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Abstract

In this thesis we design and study three-quark operators that are essential
for the calculation of baryon distribution amplitudes. These nonpertur-
bative objects grant insight into the internal structure of hadrons, but
their renormalization patterns are nontrivial and need to be treated with
care. With the application to lattice simulations in mind we discuss
two renormalization schemes, MS and RI′/SMOM, and connect them by
calculating conversion factors. Armed with this knowledge we are able
to extract phenomenologically relevant results from an accompanying
lattice analysis.
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Chapter1Introduction

The goal of high energy physics is to study matter in terms of elementary particles
and to understand the interactions which bind them. The Standard Model of particle
physics unifies theories that describe three of the fundamental interactions, namely the
electromagnetic, weak, and strong forces. This model describes all ordinary matter using
only a handful of fundamental particles: 6 quarks, 6 leptons, the force-carrying gauge
bosons, and the recently experimentally confirmed Higgs boson [1, 2], which gives intrinsic
mass to elementary particles via spontaneous symmetry breaking [3, 4] (Nobel Prize in
Physics 2013). The mass of composite objects such as hadrons is another topic. In nucleons,
i.e., protons and neutrons, the sum of the individual masses of the valence constituents
(3 quarks) contributes only 1% of the total mass. The majority of the remaining mass is
generated dynamically by virtue of the strong interaction. This highlights that hadrons
must have a rich internal structure worth studying and that the physics of the strong force
will play the leading role in its understanding. The accepted theory for the strong force is
called quantum chromodynamics (QCD), a non-Abelian gauge theory that describes the
interaction of quarks and gluons. Developed in the 1970s (see, e.g., [5–9]), this theory has
been highly successful over the years in describing a wide range of high energy physics
phenomena. So successful, in fact, that modern-day accelerator experiments can now use
high-precision theoretical QCD calculations as the firmly established background over
which searches for physics beyond the Standard Model can be conducted.

Experimentally it has been known that baryons are not point-like since the proton form
factor (FF) was first measured [10] (Nobel Prize in Physics 1961). Ever since then, FFs
have played an important role in studying the internal structure of hadrons. Form factors
can be measured by probing a hadron with a virtual photon, usually in a scattering process
with a lepton, e.g., for a nucleon form factor: e−N → e−N. These FFs can be decomposed
into three major contributions [11]. Schematically for the scattering amplitude we have
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Chapter 1. Introduction

(the leptonic side is not shown; double lines stand for nucleons, arrow lines for quarks,
wavy lines for photons, curly lines for gluons, and elliptical blobs represent nonperturbative
objects):

= + +

The first two are soft contributions, which are purely nonperturbative and cannot be
reduced any further. Unlike these, the third function factorizes [12], i.e., it can be written
as a convolution of a hard scattering kernel amidst two distribution amplitudes (DAs) [13],
thereby achieving a separation of short- and long-distance physics. The hard scattering
kernel describes how the extra momentum incurred from the scattering is distributed
among the quarks by gluons and it can be calculated in perturbation theory [14–16]. In
this picture we treat the hadron as a bundle of valence partons moving collinearly at
small transverse separations. Distribution amplitudes are nonperturbative objects that
represent the probability of finding the hadron in such a Fock state, with each parton
carrying a certain fraction of the hadron’s total momentum. The information encoded in
DAs is complementary to conventional parton distribution functions (PDFs), which can
be measured by fits to, e.g., deep inelastic scattering or Drell–Yan cross section data [17].
PDFs give the total probability to find a parton with the given momentum, regardless of
Fock state, and are described by the DGLAP equations [18–20].

The factorizable contributions of DAs to FFs become dominant in the limit of very
high momentum transfer. At moderate energies which are easily accessible in accelerators,
however, soft contributions are most relevant. Given their nature they cannot be directly
factorized into DAs. Still, a connection between FFs and DAs can be established also in
this regime via light-cone sum rules. This method relates both objects to matrix elements
containing a hadronic and an electromagnetic current using perturbation theory, dispersion
integrals, and quark-hadron-duality. The DAs appearing in this expansion for the soft
contributions are the same ones that were used in the description of the hard contribution
given above. In general, DAs have the beautiful feature that they are universal, i.e., they
only depend on the particle but not on the process under consideration. Once determined,
they can be used to describe a multitude of other events involving the same hadron species.

Applications of distribution amplitudes are manifold. A standard mesonic example is
the pion DA involved in the theoretical description of the process γγ∗ → π0 studied, e.g.,
at B-factories (cf. BaBar puzzle [21–23]). In the baryonic sector the nucleon DA is both
the simplest and the most important one, and has therefore received the most attention.
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The link between nucleon form factors and nucleon distribution amplitudes [24, 25] allows
one to translate from present experimental observations to interesting nonperturbative
information on nucleon structure. It will continue to be essential also alongside future
experimental programs, e.g., precision nucleon form factor measurements planned for the
Jefferson Lab 12GeV upgrade [26]. The connection between DAs and FFs is also very
interesting for the study of nucleon resonances such as N∗(1535) [27, 28].

A natural extension of the study of nucleons is provided by the field of hyperon
physics, i.e., nucleon-like baryons containing strange quarks. Compared to nucleons,
current experimental data on the FFs of hyperons are scarce [29] since the unstable
nature of these particles makes it more difficult to study them. In the future, additional
possibilities to measure their form factors should emerge, e.g., using hyperons produced in
antiproton-proton collisions for PANDA at FAIR [30].

On the side of DAs, early attempts at generalizing the concept of DAs from nucleons
to hyperons have been made in [31, 32], but these did not attempt to provide a consistent
framework in which the DAs of nucleons and hyperons can be treated collectively. A
unified description of the baryon octet is required to enable the study of the effects of
SU(3) breaking on DAs; such a parametrization has been achieved recently [33, 34].

SU(3) symmetry and its breaking relate to several nontrivial aspects of hyperon physics.
The strangeness-changing radiative decay Σ+ → pγ is particularly noteworthy. Experi-
ments [35, 36] determined the so-called asymmetry parameter of this process to be relatively
large as well as negative. This came as a surprise since it had been predicted to vanish in
the exact SU(3) limit (cf. Hara’s theorem [37]), and the large magnitude contradicts the
usual expectation of mild SU(3) breaking effects. Interestingly, we will find in our final
results that symmetry breaking actually has major impact on the shape of hyperon DAs.

From the theoretical side, access to DAs is often gained in terms of their moments,
i.e., integrals over DAs weighted by powers of light-cone momentum fractions. There are
two main paths to these moments of DAs. One is to calculate the normalizations and
low moments via standard QCD sum rules [38, 39]. Another way to access the moments
is to calculate them from first principles using lattice QCD. These calculations are very
computer time intensive and require the development of advanced algorithms and the
power of supercomputers. The usual lattice approach to DAs involves the nonperturbative
evaluation of hadronic two-point matrix elements of local operators. Such lattice studies of
the pion [40–44] and nucleon [45–48] DAs have a long history. In our recent article [49] we
have universalized the lattice method for baryon DAs to include the full SU(3) octet, i.e.,
we treat not only nucleons but also hyperons, which have not been previously explored in
lattice QCD. In this thesis, several theoretical challenges that needed to be overcome for a
successful lattice calculation of SU(3) baryon DAs are addressed.
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Chapter 1. Introduction

A core issue is the topic of renormalization, which is a technique required to get
physically meaningful results. In general, the renormalization of moments of baryon DAs
is nontrivial since they can mix under renormalization. This is especially true when taking
into account the full SU(3) octet instead of just the nucleon, as doing so increases the
number of independent nonperturbative parameters that can take part in the mixing. To
better control the mixing under renormalization one can select operators in a suitable
basis. With a lattice calculation in mind it is essential to select operator multiplets that
transform under irreducible representations of the spinorial hypercubic group H(4), which
is the correct symmetry group for fermions on a 4-dimensional hypercubic lattice. This
method has been developed in [50–52] for the case of the nucleon DA. One of our goals
will be to improve this technique and make it suitable for a simultaneous treatment of
nucleon and hyperon DAs by further refining the choice of operators. We will achieve this
by taking into account not only the transformation behavior under H(4) but also that of
SU(3) particle multiplets.

Another matter which we will discuss are so-called renormalization schemes. In order
to embed our results into the context of other studies and to assure comparability it is
preferable to present them in the widely used MS (“MS-bar”) scheme. However, this
is a perturbative prescription that is not well suited for a direct implementation on the
lattice. To overcome this gap we will establish a two-step procedure. First, lattice data
will be renormalized nonperturbatively using a RI′/SMOM scheme. This prescription can
be used both in nonperturbative and in perturbative calculations and is therefore suited
as an intermediate scheme. As a second step we will perform a calculation in continuum
perturbation theory to determine the conversion factors from RI′/SMOM to MS.

The outline of the text is as follows: In the next chapter we will provide the foundations
on which the rest of the work is built. We will cover two major areas: quantum chromody-
namics, the theory describing the physics of the strong interaction, and group theory, which
offers mathematical insights into the concepts of symmetry. Chapter 3 then constitutes
the main part, where we will examine the central quantities, namely baryon distribution
amplitudes. After giving the relevant definitions we will discuss how to measure them
and construct suitable operators for this task. The renormalization behavior of these
operators will be treated in detail. In particular, we shall introduce two renormalization
schemes — a perturbative and a nonperturbative one — which can be combined to obtain
useful renormalized data from lattice simulations. In chapter 4 we will proceed from theory
to practical applications and describe a framework for measurements of DAs on the lattice.
From such an analysis of lattice data we will obtain numerical results for the DAs of the
baryon octet and then discuss and illustrate the physical implications of our observations.
Finally, chapter 5 provides a short summary.
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Chapter2Foundations

2.1. Quantum chromodynamics
Quantum chromodynamics is the theory of the strong interaction sector of the Standard
Model of particle physics. Introductions to QCD can be found in most standard textbooks
on quantum field theory, such as [53, 54]. It is a non-Abelian gauge theory with the gauge
group SU(3) formulated in terms of two kinds of fundamental fields. The fermionic fields
are called quarks and the bosonic fields are called gluons. We work in the Lagrangian
formulation of the theory, where the central object is the Lagrangian density1,2

L =
∑
f

[
f̄aα
(
i(γµ)αβDab

µ −mf (14)αβδab
)
f bβ
]
− 1

4F
µν,AFAµν

=
∑
f

[
f̄(i /D −mf )f

]
− 1

4F
µν,AFAµν , (2.1)

which contains the fields, their derivatives, and some parameters (coupling and masses).
In the first line we have written out all indices explicitly (with the implied summation

convention for all indices appearing twice), while in the second line we cast the QCD
Lagrangian into the familiar form where contracted color indices in the fundamental
representation (a, b) as well as Dirac indices (α, β) are omitted and Feynman slash notation
( /D = γµDµ) is used to denote the scalar product between a four-vector and the gamma
matrices, which are discussed in appendix A.3. Furthermore, the Lagrangian is a local
object, and we have suppressed the position dependence of all its components in our
notation.

1We will henceforth — in a commonly accepted abuse of nomenclature — simply refer to it as a Lagrangian.
2A perturbative approach to QCD will require additional terms in the Lagrangian, for the full expression
see eq. (2.11).
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Chapter 2. Foundations

Table 2.1.: The six quark flavors f, their masses mf (from [58]) as well as their quantum
numbers: electric charge Q, spin S, isotopic spin T, isospin z-component T3, strangeness S′

(cf. section 2.2.1), charmness C ′, bottomness B′, and topness T ′. All masses are in the
MS scheme, but due to the wide range of values, two different definitions are used. The
u, d, and s masses are current quark masses given at the scale µ = 2GeV, while the c, b,
and t masses are running quark masses given at the scale µ = mc, µ = mb, and µ = mt,
respectively. See also the review “Quark masses” in [58].

flavor f mf Q S T T3 S′ C ′ B′ T ′

up u 2.2+0.6
−0.4 MeV +2

3
1
2

1
2 +1

2 0 0 0 0
down d 4.7+0.5

−0.4 MeV −1
3

1
2

1
2 −1

2 0 0 0 0
strange s 96+8

−4 MeV −1
3

1
2 0 0 −1 0 0 0

charm c 1.27+0.03
−0.03 GeV +2

3
1
2 0 0 0 +1 0 0

bottom b 4.18+0.04
−0.03 GeV −1

3
1
2 0 0 0 0 −1 0

top t 160+4.8
−4.3 GeV +2

3
1
2 0 0 0 0 0 +1

The first term of the Lagrangian (2.1) contains the quark and antiquark fields, f and f̄.
The number of different types of quarks (called flavors) is not fixed by the theory. Exper-
iments have detected six quark flavors (named up, down, strange, charm, bottom, and
top [55, 56]), whose properties are collected in table 2.1. The possible existence of yet
undiscovered seventh and eighth flavors is excluded by current experimental data with
high confidence [57]. We use the same symbol both for the quark field itself as well as for
flavor labels, e.g., we have up quark fields u with mass mu. These fields are coupled to the
gluon fields AAµ via a gauge-covariant derivative

Dab
µ = δab∂µ − ig

(
tA
)
abAAµ , (2.2)

where g parametrizes the strength of the coupling and tA are the generating matrices for
the fundamental representation of SU(3), see appendix A.2.

The second term in eq. (2.1) is the standard Yang–Mills Lagrangian [59], which encodes
the purely gluonic contributions. The gluon field strength tensor FAµν can be defined by
the commutator of two covariant derivatives,

tAFAµν = i

g

[
Dµ, Dν

]
. (2.3)

An explicit calculation yields its presentation in terms of gluon fields:

FAµν = ∂µA
A
ν − ∂νAAµ + gfABCABµA

C
ν , (2.4)
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2.1. Quantum chromodynamics

where fABC are the totally antisymmetric structure constants of SU(3). (Their definition
and their values can be found in appendix A.2.)

While the first two terms in eq. (2.4) are analogous to the form of the photon field
strength tensor in quantum electrodynamics (QED), the last term has no counterpart in
the Abelian gauge theory. This term gives rise to the three- and four-gluon vertices that
characterize QCD as a non-Abelian gauge theory. The strength of both of these gluonic
self-interaction vertices is governed by the same parameter g that determines the coupling
of quarks to gluons, meaning that the whole theory has only a single dimensionless coupling
constant.

In principle, yet another term should be included in the Lagrangian, namely

− θ

32π2 ε
µνρσFAµνF

A
ρσ , 0 ≤ θ < 2π , (2.5)

which is required for a description of the topological structure of the QCD vacuum [60].
While the other terms in the Lagrangian respect CP symmetry (invariance under simul-
taneous charge conjugation and parity transformation), this so-called theta term would
break it (because the Levi-Civita pseudotensor εµνρσ acquires an extra minus sign under
CP transformation). CP violation is observed in weakly decaying particles [61] (Nobel
Prize in Physics 1980) and is a necessary ingredient for the matter-antimatter asymmetry
in Big Bang baryogenesis (cf. Sakharov conditions [62]). Yet, there is no experimental
evidence for any amount of CP violation originating from the strong interaction sector of
the Standard Model. Measurements of the neutron electric dipole moment constrain the
vacuum angle θ to be extremely small [63]. The absence of strong CP violation with no
known reason can be seen as a fine-tuning problem (known as the strong CP problem [64]).
Since CP violation is not relevant for the topic of this thesis, we will not concern ourselves
with this any further and simply exclude the term by setting θ = 0.

Both terms in the Lagrangian (2.1) are individually gauge invariant under local (i.e.,
position-dependent) gauge transformations,

f(x)→ U(x)f(x) , (2.6a)

f̄(x)→ f̄(x)U †(x) , (2.6b)

tAAAµ (x)→ U(x)tAAAµ (x)U †(x)− i

g
[∂µU ](x)U †(x) , (2.6c)

with any SU(3)-valued function U(x). This establishes SU(3), the special unitary group of
degree 3, as the gauge group of QCD. For more information on SU(3) see section 2.2.1.
For infinitesimal transformations it is justified to expand the exponential parametrization
of SU(3) given by U(x) = exp

(
−iεtAθA(x)

)
, cf. eq. (2.64), and linearize in the infinitesimal

13



Chapter 2. Foundations

real number ε, writing the local gauge transformation with eight real parameters θA(x):

f(x)→ f(x)− iεθA(x)tAf(x) , (2.7a)

f̄(x)→ f̄(x) + iεθA(x)f̄(x)tA , (2.7b)

AAµ (x)→ AAµ (x) + εfABCθB(x)ACµ (x)− ε

g

[
∂µθ

A
]
(x) . (2.7c)

In the functional approach to quantum field theory one formally defines vacuum
expectation values via the Feynman path integral, similarly to the path integral formulation
of quantum mechanics (which itself is a generalization of the classical principle of stationary
action). For an operator O, which is a time-ordered product of fields, we have

〈0|O|0〉 =
∫
DqDq̄DAeiS[q,q̄,A]O[q, q̄, A]∫
DqDq̄DAeiS[q,q̄,A] , (2.8)

where an action S is defined as a position integral over the Lagrangian,

S =
∫
d4xL (x) , (2.9)

and the functional integration measures prefixed with D symbolize integrating each com-
ponent of the fields at each spacetime position over all values, see also eq. (2.28) later on.
The expression is normalized so that 〈0|0〉 = 1.

Since the Lagrangian (2.1) is fully gauge invariant, the action takes the same value
for all field configurations that are related by a local SU(3) gauge transformation (as
defined in eq. (2.7)). This amounts to an overcounting of infinitely many equivalent field
configurations for every single unique physical state since the functional integration runs
over each and every field configuration. As a result, the path integral is divergent and it is
not possible to evaluate it in its present form.

The solution is to impose a gauge-fixing condition and factor out the integration over all
physically equivalent field configurations, ensuring that there is only a single contribution
from each physically distinct orbit of configurations. This is usually accomplished by the
Faddeev–Popov method [65], which involves some clever manipulation of the path integral
that will not be repeated here. After some algebra, one finds that the vacuum expectation
value of O can be calculated via

〈0|O|0〉 =
∫
DqDq̄DADηDη̄ eiS[q,q̄,A,η,η̄]O[q, q̄, A]∫
DqDq̄DADηDη̄ eiS[q,q̄,A,η,η̄] , (2.10)

using a modified Lagrangian

L =
∑
f

[
f̄(i /D −mf )f

]
− 1

4F
µν,AFAµν −

1
2ξ
(
∂µAAµ

)(
∂νAAν

)
− η̄A∂µDAB

µ ηB . (2.11)
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2.1. Quantum chromodynamics

The first new term (called gauge-fixing term) establishes a family of linear covariant
gauges with a gauge parameter ξ.3 This is a generalization of the classical Lorenz gauge
condition for the electromagnetic four-potential (∂µAµ = 0). For operators which are gauge
invariant, the vacuum expectation values cannot depend on the gauge parameter. In such
cases one may therefore decide to perform any calculation only for one particular value of ξ
that suits ones purpose. Popular choices are Feynman gauge (ξ = 1, used in perturbative
calculations because it makes the gluon propagator, eq. (2.16b), take its most simple form)
and Landau gauge (ξ → 0, can be implemented in lattice simulations, see eq. (2.32)).

The other new term (called gauge-compensating term) contains new massless fields,
ηA and η̄A. They are Graßmann-valued (i.e., anticommuting) complex scalar (spin 0) fields
and as such they violate the spin-statistics theorem [66]. Therefore, these aptly named ghost
fields cannot correspond to physical particles. However, their inclusion in the Lagrangian
actually cancels other unphysical contributions stemming from the (longitudinal) gluonic
sector, allowing for a diagrammatic (perturbative) treatment of QCD. The ghost fields
couple to gluons via

DAB
µ = δAB∂µ − ig

(
tC
)
ABACµ

= δAB∂µ − gfABCACµ , (2.12)

i.e., they carry color indices in the adjoint representation of SU(3). Every diagram
containing an internal gluon loop (coupled to the rest of the diagram only via three-gluon
vertices) has to be accompanied by an analogous diagram containing an internal ghost loop
(coupled via ghost-gluon vertices) in order to get a correct physical result. The requirement
for a proper treatment of ghost fields is specific to non-Abelian gauge theories. For Abelian
gauge groups these fields would completely decouple from the gauge bosons since the
adjoint representation is trivial in such cases.

Due to the newly added terms, the full Lagrangian (2.11) is no longer SU(3) gauge invari-
ant. Yet, the action still enjoys another type of symmetry, namely BRST invariance [67, 68],
corresponding to the transformation (with an infinitesimal Graßmann number ε):

f(x)→ f(x)− iεηA(x)tAf(x) , (2.13a)

f̄(x)→ f̄(x) + iεηA(x)f̄(x)tA , (2.13b)

AAµ (x)→ AAµ (x) + εfABCηB(x)ACµ (x)− ε

g

[
∂µη

A
]
(x) , (2.13c)

ηA(x)→ ηA(x) + ε

2f
ABCηB(x)ηC(x) , (2.13d)

η̄A(x)→ η̄A(x) + ε

gξ

[
∂µAAµ

]
(x) . (2.13e)

3There are many other methods for the gauge fixing (such as the Coulomb, axial and light-cone gauges)
which will not be discussed here.
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Chapter 2. Foundations

BRST symmetry is a generalization of non-Abelian gauge symmetry. Comparing the effect
of the BRST transformation on the quark and gluon fields, eqs. (2.13a–c), to a gauge
transformation, eqs. (2.7), it becomes clear that for the physical fields the BRST transfor-
mation acts exactly like a gauge transformation, but now with the eight ghost fields ηA(x)
playing a role analogous to the parameters θA(x). Therefore, any gauge-invariant operator
is automatically BRST invariant. In general, the BRST formalism is a mathematical
approach to the quantization of gauge field theories, and BRST-quantizable theories are
guaranteed to have some very useful properties. Without going into further detail we
simply state that the BRST symmetry of QCD ensures both unitarity and renormalizability
of the theory to all orders.

The QCD Lagrangian is just a single, concise, seemingly simple formula that should tell
us everything there is to know about the strong interaction. Yet, solving QCD completely
turns out to be an extremely hard (or rather, impossible) task. In practice, most calculations
in quantum chromodynamics have to be done using some simplifications, models, numerical
approximations, etc. In the following sections we will introduce two such methods, namely
perturbative QCD in section 2.1.1 and lattice QCD in section 2.1.2. For our study of baryon
distribution amplitudes both methods are relevant and need to be combined to obtain the
final results. Lattice QCD is used to calculate the raw data and to renormalize them in a
RI′/SMOM scheme, while perturbative QCD is used to convert to a MS renormalization
scheme.

2.1.1. Perturbative QCD

To tackle the QCD path integral we will need some approach to reduce the complexity of the
problem. One such approach is QCD perturbation theory, wherein we treat the interacting
(g-dependent) part of the action as a perturbation to the free (g-independent) part. In
this section we will present only a brief discussion of some basic principles of perturbative
QCD. For an extensive treatment of perturbative methods in QCD, their justification, the
many processes they can be applied to, and their connection to experiments see [69].

Let us now decompose the action S into the free part Sfree and the interacting part Sint

by defining

S = Sfree + Sint , with Sfree = lim
g→0

S , (2.14)

and let us, as a starting point, study the free theory without any interactions. First, we
need to identify the free propagators, the knowledge of which will turn out to be essential
for perturbative QCD. We define the propagators as Green’s functions of the differential
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2.1. Quantum chromodynamics

operators appearing in field bilinears in the free action, i.e., as solutions of4

δab(i/∂x −mf14)αβSbcf,βγ(x− y) = iδ4(x− y)δac(14)αγ , (2.15a)

δAB
(
gµν(∂x)2 − (1− ξ−1)∂µx∂νx

)
DBC
νρ (x− y) = iδ4(x− y)δACgµρ , (2.15b)

−δAB(∂x)2GBC(x− y) = iδ4(x− y)δAC . (2.15c)

The best approach to these differential equations is a Fourier transformation to momentum
space. Solutions are the so-called Feynman propagators for the quark, gluon, and ghost
fields,

Sabf,αβ(x− y) = iδab
∫

d4p

(2π)4
(/p+mf14)αβ
p2 −m2

f + iε
e−ip·(x−y) , (2.16a)

DAB
µν (x− y) = −iδAB

∫
d4p

(2π)4
1

p2 + iε

(
gµν − (1− ξ) pµpν

p2 + iε

)
e−ip·(x−y) , (2.16b)

GAB(x− y) = iδAB
∫

d4p

(2π)4
1

p2 + iε
e−ip·(x−y) , (2.16c)

where an infinitesimal positive number ε appears in the denominator, specifying a prescrip-
tion to slightly shift the poles of the integrand away from the integration region. Often
the iε will not be written down explicitly.

We define a generating functional

Z [J ] =
∫
DqDq̄DADηDη̄ eiSfree−iJ∫
DqDq̄DADηDη̄ eiSfree

, (2.17)

where J contains source terms (f, A, η) for each field type (f, A, η):

J = i

∫
d4x

(∑
f

[
f̄aα(x)faα(x)

]
+
∑
f

[
f̄aα(x)faα(x)

]
+Aµ,A(x)AAµ (x) + η̄A(x)ηA(x) + η̄A(x)ηA(x)

)
. (2.18)

This allows us to obtain vacuum expectation values (cf. eq. (2.10)) by first applying
functional derivatives (with respect to the source fields) to the generating functional and
setting all source terms to zero afterward. For example,

〈0|TAAµ (x)ABν (y)|0〉 = δ

δAµ,A(x)
δ

δAν,B(y)
Z [J ]

∣∣∣
J=0

. (2.19)

The beauty of the generating functional formalism is that once we know the full form
of Z [J ], we have basically solved the whole system. Any vacuum expectation value in the

4Without the gauge-fixing term in the full Lagrangian (2.11) we would be unable to define the free gluon
propagator, as eq. (2.15b) would have no solution.
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free theory can then be calculated by the derivative method described above. To calculate
the generating functional, eq. (2.17), we perform the following transformation inside the
numerator integral:

faα(x)→ faα(x) +
∫
d4y Sabf,αβ(x− y)fbβ(y) , (2.20a)

f̄aα(x)→ f̄aα(x) +
∫
d4y f̄bβ(y)Sbaf,βα(y − x) , (2.20b)

AAµ (x)→ AAµ (x) +
∫
d4y DAB

µν (x− y)Aν,B(y) , (2.20c)

ηA(x)→ ηA(x) +
∫
d4y GAB(x− y)ηB(y) , (2.20d)

η̄A(x)→ η̄A(x) +
∫
d4y η̄B(y)GBA(y − x) . (2.20e)

Since this is simply a shift in all integration variables, the path integral measures remain
unchanged. Performing further simplifications of the expression by using the defining
equations (2.15) shows that this transformation amounts to completing the squares in
those multi-dimensional Gaußian integrals. Thereby, the fields and their source terms
are separated in the exponent such that the integral involving the free action drops out
completely, leaving us with the result:

Z [J ] = exp
∫
d4xd4y

(∑
f

[
f̄aα(x)Sabf,αβ(x− y)fbβ(y)

]
+ 1

2A
µ,A(x)DAB

µν (x− y)Aν,B(y)

+ η̄A(x)GAB(x− y)ηB(y)
)
. (2.21)

It is now straightforward to evaluate the vacuum expectation values that involve just two
fields,

〈0|T faα(x)f̄ bβ(y)|0〉 = Sabf,αβ(x− y) , (2.22a)

〈0|TAAµ (x)ABν (y)|0〉 = DAB
µν (x− y) , (2.22b)

〈0|T ηA(x)η̄B(y)|0〉 = GAB(x− y) , (2.22c)

confirming that the two-point functions are — as should be expected — given by the
propagators.

What about products involving more than two fields? In principle one could now
evaluate all of them explicitly using the derivative method. This possibly tedious process
is eased greatly by Wick’s theorem [70], which states that the vacuum expectation value
of a time-ordered product of any number of fields is given by the sum over all possible
contractions of two fields. Each contraction (indicated by a line connecting the two fields)
results in a propagator. Products which cannot be fully contracted (such as those involving
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2.1. Quantum chromodynamics

an odd number of fields of any type) give zero.5 The whole procedure is probably best
illustrated by an example:

〈0|T fa1
α1(x1)f̄ b1β1

(y1)fa2
α2(x2)f̄ b2β2

(y2)|0〉 =

= fa1
α1(x1)f̄ b1β1

(y1)fa2
α2(x2)f̄ b2β2

(y2) + fa1
α1(x1)f̄ b1β1

(y1)fa2
α2(x2)f̄ b2β2

(y2)

= Sa1b1
f,α1β1

(x1 − y1)Sa2b2
f,α2β2

(x2 − y2)− Sa1b2
f,α1β2

(x1 − y2)Sa2b1
f,α2β1

(x2 − y1) . (2.23)

(The negative sign of the second term in the third line is due to fermion anticommutativity.)
Having an understanding of how to treat the free theory we now move on to incorporating

the full interacting action as well. Using eq. (2.14) we can rewrite the exponential function
in the path integral as6

eiS = ei(Sfree+Sint) = eiSfreeeiSint = eiSfree

(
1 + iSint + 1

2!(iSint)2 + · · ·
)
. (2.24)

The idea behind perturbation theory is to treat this as an expansion in the gauge coupling g
and to truncate the series at a certain order, e.g., neglect all terms starting from O(g3).
If g is small enough (see below), results obtained using the truncated series should provide
a reasonable approximation of the true values.

