at material credit loss 1.8696 *** (0.1175)
Distressed restructuring 0.1434 (0.1824) -0.5476 *** (0.1168)
Non accrual -0.0774 * (0.0439) -0.1193 ** (0.0565) -0.5467 * (0.3213)
Unknown -0.4503 *** (0.1732) 0.8871 *** (0.0964) -0.8556 *** (0.3315)

Guarantee Unknown 0.4749 (0.3567)
(NO) YES 0.1752 *** (0.0344) -0.1237 *** (0.0391) 0.1225 (0.0882)

Collateral Other collateral 0.1675 *** (0.0394) 0.1098 ** (0.0476) 0.4236 *** (0.0951)
(NO) Real estate 0.1104 ** (0.0543) 0.1758 *** (0.0464) -0.0654 (0.2365)

Unknown -0.1382 (0.3201) 1.3079 *** (0.1362)

Number of collateral 0.0275 *** (0.0090) 0.0053 * (0.0028) 0.0069 (0.0075)

Cured (NO) YES 0.6652 *** (0.0388) 10.575 *** (0.0455) 1.0739 *** (0.0637)

Industry Agric., forestry, fishing -0.3250 ** (0.1324) 0.2515 ** (0.1175) -0.0904 (0.1178)
(Finance, insurance, RE) Mining -0.0603 (0.1601) -0.2497 (0.2695) 0.5625 *** (0.2122)

Construction -0.2633 *** (0.0664) -0.1474 * (0.0790) 0.1770 (0.1163)
Manufacturing -0.2846 *** (0.0552) 0.2848 *** (0.0763) 0.1971 * (0.1019)
Transp., commu., sanitary services 0.0901 (0.0724) 0.1218 (0.1094) 0.2664 ** (0.1240)
Wholesale and retail trade -0.1612 *** (0.0569) 0.1321 * (0.0685) 0.2023 ** (0.0990)
Services -0.0815 (0.0540) 0.0972 (0.0718) 0.2156 ** (0.0949)
Unknown 0.1881 *** (0.0580) 0.3429 *** (0.1232) 0.0122 (0.3443)

Equity index -0.4123 (0.2774) 1.1414 *** (0.3379) -0.3421 (0.2997)
Industry production 3.6166 *** (1.0587) -0.9898 (1.3909) -0.9121 (1.3353)
Volatility index -0.0134 (0.0117) 0.0355 *** (0.0104) 0.0193 (0.0123)
Term spread 0.1341 ** (0.0651) -0.0144 (0.1165) -0.0753 (0.0922)
World Bank score 0.0320 (0.0253) 0.2509 *** (0.0305) 0.0425 (0.0415)

Frailty volatility 0.2875 *** (0.0243) 0.3090 *** (0.0261) 0.1637 *** (0.0520)

LL -49,102 -40,070 -21,980
AIC 98,363 80,287 44,093
McFadden’s adjusted R2 0.0139 0.0336 0.0474
Cox & Snell’s R2 0.0304 0.0574 0.0505

Resolved Loans 6,153 5,355 2,942
Loans 7,133 5,780 4,482

Notes: The table summarizes regression results of country specific impacts of covariates on the tendency of resolution.
The model specification fulfill Equation (2.5), i.e., loan specific characteristics, macroeconomic information and
frailties. In addition, the interaction between covariates and recession is taken into account. This table shows
parameter estimates for periods of no recession. The interaction parameter estimates are shown in Table 2.B.2.
Significance is indicated at 10% (*), 5% (**) and 1% (***), using the likelihood ratio test for the frailty where the
null model is given by the model without frailty. The standard error of the frailty is computed by bootstrapping
with resampling and replacement for 2,000 steps. Recessions are defined by the monthly recession dummy of the
Organisation for Economic Co-operation and Development (OECD).
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Table 2.B.2: Regression results for Model III when including interactions of covariates and
recessions (interactions to recessions)

United States Great Britain Canada

Coef. SE Coef. SE Coef. SE

log(EAD) 0.0320 ** (0.0158) 0.0164 (0.0163) -0.0692 *** (0.0267)

Asset Class (SME) Large Corporates -0.0394 (0.0874) -0.0634 (0.1040) 0.0291 (0.1385)

Facility Short term -0.1403 (0.0964) -0.1865 *** (0.0667) 0.0409 (0.1031)
(Medium term) Other -0.1345 * (0.0794) -0.0327 (0.1180) -0.0081 (0.1379)

Seniority Super senior 0.2144 * (0.1177) -0.2620 *** (0.0892) -0.2454 (0.2318)
(Pari-passu) Non senior 0.5222 (0.3691) -0.3479 (0.4836)

Unknown 0.8804 *** (0.2261) -0.1100 (0.2783)

Nature of default Unlikely to pay 0.1933 * (0.1043) 0.0930 (0.1138) 0.0293 (0.8743)
(90 days past due) Bankruptcy 0.2562 (0.1595) 0.2522 ** (0.1147) 0.0683 (0.8644)

Charge-off / provision 0.2076 (0.2338) 0.0210 (0.0986) 0.2572 (1.0172)
Sold at material credit loss 0.4918 (1.0149)
Distressed restructuring 0.7304 * (0.4022) 0.7219 *** (0.2245)
Non accrual 0.1421 (0.0870) 0.1045 (0.1015) 0.3083 (0.8482)
Unknown 0.7039 *** (0.2593) 0.3766 * (0.1933) 0.6191 (0.8585)

Guarantee Unknown -0.0180 (0.5018)
(NO) YES -0.2070 *** (0.0691) 0.1204 * (0.0691) 0.2990 * (0.1683)

Collateral Other collateral 0.0535 (0.0867) -0.0915 (0.0833) -0.4795 ** (0.2021)
(NO) Real estate -0.0162 (0.1172) -0.2436 *** (0.0852) 0.5530 (0.4082)

Unknown -2.7862 *** (0.4937) 0.1950 (0.2586)

Number of collateral -0.0520 * (0.0266) 0.0061 (0.0087) 0.3212 *** (0.0651)

Cured (NO) YES -0.4532 *** (0.0791) -0.1891 ** (0.0775) -0.3333 ** (0.1305)

Industry Agric., forestry, fishing 0.8419 ** (0.3644) -0.6409 *** (0.2193) 0.1436 (0.2407)
(Finance, insurance, RE) Mining -0.7570 * (0.4007) 0.4475 (0.5364) -0.1882 (0.3999)

Construction -0.0945 (0.1178) -0.4977 *** (0.1264) 0.0346 (0.2147)
Manufacturing 0.0974 (0.1071) -0.5229 *** (0.1201) 0.2449 (0.1956)
Transp., commu., sanitary services -0.2918 * (0.1495) 0.0497 (0.1585) 0.0060 (0.2297)
Wholesale and retail trade 0.0671 (0.1155) -0.3799 *** (0.1064) 0.0275 (0.1892)
Services -0.1159 (0.1136) -0.1379 (0.1167) -0.1046 (0.1814)
Unknown 0.2604 ** (0.1076) -0.7117 *** (0.2100) -0.4007 (0.7251)

Equity index 1.5816 ** (0.7059) -2.3853 *** (0.6126) 0.0621 (0.6974)
Industry production -4.4882 ** (2.0843) -1.4552 (2.9498) 6.0515 ** (2.8523)
Volatility index -0.0026 (0.0217) -0.0755 *** (0.0130) -0.0293 ** (0.0149)
Term spread 0.1655 (0.2029) 0.0987 (0.1603) 0.4440 ** (0.2006)
World Bank score -0.0050 (0.0056) 0.0208 *** (0.0041) 0.0102 (0.0104)

Notes: The table summarizes regression results of country specific impacts of covariates on the tendency of resolution.
The model specification fulfill Equation (2.5), i.e., loan specific characteristics, macroeconomic information and
frailties. In addition, the interaction between covariates and recession is taken into account. This table shows
parameter estimates interaction of covariates and recessions. The parameter estimates for periods out of recessions
are shown in Table 2.B.1. Significance is indicated at 10% (*), 5% (**) and 1% (***). Recessions are defined by the
monthly recession dummy of the Organisation for Economic Co-operation and Development (OECD).
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Joint country regression

Figure 2.B.3: Frailty for joint country regressionall
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Notes: The figure illustrates the course of estimated frailty over time across countries. The solid black lines displays
the frailty, whereas, the dotted black line shows the 90%-confidence interval. The confidence interval is computed by
bootstrapping with resampling and replacement for 2,000 steps. We check the assumption of normal distribution by
a Kolmogorov–Smirnov test. As required, the null hypotheses of normal distribution is not rejected with a p-value of
0.3751.
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Table 2.B.3: Regression results for Model I, II and III across countries

Model I Model II Model III

Coef. SE Coef. SE Coef. SE

log(EAD) -0.0285 *** (0.0046) -0.0237 *** (0.0046) -0.0269 *** (0.0047)

Asset Class (SME) Large Corporates 0.0431 * (0.0246) 0.0785 *** (0.0248) 0.1072 *** (0.0253)

Facility Short term -0.0717 *** (0.0212) -0.0680 *** (0.0212) -0.0707 *** (0.0213)
(Medium term) Other -0.0725 *** (0.0252) -0.0995 *** (0.0252) -0.0946 *** (0.0255)

Seniority Super senior 0.4317 *** (0.0241) 0.4481 *** (0.0244) 0.4909 *** (0.0257)
(Pari-passu) Non senior 0.5000 *** (0.1283) 0.5468 *** (0.1284) 0.5978 *** (0.1289)

Unknown 0.3938 *** (0.0593) 0.3830 *** (0.0589) 0.4224 *** (0.0590)

Nature of default Unlikely to pay -0.1950 *** (0.0298) -0.2365 *** (0.0298) -0.2517 *** (0.0298)
(90 days past due) Bankruptcy -0.0349 (0.0374) -0.0200 (0.0374) 0.0230 (0.0381)

Charge-off / provision -0.0499 (0.0381) -0.0596 (0.0381) -0.0206 (0.0385)
Sold at material credit loss 1.6320 *** (0.0931) 1.6745 *** (0.0934) 1.8792 *** (0.0984)
Distressed restructuring 0.1389 * (0.0787) 0.0016 (0.0790) -0.0444 (0.0808)
Non accrual -0.0827 *** (0.0249) -0.0768 *** (0.0249) -0.0646 *** (0.0250)
Unknown -0.4547 *** (0.0496) -0.4786 *** (0.0496) -0.3559 *** (0.0519)

Guarantee Unknown 0.9537 *** (0.2158) 1.0700 *** (0.2159) 0.9109 *** (0.2167)
(NO) YES 0.0291 (0.0194) 0.0257 (0.0193) 0.0260 (0.0195)

Collateral Other collateral 0.0904 *** (0.0214) 0.1288 *** (0.0216) 0.1322 *** (0.0219)
(NO) Real estate 0.1217 *** (0.0275) 0.1228 *** (0.0275) 0.1134 *** (0.0277)

Unknown 1.0801 *** (0.0628) 1.1938 *** (0.0629) 1.1915 *** (0.0628)

Number of collateral 0.0033 * (0.0020) 0.0031 (0.0020) 0.0039 * (0.0022)

Cured (NO) YES 0.7335 *** (0.0210) 0.7788 *** (0.0211) 0.7862 *** (0.0213)

Industry Agric., forestry, fishing -0.1529 *** (0.0549) -0.1964 *** (0.0549) -0.1766 *** (0.0552)
(Finance, insurance, RE) Mining 0.1914 ** (0.0960) 0.1253 (0.0961) 0.0965 (0.0965)

Construction -0.4465 *** (0.0367) -0.4320 *** (0.0366) -0.4020 *** (0.0370)
Manufacturing -0.0814 ** (0.0324) -0.1068 *** (0.0324) -0.0980 *** (0.0326)
Transp., commu., sanitary services 0.0928 ** (0.0426) 0.0678 (0.0426) 0.0721 * (0.0427)
Wholesale and retail trade -0.0380 (0.0309) -0.0726 ** (0.0309) -0.0736 ** (0.0311)
Services 0.0231 (0.0313) -0.0255 (0.0313) -0.0280 (0.0315)
Unknown 0.4950 *** (0.0393) 0.4675 *** (0.0394) 0.4788 *** (0.0398)

Equity index 0.0139 (0.0779) -0.4188 *** (0.1358)
Industry production 0.9906 *** (0.2576) -1.1185 *** (0.4291)
Volatility index -0.0024 (0.0016) -0.0098 ** (0.0046)
Term spread 0.0481 *** (0.0138) 0.1189 *** (0.0181)
World Bank score 0.0894 *** (0.0048) 0.1547 *** (0.0122)

Great Britain 0.8523 *** (0.0348) 1.2751 *** (0.0407) 1.5186 *** (0.0622)
United States 0.6538 *** (0.0366) 1.7938 *** (0.0687) 2.5488 *** (0.1464)

Frailty volatility 0.2601 *** (0.0197)

LL -128,336 -128,096 -127,894
AIC 256,734 256,264 255,895
McFadden’s adjusted R2 0.0177 0.0195 0.0203
Cox & Snell’s R2 0.0310 0.0341 0.0359

Resolved Loans 14,472 14,472 14,472
Loans 17,420 17,420 17,420

Notes: The table summarizes regression results across countries of impacts of covariates on the tendency of resolution.
The model specifications fulfill Equations (2.2) (Model I), (2.3) (Model II) resp. (2.5) (Model III), i.e., loan specific
characteristics, macroeconomic information and/or frailties. Significance is indicated at 10% (*), 5% (**) and 1%
(***). Using the likelihood ratio test for the frailty where the null model is given by Model II. The standard error of
the frailty is computed by bootstrapping with resampling and replacement for 2,000 steps.
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Regression results for additional macroeconomic variables

Table 2.B.4: Regression results for Model II with different macroeconomic variables
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Notes: The table summarizes regression results of impacts of macroeconomic covariates on the tendency of resolution.
The model specifications fulfill Equation (2.3), i.e., loan specific characteristics and macroeconomic variables.
Significance is indicated at 10% (*), 5% (**) and 1% (***). The house price indices are taken from S&P Case Shiller
(US), Nationwide (Great Britain), Teranet-National Bank (Canada). The ratio non-performing loans (to gross loans of
banks), the unemployment rate and the volatility index are included as levels. All other macroeconomic variables
are given by log returns.
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Banks are obliged to provide downturn estimates for loss given defaults (LGDs) in the internal ratings-

based approach. While downturn conditions are characterized by systematically higher LGDs, it is

unclear which factors may best capture these conditions. As LGDs depend on recovery payments which

are collected during varying economic conditions in the resolution process, it is challenging to identify

suitable economic variables. Using a Bayesian Finite Mixture Model, we adapt random effects to measure

economic conditions and to generate downturn estimates. We find that systematic effects vary among

regions, i.e., the US and Europe, and strongly deviate from the economic cycle. Our approach offers

straightforward supportive tools for decision makers. Risk managers are enabled to select their individual

margin of conservatism based on their portfolios, while regulators might set a lower bound to guarantee

conservatism. In comparison to other approaches, our proposal appears to be conservative enough during
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Chapter 3. Systematic effects among LGDs and their implications on downturn estimation

3.1 Introduction

Banks are obliged to provide conservative estimates for the probability of default (PD) and

the loss given default (LGD) in the advanced internal ratings-based (IRB) approach of the

Basel regulations (see Basel Committee on Banking Supervision, 2006). While through-the-

cycle, i.e., average, PDs are translated into (conservative) conditional PDs by a supervisory

mapping function, LGDs are required to reflect conditions of economic downturn. Economic

variables might, thus, be a natural choice to identify downturns and to generate consistent

downturn estimates. Recently, the European Banking Authority (EBA) published new technical

standards (see European Banking Authority, 2017) which emphasize the use of economic or

credit risk factors. However, the identification of economic variables seems to be ambiguous

in the literature.1 This might be due to the nature of workout LGDs. Recovery payments are

collected during the whole resolution process which usually takes multiple years ahead of the

default event. Thus, economic or credit risk factors at a specific point in time (e.g., the default

time) may not be able to represent the systematic patterns inherent in LGDs.

Although the identification of suitable economic variables seems to be ambiguous, financial

institutions are confronted with the need to generate consistent downturn estimates for loss rates

and, thus, identify and measure downturns. Following the literature, this may be a challenging

task. Economic variables are either not significant or deliver limited explanatory power. To

resolve this, we suggest to use time-specific random effects to measure the systematic movement

inherent in LGDs over time. Consistent downturn estimates can be generated by considering

a conservative quantile of the random effect. This entails a comprehensive supportive tool

for decision makers. On the one side, risk managers are enabled to determine the margin

of conservatism by selecting an according quantile based on the characteristics of their loan

portfolio. On the other side, regulators might set a lower bound to this quantile to guarantee

overall conservatism and, thus, the stability of the financial system during crises. Furthermore,

our approach bypasses identification issues that may occur to decision makers in terms of

selecting variables for LGD modeling among a set of observable variables.

This paper contributes to the literature in multiple ways. First, we use access to the unique

loss database of Global Credit Data (GCD)2 to reveal the systematic nature inherent in LGDs.

1 See Section 3.2 for a comprehensive literature review.
2 GCD is a non profit initiative which aims to support banks to measure their credit risk by collecting and analyzing

historical loss data. See http://www.globalcreditdata.org/ for further information. Currently, 52 member
banks from all around the world share their loss information.
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Thereby, we find considerable differences among regions, i.e., the US and Europe. Second,

we show that random effects strongly deviate from the economic cycle measured by common

economic variables. We compare the estimated random effects to macro variables common

in the LGD literature. Thereby, not only descriptive differences come to light. The impact

of macro variables seems not to be evident or limited regarding its magnitude. Third, we

suggest a methodology to generate consistent downturn estimates and compare it to a variety of

alternatives.

The remainder of this paper is structured as follows. Section 3.2 provides a literature overview,

while general background information to the topic of downturn LGD modeling is presented in

Section 3.3. Methods used in this paper are explained in Section 3.4. The data description and

the empirical results are presented in Section 3.5. Results with respect to downturn LGDs are

discussed in Section 3.6 and compared to other approaches in this field. Section 3.7 concludes.

3.2 Literature review

The literature regarding loss rates can be divided into two streams. The first one focuses on

separate methods, whereby, the LGD is the only dependent variable. The second one applies

joint modeling approaches for the PD and the LGD to consider the dependence structure

between the two central credit risk parameters.

Table 3.D.1 in Appendix 3.D summarizes the first stream of literature, i.e., separate methods,

focusing systematic effects. Typically, macro variables are included to display synchronism

in time line. However, some authors completely renounce macro variables in their analysis

(see, e.g., Bastos, 2010; Bijak and Thomas, 2015; Calabrese, 2014; Gürtler and Hibbeln, 2013;

Matuszyk et al., 2010; Somers and Whittaker, 2007). Others examine univariate significance

which (partly) disappears in a multivariate context (see, e.g., Acharya et al., 2007; Brumma

et al., 2014; Caselli et al., 2008; Dermine and Neto de Carvalho, 2006; Grunert and Weber,

2009). Acharya et al. (2007) find statistical significance for industry distress dummies but not

for continuous variables. They trace this to non linear impacts of macro variables. Krüger and

Rösch (2017) adapt quantile regression and report statistical significance of macro variables for

the inner quantiles. Again, this can be interpreted as an indication for non linear impacts. In

some papers, statistical significance or evidence is not reported (see, e.g., Altman and Kalotay,

2014; Tobback et al., 2014; Yao et al., 2015). Other authors state statistical significance for
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a variety of macro variables. However, they apply data sets of bonds (see Jankowitsch et al.,

2014; Nazemi et al., 2017; Qi and Zhao, 2011), credit cards (see Bellotti and Crook, 2012; Yao

et al., 2017), or mortgages (see Leow et al., 2014; Qi and Yang, 2009). Bonds are typically

characterized by market-based LGDs. This simplifies the identification of significant macro

variables as the time a bond spends in default is standardized to 30 days, thus, the final LGD

is certain shortly after default and there is no additional uncertainty regarding timing of cash

flows. Credit cards and mortgages are among bulk businesses of banks. Resolution processes

might be more standardized and related to less uncertainty compared to corporate loans. This

also may simplify the identification of significant macro variables.

The second stream of literature models PDs and LGDs jointly and introduces time-specific

systematic random effects. PD and LGD models are linked by joint random variables to

measure correlation structures among the risk parameters. Bruche and Gonzalez-Aguado (2010)

implements a binary variable indicating the state of the cycle. Chava et al. (2011) use a frailty

in a hazard-type PD model, however, show that it has no significant impact on the recovery

rate. Bade et al. (2011), Rösch and Scheule (2010), and Rösch and Scheule (2014) implement

correlated random effects in both models. Thereby, Rösch and Scheule (2014) present a closed

form expression for generating downturn LGD estimations which are based on an adverse

realization of the random effect using a simple and parsimonious Merton-type model. Keijsersy

et al. (2017) adopts random effects that are modeled by a VAR process to link default, loss, and

the economic environment. The closest studies to ours are Keijsersy et al. (2017) and Rösch and

Scheule (2014). In comparison to Keijsersy et al. (2017), we compare two model specifications

for the random effect in order to analyze if cyclical behavior among LGDs is present at all. Due

to their model specification, such a distinction is not possible. Furthermore, our analysis enables

us to identify regional differences in systematic effects among LGDs. In addition, we provide a

downturn LGD method and compare it to others. Their approach is focused on a comprehensive

risk framework that models all credit risk components at once. Thus, their insights seem to be

more relevant for internal modeling under Pillar II of the Basel regulations, while our approach

is strongly driven towards Pillar I which combines credit risk components by a standardized

formula. Rösch and Scheule (2014) use a random effect to capture systematic movements

that impact PDs and LGDs. As stated by the EBA, downturn LGDs may additionally include

systematic effects that are independent of those for PDs. Furthermore, their study is based

on market-based LGDs. As explained above, their nature strongly differs from workout LGDs

which is why inferences with respect to the systematic impact are not comparable. Moreover,

they do not present results regarding the progress of systematic effects over time which inhibits
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inferences regarding similarities to the economic cycle.

Summarizing, the identification of systematic effects among LGDs seems to be not trivial in a

LGD modeling context and results regarding macro variables are ambiguous in the literature.

This applies in a special manner to corporate loan data sets which are characterized by workout

LGDs and non standardized and, thus, complex resolutions.

3.3 Background

In general, it is a challenging task to model LGDs. This is mainly due to the complex form

of the LGD distribution which can exhibit skewness and multi-modality. Market-based LGDs

are typically bounded on the interval [0,1] and have less extreme modes, while workout LGDs

can exhibit realizations outside this interval and are characterized by high probability masses

at zero and one. LGDs smaller zero might occur if recovery payments exceed the original

outstanding amount. This is the case if additional fees are demanded. LGDs greater than

one are conceivable if banks are confronted with additional costs, e.g., if courts are involved

in the resolution process. Hence, different approaches for modeling the LGD distribution

exist. Usually explanatory variables are included as characteristics such as protection, industry

affiliation, etc., which may impact LGDs. It is crucial to combine these explanatory variables

with a distributional assumption that provides great flexibility. Such an approach is presented

in Altman and Kalotay (2014) upon which we build up our model. Altman and Kalotay (2014)

estimate a finite mixture model with four components based on market-based LGDs. Hence, they

transform LGDs via the quantile function of the normal distribution and estimate the model

based on the transformed values.

We adapt this approach to consider characteristics of workout LGDs, e.g., high probability

masses at zero and one and values outside the unit interval. We estimate a mixture of five

normally distributed components based on the untransformed scale, and hereby, fix the two

outer components to identify loans with no (LGD = 0) and total (LGD = 1) loss. The parameters

of the remaining components are estimated within the modeling framework. Component

probabilities are derived with an ordered regression model. By this means, explanatory variables

are included. Besides the adaption for workout LGDs, we extend the model presented in Altman

and Kalotay (2014) by a random effect. This is an essential extension with respect to the analysis

of systematic effects among LGDs. During poor (good) economic conditions, LGDs tend to
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be higher (lower) on average. Random effects can capture these time trends which cannot be

covered by loan characteristics and macro variables alone.

Systematic effects are crucial in the light of downturn LGD estimation. Following Basel Com-

mittee on Banking Supervision (2006) and Basel Committee on Banking Supervision (2005),

financial institutions have to provide estimates, that ”[...] reflect economic downturn conditions

where necessary to capture the relevant risks [...]”. First, this ensures conservativeness and, thus,

prevents LGD predictions being systematically too low. Second, it seems to be driven by the

need for counter-cyclical safety buffers. These buffers are accumulated in favorable economic

conditions and absorb unexpected economic losses during downturns. Hence, downturn LGDs

should provide safety buffers that are (too) conservative during good and normal conditions,

but are sufficient once critical conditions emerge. A consistent approach to derive downturn

estimates does not exist so far. Different suggestions are even presented in more recent publica-

tions (see, e.g. Tobback et al., 2014; Calabrese, 2014; Bijak and Thomas, 2015). We will compare

these approaches to our suggestion in Section 3.6.

3.4 Methods

We use a hierarchical model combining a Finite Mixture Model (FMM) with a probabilistic

substructure (see Altman and Kalotay, 2014). In FMMs, the dependent variable is assumed to be

divided into a finite number of latent classes. In these, the dependent variable follows a specific

distribution, e.g., Normal distribution with parameters depending on the latent class. We refer

to the FMM as the component model. The probability of belonging to a latent class is modeled

by an Ordered Logit (OL) model. We refer to the probabilistic substructure in form of the OL

model as the probability model.

Component model | FMM

We apply FMM to model the distribution of LGDs due to their flexibility in modeling distribu-

tions of unknown shape (see, e.g., McLachlan and Peel, 2000). As stated earlier (see Section 3.1

and Section 3.3) workout LGDs are not compulsory limited to the interval [0,1]. Thus, common

distribution applied to rates, such as the Beta distribution, are not applicable. Loan LGDs

are often characterized by bindings at no (LGD = 0) and total loss (LGD = 1). Again, this is

hardly applicable by, e.g., a Beta distribution. In the component model, the LGD as dependent

variable Y is assumed to be divided into a finite number of K latent classes. In each class k, the
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probability density function (PDF) for observation y given k is fk(y | θk), e.g., Normal density

functions, with parameters θk depending on the latent class k. These constituent PDFs are

weighted by p1, . . . ,pK to generate the PDF of a finite mixture distribution g(y | θ1, . . . ,θK ):

g(y |θ1, . . . ,θK ) =
K∑
k=1

pk fk(y |θk) , (3.1)

where, f1(y |θ1), . . . , fK (y |θk) are the PDFs with parameters θ1, . . . ,θK of the constituent classes

k ∈ {1, . . . ,K}. To ensure the general properties of a PDF, i.e., g(y) ≥ 0 for all y ∈ R and
∫∞
−∞ g(y) = 1,

pk ≥ 0 and
∑
k pk = 1 must hold.