By means of this expansion a calculation in perturbation theory can be carried out by
evaluating vacuum expectation values just like in the free theory, with the only difference
being the extra powers of Sint, which translate to additional fields in the product. This is
not a problem in principle, as we know how to handle arbitrarily many fields. In practice
however, we are forced to stop at some order as calculations can quickly become unfeasable.
The perturbative calculations in this work are all done at next-to-leading order (NLO),
i.e., including all terms of O(g2).

Now let us finally turn to the question whether g can be considered small, and with it
whether perturbation theory is a valid approach at all. For this discussion let us define the
strong coupling

αs = g2

4π . (2.25)

This definition is similar to the fine structure constant α = e2/(4πε0), which governs
the strength of the electromagnetic interaction. The (renormalized) coupling αs is not a
constant, instead it is a function of the renormalization scale µ. For any physical process

5According to Wick’s theorem they result in terms involving normal-ordered operators. Such normal-
ordered products always have vanishing vacuum expectation values.

6The second step is allowed because the anticommuting fields appear in the action only as bilinear
combinations, meaning that individual terms of the action commute with each other.
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Figure 2.1.: Summary of measurements of αs as a function of the energy scale Q. The
world average value is customarily quoted at a scale equal to the mass of the neutral gauge
boson of the weak interaction (Z boson), mZ ≈ 91.19GeV. (Figure taken from [58]; used
with permission.)

the coupling is dependent on the energy scale Q at which this process is measured,7 with
the value αs(µ2 =Q2) being a measure for the strength of the interaction. The running
of αs (i.e., its scale dependence) is given by the QCD beta function

β(αs) = µ2dαs
dµ2 = −

(
11− 2

3nf
)
α2
s

4π +O(α3
s) , (2.26)

where nf is the number of flavors that can be considered light at the given scale (i.e.,
the number of flavors for which mf < µ). The calculation of the beta function (which
is currently known to five-loop accuracy [71], i.e., eq. (2.26) is known including all terms
of O(α6

s)) and the determination of αs itself (which is averaged from many different
experiments as well as lattice studies to obtain an overall uncertainty of less than 1%)
are among the main achievements of high-precision QCD. The results are summarized in
fig. 2.1, see review 9.4 in [58] for more information.

The leading contribution to the QCD beta function (2.26) is negative (as long as
nf ≤ 16, which is true in the real world), which indicates that this gauge theory has an
interesting property called asymptotic freedom (discovered in 1973 [6, 7], awarded with the
Nobel Prize in Physics 2004). As the energy scale becomes larger (corresponding to shorter
distances), the coupling strength is ever decreasing such that for asymptotically large

7E.g., consider a high-energy scattering event with a large space-like momentum transfer vector q. The
relevant energy scale of this process would be Q =

√
−q2.
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2.1. Quantum chromodynamics

energies the quarks can be treated as almost free particles. On the other hand, the coupling
actually starts to diverge when the energy scale becomes small. By solving the one-loop
beta function (a first order differential equation) we find the one-loop approximation

αs(µ2) = 4π(
11− 2

3nf
)

ln
(

µ2

Λ2
QCD

) , (2.27)

with µ = ΛQCD marking the point of divergence. This process of dimensional transmu-
tation — i.e., a new scale (dimensionful quantity) appearing due to the renormalization
group behavior in a theory with a dimensionless coupling — happens even in massless QCD
where the Lagrangian is fully scale invariant, meaning that the conformal invariance of the
classical theory is broken by quantum corrections. The exact value of the QCD scale ΛQCD

depends on various factors, such as the loop order used in the beta function and (starting
from three loops) the renormalization scheme, but usually it is of O(200MeV).

At scales µ < ΛQCD the perturbative approach to QCD is obviously not valid, while at
very large scales (such as those given by the momentum transfers reachable in collider exper-
iments) the coupling becomes small and perturbation theory should work very well. For our
calculation of hadron distribution amplitudes we work between these two extreme regimes,
setting the renormalization scale to a typical hadronic scale µ = 2GeV > ΛQCD (so that
we are working in the same order of magnitude as, e.g., the proton mass mp ≈ 0.938GeV),
where perturbative calculations are justified.

2.1.2. Lattice QCD

Lattice QCD is a nonperturbative method for QCD calculations from first principles based
on discretized Euclidean spacetime and numerical integration. Invented in the 1970s [72],
lattice QCD is now a well-established tool in particle physics, harnessing the power of high-
performance computing to provide data for a wide range of QCD observables. The method
has enjoyed a lot of success in producing results that are in agreement with experiments,
e.g., by calculating the hadronic spectrum [73], but it can also be applied to quantities
that cannot be determined directly in experiments, such as the moments of distribution
amplitudes that we consider in this work. In the following we will give a brief overview
regarding some concepts of lattice QCD; for more information see textbooks such as [74].

The definition of the path integral is somewhat heuristic and in the present form it is
not immediately suited for direct numerical computation. For example, the integration
measure

Dq =
∏
b,β,f

∏
x

d
[
f bβ(x)

]
(2.28)

is a product encompassing all field components and all locations. While the former is well
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defined (there are only 3 values for the color index b, 4 Dirac components β, and 6 quark
flavors f), the latter is an uncountably infinite formal product over all points x of the
continuous 4-dimensional space.

We can start to regularize this infinity by discretizing the spacetime continuum as a
hypercubic lattice of discrete spacetime points, with all neighboring lattice sites separated
by a lattice spacing a. This procedure reduces the product in eq. (2.28) to a countably
infinite one. Furthermore, if we were to give up the notion of infinitely extending physical
space and instead are content with examining only a bounded hypercuboidic “box” of
spacetime, we are left with a finite number of integration variables. Working with a finite
volume is often justified, as we are usually not interested in the behavior of QCD at very
long distances. Interesting strong interaction physics processes can take place on length
scales of the proton radius, i.e., shorter than a femtometer. Still, it is desirable to have
reasonably large lattice volumes to limit the influence of finite size effects. In this study we
will work with spatial extents of at least 2.7 fm.

Many different numerical methods can be applied to the evaluation of multi-dimensional
integrals, but often the computational effort grows exponentially with the dimensionality
of the integration. Even though our number of variables is now finite, it is still very large
(even for small lattices), making such approaches unfeasable. A class of methods that
is suited for these higher-dimensional integrals are the so-called Monte Carlo methods,
which try to approximate the integral by sampling the integrand at many points that
are selected randomly according to some probability distribution. To be more specific,
modern lattice ensembles are generated using the Hybrid Monte Carlo algorithm [75]. This
is an importance sampling technique, meaning that each field configuration is assigned a
weight factor to judge the relevance of its contribution to the integral, ensuring that the
most important regions of the integration domain are sampled more often and that little
computer time is spent sampling configurations that have not much impact on the result.

This brings us to another important property of lattice QCD, namely the use of
Euclidean spacetime. In the Minkowski path integral in eq. (2.8) the action enters as a
complex phase factor, making the integrand highly oscillatory. This undesirable behavior
can be circumvented by a change to Euclidean spacetime with a positive-definite metric,
which is accomplished by replacing the time coordinate x0 → −ix4, cf. also appendix A.4.
By virtue of transforming the action from Minkowski space (M) to Euclidean space (E),
the complex phase factor becomes a real weight factor,

eiSM → e−SE , (2.29)

assuming a meaning very similar to the Boltzmann factor e−βE in the canonical partition
function of statistical physics. It is this interpretation as a probability distribution that
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2.1. Quantum chromodynamics

allows the importance sampling method described above to be applied to the calculation.8

The Minkowski correlation functions of interest can be obtained as the analytic continuation
of the corresponding Euclidean functions [76, 77].

Let us now take a closer look at the lattice QCD action. Naively one would start with
the continuum action, restrict the fields to the lattice sites, replace the integral by a sum,
and replace derivatives by difference quotients. This procedure, however, destroys gauge
invariance. Instead one starts by defining a new action for a Euclidean field theory on the
lattice that tends to the correct gauge-invariant continuum action in the limit of vanishing
lattice spacing a. This approach is not unique. There exists a multitude of different lattice
actions, each with its own set of advantages and disadvantages. To be instructive we only
present one simple case (called the Wilson action [72]) that provided the starting point for
many modern lattice actions:

S = a4
∑
x

∑
f

f̄(x)
(∑

µ

γµ
U(x, µ)f(x+ µ̂)− U(x− µ̂, µ)†f(x− µ̂)

2a +mff(x)
)

+ 2
g2

∑
x

∑
µ<ν

Re tr
{
13 − U(x, µ)U(x+ µ̂, ν)U(x+ ν̂, µ)†U(x, ν)†

}
. (2.30)

The derivative acting on the fermions has indeed been implemented as a type of difference
quotient.9 In contrast, the realization of the gauge fields has changed drastically. Instead of
algebra-valued fields tAAAµ (x) one now has group-valued fields U(x, µ) =̂ exp

(
igatAAAµ (x)

)
.10

Their behavior under SU(3) gauge transformations Ũ(x),

U(x, µ)→ Ũ(x)U(x, µ)Ũ(x+ µ̂)† +O(a) , (2.31)

ensures gauge invariance for the fermionic part of the action by operating as a gauge
transporter. This geometric aspect of U(x, µ) as an oriented variable linking the sites x
and x+ µ̂ motivates its name, link variable.

The gluonic part of the action has to be constructed from gauge-invariant objects
containing link variables only. It is easy to see that this can be accomplished by taking the
trace of any closed loop of links. (Taking the real part effectively averages each loop with

8Actually, the situation is not that simple. Due to their Graßmannian nature the fermion field variables
in the lattice QCD partition function have to be integrated out first, resulting in a so-called fermion
determinant. A probabilistic interpretation is only straightforward if this determinant is guaranteed to
be real and non-negative. Whether or not this is the case depends on the specific choice of lattice action.
For more information see [74].

9µ̂ is defined as a vector of length a, pointing in µ-direction. Thus the lattice sites x+ µ̂ and x− µ̂ are
nearest neighbors of the site x.

10This is not just a change of notation. In the lattice formulation the new fields U(x, µ) are now the
fundamental degrees of freedom. Hence, in a lattice path integral one has an integration measure DU,
not DA.
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another loop running in the opposite direction.) For the Wilson gauge action one takes the
sum over all of the shortest possible loops (squares consisting of just 4 link variables), called
plaquettes.11 An explicit calculation can be performed to show that this form correctly
reproduces a gauge-invariant Euclidean continuum QCD action in the limit a→ 0.

Lattice studies are not restricted to simulating QCD with all its parameters at the
physical values. In fact, simulations are usually done with light quark masses larger than
the physical ones since the computational cost increases as the mass parameters become
smaller. To connect these simulations to the real world one can use chiral perturbation
theory (ChPT) [79], as described in section 4.5.

Now for a few words on gauge fixing in lattice QCD. Unlike continuum perturbation
theory (where it is imperative to have a gauge-fixing term in order to make the path integral
manageable), lattice QCD can be performed without gauge fixing because the lattice acts as
an automatic regulator for the path integral. Therefore, gauge-independent observables can
be calculated without further complications. In our case the situation is not that simple, as
the lattice renormalization factors for the distribution amplitudes will have to be calculated
from gauge-dependent vertices, meaning that these lattices will have to be gauge fixed
as well. For our application we require a gauge that can be implemented in perturbative
QCD as well as in lattice simulations. Regrettably, the perturbative physicist’s favorite
gauge — Feynman gauge — is not well suited for lattice use, see [80]. Even though lattice
implementations of Feynman gauge are being developed, not all problems are yet under
control [81]. We therefore settle for the use of Landau gauge. Its lattice implementation is
well established, but in exchange the perturbative side of our calculation will become a bit
harder because more complicated integrals will have to be evaluated.

The lattice analog of the continuum Landau gauge condition ∂µAAµ = 0 is not imple-
mented via a gauge-fixing term in the Lagrangian, but as a numerical extremalization
problem.12 To begin with, one generates a gauge configuration U(x, µ) without restrictions.
Then one tries to maximize∑

x

∑
µ

Re tr
{
Ũ(x)U(x, µ)Ũ(x+ µ̂)†

}
(2.32)

as a functional of SU(3) matrices Ũ(x). Such a procedure as well as the details of the
accompanying algorithms used to search for the global maximum are, e.g., presented in [84].
In the end, one uses the resulting Ũ(x) to gauge transform the link variables U(x, µ), which
will then fulfill the Landau gauge condition up to corrections of O(a2) [85].
11Improved lattice actions will also incorporate other kinds of loops, such as larger rectangles [78].
12A nonperturbative implementation of a gauge-fixed BRST-invariant Lagrangian (analogous to eq. (2.11),
which is used in perturbation theory) is not straightforward. Associated topics such as Gribov copies [82]
and the Neuberger 0/0 problem [83] will not be discussed here.
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2.1.3. Regularization

Calculations in quantum field theory often yield divergent results that need to be regularized,
i.e., made finite. One approach to this is putting the theory on a lattice as discussed above.
In this section we will instead look at it from the perspective of perturbative QCD and
perform an example computation while illustrating the need for regularization and the
general principles of such perturbative calculations as we proceed.

Let us try to determine the one-loop correction to the fermion propagator. For simplicity
we will perform this exercise in massless Feynman-gauge QCD, so that (in momentum
space) the propagation of quarks and gluons at tree level is governed by these simple
expressions:

p
=̂ Sabαβ(p) = iδab

/pαβ

p2 , (2.33a)

p
=̂ DAB

µν (p) = −iδAB gµν
p2 . (2.33b)

And for the interaction vertex we have:

=̂ ig
(
tA
)
ab(γµ)αβ . (2.33c)

The first order radiative correction to the fermion propagator is due to the emission and
reabsorption of a single gluon:

q

p− q

We have to calculate the corresponding fermion self-energy,

Σab
αβ(p) =

∫
d4q

(2π)4 ig
(
tA
)
aa′(γµ)αα′ × Sa

′b′
α′β′(p− q)× ig

(
tB
)
b′b(γν)β′β ×DAB

µν (q)

= −4
3g

2δab(γµγνγµ)αβ
∫

d4q

(2π)4
(p− q)ν

q2(p− q)2 , (2.34)

where the integration variable q is the momentum of the virtual gluon. By analyzing the
integral in the region of very large q we find that it behaves like∫

d4q

(2π)4
qν

q4 , (2.35)

meaning that the integral is divergent there because the integrand does not fall off fast
enough. To be able to evaluate the integral we need to make it finite by introducing
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some form of regulator. To this end, various prescriptions are available, e.g., Pauli–Villars
regularization or a simple momentum cutoff. For the perturbative calculations done in this
work we use only one procedure, namely dimensional regularization [86, 87].

The integrand qν/q4 leads to an ultraviolet (UV) divergence in the 4-dimensional
integration. However, if we were to perform this integration in a spacetime with a different
number of dimensions, then this divergence need not necessarily appear. If the number of
dimensions becomes small enough, then the UV divergence will indeed disappear. This
motivates dimensional regularization, where we calculate the integral using d-dimensional
integration (for an arbitrary, in general noninteger, number d). This elegant procedure will
make it easy to identify the divergences and the associated renormalization scheme (the
MS scheme, see section 2.1.4) is straightforward to implement. Dimensional regularization
also has many advantages compared to other regularization prescriptions. Compared to
Pauli–Villars, it does not require auxiliary massive fields, and unlike a momentum cutoff it
keeps Lorentz invariance intact. Furthermore, dimensional regularization can also regularize
infrared divergences (i.e., those stemming from the region of very small momenta) without
the need for a fictitious gluon mass.

Knowing that the integration converges in some region of d, we can continue the result
from there and find it to be a meromorphic function of d with an isolated singularity
for d→ 4. It is convenient to parametrize the dimension as d = 4− 2ε, with ε acting as the
regulator. The Laurent expansion around ε = 0 of a full result at n-loop order may then
exhibit poles up to the type 1/εn, allowing us to disentangle the finite and divergent parts
of the integral at the physical dimension. It is the responsibility of the renormalization
scheme to cancel these poles, so that a finite result can be obtained after removing the
regulator by taking the limit ε→ 0.

For the integral in eq. (2.34), dimensional regularization amounts to the replacement∫
d4q

(2π)4
(p− q)ν

q2(p− q)2 → µ2ε
∫

ddq

(2π)d
(p− q)ν

q2(p− q)2 . (2.36)

To keep the dimension of the whole expression unchanged we introduce a new energy
scale µ, raised to the appropriate power to absorb the change in dimension. This scale of
dimensional regularization is, for the time being, an arbitrary constant that will later be
identified with the renormalization scale (see below).

Even though the way in which the scale is introduced in dimensional regularization
may seem somewhat unintuitive, the fact that such a scale parameter does appear at all
should not come as a surprise. Other methods for regularizing the UV divergences of QCD
introduce a scale as well, but may have a more immediately evident interpretation for the
parameter, such as the maximal momentum in cutoff regularization or the inverse lattice
spacing in the lattice regularization.
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We still have not provided an answer to the question of how to actually obtain results
for the dimensionally regularized loop integrals such as the one in eq. (2.36). The general
strategy for this consists of two parts. First, one examines the Lorentz structure of the
numerator and performs a tensor decomposition, i.e., one writes down a sum of all Lorentz
tensors (with the same number of open indices as in the numerator) that can be constructed
from the available structures such as four-vectors of external momenta or (starting from
two open indices) the metric tensor. Each tensor in this decomposition is accompanied by a
(currently unknown) prefactor of its own. These prefactors have to be Lorentz scalars and
may therefore only depend on Lorentz-invariant quantities, e.g., on four-momenta squared.
Having performed the tensor decomposition, the problem can now be reformulated in a
way that requires only the determination of scalar integrals [88].

In our example we have only one open Lorentz index, ν, and one external momentum, p.
From this we can deduce that the tensor decomposition consists of only one term. The
result has to be proportional to the four-vector pν with a p2-dependent prefactor:

µ2ε
∫

ddq

(2π)d
(p− q)ν

q2(p− q)2 = I(p2)pν . (2.37)

By contracting the open index with pν we find

I(p2) = µ2ε
∫

ddq

(2π)d
p · (p− q)
p2q2(p− q)2 = µ2ε

2

∫
ddq

(2π)d
1

q2(p− q)2 , (2.38)

thereby reformulating the problem in terms of a scalar integral.
The second step is the calculation of said scalar integrals. In general, one can proceed

as follows: Combine the propagator denominators by introducing an auxiliary integration
variable α (called a Feynman parameter), complete the square in the new denominator
by shifting the momentum integration, apply a Wick rotation to the integration contour
and move to d-dimensional Euclidean space (

∫
ddq → i

∫
ddqE , q2 → −q2

E), perform the
momentum integration in d-dimensional spherical coordinates, and finally integrate out
the Feynman parameter. In our example:

µ2ε
∫

ddq

(2π)d
1

q2(p− q)2 = µ2ε
∫

ddq

(2π)d

∫ 1

0

dα

[(1− α)q2 + α(p− q)2]2

= µ2ε
∫ 1

0
dα

∫
ddq

(2π)d
1

[q2 + α(1− α)p2]2

= iµ2ε
∫ 1

0
dα

∫
ddqE
(2π)d

1
[q2
E − α(1− α)p2]2

= iµ2ε
∫ 1

0
dα

∫
dd−1Ω
(2π)d

∫ ∞
0

d|qE | |qE |d−1

[|qE |2 − α(1− α)p2]2
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= i

(4π)2

∫ 1

0

dα

[α(1− α)]ε Γ(ε)
(
−p2

4πµ2

)−ε
= i

(4π)2
Γ(1− ε)2

Γ(2− 2ε) Γ(ε)
(
−p2

4πµ2

)−ε
, (2.39)

with the gamma function,
Γ(z) =

∫ ∞
0
dt tz−1e−t , (2.40)

and the (d− 1)-dimensional surface area of the unit sphere in d dimensions,∫
dd−1Ω = 2π

d
2

Γ(d/2) . (2.41)

In general, one may need to compute many different loop integrals, even when working at
one-loop order. Fortunately, this tedious task is simplified somewhat thanks to the existence
of certain recurrence relations between the scalar integrals. A systematic application of
these relations makes it possible to rewrite complicated integrals as linear combinations
involving only a small set of fundamental integrals. Such a reduction method is described
in [89] and we make use of it in all our calculations.

Let us now try to put it all together and formulate the dimensionally regularized result
for the self-energy defined in eq. (2.34). We have to be careful though, because in addition
to the integrals other parts of the theory have to be promoted to d dimensions as well. For
the Dirac matrices we now have γµγµ = d14 instead of 414, such that

γµγνγµ = −2(1− ε)γν . (2.42)

With that we obtain the final result:

Σab
αβ(p) = iδab

αs
3π

Γ(1− ε)Γ(2− ε)
Γ(2− 2ε) Γ(ε)

(
−p2

4πµ2

)−ε
/pαβ . (2.43)

As stated above, this calculation has been performed in Feynman gauge (i.e., for ξ = 1) to
keep it as short as possible. A calculation using the full gauge-dependent gluon propagator
gives the following result for arbitrary ξ:

Σab
αβ(p) = iδabξ

αs
3π

Γ(1− ε)Γ(2− ε)
Γ(2− 2ε) Γ(ε)

(
−p2

4πµ2

)−ε
/pαβ . (2.44)

We leave it as an exercise for the interested reader to verify this result.
An important quantity in perturbative calculations is the dressed quark propagator,

i.e., the tree-level propagator plus the radiative corrections:

p
+

pp p − q

q

+ O(α2
s) .
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Using the result from the previous calculation we can write in dimensional regularization:

Sabαβ(p) = [Sfree + SfreeΣSfree]abαβ(p) +O(α2
s)

= iδab
/pαβ

p2

(
1− ξ αs3π

Γ(1− ε)Γ(2− ε)
Γ(2− 2ε) Γ(ε)

(
−p2

4πµ2

)−ε)
+O(α2

s) . (2.45)

Still, this expression is divergent in the limit ε → 0, i.e., when going to the physical
dimension d = 4. To isolate the divergent contribution we perform a Laurent series
expansion around ε = 0. We obtain

Sabαβ(p) = iδab
/pαβ

p2

(
1− ξ αs3π

(
1
ε
− γ + ln(4π) + 1 + ln

(
−p2

µ2

)))
+O(ε, α2

s) , (2.46)

with the Euler–Mascheroni constant γ, which is defined as the negative derivative of the
gamma function evaluated at 1:

γ = −Γ′(1) = lim
ε→0

(
1
ε
− Γ(ε)

)
≈ 0.57722 . (2.47)

2.1.4. Renormalization

A way to cure the 1/ε divergence evident in eq. (2.46) would be to include, by hand, another
term in the Lagrangian. Such a term would need to be designed so as to counterbalance the
pole in the perturbative calculation, leading to a theory where the result is finite. A priori
it is yet unclear whether this procedure will bring forth a well-defined theory at all. Given
that there are both infinitely many divergent Green’s functions and infinitely many orders
in perturbation theory, it may well be possible that one would have to add an infinite
number of different counterterms to the Lagrangian if one wants to make all those Green’s
functions finite.

A theory where this happens would acquire an infinite number of parameters (the
prefactors of those counterterms) and thus might lose its predictive power. Such theories
are called nonrenormalizable.13 Fortunately, QCD is indeed renormalizable [87]: There
is only a finite number of structures that are required as counterterms. Aside from their
prefactors, they are identical to the operators appearing in the original Lagrangian. The
small handful of counterterm structures appearing at the one-loop order is sufficient to
enable cancelation of divergences to all orders in perturbation theory. Armed with this
13While this shows that renormalizability is obviously a very desirable property, it does not mean that
nonrenormalizable theories are worthless. Chiral perturbation theory, for example, is in general nonrenor-
malizable, but thanks to the power counting theorem [79] the number of counterterms needed at each
chiral order is finite and the theory can be used to predict the behavior of observables in the low-energy
regime of QCD.
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knowledge we can proceed to illustrate the renormalization of QCD in an instructive
manner where the counterterms in the Lagrangian arise naturally.

The formulation is based on the fact that the fields and parameters appearing in the
QCD Lagrangian are not observable quantities. We can utilize this to rescale the fields in
a way that absorbs the divergence into the unrenormalized (bare) fields. Let us define the
renormalized quark fields,14

fR =
√
Zqf , f̄R =

√
Zqf̄ , (2.48a–b)

with an as yet undetermined quark field renormalization factor Zq. It is our goal to fix this
factor such that Green’s functions of the renormalized fields are finite (even after removing
the regulator, ε→ 0), thanks to the divergent parts of the Z-factor exactly canceling the
divergent parts of the bare diagram.

Rewriting the fermionic part of the massless Lagrangian in terms of the renormalized
fields we find ∑

f

[
f̄ i /Df

]
=
∑
f

[
f̄Ri /DfR

]
+
(
Z−1
q − 1

)∑
f

[
f̄Ri /DfR

]
. (2.49)

We have organized the expressions such that the first term mimics the form of the original
Lagrangian, but is now built from the renormalized (finite) fields. The divergent parts are
contained in the second term, which serves as a counterterm. Having the same structure,
this part looks as if it could give rise to another kinetic term. However, the prefactor
Z−1
q − 1 will be of O(αs) in the perturbative expansion (as reflected in (2.54a)), meaning

that this term will contribute only to the interaction part of the Lagrangian, effectively
leading to a new quark-antiquark counterterm vertex,

=̂ i
(
Z−1
q − 1

)
δab/pαβ , (2.50)

that has to be taken into account in renormalized perturbation theory.
In a calculation of the renormalized quark propagator to an accuracy of O(αs), the

counterterm contributes only via a tree diagram (and not inside loops, as such contributions
would already be of O(α2

s)),

p
+

pp
+

pp − q

q

p
+ O(α2

s) ,

14For the sake of our example we focus on just the quark fields. Generally, the gluon and ghost fields and
the parameters such as the gauge coupling and the quark masses have to be renormalized as well.
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thus leading to[
SR
]
ab
αβ(p) = ZqS

ab
αβ(p) =

= iδab
/pαβ

p2

(
1−

(
Z−1
q − 1

)
− ξ αs3π

(
1
ε
− γ + ln(4π) + 1 + ln

(
−p2

µ2

)))
+O(α2

s) .

(2.51)

For the renormalized propagator to be finite, the renormalization factor Zq will have to be
chosen such that it cancels the 1/ε pole. And while this condition fixes the divergent part
of Zq, it does not constrain the finite part, meaning that we are left with some freedom of
choice.

Prescriptions that set the finite part are called renormalization schemes. In principle,
various schemes are feasible, but depending on the situation one scheme may be preferred
over others. In the QCD community a number of schemes are in common use and these
different schemes are not equivalent. Results obtained in one renormalization scheme can
not be directly compared with calculations done in another scheme. A central goal of
this work is to determine conversion factors between two of those schemes in order to
connect data obtained from lattice QCD simulations to the phenomenological work done
in perturbative QCD.

In the following we will introduce several common types of renormalization prescriptions,
namely the MS, MS, and RI′ schemes, and discuss some of their properties, once again
using the quark propagator as an example.

MS scheme

In the minimal subtraction (MS) scheme only the poles themselves are subtracted and no
finite parts are defined into the renormalization factor [90]. In our example this leads to
the following expressions for the Z-factor and the renormalized quark propagator:

ZMS
q = 1 + ξ

αs
3π

1
ε

+O(α2
s) , (2.52a)[

SMS]ab
αβ(p) = iδab

/pαβ

p2

(
1− ξ αs3π

(
−γ + ln(4π) + 1 + ln

(
−p2

µ2

)))
+O(α2

s) . (2.52b)

This is the simplest renormalization scheme, but it is of little practical relevance since it
has been superseded by the MS scheme.

MS scheme

As it turns out, a certain combination of terms appearing in the dimensionally regularized
quark propagator seen in eq. (2.46), namely

1
ε̄

= 1
ε
− γ + ln(4π) , (2.53)
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is not specific to this particular calculation. Actually, it universally appears at the
one-loop level in dimensional regularization. This fact motivates the definition of the
modified minimal subtraction (MS) scheme (introduced in [91]), in which we absorb the
expression (2.53) into the Z-factor, leading to a more compact form for the renormalized
propagator:

ZMS
q = 1 + ξ

αs
3π

1
ε̄

+O(α2
s) , (2.54a)[

SMS]ab
αβ(p) = iδab

/pαβ

p2

(
1− ξ αs3π

(
1 + ln

(
−p2

µ2

)))
+O(α2

s) . (2.54b)

The MS scheme is simple and straightforward to implement in perturbative calculations
done in dimensional regularization, and it has become by far the most widely used scheme
in this scenario.

The biggest drawback of the MS and MS schemes is, however, that this scenario is the
only one where they are directly applicable at all. On the one hand, their prescriptions are
inherently perturbative, as the poles have to be determined and subtracted order by order
in the perturbative expansions. On the other hand, the schemes are intimately linked to
the evaluation of integrals in noninteger spacetime dimensions (d = 4 − 2ε). These two
facts make the MS scheme incompatible with the nonperturbative realization of QCD on
an exactly 4-dimensional spacetime that is lattice QCD.

RI′ scheme

The last scheme we discuss is the RI′ scheme, which is also called Rome–Southampton
scheme [92]. This scheme belongs to a more general class of momentum subtraction (MOM)
schemes and is designed to be regularization invariant (RI). Therefore, it can be used in
conjunction with both dimensional regularization and lattice regularization.

The method is centered around imposing nonperturbative renormalization conditions
(enforced at a certain renormalization point) upon the Green’s functions in a manner that
projects onto their free value. For the quark propagator the RI′ renormalization condition
reads

lim
mq→0

1
12 tr

{
SBorn(SRI′)−1

}∣∣∣
p2=−µ2

!= lim
mq→0

1
12 tr

{
SBorn(SBorn)−1

}∣∣∣
p2=−µ2

= 1 , (2.55)

where the trace (as well as the inverse) is to be taken in 4-dimensional Dirac as well as in
3-dimensional color space, and the prefactor 1/12 ensures its overall normalization. This
trace operation acts similar to a scalar product, contracting the open Dirac and color indices
and projecting the renormalized two-point function onto its Born, i.e., noninteracting,
counterpart.15 Formulating the renormalization condition in the limit of vanishing quark
15In continuum perturbation theory the Born term is simply the tree-level propagator. In lattice QCD the
noninteracting case corresponds to a simulation with unit gauge fields.
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masses ensures that the renormalization factor in this scheme is mass independent.16

This renormalization condition has to be fulfilled only for certain momenta, namely at
the so-called renormalization point, which introduces the renormalization scale into the
picture. The exact specification of this point is part of the definition of the scheme. In
particular, it should be noted that the condition given above is constructed to generate
a Lorentz-invariant scheme as long as the renormalization point is also declared in a
Lorentz-invariant manner. For an object involving only one momentum variable p it
is only natural to define the renormalization at the point where the scale equals the
virtuality of this momentum, i.e., at µ2 = −p2.17 If there are multiple independent external
momenta (as, e.g., in the case of three-quark operators), there are various choices for
the renormalization point. Our renormalization scheme for three-quark operators will be
detailed in section 3.5.2.

In the RI′ scheme the Z-factor and renormalized propagator are given by

ZRI′
q = 1 + ξ

αs
3π

(
1
ε
− γ + ln(4π) + 1

)
+O(α2

s) , (2.56a)

[
SRI′]ab

αβ(p) = iδab
/pαβ

p2

(
1− ξ αs3π ln

(
−p2

µ2

))
+O(α2

s) . (2.56b)

As usual for a MOM scheme, the definition is such that the renormalized propagator is
free of O(αs) corrections at the renormalization point.

Converting between renormalization schemes

Often one would like to convert results from one renormalization scheme to another,
especially to enable comparability between values that have been obtained using different
approaches (each using a different renormalization scheme for reasons of necessity, tradition,
or convenience). In our case the key quantities are baryon distribution amplitudes, which
will be defined and discussed in section 3.2. On the one hand, their normalization constants
and shape parameters can be estimated using SVZ sum rules [93]; for such a calculation
see [38]. Furthermore, the DAs are often required as input parameters in the description of
scattering experiments, e.g., by light-cone sum rules [94]; for such an application see [95].
All these calculations are done in the continuum and naturally use the MS scheme, which
is the most relevant scheme in perturbative contexts, and also all amplitudes describing
experimental processes are usually only studied in the MS scheme as well. On the other
hand, when DAs are determined using lattice QCD (see sections 3.3 and 4.2 for more
16In continuum perturbation theory this limit is trivial to implement, as the calculation can just be
performed directly at zero quark mass. In lattice QCD, simulations with vanishing mass are not possible
and therefore one has to extrapolate to the chiral limit from multiple simulations done at different masses.

17The equation refers to Minkowski spacetime. In Euclidean space one would naturally set µ2 = p2 instead.
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information), the MS scheme cannot be implemented directly. Since lattice QCD can
provide valuable complementary data on important nonperturbative parameters, it would
be very desirable to have results obtained from lattice QCD expressed in the MS scheme
so that they can immediately be compared to (and also used in) perturbative calculations.

The basic idea is as follows: We start from the unrenormalized raw lattice data.
After the desired quantities have been extracted in the analysis they are renormalized
nonperturbatively (on the lattice) using a suitable intermediate scheme. For a review
on nonperturbative renormalization in lattice QCD see [96]. In our case we will select
an RI′ scheme as the intermediate scheme. We determine the conversion factor between
the RI′ and MS schemes in an accompanying calculation in continuum perturbation theory
with dimensional regularization, i.e., in a scenario where both schemes can be implemented.
This conversion factor can then be applied to the lattice calculation in order to obtain the
final results in the MS scheme. In theory these results are now independent of the choice
made for the intermediate scheme, but in practice this is not exactly true owing to the
necessary truncation of the perturbative series.

We define the conversion factor as the product of the MS Z-factor and the inverse of the
RI′ Z-factor. Even though both of these factors contain regulator-dependent divergences,
their product will be finite (and the regulator can be removed) because it facilitates
a conversion between two renormalized (and therefore finite) objects. For our familiar
example we combine eqs. (2.54a) and (2.56a) to find

Cq = ZMS
q

(
ZRI′
q

)−1 = 1− ξ αs3π +O(α2
s) . (2.57)

This conversion factor is known to three-loop accuracy [97].
It is very interesting to note that Cq can also be calculated without explicit knowledge

of the RI′ Z-factor and RI′ renormalized propagator. It follows from its definition that this
conversion factor (or rather, its inverse) can be obtained by combining the MS renormalized
propagator with the RI′ renormalization condition:

C−1
q = 1

12 tr
{
Sfree(SMS)−1

}∣∣∣
p2=−µ2

. (2.58)

In practice, this will actually be the preferred approach, and in section 3.5.3 we will use a
similar method to obtain the conversion factors for three-quark operators.

In the calculation of the conversion factor we set both the RI′ renormalization scale and
the MS renormalization scale equal to the scale introduced in dimensional regularization.
And of course we have to make sure that this scale used in the continuum calculation is
equal to the scale used for the nonperturbtive renormalization on the lattice. We will label
this common scale µ. The conversion factor (2.57) has an implicit scale dependence per
the running of the strong coupling αs(µ).
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Finding an optimal value for µ is nontrivial. On the one hand, it is advantageous to
make µ large enough to stay clear of the nonperturbative regime. While the intermediate
RI′ scheme is well able to handle potential nonperturbative effects, the perturbative
conversion to the MS scheme is not. Hence, increasing µ improves the convergence behavior
of the perturbative expansion (cf. eq. (2.26) and fig. 2.1) and reduces the dependence on
the intermediate scheme. On the other hand, making µ too large can enhance lattice
artefacts. Ideally we would like to have a window between the QCD scale and the scale
generated by the lattice regularization,

Λ2
QCD � µ2 � 1/a2 , (2.59)

to simultaneously limit the size of both nonperturbtive and discretization effects [92]. In
reality, the available lattice spacings determine how well such a window can be realized.
Taking the spacing of the ensembles used in this work, a = 0.0857 fm (cf. table 4.2), and
aiming for a well-behaved perturbative behavior by selecting the typical hadronic scale
µ = 2GeV means that

Λ2
QCD � µ2 < 1/a2 . (2.60)

This is promising as it shows that the method should indeed be applicable in our case,
but some lattice artefacts should be expected. However, the study of such discretization
errors is not the main objective of this thesis. We content ourselves with the prospect
that in the near future several ensembles with smaller lattice spacings (and therefore
smaller discretization errors) will be analyzed, allowing one to investigate these effects.
Furthermore, some methods designed to tackle the problem of discretization errors in
lattice renormalization are being developed. E.g., one can try to subtract the leading
lattice artefacts, see [98, 99]. Also, provided one does have access to ensembles at various
spacings, there exists a new strategy where one uses information obtained at the finest of
these spacings (where the window problem is hopefully well under control) to reduce cutoff
effects also in the renormalization factors for the coarser lattices [100]. Currently, however,
these techniques have only been applied to various quark-antiquark bilinear operators, not
to the three-quark operators involved in the study of baryon distribution amplitudes.
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2.2. Group theory
In the previous section we have established QCD as a gauge theory with the underlying
symmetry group SU(3). Groups will also play an important role in other parts of this
work, mainly for the classification of particles and operators. An understanding of the
basics of group theory will be essential to our cause. In the following we will therefore
briefly explain some concepts of group theory. The treatment will neither be exhaustive,
nor will it be mathematically rigorous (e.g., some of the statements made below are in
general only valid for finite groups). Instead, we focus on introducing just the definitions
and theorems (without proofs) relevant to us. For more detailed discussions we refer the
reader to textbooks on group theory such as [101, 102].

Groups A group is a nonempty set G together with a binary relation ◦ : G × G → G.
This pair needs to fulfill some additional requirements: The relation has to be associative,
(g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3). There has to be a unique identity element e ∈ G that leaves
all other group elements invariant, e ◦ g = g ◦ e = g. And for each element there has to be
a unique inverse element g−1 ∈ G such that g−1 ◦ g = g ◦ g−1 = e.

Subgroups A nonempty subset H ⊆ G is called a subgroup if it forms a group together
with the same binary relation ◦ restricted to the subset, i.e., H ×H → H.

Conjugacy classes A conjugacy class Ch is a set consisting of all group elements which
are conjugate to h ∈ G, i.e., Ch ≡ { g ◦ h ◦ g−1 | g ∈ G }. Most conjugacy classes are not
subgroups since the identity element forms a conjugacy class of its own and thus cannot
be part of any other class. Two conjugacy classes can be either identical or disjoint, and
thus the concept of conjugacy classes provides a standard way of partitioning the group
into disjoint sets of (conjugate) elements.

Representations Representation theory is a branch of mathematics with various topics
and applications [103]. For physicists, studying group representations is often helpful in
order to explore the symmetry properties related to groups. The concept of representations
is quite general; for the purpose of this work it is however sufficient to accept a very basic
definition of matrix representations. Consider a mapping R : G→ GL(d,C) from a group G
to the general linear group GL(d,C). (After choosing a basis on the vector space Cd one
can identify GL(d,C) with the regular d× d matrices built from complex entries.) We will
call this mapping a d-dimensional representation of G if it is a group homomorphism, i.e.,
if R(g1 ◦ g2) = R(g1)R(g2).

Inequivalent irreducible representations Even for a singleton group, {e}, there are
infinitely many representations and it is therefore clear that a lot of the information
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provided by the representations is actually redundant. To deal with this redundancy we
introduce two new terms. First, we will call two d-dimensional matrix representations
equivalent if they can be converted into each other by a change of basis on Cd. Second, we
will call a matrix representation reducible if there exists a basis in which the representation
matrices of all group elements simultaneously acquire the same block-diagonal form. (Since
block-diagonal form is preserved under matrix multiplication it follows that the blocks
constitute lower-dimensional representations of the group.) For any finite group the number
of inequivalent irreducible representations is limited. To be more specific, the number of
conjugacy classes is equal to the number of inequivalent irreducible representations and the
sum of the squares of the representations’ dimensions has to be equal to the group order,
i.e., to the number of group elements.

Unitary representations Every representation is equivalent to a unitary representation,
i.e., one that represents all group elements by unitary matrices.18 We can therefore, without
loss of generality, consider only unitary representations R : G→ U(d), which have the nice
property R(g−1) = R(g)†.

Characters Given the ambiguity of equivalent representations it is desirable to have
objects which are invariant under a change of basis. One such object is the trace, i.e., the
sum of the diagonal elements of a matrix. One therefore defines the character of a group
element g in a representation R as χR(g) ≡ tr(R(g)). From the cyclic permutation property
of the trace operation it follows that χR(g ◦h◦g−1) = χR(h), and therefore we have exactly
one character per conjugacy class per inequivalent representation. This information can
be neatly arranged in so-called character tables, see, e.g., tables 2.2 and B.1. While a
character table does not define a group, it contains the essential information regarding its
representations. In principle, it is possible to construct all irreducible representations from
the characters [104].

Products and sums of representations Given two matrix representations Ra and Rb of
the same group G one can take the direct (Kronecker) product and the direct sum of the
representation matrices.19 The newly constructed objects Ra ⊗Rb and Ra ⊕Rb are now
also representations of G. In most cases the products of irreducible representations will
18Such a transformation can be constructed explicitly. Let R be an arbitrary representation, let
S =

∑
g∈GR(g)†R(g), and let D be a unitary matrix which diagonalizes S. (This procedure is well

defined since S is a positive-definite Hermitian matrix by construction.) Now take the square root
T = D†

√
DSD†D of S, then the mapping g 7→ TR(g)T−1 is a unitary representation.

19Let A and B be matrices of size dA × dA and dB × dB , respectively. We define the direct product A⊗B
as a dAdB × dAdB matrix such that the components are given by (A⊗B)dB(i−1)+k,dB(j−1)+l = AijBkl.
We define the direct sum A⊕B as the (dA + dB)× (dA + dB) block-diagonal matrix A⊕B = diag(A,B).
Both operations are associative but noncommutative. Many useful properties such as unitarity carry
over from A and B to A⊗B and A⊕B.
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not be irreducible themselves, and sum representations are always reducible by definition.
The characters of the product/sum representation are the products/sums of the individual
characters, i.e., χRa⊗Rb(g) = χRa(g)χRb(g) and χRa⊕Rb(g) = χRa(g) + χRb(g).

Reduction of representations Any (reducible) representation R can always be decom-
posed into a direct sum of irreducible representations Ri (where the subscript i is used to
label all inequivalent irreducible representations). The multiplicity of Ri in R is given by
the scalar product of the characters χRi and χR, such that

R ∼=
⊕
i

(
1
|G|

∑
g∈G

χRi(g)∗χR(g)
)
Ri . (2.61)

Transformation according to a representation Take a set of d vectors Oi, i = 1, . . . , d,
and a d-dimensional representation R of G. We will say that the Oi transform as a
d-dimensional multiplet under the representation R if there exists a basis such that for
all g ∈ G and for all i ∈ {1, . . . , d}

g.Oi = [R(g)]jiOj , (2.62)

where the left-hand side stands for the action of g on Oi. The definition implicitly depends
on the choice of action which will have to be specified.20

2.2.1. Special unitary group SU(3)

The special unitary group of degree 3, called SU(3), is of twofold importance for this work.
First, it serves as the underlying symmetry group of the non-Abelian gauge theory of
strong interactions (SU(3) color symmetry). Second, we can use the same group to classify
multiplets of hadrons (SU(3) flavor symmetry). Let us briefly outline the basic properties
of SU(3) and then discuss its physical implications.

Often one does not differentiate between SU(3) itself as a group of linear operators and
its fundamental representation in terms of unitary 3× 3 matrices with determinant 1, i.e.,
one can think of SU(3) as

SU(3) = {U ∈ GL(3,C) | U †U = 13, detU = 1 } . (2.63)

SU(3) is a continuous group with uncountably many elements. Writing down all elements
is impossible, but since SU(3) is a compact connected Lie group we can write down a
simple parametrization that can generate any element using only a handful of parameters.
20In many cases the standard choice is self-evident, e.g., if G is a linear group and Oi are elements of a
suitable vector space, then g.Oi is the application of the linear operator g to the vector Oi.

38



2.2. Group theory

To illustrate this, let us make use of the following property: Any unitary matrix U (with
determinant 1) can be written as U = exp(−iH) with a (traceless) Hermitian matrix H.
The 3× 3 traceless Hermitian matrices form an 8-dimensional real vector space. Hence,
after selecting eight basis matrices tA, A = 1, . . . , 8, the fundamental representation of an
element of SU(3) can be expressed as

U = exp
(
−i

8∑
A=1

tAθA
)
, (2.64)

parametrized by eight real numbers θA. Particle physicists favor a basis called the Gell-Mann
matrices, defined and studied in appendix A.2.

SU(3) flavor symmetry

Consider a world with only three quark flavors (up, down, and strange) of equal mass. Since
QCD is flavor blind, all quantities which are governed mostly by the strong interaction (e.g.,
hadron masses) should be invariant under changes of flavor (up to corrections from the
electroweak sector). In this world, particles with the same properties would form multiplets
corresponding to the irreducible representations of this SU(3) flavor symmetry,21 which is
a generalization of SU(2) isospin symmetry. As the elementary degrees of freedom, the
three quarks correspond to the fundamental (triplet) representation, labeled 3,22 and the
three antiquarks correspond to the complex conjugate of the fundamental representation
(antitriplet), labeled 3̄. Composite states such as mesons (one quark and one antiquark)
and baryons (three quarks) are related to direct products, which can be reduced to direct
sums of irreducible representations. For SU(3) meson and baryon multiplets one finds

3⊗ 3̄ = 1⊕ 8 , (2.65a)

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 . (2.65b)

In the real world, SU(3) flavor symmetry is broken explicitly by the quark mass differences.
(For reference, the numerical values for the quark masses can be found in table 2.1 on
page 12.) Since the strange quark mass is more than an order of magnitude larger than
the up and down quark masses (which also differ from each other, but are of equal order of
magnitude), SU(3) flavor symmetry is broken more badly than isospin symmetry. Even
so, this approximate symmetry is useful in practice and enjoys lots of phenomenological
success.
21For an overview regarding the historical developments and the group-theoretical considerations surrounding
the emergence of SU(3) as the correct flavor symmetry and the elimination of other candidate algebras
see [105].

22We follow the common convention of labeling the irreducible representations of SU(3) by their dimension.
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As one can see from the decomposition presented above, baryons are expected to
form singlets, octets, or decuplets. In the early 1960s when these concepts were first
introduced [106] and quarks had not yet been postulated, there were eight known JP = 1

2
+

ground state baryons (p, n, Σ+, Σ0, Σ−, Ξ0, Ξ−, and Λ), which fit the description of
an SU(3) octet. Furthermore, there were nine JP = 3

2
+ baryons (∆++, ∆+, ∆0, ∆−,

Σ∗+, Σ∗0, Σ∗−, Ξ∗0, and Ξ∗−), possibly an SU(3) decuplet with one member still undis-
covered. The prediction of the Ω− with a mass at 1685MeV [107] and the subsequent
experimental discovery of a new state with the appropriate quantum numbers and a mass
of 1686± 12MeV [108] was the first success of SU(3) flavor symmetry and led to the
development of the quark model [109, 110].

Let us now take a closer look at how the baryon multiplets are realized. To classify
the baryons we use certain quantum numbers of the quarks. Isospin is carried only by up
(T = 1

2 , T3 = +1
2) and down (T = 1

2 , T3 = −1
2) quarks, whereas strangeness is carried only

by strange quarks (S′ = −1).23 T3 and S′ are additive and therefore the corresponding
quantum numbers for hadrons can be obtained by adding up the quantum numbers of their
constituents, whereas the possible values of the hadron’s total isospin T can be obtained by
coupling the individual isospins in the standard manner established in quantum mechanics.

The most relevant SU(3) baryon representation is 8 because the hadrons which account
for most of the visible matter in the universe, i.e., the nucleons, belong to an octet. Proton
and neutron together with 6 hyperons form a JP = 1

2
+ octet, which is depicted in fig. 2.2.

This also illustrates the fact that SU(3) flavor is a generalization of SU(2) isospin. In
the rows of the diagram one can identify isospin submultiplets of constant strangeness:
the nucleon iso-doublet (T = 1

2 , S
′ = 0), the Σ iso-triplet (T = 1, S′ = −1), the Ξ iso-

doublet (T = 1
2 , S

′ = −2), and the Λ iso-singlet (T = 0, S′ = −1). Taking a look
at the measured masses for the baryons [58] allows one to get a quantitative picture of
the SU(3) symmetry breaking. The mass differences within one isospin multiplet (this
corresponds to changing only the light quark constituents) are much smaller (O(1MeV))
than between those multiplets of different strangeness (O(100MeV)). This pattern is of
course a direct consequence of the quark mass spectrum, cf. table 2.1. It also shows that
the breaking of the isospin subgroup is indeed much smaller than the breaking of SU(3)
as a whole. When studying the effects of SU(3) symmetry breaking it is therefore a good
approximation to always work in the limit of exact isospin symmetry (and we will do
so throughout this work). The flavor structure of SU(3) octet baryons will be further
discussed in appendix C.1.

23The negative sign has historical reasons. Strange particles such as kaons have been discovered [111] and
the concept of strangeness has been introduced [112] many years before quarks were proposed [109, 110].
The sign was chosen such that the positively/negatively charged kaons have positive/negative strangeness.
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Figure 2.2.: The members of the JP = 1
2

+ baryon octet and their quantum numbers
T3 (isospin z-component), S′ (strangeness) and Q (electric charge).
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Figure 2.3.: The members of the JP = 3
2

+ baryon decuplet and their quantum numbers
T3 (isospin z-component), S′ (strangeness) and Q (electric charge).
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Moving on to the representation 10, one can arrange ten ground state baryons to form
a JP = 3

2
+ decuplet. Similar to the above it is made of four isospin submultiplets, namely

the ∆(1232) iso-quartet (T = 3
2 , S

′ = 0), the Σ(1385) iso-triplet (T = 1, S′ = −1), the
Ξ(1530) iso-doublet (T = 1

2 , S
′ = −2), and the Ω− iso-singlet (T = 0, S′ = −3). This

decuplet is shown in figure 2.3.
These baryon multiplets are not the only ones possible in the respective representations.

E.g., the negative parity baryons N(1520), Σ(1580), Ξ(1820), and Λ(1520) can be thought
of as forming another octet with JP = 3

2
−. These additional particle multiplets will not be

considered in this work, and when talking about the baryon octet and baryon decuplet we
will always be referring to the JP = 1

2
+ and JP = 3

2
+ multiplets described above.

Finally, the representation 1 is of little relevance with respect to SU(3) flavor particle
multiplets because no positive parity ground state singlet baryons are observed. This
is consistent with the usual symmetry considerations for the wave functions (see also
section 3.4.3), since three quark spins cannot be in a totally antisymmetric combination.
In contrast, states with nonzero orbital angular momentum can indeed transform as a
flavor singlet. Possible singlets are the JP = 3

2
+ Λ(1890) and the JP = 1

2
− Λ(1405).24

(Any SU(3) flavor-singlet state has quark content uds with T = 0 and S′ = −1.)

SU(3) color symmetry

The quark model interpretation of the hadrons in terms of their constituent quarks is not
enough for a consistent description. Consider, e.g., Ω− =̂ sss. This should be a ground
state baryon, with zero orbital angular momentum and all quarks in the same location.
The expected total spin in the decuplet is 3

2 , and for that all quark spins would have to
be aligned in parallel. Since quarks of the same flavor are involved, this leads to multiple
identical fermions occupying the same quantum state. This would be a clear violation of
the Pauli exclusion principle, unless there were some other hidden quantum number [113].

Today, this quantum number is called color.25 Quarks are color triplets [114, 115],
transforming according to the fundamental representation of SU(3), while the force-carrying
gluons form a color octet [5] (adjoint representation). This is manifest in the Lagrangian
formulation of QCD (see chapter 2.1), and unlike its flavor counterpart, SU(3) color is an
exact symmetry.
24Λ(1405) has been a puzzling case for decades. It is the lightest negative parity baryon despite having
nonzero strangeness. While many attempts have been made to explain its nature (such as a large
pentaquark Fock component, a NK̄ bound state, or a hybrid baryon containing a valence gluon) the
internal structure of Λ(1405) still remains not fully understood, see also the review article “Pole structure
of the Λ(1405) region” in [58].

25The concept of color in QCD is not related to visible colors, but it motivates an analogy to additive color
mixing. Consider three primary colors red, green, and blue. A colorless composite state can be formed
by combining the three colors: red + green + blue = white.
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For composite particles made from quarks (i.e., mesons and baryons) the SU(3) decom-
positions (2.65) also apply in the color sector, meaning that in principle we might find
color-singlet, color-octet and color-decuplet hadrons. However, in all physics experiments
ever conducted, no isolated color-charged particles have ever been observed. Even though
the fundamental strongly interacting particles of the standard model, quarks and gluons,
carry color charge, they only form color-neutral (i.e., singlet) hadrons.

This striking and unique property of QCD has been the subject of many discussions and
is called color (or quark) confinement, see [116] for a short review. Any attempt at isolating
color charges by separating individual quarks, e.g., through high-energy collisions, does
instead lead to the creation of additional color-neutral hadrons by means of quark-antiquark
pair production fueled by the potential energy between quarks. Lattice simulations using
static sources (where pair production cannot happen; see [117] for a long review) indicate
that the potential between a quark and an antiquark increases almost linearly with their
distance.

2.2.2. Symmetric group S3

The symmetric group Sn is the group formed by all possible permutations of n objects,
with the group operation being the composition of permutations. In itself, the theory of
symmetric groups is rich enough to fill whole books, such as [118], but in the context of
this work we will merely introduce a few properties of S3. These will be relevant for the
symmetry properties of baryons, i.e., hadrons made of three quarks, see sections 3.4.2
and 3.4.3.

In general, given n objects there are n! possible permutations, and thus the group order
of S3 is 6. We can easily write down all the group elements: the identity element which
does not change the order of the objects,

(123) , (2.66a)

two cycles of length three,
(231) , (312) , (2.66b)

and three transpositions which exchange the positions of two objects,

(132) , (213) , (321) . (2.66c)

In general, the conjugacy classes of symmetric groups are related to the cycle structure. In
the case of S3 it is straightforward to see that there are three conjugacy classes, formed by
the identity element (e), the two cycles (c) and the three transpositions (t).
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From the number of conjugacy classes we also learn that there are three inequivalent
irreducible representations. The first one is the one-dimensional trivial representation
which we will call T s.26 There, each group element is represented by the number 1:

T s(123) = 1 , (2.67a)

T s(231) = T s(312) = 1 , (2.67b)

T s(132) = T s(213) = T s(321) = 1 . (2.67c)

The second one, T a, is the one-dimensional signum representation, in which each group
element is represented by the signum of the permutation:27

T a(123) = 1 , (2.68a)

T a(231) = T a(312) = 1 , (2.68b)

T a(132) = T a(213) = T a(321) = −1 . (2.68c)

Since the squared dimensions of the inequivalent irreducible representations have to
add up to the group order, the third representation, Tm, has to be two-dimensional
(12 + 12 + 22 = 6). To construct explicit representation matrices for Tm let us utilize
the fact that S3 is isomorphic to the triangular dihedral group. Consider an equilateral
triangle formed by three numbered vertices vn = e−i

2π
3 n, n = 1, 2, 3 in the complex plane.

We canonically identify this with a two-dimensional Euclidean space, i.e., we have

v1 = 1
2

(
−1
−
√

3

)
, v2 = 1

2

(
−1

+
√

3

)
, v3 =

(
1
0

)
. (2.69a–c)

There are some elements of the orthogonal group O(2) which map this triangle onto
itself, but with permuted vertices. The six corresponding orthogonal matrices serve as a
two-dimensional representation of S3:

Tm(123) =
(

1 0
0 1

)
,

Tm(231) = 1
2

(
−1

√
3

−
√

3 −1

)
, Tm(312) = 1

2

(
−1 −

√
3

√
3 −1

)
,

Tm(132) = 1
2

(
−1

√
3

√
3 1

)
, Tm(213) =

(
1 0
0 −1

)
, Tm(321) = 1

2

(
−1 −

√
3

−
√

3 1

)
.

(2.70a–f)
26The superscripts s, a, and m stand for symmetric, antisymmetric, and mixed, respectively. The reasons
for this naming scheme will become clear in section 3.4.2.

27Each element can be written as a composition containing only transpositions. The number of transpositions
used is not unique, but it is either even or odd. The signum of a permutation is defined as 1 if that
number is even and −1 if it is odd.
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Figure 2.4.: The geometric aspect of the two-dimensional S3 representation Tm, illustrated
using automorphisms of an equilateral triangle.

The correspondence between orthogonal transformations of two-dimensional space and
permutations of three objects is illustrated in figure 2.4. From there it is also apparent that
cyclic permutations in S3 correspond to rotation matrices in O(2), while the transpositions
are mapped to reflections.

It is straightforward to see that this indeed provides
a new irreducible two-dimensional representation (and
not just a sum of two one-dimensional representations)
by calculating its characters. Now that all irreducible
representations of S3 have been found, we can immediately
assemble the full character table, see table 2.2.

Tab. 2.2.: S3 characters.

T s T a Tm

e 1 1 2
c 1 1 −1
t 1 −1 0

2.2.3. Hypercubic groups H(4) and H(4)

Properties of H(4)

The hypercubic group H(4) is the symmetry group of a four-dimensional hypercube and,
hence, a discrete subgroup of the orthogonal group O(4). It is obvious that this group
is significant for lattice gauge theory, because in almost all lattice simulations the four-
dimensional spacetime is discretized as a hypercubic lattice [72, 74], breaking O(4) symmetry
down to H(4) symmetry.
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To count the number of group elements we imagine a hypercube centered around the
origin of four-dimensional Euclidean space and determine all transformations that map
the cube onto itself. Such a transformation can be performed by either inverting one of
the four spatial axes or by a permutation of the four axes (or any combination of these
basic operations). This illustrates the fact that the hypercubic group is a semidirect
product involving four copies of the group of order two28 (each axis can either be reversed
or not) and the symmetric group on four objects (accounting for all permutations of
axes): H(4) ∼= Z4

2 o S4. From these considerations it can be read off that the group order
is |H(4)| = 24 · 4! = 384.