In the following, we assume Gaussian FMMs. The Normal distribution is an appropriate choice

due to its computational transparency (see, e.g., McLachlan and Peel, 2000). The constituent

PDFs fk(y | θk) correspond to Normal density functions and the dependent variable Y given a

latent class k follows a Normal distribution with parameters µk and σk . Assuming conditional

independence, the likelihood of a Gaussian FMM φ(Y1, ...,YN |µ,σ ,p) is the product of the

individual likelihood contributions, which arise from the above densities:

φ(Y1, ...,YN |µ,σ ,p) =
1

(2π)
N
2

N∏
i=1

 K∑
k=1

pk
σk

exp

− (Yi −µk)2

2σ2
k


 , (3.2)

where, µ is a (1×K) vector of component means, σ is a (1×K) vector of component standard

deviations, and p is a (1×K) vector of component weights. N is the number of observations.

As the model is estimated via Bayesian inference, posterior distributions are generated via a

Markov Chain Monte Carlo (MCMC) sampler. It generates samples from the posterior distribu-

tion by constructing reversible Markov-chains. The equilibrium distribution corresponds to

the target posterior distribution. The solution via an MCMC sampler is necessary due to the

complexity of the model, i.e., the priors are partly non conjugate. Thus, direct sampling from

posterior distributions is not possible as they do not have an analytical solution.

To adapt data augmentation in the MCMC sampler, the component weight pk is replaced with

an indicator variable eik in the likelihood specification of Equation (3.2):

φ(Y1, ...,YN |µ,σ ,e) =
1

(2π)
N
2

N∏
i=1

 K∑
k=1

eik
σk

exp

− (Yi −µk)2

2σ2
k


 . (3.3)

If loan i is a random draw of component k, eik = 1 and zero otherwise. In each step of the MCMC

sampler, loan i ∈ N is assigned to one specific component k and, thus, follows one specific
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probability density distribution f (y | µk ,σk). However, changes of component affiliation remain

possible within a chain.

Probability model | OL model

For the probabilistic substructure of the component model we use an OL approach. Hereby,

observable covariates are included. To rely on the classical formulation of OL models, we define

the component affiliation zi for each loan i:

zi = k if eik = 1 , (3.4)

where, eik is the indicator as of Equation (3.3). The latent component variable zi describes the

affiliation to individual components k for every loan i in the data. Thus, the variable Zi follows

a categorical distribution with component probabilities pk :

Zi ∼ Cat(pi) , (3.5)

where, pi is a (1 × K) vector of component probabilities. The categorical distribution is a

generalization of the Bernoulli distribution for more than two outcomes (k > 2) and a special

case of the multinomial distribution for one trial. It is a prominent distribution for categorical

data in Bayesian inference (see, e.g., Plummer, 2017).

Following Altman and Kalotay (2014), an underlying variable Z∗i is defined which represents

the true but unobservable dependent variable. This latent variable approach is formulated to

include independent variables into the FMM as of Equation (3.1) and (3.3). The latent variable

Z∗ follows a linear model:

Z∗i = xiβ +Ft(i) + εi , εi ∼ logistic, (3.6)

whereby, xi is a (1× J) vector of J standardized independent variables and β the (J × 1) vector

of coefficients. The expression εi describes the error term. A random effect Ft(i) with time

stamp t(i) is introduced in the modeling framework to capture systematic effects among LGDs.

The time stamp t(i) indicates the default time t in quarters which depends on the loan i as every

loan defaulted in a specific quarter, e.g. 2007 Q4. Two loans i and i′ which defaulted in the

same quarter (t(i) = t(i′) = t) are characterized by the same realization of the random effect

(ft(i) = ft(i′) = ft). A positive value of Ft in a specific quarter t leads to a higher value of the latent

dependent variable Z∗i for all loans defaulted in this quarter and vice versa.
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We consider two alternative specifications for the random effect. In specification I, the random

effect is modeled as an i.i.d. normally distributed random variable and implemented in terms of

a random intercept:

Ft ∼N (α,σF) , (3.7)

where, α is its mean and σF its standard deviation. In other words, the mean α is the intercept

in the linear model as of Equation (3.6). The standard deviation σF can be interpreted as the

impact of the systematic effect. A higher value of σF allows for more extreme realizations of the

random effect and, thus, for more extreme time dependent shifts in Z∗i . Specification I, i.e., the

normal distribution, is the most common way to implement random effects (see, e.g., Rösch and

Scheule, 2014).

In specification II, the random effect follows an autoregressive process of order 1, i.e., an AR(1)

process, to allow for cyclical movements in the realizations of the random effect:

Ft = a+ϕFt−1 + εt (3.8)

µFu =
a

1−ϕ

σFu =
σFc√

1−ϕ2
,

where, a is the constant and ϕ the parameter of the AR(1) process. The unconditional mean

and standard deviation are denoted by µFu and σFu . The conditional standard deviation σFc

corresponds to the standard deviation of the errors εt. The stationary condition of an AR(1)

process is |ϕ| < 1. Duffie et al. (2009) apply an Ornstein-Uhlenbeck process to a frailty in a

default model. This might be interpreted as time continuous AR(1) process.3

The component affiliations Zi are determined by the location of the latent variable Z∗i as of

Equation (3.6) to corresponding cut points ck :

Zi =



1 if Z∗i ≤ c1

2 if c1 < Z
∗
i ≤ c2

...

K if cK−1 < Z
∗
i .

(3.9)

Thus, loan i is assigned to component 1 (Zi = 1) if Z∗i is smaller or equal than c1. If Z∗i lies in

3 Frailties are random effects in survival models.
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between c1 and c2, loan i is assigned to component 2 (Zi = 2) and so on. Finally, component K

(Zi = K) is assigned if Z∗i is greater than cK−1. Generally, there are K − 1 cut points to estimate

within the OL model. Consider loan i and i′ which defaulted in the same quarter (t(i) = t(i′) = t)

and, thus, share the same realization of the random effect (ft(i) = ft(i′) = ft). For rather high (low)

values of Ft the component allocation is shifted towards higher (lower) components for all loans

defaulted in the corresponding quarter t.

The corresponding component probabilities as of Equation (3.5) can be derived by the cumula-

tive distribution function of the Logistic distribution:

P
(
Zi = 1 | xi , ft(i)

)
= P

(
Z∗i ≤ c1 | xi , ft(i)

)
=

1

1 + exp
[
−
(
c1 −Z∗i

)]
P
(
Zi = 2 | xi , ft(i)

)
= P

(
Z∗i ≤ c2 | xi , ft(i)

)
−P

(
Z∗i ≤ c1 | xi , ft(i)

)
=

1

1 + exp
[
−
(
c2 −Z∗i

)] − 1

1 + exp
[
−
(
c1 −Z∗i

)]
...

P
(
Zi = K | xi , ft(i)

)
= P

(
Z∗i > cK−1 | xi , ft(i)

)
= 1− 1

1 + exp
[
−
(
cK−1 −Z∗i

)] .

(3.10)

To guarantee the non negativity of component probabilies pik (pik ≥ 0 for k ∈ {1, . . . ,K}), c1 ≤

c2 ≤ · · · ≤ cK−1 must hold. In analogy to the component allocation in Equation (3.9), the random

effect as of Equation (3.6), (3.7), and (3.8) introduces systematic movement into the component

probabilities. Again, consider loan i and i′ which defaulted in the same quarter (t(i) = t(i′) = t)

and, thus, share the same realization of the random effect (ft(i) = ft(i′) = ft). For high values of Ft

(Ft > α in specification I and Ft > µFu in specification II), the probability of the first component

decreases as Z∗i increases. Simultaneously, the probability of the K-th component increases. The

probabilities of the remaining components might be affected to a minor extent. Summarizing,

a high realization of the random effect leads to a systematically lower probability for the first

component and higher probability for the last component while a low realization of the random

effect implies the opposite effect. Loans defaulted in the same quarter are, thus, characterized

by systematically lower probabilities of the first and systematically higher probabilities of

the last component or systematically higher probabilities of the first and systematically lower

probabilities of the last component.
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The above OL model suffers from over specification, i.e., the parameters of the model are not

identified. Thus, an infinite number of solutions exists. Three solution mechanisms are common

to solve this problem: (i) fixation of the variance parameter of Z∗i and fixation of one cut point,

(ii) dropping of intercept and fixation of the variance parameter of Z∗i , and (iii) fixation of

two cut points (see Jackman, 2009). All three solution mechanisms aim to fix the range of the

latent variable Z∗i and can be transfered into each other by choosing according values. We select

(iii) and fix the two outer cut points c1 and cK−1 as the variability of the latent variable itself

allows the use of conjugate priors for the random effect in specification I. However, results are

reproducible by alternative identification restrictions.

From a pure methodical perspective, the contribution of our paper lies in the adaption of

the mixture model from Altman and Kalotay (2014) to workout LGDs, i.e., to loan data, and

the inclusion of two different specifications for the random effect. The model of Altman

and Kalotay (2014) is suitable for market-based LGDs, i.e., bond data, where, LGD values are

limited to the interval [0,1]. Workout LGDs, however, are not compulsory restricted to this

interval. Furthermore, workout LGDs are characterized by bindings at no (LGD = 0) end total

(LGD = 1) loss. Common transformations are not applicable for these values. We consider

the characteristics of workout LGDs and directly estimate the LGD distribution by a FMM. By

this means, biased estimates are prevented which might occur if workout LGDs are reduced

to the interval (0,1) before transformation. Furthermore, it is essential to consider the high

probability masses at zero and one as these account for major parts of the data (see left panels

of Figure 3.1 in Section 3.5.1). Therefore, we fix the parameters of the two outer components to

identify loans with no and total loss. The flexibility of the FMM is retained for the remaining

data range. These modifications lead to flexible LGD distributions which can capture specific

characteristics of workout LGDs. The major methodical contributions refers to the inclusion

of different specifications for the random effect in a complex LGD model. Thus, we are able

to analyze if LGDs are shaped by systematic patterns. Furthermore, the nature of systematic

patterns can be determined, i.e., if systematic effects arise independently in the time line or

if they are driven by cyclicality. The most common approach in the literature is to include

normally distributed random effects (see, e.g, Rösch and Scheule, 2010, 2014). Under this

setting, systematic effects are random over time. Thus, current systematic trends are irrelevant

for expectations in the future. By extending the random effect to an autoregressive process,

cyclicality can be considered. The inference of the AR(1) parameter ϕ provides additional

benefits in terms of the economic interpretation. If this parameter is statistically different from

zero, cyclicality is present among LGDs. Thus, LGDs are persistent, i.e., high LGDs today
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indicate high LGDs tomorrow. In the light of the need for downturn LGD estimates, the nature

of systematic patterns is of special relevance. Downturn estimations are based on individual

downturn periods. Finding persistence over time implies the need for higher capital buffers not

only in crises but also in subsequent time periods.

As the models are estimated via Bayesian inference, prior distributions have to be specified

for every parameter of the model.4 Detailed information can be found in Appendix 3.A.

Bayesian inference bears several advantages compared to maximum likelihood estimation

techniques. First, the implementation of complex models seems to be more stable. In many

cases, the expectation maximization (EM) algorithm has to be applied to solve complex models

in a maximum likelihood setting. However, the EM algorithm delivers only a point estimate,

whereas, the posterior distribution of the parameter is generated via Bayesian inference. By

this means, parameter uncertainty can be considered intuitively. This is the second benefit of

Bayesian inference. Third, statistical inference becomes more intuitive as the interpretation of

credibility intervals is straight forward.

Downturn estimation

As random effects capture systematic patterns, i.e., comovement in the time line, they are suited

to generate downturn estimates. The random effects of specification I as of Equation (3.7) and

specification II as of Equation (3.8) are introduced into the modeling framework with time

stamp t(i). This time stamp indicates the default time t which depends on the loan i. Thus, all

loans defaulted in the same quarter (t(i) = t(i′) = t) share the same realization of the random

effect ft. For ft > α (ft < α), the latent variable Z∗ is higher (lower) for all loans defaulted

in t. Thus, probabilities for higher components are increased (decreased) and probabilities

for lower components are decreased (increased) resulting in higher (lower) average LGDs in t

(see Section 3.4). This mimics the time patterns observed in average LGDs (see Figure 3.C.2).

Random effects are a common method to introduce comovement in the time line (see, e.g.,

Rösch and Scheule, 2014; Duffie et al., 2009) Hence, these unobservable variables might be

an appropriate control factor for downturn estimates. Downturn LGDs are based on negative

systematic conditions, i.e., on assuming a high realization ft (>> α in specification I, >> µfu in

specification II). Thus, we do not sample the random effect in the MCMC chains as in posterior

4 The MCMC samples are drawn via the Gibbs sampler JAGS. JAGS is ”Just Another Gibbs Sampler” and a widely
applied program for Bayesian inference using MCMC chains (see Plummer, 2017). It uses a dialect of the
BUGS (”Bayesian inference Using Gibbs Sampling”) language to generate a model file. The model file is compiled in
C++. Figure 3.C.1 in Appendix 3.C illustrates an exemplary model file.
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predictive distributions, but set it to a conservative quantile for all iterations instead.5 By doing

so, we generate LGD distributions reflecting unfavorable systematic conditions.

We compare this downturn concept to others presented in the literature. Hereby, we first

replace the random effect by macroeconomic variables and use a conservative quantile of these

variables to generate downturn estimates.6 Second, we adapt the concept presented by Bijak

and Thomas (2015) who also apply Bayesian inference. They suggest to use a conservative

quantile of the posterior predictive distribution. Third, the concept of Calabrese (2014) is

considered. She proposes an upper, i.e., rather conservative, component based on a frequentistic

mixture model to reproduce a downturn distribution. Forth, Board of Governors of the Federal

Reserve System (2006) proposed a linear mapping function to generate downturn estimates

(LGDdownturn) based on through-the-cycle estimates (LGDTTC). We will refer to the mapping

function as FED proposal:

LGDdownturn = 0.08 + 0.92 ·LGDTTC . (3.11)

To adapt the approach of Bijak and Thomas (2015) we use a conservative quantile of the

individual posterior predictive distributions of each loan.7 To incorporate the suggestion of

Calabrese (2014) in the adapted modeling framework, we employ component 4 as downturn

distribution. As Calabrese (2014) excludes real zeros and ones and estimates a mixture of Beta

distributions on the remaining data, we neglect component 5. This might most likely reproduce

her approach.8 To adopt the FED proposal, we generate posterior predictive distributions based

on median realizations of random effects on which we apply Equation (3.11).

3.5 Data and results

3.5.1 Data

We use access to the unique loss data base of Global Credit Data (GCD) to build the subsample

adopted in the paper. The data base includes detailed loss information on transaction basis of

5 In Section 3.6, we apply the 90% quantile and 95% quantile as conservative quantile.
6 In Section 3.6, we apply the 99% quantile of the macro variable.
7 We select a conservative quantile of 99%, however, alternative conservative quantiles can be applied.
8 As an alternative, a weighted mixture of several components can be adopted, e.g., component 3 and 4.
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52 member banks all around the world. The LGD is determined by:

LGDi = 1−RRi , (3.12)

where, LGDi denotes the LGD of loan i and RRi the corresponding recovery rate (RR). The

RR is calculated as the sum over the present values of relevant transactions divided by the

outstanding amount.9

To check for the appropriateness of data, an expanded version of the procedure as in Höcht

and Zagst (2010) and Höcht et al. (2011) is applied. Two selection criteria are evolved to

identify defaulted loans with an extraordinary payment structure pre- and post-resolution. The

first criterion (pre-resolution criterion) is calculated as the sum of all relevant transactions

including charges-offs divided by the outstanding amount at default. In the second crite-

rion (post-resolution criterion), the sum of post-resolution payments is divided by a fictional

outstanding amount at resolution. The barriers are set to [90%,110%] for the pre-resolution

and [−10%,110%] for the post-resolution criterion. Loans with realizations of these selection

criteria (pre- and post-resolution criterion) outside the intervals are sorted out. Höcht and

Zagst (2010) and Höcht et al. (2011) use barriers of [90%,105%] for the pre-resolution criterion.

The structure of post-resolution payments is not considered. We decided to widen the barrier

interval of the pre-resolution criterion to allow for pre-resolution payments being 10% greater

than the outstanding amount at default. Regarding the post-resolution criterion, post-resolution

payments might exceed a fictional outstanding amount after resolution by 10%. Transactions

subtracted from the outstanding amount are allowed up to a relative height of −10%. Finally,

loans with abnormal low and high LGDs (< −50% and > 150%) are eliminated.10 A rather

homogeneous subsample of defaulted US American and European term loans and lines to small

and medium sized enterprises (SMEs) is selected. Some further adjustment mechanisms are

applied. We remove loans with an EAD less than 500 USD (5.8% of subsample data) and non

resolved loans (13.0% of subsample data). The latter might entail resolution bias as resolved

loans in current time periods are often characterized by systematically lower LGDs compared

to unresolved loans. Thus, we restrict the time period from 2006 to 2012. We further exclude

loans with incomplete observations (7.1% of subsample data). A data set of 2,987 US American

and 16,924 European loans including 3,958 British loans remains.

9 A more detailed description of the LGD calculation can be found in Betz et al. (2016) and is available from the
authors upon request.

10 Overall, 2.0% of the data is sorted out due to the pre-resolution criterion. The remaining data is reduced by 0.2%
based on the post-resolution criterion. Less than 0.1% is eliminated due to abnormal LGD values.
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Analyses are performed separately for the three regions – US, GB, and Europe – as fundamental

differences might arise regarding the regulatory and economic setting in the US and Europe.

The European sample consists of the twelve most common European countries in the data set.11

Table 3.D.2 in Appendix 3.D summarizes the structure of the European sample. The second

column includes the proportion of the corresponding country in the European sample. It might

be expected that countries such as Portugal, Ireland, Latvia, and Estonia, were severely affected

by the GFC compared to Norway and Poland. However, Norway and Poland account for just

5.82% of the European sample. Among the European countries, a special status is attributed to

GB since it shares similarities with the US, e.g., the origin of legal systems. Hence, we focus the

analysis on US, GB, and Europe.

The left panels of Figure 3.1 illustrate the distribution of LGDs for the US American, British

and European data set. Histograms are presented by gray bars, the black lines show kernel

density estimates. In all three regions, LGDs are characterized by a rather extraordinary

distributional form. The distribution is extremely bimodal with its modi at values of 0% and

100%. The density mass in between these extremes is rather low. Unlike market-based LGDs, the

range of workout LGDs is not compulsory restricted to [0%,100%] as workout resolutions can

recover more than the EAD (LGD < 0%) due to additional charges or cause costs despite failed

workout resolution efforts (LGD > 100%) on the basis of additional expenses. Furthermore,

the distribution is shaped by ties. Depending on the data set, we observe between 23% and

40% of LGDs that are exactly zero and between 6% and 11% that are exactly one. These

characteristics complicate modeling approaches as values outside the range ]0%,100%[ hinder

common transformations and ties are challenging to estimate by one-stage models. An adequate

modeling framework which considers common characteristics of LGDs is crucial for estimation

and prediction intentions. The right panels of Figure 3.1 display the average LGDs in time

line. The black lines represent averages for all LGD observations, whereas, LGDs are limited to

the interval (0,1), i.e., zeros and ones are excluded, for the gray lines. Considerable deviations

between the US and Europe arise. While average LGDs exhibit the maximum during the GFC

and slowly decrease to pre-crisis levels afterwards in Europe, average loss rates remain on high

levels in the US post-crisis and even further increase in 2011 and 2012. This is even more

pronounced considering averages of the limited LGDs (LGD ∈ (0,1)). Furthermore, the limited

averages are shifted upwards in the US. This is due to a higher proportion of loans with no loss

11 The European sample consists of Germany, Great Britain, Portugal, Ireland, Denmark, Norway, Sweden, Finland,
Latvia, Estonia, France, and Poland. We tested an alternative European sample including Great Britain, Portugal,
Ireland, Denmark, Norway, and Sweden. Results are similar and may be available upon request.
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Figure 3.1: Histogram and time patterns of LGDs
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Notes: The left panels of the figure illustrate the distribution of LGDs in the data divided by region. The histograms
are represented by gray bars, the black lines show the kernel density estimates. Furthermore, the proportions of
values which are exactly zero and one are stated above the modi of the distribution. The right panels of the figure
illustrate the time patterns of average LGDs divided by region. The black dotted lines display the average LGD in the
quarters of default, whereas, the black solid line show the rolling average. The corresponding values for LGDs ∈ (0,1)
are displayed in gray.
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(LGD = 0).12 The right panels of Figure 3.1 seem to be a first indication that systematic patterns

regarding LGDs differ between the US and Europe, whereas, the systematic patterns of GB seem

to be similar to continental Europe.

Table 3.D.3 in Appendix 3.D summarizes descriptive statistics of the dependent and indepen-

dent variables divided by region. Mean, median, and standard deviation are presented for

metric quantities. For variables of categoric nature, proportions of categories are stated. The

extraordinary distributional form of LGDs is reflected in its descriptive statistics. While the

means amount to round about 20% to 30% depending on the region, medians are close to 0%. In

addition, the standard deviation is relatively large compared to the maximal range [−50%,150%].

The exposure at default (EAD) is stated in USD and restricted to values > 0. Thus, its distri-

bution is skewed to the right (median < mean). In the affiliating analysis, we implement the

standardized logarithm of the EAD. Facility types are nearly balanced in the data sets, i.e., half

of all loans are lines. A majority of loans (70% to 84%, depending on region) is protected by

either collateral or guarantee or both. In total, 9% to 15% of loans are granted to corporations of

FIRE (finance, insurance, and real estate) affiliation – the rest to other industry sectors.

To capture the systematic effect among LGDs over time, we use a stochastic latent variable.13

However, in the literature, it is often controlled for observable macro variables when analyzing

systematic effects. This is why we include five macro variables for comparison.14 We consider

the year-on-year (yoy) percentage change of the seasonally adjusted Gross Domestic Product

(∆GDP) to examine the influence of the real economy on LGDs. For Europe, we use the weighted

average of country specific GDPs. The quarterly average of yoy log returns of major stock

indices (∆EI) and the level of the volatility index (VIX) are applied to investigate impacts of

the financial economy. For the US, we use the S&P 500 and the CBOE Volatility Index. The

FTSE and the VSTOXX Volatility Index are applied for GB. Weighted average equity returns and

VSTOXX Volatility Index are adopted for Europe. Further common determinants in credit risk

are the yoy percentage change of house prices indices (∆HPI) and the ratio of non-performing

loans (NPL ratio). As proxy for house prices, we use real residential property prices. For Europe,

the weighted average is adopted. The ratio of non-performing loans is non-performing total

loans to total loans for the US and bank non-performing loans to gross loans for GB and Europe

12 We would like to thank an anonymous referee for the remark on presenting the time patterns for LGDs ∈ (0,1).
13 To capture systematic effects, Chava et al. (2011) use a frailty in a hazard-type PD model. Rösch and Scheule

(2014) implement correlated random effects in a combined PD and LGD model.
14 At least one of these macro variables is also considered in Acharya et al. (2007), Altman and Kalotay (2014),

Brumma et al. (2014), Caselli et al. (2008), Dermine and Neto de Carvalho (2006), Grunert and Weber (2009),
Jankowitsch et al. (2014), Krüger and Rösch (2017), Qi and Yang (2009), Qi and Zhao (2011), and Tobback et al.
(2014).
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(weighted average). The first data type is on quarterly basis, however, not available for European

countries. The second one is on yearly basis.15

3.5.2 Results

In this section, we state the results of the model presented in Section 3.4. Subsequently, we

focus on systematic effects among LGDs in the US American, British, and European data set by

analyzing the implied realizations of the random effects within the modeling approach.

Component model

In the component model, i.e., the Gaussian FMM, component 1 and 5 are fixed to zero (µ1 = 0)

and one (µ5 = 1), respectively, in order to capture the number of LGDs which are exactly zero and

one (see Section 3.3). Thus, standard deviations of these components are set to reasonably small

values (σ1 = σ5 = 0.001). Three further components are estimated within the modeling approach.

Posterior means and common Bayesian figures – i.e., highest posterior density intervals (HPDIs),

posterior odds ratios16, naive and time-series standard errors – for the parameters of the

component model are shown in Table 3.1. In specification I, the random effect is normally

distributed as in Equation (3.7), whereas, it follows an AR(1) process as in Equation (3.8) in

specification II. However, the specification of the random effect does not impact the parameter

estimates of the component model. We, thus, present only one specification for the US, GB, and

Europe.17

In the US, components 2 and 4 are centered close to zero and one, respectively. According to their

comparably small standard deviations, they cover LGD values around the fixed components

1 and 5. Component 3 exhibits a mean of round about 0.44 and a comparably high standard

deviation (σ3 ≈ 0.25). Thus, it contains LGD values in between the extremes zero and one.