Given this group order it would be impractical to write down the properties of all
elements. Instead, we work with a set of generators, i.e., a small set of elements selected
such that all other group elements can be written as products of these. In total we will use
6 generators.29 We start with the inversion elements Ii (i = 1, . . . , 4) that invert the i-th
axis. Each of these generates one of the Z2 subgroups. To generate the S4 subgroup we
use 2 permutations named γ (a transposition of axes 1 and 3) and t (a cyclic permutation
involving axes 2, 3, and 4). These generators satisfy the following relations:

I2
i = e , γ2 = e , t3 = e , (t ◦ γ)4 = e ,

Ii ◦ Ij = Ij ◦ Ii , γ ◦ I1 = I3 ◦ γ , γ ◦ I2 = I2 ◦ γ , γ ◦ I4 = I4 ◦ γ ,

t ◦ I1 = I1 ◦ t , t ◦ I2 = I4 ◦ t , t ◦ I3 = I2 ◦ t , t ◦ I4 = I3 ◦ t . (2.71a–l)

The full multiplicative structure of H(4) is encoded therein. All group elements can be
written as a product of generators, and products of group elements can be re-expressed as
other group elements using the equations above. In this way the whole multiplication table
of H(4) could be constructed, but this process would not provide us with much insight.

In [120–122] the conjugacy class structure and representation theory of H(4) has been
worked out. There are 20 conjugacy classes and consequently there are also 20 inequiv-
alent irreducible representations of H(4). One can find 4 one-dimensional, 2 two-dim.,
4 three-dim., 4 four-dim., 4 six-dim. and 2 eight-dim. representations. (We can check that
4 · 12 + 2 · 22 + 4 · 32 + 4 · 42 + 4 · 62 + 2 · 82 = 384.)

Of these 20 representations only a four-dimensional one, namely the fundamental
representation, is of particular relevance to us. Its explicit construction is straightforward:
Consider O(4) and the fundamental representation thereof by 4× 4 orthogonal matrices
with real entries. Restricting this representation to the subgroup H(4) naturally yields
28All groups of order two are equivalent. Labeling the two elements as e and I, the group structure is
always given by e2 = I2 = e and e ◦ I = I ◦ e = I. We denote this group as Z2.

29This generating set is not minimal. As pointed out in [119], it is possible to generate all of H(4) using
only 2 elements, but such a set lacks the straightforward geometrical interpretation and does not generate
the related subgroups independently.

46



2.2. Group theory

a representation thereof by 4 × 4 orthogonal matrices (now with integer entries). This
representation of H(4) turns out to be irreducible and its matrices (see appendix B.2) have
the usual geometrical interpretation of exchanging and reversing the four axes.

Construction of H(4), a double cover for H(4)

In four-dimensional Minkowski spacetime, fermions (such as quarks) are described by
spinors conforming to spinorial representations of SL(2,C), the double cover of the (proper
orthochronous) Lorentz group. Analogously, for the study of fermions on a hypercubic
lattice we should examine the spinorial representations of a double cover of H(4). Let us
now construct such a group, which will be called H(4).

In general, a double-covering group G of H is characterized by a 2-to-1 surjective
homomorphism c : G → H. For every h ∈ H the preimage c−1(h) consists of exactly
2 elements of G; we call them g and −g. As a famous example for such a double cover
consider the spin group SU(2) as the double cover of the rotation group SO(3). There is a
covering homomorphism c : SU(2)→ SO(3), U 7→ O with Oij = 1

2 tr{σiUσjU †} (where U
and O are in the fundamental representations of SU(2) and SO(3), respectively). For any
matrix U ∈ SU(2) both +U and −U are mapped to the same rotation matrix in SO(3).

Instead of directly constructing a double cover for the discrete group H(4) we will try to
find a double cover for the continuous group O(4) (of which H(4) is a subgroup). First we
will need to define our candidate group (which will be a semidirect product SU(2)2 o Z2),
and then we will need to show that it does indeed provide a double cover for O(4). After
that, finding a double cover for the subgroup H(4) will be trivial.

To create a group structure on the set of tuples30{
(U+, U−,±)

∣∣ U+ ∈ SU(2), U− ∈ SU(2), ± ∈ {+,−} = Z2
}
, (2.72)

we note that there is a natural nontrivial31 homomorphism from Z2 to the outer automor-
phism group of SU(2)× SU(2),

ϕ : Z2 → Out(SU(2)× SU(2)) ,

± 7→
(
(U+, U−) 7→ (U±, U∓)

)
, (2.73)

which induces the following group operation:

(U+
1 , U

−
1 ,±1) ◦ (U+

2 , U
−
2 ,±2) =

(
(U+

1 , U
−
1 ) ◦ ϕ±1(U+

2 , U
−
2 ),±1 ◦ ±2

)
= (U+

1 U
±1
2 , U−1 U

∓1
2 ,±1 ◦ ±2) . (2.74)

30The group operation on the realization of Z2 used here is the usual multiplication rule for signs, that
is + ◦+ = − ◦ − = + and + ◦ − = − ◦+ = −.

31If one considers the trivial homomorphism ± 7→
(
(U+, U−) 7→ (U+, U−)

)
one will end up with a direct

product SU(2)2×Z2 instead. This is unsuitable for the description of a group of rotations and reflections.
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This defines a semidirect product SU(2)2 oZ2, which we will henceforth call Pin(4).32 The
spin group SU(2)× SU(2) appears as a normal subgroup.33

If we manage to construct a double cover c : Pin(4) → O(4), we can define the
subgroup H(4) ⊂ Pin(4) as the preimage of the subgroup H(4) ⊂ O(4):

H(4) �
�

//

c
����

Pin(4) = SU(2)2 o Z2

c
����

Z4
2 o S4 = H(4) �

�
// O(4)

As our mapping for the double cover we define

c : Pin(4) = SU(2)2 o Z2 → O(4) ,

(U+, U−,±) 7→ R , (2.75)

where the components of the matrix R are given by

Rµν ≡ [R(U+, U−,±)]µν = 1
2 tr
{
σ+
µ U
−σ∓ν U

+†} , (2.76)

with a Euclidean four-vector of Pauli matrices σ± = (±iσ,12), cf. appendix A.1.
One can easily see that the two group elements (+U+,+U−,±) and (−U+,−U−,±)

are always mapped to the same matrix, hinting at a double-covering nature. But before
we can really proclaim this mapping a double cover of O(4) we need to make a few more
checks. In particular, we should prove that the expression for Rµν given above always
specifies a matrix that is in O(4) and, most importantly, that the mapping we defined is
actually a group homomorphism. This is verified explicitly in appendix B.1.

Properties of H(4)

Now that we have established the existence of the covering group H(4), we can focus on its
properties. Naturally we have |H(4)| = 2|H(4)| = 768. Again we select 6 generators using
the same names as before. The new group has the generating relations (i 6= j)

I2
i = −e , γ2 = −e , t3 = −e , (t ◦ γ)4 = −e ,

Ii ◦ Ij = −Ij ◦ Ii , γ ◦ I1 = −I3 ◦ γ , γ ◦ I2 = −I2 ◦ γ , γ ◦ I4 = −I4 ◦ γ ,

t ◦ I1 = I1 ◦ t , t ◦ I2 = I4 ◦ t , t ◦ I3 = I2 ◦ t , t ◦ I4 = I3 ◦ t , (2.77a–l)
32The term “pin group” can be derived from reinterpreting spin group as “special pin group.” For more
information on spin groups and pin groups see [123] and [124], respectively.

33It is not surprising to see two copies of SU(2) in the product, keeping in mind the composition of the
Dirac four-spinor from two two-component Weyl spinors.
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where −g ≡ g ◦ γ2 = γ2 ◦ g. Comparing to eqs. (2.71) one notices that the two sets of
equations are almost identical, only differing by some minus signs.

The conjugacy class structure on H(4) is closely related to that of H(4). For every con-
jugacy class Ch ⊂ H(4) the preimage c−1(Ch) can either be a single conjugacy class in H(4),
c−1(Ch) = Cg = C−g, or it can split into two disjoint conjugacy classes, c−1(Ch) = Cg∪C−g
(Cg ∩ C−g = ∅). The simplest example of such a splitting class is C−e = {−e}, since, in
any group, the identity element e has to form a conjugacy class of its own and cannot be
contained in any class other than Ce. Overall, 5 out of the 20 conjugacy classes of H(4)
split into pairs of classes when lifted into H(4), therefore bringing the total number of
conjugacy classes in H(4) to 25.

The 20 inequivalent irreducible representations of H(4) induce 20 inequivalent irreducible
representations of H(4) by virtue of the following mechanism: If c : H(4)→ H(4) is a double
cover and R(h) is a representation of the elements h ∈ H(4), then R(c(g)) is a representation
of the elements g ∈ H(4). In each of these 20 representations, the 6 named generators
are represented by the same matrices as in the corresponding H(4) representation, and
therefore −e, just like e, is represented by an identity matrix. Among these so-called single-
valued representations the most important one is the four-dimensional representation arising
from the fundamental representation of O(4) (as described above). This representation,
labeled “ΠV · [3]” in [122] and labeled τ4

1 in [52], determines the transformation behavior
of four-vectors under H(4) and is thus relevant for the construction of operators containing
derivatives.

The 25 conjugacy classes indicate 25 inequivalent irreducible representations, meaning
that we are still missing 5. The remaining ones are not related to the existing representations
of H(4). Instead, these are entirely new spinorial representations of H(4), in which −e
is always mapped to a negative identity matrix. As first worked out in [119] there are
2 four-dimensional, 1 eight-dimensional, and 2 twelve-dimensional spinorial representations
(2 · 42 + 82 + 2 · 122 = 384 as expected). We will label them τ

4
1 , τ

4
2 , τ

8, τ12
1 , and τ

12
2

in accordance with [52]. All spinorial representations play an important role in the
classification of three-quark operators performed in section 3.4.1. In particular, τ4

1 is
the representation that governs the transformation properties of quark four-spinors. The
representations τ4

1 and τ4
1 are connected to each other through the transformation of Dirac

matrices:

[
τ

4
1 (g)†

]
α′α

(
γµ
)
α′β′

[
τ

4
1 (g)

]
ββ′

=
[
τ

4
1 (g)

]
µ′µ

(
γµ′
)
αβ

∀ g ∈ H(4) . (2.78)

Explicit matrix forms for all relevant representations are provided in appendix B.2.
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Chapter3Distribution amplitudes and
their renormalization

3.1. Motivation
Our long-term goal is to provide a precise lattice QCD determination of SU(3) octet baryon
distribution amplitudes. These nonperturbative functions provide insight into the structure
of hadrons in the form of the distribution of light-cone momentum among the hadron’s
constituents. The relevant definitions are given in section 3.2 below. The preferred way to
determine DAs using lattice QCD is via a calculation of their moments, cf. section 3.3.

Lattice QCD cannot determine results with absolute precision, instead they come with
several sources of error including the usual statistical uncertainty as well as an uncertainty
associated with the renormalization precedure. In [47] one part of the systematic uncertainty
due to the renormalization of three-quark operators has been estimated and it can be seen
that it contributes, on average, a third of the total error in their results. Therefore, trying
to improve the renormalization procedure is certainly a worthwhile goal.

In the previous lattice studies of nucleon DAs [47, 48] the renormalization has been
performed using the operators and methods presented in [51, 52, 125]. A central motivation
for this thesis was to improve these pre-existing methods. In particular, we will make
methodological advancements on multiple fronts: First, the operators used in previous
works have been designed with only the nucleon in mind. We will construct operators that
are suited for a simultaneous treatment of all SU(3) baryons in section 3.4. Second, the
MS scheme that has been used does not make any attempt to take the effects of so-called
evanescent operators into account. This could possibly lead to uncontrolled systematic
errors not included in the estimate mentioned above. In this work we employ an MS scheme
that automatically excludes any contributions from such operators, see section 3.5.1. Third,
a MOM scheme with a nonsymmetric momentum configuration was used, which will be
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Chapter 3. Distribution amplitudes and their renormalization

replaced by an SMOM scheme as described in section 3.5.2. These principal improvements
will be further complemented by some improvements regarding the implementation, e.g.,
by using exact analytical results instead of numerical integration in the loop calculations.
We have already published first results using this new renormalization procedure [49], but
here we will be explaining the method in more detail and we will also present formulas for
the renormalization of second moments (cf. appendix D).

3.2. Octet baryon distribution amplitudes
In order to define baryon distribution amplitudes one needs to consider baryon-to-vacuum
matrix elements of renormalized three-quark operators at light-like separations [126],

〈0|
[
fα(a1n)gβ(a2n)hγ(a3n)

]MS|B(p, λ)〉 , (3.1)

where |B(p, λ)〉 is the baryon state with momentum p and helicity λ, while α, β, γ are Dirac
indices, n is a light-cone four-vector (n2 = 0), the ai are arbitrary real numbers, and f, g, h
are quark fields of given flavor. In our notation for these matrix elements the Wilson lines
(which are needed for gauge invariance), the color antisymmetrization (which is needed to
form a color singlet), and the dependence on the renormalization scale are not written out
explicitly but always implied.

The JP = 1
2

+ baryon octet is composed of the eight particles p, n, Σ+, Σ0, Σ−, Ξ0, Ξ−,
and Λ. In the limit of exact isospin symmetry (mu = md) these baryons form multiplets of
definite total isospin, see section 2.2.1. For the study of octet baryon DAs it is sufficient
to select one representative from each multiplet. In the following we will therefore only
consider

B ∈ {N ≡ p, Σ ≡ Σ−, Ξ ≡ Ξ0, Λ} . (3.2)

In general, the matrix element (3.1) is expected to be nonzero only if the three quark
flavors f, g, h match the valence quark content of the baryon B. The order of the flavors is
relevant. Our convention, which will always be implied from here on, is:

p : (f, g, h) = (u, u, d) , (3.3a)

Σ− : (f, g, h) = (d, d, s) , (3.3b)

Ξ0 : (f, g, h) = (s, s, u) , (3.3c)

Λ : (f, g, h) = (u, d, s) . (3.3d)

Quantities defined using other flavors or other baryon representatives would not provide any
additional information. They can always be related to our definitions via isospin and Fierz
transformations. For more detail on our flavor and phase conventions see appendix C.1.
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3.2. Octet baryon distribution amplitudes

The general Lorentz decomposition [126] of the matrix element (3.1) consists of 24 terms,
which are usually written in the form

〈0|fα(a1n)gβ(a2n)hγ(a3n)|B(p, λ)〉 =

=
∑
DA

(
ΓDA)

αβ

(
Γ̃DAuB(p, λ)

)
γ

∫
[dx] e−ip·n

∑
i aixi DAB(x1, x2, x3) . (3.4)

Here ΓDA and Γ̃DA are the Dirac structures corresponding to the distribution ampli-
tude DAB(x1, x2, x3), see eq. (2.9) of [126], and uB(p, λ) is the Dirac spinor with on-shell
momentum p (p2 = m2

B) and helicity λ. This decomposition can be organized in such a way
that all DAs have definite collinear twist.34 The variables x1, x2, x3 specify the fractions of
the light-cone momentum p · n carried by the quark flavors f, g, h, respectively, and the
integration measure is defined as

∫
[dx] =

1∫
0

1∫
0

1∫
0

dx1dx2dx3 δ(1− x1 − x2 − x3) . (3.5)

The factor δ(1− x1 − x2 − x3) enforces momentum conservation.
In eq. (3.4) both the matrix element on the left-hand side and the DAs on the right-hand

side are quantities which require renormalization and therefore the DAs are scale- and
scheme-dependent objects. The dependence on the renormalization scale µ will not be
written out unless needed. Since any phenomenological interpretation as well as comparison
to other works is done in the MS scheme, it is clear that an accurate lattice study of baryon
DAs will have to be accompanied by a conversion to this scheme.

3.2.1. Leading twist distribution amplitudes

Focusing on the DAs of leading twist three, the general decomposition (3.4) is simplified
to three terms [130]:35

4〈0|fα(a1n)gβ(a2n)hγ(a3n)|B(p, λ)〉 =
∫

[dx] e−ip·n
∑
i aixi

×
(
vBαβ;γV

B(x1, x2, x3) + aBαβ;γA
B(x1, x2, x3) + tBαβ;γT

B(x1, x2, x3) + · · ·
)
. (3.6)

34In an ordinary operator product expansion [127] the importance of contributions is said to decrease as the
mass dimensions of the operators increase. When working with separations that are near the light cone
this does not hold. The importance of an operator is now ranked by a new quantity called twist [128],
which is described as the difference between dimension and spin. In practice, two variants of twist exist,
called geometric twist and collinear twist (see [129] for details). We will not concern ourselves with
these differences and henceforth simply refer to it as twist. For baryon operators the leading (i.e., lowest
possible) twist is 3.

35Our DAs V N, AN, and TN correspond to V1, A1, and T1 in [126].
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The Dirac structures corresponding to the three leading twist amplitudes are given by

vBαβ;γ = (/̃nC)αβ(γ5u
B
+(p, λ))γ , (3.7a)

aBαβ;γ = (/̃nγ5C)αβ(uB+(p, λ))γ , (3.7b)

tBαβ;γ = (iσ⊥ñC)αβ(γ⊥γ5u
B
+(p, λ))γ , (3.7c)

with the charge conjugation matrix C and the notation

ñµ = pµ −
1
2
m2
B

p · n
nµ , uB+(p, λ) = 1

2
/̃n/n

ñ · n
uB(p, λ) ,

σ⊥ñ ⊗ γ⊥ = σµρñρg
⊥
µν ⊗ γν , g⊥µν = gµν −

ñµnν + ñνnµ
ñ · n

. (3.8a–d)

Each of the 24 DAs can be isolated by contracting the decomposition (3.4) with
appropriate Dirac structures. For the leading twist DAs such matrix elements read:

〈0|
(
f
↑T(a1n)C/ng↓(a2n)

)
/nh
↑(a3n)|B(p, λ)〉 =

= −1
2(p · n)/nuB↑(p, λ)

∫
[dx] e−ip·n

∑
i aixi [V−A]B(x1, x2, x3) , (3.9a)

〈0|
(
f
↑T(a1n)Cγµ/ng↑(a2n)

)
γµ/nh

↓(a3n)|B(p, λ)〉 =

= 2(p · n)/nuB↑(p, λ)
∫

[dx] e−ip·n
∑
i aixi TB(x1, x2, x3) . (3.9b)

The notation in terms of the right- and left-handed components defined as ql = 1
2(1± γ5)q

and uBl(p, λ) = 1
2(1± γ5)uB(p, λ) makes it apparent that [V−A]B and TB are related to

the f ↑g↓h↑ and f ↑g↑h↓ Fock states, respectively.
If [V−A]B is given, then the V B and AB components can be reconstructed due to their

different symmetry properties under the exchange of the first and the second quark:

V B 6=Λ(x2, x1, x3) = +V B(x1, x2, x3) , V Λ(x2, x1, x3) = −V Λ(x1, x2, x3) ,

AB 6=Λ(x2, x1, x3) = −AB(x1, x2, x3) , AΛ(x2, x1, x3) = +AΛ(x1, x2, x3) ,

TB 6=Λ(x2, x1, x3) = +TB(x1, x2, x3) , TΛ(x2, x1, x3) = −TΛ(x1, x2, x3) . (3.10a–f)

Using isospin symmetry one can further show that for the nucleon

2TN (x1, x3, x2) = [V−A]N (x1, x2, x3) + [V−A]N (x3, x2, x1) , (3.11)

such that, to leading twist accuracy, [V−A]N contains all necessary information and is
therefore traditionally referred to as the leading twist nucleon DA, ΦN. For other baryons
this relation does not hold and consequently the functions TB are independent from [V−A]B.
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3.2. Octet baryon distribution amplitudes

To explore the consequences of SU(3) flavor symmetry breaking it proves to be convenient
to define the following set of DAs:

ΦB 6=Λ
± (x1, x2, x3) = 1

2
(
[V−A]B(x1, x2, x3)± [V−A]B(x3, x2, x1)

)
, (3.12a)

ΠB 6=Λ(x1, x2, x3) = TB(x1, x3, x2) , (3.12b)

ΦΛ
+(x1, x2, x3) =

√
1
6
(
[V−A]Λ(x1, x2, x3) + [V−A]Λ(x3, x2, x1)

)
, (3.12c)

ΦΛ
−(x1, x2, x3) = −

√
3
2
(
[V−A]Λ(x1, x2, x3)− [V−A]Λ(x3, x2, x1)

)
, (3.12d)

ΠΛ(x1, x2, x3) =
√

6TΛ(x1, x3, x2) , (3.12e)

where for the nucleon ΠN = ΦN
+ up to isospin breaking. In the limit of SU(3) flavor

symmetry, where mu = md = ms (and in particular at the flavor symmetric point with
physical average quark mass, indicated by ?), the following relations hold:

Φ?
+ ≡ ΦN?

+ = ΦΣ?
+ = ΦΞ?

+ = ΦΛ?
+ = ΠN? = ΠΣ? = ΠΞ? , (3.13a)

Φ?
− ≡ ΦN?

− = ΦΣ?
− = ΦΞ?

− = ΦΛ?
− = ΠΛ? , (3.13b)

so that the ΠB (or TB) amplitudes only need to be considered because flavor symmetry is
broken.

In the above we have introduced two different sets of DAs (V B, AB, TB and ΦB
+,ΦB

−,ΠB),
which both encode the same information. To understand the different physical meaning
of these distribution amplitudes it is instructive to work out their relation to light-front
wave functions (see, e.g., [38, 131, 132]). Leading twist distribution amplitudes correspond
to an approximation for the baryonic Bethe–Salpeter [133] wave function where only the
leading three-quark Fock states with vanishing orbital angular momentum are taken into
account (i.e., the helicities of the quarks have to sum up to the helicity of the baryon) and
the transverse momentum dependence has been integrated out (with a cutoff given by the
scale µ):

|[B 6=Λ]↑〉 =
∫ [dx]

8
√

6x1x2x3
|fgh〉 ⊗

{
[V+A]B(x1, x2, x3)|↓↑↑〉+ [V−A]B(x1, x2, x3)|↑↓↑〉

− 2TB(x1, x2, x3)|↑↑↓〉
}

=
∫ [dx]

8
√

3x1x2x3
|↑↑↓〉 ⊗

{
−
√

3ΦB
+(x1, x3, x2)

(
|BMS〉 −

√
2|BS〉

)
/3

−
√

3ΠB(x1, x3, x2)
(
2|BMS〉+

√
2|BS〉

)
/3

+ ΦB
−(x1, x3, x2)|BMA〉

}
, (3.14a)
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and

|Λ↑〉 =
∫ [dx]

4
√

6x1x2x3
|uds〉 ⊗

{
[V+A]Λ(x1, x2, x3)|↓↑↑〉+ [V−A]Λ(x1, x2, x3)|↑↓↑〉

− 2TΛ(x1, x2, x3)|↑↑↓〉
}

=
∫ [dx]

8
√

3x1x2x3
|↑↑↓〉 ⊗

{
−
√

3ΦΛ
+(x1, x3, x2)|ΛMS〉

+ ΠΛ(x1, x3, x2)
(
2|ΛMA〉+

√
2|ΛA〉

)
/3

+ ΦΛ
−(x1, x3, x2)

(
|ΛMA〉 −

√
2|ΛA〉

)
/3
}
, (3.14b)

where |fgh〉 show the quark flavors, which adhere to the ordering convention specified in
eqs. (3.3), and |↑↓↑〉, etc., show quark helicities. In combination, |fgh〉 ⊗ |↑↓↑〉 specifies a
state with quark content |f ↑(x1)g↓(x2)h↑(x3)〉. From this representation it becomes obvious
that V B, AB, and TB are convenient DAs if one sorts the quarks with respect to their flavor,
while ΦB

+, ΦB
−, and ΠB correspond to three distinct flavor structures in a helicity-ordered

wave function. |BMS〉 and |BMA〉 are the usual mixed-symmetric and mixed-antisymmetric
octet flavor wave functions (see tables C.2 and C.3 in appendix C). |ΛA〉 and |[B 6=Λ]S〉 are
totally antisymmetric and symmetric flavor wave functions (see tables C.1 and C.4). These
are usually associated with singlet and decuplet baryons, respectively, and only occur in
the octet if SU(3) symmetry is broken. At the flavor symmetric point, Φ?

+ and Φ?
− isolate

the mixed-symmetric and mixed-antisymmetric flavor wave functions:

|B↑〉? =
∫ [dx]

8
√

3x1x2x3
|↑↑↓〉 ⊗

{
−
√

3Φ?
+(x1, x3, x2)|BMS〉+ Φ?

−(x1, x3, x2)|BMA〉
}
.

(3.15)

Baryon DAs can be expanded in a set of orthogonal polynomials Pnk (of the three
variables x1, x2, x3) that describe irreducible representations of the collinear conformal
group SL(2,R) (a conformal partial wave expansion). This procedure has an analogy in
quantum mechanics, namely the expansion in spherical harmonics Ylm(θ, ϕ), which provide
a basis for the irreducible representations of the rotation group SO(3). While the quantum
mechanical application exploits the spherical symmetry of a potential, the expansion of
DAs is based on conformal symmetry [129]. The benefit of such an expansion is that
the renormalization group equations guarantee that the coefficients appearing in front
of these polynomials have autonomous scale dependence at one loop [126]. The first few
polynomials are (see, e.g., [134])36

P00 = 1 , P20 = 63
10 [3(x1 − x3)2 − 3x2(x1 + x3) + 2x2

2] ,

P11 = 7(x1 − 2x2 + x3) , P22 = 9
5 [x2

1 + 9x2(x1 + x3)− 12x1x3 − 6x2
2 + x2

3] ,

P10 = 21(x1 − x3) , P21 = 63
2 (x1 − 3x2 + x3)(x1 − x3) . (3.16a–f)

36The polynomials Pnk are orthogonal with respect to
∫

[dx] 120x1x2x3 PnkPn′k′ ∝ δnn′δkk′ .
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3.2. Octet baryon distribution amplitudes

Note that all Pnk have definite symmetry (being symmetric or antisymmetric) under the
exchange of x1 and x3. Taking into account the corresponding symmetry of the DAs
defined in eqs. (3.12), a generic expansion reads

ΦB
+ = 120x1x2x3

(
ϕB00P00 + ϕB11P11 + ϕB20P20 + ϕB22P22 + · · ·

)
, (3.17a)

ΦB
− = 120x1x2x3

(
ϕB10P10 + ϕB21P21 + · · ·

)
, (3.17b)

ΠB 6=Λ = 120x1x2x3
(
πB00P00 + πB11P11 + πB20P20 + πB22P22 + · · ·

)
, (3.17c)

ΠΛ = 120x1x2x3
(
πΛ

10P10 + πΛ
21P21 + · · ·

)
. (3.17d)

In each DA only polynomials of one type appear, either symmetric (ΦB
+, ΠB 6=Λ) or an-

tisymmetric (ΦB
−, ΠΛ). In this expansion all nonperturbative information is encoded in

the set of (scale-dependent) coefficients ϕBnk, πBnk, which can be related to matrix elements
of local operators. These quantities are of phenomenological interest and it is therefore
necessary to understand their behavior under renormalization which will be investigated in
section 3.5.4.

The leading contributions 120x1x2x3ϕ
B
00 and 120x1x2x3π

B 6=Λ
00 are usually referred to

as the asymptotic DAs (see below). The corresponding coefficients ϕB00 and πB 6=Λ
00 can be

thought of as the value of the baryon wave functions at the origin (in position space). In
what follows we will use the notation

fB ≡
∫

[dx] ΦB
+(x1, x2, x3) = ϕB00 , fB 6=Λ

T ≡
∫

[dx] ΠB(x1, x2, x3) = πB00 , (3.18a–b)

i.e., fB and fB 6=Λ
T denote the normalization of the DAs ΦB

+ and ΠB 6=Λ, respectively. Note
that for the nucleon the two couplings coincide, fNT = fN. The DAs ΦB

− and ΠΛ, on the
other hand, both have vanishing normalization by construction.

The coefficients of higher order are usually referred to as shape parameters.37 The
one-loop scale evolution of the couplings and shape parameters is given by

ϕBnk(µ) = ϕBnk(µ0)
(
αs(µ)
αs(µ0)

)γnk/β0

, πBnk(µ) = πBnk(µ0)
(
αs(µ)
αs(µ0)

)γnk/β0

, (3.19a–b)

where β0 = 11− 2nf/3 is the first coefficient of the QCD beta function. In this work we
restrict ourselves to the contributions of up to second order polynomials and omit all higher
terms. The relevant one-loop anomalous dimensions are

γ00 = 2
3 , γ11 = 10

3 , γ10 = 26
9 ,

γ20 = 38
9 , γ22 = 16

3 , γ21 = 46
9 . (3.20a–f)

37Note that, in contrast to [48], we do not separate the couplings fB and fB 6=Λ
T as overall normalization

factors, i.e., our ϕNnk correspond to fNϕNnk of [48].
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Beyond that, the scale dependence of fB = ϕB00 and fB 6=Λ
T = πB00 is known to three-loop

order, see refs. [135, 136]. There is a hierarchy in the numerical values of anomalous
dimensions, γ00 < γ11 ≈ γ10 < γ20 ≈ γ22 ≈ γ21 < · · · , which implies that in the limit
of asymptotically large scales all shape parameters tend to zero at a much faster rate
than ϕB00 or πB 6=Λ

00 , thereby justifying the nomenclature of asymptotic DA for 120x1x2x3ϕ
B
00

and 120x1x2x3π
B 6=Λ
00 .

3.2.2. Higher twist contributions

The general decomposition (3.4) contains 21 DAs of higher twist, which altogether involve
only up to three new normalization constants (just two for N, Σ, and Ξ), for details see
refs. [33, 126]. They can be defined as matrix elements of local three-quark twist four
operators without derivatives. These twist four couplings are also of interest in a broader
context, e.g., in studies of baryon decays in grand unified models [137], and as input
parameters for QCD sum rule calculations, see, e.g., refs. [95, 138, 139].