Comparing the results of GB with the US, components are slightly shifted. Components 2

and 4 are not as close to the extremes. Component 3 is with a mean of round about 0.24

shifted towards the lower end of the value range. However, it exhibits still the highest standard

deviation (σ3 ≈ 0.18) and, thus, covers large parts of the area in between the extremes. In Europe,

results are more similar to GB than to the US as components 2 and 4 are not as close to the

15 The variables ∆GDP, ∆HPI, and NPL ratio originate from Federal Reserve Economic Data (FRED, see https:

//fred.stlouisfed.org/), whereas, the variable ∆EI and VIX steams from Thomson Reuter’s EIKON.
16 See results of the probability model for a detailed explanation on how to interpret the posterior odds.
17 Due to statistical evidence of the AR(1) parameter, we apply specification I for the US and specification II for GB

and Europe (see results of the probability model for detailed information). Remaining results are available from
the authors upon request.
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Table 3.1: Results of component model

posterior
HPDI (90%)

posterior naive time-series
mean odds standard error standard error

US | specification I

µ1 0.0000 not estimated
µ2 0.0027 0.0010 0.0045 174.4386 0.0000 0.0000
µ3 0.4388 0.4199 0.4589 ∞ 0.0001 0.0001
µ4 0.9657 0.9589 0.9725 ∞ 0.0000 0.0000
µ5 1.0000 not estimated

σ1 0.0010 not estimated
σ2 0.0245 0.0229 0.0261 ∞ 0.0000 0.0000
σ3 0.2542 0.2405 0.2682 ∞ 0.0001 0.0001
σ4 0.0306 0.0244 0.0365 ∞ 0.0000 0.0000
σ5 0.0010 not estimated

GB | specification II

µ1 0.0000 not estimated
µ2 0.0153 0.0144 0.0162 ∞ 0.0000 0.0000
µ3 0.2427 0.2164 0.2655 ∞ 0.0001 0.0002
µ4 0.9039 0.8867 0.9202 ∞ 0.0001 0.0001
µ5 1.0000 not estimated

σ1 0.0010 not estimated
σ2 0.0147 0.0138 0.0157 ∞ 0.0000 0.0000
σ3 0.2016 0.1839 0.2186 ∞ 0.0001 0.0001
σ4 0.1205 0.1066 0.1345 ∞ 0.0001 0.0001
σ5 0.0010 not estimated

Europe | specification II

µ1 0.0000 not estimated
µ2 0.0154 0.0149 0.0159 ∞ 0.0000 0.0000
µ3 0.1158 0.1073 0.1244 ∞ 0.0001 0.0001
µ4 0.7132 0.6974 0.7292 ∞ 0.0001 0.0002
µ5 1.0000 not estimated

σ1 0.0010 not estimated
σ2 0.0128 0.0124 0.0133 ∞ 0.0000 0.0000
σ3 0.0875 0.0817 0.0931 ∞ 0.0000 0.0001
σ4 0.2515 0.2403 0.2621 ∞ 0.0001 0.0001
σ5 0.0010 not estimated

Notes: The table summarizes the results of the component model. The first column presents the posterior means of
the component means µk and standard deviations σk . The second and third column contain the lower and upper
bound of the HPDI to a credibility level of 90%. In the last two columns, the naive and time-series standard error
of the chains are presented, whereas, the time-series standard error is calculated based on the effective (N ∗MCMC)
instead of the real (NMCMC) sample size. Hereby, N ∗MCMC < NMCMC holds for autocorrelated chains.

extremes as in the US. However, component 4 exhibits the highest standard deviation (σ4 ≈ 0.25)

and, thus, covers the highest proportion of the value range.

Probability model

Loan specific component probabilities are derived based on a probability model, i.e., the

underlying OL model as of Equation (3.6). The results of the probability model are shown in

Table 3.2 for specification I of the random effect and Table 3.3 for specification II of the random

effect. Parameter estimates of the independent variables, i.e., βEAD, βFacility, βProtection, and

βIndustry, should be interpreted in Bayesian terms. In Bayesian inference, posterior distributions

of βj are assumed to be continuous. Thus, specific values in the posterior distributions exhibit
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Table 3.2: Results of probability model (specification I)

posterior
HPDI (90%)

posterior naive time-series
mean odds standard error standard error

US

βEAD -0.0215 -0.0804 0.0408 2.5186 0.0004 0.0005
βFacility -0.0832 -0.1983 0.0404 6.6864 0.0007 0.0011
βProtection -0.4442 -0.6009 -0.2790 ∞ 0.0010 0.0019
βIndustry 0.2592 0.1002 0.4216 237.0952 0.0010 0.0013

α 2.1402 1.9252 2.3466 ∞ 0.0013 0.0023
σF 0.3522 0.2400 0.4604 ∞ 0.0007 0.0007

c1 1.5000 not estimated
c2 2.4103 2.3529 2.4658 ∞ 0.0003 0.0003
c3 3.9466 3.8677 4.0274 ∞ 0.0005 0.0005
c4 4.5000 not estimated

GB

βEAD -0.3792 -0.4378 -0.3190 ∞ 0.0004 0.0004
βFacility 0.2138 0.1112 0.3237 2499.0000 0.0006 0.0009
βProtection -0.4271 -0.5451 -0.3216 ∞ 0.0007 0.0011
βIndustry -0.1882 -0.3591 -0.0188 26.4725 0.0010 0.0013

α 2.7511 2.5321 2.9818 ∞ 0.0014 0.0017
σF 0.6040 0.4579 0.7499 ∞ 0.0009 0.0009

c1 1.5000 not estimated
c2 2.7395 2.6818 2.7929 ∞ 0.0003 0.0003
c3 3.6138 3.5480 3.6771 ∞ 0.0004 0.0005
c4 4.5000 not estimated

Europe

βEAD -0.0295 -0.0527 -0.0025 38.0625 0.0002 0.0002
βFacility 0.2686 0.2188 0.3211 ∞ 0.0003 0.0006
βProtection -0.4176 -0.4715 -0.3655 ∞ 0.0003 0.0007
βIndustry -0.1811 -0.2462 -0.1180 ∞ 0.0004 0.0007

α 2.1206 1.9521 2.2807 ∞ 0.0010 0.0011
σF 0.4929 0.3738 0.6038 ∞ 0.0007 0.0007

c1 1.5000 not estimated
c2 2.6594 2.6289 2.6885 ∞ 0.0002 0.0003
c3 3.2201 3.1839 3.2555 ∞ 0.0002 0.0004
c4 4.5000 not estimated

Notes: The table summarizes the results of the probability model with a latent variable specification as of specification
I (Equation (3.6) and (3.7)). The first column presents the posterior means of the coefficients (βj ), the parameters
of the random effect, and the cut points (ck). The second and third column contain the lower and upper bound of
the HPDI to a credibility level of 90%. In the fourth column, posterior odds are displayed. In the last two columns,
the naive and time-series standard error of the chains are presented, whereas, the time-series standard error is
calculated based on the effective (N ∗MCMC) instead of the real (NMCMC) sample size. Hereby, N ∗MCMC < NMCMC
holds for autocorrelated chains.
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Table 3.3: Results of probability model (specification II)

posterior
HPDI (90%)

posterior naive time-series
mean odds standard error standard error

US

βEAD -0.0217 -0.0858 0.0353 2.6245 0.0004 0.0005
βFacility -0.0850 -0.2057 0.0367 6.8555 0.0007 0.0013
βProtection -0.4451 -0.6097 -0.2792 ∞ 0.0010 0.0022
βIndustry 0.2656 0.1030 0.4209 269.2703 0.0010 0.0013

a 2.7054 1.6139 3.8989 ∞ 0.0070 0.0289
ϕ -0.2672 -0.7882 0.2520 0.2694 0.0032 0.0131
σFc 0.3221 0.1934 0.4471 ∞ 0.0008 0.0016

c1 1.5000 not estimated
c2 2.4099 2.3503 2.4639 ∞ 0.0003 0.0003
c3 3.9469 3.8657 4.0275 ∞ 0.0005 0.0005
c4 4.5000 not estimated

GB

βEAD -0.3825 -0.4439 -0.3232 ∞ 0.0004 0.0004
βFacility 0.2093 0.1078 0.3176 2499.0000 0.0006 0.0009
βProtection -0.4314 -0.5464 -0.3236 ∞ 0.0007 0.0011
βIndustry -0.1930 -0.3579 -0.0223 32.1126 0.0010 0.0013

a 0.6779 0.0944 1.2111 999.0000 0.0036 0.0072
ϕ 0.7504 0.5576 0.9534 ∞ 0.0013 0.0025
σFc 0.4023 0.2865 0.5188 ∞ 0.0007 0.0008

c1 1.5000 not estimated
c2 2.7397 2.6838 2.7959 ∞ 0.0003 0.0003
c3 3.6150 3.5517 3.6807 ∞ 0.0004 0.0005
c4 4.5000 not estimated

Europe

βEAD -0.0291 -0.0553 -0.0045 31.7869 0.0002 0.0002
βFacility 0.2685 0.2196 0.3217 ∞ 0.0003 0.0006
βProtection -0.4184 -0.4685 -0.3634 ∞ 0.0003 0.0007
βIndustry -0.1840 -0.2525 -0.1210 ∞ 0.0004 0.0006

a 0.2874 0.0094 0.5458 237.0952 0.0018 0.0044
ϕ 0.8565 0.7359 0.9862 ∞ 0.0009 0.0020
σFc 0.2678 0.1982 0.3338 ∞ 0.0004 0.0005

c1 1.5000 not estimated
c2 2.6597 2.6315 2.6907 ∞ 0.0002 0.0003
c3 3.2201 3.1841 3.2560 ∞ 0.0002 0.0004
c4 4.5000 not estimated

Notes: The table summarizes the results of the probability model with a latent variable specification as of specification
II (Equation (3.6) and (3.8)). The first column presents the posterior means of the coefficients (βj ), the parameters
of the random effect, and the cut points (ck). The second and third column contain the lower and upper bound of
the HPDI to a credibility level of 90%. In the fourth column, posterior odds are displayed. In the last two columns,
the naive and time-series standard error of the chains are presented, whereas, the time-series standard error is
calculated based on the effective (N ∗MCMC) instead of the real (NMCMC) sample size. Hereby, N ∗MCMC < NMCMC
holds for autocorrelated chains.
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a probability of zero. In frequentistic terms, one true value is assumed. A null hypothesis for

βj is set up accordingly to reach a yes-no-decision. In Bayesian terms, posterior distributions

of parameters βj are adopted to examine if the results are in favor of a positive or negative

impact or if there is no clear one-sided influence. Two concepts might be applied. First, credible

intervals, e.g., HPDIs, are intervals in the domain of the posterior distribution. If zero is not

included in the credible interval, the domain of the posterior is located in the positive or negative

value range – indicating positive or negative impact. Second, Bayes factors might be applied to

evaluate statistical evidence and are defined as the relation between posterior and prior odds.

Posterior odds are the ratio of the posterior probability mass favoring the sign of the posterior

mean to the posterior probability mass of the opposite sign

posterior odds E[βj ]<0 =
P(βj < 0 | data)

P(βj ≥ 0 | data)

posterior odds E[βj ]>0 =
P(βj > 0 | data)

P(βj ≤ 0 | data)
,

whereas, prior odds are the corresponding ratio of the prior distribution.18 Thus, the Bayes

factor complies with the posterior odds if the prior odds equal to one. This is true for symmetric

prior distributions around zero. We set such a prior for the parameters vector β.19 Hence, the

corresponding posterior odds are interpretable in terms of Bayes factors. Following Kass and

Raftery (1995), a Bayes factor exceeding 3.2 is deemed as substantial evidence. Values above 10

are assigned with strong evidence, whereas, values above 100 are related to decisive evidence.

The upper panels of Table 3.2 (specification I) and 3.3 (specification II) summarize the re-

sults of the probability model for the US. The specification of the random effect seems to

have no impact on the remaining parameter estimates which seems to be important for the

overall model consistency, i.e., changing the assumptions regarding the unobservable vari-

able does not alter any conclusion regarding observable predictor variables. Considering

the posterior odds, only βEAD exhibits no clear evidence for the sign of the posterior mean

(posterior oddsE[βEAD<0] ≈ {2.5,2.6} < 3.2). Thus, it can not be stated with conviction whether

loans with higher EADs lead to lower or higher LGDs. The remaining variables are of cate-

goric nature. The reference categories are term loan for facility, non protected for protection,

and non FIRE for industry. The posterior odds indicate substantial evidence for a negative

impact of βFacility (posterior oddsE[βFacility<0] ≈ {6.7,6.9} > 3.2), i.e., lines exhibit lower values for

18 Prior odds equal the ratio of prior probabilities for two states of the world. For instance, the states are βj < 0 and
βj ≥ 0.

19 The prior of the parameter vector β is a Multivariate Normal distribution with mean vector zero.
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Z∗i and, thus, lower losses, compared to term loans. The evidence for a negative impact of

βProtection and a positive impact of βIndustry is decisive (posterior oddsE[βProtection<0] → ∞ > 100

and posterior oddsE[βIndustry>0] ≈ {237.1,269.3} > 100). Protection is, thus, associated with lower

values for Z∗i and lower losses, whereas, the FIRE industry affiliation seems to be shaped by

higher losses. Generally, higher values of Z∗i imply lower probabilities for lower components and

higher probabilities for higher components. Higher values of Z∗i can, thus, be directly associated

with higher losses.

The middle panels of Table 3.2 (specification I) and 3.3 (specification II) contain the results of

the probability model for GB. Again, the specification of the random effect seems to have no

influence on the remaining parameter estimates. Regarding the posterior odds, the evidence

for a negative impact of EAD, a positive impact of facility, and a negative impact of protection

is decisive (posterior oddsE[βEAD<0] → ∞ > 100, posterior oddsE[βFacility>0] ≈ 2499.0 > 100 and

posterior oddsE[βProtection<0] →∞ > 100). Higher EADs are associated with lower losses. Lines

generate higher losses compared to term loan and protection leads to lower losses. The evidence

of a negative sign for industry is strong (posterior oddsE[βIndustry<0] ≈ {26.5,32.1} > 10). Thus,

FIRE affiliation entails lower losses compared to other industries. Comparing these results

with the US, two deviations in signs of parameters arise. First, lines are associated with

lower losses compared to term loans in the US, however, higher losses arise for lines in GB.

This might be caused by different business practices, e.g., lines might be closer monitored

in the US and, thus, information asymmetries might be reduced to a higher extent. Second,

loans granted to corporations of FIRE affiliation are characterized by higher losses in the US,

whereas, lower losses occur in GB. Reasons may be found in deviating industry standards.

While the financial system in GB is strongly shaped by banks, the US American system is

more market-orientated – i.e., corporations might rather fund debt by traded instruments

than loans. Thus, corporations depending on bank financing might worse in the first place.

The lower panels of Table 3.2 (specification I) and 3.3 (specification II) displays the results

of the probability model for Europe. The evidence for a negative impact of EAD is strong

(posterior oddsE[βEAD<0] ≈ {38.1,31.8} > 10), whereas, the evidence for a positive impact of facility

(posterior oddsE[βFacility>0] →∞ > 100), for the impact of protection (posterior oddsE[βProtection<0]

→ ∞ > 100) and industry (posterior oddsE[βIndustry<0] → ∞ > 100) is decisive. The signs and

magnitudes of the posterior means correspond to GB.

Besides the summary of the posterior estimates for βEAD, βFacility, βProtection, and βIndustry, Ta-

ble 3.2 and 3.3 present the results regarding the parameters of the random effect for specifica-
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tion I (α and σF in Table 3.2) and specification II (a, ϕ, and σFc in Table 3.3). It is essential to

state that the specification of the random effect (specification I in Table 3.2 and specification II

in Table 3.3) has no impact in the posterior distributions of the βj parameters and the cut points

ck. Thus, the specifications are consistent. However, it is substantial for the understanding of

the systematic nature among LGDs. An i.i.d. random effect as of specification I implies uncondi-

tional behavior of the LGDs in the time line, i.e., LGDs of loans defaulted in previous quarters

have no impact on LGDs in the current quarter. Assuming a time dependent AR(1) process as

of specification II entails conditional behavior, i.e., if average LGDs of loans defaulted in the

current quarter are high, average LGDs tend to be high in the subsequent quarter. To evaluate

the specifications, we consider the evidence of the AR(1) parameter ϕ and select specification

I if ϕ is not evident (0 ∈ HPDI and posterior odds ¡ 3.2) and specification II otherwise.20 In

the US, the AR(1) parameter is not statistically evident as the HPDI includes the zero and the

posterior odds amount to round about 0.3. This does not indicate conditional behavior of the

random effect and, thus, no cyclical nature of its realizations. Contrary, ϕ is decisively evident

in GB and Europe. Thus, we consider specification I for the US and specification II for GB

and Europe. This indicates that the systematic impact on LGDs in GB and Europe is rather of

cyclical nature.21

Systematic effects among LGDs

In the following, the results regarding the random effect Ft are further analyzed. We introduced

Ft to capture systematic effects impacting LGDs of all loans defaulted in the same quarter. In

specification I, the random effect is normally distributed with mean α an standard deviation σF .

Thus, the latent variable Z∗i is shifted with a constant level of α. Variations in the random effect

and, thus, its impact, are captured by the standard deviation σF . In specification II, the random

effect follows an AR(1) process with intercept a and AR(1) parameter ϕ. The latent variable

Z∗i is shifted with the unconditional mean of the AR(1) process µFu = a/ (1 −ϕ). Its impact is

expressed by the unconditional standard deviation σFu = σFc /
√

1−ϕ2.

In both specifications, realizations ft vary through time. For realizations ft > α (specification I)

or ft > µFu (specification II), z∗i is shifted upwards for all loans i defaulted in the same time

(t(i) = t). Thus, probabilities of low components decrease and probabilities of high components

increase. This implies higher average LGDs at time t. If realizations ft lie below its mean α

(specification I) or µFu (specification II), probabilities of low (high) components are increased

20 Please note, that the posterior odds of ϕ are interpretable in terms of a Bayes factor as we set a symmetric prior
around zero (normal distribution with mean zero and symmetric truncation [−1,1]).

21 Convergence diagnostics of the selected model specifications can be found in Appendix 3.B.
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(decreased) resulting in lower average LGDs at time t. Hence, we expect low realization of Ft in

favorable systematic conditions and high realization during adverse systematic conditions.

Figure 3.2 illustrates the course of the random effect over time in the US. Specification I is

plotted in gray, specification II in black. Posterior means are displayed by thick lines, HPDIs at

credibility levels of 90% by dotted lines, α (specification I, thin gray line) and µFu (specification

II, thin black line) are nearly identical. The specification of the random effect rarely influences

Figure 3.2: Random effect in time line (US)
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Notes: The figure illustrates the course of the random effect over time. The thick gray line represents the posterior
means for specification I, whereas, the HPDI to a credibility of 90% is expressed by dotted gray lines. The thick black
line shows the posterior means for specification II. The corresponding HPDI is displayed by dotted black lines. The
thin horizontal lines represent the mean of the random effect (α for specification I and µFu for specification II).

its individual realizations. Realizations ft seem to independently proceed around the means

α (specification I) and µFu (specification II). This supports the evidence of an i.i.d. random effect.

Despite its rather random process, the systematic effect is characterized by low realizations

pre crisis indicating lower average LGDs. An upward shift during the GFC is less pronounced.

After a slight drop in 2010 Q2, the random effect remains on a rather high level indicating high

average LGDs in the recent time periods. Thus, the random effect does not seem to display the

time patterns of common macro variables. However, it simulates the time series of average LGDs

in the data. The upper panels of Figure 3.C.2 in Appendix 3.C contrasts average LGDs (black

lines) with the random effect (gray lines). In the left panel, average LGDs and the realizations
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ft for specification I per quarter are displayed.22 The rolling averages of both time series are

plotted in the right panel.

Figure 3.3 illustrates the course of the random effect over time in GB. The presentation corre-

sponds to Figure 3.2. The GFC is clearly identifiable in the random effect of GB. The highest

Figure 3.3: Random effect in time line (GB)
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Notes: The figure illustrates the course of the random effect over time. The thick gray line represents the posterior
means for specification I, whereas, the HPDI to a credibility of 90% is expressed by dotted gray lines. The thick black
line shows the posterior means for specification II. The corresponding HPDI is displayed by dotted black lines. The
thin horizontal lines represent the mean of the random effect (α for specification I and µFu for specification II).

realization ft is in 2008 Q2 during the summit of the crisis. Afterwards, the realizations of

the random effect constantly decline until the minimum is reached in recent time periods. In

analogy to the US, the random effect reproduces the time patterns of average LGDs. The middle

panels of Figure 3.C.2 in Appendix 3.C contrast the two time series. However, the British

random effect seems to exhibit a rather cyclical behavior compared to the US. This is already

indicated by the evidence of ϕ in Table 3.3. Figure 3.4 illustrates the course of the random

effect over time in Europe. The presentation corresponds to Figure 3.2. The European random

effect shows strong similarity to GB. The GFC is clearly observable, however, the crisis seems

prolonged compared to GB as ft is still near its maximum in 2009 Q1. Following the GFC, the

random effect slowly declines. Again, the random effect simulates the time series behavior of

22 Specification II is skipped for presentational purposes. However, the realizations ft are similar.
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Figure 3.4: Random effect in time line (Europe)
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Notes: The figure illustrates the course of the random effect over time. The thick gray line represents the posterior
means for specification I, whereas, the HPDI to a credibility of 90% is expressed by dotted gray lines. The thick black
line shows the posterior means for specification II. The corresponding HPDI is displayed by dotted black lines. The
thin horizontal lines represent the mean of the random effect (α for specification I and µFu for specification II).

average LGDs in the data. The lower panels of Figure 3.C.2 in Appendix 3.C contrasts average

LGDs and ft.

Systematic effects vs. macro variables

The time patterns of the random effects (see Figure 3.2 for the US, Figure 3.3 for GB, and

Figure 3.4 for Europe) might be a first indication that macro variables might not be suitable

to capture the intrinsic systematic effects among LGDs. To examine this in more detail, we

consider macro variables.

In this context, Figure 3.C.3, 3.C.4, and 3.C.5 in Appendix 3.C contrast the course of the con-

sidered macro variables – ∆GDP, ∆EI, VIX, ∆HPI, and NPL ratio – to the course of the random

effects. The y-axis is reversed for ∆GDP, ∆EI, and ∆HPI to ensure an intuitive interpretation. If

macro variables imply the same information as the random effects, their time patterns should

be congruent with the random effect. However, this does not seem to be the case in the US (see

Figure 3.C.3). While stronger deteriorations are indicated by the macro variables in the GFC

(upward movement), macro variables return to pre-crisis levels at the end of 2009. Contrary,
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the random effect further increases after the GFC. Just the course of the NPL ratio seems to

capture parts of this movement as a rather slow recovery post crisis is indicated by this variable.

In GB and Europe, the time series patterns of macros are more similar to the random effects

(see Figure 3.C.4 and 3.C.5). However, the random effect lies above macros variables post crisis.

While sharp rebound pushes the economic indicators back to their pre crisis levels, the easing

is slower in terms of the random effects and, thus, average LGDs. In addition, the NPL ratio

seems incapable of capturing this behavior as it remains on its crisis levels until the end of

2012, whereas, slow recovery is indicated by the random effects. Table 3.D.4 in Appendix 3.D

summarizes the pairwise correlations of the displayed time series. Perfect multicollinearity

would be indicated by a correlation coefficient of 100%. However, the correlation is negative

for most of the macro variables (∆GDP, ∆EI, VIX, and ∆HPI) in the US. Just the course of the

NPL ratio exhibits a certain collinearity to the random effect. In GB and Europe, more macro

variables exhibit positive correlations to the random effect (∆GDP and ∆EI in GB and ∆GDP,

∆EI, VIX, and ∆HPI in Europe).

In the light of the above, macro variables might not be suited to capture the true systematic

effects among LGDs. However, we estimate the models with macro variables instead of random

effects to analyze their impact.23 Variable selection is not trivial considering highly correlated

time series such as macro variables as multicollinearity might arise. This endangers model

stability. Small changes in model specifications or on data side might provoke huge alterations

in parameter estimates. Furthermore, parameter estimates tend to be less precise and standard

errors large. We, thus, decide to include just one of the considered macro variables at a time.

Table 3.4 summarizes the results of the models with macro variables. The presentation of the

remaining parameters (βEAD, βFacility, βProtection, and βIndustry) is skipped as no changes in the

signs and magnitudes arise.24 We assume favorable economic conditions to be associated with

lower LGDs, thus, negative impacts of ∆GDP, ∆EI, and ∆HPI and positive signs for VIX and

NPL ratio. Comparing the signs of the posterior means to the expected signs of the macro

variables, discrepancies arise. In the US, only the posterior mean of the NPL ratio exhibits the

expected sign. In GB and Europe, all considered macro variables except the NPL ratio show

intuitive signs. However, there is no statistical evidence for the impact of VIX and ∆HPI in GB

(posterior oddsE[βVIX>0] ≈ 1.4 < 3.2 and posterior oddsE[βHPI<0] ≈ 2.0 < 3.2).25 Counterintuitive

23 Please note that these models, i.e., the macro models, are very similar to the model presented in Altman and
Kalotay (2014). However, the authors transform LGDs. As we explicitly aim to allow for LGD ≤ 0 and LGD ≥ 1,
we do not transform the observations.

24 The results are available from the authors upon request.
25 Please note, that the posterior odds of βGDP, βEI, βVIX, βHPI, and βNPL ratio are interpretable in terms of a Bayes

factor as we set symmetric priors around zero, i.e., normal distributed priors with means zero.
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Table 3.4: Results of macro models

posterior
HPDI (90%)

posterior naive time-series
mean odds standard error standard error

US

βGDP – 0.0266 -0.0291 0.0821 3.4703 0.0003 0.0003
βEI – 0.0062 -0.0529 0.0617 1.3175 0.0003 0.0003
βVIX + -0.0319 -0.0880 0.0255 4.5866 0.0003 0.0004
βHPI – 0.0483 -0.0065 0.1069 11.8041 0.0003 0.0003
βNPL ratio + 0.0661 0.0078 0.1218 33.6021 0.0003 0.0004

GB

βGDP – -0.0908 -0.1381 -0.0429 768.2308 0.0003 0.0003
βEI – -0.1012 -0.1501 -0.0548 2499.0000 0.0003 0.0003
βVIX + 0.0063 -0.0397 0.0550 1.4213 0.0003 0.0003
βHPI – -0.0134 -0.0603 0.0348 2.0331 0.0003 0.0003
βNPL ratio + -0.3264 0.0078 0.1218 ∞ 0.0003 0.0003

Europe

βGDP – -0.1781 -0.2020 -0.1556 ∞ 0.0001 0.0001
βEI – -0.1845 -0.2083 -0.1621 ∞ 0.0001 0.0001
βVIX + 0.1694 0.1459 0.1918 ∞ 0.0001 0.0001
βHPI – -0.2314 -0.2535 -0.2073 ∞ 0.0001 0.0001
βNPL ratio + -0.0853 -0.1088 -0.0619 ∞ 0.0001 0.0001

Notes: The table summarizes the results of the macro models. The presentation is reduced to the results regarding
the macro variables itself. Every macro variable was separately included in a model without random effect. The
first column includes the expected signs of the posterior means as bad macro economic environment should entail
higher LGDs. The second column presents the posterior means of the coefficients of the macro variables (βGDP, βEI,
βVIX, βHPI, βNPL ratio). The third and fourth column contain the lower and upper bound of the HPDI to a credibility
level of 90%. The fifth column includes posterior odds, while, in the last two columns, the naive and time-series
standard error of the chains are presented, whereas, the time-series standard error is calculated based on the effective
(N ∗MCMC) instead of the real (NMCMC) sample size. Hereby, N ∗MCMC < NMCMC holds for autocorrelated chains.

signs and the lack of statistical impact cast doubt on the use of macro variables for LGD

modeling. These results do not claim to universal validity. However, the identification problem

of macro variables is emphasized.

To check the robustness of these findings, we reestimate the models considering macro variables

and random effects. Among the macro variables with intuitive signs, we select those offering the

highest statistical evidence.26 Thus, the NPL ratio is selected for the US as it is the only macro

variable with an intuitive sign, ∆EI for GB due to its high posterior odds ratio, and ∆HPI for

Europe as its HPDI is furthest from zero. Table 3.D.5 in Appendix 3.D summarizes the results of

the combined models.27 Statistical evidence vanishes for all considered macro variables. First,

posterior odds ratios are smaller than 3.2. Second, the corresponding HPDIs to a credibility

level of 90% include zero. In contrast, the parameters of the random effect – α and σF for

specification I and a, ϕ, and σFc for specification II – remain nearly unchanged compared to the

original model specification without the inclusion of macro variables (see Table 3.2 and 3.3).

26 Results for the remaining macro variables are available from the authors upon request.
27 The presentation of the remaining parameters (βEAD, βFacility, βProtection, and βIndustry) is skipped. Results are

available from the authors upon request.
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Summarizing the above results, the identification of appropriate macro variables seems chal-

lenging in an LGD modeling context. Macro variables in general seem to be not entirely suitable

to capture the true systematic effects deriving LGDs. This might be due to three reasons. First,

LGD observations are treated as they arise at the default time t. However, LGD realizations are

not available until the defaulted loan is completely resolved. In our data sets, default resolution

takes typically between one and five years. During the resolution process, recovery payments

are processed. Thus, the realized LGD in t does not only depend on the economic condition in t

but on the conditions during the whole resolution process (t +∆t). As consequence, estimated

random effects with time stamp t are rather an aggregated proxy of the economic conditions

during t+∆t, where, ∆t corresponds to the resolution time. Second, financial institutions have to

deal with high stocks of non-performing loans post crises. This may enforce fast and potentially

cost-intensive resolutions as institutions want to settle open claims. Slower recovery as indicated

by economic proxies such as macro variables might be the consequence. Third, systematic

effects on LGDs might not be purely of economic nature. In the US, rather high realizations of

the random effect occur since 2010 Q2. Even through the time period from 2010 Q2 to 2013 Q2

is considered as crisis by the OECD, it is surprising that LGDs are averagely higher compared

to the GFC. Thus, it is possible that something beyond economic conditions systematically

increasing LGDs. As the implementation of Basel II into US law proceeds post crisis, regulatory

effects on LGDs could be conceivable. Besides, regulations might lead to adjustments in banking

practice which also could influence loss rates.

Posterior predictive distribution

In the following, we briefly analyze the posterior predictive distributions of LGDs as generated

by the model. We focus on its ability to capture the patterns of the empirical LGD distribution

(see, e.g., left panels of Figure 3.1 in Section 3.5.1). As we do not compare different models, we

concentrate on graphical tools.

Figure 3.C.6 in Appendix 3.C illustrate the characteristics of the posterior predictive distribution

for the US, GB, and Europe. The left panels contrast kernel density estimates of the posterior

predictive distribution (gray line) to the empirical LGD distribution (dotted line). As the band

width is fixed to 0.015 for both kernel density estimates, their height is comparable despite ties

in the empirical data. As the particular shape of LGD distributions is challenging to illustrate

via density estimates due to the extreme modi at zero and one, the right panels present the

quantile-quantile (qq) plot contrasting the quantiles of the empirical distribution (x-axis) to the

quantiles of the posterior predictive distribution (y-axis). The bisector (black line) represents
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optimality as it indicates that the quantiles of both distributions correspond. The models seem

to be characterized by a good fit regarding the distributional form of the posterior predictive

distribution in-sample in all three considered regions (see left panels of Figure 3.C.6). Thus,

the assumption of a Gaussian FMM, i.e., five normally distributed components, as component

model seems adequate. The right panels of Figure 3.C.6 support this impression as the dots

in the qq plot almost perfectly lie on the optimality line indicating that the quantiles of the

posterior predictive distribution comply with the quantiles of the empirical distribution.

3.6 Analysis of downturn LGDs

We analyze downturn LGD distributions for two time periods in each region. In all regions,

we consider the GFC. According to the OECD, the financial crisis is terminated in the period

from 2007 Q4 to 2009 Q2 in the US, whereas, it is shifted by one quarter in GB and Europe

(2008 Q1 to 2009 Q3). Considering the time patterns of average LGDs as in Figure 3.1, we

evaluate additional time periods which are characterized by high average losses. We will refer

to this periods as deterioration periods. In the US, we select the time span from 2012 Q2 to

2012 Q4.28 The year right after the GFC is applied in GB and Europe (2009 Q4 to 2010 Q3).

Downturn estimation via random effects

Figure 3.5 contrast the posterior predictive and downturn predictive distributions to the empiri-

cal LGD distribution in the GFC and deterioration period for the US. The upper panels display

the kernel density estimates of the data (dotted lines), the posterior predictive distribution

(light gray lines), and a downturn predictive distribution (black lines), whereby, the random

effect is set to its 95% quantile. The lower panels show the corresponding qq plots, whereby,

the downturn predictive distribution based on the 90% quantile of the random effect is added.

The posterior predictive distribution is reflected by light gray dots, the downturn predictive

distribution based on the 90% quantile of the random effect by dark gray dots and the posterior

predictive distribution based on the 95% quantile of the random effect by black dots. During

the GFC, the posterior predictive distribution seems to be sufficiently conservative as it fits the

empirical LGD distribution quite well. However, this time period is characterized by rather

low probability mass at total loss compared to the US American data set as a whole. Thus,

the posterior predictive distribution implying average systematic conditions already overesti-

28 Under the terms of the OECD, the time period from 2012 Q2 to 2013 Q2 is classified as recession period in the US.
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Figure 3.5: Posterior and downturn distribution for the GFC and a deterioration period (US)
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Notes: The figure contrasts the empirical LGD distribution to the posterior (light gray) and downturn (dark gray and
black) predictive distribution for the GFC (2007 Q4 to 2009 Q2, left panels) and a deterioration period (2012 Q2 to
2012 Q4, right panels). The upper panels display the kernel density estimates, the lower panels the quantile-quantile
(qq) plots. The kernel density estimates for the downturn predictive distribution for the 90% quantile of the random
effect is skipped and available form the authors upon request.

130



Chapter 3. Systematic effects among LGDs and their implications on downturn estimation

mates high LGD realizations up to a certain degree. Accordingly, quantiles of the downturn

predictive distributions lie always higher than empirical quantiles. In the deterioration period,

the posterior predictive distribution underestimates the probability mass of high and total

losses. However, the downturn predictive is capable of capturing this systematic higher fraction.

Figure 3.C.7 and 3.C.8 in Appendix 3.C illustrate the corresponding analytics for GB and Europe.

The presentation corresponds to Figure 3.5. Results are almost similar. However, the posterior

predictive distribution does not seem to be sufficiently conservative during the GFC as the

empirical LGD distribution is characterized by higher probability masses at total loss in GB and

Europe regarding this time period.29

Generally, these downturn LGD distributions may be considered too conservative. However,

the distance between the downturn predictive distribution and the optimality line is directly

impacted by the selected conservative quantile. Confidence levels smaller than 90% result

in a lower gap. Hence, downturn estimates are adjustable according to the needs of the risk

manager or regulator. The main advantage of the presented model and the implied downturn

approach via random effects is the option to generate conservative estimates in accordance with

the characteristic nature of LGDs.

Downturn estimation via macro variables

In the literature, several suggestions to generate downturn estimations exist (see Section 3.4).

The most common one refers to the inclusion of macro variables in the modeling context (see,

e.g., Altman and Kalotay, 2014; Krüger and Rösch, 2017). Hence, we derive posterior and

downturn predictive distributions based on the model including a macro variable instead of the

random effect. In each region, we select the macro variable with the highest statistical evidence.

Thus, we apply the NPL ratio for the US, ∆EI for GB, and ∆HPI for Europe.30 In analogy to the

downturn generation based on random effects, a conservative quantile of the macro variable is

selected to generate the downturn predictive distribution.31

Figure 3.6 contrasts the quantiles of the empirical distribution in the GFC and the deterioration

period to the corresponding posterior and downturn predictive distributions for the US. The

course of quantiles regarding the posterior predictive distributions based on the macro model

29 To examine robustness, we evaluate the downturn distributions on an out-of-time basis. The training set contains
the time period from 2006 Q1 to 2010 Q1. The test set consists of the time period from 2010 Q2 to 2012 Q4.
Results are presented in Figure 3.C.9 in Appendix 3.C. The downturn distributions are still conservative if fitted
on a out-of-time basis.

30 We only include just one macro variable at a time due to their high correlation (see Section 3.5.2). Results regarding
the remaining macro variables are available form the authors upon request.

31 We select a conservative quantile of 99%.
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Figure 3.6: Posterior and downturn distribution for the GFC and a deterioration period
based on the macro model containing the NPL ratio (US)
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black) predictive distribution of the macro model containing the NPL ratio instead of a random effect for the GFC
(2007 Q4 to 2009 Q2, left panel) and a deterioration period (2012 Q2 to 2012 Q4, left panel).

is rather similar compared to the random effect model (see Figure 3.5). However, the corre-

sponding downturn distribution does not sufficiently capture the quantiles of the empirical

LGD distribution in the time period from 2012 Q2 to 2012 Q4. Comparing the downturn

distributions of the macro model with the one of the random effect model in Figure 3.5, the gap

to the corresponding posterior predictive distributions seems undersized. This might be due to a

rather small posterior mean of the coefficient (βNPL ratio ≈ 0.07, see Table 3.4) and a HPDI (90%)

which nearly reaches zero (HPDI (90%) = [0.0078,0.1218], see Table 3.4). As macro variables

do not seem to be sufficient to capture the true systematic effect impacting LGDs, generating

downturn distributions via macro variables might be less effective. Figures 3.C.10 and 3.C.11

in Appendix 3.C illustrate the corresponding analytics for GB and Europe. As the posterior

means of the macro variables are of higher magnitude (βEI ≈ −0.10 for GB and βHPI ≈ −0.23

for Europe), the downturn predictive distribution differs clearer from the posterior predictive

distribution. In Europe, the resulting downturn distribution is sufficiently conservative in both

considered periods. However, the downturn distribution underestimates high-loss components

in GB during the GFC. Furthermore, even though reasonable downturn LGD estimates can

be derived by the inclusion of selected macro variables, the identification issue which macro

variable is most appropriate to use is avoided by the use of the random effect model.

Alternative downturn concepts

Lastly, we compare our downturn concept with three other approaches presented in Section 3.4.
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Figure 3.7 contrasts the downturn predictive distribution via a random effect (gray and black

dots) to the approaches of Bijak and Thomas (2015) (alternative I, gray cycles), Calabrese (2014)

(alternative II, gray crosses), and the FED proposal (gray stars) for the US. Both alternative

Figure 3.7: Downturn distribution for the GFC and a deterioration period based on alterna-
tive concepts (US)
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approaches generate far more conservative downturn distributions compared to applying

random effects as the resulting downturn distributions do not capture the whole range of LGDs

[−50%,150%]. The probability mass is highly centered around one, i.e., total loss. However,

the empirical LGD distribution is shaped by high probability masses around zero, i.e., no loss,

even in quarters with high average LGDs. This pattern seems to be neglected by the approaches

suggested by Bijak and Thomas (2015) and Calabrese (2014). In the GFC, the FED proposal

seems to fit the empirical LGD distribution quite well. However, the posterior predictive

distribution almost succeeds as well in this time period (see Figure 3.5). The FED proposal

does not produce sufficiently conservative estimates in the deterioration period. Figure 3.C.12

and 3.C.13 in Appendix 3.C confirm these findings for GB and Europe.

In general, fundamental deviations among the approaches arise. While downturn distributions

generated based on a random effect still cover the whole LGD range, the alternatives result in

rather constant conservative values (Bijak and Thomas, 2015) or in restricted and conservative

single component distributions (Calabrese, 2014). The FED proposal does not seem to be able to
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constantly generate sufficiently conservative estimates. The approach suggested in this paper is

based on a shift in component probabilities in critical systematic conditions. Fixing the random

effect to a conservative quantile decreases probabilities of low, i.e., good, components and

increases the probability of high, i.e., bad, components. Although the deteriorated systematic

surrounding is reflected in the downturn distribution, the whole range of LGDs remains covered.

This functionality is based on the empirical observations of LGDs as the bi-modality remains

during crises periods.

Dependent on the intention, the presented approach may be more or less favorable compared

to the alternative suggestions by Bijak and Thomas (2015) and Calabrese (2014). Restricting

downturn distributions to a certain value range might result in overestimation of risk and, thus,

in extreme safety buffers. While this is in line with the conservativity principle, holding too

much capital creates new risk and burdens the solvency of banks as opportunity cost increase

and operating business is hampered. The approach presented in this paper generates reasonable

safety buffers and is adoptable to the needs of risk managers and regulators. By illustrating this,

we aim to contribute to the ongoing discussion on how to define and estimate downturn LGDs.

3.7 Conclusion

The central contribution of this paper lies in the analysis of systematic effects among LGDs. By

this means, a novel approach for estimating downturn LGDs is suggested. We use a random

effect to capture the systematic comovements in LGDs and apply realizations of this latent

variable to calibrate downturn conditions. This enables us to generate downturn estimates

which are consistent with the true systematic time patterns of average LGDs. A drawback of

this approach may be the less intuitive time patterns of the latent variable in some instances as

the random effect is straightly driven by the underlying data. However, conservative downturn

estimates can be generated via random effects which is not true in all cases applying macro

variables. The main obstacle regarding macro variables is the difficulty to find statistically

evident proxies for economic conditions.

We find that systematic effects in LGDs differ among regions and to the macroeconomic cycle.

Cyclical patterns can be observed in Europe and Great Britain, while the US seems to be

characterized by time independent systematic patterns. Either way, these systematic effects

strongly deviate from the economic cycle measured by common macro variables. Reason for
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this might be found in the collection process of recovery payments. Resolution processes take

multiple years, thus, varying economic conditions impact final LGDs. This might hamper the

use of economic variables with a specific time stamp. The random effect in our model may be

interpreted as an average systematic impact on LGDs during the resolution process. We believe

that multiple time lags and leads of macro variables are indispensable to consistently stimulate

the impact of economic conditions by observable variables. This might complicate regulation

mechanisms for risk managers and regulators as further issues rise.

In this paper, we contribute to the ongoing discussion how to provide consistent downturn

estimates for LGDs. In comparison to other approaches, ours is fundamentally different. We

set a critical state for a latent variable which impacts the probability of belonging to different

segments of the LGD distribution. This leads to an increase in the fraction of high to low LGDs

during critical times, a behavior we descriptively observed in crises periods. Nevertheless, the

validation of downturn LGDs is still an open topic in the academic literature which complicates

the final evaluation of downturn approaches. Thus, it cannot be finally stated which approach

is superior. However, downturn estimation based on random effects offers straightforward

regulation mechanisms for decision makers. Risk managers are enabled to adapt the critical

state based on their portfolios, while regulators might set a lower bound to guarantee overall

conservatism.

Lastly, data quality and quantity is substantial in the context of LGD modeling in general and

regarding downturn estimation in particular. The presented results heavily depend on the

economic cycle. The adapted data set covers only one economic crisis, i.e., the GFC, and slight

expansions. Thus, analyses based on extended data set would be desirable. This may constitute

potential weaknesses as our results are strongly data driven. However, we believe that our

approach generates downturn estimates that entail capital buffers which are sufficient during

crises periods similar to or worse than the GFC. Therefore, an open discussion among regulators

and financial institutions is required in order to set reasonable critical levels for the random

effect in our or similar approaches.
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3.A Appendix | Bayesian model specification

The approach consisting of the component and probability model is estimated via Bayesian

inference.32 Thus, prior distributions have to be specified for every parameter of the model.

Component model

In the component model, the number of components is fixed to five (K = 5). As the distribution

of LGDs is extremely bimodal and characterized by a high amount of ties at zero and one, we

set the parameters of the first and fifth component to identify loans with no and total loss. The

means are fixed to µ1 = 0 and µ5 = 1, whereas, the standard deviations are set to small values,

i.e., σ1 = 0.001 and σ5 = 0.001. Due to convergence reasons, the remaining parameters (µk and

σk for k ∈ {2,3,4}) are provided with weakly informed priors:

µk ∼N ( µ = 0 , τ = 0.00001 ) [ −0.5 , 1.5 ]

σk ∼ Γ ( s = 0.001 , r = 0.001 ) [ 0.0001 , 1 ] ,
(3.13)

where, the squared brackets indicate truncation. The priors of component means are Normal

distributions with means zero (µ = 0) and low precisions (τ = 0.00001).33 The parameter τ

denotes the precision and is calculated as τ = 1
σ2 . To consider the maximal range of LGDs

[−50%,150%], the priors for component means are truncated. The priors of component standard

deviations are Gamma distributions with low values for the scale (s = 0.001) and rate (r = 0.001)

parameters. This corresponds to an uninformed specification of the Gamma distribution. To

achieve weakly informed priors, the Gamma distribution is truncated. The lower bounds of the

truncation ensure convergence as the density of the Gamma distribution tends to infinity for

values near zero. This can break Gibbs sampling as the sampler gets stuck at values of infinite

density. The upper bound, again, takes into account the maximal range of LGDs [−50%,150%].

Considering this range, a standard deviation of one is still rather high.

Probability model

In the probability model, two of the cut points are fixed to solve the over specification problem.

The values are selected such that the scale of the latent variable Z∗i is comparable to the

32 The MCMC samples are drawn via the Gibbs sampler JAGS.
33 A truncated normal distribution with low precession corresponds to a Uniform distribution. Thus, the choice of

the mean is irrelevant.
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magnitude of the latent class Zi (c1 = 1.5 and c4 = 4.5). The remaining cut points (ck for

k ∈ {2,3}) are provided with uninformed prior distributions:

ck ∼N ( µ = 3 , τ = 0.00001 ) [ c1 = 1.5 , c4 = 4.5 ] . (3.14)

Normal distributions with means in between the outer cut points (µ = 3) and low precisions

(τ = 0.00001) are provided. The truncation ensures that c1 ≤ ck ≤ c4 for k ∈ {2,3} holds.

To enable block sampling in the MCMC chains, the prior of the coefficients βj is set to an

uninformed J-dimensional Multivariate Normal distribution:

β ∼NJ
(
µ(J×1) = 0(J×1) , τ(J×J) = 1(J×J) · 0.00001

)
, (3.15)

where, µ(J×1) is a (J × 1) vector containing the prior means. These are set to zero and, thus,

µ(J×1) corresponds to the J-dimensional zero vector (0(J×1)). The term τ(J×J) refers to the (J × J)

precision matrix. This matrix contains precisions of 0.00001 on its diagonal and zero on its the

non diagonal elements and, thus, corresponds to the (J × J) identity matrix (1(J×J)) multiplied by

0.00001.

The random effect in specification I is i.i.d. and follows a Normal distribution with mean α and

standard deviation σF . As uniformed priors, the conjugate distributions are provided:

α ∼N ( µ = 0 , τ = 0.00001 )(
σF

)2
∼ Γ −1( s = 0.001 , r = 0.001 ) .

(3.16)

Thus, the prior of α is a Normal distribution with mean zero (µ = 0) and low precision (τ =

0.00001) and the prior of
(
σF

)2
is an Inverse Gamma distribution with uniformed specification

for the scale (s = 0.001) and rate (r = 0.001) parameter.

The random effect in specification II follows an AR(1) process where its realization at time t

depends on its realization at time t − 1. To generate the posterior distribution of ft=1, a prior

distribution for ft=0 has to be determined. Furthermore, priors for the parameters a, ϕ, and the
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conditional variance
(
σFc

)2
have to be defined:

f0 ∼N

 µ = µFu , τ =
1(
σ
f
u

)2


a ∼N ( µ = 0 , τ = 0.00001 )

ϕ ∼N ( µ = 0 , τ = 0.00001 ) [ −1 , 1 ](
σFc

)2
∼ Γ −1( s = 0.001 , r = 0.001 ) .

(3.17)

The adopted priors for f0 and ϕ guaranty the stationarity of the process as the prior of f0

corresponds to the unconditional posterior of ft (Normal distribution with unconditional mean

and variance) and the prior of ϕ is a truncated Normal distribution in the range [−1,1]. The

prior of a is an uninformed Normal distribution with mean zero (µ = 0) and low precision

(τ = 0.00001). The prior of the conditional variance
(
σFc

)2
is a Inverse Gamma distribution with

uninformed specification for the scale (s = 0.001) and rate (r = 0.001) parameter.

Adaption and burn-in

The model is sampled with two MCMC chains. Adaption and burn-in are set to 25,000 iterations.

The posterior samples contain 100,000 iterations with a thinning of 20, resulting in chain lengths

of 5,000 iterations per chain. The two chains are combined. Finally, the MCMC sample contains

10,000 iterations.34

34 For the European sample, thinning is reduced to 10 with 50,000 iterations. This results in 5,000 per chain and
10,000 in the combined sample as in the sample for the US and GB.
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3.B Appendix | Bayesian convergence diagnostics

To evaluate the convergence of the estimated models, we primarily adduce trace plots. Trace

plots illustrates the progression of parameters in the chains. Stable trace plots indicate that

the chains converge to a steady state and, thus, that priors are well calibrated and adaption,

burn-in, and thinning is sufficient. Furthermore, we examine two prominent figures in Bayesian

inference – the Gelman-Rubin and Heidelberger-Welch diagnostic. Both are hypotheses tests in

frequentistic terms, however, applied widely to evaluate the length of burn-in (Gelman-Rubin)

and the length of chains (Heidelberger-Welch).35

Component model

Figure 3.B.1, 3.B.2, and 3.B.3 illustrate the trace plots of the component models for the US, GB,

and Europe. As the parameters of the first and fifth component are fixed, their presentation is

skipped. The first chain is displayed in black, the second in gray. The trace plots seem to be

stationary for every parameter. The evidence for convergence is supported by the Gelman-Rubin

(see Table 3.B.1) and Heidelberger-Welch (see Table 3.B.2) diagnostic.

Probability model

Figure 3.B.4, 3.B.5, and 3.B.6 illustrate the trace plots of the probability model for the US, GB,

and Europe. The presentation corresponds to Figure 3.B.1, 3.B.2, and 3.B.3. In analogy to the

component model, convergence is indicated by the trace plots which is underpinned by the

Gelman-Rubin (see Table 3.B.3) and Heidelberger-Welch (see Table 3.B.4) diagnostic.