We use the following definitions:38

〈0|
(
f
↑T(0)Cγµg↓(0)

)
γµh

↑(0)|[B 6=Λ](p, λ)〉 = −1
2λ

B
1 mBu

B↓(p, λ) , (3.21a)

〈0|
(
f
↑T(0)Cσµνg↑(0)

)
σµνh

↑(0)|[B 6=Λ](p, λ)〉 = λB2 mBu
B↑(p, λ) , (3.21b)

for the isospin-nonsinglet baryons (B = N,Σ,Ξ), and

〈0|
(
u
↑T(0)Cγµd↓(0)

)
γµs

↑(0)|Λ(p, λ)〉 = 1
2
√

6λ
Λ
1mΛu

Λ↓(p, λ) , (3.22a)

〈0|
(
u
↑T(0)Cd↑(0)

)
s
↓(0)|Λ(p, λ)〉 = 1

2
√

6λ
Λ
TmΛu

Λ↓(p, λ) , (3.22b)

〈0|
(
u
↑T(0)Cd↑(0)

)
s
↑(0)|Λ(p, λ)〉 = −1

4
√

6λ
Λ
2mΛu

Λ↑(p, λ) , (3.22c)

for the Λ baryon. These definitions are chosen so that the normalization constants of
different baryons become equal at the flavor symmetric point, see also [33]:

λ?1 ≡ λN?1 = λΣ?
1 = λΞ?

1 = λΛ?
1 = λΛ?

T , (3.23a)

λ?2 ≡ λN?2 = λΣ?
2 = λΞ?

2 = λΛ?
2 , (3.23b)

The one-loop evolution for all twist four normalization constants is the same:

λB1,2,T (µ) = λB1,2,T (µ0)
(
αs(µ)
αs(µ0)

)−2/β0

. (3.24)

The corresponding anomalous dimensions are known to three-loop accuracy [135, 136].
The scale dependence of the couplings λB1 and λΛ

T is the same to all orders, whereas for λB2
it differs starting from the second loop.
38For the nucleon the definitions in terms of chiral fields given in eqs. (3.21) are equivalent to the traditional
definitions of λN1 and λN2 not involving chiral projections, as used in [48].
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3.3. Moments
As we have seen in the previous section, distribution amplitudes are defined as matrix
elements of nonlocal operators with quarks at light-like separations. A direct lattice
calculation of such quantities in Euclidean spacetime is not possible. However, so-called
moments of the DAs, e.g.,

V B
lmn =

∫
[dx]xl1xm2 xn3 V B(x1, x2, x3) , (3.25)

(and similarly for the other functions) are instead related to local operators, which we will
be able to access in lattice QCD. To illustrate this connection let us look at an example.
The DA [V−A]B is defined via the nonlocal matrix element previously shown in eq. (3.9a):

〈0|
(
f
↑T(a1n)C/ng↓(a2n)

)
/nh
↑(a3n)|B(p, λ)〉 =

= −1
2(p · n)/nuB↑(p, λ)

∫
[dx] e−ip·n

∑
i aixi [V−A]B(x1, x2, x3) ,

with arbitrary ai. In particular, this implies for ai → 0 that

〈0|
(
f
↑T(0)C/ng↓(0)

)
/nh
↑(0)|B(p, λ)〉 = −1

2(p · n)/nuB↑(p, λ)[V−A]B000 , (3.26)

i.e., the zeroth moment of the DA [V−A]B is related to the local operator on the left-hand
side. Such relations enable lattice calculations of DAs in terms of their moments, a method
which is well established [40–49]. A compilation of local operators suitable for lattice
implementation will be given in section 4.2. In general, the calculation of an (l+m+n)-th
moment will require operators with l +m+ n covariant derivatives. This constitutes an
inherent limitation of the method, because calculations with a high number of derivatives
cannot be realized in practice with sufficient precision. In practice, this usually means that
we are limited to describing baryon DAs up to their second moments, although this is not
a major drawback since these lowest contributions are indeed by far the most important
ones.

An alternative to this moments method has been proposed in [140]. It revolves around
the calculation of hadronic matrix elements of current-current correlators at purely space-
like separations in position space. The connection to distribution amplitudes is then
made in continuum perturbation theory. An advantage of this method would be that it
could circumnavigate the complicated question of the renormalization behavior of local
three-quark operators with derivatives which we will be discussing in this work. However,
in order to be sensitive to anything but the value of the lowest moment, the position space
method requires hadron sources with high momenta. Large momenta are also required in
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other methods to calculate hadron properties in Euclidean space, such as [141]. Up until
very recently this presented a grave problem spoiling any practical application since no
satisfactory techniques for hadrons carrying high momenta on the lattice existed that could
sufficiently suppress excited state contributions while maintaining acceptable signal-to-noise
ratios. The situation has changed with the development of a novel momentum smearing
technique [44, 142]. An early investigation of the position space method combined with
momentum smearing indicates some promise [143] and should inspire further exploration
to assess the potential as a complement to the established moments method.

In this thesis we focus on the traditional method. To this end we will express the shape
parameters of the DAs ΦB

+, ΦB
−, and ΠB (as defined in eqs. (3.17)) in terms of moments of

the standard DAs V B, AB, and TB. The shape parameters ϕBnk are related to n-th moments
of [V−A]B, while πBnk are related to n-th moments of TB. These relations are instrumental
both in extracting the quantities which we are interested in from the lattice correlators
(section 4.2) as well as in deducing their renormalization matrices (section 3.5.4).

Leading twist – zeroth moments

By definition, the couplings of interest are related to the zeroth moments as follows:

fB 6=Λ ≡ ϕB00 = [V−A]B000 , fΛ ≡ ϕΛ
00 =

√
2
3 [V−A]Λ000 , fB 6=Λ

T ≡ πB00 = TB000 , (3.27a–c)

where fNT = fN due to isospin symmetry. Due to the symmetry relations (3.10), some
zeroth moments of individual DAs vanish identically,

V Λ
000 = AB 6=Λ

000 = TΛ
000 = 0 , (3.28)

such that the above is equivalent to

ϕB 6=Λ
00 = V B

000 , ϕΛ
00 = −

√
2
3A

Λ
000 , πB 6=Λ

00 = TB000 . (3.29a–c)

Leading twist – first moments

The shape parameters defined in eqs. (3.17) can be expressed as linear combinations of V B
lmn,

ABlmn, and TBlmn via eqs. (3.12). For the N, Σ, and Ξ baryons,

ϕB 6=Λ
00,(1) = [V−A]B100 + [V−A]B010 + [V−A]B001 , (3.30a)

πB 6=Λ
00,(1) = TB100 + TB010 + TB001 , (3.30b)

ϕB 6=Λ
11 = 1

2
(
[V−A]B100 − 2[V−A]B010 + [V−A]B001

)
, (3.30c)

πB 6=Λ
11 = 1

2
(
TB100 + TB010 − 2TB001

)
, (3.30d)

ϕB 6=Λ
10 = 1

2
(
[V−A]B100 − [V−A]B001

)
, (3.30e)
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where πN00,(1) = ϕN00,(1) and πN11 = ϕN11 due to isospin symmetry. For the Λ baryon the shape
parameters are given by

ϕΛ
00,(1) =

√
2
3
(
[V−A]Λ100 + [V−A]Λ010 + [V−A]Λ001

)
, (3.31a)

ϕΛ
11 = 1√

6

(
[V−A]Λ100 − 2[V−A]Λ010 + [V−A]Λ001

)
, (3.31b)

ϕΛ
10 = −

√
3
2
(
[V−A]Λ100 − [V−A]Λ001

)
, (3.31c)

πΛ
10 =

√
3
2
(
TΛ

100 − TΛ
010
)
. (3.31d)

Leading twist – second moments

For the isospin-nonsinglet baryons we have 10 second order shape parameters:

ϕB 6=Λ
00,(2), π

B 6=Λ
00,(2), ϕ

B 6=Λ
11,(2), π

B 6=Λ
11,(2), ϕ

B 6=Λ
20 , πB 6=Λ

20 , ϕB 6=Λ
22 , πB 6=Λ

22 , ϕB 6=Λ
10,(2), ϕ

B 6=Λ
21 . (3.32)

Additionally we have a set of 8 parameters for the Λ baryon:

ϕΛ
00,(2), ϕ

Λ
11,(2), ϕ

Λ
20, ϕ

Λ
22, ϕ

Λ
10,(2), π

Λ
10,(2), ϕ

Λ
21, π

Λ
21 . (3.33)

Their expression in terms of moments can be found in appendix D.1.

Leading twist – momentum sums

In the above we have defined additional objects that did not originally appear in the
parametrizations (3.17). They are given the same names as the established shape pa-
rameters, but are distinguished by an extra subscript in parentheses, and correspond to
expressing the same shape parameter using a different set of moments. For example, the
leading twist normalization constant fB can be written as a zeroth moment (ϕB00), or as
a sum of first moments (ϕB00,(1)), a sum of second moments (ϕB00,(2)), and so on. In the
continuum all these expressions are equal, i.e., we have

ϕB00,(2) = ϕB00,(1) = ϕB00 ≡ f
B , πB 6=Λ

00,(2) = πB00,(1) = πB00 ≡ f
B
T ,

ϕB11,(2) = ϕB11 , πB 6=Λ
11,(2) = πB11 ,

ϕB10,(2) = ϕB10 , πΛ
10,(2) = πΛ

10 . (3.34a–f)

This follows directly from the momentum conservation condition x1 +x2 +x3 = 1, eq. (3.5).
In the language of operators this combination corresponds to rewriting a total derivative

acting on a local three-quark operator as a sum of three operators with a covariant
derivative acting on one of the quarks. However, the product rule for derivatives is violated
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by discretization effects, meaning that the relations given above will be broken on the
lattice. This also affects renormalization: The renormalization prescription for ϕB00 will
differ from that for ϕB00,(1) and the latter will also include mixing with the other first
moments, see section 3.5.4. Even so, we can still expect equations (3.34) to be restored
for continuum extrapolated data renormalized in a scheme which respects the Lorentz
symmetry, such as the MS scheme. In a lattice study one can use this as a consistency
check, and we discuss and analyze it in more detail in section 4.4.1.

3.4. Operators
As stated in the previous section, moments of distribution amplitudes are related to local
three-quark operators. In the following we will show how the latter can be assembled to form
multiplets that transform under irreducible representations of both the spinorial hypercubic
group H(4) and the permutation group S3, as these exhibit optimal transformation behavior
for the task at hand.

3.4.1. Transformation behavior under H(4)

Consider a generic local three-quark operator O containing n covariant derivatives,39

O = Tαβγ,µ1...µnfαgβDµ1 · · ·Dµnhγ , (3.35)

where T is an arbitrary coefficient tensor contracted with the Dirac indices of the quark
fields and the Lorentz indices of the derivatives. For any group element g ∈ H(4) we
define the g-transformed operator g.O as the operator where each part of the operator
is individually transformed using the appropriate representation, i.e., the fundamental
spinorial representation τ4

1 for the quark fields and the fundamental representation τ4
1 for

the derivatives:

g.O =
[
τ

4
1 (g)

]
α′α

[
τ

4
1 (g)

]
β′β

[
τ

4
1 (g)

]
µ′1µ1
· · ·
[
τ

4
1 (g)

]
µ′nµn

[
τ

4
1 (g)

]
γ′γ

× Tαβγ,µ1...µnfα′gβ′Dµ′1 · · ·Dµ′nhγ′ . (3.36)

From this, it becomes clear that the transformation behavior of operators with n derivatives
is determined by the product of representations τ4

1 ⊗ τ
4
1 ⊗ τ

4
1 ⊗ · · · ⊗ τ

4
1 ⊗ τ

4
1 , where the

representation τ4
1 appears n times.

39For the determination of the H(4) transformation behavior of the operators their flavor structure is not
relevant and neither are the positions of derivatives. For notational purposes we will use three generic
flavors, f, g, and h, and have all derivatives acting on the quark h.
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Using eq. (2.61) one can decompose these products into sums of irreducible represen-
tations. To carry out this calculation explicitly, one needs to know the characters of all
elements in the various representations of H(4). This information can be found in the
character table B.1 in appendix B. For the interesting cases of zero, one, or two derivatives
we find:40

τ
4
1 ⊗ τ

4
1 ⊗ τ

4
1 = 5τ4

1 ⊕ τ
8 ⊕ 3τ12

1 , (3.37a)

τ
4
1 ⊗ τ

4
1 ⊗ τ

4
1 ⊗ τ

4
1 = 8τ4

1 ⊕ 4τ8 ⊕ 12τ12
1 ⊕ 4τ12

2 , (3.37b)

τ
4
1 ⊗ τ

4
1 ⊗ τ

4
1 ⊗ τ

4
1 ⊗ τ

4
1 = 20τ4

1 ⊕ 4τ4
2 ⊕ 20τ8 ⊕ 40τ12

1 ⊕ 24τ12
2 . (3.37c)

On the right-hand sides of these equations we find only the spinorial representations (as
expected, given that baryons are fermions), meaning that three-quark operators form 4-, 8-,
or 12-dimensional multiplets transforming under the spinorial H(4) representations τ4

1 , τ
4
2 ,

τ
8, τ12

1 , and τ12
2 . E.g., the 43 = 64 operators without derivatives will form five 4-dimensional,

one 8-dim., and three 12-dim. multiplets.
We can construct these multiplets explicitly by using eq. (2.62). Let R be one of the

spinorial representations and let dR be its dimension. For a dR-dimensional multiplet of
operators O(i), i = 1, . . . , dR to transform under the representation R we have to demand41

g.O(i) = [R(g)]jiO(j) ∀ g ∈ H(4) . (3.38)

This constitutes a system of linear equations whose solution will constrain the components
of the coefficient tensors T (i), but will not fix them completely. It is already apparent
from the structure of eq. (3.38) that the overall phase and normalization of a multiplet
cannot be uniquely determined and remain as a choice of convention. Furthermore, in
cases where multiple copies of the same representation appear on the right-hand side of
the decompositions (3.37), the linear solution space will be multi-dimensional, e.g., in the
case of operators without derivatives in the representation τ12

1 the solution space turns
out to be three-dimensional, as predicted by eq. (3.37a). In principle, one could take
any three linearly independent solutions and declare them the three multiplets in the
representation τ12

1 . However, while all such choices would be equally valid mathematically,
not all are equally smart from the physicist’s point of view.

As a starting point we consider the three-quark operator multiplets (with zero, one,
or two covariant derivatives) transforming irreducibly under H(4) that have been worked
out in [51].42 We will not repeat all details of the construction here. Instead, we will
40The result for two derivatives, eq. (3.37c), is stated incorrectly in [50–52].
41When checking this property it is sufficient to do so only for the 6 generators of H(4) since both the action,

(g1 ◦ g2).O = g1.(g2.O), and the representation, R(g1 ◦ g2) = R(g1)R(g2), respect the group structure.
42We have independently verified that all multiplets given therein really transform as advertised. See also
the explicit expressions for the representation matrices collected in appendix B.2.
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Table 3.1.: List of three-quark operator multiplets transforming irreducibly under H(4),
sorted by operator dimension and representation. For zero derivatives all operators are
listed (leading twist: O6−9, higher twist: O1−5). For the operators with derivatives, only the
leading twist multiplets are shown. Our knowledge of the decompositions (3.37) allows us
to indicate the positions of the remaining higher twist operators by dots. The nomenclature
follows [52].

no derivatives 1 derivative 2 derivatives
dimension 9/2 dimension 11/2 dimension 13/2

τ
4
1 O1, O2, O3, O4, O5 . . . ODD1, ODD2, ODD3, . . .
τ

4
2 ODD4, ODD5, ODD6, . . .
τ

8 O6 OD1, . . . ODD7, ODD8, ODD9, . . .
τ

12
1 O7, O8, O9 OD2, OD3, OD4, . . . ODD10, ODD11, ODD12, ODD13, . . .

τ
12
2 OD5, OD6, OD7, OD8

ODD14, ODD15, ODD16,
ODD17, ODD18, . . .

discuss some of the properties of the resulting multiplets, analyze the structure of the
H(4) classification, and then proceed to improve upon it in the following sections.

In [51] all operators without derivatives are sorted into multiplets, but for the operators
involving one or two covariant derivatives only multiplets of leading twist operators are
constructed and named.43 The resulting structure is summarized in table 3.1. The
delineation of the leading twist operators is an important and useful property since, under
renormalization, leading twist operators can only mix with other leading twist operators.
We will therefore retain this property also in our improved operator multiplets.

Another property of the multiplets constructed in [51] concerns the quark chiralities.
In the chiral Weyl representation the Dirac four-spinors consist of a pair of two-spinors
corresponding to left- and right-handed quarks. The multiplets were constructed such
that all operators contained have definite quark chiralities. In the example of τ12

1 with no
derivatives, the first multiplet, O7, is chosen such that all its operators are either RLL
or LRR, while O8 has LRL/RLR, and O9 has LLR/RRL. We will call such operators
chiral-odd. (The only chiral-even combination, LLL/RRR, simply does not appear here,
but will do so in other cases, e.g., O6 in τ

8.) A comparison with eqs. (3.14) tells us
that this classification corresponds to the DAs [V+A]B, [V−A]B, and TB. While it is
straightforward to select operator multiplets in this manner, it is not optimal in the context

43The absence of a classification for multiplets of higher twist operators with derivatives does not pose a
problem since our lattice studies are not aiming to determine the higher moments of the higher twist
DAs. Should the need arise, such multiplets could be constructed using eq. (3.38).
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of SU(3) baryon distribution amplitudes where the DAs ΦB
+, ΦB

−, and ΠB provide a better
basis instead. Therefore we will, over the course of the next two sections, incorporate the
symmetry properties of SU(3) baryons into the operator construction.

Before that, however, it is worth taking a few minutes to figure out which of the
many operator multiplets shown in table 3.1 are actually useful in the context of a lattice
calculation of octet baryon distribution amplitudes. To narrow it down to the relevant
operators we first classify the operators by number of derivatives, chirality and twist.44

In the case of zero derivatives we have chiral-even higher twist operator multiplets O1−2,
chiral-odd higher twist multiplets O3−5, a chiral-even leading twist multiplet O6, and
chiral-even leading twist multiplets O7−9. In general, operators without derivatives are
related to the zeroth moments, i.e., normalization constants. From the relevant definitions
in eqs. (3.9) and (3.21)–(3.22) we can see that all leading twist DAs are related to three
quarks in a chiral-odd combination and that we need both, chiral-odd and chiral-even
operators, for the various higher twist normalization constants. The conclusion is therefore
that O7−9 should be considered for fB as well as fB 6=Λ

T , while O3−5 should be considered
for λB1 as well as λΛ

T , and O1−2 should be considered for λB2 . This leaves O6 as the odd man
out. Chiral-even leading twist operators such as these are not relevant for octet baryon
DAs, but they do couple to decuplet baryon DAs (which are not discussed in this work).

Among the operators with one derivative we find two chiral-even leading twist multiplets,
OD1 and OD8, as well as two sets of chiral-odd leading twist multiplets, OD2−D4 in τ12

1
and OD5−D7 in τ12

2 . The leading twist octet baryon DAs are chiral-odd, hence at first sight
both OD2−D4 and OD5−D7 are candidates for the calculation of the first moments. To be
able to answer the question whether we should use the operators from the representation τ12

1
or τ12

2 to calculate the first order shape parameters we should first examine which operators
can mix under renormalization.

In principle, only operators with equal mass dimension and equal transformation
behavior under H(4) can mix. With respect to the presentation in table 3.1 this means
that mixing is only allowed among operators grouped together in one and the same cell,
but not between different columns or rows. In lattice QCD this condition is not as strict,
because powers of the dimensionful regulator a can be used to adjust the mass dimension
of operators. This effectively allows mixing within the same row, e.g., operators a−1O7−9

could mix into OD2−D4.45 The mixing of lower-dimensional operators into higher ones
shown in this example is particularly troublesome because it involves negative powers of

44Chirality and twist of these operator multiplets can be read off from appendix A of [52].
45One might argue that the same could be said about the continuum, i.e., that the mixing should be
allowed because one could just as well use a mass as the dimensionful quantitiy. However, since we are
always working with mass-independent renormalization schemes, the continuum calculation is shielded
from this additional complicacy.
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the lattice spacing. In the end we are always interested in the continuum limit a → 0,
meaning that these contributions from lower-dimensional operators can become arbitrarily
large. Still, the renormalized operators should give finite results, hence large cancelations
are required. While one can try to take this mixing with lower-dimensional operators
into account (see [51]), the precision achievable in a calculation that has to rely on the
numerical cancelation of near infinities is of course expected to be much worse than in a
calculation where this can be avoided.

Fortunately, we can indeed avoid these difficulties by working with the operators OD5−D7

instead of OD2−D4. They transform according to the irreducible representation τ12
2 of H(4),

where simply no operators without derivatives exist, such that this kind of mixing need not
be considered. However, there does exist a fourth multiplet, OD8, in this representation
which consists of operators with different chirality. In a continuum calculation with exact
chiral symmetry there can be no mixing between these, but in most lattice actions (including
the one we use, see section 4.3) chiral symmetry is broken [144] and we need to check whether
mixing of OD8 into OD5−D7 could spoil the results. Since chiral symmetry is restored in
the continuum limit, an admixture is a power-suppressed O(a) effect. Furthermore, in
the continuum limit all octet-baryon-to-vacuum matrix elements of operators within OD8

vanish identically, even though the operators themselves are nonzero. We have also verified
this property numerically on the lattice. In summary, the admixture of OD8 to OD5−D7 is
completely negligible and can safely be ignored in our analysis.

Finally for the operators with two derivatives it should now be obvious (by looking
at table 3.1 once again) that we will select the chiral-odd leading twist operator mul-
tiplets ODD4−DD6 from the representation τ

4
2 of H(4) for the calculation of the second

moments and ignore all other operators with two derivatives. Only for these operators
there is no mixing with other operators containing one or no derivative. One can also see
that there will be no easy way out if one were to consider operators with three derivatives:
Since every row has an entry in at least one of the columns shown, calculations involving
any operator with three derivatives will require that the mixing with lower-dimensional
operators is fully taken into account, no matter what representation one would choose.
This is of no practical relevance yet, as the present lattice methods suffer from increased
noise with each additional derivative and currently going past two derivatives seems not
feasible. Existing lattice results for the second moments of the nucleon already come with
large relative errors of 200%–800% such that the values are compatible with zero [48].46

The opposite of the bothersome mixing described above is also possible. Higher-
dimensional operators can mix into the renormalization of the lower ones (and by nature

46Still, such results are valuable because they provide general constraints for the magnitude of these quanti-
ties. This can at least exclude some nucleon DA models with very large values for the shape parameters.
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this will affect each and every multiplet), e.g., operators aOD2−D4 can mix into O7−9. This
behavior is a lot less dangerous though, because it is always suppressed by O(a). Its effects
will safely vanish the continuum limit. Let us end this section with a summary of the
operators which we will use:

• O7−9 from τ
12
1 for the leading twist normalization constants

• O1−5 from τ
4
1 for the higher twist normalization constants

• OD5−D7 from τ
12
2 for the leading twist first moments

• ODD4−DD6 from τ
4
2 for the leading twist second moments

3.4.2. The relation between SU(3) and S3

When constructing n-particle states from a set of N distinct single-particle basis states
there is an interplay between irreducible representations of the symmetric group Sn and
the dimensions of SU(N) representations or, in the language of particle physics, between
symmetry properties and the dimensions of particle multiplets. To illustrate this connection
we need to introduce some concepts from representation theory.

Each irreducible representation of Sn can be identified one-to-one with a Young diagram,
that is a set of n boxes arranged in left-justified rows with each row being of shorter or
equal length than the row above it.47 In this manner, the Young diagrams are isomorphic
to the partitions of the integer n. Since we are interested in baryons (three-particle states),
let us take a look at S3. There are three irreducible representations (see section 2.2.2) and
three admissible Young diagrams. The identification is as follows:48

T a : Tm : T s :

A standard Young tableau is created by arranging the integers 1, . . . , n in the boxes of a
Young diagram such that the entries in every row and in every column are in strictly increas-
ing order. The number of standard Young tableaux that exist for a given Young diagram is
equal to the dimension of the corresponding irreducible representation of Sn. For S3 we have:
47Young diagrams and Young tableaux are powerful mathematical tools, used in representation theory,
combinatorics, algebraic geometry, and other fields. A detailed treatment of their properties is beyond
the scope of this thesis, we refer the reader to [145] for an overview.

48For any Sn the diagram with a single row/column corresponds to the trivial/signum representation,
respectively.
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T a : 1
2
3

Tm : 1 2
3

1 3
2

T s : 1 2 3

This reconfirms that T s and T a are 1-dimensional and that Tm is 2-dimensional. In general,
the number of standard Young tableaux can be calculated via the hook-length formula [146].

Each diagram is assigned a Young symmetrizer, an element of the group algebra that
acts as a projection operator, by symmetrizing along all rows and antisymmetrizing along
all columns. We define

Y a = 1
6
∑
π∈S3

sgn(π)π , (3.39a)

Y ms = 1
3
(
(123) + (213)

)
◦
(
(123)− (321)

)
, (3.39b)

Y ma = 1
3
(
(123)− (213)

)
◦
(
(123) + (321)

)
, (3.39c)

Y s = 1
6
∑
π∈S3

π . (3.39d)

In this context, T a is totally antisymmetric, Tm has mixed symmetry, and T s is totally
symmetric, justifying our naming conventions a posteriori. The Young symmetrizers are
related to the construction of flavor wave functions. For example, the mixed-symmetric
and mixed-antisymmetric flavor wave functions of the proton are given by

Y ms|uud〉 ∝ 2|uud〉 − |udu〉 − |duu〉 , Y ma|uud〉 ∝ |udu〉 − |duu〉 . (3.40a–b)

A collection of all relevant flavor wave functions can be found in appendix C.1.
The dimension of a SU(N) representation associated with a Young diagram of Sn is

given by the number of so-called semistandard Young tableaux that can be built from a
set of N allowed entries. A semistandard Young tableau is a filling of a Young diagram
such that the entries in each row are weakly increasing while the entries in each column
are strictly increasing. Given an integer N as well as the shape of a Young diagram, one
can directly calculate the number of semistandard Young tableaux using the hook-content
formula [147, Corollary 7.21.4], but for the case we are interested in it is both feasible and
instructive to simply work out all the tableaux explicitly.

To understand SU(3) baryons we need to consider all semistandard Young tableaux that
can be built by filling the Young diagrams of S3 from 3 allowed entries. The labels used for
the filling are of no consequence; while mathematicians might prefer to use a canonically
ordered set such as {1, 2, 3}, we will use {u, d, s} with the implied ordering u < d < s
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to hint at the connection to SU(3) flavor symmetry. The complete list of semistandard
S3 Young tableaux with these entries is:

T a : u

d

s

Tm : u u

d

u d

d

u u

s

u d

s

d d

s

u s

s

d s

s

u s

d

T s : u u u u u d u d d d d d u u s

u d s d d s u s s d s s s s s

From this we can read off the connection between particle multiplets and symmetry prop-
erties: The totally antisymmetric S3 representation T a corresponds to a one-dimensional
SU(3) representation (singlet), the mixed symmetry S3 representation Tm corresponds
to an eight-dimensional SU(3) representation (octet), and the totally symmetric S3 rep-
resentation T s corresponds to a ten-dimensional SU(3) representation (decuplet). In a
manner which is dual to this, the singlet and decuplet, both of which appear once in the
decomposition of 3⊗ 3⊗ 3, correspond to one-dimensional S3 representations, while the
octet, appearing twice, corresponds to the only two-dimensional S3 representation.

3.4.3. Symmetry properties of baryons

According to the spin-statistics theorem [66], baryons are fermions. Their wave functions
should be totally antisymmetric under the exchange of all properties (color, flavor, position,
spin) of two constituent quarks. Let us consider the full wave function, a product of color,
position, and spin-flavor wave functions, and analyze each part individually, starting with
color.

Since baryons are color neutral, the three constituent quarks have to form a colorless
SU(3) singlet state. The same reasoning as laid out for SU(3) flavor in section 3.4.2
also holds for SU(3) color and therefore the baryon color wave function has to be fully
antisymmetric. This can be implemented using the Levi-Civita symbol εabc to contract the
color indices. Moving on to the position part, we only consider ground state baryons with
zero orbital angular momentum, thus requiring a totally symmetric spatial wave function.

69



Chapter 3. Distribution amplitudes and their renormalization

This can be implemented by putting all three quarks at the same location (and without
loss of generality we will usually take this location as the origin of our coordinate system).
From this we can deduce that the remaining spin-flavor part has to be totally symmetric.
Using our knowledge from section 3.4.2 we achieve this by taking a product of a totally
(anti-)symmetric spinor structure with a totally (anti-)symmetric flavor structure for the
(singlet) decuplet and by combining the two structures of mixed symmetry in case of the
octet.