35 We present trace plots and diagnostics for the in the paper selected model specifications – namely, specification I for
the US and specification II for GB and Europe. The convergence diagnostics of the remaining model specifications
are available from the authors upon request.
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Figure 3.B.1: Trace plots of component model (US)
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Notes: The figure illustrates the trace of MCMC chains for the estimated parameters of the component model (µk
and σk for k ∈ {2,3,4}). The first chain is represented in black, the second in gray. Adaption phase and burn-in are
dropped.
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Figure 3.B.2: Trace plots of component model (GB)
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Notes: The figure illustrates the trace of MCMC chains for the estimated parameters of the component model (µk
and σk for k ∈ {2,3,4}). The first chain is represented in black, the second in gray. Adaption phase and burn-in are
dropped.
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Figure 3.B.3: Trace plots of component model (Europe)
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Notes: The figure illustrates the trace of MCMC chains for the estimated parameters of the component model (µk
and σk for k ∈ {2,3,4}). The first chain is represented in black, the second in gray. Adaption phase and burn-in are
dropped.
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Table 3.B.1: Gelman-Rubin diagnostic of component model

Point Upper confidence
estimate limits (90%)

US

µ2 1.0008 1.0034
µ3 0.9999 0.9999
µ4 1.0000 1.0000

σ2 0.9999 0.9999
σ3 0.9999 1.0001
σ4 1.0010 1.0018

GB

µ2 1.0001 1.0006
µ3 0.9999 1.0000
µ4 0.9999 1.0000

σ2 1.0009 1.0021
σ3 0.9999 0.9999
σ4 1.0005 1.0024

Europe

µ2 1.0001 1.0008
µ3 1.0017 1.0049
µ4 1.0014 1.0024

σ2 1.0003 1.0013
σ3 1.0015 1.0026
σ4 1.0006 1.0013

Notes: The table summarizes the results of the Gelman-Rubin diagnostic for the component models (US with
specification I, GB and Europe with specification II). In the Gelman-Rubin diagnostics, the potential reduction factor
and its upper and lower confidence limits are calculated for each variable. Convergence is diagnosed if chains have
”forgotten” their initial values, thus, for upper limits close to one (see Gelman and Rubin, 1992). A rule of thump
assumes 1.1 as critical value. Generally, the Gelman-Rubin diagnostic examines the length of the burn-in.
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Table 3.B.2: Heidelberger-Welch diagnostic of component model

Stationary
Start p-value

Halfwidth
Mean Halfwidth

test mean test

US

µ2 passed 1 0.0835 passed 0.0027 0.0000
µ3 passed 1 0.2402 passed 0.4388 0.0002
µ4 passed 1 0.8241 passed 0.9657 0.0001

σ2 passed 1 0.9700 passed 0.0245 0.0000
σ3 passed 1 0.8521 passed 0.2542 0.0002
σ4 passed 1 0.4306 passed 0.0306 0.0001

GB

µ2 passed 1 0.6975 passed 0.0153 0.0000
µ3 passed 1 0.9433 passed 0.2427 0.0004
µ4 passed 1 0.5247 passed 0.9039 0.0003

σ2 passed 1 0.3990 passed 0.0147 0.0000
σ3 passed 1 0.7053 passed 0.2016 0.0003
σ4 passed 1 0.2619 passed 0.1205 0.0002

Europe

µ2 passed 1 0.1212 passed 0.0154 0.0000
µ3 passed 1001 0.0798 passed 0.1157 0.0002
µ4 passed 1 0.1004 passed 0.7132 0.0004

σ2 passed 1 0.1024 passed 0.0128 0.0000
σ3 passed 1 0.1068 passed 0.0875 0.0001
σ4 passed 1 0.1728 passed 0.2515 0.0003

Notes: The table summarizes the results of the Heidelberger-Welch diagnostic for the component model (US with
specification I, GB and Europe with specification II). Therefore, the two chains are combined. In the Heidelberger-
Welch diagnostic, a criterion of relative accuracy for the posterior means is calculated. The frequentistic stationary
test adopts the Cramer-von-Mises statistic to test the null hypotheses that the sampled values origin from a stationary
process (see Heidelberger and Welch, 1981, 1983). Generally, the Heidelberger-Welch diagnostic examines the length
of the chain.
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Figure 3.B.4: Trace plots of probability model (US)
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Notes: The figure illustrates the trace of MCMC chains for the estimated parameters of the probability model (βEAD,
βFacility, βProtection, βIndustry, α, and σF for specification I). The first chain is represented in black, the second in
gray. Adaption phase and burn-in are dropped.
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Figure 3.B.5: Trace plots of probability model (GB)
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Notes: The figure illustrates the trace of MCMC chains for the estimated parameters of the probability model (βEAD,
βFacility, βProtection, βIndustry, a, and ϕ for specification II). The first chain is represented in black, the second in gray.
Adaption phase and burn-in are dropped.
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Figure 3.B.6: Trace plots of probability model (Europe)
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Notes: The figure illustrates the trace of MCMC chains for the estimated parameters of the probability model (βEAD,
βFacility, βProtection, βIndustry, a, and ϕ for specification II). The first chain is represented in black, the second in gray.
Adaption phase and burn-in are dropped.
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Table 3.B.3: Gelman-Rubin diagnostic of probability model

Point Upper confidence
estimate limits (90%)

US

βEAD 1.0005 1.0017
βFacility 1.0018 1.0066
βProtection 1.0016 1.0019
βIndustry 1.0005 1.0008

α 0.9999 1.0000
σF 1.0005 1.0020

c2 1.0003 1.0006
c3 1.0000 1.0004

GB

βEAD 0.9999 1.0000
βFacility 1.0012 1.0027
βProtection 1.0011 1.0044
βIndustry 1.0002 1.0010

a 1.0001 1.0001
ϕ 1.0002 1.0003

c2 1.0001 1.0001
c3 0.9999 1.0000

Europe

βEAD 1.0018 1.0037
βFacility 1.0002 1.0002
βProtection 1.0038 1.0141
βIndustry 1.0000 1.0000

a 1.0008 1.0008
ϕ 1.0009 1.0009

c2 1.0010 1.0042
c3 1.0008 1.0030

Notes: The table summarizes the results of the Gelman-Rubin diagnostic for the probability model (US with
specification I, GB and Europe with specification II). In the Gelman-Rubin diagnostic, the potential reduction factor
and its upper and lower confidence limits are calculated for each variable. Convergence is diagnosed if chains have
”forgotten” their initial values, thus, for upper limits close to one (see Gelman and Rubin, 1992). A rule of thump
assumes 1.1 as critical value. Generally, the Gelman-Rubin diagnostic examines the length of the burn-in.
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Table 3.B.4: Heidelberger-Welch diagnostic of probability model

Stationary
Start p-value

Halfwidth
Mean Halfwidth

test mean test

US

βEAD passed 1 0.3352 passed -0.0215 0.0009
βFacility passed 1 0.1967 passed -0.0832 0.0022
βProtection passed 1 0.6406 passed -0.4442 0.0038
βIndustry passed 1 0.6237 passed 0.2592 0.0025

α passed 1 0.7012 passed 2.1402 0.0045
σF passed 1 0.2197 passed 0.3522 0.0014

c2 passed 1 0.2220 passed 2.4103 0.0007
c3 passed 1 0.3240 passed 3.9466 0.0010

GB

βEAD passed 1 0.2285 passed -0.3825 0.0009
βFacility passed 1 0.3353 passed 0.2093 0.0018
βProtection passed 1 0.1387 passed -0.4314 0.0021
βIndustry passed 1 0.4385 passed -0.1930 0.0025

a passed 1 0.8255 passed 0.6779 0.0144
ϕ passed 1 0.8304 passed 0.7504 0.0051

c2 passed 1 0.8060 passed 2.7397 0.0007
c3 passed 1 0.5804 passed 3.6150 0.0009

Europe

βEAD passed 1 0.1500 passed -0.0291 0.0004
βFacility passed 1 0.9691 passed 0.2685 0.0012
βProtection passed 1 0.0581 passed -0.4184 0.0014
βIndustry passed 1 0.8401 passed -0.1840 0.0013

a passed 1 0.9515 passed 0.2874 0.0084
ϕ passed 1 0.9346 passed 0.8565 0.0040

c2 passed 4001 0.0638 passed 2.6592 0.0007
c3 passed 2001 0.0859 passed 3.2198 0.0009

Notes: The table summarizes the results of the Heidelberger-Welch diagnostic for the probability model (US with
specification I, GB and Europe with specification II). Therefore, the two chains are combined. In the Heidelberger-
Welch diagnostic, a criterion of relative accuracy for the posterior means is calculated. The frequentistic stationary
test adopts the Cramer-von-Mises statistic to test the null hypotheses that the sampled values origin from a stationary
process (see Heidelberger and Welch, 1981, 1983). Generally, the Heidelberger-Welch diagnostic examines the length
of the chain.
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3.C Appendix | Further figures

Figure 3.C.1: Exemplary JAGS model file

data{

muComp[1] <- 0

muComp[Ncomp] <- 1

sigmaComp[1] <- 0.001

sigmaComp[Ncomp] <- 0.001

}

model{

for( i in 1:N ){

y[i] ~ dnorm( mu[i] , tau[i] )

mu[i] <- muComp[ z[i] ]

tau[i] <- pow( sigma[i] , -2 )

sigma[i] <- sigmaComp[ z[i] ]

z[i] ~ dcat( p[i,] )

logit(Q[i,1]) <- c[1] - zstern[i]

p[i,1] <- Q[i,1]

for( j in 2:(Ncomp-1) ){ logit(Q[i,j]) <- c[j] - zstern[i]

p[i,j] <- Q[i,j] - Q[i,j-1] }

p[i,Ncomp] <- 1 - Q[i,(Ncomp-1)]

zstern[i] <- inprod( X[i,] , beta ) + f[time[i]]

}

beta[1:Npara] ~ dmnorm(betamu[],betaTau[,])

c[1] <- 1.5

for( j in 1:(Ncomp-3) ){ c0[j] ~ dnorm(3,0.00001)I(c[1],c[Ncomp-1]) }

c[2:(Ncomp-2)] <- sort(c0[1:(Ncomp-3)])

c[Ncomp-1] <- 4.5

##########################################################################################################

for( t in 1:Ntime ){ f[t] ~ dnorm( fmu[t] , ftau ) }

fmu[1] <- ar0 + ar1 * f0

for( t in 2:Ntime ){ fmu[t] <- ar0 + ar1 * f[t-1] }

f0 ~ dnorm( fmuU , ftauU )

ar0 ~ dnorm( 0 , 0.00001 )

ar1 ~ dnorm( 0 , 0.00001 )I( -1 , 1 )

fsigma ~ dgamma( 0.001 , 0.001 )

ftau <- pow( fsigma , -2 )

##########################################################################################################

for( j in 1:(Ncomp-2) ){ muComp0[j] ~ dnorm( 0 , 0.00001 )I( -0.5 , 1.5 ) }

muComp[2:(Ncomp-1)] <- sort(muComp0[1:(Ncomp-2)])

for( j in 2:(Ncomp-1) ){ sigmaComp[j] ~ dgamma( 0.001 , 0.001 )I( 0.0001 , 1 ) }

}

Notes: The figure illustrates an exemplary JAGS model file for specification II. For the implementation of specifica-
tion I, the random effect has to be modified to a normal distribution (lines surrounded by ### in the code).

150



Chapter 3. Systematic effects among LGDs and their implications on downturn estimation

Figure 3.C.2: Random effect vs. average LGD
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Notes: The figure illustrates the synchronism of the estimated posterior means of the random effect (specification
I for the US and specification II for GB and Europe) and the average LGD in time line. In the left panels of the
figure, the course of the random effect (gray line) and the quarterly average LGD (black line) is displayed. For
representational purpose the rolling average of the random effect (gray line) and the rolling quarterly average of the
LGD (black line) is plotted in the right panels.
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Figure 3.C.3: Random effect vs. macro variables (US)
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Notes: The figure contrasts the course of the macro variables and the random effect over time. The macro variables
(i.e., GDP, S&P 500, VIX for the US, HPI, and NPL ratio) are represented by the black lines. The thin gray lines map
the posterior means of the random effect (specification I). For representation purpose, the rolling average of the
posterior means is illustrated by thick gray lines.
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Figure 3.C.4: Random effect vs. macro variables (GB)
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Notes: The figure contrasts the course of the macro variables and the random effect over time. The macro variables
(i.e., GDP, FTSE, VIX for Europe, HPI, and NPL ratio) are represented by the black lines. The thin gray lines map
the posterior means of the random effect (specification II). For representation purpose, the rolling average of the
posterior means is illustrated by thick gray lines.
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Figure 3.C.5: Random effect vs. macro variables (Europe)
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Notes: The figure contrasts the course of the macro variables and the random effect over time. The macro variables
(i.e., the weighted average of GDP, EIs, HPIs, and NPL ratio as well as the VIX for Europe) are represented by the
black lines. The thin gray lines map the posterior means of the random effect (specification II). For representation
purpose, the rolling average of the posterior means is illustrated by thick gray lines.
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Figure 3.C.6: Posterior predictive distribution

US

LGD

de
ns

ity

0.0 0.5 1.0

0
5

10
15 empirical distribution

posterior predictive distribution

quantiles of empirical distribution

qu
an

til
es

 o
f p

re
di

ct
iv

e 
di

st
rib

ut
io

n

0.0 0.5 1.0

0.
0

0.
5

1.
0

optimality line
empirical vs.
posterior predictive quantiles

GB

LGD

de
ns

ity

0.0 0.5 1.0

0
5

10
15

quantiles of empirical distribution

qu
an

til
es

 o
f p

re
di

ct
iv

e 
di

st
rib

ut
io

n

0.0 0.5 1.0

0.
0

0.
5

1.
0

Europe

LGD

de
ns

ity

0.0 0.5 1.0

0
5

10
15

quantiles of empirical distribution

qu
an

til
es

 o
f p

re
di

ct
iv

e 
di

st
rib

ut
io

n

0.0 0.5 1.0

0.
0

0.
5

1.
0

Notes: The figure illustrates the posterior predicted distribution for the US American, British, and European data
set. In the left panels, the kernel density estimates of the posterior predicted (gray line) is contrasted to the kernel
density estimate of the empirical data (dotted line). The band widths are fixed to 0.015 for both kernel density
estimates to ensure comparability regarding the height of the density. Thus, the curves are comparable in spite of
ties. As differences are hard to identify due to the high probability masses at the two modi, quantile-quantile (qq)
plots are presented in the right panels. The gray dots represent the quantiles of the empirical data plotted against
the quantiles of the posterior predicted distribution. The bisector (black line) represents optimality.
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Figure 3.C.7: Posterior and downturn distribution for the GFC and a deterioration pe-
riod (GB)
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●●●●●●●
●●●●●●
●●●●●
●●●●
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●●●●

Notes: The figure contrasts the empirical LGD distribution to the posterior (light gray) and downturn (dark gray and
black) predictive distribution for the GFC (2009 Q1 to 2009 Q3, left panels) and a deterioration period (2009 Q4 to
2010 Q3, right panels). The upper panels display the kernel density estimates, the lower panels the quantile-quantile
(qq) plots. The kernel density estimates for the downturn predictive distribution for the 90% quantile of the random
effect is skipped and available form the authors upon request.
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Chapter 3. Systematic effects among LGDs and their implications on downturn estimation

Figure 3.C.8: Posterior and downturn distribution for the GFC and a deterioration pe-
riod (Europe)
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●
●

Notes: The figure contrasts the empirical LGD distribution to the posterior (light gray) and downturn (dark gray and
black) predictive distribution for the GFC (2009 Q1 to 2009 Q3, left panels) and a deterioration period (2009 Q4 to
2010 Q3, right panels). The upper panels display the kernel density estimates, the lower panels the quantile-quantile
(qq) plots. The kernel density estimates for the downturn predictive distribution for the 90% quantile of the random
effect is skipped and available form the authors upon request.
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Chapter 3. Systematic effects among LGDs and their implications on downturn estimation

Figure 3.C.9: Posterior and downturn distribution based on out-of-time estimation
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(f fixed to median)
posterior predictive distribution
(f fixed to 90% quantile)
posterior predictive distribution
(f fixed to 95% quantile)

Notes: The figure contrasts the empirical LGD distribution to the posterior (light gray) and downturn (dark gray and
black) predictive distribution based on out-of-time estimation. The training set contains the time period from 2006
Q1 to 2010 Q1. The test set consists of the time period from 2010 Q2 to 2012 Q4.
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Chapter 3. Systematic effects among LGDs and their implications on downturn estimation

Figure 3.C.10: Posterior and downturn distribution for the GFC and a deterioration period
based on the macro model containing the EI (GB)

GFC (2008 Q1 to 2009 Q3)
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Notes: The figure contrasts the empirical LGD distribution to the posterior (light gray) and downturn (dark gray and
black) predictive distribution of the macro model containing the EI instead of a random effect for the GFC (2008 Q1
to 2009 Q3, left panel) and a deterioration period (2009 Q4 to 2010 Q3, left panel).

Figure 3.C.11: Posterior and downturn distribution for the GFC and a deterioration period
based on the macro model containing the HPI (Europe)
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Notes: The figure contrasts the empirical LGD distribution to the posterior (light gray) and downturn (dark gray and
black) predictive distribution of the macro model containing the HPI instead of a random effect for the GFC (2008
Q1 to 2009 Q3, left panel) and a deterioration period (2009 Q4 to 2010 Q3, left panel).
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Figure 3.C.12: Downturn distribution for the GFC and a deterioration period based on
alternative concepts (GB)
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Notes: The figure contrasts the empirical LGD distribution to downturn predictive distributions. The black and
gray dots represent the downturn approach via a random effect, whereas, the suggestion of Bijak and Thomas (2015)
(alternative I) is displayed by gray cycles and the proposal of Calabrese (2014) (alternative II) by gray crosses. The
FED approach is displayed by gray stars. The figure refers to the GFC (2008 Q1 to 2009 Q3, left panel) and a
deterioration period (2009 Q4 to 2010 Q3, right panel).

Figure 3.C.13: Downturn distribution for the GFC and a deterioration period based on
alternative concepts (Europe)
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Table 3.D.1: Literature review
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rü

ge
r

an
d

R
ös

ch
(2

01
7)

L
oa

ns
Q

u
an

ti
le

re
gr

es
si

on
U

S
20

00
–2

01
4

•
S&

P
50

0
•

S&
P

50
0

(w
or

ko
u

t
LG

D
s)

•
T

E
D

sp
re

ad
(s

ig
ni

fi
ca

nt
fo

r
in

ne
r

qu
an

ti
le

s)
•

Te
rm

sp
re

ad
•

T
E

D
sp

re
ad

•
V

IX
(s

ig
ni

fi
ca

nt
fo

r
in

ne
r

qu
an

ti
le

s)
L

eo
w

et
al

.(
20

14
)

M
or

tg
ag

es
an

d
lo

an
s

•
Tw

o-
st

ag
e

m
od

el
U

K
19

90
–2

00
2

(m
or

tg
ag

es
)

V
ar

it
y

of
m

ac
ro

va
ri

ab
le

s
M

ix
ed

re
su

lt
s

re
ga

rd
in

g
si

gn
ifi

ca
nc

e
(w

or
ko

u
t

LG
D

s)
•

R
eg

re
ss

io
n

19
89

–1
99

9
(l

oa
ns

)
(w

it
h

d
iff

er
en

t
ti

m
e

st
am

p
s)

(m
ig

ht
be

du
e

to
no

n
li

ne
ar

im
p

ac
ts

)
M

at
u

sz
yk

et
al

.(
20

10
)

L
oa

ns
Tw

o-
st

ag
e

m
od

el
U

K
19

89
–2

00
4

N
o

(w
or

ko
u

t
LG

D
s)

N
az

em
ie

t
al

.(
20

17
)

B
on

d
s

Fu
zz

y
d

ec
is

io
n

fu
si

on
U

S
20

02
–2

01
2

P
ri

nc
ip

al
co

m
p

on
en

ts
P

ri
nc

ip
al

co
m

p
on

en
ts

ha
ve

(m
ar

ke
t-

ba
se

d
LG

D
s)

of
10

4
m

ac
ro

va
ri

ab
le

s
hi

gh
co

nt
ri

bu
ti

on
to
R

2

Q
ia

nd
Ya

ng
(2

00
9)

M
or

tg
ag

es
R

eg
re

ss
io

n
U

S
19

90
–2

00
3

•
H

P
I

•
H

P
I

(n
ot

in
cl

u
d

ed
)

(w
or

ko
u

t
LG

D
s)

•
St

re
ss

du
m

m
y

•
St

re
ss

du
m

m
y

(+
**

*)
•

C
u

rr
en

t
LT

V
•

C
u

rr
en

t
LT

V
(+

**
*)

Q
ia

nd
Z

ha
o

(2
01

1)
B

on
d

s
V

ar
it

y
of

m
et

ho
d

s
U

S
19

85
–2

00
8

•
(I

nd
u

st
ry

)d
is

ta
nc

e
to

d
ef

au
lt

•
In

du
st

ry
d

is
ta

nc
e

to
d

ef
au

lt
(–

**
*)

(m
ar

ke
t-

ba
se

d
•

(I
nd

u
st

ry
)d

ef
au

lt
ra

te
•

D
ef

au
lt

ra
te

(+
**

*)
an

d
w

or
ko

u
t

LG
D

s)
•

M
ar

ke
t

re
tu

rn
•

M
ar

ke
t

re
tu

rn
(–

**
*)

•
In

te
re

st
ra

te
•

In
te

re
st

ra
te

(+
**

*)
So

m
er

s
an

d
W

hi
tt

ak
er

(2
00

7)
M

or
tg

ag
es

Q
u

an
ti

le
re

gr
es

si
on

E
U

si
nc

e
19

90
N

o
(w

or
ko

u
t

LG
D

s)
To

bb
ac

k
et

al
.(

20
14

)
L

oa
ns

•
R

eg
re

ss
io

n
U

S
19

84
–2

01
1

V
ar

it
y

of
m

ac
ro

va
ri

ab
le

s
St

at
is

ti
ca

ls
ig

ni
fi

ca
nc

e
no

t
re

p
or

te
d

(w
or

ko
u

t
LG

D
s)

•
R

eg
re

ss
io

n
tr

ee
s

•
N

on
li

ne
ar

m
od

el
s

Ya
o

et
al

.(
20

15
)

B
on

d
s

Su
p

p
or

t
ve

ct
or

re
gr

es
si

on
U

S
19

85
–2

01
2

•
G

D
P

St
at

is
ti

ca
ls

ig
ni

fi
ca

nc
e

no
t

re
p

or
te

d
(w

or
ko

u
t

LG
D

s)
•

U
ne

m
p

lo
ym

en
t

•
S&

P
50

0
•

In
te

re
st

ra
te

Ya
o

et
al

.(
20

17
)

C
re

d
it

ca
rd

s
Su

p
p

or
t

ve
ct

or
m

ac
hi

ne
s

U
K

20
09

–2
01

0
•

U
ne

m
p

lo
ym

en
t

•
U

ne
m

p
lo

ym
en

t
(+

**
*)

(w
or

ko
u

t
LG

D
s)

•
C

P
I

•
C

P
I

(–
**

*)
•

H
P

I
•

H
P

I
(–

**
*)

Notes: The table summarizes LGD related literature with focus on systematic effects (i.e., impact of macro variables).
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Chapter 3. Systematic effects among LGDs and their implications on downturn estimation

Table 3.D.2: Composition of European sample

Country percentage

Germany 27.48%
Great Britain 23.39%
Portugal 12.83%
Ireland 8.30%
Denmark 7.66%
Norway 5.63%
Sweden 4.79%
Finland 3.52%
Latvia 2.71%
Estonia 2.68%
France 0.83%
Poland 0.19%

Notes: The table summarizes the composition of the European sample. The second column displays the percentage
of the corresponding country in the European sample.

Table 3.D.3: Descriptive statistics

US GB Europe

Dependent

LGD mean 0.2057 0.2949 0.1958
median 0.0000 0.0201 0.0080
standard deviation 0.3438 0.4121 0.3466

Loan specific |metric

EAD Mean 1,785,234.75 648,425.48 708,777.43
Median 506,889.22 94,707.10 115,412.68
Standard deviation 3,893,459.81 3,508,848.60 5,292,547.89

Loan specific | categoric

Facility term loan 43.63% 46.34% 60.22%
line 56.37% 53.66% 39.78%

Protection no 16.13% 28.88% 30.45%
yes 83.87% 71.12% 69.55%

Industry non FIRE 85.88% 91.26% 84.62%
FIRE 14.12% 8.74% 15.38%

Macro variables

∆ GDP mean 1.11% 0.70% 1.24%
median 1.69% 1.31% 1.92%
standard deviation 2.07% 2.67% 2.75%

∆ EI mean 1.91% 1.49% 2.35%
median 7.60% 6.74% 11.86%
standard deviation 20.54% 17.11% 26.22%

VIX mean 22.7187 26.4292 26.4292
median 20.4113 23.8916 23.8916
standard deviation 10.1888 9.5692 9.5692

∆ HPI mean -5.70% -1.56% -1.88%
median -4.74% -1.65% 0.42%
standard deviation 7.68% 7.52% 5.75%

NPL ratio mean 3.20% 2.63% 3.04%
median 3.85% 3.51% 3.27%
standard deviation 1.79% 1.36% 0.76%

Notes: The table summarizes descriptive statistics of dependent and independent variables. For metric variables the
mean, median, and standard deviation is presented. Proportions are given for variables of categoric nature. FIRE is
an abbreviation for corporations which are active in the finance, insurance or reals estate industry.

162



Chapter 3. Systematic effects among LGDs and their implications on downturn estimation

Table 3.D.4: Pairwise correlations of macro variables and random effect

US GB Europe

−∆[GDP (standardized)] -11.64% 12.39% 34.44%
−∆[EI (standardized)] -0.50% 20.91% 38.41%

VIX -11.17% -1.04% 33.84%
−∆[HPI (standardized)] -17.46% -2.03% 54.41%

NPL ratio 12.26% -58.74% -32.32%

Notes: The table summarizes the pairwise correlations of the macro variables (i.e., GDP, EI, VIX, HPI, and NPL ratio)
with the random effect posterior means.

Table 3.D.5: Results of combined models

posterior
HPDI (90%)

posterior naive time-series
mean odds standard error standard error

US

βNPL ratio 0.0480 -0.0736 0.1701 3.0306 0.0007 0.0011
α 2.1408 1.9280 2.3576 ∞ 0.0013 0.0024
σF 0.3559 0.2344 0.4642 ∞ 0.0007 0.0007

GB

βEI -0.0641 -0.2917 0.1627 0.4637 0.0014 0.0044
a 0.6977 0.0973 1.2440 768.2308 0.0037 0.0073
ϕ 0.7439 0.5412 0.9515 ∞ 0.0013 0.0026
σFc 0.4120 0.2901 0.5282 ∞ 0.0008 0.0009

Europe

βHPI -0.1909 -0.3989 0.0232 0.0769 0.0013 0.0082
a 0.3435 0.0166 0.6503 343.8276 0.0022 0.0045
ϕ 0.8347 0.6924 0.9851 ∞ 0.0010 0.0021
σFc 0.2644 0.1946 0.3319 ∞ 0.0004 0.0007

Notes: The table summarizes the results of the combined models where a macro variable and the random effect
are included. The presentation is reduced to the results regarding the macro variables itself and the parameters of
the random effect. The first column presents the posterior means of the parameters. The second and third column
contain the lower and upper bound of the HPDI to a credibility level of 90%. The fourth column includes posterior
odds, while, in the last two columns, the naive and time-series standard error of the chains are presented, whereas,
the time-series standard error is calculated based on the effective (N ∗MCMC) instead of the real (NMCMC) sample size.
Hereby, N ∗MCMC < NMCMC holds for autocorrelated chains.
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Chapter 4

Time matters:

How default resolution times impact

final loss rates

This chapter is joint work with Ralf Kellner* and Daniel Rösch† and corresponds to a working

paper with the same name.

Abstract

The Loss Given Default (LGD) and the Default Resolution Time (DRT) are two important credit risk

parameters which are treated on an isolated basis in academia so far. However, dependency between

the two seems to be obvious as complex default resolutions may be accompanied with long DRTs and

high LGDs. We propose a hierarchical Bayesian model with multiple random effects for joint estimation

of DRTs and LGDs. Our approach explicitly takes unresolved loans into account and eliminates a

potential resolution bias which arises when LGD distributions are estimated using resolved cases only, as

is standard in common approaches. Using a European data set, we find strong positive dependencies

between DRTs and LGDs. We show that neglecting unresolved cases leads to systematic underestimation

of average LGDs on an out of sample perspective. Thus, our approach leads to a better out of sample fit

than a pure LGD model.

Keywords: credit risk; default resolution time; loss given default; random effects; resolution bias

JEL classification: C23, G21, G33

* University Regensburg, Chair of Statistics and Risk Management, 93040 Regensburg, Germany,
email: ralf.kellner@ur.de.
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Chapter 4. Time matters: How default resolution times impact final loss rates

4.1 Introduction

The Default Resolution Time (DRT) and the Loss Given Default (LGD) of defaulted loan contracts

are outcomes of the same random process – the resolution process. Thus, an interconnection of

DRTs and LGDs is plausible as complex default resolutions might be accompanied with longer

resolution processes and higher losses. To the best of our knowledge, no study exists so far

which deeply examines the relation of these credit risk parameters. However, its consideration

may be beneficial for generating accurate predictions. Right after default, DRTs and LGDs are

unknown and need to be estimated. As resolution proceeds, loans might still be stuck in the

resolution process. However, additional information in terms of the time a loan has already

spent in the resolution process is available. This information is not included in traditional LGD

models, but might improve LGD predictions – particularly, in the presence of an interconnection

of DRTs and LGDs. Moreover, its consideration controls for the so called resolution bias. In

the more recent time periods, only LGDs of loans with short DRTs are observable. Assuming a

positive dependence of DRTs and LGDs which is indicated by economic intuition and supported

by descriptive analyses (see Betz et al., 2016, 2017), these loans tend to exhibit lower LGDs.

This leads to downward biased LGD estimates.

As a numerical illustration, assume three loan contracts which defaulted at the same time.

The first loan is almost completely recovered in half a year after default (LGD1 = 7% and

DRT1 = 0.5). The second loan generates a medium loss in the first two years after default

(LGD2 = 21% and DRT2 = 2.0). Finally, the resolution of the third loan is terminated after four

years causing a high loss (LGD3 = 42% and DRT3 = 4.0).1 Considerable distortions arise if

expected LGDs are estimated at varying points in time. Thus, the estimated expected LGD half

a year after default amounts to 7% (̂E[LGDi | t = 0.5] = 7%) as only the LGD of the first loan is

observable. The estimated expected LGD yields to 14% (̂E[LGDi | t = 2.0] = 14%) two years after

default. An unbiased estimate of the expected LGD can foremost be made four years after default

(̂E[LGDi | t = 4.0] = 23%) when all loans are resolved. The expected LGD is underestimated by 16

percentage points half a year after default and still by 9 percentage points two years after default.

The inclusion of censored observations, i.e., unresolved cases, might improve the estimation.

After the resolution of the second loan, it is known that DRT3 > 2.0 and, thus, LGD3 > 21%

might be expected. This leads to the conclusion that Ê[LGDi | t = 2.0] > 16%
(
= 7%+21%+21%

3

)
1 The figures reflect the descriptive statistics in our data set (see Figure 4.1). Loans with DRTs ∈ [0,0.5] generate

average LGDs of 7%, wheres, DRTs ∈ (1.0,2.0] (DRTs ∈ (3.0, . . . ]) correspond to average LGDs of 21% (42%). LGDs
are calculated based on discounted recovery payments (see Section 4.2.1).

165



Chapter 4. Time matters: How default resolution times impact final loss rates

which might be used as lower limit for LGD prediction. Considering the dependence structure

of DRTs and LGDs in more detail, the estimation might be further adjusted.

In recent years, the literature regarding LGD modeling has widened considerably. Comparative

studies can be found in, e.g., Qi and Zhao (2011) and Loterman et al. (2012). However, literature

considering workout LGDs is still limited. Most of the publications refer to market-based LGDs,

whereby, the corresponding Recovery Rate (RR) is defined as ratio of the market price 90

days after default to the outstanding amount. Hence, market-based LGDs are only observable

for traded securities such as bonds. Workout LGDs are based on actual recovery payments

collected during the resolution process and, thus, usually applied for loans. The distribution of

workout LGDs is more extreme compared to market-based LGDs and, typically, high probability

masses at no loss (LGD = 0) and total loss (LGD = 1) arise (see, e.g., Krüger and Rösch, 2017;

Betz et al., 2018). Thus, the consideration of the distributional form is essential for workout

LGDs. Altman and Kalotay (2014) develop a Bayesian Finite Mixture Model (FMM) with a

probabilistic substructure in terms of an ordered logit (OL) model to estimate the probability of

the mixture components depending on explanatory variables. A frequentistic version of this

model is presented by Kalotay and Altman (2017). The model of Altman and Kalotay (2014)

and Kalotay and Altman (2017) is applied by Bijak and Thomas (2015) and enhanced by Betz

et al. (2018). Calabrese (2014) estimates a mixture of Beta distributions, whereas, Krüger and

Rösch (2017) apply quantile regression on the LGD distribution. The literature regarding DRTs

is more sparse and mainly refers to the duration of Chapter 7 and Chapter 11 resolutions (see,

e.g., Helwege, 1999; Partington et al., 2001; Bris et al., 2006; Denis and Rodgers, 2007; Wong

et al., 2007). Betz et al. (2016) and Betz et al. (2017) analyze DRTs of defaulted loan contracts

and descriptively find impacts of DRTs on LGDs. The interconnection of DRTs and LGDs is

also indicated in the LGD literature. Dermine and Neto de Carvalho (2006) apply mortality

analysis on a data set of defaulted bank loans, whereas, Gürtler and Hibbeln (2013) focus on

the resolution bias. They suggest to restrict the data set to avoid biased estimates. However,

LGD data is sparse so constraints might be unfavorable. The inclusion of the DRT into the

LGD modeling framework might diminish the effect of the resolution bias without restrictions

in the data set. Common ways to implement dependence structures of credit risk parameters

are random effects. By this means, joint time patterns of these parameters are considered in

the modeling context. Rösch and Scheule (2010), Bade et al. (2011), and Rösch and Scheule

(2014) apply random effects to model the dependence of probabilities of default (PDs) and

LGDs. Furthermore, Lee and Poon (2014) state that frailties, i.e., random effects in survival

models, make more sigificant risk contributions than macroeconomic factors in a credit risk
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context.

Using a unique European data set provided by Global Credit Data (GDC), we develop a hierar-

chical Bayesian modeling approach for joint estimation of DRTs and LGDs combining a Finite

Mixture Model (FMM) with a probabilistic substructure for the LGD and an Accelerated Failure

Time (AFT) model for the DRT. Thereby, we allow for direct and indirect dependency structures.

The first is attained by the inclusion of the DRT in the LGD model. This allows LGD predictions

for censored observations, i.e., non-performing loans, within the modeling framework as final

DRTs are estimated based on censored observations in the DRT model. The second refers to

common time patterns of DRTs and LGDs. We implement two correlated random effects in the

DRT model and the LGD model.

We contribute to the literature in three ways. First, we deeply examine the dependence structure

of DRTs and LGDs allowing for a direct and an indirect channel and find impacts of DRTs on

LGD distributions which are even more pronounced in boom and crisis periods. Thus, DRTs

are longer (shorter) in crisis (boom) periods. In crisis periods, this burdens financial market

liquidity as systematically more loans are stuck in the resolution process. On top of that, losses

are systematically higher during such periods due to the stronger positive dependence. Second,

we analyze and quantify the impacts of the resolution bias. We compare a pure (traditional)

LGD model with the proposed hierarchical approach and find parameter distortions in the pure

LGD model. These result in biased predictive LGD distributions on an out of sample and out of

sample out of time perspective. Impacts of the resolution bias are diminished in the hierarchical

approach leading to appropriate predictive LGD distributions. Neglecting unresolved cases

leads to an underestimation of average LGDs on a out of sample perspective. Third, we are able

to generate intuitive LGD predictions for non-performing loans. As final DRTs are estimated

within the AFT model, these can be applied to generate final predictive LGD distributions for

censored observations. These considerably outperform predictions based on a pure LGD model.

The remainder of this paper is structured as follows. Section 4.2 describes the data and

introduces the hierarchical modeling framework. Results are presented in Section 4.3. In

Section 4.4, the model is validated on an in sample and out of sample perspective. Section 4.5

concludes.
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4.2 Data and methods

4.2.1 Data

We use access to the unique loss data base of Global Credit Data (GCD). The data base includes

detailed loss information on transaction basis of 53 member banks all around the world. In the

data base, the LGD is determined by:

LGDi = 1−RRi , (4.1)

whereby, LGDi is the loss rate of loan i and RRi is the corresponding RR. The RR is calculated as

the sum over the present values of all relevant transactions divided by the outstanding amount.2

We follow Höcht and Zagst (2010) and Höcht et al. (2011) and develop two selection criteria

to eliminate loans with extraordinary payment structures. Both criteria relate all relevant

transactions including charge-offs (which are not included in the LGD calculation) to the

outstanding amount. The first criterion, to which we refer as pre-resolution criterion, relates

transactions arising pre resolution to the outstanding amount at default. We set the barriers of

the pre-resolution criterion to [90%,110%] for resolved and [−50%,400%] for unresolved loans.

In the second criterion, i.e., post-resolution criterion, transactions occurring post resolution are

related to a fictional outstanding amount at resolution. The barriers are set to [−10%,110%]

for the post-resolution criterion. The post-resolution criterion applies for resolved loans only.

Subsequently, loans with abnormal low and high LGDs (< −25% and > 125%) are eliminated.3

We consider a subsample of defaulted European term loans and lines to small and medium

sized enterprises (SMEs).4 We further exclude loans which defaulted before 2004 and after 2016

(10.02% of subsample data). A subsample of 38,165 loans remains.

Figure 4.1 illustrates the interconnection of the two dependent variables, i.e., the DRT and

the LGD. Therefore, the data set is divided into DRT buckets based on DRTs. The first bucket

includes all loans with DRTs ∈ [0,0.5] years. The second bucket contrains all loans with

DRTs ∈ (0.5,1.0] years, and so on (see x-axis of left panel and legend of right panel). In the left

2 See Betz et al. (2018). More detailed information of the LGD calculation can be found in Betz et al. (2016).
3 Overall, 0.50% of resolved loans are eliminated due to the pre-resolution criterion and 0.19% due to the post-

resolution criterion, whereas, 0.23% of unresolved loans are eliminated based on the pre-resolution criterion.
Subsequently, 0.13% are sorted out due to abnormal low and high LGD values.

4 We restrict the data base to reduce noise and generate a rather homogeneous sample. We consider the twelve most
common European countries in the data base, i.e., Great Britain, Germany, Denmark, Portugal, Ireland, France,
Finland, Sweden, Norway, Latvia, Estonia, and Poland.
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Figure 4.1: Relation of DRT and LGD
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Notes: The figure illustrates the relation of DRTs and LGDs. The data is divided into DRT buckets based on the
realized DRTs. Thus, the first bucket includes all loans with DRTs ∈ [0,0.5] years. The second bucket contains all
loans with DRTs ∈ (0.5,1.0] years, and so on (see x-axis of left panel and legend of right panel). In the left panel,
box plots of LGDs for the DRT buckets are displayed. Outliers are hidden. The thick black lines mark the medians,
whereas, the thick gray lines are the means. In the right panel, kernel density estimates of LGDs for the DRT buckets
are illustrated. The band width is fixed to 0.015 to ensure comparability.

panel, box plots of LGDs divided by DRT buckets are displayed. The thick black lines mark

the medians, whereas, the thick gray lines are the means. Considering the latter, average LGDs

seem to linearly increase in the DRT buckets. To examine the origin of this increase, the right

panel displays kernel density estimates for the DRT buckets. The LGD distribution of higher

DRT buckets is shifted towards higher LGD values, i.e., probability masses of lower LGD values

decrease and probability masses of higher LGD values increase. Thus, average values increase.

Table 4.1 summarizes the descriptive statistics of the dependent and independent variables.

Figures are stated for all loans (resolved and unresolved cases) and for resolved and unresolved

loans separately. The upper panel of the table includes descriptive statistics for the LGD and

the DRT. For unresolved cases, incurred LGDs are applied. Incurrent LGDs are computed as the

sum over the present values of all relevant transactions, which occurred up to the end of the

observation period (end of 2016), divided by the outstanding amount. As the resolution process

is not terminated, incurrent LGDs are higher than final LGDs. DRTs for unresolved cases are

censored to the end of the observation period (end of 2016), e.g., for unresolved loans defaulted

at the end of 2015, a censored DRT of one year is assigned. Censored DRTs are lower than final

DRTs as the resolution process is not terminated. In the table, average values of LGDs and DRTs

for unresolved cases are higher compared to resolved cases as unresolved cases are shaped by

rather bad loans, i.e., loans exhibiting high DRTs and high LGDs. In the middle panels of the

table, descriptive statistics of loan specific independent variables are stated. We use the EAD to

control for the size of the loan. It is further distinguished between term loans and lines, if a
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Table 4.1: Descriptive statistics

all resolved unresolved

n 38,165 35,272 2,893

dependent variables

LGD mean 0.2534 0.2099 0.7839
median 0.0133 0.0082 0.9780
standard deviation 0.3810 0.3531 0.3017

DRT mean 1.9882 1.7342 5.0839
median 1.2621 1.1335 4.9090
standard deviation 2.0756 1.7509 3.0147

loan specific (metric)

EAD mean 533,118.89 516,582.05 734,739.20
median 102,987.29 100,237.48 155,097.53
standard deviation 3,624,711.52 3,610,978.60 3,782,983.43

loan specific (categoric)

Facility term loan 62.00% 60.39% 81.68%
line 38.00% 39.61% 18.32%

Protection no 25.61% 26.03% 20.46%
yes 74.39% 73.97% 79.54%

Industry non FIRE 83.13% 82.13% 95.30%
FIRE 16.87% 17.87% 4.70%

macro variables

∆ HPI mean -1.6966 -1.7765 -0.7229
median 0.1662 0.1662 0.8360
standard deviation 6.0221 5.9928 6.2878

VIX mean 24.4762 24.3681 25.7947
median 22.9249 22.6771 23.3451
standard deviation 9.4105 9.4699 8.5465

Notes: The table summarizes descriptive statistics for dependent and independent variables in the data set. For
metric variables, means, medians, and standard deviations are stated. Proportions are presented for variables of
categoric nature. The sample size is denoted by n. The abbreviation FIRE means Finance, Insurance, Real Estate and
denotes corporations of this industries. The macro variable ∆ HPI is the is the yoy percentage chance of the House
Price Index, whereas, the VIX is the Volatility Index.

loan is protected by collateral or guarantee or not, and if the debtor has Finance, Insurance, Real

Estate (FIRE) industry affiliation. Reference categories in the subsequent models are written

italic in the table.5 The lower panel of the table contains descriptive statistics of the applied

macro variables. The year-on-year (yoy) percentage change of weighted average real residential

prices (∆ HPI) is employed as explanatory variable for the LGD, whereas, we use the VSTOXX

Volatility Index (VIX) for the DRT.6

Figure 4.2 illustrates the time patterns of average DRTs in the left panel and average LGDs in

the right panel for resolved loans (thick black line) and all loans (resolved and unresolved loans,

thin gray line). Regarding the latter, values for unresolved loans, i.e., censored observations,

5 The reference category is term loan for Facility, no for protection, and non-FIRE for industry.
6 We tested further macro variables, e.g, the yoy percentage change of weighted average seasonally adjusted GDPs

and the quarterly average yoy percentage change of weighted average equity indices. However, ∆ HPI and VIX
exhibit the highest statistical evidence. Remaining results are available form the authors upon request.

170



Chapter 4. Time matters: How default resolution times impact final loss rates

have to be calculated. Thus, DRTs are censored to the end of the observation period (end of

2016) and incurrent LGDs are considered for unresolved cases. Incurrent LGDs are computed

as sum over the present values of all relevant transactions, which occurred up to the end of the

observation period (end of 2016), divided by the outstanding amount. The relation of DRTs

Figure 4.2: Time patterns of average DRTs and average LGDs
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Notes: The figure illustrates time patterns of average DRTs in the left panel and average LGDs in the right panel.
The black lines display the average values for resolved loans, whereas, the gray lines are average values for all loans,
i.e., resolved and unresolved cases. Thus, the latter include censored values. Means over the entire time period are
illustrated by dotted lines.

and LGDs (see Figure 4.1) might partly be driven by analogous time patterns. Both dependent

variables sharply increase prior to the Global Financial Crisis (GFC, 2007 Q2) and reach the

maximum during the climax of the GFC. The rebound in the aftermath of the crisis seems

gradual. There are only minor deviations between resolved loans and all loans considering the

average DRTs. The graph for all loans is slightly shifted upwards by the censored observations.

Regarding average LGDs, this spread is severe particularly in the most recent time periods. This

is mainly due to incurrent LGDs, i.e., LGDs based on transactions which occur up to the end of

the observation period, in the averaging. Final LGDs will be lower. However, final LGDs of all

loans will still lie above the black line (final LGDs of resolved loans). This mismatch is due to

the resolution bias. Due to the censoring, final LGDs are only observable for defaults with short

DRTs in the more recent time periods. Due to the interconnection of DRTs and LGDs, these

tend to be lower implying an underestimation of LGDs in the more recent time periods.

In this paper, we aim to analyze the effects of the resolution bias on an in sample and out of

sample perspective. Therefore, we divide the data set as of Table 4.1 into subsamples. The first

subsample serves as estimation sample. It includes all loans defaulted between 2004 Q1 and

2010 Q4. Thus, it comprises times of rather sound economic surrounding, the GFC, and parts

of the rebound phase. As we aim to analyze effects of the resolution bias, we treat loans which
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are not resolved until 2010 Q4 as censored observations, i.e., unresolved loans. The second

subsample, to which we refer to as validation sample I, includes the final observations to the

censored observations as of the estimation sample. We apply validation sample I to perform an

out of sample validation of LGDs. The third sample, i.e., validation sample II, includes all loans

defaulted between 2011 Q1 and 2016 Q4. It is used to perform an out of sample out of time

validation of LGDs. Table 4.2 summarizes the estimation sample and the validation samples. In

Table 4.2: Estimation sample and validation samples

estimation sample validation sample I validation sample II
(out of sample) (out of sample out of time)

n all 31,988 10,171 6,177
resolved 21,817 8,447 5,008
unresolved 10,171 1,724 1,169

dependent variables

average LGD all 0.2586 0.4270 0.2267
resolved 0.1801 0.3511 0.1017
unresolved 0.4270 0.7987 0.7622

average DRT all 1.5763 4.2566 1.0495
resolved 1.1964 3.6851 0.7869
unresolved 2.3911 7.0568 2.1743

Notes: The table summarizes the applied samples. The number n, the average LGD, and the average DRT of all loans,
resolved loans, and unresolved loans are presented for the estimation sample and the two validation samples. The
models are estimated based on the estimation sample. This sample includes all loans defaulted between 2004 Q1
and 2010 Q4. Loans which are not resolved until 2010 Q4 are treated as censored observations, i.e., unresolved
cases, in the estimation. Validation sample I contains the final observations of these unresolved cases. However,
observations exist which are still censored at the end of 2016 (unresolved cases in validation sample I). In validation
sample II, loans which defaulted between 2011 Q1 and 2016 Q4 are included. Thus, validation sample I is applied
for the out of sample validation, whereas, the out of sample out of time validation is performed on validation sample II.

the upper panel, the sample sizes are stated. Validation sample II consists of the 10,171 loans

which are treated as unresolved cases in the estimation sample. Some of these loans (1,724)

are still unresolved at the end of 2016. However, the proportion of unresolved loans is lower

in validation sample I compared to the estimation sample. In the lower panel, average values

of LGDs and DRTs are stated. These are rather similar comparing the estimation sample and

validation sample II, however, considerably higher in validation sample I. This is due to the fact

that validation sample I contains final observations to censored cases in the estimation sample,

thus, observations with higher DRTs and higher LGDs.

4.2.2 Methods

This paper aims to compare a pure LGD model with a hierarchical approach combining a model

for the DRT with a LGD model. For the LGD model, we adapt the model presented in Betz

et al. (2018). In the hierarchical approach, this LGD model is combined with an Accelerated
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Failure Time (AFT) model for the DRT. Survival time models such as the AFT model bear the

advantage of considering censored observations, i.e., unresolved loans. This can be applied

to include censored observations in an LGD modeling context. By this means, we are able to

diminish effects of the resolution bias. To investigate the direct dependence of DRTs on LGDs,

the DRT serves as an explanatory variable in the LGD model. Two correlated random effects are

included to study comovements of DRTs and LGDs in the time line (indirect dependence). In

the following, we briefly review the LGD model of Betz et al. (2018) and discuss the extensions

in the context of the hierarchical model.

LGD model

A Normal Finite Mixture Model (FMM) combined with a probabilistic substructure in terms of

an Ordered Logit (OL) model is applied to the loss rate L.7 In FMMs, the dependent variable

is assumed to be divided into a finite number of K latent classes. In each class k, L follows a

normal distribution with parameters θk depending on the latent class k. Thus, the probability

density function (PDF) of an FMM g(L |θ1, . . . ,θK ) is the pk weighted sum of the component

PDFs fk(L|θk):

g(L |θ1, . . . ,θK ) =
K∑
k=1

pk fk(L |θk) . (4.2)

To ensure the general properties of a PDF, i.e., g(l) ≥ 0 for all l ∈ R and
∫∞
−∞ g(l) = 1, pk ≥ 0 and∑

k pk = 1 must hold. Assuming conditional independence, the likelihood of a Normal FMM

φ(L1, ...,LN |µ,σ ,p) is the product of the individual likelihood contributions:

φ(L1, ...,LN |µ,σ ,p) =
1

(2π)
N
2

N∏
i=1

 K∑
k=1

pk
σk

exp

− (Li −µk)2

2σ2
k


 , (4.3)

where, µk and σk are the parameters of the latent class k and N is the number of observations.

To adapt data augmentation, the component weight pk is replaced by an indicator variable dik

which takes the value one if li is a random draw of component k and zero otherwise:

φ(L1, ...,LN |µ,σ ,d) =
1

(2π)
N
2

N∏
i=1

 K∑
k=1

dik
σk

exp

− (Li −µk)2

2σ2
k


 . (4.4)

A probabilistic substructure is formulated to include covariates in the FMM. To rely on the

classical formulation of the OL model, we define the component affiliation yi :

yi = k if dik = 1 , (4.5)

7 We use the notation L for the LGD due to aesthetic reasons.
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where, dik is the indicator as of Equation (4.4). The component affiliation Yi is categorically

distributed and determined by the location of a metric latent variable Y ∗i to corresponding cut

points ck (k ∈ {1, . . . ,K − 1}):

Yi =



1 if Y ∗i ≤ c1

2 if c1 < Y
∗
i ≤ c2

...

K if cK−1 < Y
∗
i .

(4.6)

The latent variable Y ∗i follows a linear model:

Y ∗i = ziζ +Ft(i) + ei , ei ∼ logistic , (4.7)

where, zi is a (1× J) vector of independent variables and ζ is the (J ×1) vector of coefficients. The

term ei describes the errors. A random effect Ft(i) is introduced into the modeling framework to

control for comovement in the time line. It originates from a Normal distribution with mean

zero and standard deviation σ :

Ft ∼N(0 , σ ) . (4.8)

The time stamp t(i) in Equation (4.7) indicates the default time t in quarters of loan i. Two loans

i and i′ which defaulted in the same quarter (t(i) = t(i′) = t) share the same realization of the

random effect (ft(i) = ft(i′) = ft). For ft > 0 (ft < 0), both loans exhibit higher (lower) values of

y∗i and, thus, higher (lower) probabilities of high component affiliations yi . Higher component

affiliations yi are accompanied with higher loss rates and vice versa. Thus, the random effect

displays the comovement in time line, i.e., higher or lower average loss rates in specific default

quarters which can not be explained by observable variables included in zi .

Hierarchical model

In the following, the hierarchical model for the joint estimation of DRTs and LGDs is discussed.

We apply an AFT model for the DRT. Thus, the logarithm of the resolution time ln(Ti) can be

expressed by a linear model:

ln(Ti) = β0 + xiβ +FTt(i) + s εi , εi ∼ negative Gumbel , (4.9)

where, xi is a (1 × JT ) vector of independent variables, β is the (JT × 1) vector of coefficients,
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and β0 is the intercept. We assume the errors εi to follow a negative Gumbel distribution and,

thus, the DRT to be Weibull distributed.8 The term s is the scale parameter. A random effect

FTt(i) is introduced into the modeling framework to control for comovement in the time line.

Equation (4.9) applies to non censored, i.e., final, observations. For censored observations, final

observations are estimated within the Bayesian modeling framework. By this means, we are able

to predict final DRTs for censored data points, i.e., unresolved loans.

In the hierarchical approach, the AFT model for the DRT is simultaneously estimated with the

LGD model. As LGD model the Normal FMM with the probabilistic substructure is adapted,

whereby, the logarithm of the DRT is included as explanatory variable to account for the direct

dependence of DRTs on LGDs. Equation (4.7) modifies to:

Y ∗i = ziγ + ln(Ti)γT +FLt(i) + εi , εi ∼ logistic , (4.10)

where, zi is the (1× JL) vector of independent variables, γ is the (JL × 1) vector of coefficients,

and γT is the coefficient of the logarithm of the DRT. Again, a random effect FLt(i) is introduced

into the modeling framework to control for comovement in the time line.9

The random effects FTt(i) as of Equation (4.9) and FLt(i) as of Equation (4.10) originate from a

bivariate normal distribution: FTtFLt
 ∼N2 (02 , Σ ) , (4.11)

where, 02 is the two dimensional zero vector (0k = ( 0 0 )T ) and Σ is the (2 × 2) covariance

matrix. Prior distributions are provided for the individual standard deviations (σT and σL) and

the (2× 2) correlation matrix Ω (see Appendix 4.A):

Σ = diag(σT ,σL) Ω diag(σT ,σL)

=

 σ2
T σT σLωL,T

σT σLωT ,L σ2
L

 , (4.12)

whereby, ωT ,L(=ωL,T ) is the correlation of FTt and FLt . By the inclusion of the random effects, we

control for joint comovements of loss rates and resolution times in the time line. Two loans i

and i′ defaulted in the same quarter (t(i) = t(i′) = t) share the same realizations of the random

effects (f Tt(i) = f Tt(i′) = f Tt and f Lt(i) = f Lt(i′) = f Lt , however, f Tt , f
L
t in most of the cases). For f Tt > 0

8 We tested various distributional assumptions regarding the resolution time, e.g., log Normal, log Logistic,
Exponential, and Weibull. The Weibull distribution seems to have the best fit.