Putting these words into formulas, consider a three-quark operator,

SF f1f2f3
α1α2α3,µ̄1µ̄2µ̄3ε

a1a2a3 [Dµ̄1f1]a1
α1(0)[Dµ̄2f2]a2

α2(0)[Dµ̄3f3]a3
α3(0) , (3.41)

with a spin-flavor structure SF, color indices ai, Lorentz multi-indices µ̄i,49 Dirac indices αi,
and quark flavors fi. Together with the color structure, the product of three quark fields
appearing in such an operator is completely invariant under any simultaneous exchange of
Lorentz, Dirac, and flavor indices, e.g., µ̄1 ↔ µ̄2, α1 ↔ α2, and f1 ↔ f2 simultaneously.
As expected, this implies that the only meaningful contributions from SF are those totally
symmetric under any permutation of 1, 2, and 3, i.e., we shall only consider structures that
fulfill

SF f1f2f3
α1α2α3,µ̄1µ̄2µ̄3 = SF fπ1fπ2fπ3

απ1απ2απ3 ,µ̄π1 µ̄π2 µ̄π3
∀π ∈ S3 , (3.42)

where πi denote the appropriately permuted indices.
For the three SU(3) flavor multiplets we have

singlet (S ): SF f1f2f3
α1α2α3,µ̄1µ̄2µ̄3 = SS

α1α2α3,µ̄1µ̄2µ̄3F
f1f2f3
S , (3.43a)

octet (O): SF f1f2f3
α1α2α3,µ̄1µ̄2µ̄3 =

2∑
t=1

SO,t
α1α2α3,µ̄1µ̄2µ̄3F

f1f2f3
O,t , (3.43b)

decuplet (D): SF f1f2f3
α1α2α3,µ̄1µ̄2µ̄3 = SD

α1α2α3,µ̄1µ̄2µ̄3F
f1f2f3
D , (3.43c)

where SF is guaranteed to respect eq. (3.42) by having the spin and the flavor structures
individually transform according to the corresponding S3 representations (see sections 2.2
and 3.4.2):

SS
απ1απ2απ3 ,µ̄π1 µ̄π2 µ̄π3

= T a(π)SS
α1α2α3,µ̄1µ̄2µ̄3 , (3.44a)

SO,t′

απ1απ2απ3 ,µ̄π1 µ̄π2 µ̄π3
=

2∑
t=1

[Tm(π)]tt′S
O,t
α1α2α3,µ̄1µ̄2µ̄3 , (3.44b)

SD
απ1απ2απ3 ,µ̄π1 µ̄π2 µ̄π3

= T s(π)SD
α1α2α3,µ̄1µ̄2µ̄3 , (3.44c)

49In general, any given pair of contracted Lorentz multi-indices is to be understood as Sµ̄iD
µ̄i =∑∞

mi=0 Sµi1...µimi
Dµi1 · · ·Dµimi . In practice, we will only consider operators with zero, one, or two

derivatives, i.e., the only nonvanishing contributions in these infinite sums will be those with either
m1 +m2 +m3 = 0, m1 +m2 +m3 = 1, or m1 +m2 +m3 = 2, respectively.
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and

F
fπ1fπ2fπ3
S = T a(π)F f1f2f3

S , (3.45a)

F
fπ1fπ2fπ3
O,t′ =

2∑
t=1

[Tm(π)]tt′F
f1f2f3
O,t , (3.45b)

F
fπ1fπ2fπ3
D = T s(π)F f1f2f3

D . (3.45c)

It is clear that these equations alone do not fix all components of S or F, but will provide
some constraints.

Let us for the moment focus on F. Under the natural assumption that for each baryon
only the correct flavor content can contribute to F (e.g., for the Λ baryon the only nonzero
components of FΛ

O,1 are FΛ,uds
O,1 and permutations thereof) we can use the conditions (3.45)

to fix all baryon flavor wave functions up to normalization and phase. The former is chosen
in the canonical way, whereas the latter is a question of convention. Our conventions in
that matter are laid out in appendix C.1, and the results for the flavor structures F can be
read off from tables C.1–C.4, also contained in said appendix.

For the Dirac–Lorentz part S we will retain the useful transformation properties
under H(4) (see section 3.4.1) by only permitting linear combinations of operator multiplets
(defined in [52]) from the same H(4) representation. E.g., in the case of τ12

1 with no
derivatives we consider linear combinations of O7, O8 and O9. The constraints (3.44) are
fulfilled by an octet combination transforming under Tm,

t = 1 : 1√
6(O7 +O8 − 2O9) , (3.46a)

t = 2 : 1√
2(O7 −O8) , (3.46b)

and by a symmetric decuplet combination transforming under T s,

1√
3(O7 +O8 +O9) . (3.46c)

Using these constraints from S3 symmetry we can now proceed to find linear combi-
nations of all operator multiplets, improved for the treatment of SU(3) baryons. As far
as the operators without derivatives are concerned, the constraints (3.44) can be used to
determine all singlet, octet, and decuplet operator multiplets (up to the prefactors that
govern their normalization). They can be found in appendix C.2.1. For operators with
derivatives the situation is more complicated. The S3 constraints do not fully fix the
allowed linear combinations, leaving us with some remaining freedom. We will make good
use of this by further optimizing the operators with the moments of distribution amplitudes
in mind.
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The shape parameters ϕ?nk are defined such that they do not mix under (one-loop)
scale evolution and can therefore be assigned a one-loop anomalous dimension γnk (see
eqs. (3.20)). Hence, we tune the linear combinations of our operators such that they are
eigenoperators of the anomalous dimension matrices that will be calculated in section 3.5.1.
By comparing the γnk of the shape parameters to the resulting eigenvalues one can identify
the suitable operators for each shape parameter. With that, the remaining freedom is
fully exhausted (once again, up to normalization) and these operators with one and two
derivatives (corresponding to first and second order shape parameters) can be found in
appendices C.2.2 and C.2.3.

Let us recapitulate what information is required to identify a specific operator. We will
work with operators containing a certain number of derivatives which are grouped into
multiplets transforming under irreducible representations of S3 and H(4), therefore each
operator is characterized by a S3 and a H(4) representation, under which the multiplet it
belongs to transforms. Since there can be several such multiplets for each representation
pair, we will need an index to number these separate multiplets.50 This classification of
multiplets is shown in table 3.2. Furthermore, we will need yet another index if we wish to
pick an individual operator from a multiplet51 and we can specify a flavor structure as well.
Given this wealth of indices, an example for the nomenclature is in order. Consider, e.g.,(

S 4
2,DD

)N,(3)
1 . (3.47)

This specifies an operator with two derivatives (DD) that is part of a multiplet transforming
under the H(4) representation τ4

2 (as indicated by the inner sub/superscript pair). The
S3 transformation behavior of this multiplet is denoted by the script capital. In this
case — S stands for the SU(3) singlet — it is governed by the totally antisymmetric
S3 representation. (This part of the nomenclature is based on the associations made
between SU(3) and S3 in the previous section 3.4.2.) Finally, the subscript selects the first
such multiplet, while the integer superscript picks the third operator therefrom and the
letter superscript specifies a flavor structure (here it is that of the nucleon). Admittedly,
this crowd of indices may seem overwhelming, but it is necessary in case one wants to
precisely identify a single operator. Fortunately, the full range of indices shown in this
example will rarely be needed.

At this point some confusion might arise from the fact that we have just named a
singlet operator for the proton, a particle which is certainly classified as an octet baryon.
To clear this up, one should note that the classification of particle multiplets is, just as the
study of the operator multiplet transformation behavior, based on the notion of SU(3) as
50The convention for the ordering is defined by appendix C.2.
51The convention for the ordering is defined by appendix A of [52].
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Table 3.2.: Classification of the operator multiplets used in this work (analogous to
table 3.1). Only the operators relevant in lattice studies of octet baryon distribution
amplitudes are named. Other leading twist and higher twist operator multiplets are
indicated by LT and HT, respectively. The nomenclature is explained in the main text
and the operators are defined in appendix C.2.

no derivatives 1 derivative 2 derivatives
dimension 9/2 dimension 11/2 dimension 13/2

τ
4
1

(
S 4

1
)

1,
(
O4

1
)

1−2 HT LT, HT

τ
4
2

(
S 4

2,DD
)

1−2,
(
O4

2,DD
)

1−6,(
D4

2,DD
)

1−4, HT
τ

8 LT LT, HT LT, HT
τ

12
1

(
O12

1
)

1,
(
D12

1
)

1 LT, HT LT, HT
τ

12
2

(
S 12

2,D
)

1,
(
O12

2,D
)

1−4,
(
D12

2,D
)

1−3 LT, HT

an exact symmetry. In the real world however, SU(3) flavor symmetry is broken by the
quark mass differences and hence operators whose transformation behavior is denoted as
singlet or decuplet will indeed also be relevant for the renormalization of octet baryon
distribution amplitudes carried out in section 3.5.4.

3.5. Renormalization of three-quark operators
In section 2.1.4 we have discussed the basics of renormalization concerning Green’s functions
built from simple fields and vertices stemming from the Lagrangian, using the quark
propagator (a two-point function) as an example. Now we move on to a more advanced
topic, namely the renormalization of composite operators. In particular, we are interested
in local three-quark operators. The most generic form of such an operator is

O(x) = SF f1f2f3
α1α2α3,µ̄1µ̄2µ̄3ε

a1a2a3 [Dµ̄1f1]a1
α1(x)[Dµ̄2f2]a2

α2(x)[Dµ̄3f3]a3
α3(x) , (3.48)

as introduced in eq. (3.41). Each individual operator is uniquely defined by its spin-flavor
structure SF. Consider now a four-point function involving such an operator as well as
three external quark legs of flavor gi, each with the momentum pi:

Γ(O|p1, p2, p3)g1g2g3
β1β2β3

= εb1b2b3
∫
d4x1d

4x2d
4x3 e

i
∑
i pi·xi

× 〈0|O(0)[ḡ1]b1β1
(x1)[ḡ2]b2β2

(x2)[ḡ3]b3β3
(x3)|0〉 . (3.49)
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O

Figure 3.1.: Illustration of a tree-level contribution to the four-point function of an
operator with no derivatives.

In the pictorial representation in figure 3.1 the local operator O appears similar to a
three-quark “vertex,” although we should keep in mind that there are no three-quark
vertices in the QCD Lagrangian.

The calculation of perturbative corrections to this diagram will reveal new divergences
that are specific to the operator O and cannot be canceled by the Lagrangian’s counterterms
alone. To obtain a finite result for any matrix element involving O one has to define a
renormalization factor for this operator. Therefore, our next task is to calculate the vertex
function in order to identify the divergences. As will become clear below, it is wise to
define the amputated vertex function52

Λ(O|p1, p2, p3)g1g2g3
β1β2β3

= Γ(O|p1, p2, p3)g1g2g3
β′1β
′
2β
′
3

[
S(−p1)

]−1
β′1β1

[
S(−p2)

]−1
β′2β2

[
S(−p3)

]−1
β′3β3

,

(3.50)

where each of the three external quark lines is multiplied by the inverse of a momentum
space quark propagator,

Sα′α(−p) = δa
′a

3

∫
d4x ei(−p)·(0−x) Sa

′a
α′α(0− x) . (3.51)

Before we turn to the calculation of Λ let us define a very useful object, namely the
amputated flavor-independent four-point function

Hα1α2α3,µ̄1µ̄2µ̄3
β1β2β3

(p1, p2, p3) = εa1a2a3εb1b2b3
∫
d4x1d

4x2d
4x3 e

i
∑
i pi·xi

× 〈0|
3∏
j=1

[Dµ̄jqj ]
aj
αj

(0)[q̄j ]
bj
β′j

(xj)|0〉
3∏

k=1

[
S(−pk)

]−1
β′kβk

. (3.52)

Some additional explanation might be required with respect to what we mean by flavor-
independent. In H there appear three quark fields (q1, q2, and q3) as well as three
52We don’t need to assign any flavor labels to the propagators because the renormalization will be performed
in the SU(3) symmetric limit where all quark masses are equal and the propagator is independent of flavor.
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corresponding antiquark fields (q̄1, q̄2, and q̄3). First, in this formula there shall be no sum
implied over any repeated flavor index qi. Second, the three quark types are implied to be
mutually distinct, i.e., in the calculation of this matrix element the quark q1 can only be
connected to the antiquark q̄1, but not to q̄2 or q̄3. Since all calculations are performed
with massless quarks and since the strong interaction is flavor blind, the resulting H is
independent of any specific choice of flavors.

After inserting the definition of O we can rewrite Λ in terms of H:

Λ(O|p1, p2, p3)g1g2g3
β1β2β3

= −SF f1f2f3
α1α2α3,µ̄1µ̄2µ̄3ε

a1a2a3εb1b2b3
∫
d4x1d

4x2d
4x3 e

i
∑
i pi·xi

× 〈0|
3∏
i=1

[Dµ̄ifi]aiαi(0)[ḡi]biβ′i(xi)|0〉
3∏
j=1

[
S(−pj)

]−1
β′jβj

= −
∑
π∈S3

SF
gπ1gπ2gπ3
α1α2α3,µ̄1µ̄2µ̄3H

α1α2α3,µ̄1µ̄2µ̄3
βπ1βπ2βπ3

(pπ1 , pπ2 , pπ3)

= −
∑
π∈S3

SF
gπ1gπ2gπ3
απ1απ2απ3 ,µ̄π1 µ̄π2 µ̄π3

Hα1α2α3,µ̄1µ̄2µ̄3
β1β2β3

(p1, p2, p3)

= −6SF g1g2g3
α1α2α3,µ̄1µ̄2µ̄3H

α1α2α3,µ̄1µ̄2µ̄3
β1β2β3

(p1, p2, p3) . (3.53)

Unlike H, Λ has open flavor indices gi. The quark field f1 can, e.g., be connected to the
antiquark field ḡ2 if their flavor indices match (i.e., if f1 = g2). All these possible contractions
are accounted for at the same time by introducing the sum over permutations π.53 We
further make use of the fact that H (by construction, cf. eq. (3.52)) is invariant under
simultaneous permutation of all its indices and that also SF is totally symmetric (see
eq. (3.42)).

In doing so we have shown that the flavor structure of the operator (contained in SF )
can be disentangled from the four-point function, which is now flavor independent (H). This
is a very useful insight as we therefore do not have to calculate the four-point function Λ
individually for each operator. Instead, we should calculate the flavor-independent four-
point function H just once, with open Dirac indices. The result can then be contracted
with a spin-flavor structure to obtain Λ for any desired operator.

To handle all the operators we are interested in, we have to calculate contributions
to H with zero, one, or two derivatives. Starting by thinking about one-loop corrections to
the four-point matrix element of an operator with zero derivatives, cf. fig. 3.1, we find two
types of diagrams. The first one, fig. 3.2(a), has a gluon connecting two quark legs of the
operator, similar to a vertex correction diagram. Such diagrams are responsible for the
appearance of new operator-specific divergences in the four-point function. The structure of
53In contrast to [51] this new approach does therefore not require an explicit calculation of the individual
“crossed” diagrams.
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O

(a)

O

(b)

Figure 3.2.: One-loop contributions to the four-point matrix element for operators
without derivatives. (The diagrams shown are representative of their respective classes,
i.e., (a) stands for all diagrams where a gluon connects any two of the three quark legs
and (b) stands for all diagrams where a self-energy bubble appears on one of the legs.)

these divergences will be discussed in section 3.5.1. The second diagram type on the other
hand, shown in fig. 3.2(b), has both quark-gluon vertices appearing on the same quark
leg. This diagram is one-particle-reducible, i.e., it could be separated into two independent
pieces by “cutting” just one of the propagators. The two pieces are basically the tree-level
diagram for the operator and the self-energy correction to the quark propagator. The
loop corrections to the quark propagator are well known (see sections 2.1.3 and 2.1.4) and
all information about the associated divergence is given by the renormalization factor Zq.
Therefore, diagrams of this type provide no new information regarding the operator O.
Having introduced the concept of an amputated vertex function above, we find that these
extraneous self-energy diagrams appearing in the matrix element are neatly canceled by
the inverse quark propagators and do not contribute to amputated vertex functions, so
that henceforth we will no longer need to concern ourselves with self-energy diagrams.

Let us move on to the diagrams for operators with one covariant derivative, i.e., those
that give contributions to Hα1α2α3,µ̄1µ̄2µ̄3

β1β2β3
with m1 +m2 +m3 = 1. The single derivative

can act on any of the three quarks, corresponding to m1 = 1, m2 = 1, or m3 = 1. There is
no conceptual difference between these three positions, therefore we will show only one set
of diagrams in figure 3.3 below.

For operators without derivatives, all one-loop diagrams were built using two quark-
gluon vertices, but when we start looking at operators with a derivative the situation
becomes a bit more diverse. On the one hand, covariant derivatives appearing in the
operator, Dµ = ∂µ−igtAAAµ , consist of two parts. The first part is an ordinary derivative and
is of O(1), while the second part contains a gluon field and is of O(g). On the other hand,
quark-gluon vertices appearing in the perturbative expansion, igtAAAµ γµ, are also of O(g).

One-loop order is O(αs), which is of course equivalent to O(g2), and we now have two
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O

(a)

O

(b)

O

(c)

O

(d)

Figure 3.3.: One-loop contributions to the four-point function for operators with one
derivative. Said derivative acting on one of the three quark fields in the operator is indicated
by a dot.

ways to construct such diagrams. First, we can once again have two quark-gluon vertices,
in which case the derivative part of the covariant derivative is needed and will simply lead
to a factor proportional to the four-momentum associated with its quark line. The two
vertices can either both appear on lines that do not feature the derivative, fig. 3.3(a), or one
of the vertices can be on the derivative’s quark line, fig. 3.3(b). Second, we can also have
only one quark-gluon vertex connected to the gluon field from the covariant derivative. The
single vertex can either be on the same line as the derivative, fig. 3.3(c), or not, fig. 3.3(d).

Finally, to understand the renormalization behavior of operators involving two co-
variant derivatives we will have to calculate all diagrams responsible for contributions to
Hα1α2α3,µ̄1µ̄2µ̄3
β1β2β3

with m1 + m2 + m3 = 2. Here we have to consider two unequal topolo-
gies: Either the two covariant derivatives can be attached to two different quark lines
(corresponding to m1 = m2 = 1, m2 = m3 = 1, or m3 = m1 = 1), as exemplified in
figure 3.4, or both derivatives are acting on the same quark (corresponding to m1 = 2,
m2 = 2, or m3 = 2), see figure 3.5. In any case, the rules for one-loop diagrams are still the
same: Each diagram has exactly one gluon propagator that either connects two vertices
to each other (subfigures (a) and (b)) or lies between a covariant derivative and a single
quark-gluon vertex (remaining subfigures).
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O

(a)

O

(b)

O

(c)

O

(d)

O

(e)

Figure 3.4.: One-loop contributions to the four-point function for operators with two
derivatives, with the derivatives acting on two different quarks.

O

(a)

O

(b)

O

(c)

O

(d)

O

(e)

O

(f )

Figure 3.5.: One-loop contributions to the four-point function for operators with two
derivatives, with both derivatives acting on the same quark.
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Now that all diagram topologies for one-loop corrections to the vertex functions of
operators with up to two covariant derivatives have been detailed, they have to be translated
to formulas by use of the QCD Feynman rules. Since the RI′/SMOM renormalization
condition is defined in the limit mq → 0 (see section 3.5.2), we shall work with massless
quarks right from the start. We can then proceed with the actual calculation, a task that is
straightforward, yet extensive. The diagrams give rise to a number of loop integrals, which
are made finite by use of dimensional regularization, as introduced in section 2.1.3. The
calculation of these various integrals can be tackled using a reduction algorithm [89] that
is suitable for implementation on a computer. All individual contributions (each consisting
not only of loop integrals but also of Dirac and color structures) to the flavor-independent
four-point function H (with either zero, one, or two derivatives) have to be accounted
for and added together. Finally, everything has to be expanded in the regulator ε such
that the divergent parts can be identified. These computations have been performed in
Mathematica, a computer algebra system. An implementation of the reduction algorithm
has been provided by N. Offen.

While obtaining H is one of the main achievements of this work, it would be both
very impractical and extremely wasteful of paper to write down the result. Even for the
simplest case without derivatives, H is an object with 46 components (due to having 6 open
Dirac indices), with each component being given by a complicated analytical expression
involving some special functions (polylogarithms or polygamma functions). Thankfully, the
important quantities that can be extracted from H are much more compact and thus the
reader will still be able to enjoy some tangible results, namely the MS Z-factors carrying
all the information on the pole structure of H (in section 3.5.1) and the final results for
the renormalization conversion factors (in section 3.5.3).

3.5.1. MS scheme for three-quark operators

The next goal should be to implement MS renormalization for H. However, for three-quark
operators the procedure is not as straightforward as it was for the quark propagator (cf.
eqs. (2.54)). We will illustrate the added subtleties by means of an example: Consider
the individual contribution from a gluon connecting quark legs two and three, akin to
figure 3.2(a). In Feynman gauge the result for this one-loop diagram is54

αs
24π

1
ε
14 ⊗ γµγν ⊗ γµγν + finite terms , (3.54)

54We omit the open Dirac indices and instead use the notation M1 ⊗M2 ⊗M3 to denote contributions of
the type (M1)α1β1 (M2)α2β2 (M3)α3β3 to Hα1α2α3

β1β2β3
. In this way the matrix M1 stands for a Dirac structure

on the leg of the first quark, and so on. We will also use M⊗3 = M ⊗M ⊗M.
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which is written here already in a way that seems to have isolated the divergent part.55

Remembering the typical one-loop MS combination 1/ε̄ defined in eq. (2.53), one would
therefore naively expect that the MS Z-factor would have to subtract the term

αs
24π

1
ε̄
14 ⊗ γµγν ⊗ γµγν . (3.55)

Now let us for the moment assume that at some time during the calculation we had
decided to use the following identity for gamma matrices:

γµγν = 1
2 [γµ, γν ] + 1

2{γµ, γν} = 1
2 [γµ, γν ] + gµν . (3.56)

Since this is an exact identity, it cannot affect the value of the dimensionally regularized
result, but it will affect its notation:

αs
24π

1
ε
14 ⊗ γµγν ⊗ γµγν + finite terms =

= αs
24π

1
ε

(
14 ⊗ 1

2 [γµ, γν ]⊗ 1
2 [γµ, γν ] + d1⊗3

4
)

+ finite terms

= αs
24π

1
ε

(
14 ⊗ 1

2 [γµ, γν ]⊗ 1
2 [γµ, γν ] + 41⊗3

4
)
− αs

24π21⊗3
4 + finite terms

= αs
24π

1
ε

(
14 ⊗ 1

2 [γµ, γν ]⊗ 1
2 [γµ, γν ] + 41⊗3

4
)

+ finite terms . (3.57)

Presented with this form of the result, we might conclude that the MS Z-factor should
subtract the term

αs
24π

1
ε̄

(
14 ⊗ 1

2 [γµ, γν ]⊗ 1
2 [γµ, γν ] + 41⊗3

4
)
. (3.58)

Now we are faced with an ambiguity: Clearly the expressions (3.55) and (3.58) are
not equal, as they differ by a finite term. And yet, both subtraction procedures are fit to
completely remove the divergences from the diagram, all while adhering to the principle
of MS, which is to identify the structures multiplying the 1/ε poles and then subtract only
these structures multiplied by 1/ε̄ (but not any other finite terms). The ambiguity arises
from the fact that here we can freely rewrite the divergent structures in ways that generate
additional finite terms, as seen in eq. (3.57). This is a new behavior that is inherent to the
complex three-quark four-point function with open Dirac indices that we are working with.
It does not occur in simpler quantities such as the quark propagator (which has just one
quark line with a single Dirac structure).
55The full loop calculation leading to this result will not be presented here, but we can give some pointers
as to why a divergent part of such form is not unexpected: There should be two Dirac matrices (one
from a propagator, another from a vertex) on each quark leg taking part in the interaction as well as
a trivial structure on the remaining (fully amputated) leg. Additionally, all Lorentz indices should be
contracted among each other since the diagram has no open Lorentz indices and the divergent part may
not depend on any external momentum vectors.
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3.5. Renormalization of three-quark operators

The two different approaches presented above are not the only ones. In fact, we can
easily generate a whole family of different finite parts, e.g., by interpolating between the
two cases with a continuous parameter. We might be tempted to ask which one of these
prescriptions actually defines the MS scheme, but there is just no definitive answer to this
question. For quantities like our three-quark operators the definition of the MS scheme is no
longer unique, but there are many ways to define an MS scheme. To get a meaningful result
one can choose any one of these schemes, as long as one takes care that a consistent scheme
definition be maintained throughout all calculations. However, it is of equal importance to
precisely specify which MS scheme is adopted, otherwise the result is effectively useless to
anyone wishing to make exact comparisons or use it as an input value in another calculation.

We have some freedom of choice in selecting our scheme. Instead of simply picking
an arbitrary scheme, we can carefully select one that allows us to reap some additional
benefits. We will elect to utilize the scheme presented in [135], and the following discussion
shall elucidate the motivation behind this. To begin, let us introduce the general definition
of a fully antisymmetrized product of m gamma matrices:

Γ(m)
µ1...µm = 1

m!
∑
π∈Sm

sgn(π)γµπ1
· · · γµπm . (3.59)

Explicitly, the first few can be written as

Γ(0) = 14 , Γ(1)
µ1 = γµ1 , Γ(2)

µ1µ2 = 1
2 [γµ1 , γµ2 ] . (3.60a–c)

Another key definition is that of an evanescent operator, which means a (bare) operator
that vanishes in d = 4 dimensions, but is in general nonzero for arbitrary d. The emergence
of such operators has the same cause as the nonuniqueness of the MS scheme: In noninteger
spacetime dimensions the Clifford algebra becomes infinite-dimensional.56

A typical example for an evanescent three-quark operator is given by57

(
qTCΓµ1...µ5

(5) q
)
γ5Γ(5)

µ1...µ5q . (3.61)

This operator is clearly evanescent, as no antisymmetrized product of more than 4 gamma
matrices can exist in 4 dimensions, i.e.,

Γ(m)
µ1...µm

d→4−−−→ 0 ∀m > 4 . (3.62)

56For integer d, any product of gamma matrices can be reduced to a linear combination of the 2d basis
matrices provided by Γ(m)

µ1...µm with 0 ≤ m ≤ d. For noninteger d, a basis consists of infinitely many
elements, e.g., all Γ(m)

µ1...µm (with no upper bound on m).
57Color, flavor, and position indices are of no relevance to this discussion and are therefore suppressed.
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Chapter 3. Distribution amplitudes and their renormalization

Notwithstanding that evanescent operators are unphysical (they vanish in the physical
dimension d = 4), they can still affect other physical operators through the mixing under
renormalization. As a reminder, the renormalization has to be performed in d = 4− 2ε
dimensions (where evanescent operators can exist). Only after the renormalization has been
carried out and everything has been made finite can we return to 4 dimensions. Therefore,
the existence of evanescent operators can affect the values of the renormalized vertex
functions of physical operators. The other way round, the renormalized vertex functions of
evanescent operators can become nonzero (through contributions from the mixing with
the physical ones), even though the bare operators are zero. Furthermore, these operators
may also mix under renormalization group scale evolution via the anomalous dimension
matrix, meaning that even if we found a situation where matrix elements of evanescent
operators turned out equal to zero at some scale, this need not hold after evolution to any
other scale.

The concept of evanescent operators is not specific to our subject of baryon DAs. Their
effects have been examined for quite some time, and methods to treat them properly have
been found. A class of operators for an effective treatment of the electroweak interaction
has been studied in [148], where an MS scheme in which renormalized evanescent operators
vanish has been proposed. In this scheme the anomalous dimension matrix for physical
and evanescent operators is upper block triangular, such that the Green’s functions of
evanescent operators can be kept at zero under evolution to any scale. Further research
has shown that this construction is still not unique, as the upper block triangular structure
can be kept intact under a change in the basis for the evanescent operators that induces
changes in the physical part of the anomalous dimension matrix [149].