9 Equation (4.2), (4.3), (4.4), (4.5), and (4.6) apply in analogy to Yi∗.
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(f Tt < 0), average DRTs are higher (lower). Assuming a positive correlation between the random

effects and a positive parameter estimate of the logarithm of the DRT in the LGD model (γT > 0),

the corresponding LGDs are effected through two channels:10 Directly, as higher (lower) DRTs

are inserted in the LGD model. Indirectly, as positive (negative) realizations of f Tt tend to

imply positive (negative) realizations of f Lt due to the positive correlation. Thus, LGDs are

even higher. However, negative realizations of f Lt remain possible for a stochastic process as

of Equation (4.11) which might reduce LGDs. Both scenarios are conceivable. Confronted

with tense economic surrounding, financial institutions might decide to follow a wait-and-see

strategy and relocate resolution efforts in the future. This might provide benefits and reduce

the LGD (f Lt < 0). However, LGDs might be further increased (f Lt > 0) if financial institutions

are forced to resolve defaulted loans at a certain point in time, e.g., if there is no further option

to wait.

Estimation

The parameters of the LGD model and hierarchical model are estimated via Bayesian inference.

We use a Markov Chain Monte Carlo (MCMC) sampler to derive the posterior distributions

of the parameters. The MCMC sampler generates samples by constructing reversible Markov

chains. The equilibrium distribution corresponds to the target posterior distribution. The

solution via MCMC sampling is necessary due to the model complexity of the LGD model

and the hierarchical model, i.e., priors are partly non conjugate. Direct sampling from the

posterior distributions is not possible as there is no analytical solution. The LGD model and

the hierarchical model are sampled with two MCMC chains. Burn-in is set to 500. Posterior

samples contain 25,000 iterations per chain with a thinning of 5. Metric dependent variables

are standardized to ease convergence.11

Most of the model parameters are provided with weakly informative prior distributions. See Ap-

pendix 4.A for detailed information on the Bayesian model specifications. Common convergence

diagnostics can be found in Appendix 4.B.

10 These assumptions correspond to the empirical results (see Section 4.3).
11 As MCMC sampler, we adapt Stan which is a Hamiltonian Monte Carlo (HMC) sampler. It overcomes some of the

problems inherent in Gibbs sampling, e.g., regarding highly correlated posterior distributions.
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4.3 Empirical results

In Bayesian inference, posterior distributions of parameters are assumed to be continuous.

Thus, a single value of the posterior distribution has a probability of zero. On the contrary,

one true parameter estimate is assigned in frequentistic terms. A null hypothesis is set up to

reach a yes-or-no decision. Under the Bayesian approach, estimates are provided by posterior

distributions which offer an intuitive consideration of parameter uncertainty. Thus, other

concepts are indicated to quantify if results are in favor of an impact, i.e., if an impact is

statistical evident. We apply two of them – credible intervals and Bayes factors.

Credible intervals, e.g., Highest Probability Density Intervals (HPDIs), specify intervals in the

domain of the posterior distribution in which the unobservable parameter lies with a certain

probability. The HPDI denotes the narrowest credible interval. If 0 < HPDI, the domain of

the posterior distribution is located in the positive (negative) value range indicating statistical

evidence of the positive (negative) sign. Besides credible intervals, we apply Bayes factors to

evaluate statistical evidence. Bayes factors are the relation of posterior odds to prior odds.

Posterior odds are defined as the ratio of posterior probability masses under the null hypotheses

and the alternative hypothesis. As we are interested in the evidence of the signs, posterior odds

are derived as the ratio of posterior mass favoring the sign of the posterior mean to posterior

mass of the opposite sign:

posterior oddsE[θ]<0 =
P(θ < 0 | data)
P(θ ≥ 0 | data)

posterior oddsE[θ]>0 =
P(θ > 0 | data)
P(θ ≤ 0 | data)

,

whereby, θ denotes an arbitrary parameter. Assuming a positive posterior mean (E[θ] > 0),

posterior oddsE[θ]>0 = 3 indicates that a positive impact is three times as likely as a negative

impact. Prior odds are the corresponding ratio of the prior distribution. Assuming a symmetric

prior distribution around zero, posterior odds are equivalent to the Bayes factor. A Bayes factor

exceeding 3.2 is deemed as substantial evidence. Values above 10 are assigned with strong

evidence, whereas, values above 100 are related to decisive evidence (see Kass and Raftery,

1995).

LGD model

The LGD model is estimated based on the estimation sample (see Table 4.2). However, it offers
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no possibility to include censored observations, i.e., unresolved loans, in the estimation process.

Thus, the 21,817 resolved cases are included, whereas, 10,171 unresolved defaults are neglected.

As these unresolved loans tend to exhibit higher LGDs due to the resolution bias, parameter

estimates might be distorted.

Table 4.3 summarizes the results of the LGD model. Parameters are stated in the first column,

whereas, the second column presents posterior means. In the FMM within the LGD model,

Table 4.3: Results of the LGD model

posterior
HPDI (95%)

posterior naive time series
mean odds standard error standard error

LGD model

µ1 0.0000 not estimated
µ2 0.0067 0.0064 0.0070 ∞ 0.0000 0.0000
µ3 0.0290 0.0277 0.0303 ∞ 0.0000 0.0000
µ4 0.5114 0.5004 0.5229 ∞ 0.0000 0.0000
µ5 1.0000 not estimated

σ1 0.0010 not estimated
σ2 0.0045 0.0042 0.0048 ∞ 0.0000 0.0000
σ3 0.0249 0.0237 0.0261 ∞ 0.0000 0.0000
σ4 0.3364 0.3295 0.3436 ∞ 0.0000 0.0000
σ5 0.0010 not estimated

c1 -0.6959 -0.9773 -0.4082 ∞ 0.0006 0.0012
c2 -0.0349 -0.3203 0.2510 1.4857 0.0006 0.0012
c3 0.8952 0.6087 1.1777 ∞ 0.0006 0.0012
c4 2.7509 2.4649 3.0421 ∞ 0.0007 0.0012

ζEAD -0.1099 -0.1357 -0.0824 ∞ 0.0001 0.0001
ζFacility 0.2038 0.1495 0.2584 ∞ 0.0001 0.0001
ζProtection -0.4147 -0.4751 -0.3559 ∞ 0.0001 0.0001
ζIndustry -0.2355 -0.3000 -0.1683 ∞ 0.0002 0.0002
ζHPI 0.0590 -0.2183 0.3311 2.0243 0.0006 0.0010

random effect

σ 0.8191 0.6200 1.0329 ∞ 0.0005 0.0005

Notes: The table summarizes the results of the LGD model. Parameters are stated in the first column. Categorical
variables are included via dummy coding. The reference categories are term loan for facility, no for protection, and
non FIRE for industry. The second column presents the posterior means. In the third and fourth column, lower and
upper bounds of the corresponding HPDIs to a credibility level of 95% are displayed. The fifth column contains the
posterior odds. Naive and time series standard errors are shown in the last two columns. Time series standard errors
are calculated based on the effective chain length (N ∗MCMC) instead of the actual chain length (NMCMC), whereby,
N ∗MCMC < NMCMC holds for autocorrelated chains.

parameters of the outer components (µ1 and σ1 for the first component, µ5 and σ5 for the fifth

component) are fixed to identify loans with no (LGD = 0) and total (LGD = 1) loss. The second

and third component are located nearby the first component (µ2 = 0.0067 and µ3 = 0.0290)

and have rather small standard deviations (σ2 = 0.0045 and σ3 = 0.0249), whereas, the forth

component seems to cover the range in between the extremes of no and total loss (µ4 = 0.5114

and σ4 = 0.3364). The posterior distributions of the cut points (ck for k ∈ {1,2,3,4}) are not

directly interpretable as they depend on the range of the latent variable (Y ∗).

178



Chapter 4. Time matters: How default resolution times impact final loss rates

Component probabilities are derived based on the OL model within the LGD model. The param-

eter of the EAD (ζEAD) exhibits a negative posterior mean indicating a lower value of the latent

variable (Y ∗) for higher EADs and, thus, lower LGDs. This impact is characterized by decisive ev-

idence as the posterior odds are tending to infinity (posterior oddsE[ζEAD]<0→∞) and the HPDI

(HPDIζEAD
= [−0.14,−0.08]) excludes zero. Reasons for the negative impact of the EAD might

be found in higher resolution efforts and, thus, lower loss rates, for loans of major size. The

posterior mean of lines (ζFacility) is positive. Thus, lines are characterized by higher LGDs com-

pared to term loans. This positive influence is decisively evident (posterior oddsE[ζFacility]>0→∞

and 0 < HPDIζFacility
= [0.15,0.26]). Protection (ζProtection) exhibits a negative posterior mean

with decisive evidence (posterior oddsE[ζProtection]<0→∞ and 0 < HPDIζProtection
= [−0.48,−0.36]).

This indicates lower loss rates for protected loans which corresponds to the economic intu-

ition. According to the negative sign of the industry FIRE (ζIndustry), LGDs for loans of this

industry affiliation are lower compared to other industries. This impact is decisively evi-

dent (posterior oddsE[ζIndustry]<0→∞ and 0 < HPDIζIndustry
= [−0.30,−0.17]). The applied macro

variable, i.e., the HPI (ζHPI), exhibits a positive sign indicating higher LGDs for higher val-

ues of the HPI. This contradicts the economic intuition as a sound economic surrounding

should be accompanied with lower loss rates. However, the positive sign is not statistical

evident (posterior oddsE[ζHPI]>0 = 2.02 < 3.2 and 0 ∈ HPDIζHPI
= [−0.22,0.33]). The last row of

the table summarizes the posterior distribution of the random effect parameter.12

Figure 4.3 illustrates the realizations of the random effect ft in the LGD model. Higher re-

alizations of the random effect (ft > 0) indicate higher values of the latent variable Y ∗ for all

loans defaulted in t and, thus, higher average LGDs in this quarter. The left panel of the figure

presents the time patterns of ft. The path of ft seems to be related to the economic cycle.

While the realizations of the random effect scatter around zero prior to the crisis, increased

values occur since 2007 Q2. In the climax of the GFC, ft reaches its maximum. The rebound

in the aftermath of the crisis instates gradually. The right panel of the figure contrasts these

time patterns of ft to average LGDs in the time line as of Figure 4.2. Thus, the latter include

observations which are not considered in the estimation.13 Up to the more recent time periods,

the random effect seems to mimic the path of average LGDs. The time series disperse afterwards,

whereby, the spread further increases in the time line. This deviation might be attributed to

the resolution bias. In the LGD model, unresolved cases are neglected due to the impossibility

12 Results are similar to Betz et al. (2018).
13 The LGD model is based on the estimation sample, whereas, the average LGDs include information of validation

sample I, i.e., final LGD observations which are treated as unresolved cases in the estimation (see Table 4.2). We
include final observations of unresolved cases to point out effects of the resolution bias.
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Figure 4.3: Random effect of the LGD model
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Notes: The figure illustrates the course of the random effect in the LGD model over time. In the left panel, the
posterior means (thick line) and the HPDI (95%, dotted lines) of the random effect realizations, i.e., ft , are displayed.
In the right panel, the random effect (black line) is contrasted with the time patterns of average LGDs for all loans
(dark gray line) and for resolved loans (light gray line). Final and incurrent LGDs as of validation sample I are
included in the averaging. The thin lines mark zero and serves as a reference line.

of observing final LGDs. Thus, observations are excluded which tend to have higher LGDs.

This distorts the estimated realizations of the random effect in the more recent time periods.

The resolution bias and the associated distortion worsen in the time line, i.e., the distortion of

ft enlarges for higher t. Furthermore, a distortion of the random effect parameter σ has to be

considered as the downward distortions in the random effect realizations might erroneously

increase the underlying standard deviation of the random effect. We will come back to this later

on (see subsequent paragraph).

Hierarchical model

In analogy to the LGD model, the hierarchical approach is estimated based on the estimation

sample (see Table 4.2). Due to DRT model in the hierarchical approach, it is possible to include

censored observations, i.e., unresolved loans, in the estimation process. By this means, we are

able to generate posterior predictive distributions for the DRT of unresolved cases and, thus,

posterior predictive distributions for the LGD of unresolved loans. Furthermore, effects of the

resolution bias as in the pure LGD model (see Figure 4.3) might be diminished.

Table 4.4 summarizes the results of the hierarchical model. Parameters are stated in the first

column, whereas, the second column presents posterior means. Posterior distributions for

the estimated component parameters (µk and σk for k ∈ {2,3,4}) and loan specific covariate

parameters of the LGD model in the hierarchical approach (γEAD, γFacility, γProtection, and

γIndustry) are similar to their counterparts in the pure LGD model (see Table 4.3, µk and σk for

k ∈ {2,3,4} and ζEAD, ζFacility, ζProtection, and ζIndustry). A deviation arises for the parameter of the
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Table 4.4: Results of the hierarchical model

posterior
HPDI (95%)

posterior naive time series
mean odds standard error standard error

LGD model in the hierarchical approach

µ1 0.0000 not estimated
µ2 0.0064 0.0062 0.0067 ∞ 0.0000 0.0000
µ3 0.0279 0.0268 0.0290 ∞ 0.0000 0.0000
µ4 0.5033 0.4923 0.5144 ∞ 0.0000 0.0000
µ5 1.0000 not estimated

σ1 0.0010 not estimated
σ2 0.0043 0.0040 0.0045 ∞ 0.0000 0.0000
σ3 0.0234 0.0223 0.0244 ∞ 0.0000 0.0000
σ4 0.3384 0.3314 0.3453 ∞ 0.0000 0.0000
σ5 0.0010 not estimated

c1 -1.4391 -1.5803 -1.3004 ∞ 0.0003 0.0005
c2 -0.5848 -0.7242 -0.4422 ∞ 0.0003 0.0006
c3 0.5728 0.4306 0.7090 ∞ 0.0003 0.0005
c4 2.6716 2.5262 2.8169 ∞ 0.0003 0.0005

γEAD -0.1952 -0.2233 -0.1667 ∞ 0.0001 0.0001
γFacility 0.3259 0.2700 0.3840 ∞ 0.0001 0.0001
γProtection -0.6291 -0.6932 -0.5676 ∞ 0.0001 0.0002
γIndustry -0.2736 -0.3437 -0.2036 ∞ 0.0002 0.0002
γHPI -0.0061 -0.1287 0.1170 1.1847 0.0003 0.0005

γT 0.9996 0.9711 1.0280 ∞ 0.0001 0.0001

DRT model in the hierarchical approach

β0 0.7341 0.6112 0.8521 ∞ 0.0003 0.0006
βEAD 0.0512 0.0343 0.0678 ∞ 0.0000 0.0000
βFacility -0.0903 -0.1238 -0.0555 ∞ 0.0001 0.0001
βProtection 0.1345 0.0981 0.1718 ∞ 0.0001 0.0001
βIndustry -0.1555 -0.1954 -0.1141 ∞ 0.0001 0.0001
βVIX 0.2731 0.1514 0.3946 7141.8571 0.0003 0.0004

s 0.8488 0.8395 0.8583 ∞ 0.0000 0.0000

random effect

σT 0.3424 0.2627 0.4327 ∞ 0.0002 0.0002
σL 0.3615 0.2696 0.4634 ∞ 0.0002 0.0003
ωT ,L 0.1863 -0.1398 0.5031 6.3057 0.0007 0.0008

Notes: The table summarizes the results of the hierarchical model. Parameters are stated in the first column.
Categorical variables are included via dummy coding. The reference categories are term loan for facility, no for
protection, and non FIRE for industry. The second column presents the posterior means. In the third and fourth
column, lower and upper bounds of the corresponding HPDIs to a credibility level of 95% are displayed. The fifth
column contains the posterior odds. Naive and time series standard errors are shown in the last two columns. Time
series standard errors are calculated based on the effective chain length (N ∗MCMC) instead of the actual chain length
(NMCMC), whereby, N ∗MCMC < NMCMC holds for autocorrelated chains.
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HPI (γHPI). In comparison the corresponding parameter in the pure LGD model (ζHPI) it exhibits

an intuitively negative sign, thus, indicating lower LGDs in sound economic surroundings

which is displayed by an increasing HPI. However, the parameter of the macro variable is

still characterized by a lack of statistical evidence (posterior oddsE[γHPI]<0 = 1.18 < 3.2 and

0 ∈ HPDIγHPI
= [−0.13,0.12]). The sign switch of γHPI compared to ζHPI might be due to

the inclusion of the logarithmized DRT as explanatory variable in the LGD model of the

hierarchical approach (γT ) as further systematic variables, i.e., the VIX and the random effect

of the DRT model, enter the LGD model through the DRT. The posterior mean of γT has

a positive sign indicating higher LGDs for loans with higher DRTs. In Section 4.2.1 (see

Figure 4.1), we determined this relation descriptively. The impact of the DRT is decisively

evident (posterior oddsE[γT ]>0→∞ and 0 <HPDIγT = [0.97,1.03]).

In the DRT model of the hierarchical approach, loan specific covariates and a macro variable,

i.e., the VIX, are included. The posterior mean of the EAD (βEAD) exhibits a positive sign. Thus,

loans of major size are accompanied with longer DRTs. This supports the thesis we stated in the

previous paragraph. Financial institutions might undertake higher resolution efforts for loans

of major size. This might increase the DRTs and simultaneously lower LGDs. Decisive evidence

can be stated for the positive impact of the EAD in the DRT model (posterior oddsE[βEAD]>0→∞

and 0 < HPDIβEAD
= [0.03,0.07]). According to the negative posterior mean of lines (βFacility),

this facility type is accompanied with shorter DRTs compared to term loans. This impact

is decisively evident (posterior oddsE[βFacility]<0 → ∞ and 0 < HPDIβFacility
= [−0.12,−0.06]). In

analogy to the EAD, the impact of facility is opposite in the LGD and DRT model of the

hierarchical approach. While lines are characterized by shorter DRTs, they result in higher

LGDs. Reasons may be found in divergent resolution efforts related to the size of the loan

and its protection. The posterior mean of protection (βProtection) exhibits a positive, decisively

evident (posterior oddsE[βProtection]<0→∞ and 0 <HPDIβProtection
= [−0.69,−0.57]), sign indicating

longer DRTs for protected loans. The impact of protection is divergent among the models in

the hierarchical approach (γProtection < 0 and βProtection > 0). This might be due to the nature of

protection itself. If loans are secured either by collateral or guarantees, efforts have to be taken to

realize the protection value. This might extent DRTs, however, reduce LGDs when the protection

value is realized. The industry affiliation FIRE (βIndustry) reveals a negative posterior mean, thus,

it is connected to shorter DRTs. The sign is decisively evident (posterior oddsE[βIndustry]<0→∞

and 0 < HPDIβIndustry
= [−0.69,−0.57]) and corresponds to the sign of the LGD model in the

hierarchical approach (γIndustry < 0 and βIndustry < 0). Resolution prospects in the FIRE industry

might be limited compared to other industries due to less tangible assets. Thus, DRTs are short
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and LGDs high. To control for the impact of the macro economy, the VIX (βVIX) is included

in the DRT model of the hierarchical approach. Its posterior mean is positive and decisively

evident (posterior oddsE[βVIX]>0 = 7,141.86 > 100 and 0 <HPDIβVIX
= [0.15,0.39]). This entails

longer DRTs in bad economic surroundings which corresponds to the economic intuition.

The parameters of the multivariate random effect as of Equation (4.11) are stated in the lower

panel of Table 4.4. As the DRT is included in the LGD model of the hierarchical approach, the

random effect of the DRT model (FTt ) enters the LGD model. Thus, the aggregated systematic

impact of the random effects on LGDs (Ft) is the linear combination of γT F
T
t and FLt :

Ft = γT F
T
t +FLt (4.13)

σ2
F = γ2

T σ
2
T + σ2

L + 2γT σT σLωT ,L,

whereby, σ2
F is the variance of the aggregated systematic effect. Considering the results of

Table 4.4, the standard deviation σF of Ft amounts to 0.54. This standard deviation is con-

siderably smaller compared to the standard deviation of the random effect in the pure LGD

model (see Table 4.3, σ = 0.82). As suspected in the previous paragraph, the estimated standard

deviation of the random effect in the pure LGD model seems to be distorted due to the resolution

bias. Neglecting censored observations, i.e., unresolved loans, leads to distorted realizations

of the random effect (ft) and, thus, subsequently to distorted parameters (σ ).14 However, the

standard deviation of the random effect should be reduced, if additional explanatory variables

are included in the model.

Figure 4.4 illustrates the realizations of the random effects of the DRT model f Tt (upper left

panel) and the LGD model f Lt (lower left panel) in the hierarchical approach. Higher realizations

of the random effect in the DRT model (f Tt > 0) imply higher DRT for all loans defaulted in

t, whereas, higher realizations of the random effect in the LGD model (f Lt > 0) lead to higher

values of the latent variable Y ∗ for all loans defaulted in t and, thus, to higher average LGDs in

this quarter. Hence, DRTs impact LGDs through two channels (see Section 4.2.2). Directly, as

higher DRTs are inserted in the LGD model. Indirectly, as positive realizations of f Tt tend to

imply positive realizations of f Lt due to the positive correlation (ωT ,L). However, the indirect

channel might also weaken the impact of DRTs on LGDs as negative realizations of f Lt are still

possible. Considering the time patterns of the random effects as of Figure 4.4, four settings

14 Based on our data set, we find σ > σF . However, σ < σF is conceivable if the most recent time period is
characterized by crisis conditions. Considering the time period from 2004 Q1 to 2008 Q3, ft would be lower
during the crisis and presumable σ would be lower compared to σF .
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Figure 4.4: Random effect of the hierarchical model
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Notes: The figure illustrates the course of the random effects in the hierarchical model over time. In the left panels,
the posterior means (thick lines) and the HPDI (95%, dotted lines) of the random effect realizations, i.e., f Tt (DRT)
and f Lt (LGD), are displayed. In the right panel, the combined systematic effect on the LGDs according to the random
effects of the hierarchical model (γT f

T
t + f Lt , black line) is contrasted with the time patterns of average LGDs for all

loans (dark gray line) and for resolved loans (light gray line). Final and incurrent LGDs as of validation sample I are
included in the averaging. The thin lines mark zero and serves as a reference line.

of the indirect channel are apparent. In the first setting prior to the GFC, f Tt < 0 and f Lt > 0

are valid. Thus, average DRTs of loans defaulted in t are shorter. The positive realization

of f Lt , however, increases average LGDs. Resolutions of these loans at least partly take place

during the crisis. This might depress recovery payments at the end of the resolution process

and, thus, increase LGDs. The second setting in the climax of the GFC is characterized by

positive realizations of both random effects (f Tt > 0 and f Lt > 0) indicating longer DRT and

simultaneously higher LGDs of loans defaulted in t. In the third setting in the aftermath of

the GFC, signs of the random effects are contrary (f Tt > 0 and f Lt < 0). Hence, average DRTs

of loans defaulted in t are longer, whereas, average LGDs are lower. This might be due to the

time delay as of the first setting. Analogously, parts of the recovery payments take place during

the rebound period which favors recovery collection and decreases LGDs. The fourth setting is

located in the most recent time period. The realizations of both random effects exhibit negative
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signs (f Tt < 0 and f Lt < 0) indicating shorter DRTs and simultaneously lower LGDs for loans

defaulted in t. These settings illustrate the impacts of systematic effects in the resolution process.

The positive correlation of the random effects (ωT ,L) seems to be driven by extreme economic

surroundings as synchronism appears in crises and boom periods. Furthermore, reasoning

for the gradual rebound in the aftermath of the GFC can be provided (see Figure 4.2). While

the random effect of the LGD model f Lt indicates the rebound in the aftermath of the crisis

(third setting), the random effect of the DRT model f Tt remains on its high level. This might be

due to the high stock of non-performing loans in the aftermath of the GFC which decelerated

resolution proceedings. Average LGDs increase due to the direct channel.

The right panel of Figure 4.4 contrasts the aggregated systematic impact of the random ef-

fects (Ft) to average LGDs in the time line. The latter include observations which are not

considered in the estimation.15 The aggregated systematic effect seems to mimic the path of av-

erage LGDs. However, slight dispersions are apparent in the more recent time periods. Reasons

might be found in a less accurate estimation of the random effect realizations of the LGD model

(f Lt ) in the more recent time periods. Although censored observations are included through the

DRT model, unresolved loans do not directly enter the LGD model in the hierarchical approach.

Comparing the dispersions of the hierarchical model with the pure LGD model (see Figure 4.3),

improvements are apparent. While the spread extremely increases in the time line for the pure

LGD model, the deviation is considerably less pronounced in the hierarchical approach. Thus,

the hierarchical approach succeeds in reducing distortions due to the resolution bias.

4.4 Validation

The validation is conducted on an in sample, out of sample, and out of sample out of time

perspective. As stated in Section 4.2.1 (see Table 4.2), the models are estimated based on the

estimation sample. In the in sample validation, the posterior predictive distributions based

on the estimation sample are compared to the empirical distributions of completely resolved

loans in the estimation sample. The out of sample validation examines the distributional fit for

censored observations, i.e., loans which have defaulted till the end of the estimation period but

are still unresolved. Thus, Posterior predictive distributions based on validation sample I are

compared to the corresponding empirical distribution. The posterior predictive distributions

are generated based on the estimated realizations of the random effect. In the out of sample out

15 The presentation corresponds to the right panel of Figure 4.3.
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of time validation, loans which defaulted after the end of the estimation period are considered.

As no random effect realizations are available for those loans, posterior predictive distributions

are generated on the means of the random effects, i.e., zero, and compared to the corresponding

empirical distribution.

We adapt two graphical tools to evaluate the distributional fit of the models. First, kernel density

estimates of the posterior predictive distributions are compared to kernel density estimates

of the empirical data. The bandwidth is fixed to 0.015 to ensure comparability. So heights

of the kernel density estimates are comparable despite ties. Second, quantile-quantile plots

are applied. Hereby, the quantiles of the posterior predictive distributions are contrasted to

the quantiles of the empirical distribution. In the case of optimality, i.e., if the distributions

correspond to each other, the points of the quantile-quantile plot are on the bisector line. If the

probability of low loss components is overestimated and the probability of high loss components

is underestimated, the points are below the bisector line as the the quantiles of the posterior

predictive distributions are smaller than the quantiles of the empirical distribution. This

corresponds to an underestimation of average LGDs.

In sample

Figure 4.5 illustrates the in sample validation of the LGD model and the hierarchical model.

In the left panel, kernel density estimates of the empirical distribution (thin black line), the

posterior predictive distribution of the LGD model (thick gray line), and the posterior predictive

distribution of the hierarchical model (thick black line) are presented. However, lines lie

directly on top of each other, thus, the black line of the posterior predictive distribution of the

hierarchical model overlays the remaining two. To get a more detailed impression, the right

panel of the figure illustrates quantile-quantile plots, whereby, the quantiles of the posterior

predictive distributions are contrasted to the quantiles of the empirical distribution. The gray

dots mark the LGD model, whereas, the hierarchical model is represented by black dots. The

dots are near the optimality, i.e., bisector, line for both models. Thus, the in sample fit of

the posterior predictive distributions is quite good with respect to the LGD model and the

hierarchical model. This indicates that the applied FMM with five mixture components seems

to deliver satisfactory results regarding the distributional fit.

Out of sample

Figure 4.6 illustrates the out of sample validation for the LGD model and the hierarchical model.
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Figure 4.5: Validation (in sample)
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Notes: The figure illustrates the in sample validation of the LGD model and the hierarchical model. In the left panel,
the kernel density estimates of the empirical distribution (resolved loans as of estimation sample, thin black line),
the posterior predictive distribution of the LGD model (thick gray line), and the posterior predictive distribution of
the hierarchical model (thick black line) are displayed. The band width is fixed to 0.015 to ensure comparability.
The kernel density estimates lie directly on top of each other. Thus, differences are not identifiable. In the right
panel, the corresponding quantile-quantile plots are presented. The quantiles of the empirical distribution (x-axis)
are plotted against the quantiles of the posterior predictive distributions (y-axis). The gray (black) dots mark the
quantiles of the empirical distribution vs. the quantiles of the posterior predictive distribution of the LGD model
(hierarchical model). The black line represents optimality.

The presentation corresponds to Figure 4.5 (in sample validation). The posterior predictive

distribution of the LGD model (gray) seems to overestimate the probability mass of the low loss

components, whereas, it underestimates the probability mass of the high loss components. In

the left panel, its kernel density estimate lies above the kernel density estimate of the empirical

distribution for no loss (LGD = 0) and below for total loss (LGD = 1). This appears even clearer

considering the quantile-quantile plots in the right panel. The dots are considerably below the

optimality line indicating an underestimation of average LGDs. The underestimation is caused

by the parameter distortion of the random effect due to the resolution bias. The random effect

realizations ft are characterized by a downward bias, thus, leading to downward biased estimates

for Yi and downward biased loss rates (see Section 4.3). In contrast, the distributional fit of the

hierarchical model is good on an out of sample perspective. This is due to two reasons. First,

the parameter distortions caused by the resolution bias are diminished (see Section 4.3). Second,

the additional information of how long a loan is in resolution is utilized to improve predictions

on an out of sample perspective. Final DRTs for censored observations, i.e., unresolved cases,

are estimated within the hierarchical approach. These can be applied to generate predictions of

final LGDs for unresolved loans.

Out of sample out of time

Figure 4.7 illustrates the out of sample out of time validation of the LGD model and the hier-
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Figure 4.6: Validation (out of sample)
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Notes: The figure illustrates the out of sample validation of the LGD model and the hierarchical model. In the left
panel, the kernel density estimates of the empirical distribution (resolved loans as of validation sample I, thin black
line), the posterior predictive distribution of the LGD model (for resolved loans, thick gray line), and the posterior
predictive distribution of the hierarchical model (for resolved loans, thick black line) are displayed. The band width
is fixed to 0.015 to ensure comparability. In the right panel, the corresponding quantile-quantile plots are presented.
The quantiles of the empirical distribution (x-axis) are plotted against the quantiles of the posterior predictive
distributions (y-axis). The gray (black) dots mark the quantiles of the empirical distribution vs. the quantiles of the
posterior predictive distribution of the LGD model (hierarchical model). The black line represents optimality.

archical model. The presentation corresponds to Figure 4.5. In analogy to the out of sample

validation, an overestimation of low loss components and an underestimation of high loss

components arises for the LGD model. However, it is not as striking as in the out of sample

validation (see Figure 4.6). This might be due to the use of the random effect in average terms –

instead of the individual realizations ft as in the out of sample validation – to generate the

posterior predictive distribution. However, the poor distributional fit of the LGD model on

the out of sample out of time perspective suggests that there are additional distortions beyond

the realizations of the random effect and its standard deviation. These might be found in the

cut points which represent the intercepts in an OL model.16 In contrast to the LGD model,

the distributional fit of the hierarchical model is quite good on an out of sample out of time

perspective.

Validation in the time line

Thus far, the distributional fit of the LGD model and the hierarchical model are analyzed for the

estimation sample and the validation samples. Figure 4.8 illustrates the time patterns of average

LGD predictions based on the posterior predictive distributions for specific default quarters.

The upper left panel contrast average LGDs (thin black line) to average LGD predictions based

on the LGD model (thick gray line) and the hierarchical model (thick black line) on an in

16 The cut points of the LGD model and the hierarchical model are not directly comparable as the logarithm of the
DRT is included as additional variable. By this means, the mean of the latent variable Y ∗ and, thereby, the level of
the cut points are shifted.
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Figure 4.7: Validation (out of sample out of time)

LGD

de
ns

ity

0.0 0.5 1.0

0
5

10
15

empirical distribution
posterior predictive distribution
(LGD model)
posterior predictive distribution
(hierarchical model)

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●● ● ● ● ● ● ●

●

●

●

●
●

●
●

●
●

●
●
●
●
●

●

●

●

●●●●●
●

●

quantiles of empirical distribution

qu
an

til
es

 o
f p

re
di

ct
iv

e 
di

st
rib

ut
io

n

0.0 0.5 1.0

0.
0

0.
5

1.
0

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●●
●●●●●●●●●

●

●

●

●

optimality line
LGD model
hierarchical model

Notes: The figure illustrates the out of sample out of time validation of the LGD model and the hierarchical model.
In the left panel, the kernel density estimates of the empirical distribution (all loans as of validation sample II
with incurrent LGDs, thin black line), the posterior predictive distribution of the LGD model (thick gray line), and
the posterior predictive distribution of the hierarchical model (thick black line) are displayed. The band width is
fixed to 0.015 to ensure comparability. In the right panel, the corresponding quantile-quantile plots are presented.
The quantiles of the empirical distribution (x-axis) are plotted against the quantiles of the posterior predictive
distributions (y-axis). The gray (black) dots mark the quantiles of the empirical distribution vs. the quantiles of the
posterior predictive distribution of the LGD model (hierarchical model). The black line represents optimality.

sample perspective. In analogy to Figure 4.5, a good in sample fit for both models can be stated.

The lower left panel illustrates the time patterns of average LGDs and LGD predictions on an

out of sample perspective. Although the relative progressions of the LGD predictions based

on the LGD model and the hierarchical model are similar, the predictions based on the LGD

model are downward biased. Thus, average LGDs are underestimated by the LGD model in

almost all quarters in validation sample I. This is not the case considering the predictions of the

hierarchical model. The noisy behavior of average LGDs at the beginning of the time period

is due to a lack of data as most loans defaulted in these quarters are resolved by the end of

2010 and, thus, not included in validation sample I. The lower right panel illustrates the time

patterns of average LGDs and LGD predictions on an out of sample out of time perspective. The

predictions based on the LGD model seem to be constant through time as the random effect is set

to its mean, i.e., zero, and the macro variable is the only remaining systematic factor. However,

the latter is not statistically evident (see Table 4.3). Furthermore, LGD predictions based on

the LGD model seem to be systematically too low. LGD predictions based on the hierarchical

model better fit average LGDs. Deviations at the end of the time period might be attributed to

the inclusion of incurrent LGDs for unresolved cases (see Figure 4.2). Final LGDs will be lower

and adjust the line downwards. In addition, LGD predictions based on the hierarchal model

display systematic movement as the statistically evident macro variable of the DRT model is

enclosed in the LGD model of the hierarchical approach (see Table 4.4).
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Figure 4.8: Validation in the time line
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Notes: The figure illustrates the validation in the time line. The means of the empirical distribution are displayed
by a thin black line, whereas, the means of the posterior predictive distributions are marked by a thick gray line
for the LGD model and a thick black line for the hierarchical model, respectively. In the upper panel, the in sample
validation in the time line is presented (empirical means of resolved loans in estimation sample). The lower panels
show the out of sample (empirical means of resolved loans in validation sample I) and out of sample out of time
validation (empirical means of all loans in validation sample II with incurrent LGDs) in the time line.

4.5 Conclusion

In this paper, we deeply examine the dependence structure of DRTs and LGDs using a hierar-

chical modeling framework. We find direct and indirect dependencies among the credit risk

parameters. First, LGDs seem to be directly impacted by DRTs, i.e., longer resolution processes

are accompanied with higher losses. Second, the parameters are characterized by common

time patterns as correlation of the random effects in the individual models is positive. Due to

the random nature of these effects, the dependence of DRTs and LGDs might be intensified

or weakened in certain time periods. We find similar signs of the random effect realizations

during the GFC and deviating signs pre and post crisis. Due to the consideration of direct

dependency structures, we are able to generate intuitive LGD predictions for censored cases,

i.e., non-performing loans. As final DRTs for unresolved loans are estimated within the DRT
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model of the hierarchical approach, these estimations can be used to directly generate final

LGD predictions for these cases. LGD predictions based on the hierarchical approach, thereby,

outperform predictions based on a pure LGD model.

Furthermore, effects of the resolution bias are diminished in the hierarchical approach. While

the parameters and, thus, the realizations of the random effect are biased in a pure LGD model,

these distortions are eliminated in the hierarchical approach. The parameter distortions due

to the resolution bias have considerable impacts on the out of sample and out of sample out of

time performance of pure LGD models. Out of sample, a pure LGD model generates average

LGD predictions underestimating actual average LGDs by up to 25 percentage points for loans

defaulted during the GFC (2008 Q1 to 2009 Q3). The hierarchical approach delivers sufficiently

conservative predictions for loans defaulted in the crisis (up to 16 percentage points above

actual average LGDs). Assuming ten loans with an EAD of 500,000 EUR defaulted in 2008 Q4,

a pure LGD model underestimates losses due to these loans by round about 1,05 million EUR.

Out of sample out of time, these effects are less pronounced, however, still remarkable. A

pure LGD model constantly underestimates actual average LGDs in the time period from

2013 Q1 to 2015 Q4 by up to 20 percentage points, while the hierarchical approach delivers

slightly conservative predictions in most time periods (between 3 percentage points below and

8 percentage points above actual LGDs).17 Assuming ten loans with an EAD of 500,000 EUR

defaulted in 2015 Q4, a pure LGD model underestimates losses due to these loans by round

about 600,000 EUR.

Concluding, the consideration of the dependency structure of DRTs and LGDs and the thereto

entailed resolution bias is essential to generate suitable LGD predictions. The presented hierar-

chical model prevents the need of additional data constraints and provides fruitful insights into

the dependence structure of DRTs and LGDs.

17 The subsequent time period is hard to interpret due to incurrent LGDs.
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4.A Appendix | Bayesian model specification

The LGD model and the hierarchical model are estimated via Bayesian inference.18 Thus,

prior distributions have to be specified for every parameter in the models. Most of the prior

distributions are characterized by an uninformative specification. If weakly informative priors

are a provided, this is done to avoid convergence reasons.

LGD model

In the FMM, the number of latent classes is set to five (K = 5). As the LGD distribution is

extremely bimodal and characterized by high probability masses at zero and one, we fix the

parameters of the outer components (k = 1 and k = 5). The means are set to µ1 = 0 and µ5 = 1

with rather small standard deviations (σ1 = σ5 = 0.001) to identify loans with no and total loss.

The remaining component parameters are provided with uninformative prior distributions:

µ2 ∼N
(
µ = 0.0 , σ = 1 · 105

)
µ3 ∼N

(
µ = 0.5 , σ = 1 · 105

)
µ4 ∼N

(
µ = 1.0 , σ = 1 · 105

)
σk ∼N

(
µ = 0.0 , σ = 1 · 105

)
[ 0 , ] for k ∈ {2,3,4} , (4.14)

where, the squared brackets indicate truncation. The prior distributions of the component

means are Normal distributions with mean µ = 0.0 for component 2, µ = 0.5 for component 3,

and µ = 1.0 for component 4. The means of the components are ordered and, thus, truncated to

the interval [0,1] due to the fixed outer components. The standard deviations of the prior distri-

butions are set to a rather high value which corresponds to a uninformative prior specification.

The component standard deviations are provided with an uninformative truncated Normal

prior distribution. We forgo the conjugate prior distributions (inverse Gamma distribution for

the variance) as convergence problems might arise for small values of σk .

The cut points ck for k ∈ {1, . . .K −1} of the OL model are restricted to be ordered (c1 < · · · < cK−1)

and provided with uninformative prior distributions:

ck ∼N
(
µ = 0 , σ = 1 · 105

)
for k ∈ {1, . . . ,K − 1} . (4.15)

18 The MCMC samples are drawn via the sampler Stan.
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The prior distributions of the coefficients ζj for j ∈ {1, . . . , J} are uninformative Normal prior

distributions with mean 0 and high standard deviations:

ζj ∼N
(
µ = 0 , σ = 1 · 105

)
for j ∈ {1, . . . , J} . (4.16)

The random effect Ft follows a normal distribution with mean zero and standard deviation σ .

We provide the standard deviation of the random effect σ with uninformative prior distribution:

σ ∼Gamma( 0.001 , 0.001 ) . (4.17)

Hierarchical model

In the hierarchical model, we adopt the prior distributions of the components as of Equa-

tion (4.14) and the cut points as of Equation (4.15). The coefficients of the DRT model βj for

j ∈ {1, . . . , JT } and the LGD model γj for for j ∈ {1, . . . , JL} are also provided with uninformative

Normal prior distributions:

βj ∼N
(
µ = 0 , σ = 1 · 105

)
for j ∈ {1, . . . , JT } (4.18)

γj ∼N
(
µ = 0 , σ = 1 · 105

)
for j ∈ {1, . . . , JL} . (4.19)

The random effects FTt and FLt in the hierarchical model follow a bivariate normal distribution,

whereby, the mean vector corresponds to the two dimensional zero vector (02 = ( 0 0 )T ). We

provide the correlation matrix Ω of the bivariate normal distribution with an uninformative

LKJ prior distribution (see Stan Development Team, 2016) and the standard deviations of the

random effects σT and σL with uninformative gamma distributions:

Ω ∼ LKJ( 1 ) (4.20)

σT ∼Gamma( 0.001 , 0.001 ) (4.21)

σL ∼Gamma( 0.001 , 0.001 ) . (4.22)

The covariance matrix Σ of the bivariately distributed random effects might be calculated based

on the correlation matrix Ω and the individual standard deviations σT and σL.
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4.B Appendix | Bayesian convergence diagnostics

LGD model

Table 4.B.1: Convergence diagnostics of LGD model

Gelman-Rubin diagnostic Heidelberger-Welch diagnostic

point upper confidence stationary
start p value

estimate limits (95%) test

µ2 1.0000 1.0002 passed 1 0.3857
µ3 1.0000 1.0000 passed 1 0.2169
µ4 1.0000 1.0002 passed 1 0.2180

σ2 1.0000 1.0000 passed 1 0.6438
σ3 1.0000 1.0000 passed 1 0.3903
σ4 1.0001 1.0008 passed 1 0.4836

c1 1.0001 1.0005 passed 1 0.4102
c2 1.0000 1.0003 passed 1 0.4826
c3 1.0001 1.0005 passed 1 0.4600
c4 1.0001 1.0005 passed 1 0.3650

ζEAD 1.0002 1.0013 passed 1 0.0595
ζFacility 1.0000 1.0001 passed 1 0.4377
ζProtection 1.0000 1.0001 passed 1 0.6311
ζIndustry 1.0002 1.0013 passed 1 0.4295
ζHPI 1.0000 1.0000 passed 1 0.3440

sigma 1.0000 1.0000 passed 1 0.9538

Notes: The table summarizes the convergence diagnostics of the LGD model. Parameters are stated in the first
column. In the second and third column, the Gelman-Rubin diagnostics are displayed. The potential reduction factor
and its upper confidence limit are calculated. Convergence is diagnosed if chains have ”forgotten” their initial
values, i.e., for upper limit close to one (see Gelman and Rubin, 1992). A rule of thumb assumes 1.1 as critical value.
The Gelman-Rubin diagnostic examines the length of burn-in. In the last three columns, the Heidelberger-Welch
diagnostics are presented. The two chains are combined to calculate a criterion of relative accuracy for the posterior
means. The frequentistic stationarity test adopts the Cramer-von-Mises statistic to test the null hypothesis of a
stationary process in the chains (see Heidelberger and Welch, 1981, 1983). The Heidelberger-Welch diagnostic
examines the length of chains.
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Figure 4.B.1: Trace plots of the component parameters (LGD model)
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Notes: The figure illustrates the trace of MCMC chains for the component parameters (µk and σk for k ∈ {2,3,4}) in
the LGD model. The first chain is displayed in black, the second in gray.
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Figure 4.B.2: Trace plots of the cut points (LGD model)
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Notes: The figure illustrates the trace of MCMC chains for the cut points (ck for k ∈ {1,2,3,4}) in the LGD model.
The first chain is displayed in black, the second in gray.
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Figure 4.B.3: Trace plots of the covariate parameters ζj and the random effect parameter
σ (LGD model)
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Notes: The figure illustrates the trace of MCMC chains for the covariate parameters (ζj for j ∈ {EAD, Facility,
Protection, Industry, HPI}) and the parameter of the random effect (σ ) in the LGD model. The first chain is displayed
in black, the second in gray.
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Hierarchical model

Table 4.B.2: Convergence diagnostics of hierarchical model

Gelman-Rubin diagnostic Heidelberger-Welch diagnostic

point upper confidence stationary
start p value

estimate limits (95%) test

µ2 1.0000 1.0000 passed 1 0.17944
µ3 1.0000 1.0002 passed 1 0.87543
µ4 1.0000 1.0001 passed 1 0.44269

σ2 1.0000 1.0000 passed 1 0.69836
σ3 1.0002 1.0003 passed 1 0.54110
σ4 1.0002 1.0008 passed 1 0.89167

c1 1.0000 1.0000 passed 1 0.50214
c2 1.0000 1.0000 passed 1 0.74251
c3 1.0000 1.0002 passed 1 0.83016
c4 1.0001 1.0004 passed 1 0.87461

γEAD 1.0000 1.0000 passed 1 0.61537
γFacility 1.0000 1.0001 passed 1 0.72393
γProtection 1.0001 1.0009 passed 1 0.20917
γIndustry 1.0000 1.0001 passed 1 0.62439
γHPI 1.0004 1.0005 passed 1 0.27974

γT 1.0000 1.0000 passed 5001 0.23503

β0 1.0001 1.0004 passed 1 0.32351
βEAD 1.0000 1.0000 passed 1 0.70406
βFacility 1.0000 1.0000 passed 1 0.38782
βProtection 1.0000 1.0001 passed 1 0.42642
βIndustry 1.0001 1.0007 passed 1 0.23275
βVIX 1.0003 1.0015 passed 10001 0.21704

s 1.0000 1.0001 passed 1 0.46664

σT 1.0000 1.0002 passed 1 0.99576
σL 1.0000 1.0000 passed 1 0.18011
ωT ,L 1.0000 1.0003 passed 1 0.47216

Notes: The table summarizes the convergence diagnostics of the hierarchical model. Parameters are stated in the
first column. In the second and third column, the Gelman-Rubin diagnostics are displayed. The potential reduction
factor and its upper confidence limit are calculated. Convergence is diagnosed if chains have ”forgotten” their initial
values, i.e., for upper limit close to one (see Gelman and Rubin, 1992). A rule of thumb assumes 1.1 as critical value.
The Gelman-Rubin diagnostic examines the length of burn-in. In the last three columns, the Heidelberger-Welch
diagnostics are presented. The two chains are combined to calculate a criterion of relative accuracy for the posterior
means. The frequentistic stationarity test adopts the Cramer-von-Mises statistic to test the null hypothesis of a
stationary process in the chains (see Heidelberger and Welch, 1981, 1983). The Heidelberger-Welch diagnostic
examines the length of chains.
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Figure 4.B.4: Trace plots of the component parameters (hierarchical model)
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Notes: The figure illustrates the trace of MCMC chains for the component parameters (µk and σk for k ∈ {2,3,4}) in
the hierarchical approach. The first chain is displayed in black, the second in gray.
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Figure 4.B.5: Trace plots of the cut points (hierarchical model)
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Notes: The figure illustrates the trace of MCMC chains for the cut points (ck for k ∈ {1,2,3,4}) in the hierarchical
approach. The first chain is displayed in black, the second in gray.
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Figure 4.B.6: Trace plots of the covariate parameters γj and impact parameter γT (hierar-
chical model)
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Notes: The figure illustrates the trace of MCMC chains for the covariate parameters (γj for j ∈ {EAD, Facility,
Protection, Industry, HPI}) and the impact parameter of the DRT (γT ) of the LGD model in the hierarchical approach.
The first chain is displayed in black, the second in gray.
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Figure 4.B.7: Trace plots of the intercept β0 and covariate parameters βj (hierarchical model)
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Notes: The figure illustrates the trace of MCMC chains for the intercept (β0) and the covariate parameters (βj for
j ∈ {EAD, Facility, Protection, Industry, VIX}) of the DRT model in the hierarchical approach. The first chain is
displayed in black, the second in gray.
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Figure 4.B.8: Trace plots of the standard error s and the random effect parameters σT , σL,
ωT ,L, and ωL,T (hierarchical model)
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Notes: The figure illustrates the trace of MCMC chains for the standard error (s) of the DRT model and the random
effect parameters (σT , σL, ωT ,L, and ωL,T ) in the hierarchical approach. The first chain is displayed in black, the
second in gray.
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Summary

This thesis focuses on the resolution of defaulted loan contracts. It is composed of a profound

empirical analysis of the DRT and the LGD – the two central parameters of the resolution

process. In the first research paper What drives the time to resolution of defaulted bank loans? (see

Chapter 1), general loan-specific and macro(-economic) drivers of the DRT are identified,

whereas, the second research paper Macroeconomic effects and frailties in the resolution of non-

performing loans (see Chapter 2) analyzes systematic effects among DRTs considering not only

observable, i.e., macro(-economic), variables, but also unobservable systematic factors in terms

of frailty effects. Both research papers emphasize the high relevance of the DRT considering

LGDs of defaulted loan contracts by descriptive explorations.

The empirical analysis of LGDs is subject to the third research paper Systematic effects among

LGDs and their implications on downturn estimation (see Chapter 3). In analogy to the second

research papers, observable and unobservable systematic effects, i.e., macro(-economic) vari-

ables and random effects, lie in the heart of the analysis. The fourth and last research paper

Time matters: How default resolution times impact final loss rates (see Chapter 3) connects the

two parameters of the resolution process. As DRTs and LGDs are outcomes of the same ran-

dom process – the resolution process, dependency structures among the two parameters are

conceivable. A combined modeling approach is developed allowing for direct and indirect

dependencies. By this means, parameter distortions due to the resolution bias are diminished

and, thus, appropriate LGD predictions on an out of sample perspective are ensured which arise

in pure (standard) LGD models.
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Discussion and outlook

The topic of this thesis is of high relevance for financial institutions and regulators. As the

financial stability is indispensable for a robust economic system (see Introduction), the reg-

ulatory framework regarding, for instance, capital requirements for credit risk, is subject to

ongoing alterations (see Basel Committee on Banking Supervision, 2006, 2010, 2017). Thus,

questions regarding the economic impact or the implementation of new capital standards arise.

Some topics – e.g., the resolution of defaulted loan contracts – attained limited consideration

in academic literature due to a lack of data availability. Data regarding loan contracts is of

private nature and, thus, not publicly available. The research papers presented this thesis use

access to the unique loss data base of Global Credit Data (GCD) which includes detailed loss

information on transaction basis of defaulted loan contracts. Access to this data base made a

profound analysis of the resolution process possible. However, the resolution of defaulted loan

contracts is a wide research area. There are still open questions worth analyzing. First, the

identification of economically and statistically significant (evident) macro(-economic) variables

for workout LGDs attains ongoing attention in the recent literature (see, e.g., Lee and Poon,

2014; Krüger and Rösch, 2017). Applying a combined modeling approach as in Chapter 4 might

simplify this task as variables can be integrated contemporary in the modeling framework.

Second, alternative data – e.g., Moody’s ultimate recovery data base – might be used to compare

systematic effects of market-based and workout LGDs as deviations among the two concepts are

conceivable. To the best of my knowledge, no study exists so far which examines the differences

of market-based and workout LGDs. Third, the GCD data base offers information on transaction

basis. A deeper analysis of individual recovery cash flows might shed additional light into the

inherent structures of resolution processes.

Resolution of defaulted loan contracts is characterized by high levels of complexity as a series

of random processes are liable for the resulting parameters – the DRT and the LGD. These

processes not only depend on observable and unobservable variables but also on the regulatory

framework and common business practices. To decently reflect such processes, statistical models

should be as complex as necessary, but as simple as possible to ensure model stability. Some

random processes – and I think the resolution of defaulted loan contracts belongs into this

category – are shaped by noise and, thus, randomness, to a high degree. This hardens modeling

efforts or as Kruschke (2015) stated ”[...] random variation is the researcher’s bane. Noise is

the nemesis.”. The reality seems to be more complex than any statistical model could reflect.

However, we can do our very best to come close to it.
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