Specifically for three-quark operators, a new scheme was developed in [135]. It is
designed for the calculation with open spinor indices performed in our work, and henceforth
the label MS will always refer to this particular scheme. The definition is as follows:
Vertex functions of three-quark operators are to be calculated with open indices. All
structures multiplying 1/ε poles are to be brought into a form consisting entirely of
fully antisymmetrized Dirac matrices (as in our example, eq. (3.57)). Only these fully
antisymmetrized structures (with the usual MS prefactor 1/ε̄) are subtracted in order to
obtain the renormalized result. For operators with a Dirac structure the renormalization
is defined as the contraction of said Dirac structure and the renormalized operator with
open indices. Since the renormalized three-quark operator is an object in 4 dimensions,
the Dirac matrices can be taken to 4 dimensions as well, meaning that all renormalized
evanescent operators automatically vanish in this scheme, e.g.,

[(
qTCΓµ1...µ5

(5) q
)
γ5Γ(5)

µ1...µ5q
]MS
τ

=
(
CΓµ1...µ5

(5)
)
α1α2

(
γ5Γ(5)

µ1...µ5

)
τα3

[qα1qα2qα3 ]MS = 0 . (3.63)
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3.5. Renormalization of three-quark operators

Therefore, renormalized results in this MS scheme cannot be affected by evanescent
operators and we will not have to involve any of them in our calculations. Furthermore,
this approach also avoids any subtleties that can arise from the extension of the matrix γ5

to d 6= 4 dimensions [150].
In [135] the MS Z-factor for three-quark operators without derivatives has been deter-

mined in Feynman gauge to two-loop order. To one-loop accuracy the result is

Z = Γ000 −
αs

24π
1
ε̄

(
Γ022 + Γ202 + Γ220 + 12Γ000

)
+O(α2

s) , (3.64)

using the shorthands

Γ000 = Γ(0) ⊗ Γ(0) ⊗ Γ(0) = 1⊗3
4 , (3.65a)

Γ022 = Γ(0) ⊗ Γµν(2) ⊗ Γ(2)
µν = 14 ⊗ 1

2 [γµ, γν ]⊗ 1
2 [γµ, γν ] , (3.65b)

and so on. We confirm that for operators without derivatives this Z-factor removes all
divergences from the one-loop four-point function,

[
Hα1α2α3
β1β2β3

(p1, p2, p3)
]MS = Zα1α2α3

α′1α
′
2α
′
3
H
α′1α

′
2α
′
3

β1β2β3
(p1, p2, p3) , (3.66)

and we also generalize the result from Feynman gauge (ξ = 1) to linear covariant gauge
with arbitrary gauge parameter ξ:

Z = Γ000 − ξ
αs
2π

1
ε̄

Γ000 −
αs

24π
1
ε̄

(
Γ022 + Γ202 + Γ220

)
+O(α2

s) . (3.67)

The physical anomalous dimension matrix for operators without derivatives can be
calculated as

γ = −µ
(
d

dµ
Z
√
Zq

3
)(

Z
√
Zq

3)−1
. (3.68)

In [136] it has been determined in our scheme, to three loops. The one-loop result,58

γ = − αs
12π

(
Γ022 + Γ202 + Γ220

)
+O(α2

s) , (3.69)

is gauge and scheme independent. The one-loop anomalous dimensions for the leading
twist and higher twist normalization factors, given by eq. (3.20a) and by the exponent
in eq. (3.24), respectively, are equal to eigenvalues of this anomalous dimension matrix
divided by αs/(2π).
58To correctly reproduce this result starting from eqs. (3.67) and (3.68) one has to bear in mind that the
QCD beta function, given in eq. (2.26) for 4 dimensions, comes with an additional contribution of −εαs
when evaluated in 4− 2ε dimensions, see, e.g., [151].
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Chapter 3. Distribution amplitudes and their renormalization

For operators including one derivative, the structure of the Z-factor is even more
complicated. In addition to the (4 × 4)⊗3 matrix structure (encoded in the Γlmn) that
operates on the open Dirac indices, we now have an additional 3 × 3 matrix structure
representing the mixing between operators that have the covariant derivative acting on the
first, second, or third quark. For the flavorless amputated four-point functions with one
derivative, the MS renormalization is given by59


H
α1α2α3,µ, ,
β1β2β3

(p1, p2, p3)
H
α1α2α3, ,µ,
β1β2β3

(p1, p2, p3)
H
α1α2α3, , ,µ
β1β2β3

(p1, p2, p3)


MS

= Zα1α2α3
α′1α

′
2α
′
3


H
α′1α

′
2α
′
3,µ, ,

β1β2β3
(p1, p2, p3)

H
α′1α

′
2α
′
3, ,µ,

β1β2β3
(p1, p2, p3)

H
α′1α

′
2α
′
3, , ,µ

β1β2β3
(p1, p2, p3)

 , (3.70)

where

Z = 13 ⊗ Γ000 − ξ
αs
2π

1
ε̄
13 ⊗ Γ000 + αs

36π
1
ε̄
13 ⊗

(
Γ022 + Γ202 + Γ220

)
+ αs

72π
1
ε̄

Γ022 Γ220 Γ202

Γ220 Γ202 Γ022

Γ202 Γ022 Γ220

+ 2αs
9π

1
ε̄

 2 −1 −1
−1 2 −1
−1 −1 2

⊗ Γ000 +O(α2
s) (3.71)

is our one-loop result for the Z-factor. The one-loop anomalous dimension matrix is

γ = αs
18π13 ⊗

(
Γ022 + Γ202 + Γ220

)
+ αs

36π

Γ022 Γ220 Γ202

Γ220 Γ202 Γ022

Γ202 Γ022 Γ220

+ 4αs
9π

 2 −1 −1
−1 2 −1
−1 −1 2

⊗ Γ000 +O(α2
s) , (3.72)

and the anomalous dimensions for the leading twist DA shape parameters of up to first
order given in eqs. (3.20a–c) are equal to eigenvalues of this matrix divided by αs/(2π).
For operators with two derivatives, the MS Z-factor can be found in appendix D.3.

3.5.2. RI′/SMOM scheme for three-quark operators

In addition to the destination MS scheme detailed above, we also need to specify the
intermediate nonperturbative scheme that will be implemented on the lattice. In our
case, we will be using an RI′/SMOM scheme, where RI′ refers to a regularization-invariant
prescription as discussed in section 2.1.4 and SMOM denotes a symmetric choice for the
renormalization point. The main motivation behind chosing this particular kind of scheme
lies in the quest for smaller errors.
59In the most general case, the four-point function has three Lorentz multi-indices. For contributions with
one derivative, only one of these does contain a single Lorentz index, while the other two are “empty.”
We visualize these empty multi-indices with underscores to clarify the position of the derivative.
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3.5. Renormalization of three-quark operators

A benchmark quantity for lattice renormalization and conversion to MS are the light
quark masses, where the uncertainty due to renormalization (which was 9%) used to be the
dominant one, amounting to half of the total error [152]. Through the development of new
methods, such as these SMOM renormalization schemes, this uncertainty (especially the
part due to the perturbative matching) could be greatly reduced. For lattice determinations
of the MS light quark masses the renormalization procedure now gives a much smaller
2% error [153]. In the following we will apply such a modern SMOM scheme to the
nonperturbative renormalization and perturbative matching for baryon DAs.

SMOM renormalization point

The definition of a renormalization point amounts to the specification of a momentum
configuration that fixes all of the involved invariants by relating them to the renormalization
scale µ. The four-point function of a three-quark operator, cf. eq. (3.49) and figure 3.1,
depends on three external quark momenta, which we denote as p1, p2, and p3. A typical
MOM scheme might set all three external momenta to the same length, while keeping their
sum, i.e., the total momentum flowing into the operator, at zero [136]:60

p2
1 = p2

2 = p2
3 = µ2 , with p1 + p2 + p3 = 0 . (3.73)

Since we have a sum of momenta which vanishes, this is a so-called exceptional momentum
configuration.

Adverse effects of such kinematics in lattice simulations have been discussed in [154],
where it has been observed in a study of quark bilinear operators that the impact of low-
energy behavior (in their case: chiral symmetry breaking) may not be sufficiently suppressed
in the regime of very large momenta if the momentum configuration is exceptional, cf.
also [155]. In a subsequent publication a new symmetric and nonexceptional momentum
geometry has been used for the vertex functions of two-quark operators [156]. In this
new scheme, which has been dubbed SMOM, the operator is no longer inserted at zero
momentum. Instead, this momentum now has the same magnitude as the momenta of the
external quarks.

It is argued that, compared to exceptional kinematics, SMOM has a better suppression of
unwanted infrared contaminations [156]. A numerical test of this claim has been performed
for the quark mass renormalization in [157]. In addition, nonexceptional momenta also
exhibit a faster convergence behavior in the perturbative expansion of renormalization
scheme conversion factors. In [158, 159] it has been found that the one- and two-loop
60The equation refers to Euclidean spacetime. In Minkowski space one would have to set the squares equal
to −µ2 instead, i.e., the method is restricted to the deep Euclidean domain.
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corrections for SMOM-to-MS conversion factors are significantly smaller than the respective
terms in the perturbative expansion of MOM-to-MS factors. In fact, already the one-loop
corrections for SMOM are smaller than even the third order terms for MOM. This points
to a vastly improved convergence behavior that allows one to greatly reduce the systematic
error attributed to the perturbative renormalization scheme matching. Further advantages
of SMOM are that correlators evaluated with nonexceptional momenta have improved
signal-to-noise ratio and that the mass dependence is very mild [96].

In light of these developments we will therefore also use such a nonexceptional, symmetric
configuration for the renormalization of our three-quark operators, which is in contrast
to previous work on the subject [52, 125]. The generalization of the SMOM concept from
two to three quarks is not unique, as having more momenta opens up some additional
degrees of freedom. For two momenta, merely imposing the condition that the geometry
should be symmetric automatically fixes all three invariants and ensures a nonexceptional
configuration. On the other hand, the geometry of three four-vectors is characterized by a
total of six independent invariants (p2

1, p2
2, p2

3, p1 · p2, p1 · p3, and p2 · p3). Any symmetric
setup for three momenta does require that the individual momenta on the external quark
lines have the same magnitude as their sum,

p2
1 = p2

2 = p2
3 = (p1 + p2 + p3)2 = µ2 , (3.74)

which gives us only 4 conditions for these 6 quantities. Furthermore, this symmetry
constraint alone does not guarantee a fully nonexceptional configuration, as variants with
vanishing partial sums such as p1 + p2 = 0 are not yet excluded.

At this point we are again faced with a choice, because there are still many different
nonexceptional configurations that we could select based on the conditions. From these
equally valid but not equivalent options we pick

p2
1 = p2

2 = p2
3 = (p1 + p2)2 = (p1 + p3)2 = (p1 + p2 + p3)2 = µ2 (3.75)

as our SMOM setup (and from now on the label SMOM will always refer to this particular
geometry). Of course we did not select a configuration at random, but rather decided on
one that comes with some extra properties that will be useful to us. When evaluated on
this momentum configuration, the tree-level vertex functions of our three-quark operator
multiplets with derivatives are linearly independent, which is not necessarily true in general.
We will make use of this quality in section 3.5.2. While an equation like (3.75) fixes the
momentum geometry in an O(4)-invariant manner, an actual calculation will often require
explicit expressions for the momentum components. Our SMOM configuration has the
advantage that it can be neatly realized in the form of Euclidean four-vectors using only
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small integers, for example as

p1 = µ
2
(
+1,+1,+1,+1

)
, (3.76a)

p2 = µ
2
(
−1,−1,−1,+1

)
, (3.76b)

p3 = µ
2
(
+1,−1,−1,−1

)
, (3.76c)

which is what we have used whenever an explicit form of the momenta was needed.

RI′ renormalization condition

The second piece required for the definition of an RI′/SMOM scheme for three-quark
operators is the formulation of a well-defined regularization-invariant renormalization
condition. Such a construction will have to mimic the properties that we have observed
from the RI′ condition for the quark propagator, eq. (2.55). I.e., the renormalized function
is defined by enforcing a certain value for its projection onto the Born term. While the
principle will be the same as we have seen before, there will be some key differences that we
need to take into account. Instead of simple two-point functions we are now dealing with
four-point functions with open flavor and Dirac indices as defined in eq. (3.50). Moreover,
the renormalization condition will need to properly handle the possibility of operators
mixing under renormalization.

Given a number of mixing three-quark operators one might naively try to impose the
following condition for a pair of operators (let us call them Om and On):

lim
mq→0

〈
ΛRI(Om),ΛBorn(On)

〉∣∣∣
SMOM

!= lim
mq→0

〈
ΛBorn(Om),ΛBorn(On)

〉∣∣∣
SMOM

, (3.77)

where Λ is the amputated vertex function (3.50), SMOM denotes the evaluation at the
symmetric renormalization point defined in eq. (3.75) above, and

〈
M,N

〉
=
∑

f1,f2,f3
α1,α2,α3

Mf1f2f3
α1α2α3

(
Nf1f2f3
α1α2α3

)∗ (3.78)

constitutes a scalar product (on the space of the vertex functions) that contracts the flavor
and Dirac indices.

However, such a definition of the renormalization condition is actually not very useful,
as will become clear when we now examine the transformation behavior. In section 3.4.1
we have discussed three-quark operators that transform as multiplets under the irreducible
spinorial representations of H(4). Let O(i) denote the i-th operator in a multiplet that
transforms under the representation R (where R can be τ4

1 , τ
4
2 , τ

8, τ12
1 , or τ12

2 , introduced
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in section 2.2.3). From the transformation behavior of operators, spinors, and vectors we
can deduce that the vertex function of O(i) fulfills

Λ(O(i)|p1, p2, p3)f1f2f3
α1α2α3 = [R(g)]i′i

[
τ

4
1 (g)†

]
α1α

′
1

[
τ

4
1 (g)†

]
α2α

′
2

[
τ

4
1 (g)†

]
α3α

′
3

× Λ
(
O(i′)∣∣τ4

1 (g)p1, τ
4
1 (g)p2, τ

4
1 (g)p3

)f1f2f3
α′1α

′
2α
′
3
, (3.79)

for all g ∈ H(4). Therefore we have for the scalar product involving two of these four-point
functions (where O(i)

m shall denote the i-th operator in the multiplet Om):〈
Λ(O(i)

m |p1, p2, p3),Λ(O(j)
n |p1, p2, p3)

〉
= [R(g)]i′i[R(g)†]jj′

×
〈
Λ
(
O(i′)
m

∣∣τ4
1 (g)p1, τ

4
1 (g)p2, τ

4
1 (g)p3

)
,Λ
(
O(j′)
n

∣∣τ4
1 (g)p1, τ

4
1 (g)p2, τ

4
1 (g)p3

)〉
. (3.80)

This equation exposes a flaw in the naive renormalization condition a la eq. (3.77): The
construction is not H(4) invariant. But it also shows us a way around: If we take the sum
over all operators in the multiplets, then the representation matrices R(g) drop out,61

∑
i

〈
Λ(O(i)

m |p1, p2, p3),Λ(O(i)
n |p1, p2, p3)

〉
=

=
∑
i

〈
Λ
(
O(i)
m

∣∣τ4
1 (g)p1, τ

4
1 (g)p2, τ

4
1 (g)p3

)
,Λ
(
O(i)
n

∣∣τ4
1 (g)p1, τ

4
1 (g)p2, τ

4
1 (g)p3

)〉
, (3.81)

leaving us with an object that is invariant under rotation of the three quark momenta.
Therefore, the multiplet-averaged Born overlap

(
LS(R)

)
mn

= lim
mq→0

∑
i

〈
ΛS((R)B,(i)m

)
,ΛBorn((R)B,(i)n

)〉∣∣∣
SMOM

, (3.82)

which will be the foundation of our RI′/SMOM renormalization condition, is well defined:
Since all SMOM configurations are isometric to each other, it takes the same value no matter
what explicit directions we select for the momenta. Some further remarks on this definition
are required: First, the letter R stands for a combined label indicating the transformation
behavior with respect to H(4) and S3 as well as the number of derivatives. The relevant
values for R are O12

1 , D12
1 , S 4

1 , O4
1 , S 12

2,D, O12
2,D, D12

2,D, S 4
2,DD, O4

2,DD, and D4
2,DD, shown

in table 3.2 on page 73.62 Second, the operators inserted in the vertex functions on the
right-hand side depend on the baryon species and there is no sum implied over the repeated
index B. Instead, the object L is independent of B by construction.63 Third, the letter S
61In this equation the sums over repeated (i) run from 1 to the dimension of the representation R, which
can be 4, 8, or 12.

62The corresponding operator multiplets (R)Bm are defined in appendix C.2.
63This can be seen by inserting explicit expressions for the vertex functions (equation (3.53)) and the flavor
structures contained therein (tables C.1–C.4).
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specifies which type of vertex function is to be taken. In our calculations, it can indicate
the vertex function renormalized in a certain scheme (S = MS or S = RI′) as well as the
noninteracting (S = Born) or lattice regularized one (S = lat).

With that, we can finally state the renormalization condition:

LRI′(R) != LBorn(R) . (3.83)

This is, in general, an equation of matrices. The dimension of these square matrices is given
by the number of multiplets that exist for the given R, which can be read off from table 3.2.
With our choice for the SMOM geometry, eq. (3.75), it turns out that the matrices L have
full rank and are therefore invertible.

We will use this RI′/SMOM scheme for the nonperturbative renormalization of three-
quark operators. From the condition given above, it should immediately be clear how to
obtain the RI′/SMOM Z-factors. In particular, for the calculation on the lattice we have

Z lat,RI′(R) = LBorn(R)
(
Llat(R)

)−1
. (3.84)

In the lattice study accompanying this work the vertex functions required in the calculation
of these renormalization factors have been determined on lattices of volume 324 with degen-
erate quark masses (mu = md = ms). From simulations with four different pseudoscalar
meson masses in the range 232–605MeV the results are extrapolated to m2

π = m2
K = 0,

which corresponds to the limit mq → 0 required in the renormalization condition. The
SMOM momenta (3.76) are set using twisted boundary conditions [160, 161] in the inversion
of the Dirac operator. More information on the lattice setup will be provided in section 4.3.

3.5.3. Conversion to the MS scheme

Up next is the determination of the conversion factors from the RI′/SMOM scheme to the
MS scheme. This part of the calculation will be performed in continuum perturbation
theory. We are looking for matrices C that fulfill

LMS(R) = C(R)LRI′(R) . (3.85)

In principle, one could obtain C(R) as the product of an MS Z-factor for R with the inverse
of the corresponding RI′/SMOM Z-factor. However, from the RI′/SMOM renormalization
condition, eq. (3.83), it follows that these conversion factors can also be obtained by
evaluating

C(R) = LMS(R)
(
LBorn(R)

)−1
, (3.86)
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which is what we will be using. Similar to the determination of the conversion factor
for the quark fields via eq. (2.58), using this method means that one does not have to
carry out any continuum RI′/SMOM renormalization explicitly. Instead, knowledge of the
MS renormalized vertex functions is sufficient.

Since we have already laid out both the perturbative calculation of the four-point
functions and the MS renormalization procedure earlier in this chapter, we can directly
proceed to giving the final results for the conversion factors. These results have been
obtained in next-to-leading order perturbation theory and will be presented in Landau gauge,
as this is the gauge that will be used in the determination of RI′/SMOM renormalization
factors on the lattice.

For operators without derivatives, the multiplets in the H(4) representations τ12
1 and τ4

1
are relevant for the renormalization of the octet baryon DA normalization constants of
leading and higher twist, respectively. The RI′/SMOM-to-MS renormalization conversion
factors for these multiplets are given by

C
(
O12

1
)

= C
(
D12

1
)
, (3.87a)

C
(
D12

1
)

= 1 + αs
4π

(
−5

9 −
5
81π

2 + 10
27 ln(2) + 4

27ψ1
(1

3
)
− 1

27ψ1
(1

4
))
, (3.87b)

and

C
(
S 4

1
)

= 1 + αs
4π

(
17
3 + 14

27π
2 + 2

9 ln(2)− 4
9ψ1
(1

3
)
− 2

9ψ1
(1

4
))
, (3.88a)

C
(
O4

1
)

= C
(
S 4

1
)
12 , (3.88b)

with the trigamma function

ψ1(z) = d2

dz2 ln
(
Γ(z)

)
=
∫ ∞

0
dt

te−tz

1− e−t ,
ψ1
(1

3
)
≈ 10.0956 ,

ψ1
(1

4
)
≈ 17.1973 . (3.89a–c)

For the renormalization of first moments of DAs we consider operators with one
derivative in the H(4) representation τ12

2 . The conversion factor for the singlet multiplet is
given by

C
(
S 12

2,D
)

= 1 + αs
4π

(
−707

162 −
3625
23328π

2 + 17
54 ln(2) + 131

486ψ1
(1

3
)
− 7

288ψ1
(1

4
))
. (3.90a)

For the octet multiplets we have a 4× 4 mixing matrix with the diagonal entries

C
(
O12

2,D
)

11 = 1 + αs
4π

(
−53

81 −
149
1458π

2 + 8
27 ln(2) + 44

243ψ1
(1

3
)
− 1

54ψ1
(1

4
))
, (3.90b)

C
(
O12

2,D
)

22 = 1 + αs
4π

(
−845

162 −
5413
23328π

2 + 11
54 ln(2) + 143

486ψ1
(1

3
)

+ 31
864ψ1

(1
4
))
, (3.90c)

C
(
O12

2,D
)

33 = C
(
S 12

2,D
)
, (3.90d)

C
(
O12

2,D
)

44 = 1 + αs
4π

(
−7− 115

288π
2 + 4

9 ln(2) + 1
2ψ1
(1

3
)

+ 19
288ψ1

(1
4
))
. (3.90e)
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3.5. Renormalization of three-quark operators

As the only nonvanishing off-diagonal entries we find

C
(
O12

2,D
)

21 = 4C
(
O12

2,D
)

12 =
√

2αs4π

(
− 4

81 −
95

2916π
2 − 2

27 ln(2)− 5
243ψ1

(1
3
)

+ 5
108ψ1

(1
4
))
.

(3.90f)

Similarly, we get a 3 × 3 mixing matrix for the decuplet multiplets, where the nonzero
components are

C
(
D12

2,D
)
mn

= C
(
O12

2,D
)
mn

∀m,n ∈ {1, 2} , (3.90g)

C
(
D12

2,D
)

33 = 1 + αs
4π

(
−11

3 −
19
54π

2 + 4
9 ln(2) + 4

9ψ1
(1

3
)

+ 1
18ψ1

(1
4
))
. (3.90h)

Since the result for the conversion factors of operators with two derivatives are a bit unwieldy,
they have been hidden from the casual reader’s eyes and consigned to appendix D.4.

3.5.4. Renormalization of baryon distribution amplitudes

In the previous two sections we have discussed how operator multiplets transforming
irreducibly under representations of H(4) can be first renormalized in a RI′/SMOM scheme
and then converted to the MS scheme. Now it is time to combine this information and
apply it to quantities that are relevant in practice, i.e., to baryon DAs.

From the discussion in section 3.4.1 we already know that the relevant operators for
the renormalization of leading twist normalization constants, higher twist normalization
constants, and first order shape parameters originate from the representations τ12

1 , τ4
1 ,

and τ12
2 , respectively. Therefore, we define the combined renormalization and conversion

factors as

ZM f =
(
CqZ

lat,RI′
q

)3/2
C
(
M 12

1
)
Z lat,RI′(M 12

1
)

for M ∈ {O,D} , (3.91a)

ZMλ =
(
CqZ

lat,RI′
q

)3/2
C
(
M 4

1
)
Z lat,RI′(M 4

1
)

for M ∈ {S ,O} , (3.91b)

ZMϕ1 =
(
CqZ

lat,RI′
q

)3/2
C
(
M 12

2,D
)
Z lat,RI′(M 12

2,D
)

for M ∈ {S ,O,D} , (3.91c)

including also the necessary quark field renormalization and conversion. As a whole, these
products are always gauge invariant.

At the flavor symmetric point, the DAs are independent of the baryon species and
we have one leading twist normalization constant (f?), two higher twist normalization
constants (λ?1, λ?2), and three different first moments (ϕ?00,(1), ϕ?11, ϕ?10). The renormalization
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Chapter 3. Distribution amplitudes and their renormalization

of these quantites is governed by the (octet) factors defined above:64

f? = ZOf f?,lat , (3.92a)(√
6λ?1
λ?2

)
= ZOλ

(√
6λ?1
λ?2

)lat

, (3.92b)

 ϕ?00,(1)√
2ϕ?11√
2ϕ?10

 = ZOϕ1

 ϕ?00,(1)√
2ϕ?11√
2ϕ?10


lat

, (3.92c)

where the superscript “lat” appearing on the right-hand sides indicates unrenormalized
lattice data, while everything on the left-hand sides is now renormalized in the MS scheme.
The various square root factors result from an interplay between the normalization factors
of operators and observables.

Away from the symmetric point the situation is not as straightforward. All DAs become
baryon dependent and new normalization constants as well as new shape parameters
belonging to the now independent DAs ΠB emerge. SU(3) flavor symmetry is broken and
hence operators with the transformation behavior of singlet or decuplet now also have an
impact on the renormalization of octet baryon DAs. The full renormalization patterns
can be determined by expressing all normalization constants/shape parameters in terms of
moments of standard DAs (cf. the definitions in sections 3.3 and 4.2), connecting these to
linear combinations of the operators designed in this work (cf. the definitions and relations
in appendix C.2), renormalizing each multiplet with the appropriate renormalization and
conversion factors from the equations (3.91) above, and finally re-expressing everything in
terms of normalization constants/shape parameters.

In the leading twist sector one has a second normalization constant fB 6=Λ
T for all isospin-

nonsinglet baryons. The renormalization factors assigned to the transformation behavior
of the octet and the decuplet need to be combined to obtain the renormalization matrix:(

fB 6=Λ

fB 6=Λ
T

)
= 1

3

(
ZOf + 2ZDf 2ZOf − 2ZDf

ZOf − ZDf 2ZOf + ZDf

)(
fB

fBT

)lat

, (3.93a)

fΛ = ZOf fΛ,lat . (3.93b)

If fB 6=Λ
T = fB (as is the case for the nucleon and for the SU(3) symmetric limit), the first

equation reduces to a multiplicative renormalization with one and the same factor ZOf.
Thus the result at the flavor symmetric point given earlier is reproduced correctly.
64ZOϕ1 is a 4 × 4 matrix by definition because there are 4 leading twist operator multiplets in the
representation τ12

2 . In eq. (3.92c) the symbol ZOϕ1 is implied to stand only for its upper left 3× 3 block.
The fourth row and column serve only to describe mixing related to the operator OD8, which is highly
suppressed and therefore neglected, see section 3.4.1.
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3.5. Renormalization of three-quark operators

In the higher twist sector it is the Λ baryon which gains an additional normalization
constant (λΛ

T ) when going away from the symmetric point. For all other baryons, the
leading twist normalization constants are still renormalized with the 2×2 octet matrix ZOλ,
but for the Λ this matrix mingles with the singlet factor ZS λ to describe the mixing of
the three higher twist parameters:(√

6λB 6=Λ
1

λB 6=Λ
2

)
= ZOλ

(√
6λB1
λB2

)lat

, (3.94a)


√

6λΛ
1√

6λΛ
T

λΛ
2

 = 1
3

Z
Oλ
11 + 2ZS λ 2ZOλ

11 − 2ZS λ 3ZOλ
12

ZOλ
11 − ZS λ 2ZOλ

11 + ZS λ 3ZOλ
12

ZOλ
21 2ZOλ

21 3ZOλ
22



√

6λΛ
1√

6λΛ
T

λΛ
2


lat

. (3.94b)

Again, the larger mixing matrix reduces to ZOλ at the symmetric point, where λΛ
T = λΛ

1 .
In the case of the first moments of the leading twist DAs we work with the H(4) repre-

sentation τ12
2 . Here, operators transforming according to all three representations of S3

exist, cf. table 3.2. We have one singlet multiplet (renormalization factor ZSϕ1), four
doublets of octet multiplets (renormalization matrix ZOϕ1), and three decuplet multiplets
(renormalization matrix ZDϕ1). The DAs ΠB 6=Λ are Φ+-like and lead to two shape pa-
rameters (πB 6=Λ

00,(1), π
B 6=Λ
11 ) corresponding to symmetric polynomials, whereas the DA ΠΛ is

Φ−-like and has a shape parameter (πΛ
10,(1)) corresponding to an antisymmetric polynomial,

cf. section 3.2.1. The renormalization pattern is

ϕB 6=Λ
00,(1)

πB 6=Λ
00,(1)√

2ϕB 6=Λ
11√

2πB 6=Λ
11√

2ϕB 6=Λ
10


= 1

3


Bϕ1

11 Bϕ1
12

Bϕ1
21 Bϕ1

22

3ZOϕ1
13

3ZOϕ1
13

3ZOϕ1
23

3ZOϕ1
23

ZOϕ1
31 2ZOϕ1

31 ZOϕ1
32 2ZOϕ1

32 3ZOϕ1
33





ϕB00,(1)

πB00,(1)√
2ϕB11√
2πB11√
2ϕB10



lat

, (3.95a)


ϕΛ

00,(1)√
2ϕΛ

11√
2ϕΛ

10√
2πΛ

10

 = 1
3


3ZOϕ1

11 3ZOϕ1
12 ZOϕ1

13 2ZOϕ1
13

3ZOϕ1
21 3ZOϕ1

22 ZOϕ1
23 2ZOϕ1

23

3ZOϕ1
31 3ZOϕ1

32

3ZOϕ1
31 3ZOϕ1

32
Bϕ1

33




ϕΛ
00,(1)√

2ϕΛ
11√

2ϕΛ
10√

2πΛ
10


lat

, (3.95b)

where the interaction between renormalization factors corresponding to different S3 trans-
formation behavior is encoded in the 2× 2 blocks

Bϕ1
ij =



(
ZOϕ1
ij + 2ZDϕ1

ij 2ZOϕ1
ij − 2ZDϕ1

ij

ZOϕ1
ij − ZDϕ1

ij 2ZOϕ1
ij + ZDϕ1

ij

)
∀ i, j ∈ {1, 2} ,(

ZOϕ1
33 + 2ZSϕ1 2ZOϕ1

33 − 2ZSϕ1

ZOϕ1
33 − ZSϕ1 2ZOϕ1

33 + ZSϕ1

)
for i = j = 3 . (3.96)
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Chapter 3. Distribution amplitudes and their renormalization

In the SU(3) symmetric limit some of the shape parameters coincide (πB 6=Λ
00,(1) = ϕB00,(1),

πB 6=Λ
11 = ϕB11, and π

Λ
10 = ϕΛ

10), such that both equations become equivalent to eq. (3.92c).
At the order of the second moments there will be up to 10 different shape parameters which
mix under renormalization. The corresponding formulas can be found in the appendix,
equations (D.10)–(D.13).

With the information given in this section we now know everything that is required for
the renormalization of normalization constants and shape parameters. This therefore con-
cludes our theoretical discussion regarding the renormalization of octet baryon distribution
amplitudes. The next step will be to establish a lattice framework where these quantities
can be measured.
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Chapter4Application to lattice data

4.1. Overview
The development of the renormalization procedure in this work is embedded in an ongoing
research effort aimed at providing precise results for the normalization constants and
moments of baryon distribution amplitudes. It comprises the first lattice study of baryon
DAs using Nf = 2 + 1 dynamical flavors, i.e., including the effects of strange quarks. The
main selling point of simulations with a dynamical strange quark is that they will grant us
a first look at hyperon DAs. The correlators designed to measure moments of SU(3) baryon
DAs are given in section 4.2 below.

Our lattice simulations employ state-of-the-art methods, see section 4.3 for a few
technical details on the lattice setup. As part of the coordinated lattice simulations (CLS)
effort we will have access to a wide range of lattice ensembles including pion masses down
to mπ ≈ mphys

π , lattice spacings down to a ≈ 0.04 fm and lattice sizes up to 643 × 192.
Utilizing their high statistics it will be possible in the future to obtain physical results for
the desired quantities and to study sources of systematic errors. In [49] we have recently
published early results using just 4 lattices at the single lattice spacing a = 0.0857 fm. Via
chiral perturbation theory the data have been extrapolated to the point of physical meson
masses, cf. section 4.5. The results will be presented and discussed in section 4.6.

4.2. Lattice correlation functions
As mentioned in section 3.3, lattice QCD allows us to access moments of the DAs. They
are related to matrix elements of local three-quark operators. Lattice calculations of
baryon distribution amplitudes customarily [45–48] employ operators which are in the
form of four-spinors, such as the one given in eq. (4.1) below. Regrettably, the relation
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Chapter 4. Application to lattice data

Table 4.1.: Definition of the Dirac matrix structures that appear in the local operators
used in the lattice calculation, see eq. (4.1). Lorentz indices appearing in both ΓXr̄r̄ and Γ̃Xr̄

are summed over implicitly.

Xr̄ S P V A T Vρ Aρ Tρ
ΓXr̄r̄ 14 γ5 γη γηγ5 ση1η2 γρ γργ5 iσρη

Γ̃Xr̄ γ5 14 γηγ5 γη ση1η2γ5 γ5 14 γηγ5

of these objects to the multiplets of operators transforming irreducibly under H(4) is not
immediately apparent. Nevertheless, the operators presented in the course of this section
are indeed members of such multiplets and the relations are made explicit in appendix C.3.

For the construction of the lattice operators we start from the building block whose
general form reads

XB,lmn
r̄l̄m̄n̄

= εabc
([
ilDl̄f

T(0)
]a
CΓXr̄r̄

[
imDm̄g(0)

]b)Γ̃Xr̄
[
inDn̄h(0)

]c
. (4.1)

Here we use a multi-index notation for Lorentz indices, in particular for the covariant
derivatives, Dl̄ ≡ Dλ1 · · ·Dλl , with the integers l, m, and n specifying the number of
derivatives acting on the first, second, and third quark, respectively. The quark flavors f, g, h
are again set according to the convention for the baryon B specified in eq. (3.3). The Dirac
structures that we consider, ΓXr̄r̄ and Γ̃Xr̄ , are listed in table 4.1. Xr̄ = S,P,V,A, T are
used for the higher twist normalization constants, while Xr̄ = Vρ,Aρ, Tρ correspond to
leading twist.

Moments of baryon DAs can be extracted from the ground state contribution to the
two-point correlation functions. Neglecting the exponentially suppressed excited states,
the correlation functions can be written as

〈Oτ (t,p)N̄B
τ ′ (0)〉 =

√
ZB

2EB

∑
λ

〈0|Oτ (0)|B(p, λ)〉 ūBτ ′(p, λ)e−EBt , (4.2)

with the ground state energy EB = EB(p) =
√
m2
B + p2, where we assume the continuum

dispersion relation. Here and in the following the source always sits at the origin, while
the operator is projected onto the three-momentum p. As sources for the baryon fields we
have used the following interpolating currents (color antisymmetrization is implied):

NN =
(
uTCγ5d

)
u , (4.3a)

NΣ =
(
dTCγ5s

)
d , (4.3b)

NΞ =
(
sTCγ5u

)
s , (4.3c)

NΛ = 1√
6

(
2
(
uTCγ5d

)
s+

(
uTCγ5s

)
d+

(
sTCγ5d

)
u
)
. (4.3d)
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The other baryons can then be obtained by means of isospin symmetry. In a lattice
simulation a process called smearing (see the next section) will be applied to the quark
sources in the interpolating currents. This introduces a momentum-dependent coupling√
ZB =

√
ZB(p) into the correlators, which describes the overlap between the smeared

source operator and the physical baryon ground state. This quantity can be determined by
measuring the smeared-smeared correlator

〈NB
τ (t,p)N̄B

τ ′ (0)(γ+)τ ′τ 〉 = ZB
mB + kEB

EB
e−EBt , (4.4)

where contracting with γ+ = (1 + kγ4)/2 using k = mB∗/EB∗ suppresses the leading
negative parity contribution [48, 162].65 The next step will be to define suitable operators
and their corresponding lattice correlators that allow for the extraction of the momentsXB

lmn

(X = V,A, T ).

4.2.1. Leading twist – normalization

In order to extract the leading twist normalization constants, the following linear combi-
nations of operators are constructed such that their matrix elements do not contain any
contributions of higher twist:

OB,000
X ,A = −γ1X

B,000
1 + γ2X

B,000
2 , (4.5a)

OB,000
X ,B = −γ3X

B,000
3 + γ4X

B,000
4 , (4.5b)

OB,000
X ,C = −γ1X

B,000
1 − γ2X

B,000
2 + γ3X

B,000
3 + γ4X

B,000
4 , (4.5c)

where X can be V, A, or T. For each X , these three four-spinors of operators are related to a
12-dimensional operator multiplet belonging to the H(4) representation τ12

1 , cf. eq. (C.18).
The leading twist baryon couplings can be determined from the following correlation

functions:

CB,000
X ,A (t,p) =

〈(
γ4OB,000

X ,A (t,p)
)
τ N̄B

τ ′ (0)(γ+)τ ′τ
〉

= cXX
B
000
√
ZB

k(p2
1 − p2

2)
EB

e−EBt , (4.6a)

CB,000
X ,B (t,p) =

〈(
γ4OB,000

X ,B (t,p)
)
τ N̄B

τ ′ (0)(γ+)τ ′τ
〉

= cXX
B
000
√
ZB

EB(mB + kEB) + kp2
3

EB
e−EBt , (4.6b)

CB,000
X ,C (t,p) =

〈(
γ4OB,000

X ,C (t,p)
)
τ N̄B

τ ′ (0)(γ+)τ ′τ
〉

= cXX
B
000
√
ZB

EB(mB + kEB) + k(p2
1 + p2

2 − p2
3)

EB
e−EBt , (4.6c)

65B∗ denotes the negative parity partner of the baryon B.
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where cV = cA = 1 and cT = −2. Again, X can be V, A, or T. In practice we want
to determine the coupling constants using zero-momentum correlators as they are less
noisy and, therefore, can be measured with higher accuracy. For CB,000

X ,A the ground state
contribution vanishes for p = 0, thus we consider only CB,000

X ,B (t,0) and CB,000
X ,C (t,0).

4.2.2. Leading twist – moments

First moments of DAs can be calculated utilizing operators containing one covariant
derivative. For l +m+ n = 1 we define the leading twist combinations

OB,lmnX ,A = +γ1γ3XB,lmn{13} + γ1γ4XB,lmn{14} − γ2γ3XB,lmn{23} − γ2γ4XB,lmn{24} − 2γ1γ2XB,lmn{12} ,

OB,lmnX ,B = +γ1γ3XB,lmn{13} − γ1γ4XB,lmn{14} + γ2γ3XB,lmn{23} − γ2γ4XB,lmn{24} + 2γ3γ4XB,lmn{34} ,

OB,lmnX ,C = −γ1γ3XB,lmn{13} + γ1γ4XB,lmn{14} + γ2γ3XB,lmn{23} − γ2γ4XB,lmn{24} , (4.7a–c)

where the braces indicate symmetrization of indices including the appropriate factorial
normalization factor. These operators are from the representation τ12

2 , cf. eqs. (C.19).
For the calculation of the first moments of the leading twist DAs one can use the

correlation functions (l +m+ n = 1)

CB,lmnX ,A,1 (t,p) =
〈(
γ4γ1OB,lmnX ,A (t,p)

)
τ N̄B

τ ′ (0)(γ+)τ ′τ
〉

= −cXXB
lmn

√
ZBp1

EB(mB + kEB) + k(2p2
2 − p2

3)
EB

e−EBt , (4.8a)

CB,lmnX ,A,2 (t,p) =
〈(
γ4γ2OB,lmnX ,A (t,p)

)
τ N̄B

τ ′ (0)(γ+)τ ′τ
〉

= +cXXB
lmn

√
ZBp2

EB(mB + kEB) + k(2p2
1 − p2

3)
EB

e−EBt , (4.8b)

CB,lmnX ,A,3 (t,p) =
〈(
γ4γ3OB,lmnX ,A (t,p)

)
τ N̄B

τ ′ (0)(γ+)τ ′τ
〉

= −cXXB
lmn

√
ZBp3

k(p2
1 − p2

2)
EB

e−EBt , (4.8c)

CB,lmnX ,B,1 (t,p) =
〈(
γ4γ1OB,lmnX ,B (t,p)

)
τ N̄B

τ ′ (0)(γ+)τ ′τ
〉

= +cXXB
lmn

√
ZBp1

EB(mB + kEB) + kp2
3

EB
e−EBt , (4.8d)

CB,lmnX ,B,2 (t,p) =
〈(
γ4γ2OB,lmnX ,B (t,p)

)
τ N̄B

τ ′ (0)(γ+)τ ′τ
〉

= +cXXB
lmn

√
ZBp2

EB(mB + kEB) + kp2
3

EB
e−EBt , (4.8e)

CB,lmnX ,B,3 (t,p) =
〈(
γ4γ3OB,lmnX ,B (t,p)

)
τ N̄B

τ ′ (0)(γ+)τ ′τ
〉

= −cXXB
lmn

√
ZBp3

2EB(mB + kEB) + k(p2
1 + p2

2)
EB

e−EBt , (4.8f)
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CB,lmnX ,C,1 (t,p) =
〈(
γ4γ1OB,lmnX ,C (t,p)

)
τ N̄B

τ ′ (0)(γ+)τ ′τ
〉

= −cXXB
lmn

√
ZBp1

EB(mB + kEB) + kp2
3

EB
e−EBt , (4.8g)

CB,lmnX ,C,2 (t,p) =
〈(
γ4γ2OB,lmnX ,C (t,p)

)
τ N̄B

τ ′ (0)(γ+)τ ′τ
〉

= +cXXB
lmn

√
ZBp2

EB(mB + kEB) + kp2
3

EB
e−EBt , (4.8h)

CB,lmnX ,C,3 (t,p) =
〈(
γ4γ3OB,lmnX ,C (t,p)

)
τ N̄B

τ ′ (0)(γ+)τ ′τ
〉

= +cXXB
lmn

√
ZBp3

k(p2
1 − p2

2)
EB

e−EBt . (4.8i)

One immediately notices that at least one nonzero component of spatial momentum is
required to extract the first moments, as otherwise the right-hand sides will simply be equal
to zero. We evaluate CB,lmnX ,A,1 , CB,lmnX ,B,1 , and CB,lmnX ,C,1 with momentum in x-direction, i.e.,
p = 2π

L (±1, 0, 0), and evaluate CB,lmnX ,A,2 , CB,lmnX ,B,2 , and C
B,lmn
X ,C,2 with momentum in y-direction,

i.e., p = 2π
L (0,±1, 0).66 For momentum in z-direction (p = 2π

L (0, 0,±1)), only the correlator
CB,lmnX ,B,3 can be used. We do not consider the remaining two correlators as they require
a higher number of nonvanishing momentum components, which would lead to larger
statistical uncertainties. Finally, operators and correlators suitable for a lattice analysis of
the second moments can be found in the appendix, eqs. (D.3)–(D.4).

Using the provided correlators one can determine all zeroth, first, and second moments
of the standard leading twist DAs. By evaluating the linear combinations presented
in section 3.3 one can thus obtain all leading twist normalization constants and shape
parameters up to second order.

4.2.3. Higher twist

Higher twist normalization constants can be calculated from the correlation functions

〈XB,000
τ (t,p)N̄B

τ ′ (0)(γ+)τ ′τ 〉 = κBXmB

√
ZB

mB + kEB
EB

e−EBt , (4.9)

where X can be S, P, V, A, or T, cf. eq. (4.1) and table 4.1. The twist four couplings of
interest defined in eqs. (3.21) and (3.22) are given by

λB 6=Λ
1 = −κBV , λΛ

1 = −
√

6κΛ
A ,

λB 6=Λ
2 = κBT , λΛ

2 = −2
√

6
(
κΛ
S + κΛ

P
)
,

λΛ
T = −

√
6
(
κΛ
S − κΛ

P
)
. (4.10a–e)

66L = Nsa is the spatial extent of the lattice, cf. table 4.2 on page 101
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Due to symmetry properties of the associated operators it follows that

κB 6=Λ
S = κB 6=Λ

P = κΛ
V = κB 6=Λ

A = κΛ
T = 0 , (4.11)

and the corresponding correlators vanish.

4.3. Lattice simulations
In the previous sections we have laid out the principles of how to obtain insight into
distribution amplitudes from two-point correlation functions. In practice these correlators
are evaluated using lattice QCD. Here we will give some information about our lattice
study, but since the specifics of the lattice implementation are not the main focus of this
work we will not go into all the minutiae and instead refer the interested reader to our
publication [49].

In the analysis we have used lattice ensembles generated within the coordinated
lattice simulations effort. These Nf = 2 + 1 simulations (i.e., 2 equal-mass light quark
flavors and 1 heavier flavor) employ the nonperturbatively O(a) improved Wilson clover
quark action [72, 163–165] and a tree-level Symanzik improved gauge action (Lüscher–Weisz
action) [78, 166]. Wuppertal smearing [167] with APE smoothed gauge links [168] is applied
to the baryon interpolators (4.3). This procedure generates spatially extended hadron
sources that feature enhanced overlap with the desired ground state. The lattice ensembles
are generated on supercomputers such as QPACE 2 [169] and analyzed using the Chroma
software system [170] with various customizations and optimizations.

A list of the CLS ensembles used in this work is given in table 4.2 and is divided into
two parts. The lattices in the first group are used to carry out the measurements of baryon
distribution amplitudes from the correlators described in section 4.2, while the ones from
the second set are used to produce the necessary RI′/SMOM renormalization factors as
defined in section 3.5.2. Let us now address the properties of these lattices, highlighting
the differences between the two groups.

First, one can see that the ensembles used for the determination of the observables
have a larger volume, especially in time direction. This is desirable since the correlators, cf.
eq. (4.2), are studied as functions of the Euclidean time (while the spatial directions are
Fourier transformed in order to fix the three-momentum p). On the other hand, the lattices
used for renormalization have a shorter time extent, on par with the spatial directions. The
vertex functions evaluated there, cf. eq. (3.52), require a Fourier transformation involving
all spacetime directions and could not benefit from having one direction larger than the
others.
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4.3. Lattice simulations

Figure 4.1.: Plot showing the meson
masses of the lattice ensembles used in
this study. All quantities are made dimen-
sionless using the average octet baryon
mass Xb, cf. eq. (4.16b). Along the flavor
symmetric line (blue) the pseudoscalar
mesons have equal mass (m2

K = m2
π),

which is equivalent to equal quark masses
(ml = ms). The (green) line of physical
normalized average quadratic meson mass
((2m2

K + m2
π)/X2

b = phys.) corresponds
to an approximately physical mean quark
mass (2ml + ms ≈ phys.). The red line
is defined by (2m2

K − m2
π)/X2

b = phys.
and indicates an approximately physical
strange quark mass (ms ≈ phys.). The
orange dot marks the physical point.

0.0 0.1
m2
π

X2
b
≈ 2B0

X2
b
ml

0.0

0.1

0.2

0.3

2m
2 K
−m

2 π
X

2 b
≈

2B
0

X
2 b
m
s

H101

rqcd019
H102

rqcd016

H105

rqcd021

C101

rqcd017

Table 4.2.: List of the ensembles used in this work, labeled by their CLS identifier.
The lattice coupling β = 3.40 =̂ 6/g2 corresponds to the lattice spacing a ≈ 0.0857 fm.
Ns and Nt give the number of lattice sites in spatial and temporal direction. The hopping
parameters κl and κs govern the light and strange quark masses. Pion and kaon masses have
been obtained from two-point functions. The last column gives the number of gauge field
configurations used. An in-depth description of these lattices can be found in [171, 172].

id β Ns Nt κl κs mπ [MeV] mK [MeV] conf.
C101 3.40 48 96 0.137030 0.136222041 222 474 1552
H105 3.40 32 96 0.136970 0.136340790 280 465 2833
H102 3.40 32 96 0.136865 0.136549339 355 440 1997
H101 3.40 32 96 0.13675962 0.13675962 420 420 2000

rqcd019 3.40 32 32 0.13660 0.13660 605 605 14
rqcd016 3.40 32 32 0.13675962 0.13675962 421 421 11
rqcd021 3.40 32 32 0.136813 0.136813 339 339 9
rqcd017 3.40 32 32 0.136865 0.136865 232 232 9
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A related topic are the conditions imposed on the boundary of the finite volumes
described by our lattice ensembles. On the longer lattices, open boundary conditions are
used for the gauge links in time direction, while on the shorter ones we employ the more
conventional periodic boundary conditions. The key point in favor of open boundaries
is that they allow for simulations even at fine lattice spacings [173], where simulations
using periodic boundaries run into the problem of increasingly large autocorrelation times
(topological freezing) [174]. This will be of major importance when going to a < 0.05 fm in
the future. Yet, at the comparatively larger lattice spacing studied in this work, periodic
boundary conditions can still be used without problems [171].

A second difference lies in the masses. As schematically represented in figure 4.1, the
ensembles where we calculate our observables are tuned such that the average quark mass
reproduces (approximately) the physical value. At the flavor symmetric point (implemented
on the H101 lattice), hadrons form SU(3) multiplets and their properties are related by
symmetry. Notably, the distribution amplitudes have to be equal for all octet baryons, see
eqs. (3.13). The real world is then approached in such a way that u and d quark masses
decrease and simultaneously the s quark mass increases while their average is kept constant
(the green line in figure 4.1). This course of action is ideal for studying the effects of
SU(3) flavor symmetry breaking on DAs while extrapolating to the physical point. Also
shown in figure 4.1 are the lattices used for renormalization, which lie on the blue line.
Their simulation parameters are chosen such that the masses of all dynamical quark flavors
are equal. This sets up a suitable environment for the calculation of the flavor-independent
four-point function and the subsequent extrapolation to the chiral limit (ml = ms → 0),
where the renormalization scheme is defined.

The third and probably most striking difference that can be spotted from table 4.2
is in the number of configurations, which in the end translates to the statistical error
achievable. The difference in the magnitude of these numbers is simply due to the
fact that two very different calculations are to be performed on those two groups of
lattices. In the determination of moments of baryon distribution amplitudes the statistical
error has always constituted a major contribution to the total uncertainty. Averaging
measurements from many gauge field configurations is absolutely essential in achieving a
phenomenologically relevant precision for the final results. In contrast, the statistical error
on the lattice renormalization factors just turns out to be very small, even when analyzing
just O(10) configurations. It is completely negligible compared to other, systematic
uncertainties inherent to the renormalization procedure.

To determine the moments of baryon distribution amplitudes on a lattice, the two-
point functions (see section 4.2) are measured on each gauge field configuration. Suitable
correlators are then averaged and a statistical analysis using a bootstrap method is
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performed on the O(2000) configurations per ensemble. Finally, after fitting the expected
ground state contributions (i.e., the right-hand sides of the correlator equations from
section 4.2) to this data as functions of Euclidean time, we obtain the (unrenormalized)
lattice results for the couplings and shape parameters.67 This lattice analysis has been
performed by F. Hutzler.

To renormalize these results we require the lattice RI′/SMOM renormalization factors,
defined by eq. (3.84), which have been determined by A. Sternbeck and M. Göckeler. The
key ingredient in this calculation are the flavor-independent four-point functions. Let us
therefore spend a few words on how to calculate the required vertex functions on the lattice,
as the necessary definitions given earlier in this work, eqs. (3.49)–(3.52), are written in
the language of continuum QCD. The translation to lattice QCD is as follows: Instead
of calculating vacuum expectation values in continuum perturbation theory one has to
determine four-point correlation functions nonperturbatively by measuring them on gauge
field ensembles. Spacetime integrals for the Fourier transformations are to be discretized
by replacing them with sums over all lattice sites and instead of the translation-invariant
continuum propagator S(0− x) one has to use the lattice propagator S(0, x).

With the information given here and in the previous sections we have the tools to deter-
mine not only the bare lattice results but also the nonperturbative lattice RI′/SMOM renor-
malization factors as well as the perturbative continuum RI′/SMOM-to-MS conversion
factors. Putting all these parts together we can hence extract MS renormalized results for
the DAs from each lattice.

4.4. Consistency checks
Now that we have these lattice data at our disposal we can immediately perform various
consistency checks, which not only serve as a basic tool to spot possible mistakes but
are also directly related to some interesting physics statements, e.g., with respect to
renormalization or SU(3) breaking.

4.4.1. ϕB00,(1) = fB and πB 6=Λ
00,(1) = fBT

First, due to the momentum fraction conserving delta function δ(1−x1−x2−x3) contained
in the integration measure [dx], cf. eq. (3.5), we can express any moment of a DA as a sum
67This is, of course, a gross oversimplification of the process. Many subtleties not discussed here have to be
taken into account. To name a few, the open boundary conditions complicate averaging correlators with
different source positions, the configurations have to be binned to reduce autocorrelations, and the fit
ranges have to be optimized to exclude excited state contributions while maintaining good signal-to-noise
ratio. See also our paper [49].
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of even higher moments:

DAlmn =
∫

[dx]xl1xm2 xn3 DA(x1, x2, x3) =
∫

[dx] (x1 + x2 + x3)xl1xm2 xn3 DA(x1, x2, x3)

= DA(l+1)mn + DAl(m+1)n + DAlm(n+1) . (4.12)

An application of this relation to the relevant DAs led to the equalities (3.34), repeated
here for convenience:

ϕB00,(2) = ϕB00,(1) = ϕB00 ≡ f
B , πB 6=Λ

00,(2) = πB00,(1) = πB00 ≡ f
B
T ,

ϕB11,(2) = ϕB11 , πB 6=Λ
11,(2) = πB11 ,

ϕB10,(2) = ϕB10 , πΛ
10,(2) = πΛ

10 .

In the MS continuum, eq. (4.12) and all equalities derived therefrom are (by definition) exact.
Our operators are constructed as multiplets transforming under irreducible representations
of H(4) for optimal properties in simulations using hypercubically discretized spacetime.
It is clear that such a construction does not reflect the symmetries of the O(4) Euclidean
continuum. Furthermore, operators used for the determination of the shape parameters
of different order are taken from different representations of H(4). Therefore, we have no
reason to expect that the unrenormalized lattice data should fulfill the equalities (3.34).
This deviation must be cured by our lattice RI′/SMOM renormalization and continuum
MS conversion.

There is yet another issue we need to consider. A determination of higher moments
requires additional derivatives in the operators used. In lattice QCD, the derivatives are
generally realized as difference quotients [72] and therefore the derivatives will, at finite
lattice spacing, always come with some discretization error. The sum rule (4.12) will be
broken by these lattice spacing effects even after renormalization has been taken care of.

Having access to lattice data for the zeroth and first moments we can explicitly check
ϕB00,(1)

?= fB and πB 6=Λ
00,(1)

?= fBT . To study the extent of possible deviations we have
collected the values of the ratios ϕB00,(1)/f

B and πB 6=Λ
00,(1)/f

B
T , both MS renormalized and

unrenormalized,68 in table 4.3. As expected, the unrenormalized ratios differ strongly from
unity, by more than 15%, demonstrating that the renormalization program is an essential
component for precise lattice studies. In contrast, the MS renormalized values lie much
closer to one, deviating by less than 4%, serving as a check for the correctness of our
renormalization. We attribute the remaining deviation to discretization errors caused by
the derivatives in the three-quark operators, which should vanish in the continuum limit.
68Since chiral extrapolation is performed after renormalization these values are not taken from the physical
point but from C101, the ensemble whose meson masses are closest to the physical ones, see table 4.2.
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4.4. Consistency checks

Table 4.3.: The normalizations of the leading twist DAs calculated from first moments
divided by the same normalizations calculated as a zeroth moment. The values are obtained
from the C101 lattice and given in the MS scheme (at 2GeV) as well as unrenormalized
(bare). Errors in parentheses are statistical.

ϕN00,(1)/f
N ϕΣ

00,(1)/f
Σ ϕΞ

00,(1)/f
Ξ ϕΛ

00,(1)/f
Λ πΣ

00,(1)/f
Σ
T πΞ

00,(1)/f
Ξ
T

MS 0.988(35) 0.971(17) 0.963(13) 0.971(23) 0.965(17) 0.967(13)
bare 0.842(30) 0.827(14) 0.820(11) 0.827(19) 0.822(14) 0.824(11)

Since our dataset consists of lattices of only one lattice spacing (a = 0.0857 fm) we cannot
currently substantiate our claim by performing this limit. Instead, we refer to [48], where
in a study of nucleon distribution amplitudes (using a similar lattice action) comparable
deviations have been observed. A continuum extrapolation from three lattices with different
spacings has been shown to give a result in agreement with the value 1, indicating that
discretization errors stemming from covariant derivatives in three-quark operators are
under control.

4.4.2. λB 6=Λ
2 ≈ −2λB1 and λΛ

2 ≈ −2λΛ
T

Next, let us look at relations involving the higher twist normalization constants. For
the proton the approximate equality λN2 ≈ −2λN1 is well known [47, 162, 175]. It is a
consequence of the associated local matrix element,

〈0|
(
uT(0)Cd(0)

)
γ5u(0)|N(p, λ)〉 = 8(λN2 + 2λN1 )mNu

N (p, λ) , (4.13)

vanishing in the nonrelativistic limit [162]. From our data it can be seen that the same holds
analogously for the other isospin-nonsinglet baryons Σ and Ξ, but not for the Λ baryon.
Instead, we find a new approximate equality λΛ

2 ≈ −2λΛ
T , corresponding to the similar

matrix element

〈0|
(
uT(0)Cd(0)

)
γ5s(0)|Λ(p, λ)〉 = −1

4
√

6(λΛ
2 + 2λΛ

T )mΛu
Λ(p, λ) . (4.14)

To illustrate that these approximate equalities are fulfilled well by our results we present
the data for the ratios −2λB 6=Λ

1 /λB 6=Λ
2 and −2λΛ

T /λ
Λ
2 in table 4.4.

Looking at the situation from the perspective of renormalization one might naively
expect that renormalization factors will cancel in the ratios, especially since all higher twist
normalization constants are calculated using operators from the same H(4) representation τ4

1 .
In reality this need not necessarily be true because all higher twist couplings can mix under
renormalization. Having worked out the renormalization behavior explicitly we find that
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Table 4.4.: Ratios of higher twist normalization constants (see section 4.4.2) and of leading
twist normalization constants (see section 4.4.3). The values are obtained from the C101
lattice and given in the MS scheme (at 2GeV) as well as unrenormalized (bare). Errors in
parentheses are statistical.

−2λN1 /λN2 −2λΣ
1 /λ

Σ
2 −2λΞ

1 /λ
Ξ
2 −2λΛ

T /λ
Λ
2

(
fΣ + fΞ)/(fΣ

T + fΞ
T

)
MS 0.985(25) 1.031(14) 0.990(11) 1.012(16) 1.004(1)
bare 0.985(25) 1.027(14) 0.989(11) 1.011(16) 1.004(1)

the renormalized and unrenormalized values agree with each other (see table 4.4) and that
indeed the naive expectation does come true due to the small off-diagonal elements in these
renormalization factors.

4.4.3. fΣ + fΞ ≈ fΣ
T + fΞ

T

There is yet another quantity we can examine. In our article [49] we have presented a new
identity involving the distribution amplitudes of the Σ and Ξ baryons:

0 = ΦΣ
+(x1, x2, x3) + ΦΞ

+(x1, x2, x3)−ΠΣ(x1, x2, x3)−ΠΞ(x1, x2, x3) +O(δm2) , (4.15)

where δm is a dimensionless parameter measuring the strength of SU(3) breaking [33, 49]:

δm = 4(m2
K −m2

π)
3X2

b

, (4.16a)

Xb = (2mN + 3mΣ + 2mΞ +mΛ)/8 . (4.16b)

This combination of DAs has been constructed such that the SU(3) breaking is minimal,
i.e., all terms linear in δm cancel. Hence, it has the same theory status as the famous
Gell-Mann–Okubo (GMO) sum rule for baryon masses [176, 177],

0 = 2mN −mΣ + 2mΞ − 3mΛ +O(δm2) , (4.17)

whose almost exact realization in nature (i.e., for the experimentally determined baryon
masses available in [58]) is widely known:

2mN + 2mΞ
mΣ + 3mΛ

≈ 0.994 . (4.18)

The sum rule (4.15), while in principle valid for the full DAs (which are however unknown),
also holds order by order in the moments. Let us therefore investigate the most relevant
contribution, namely the normalizations. The corresponding GMO-like sum rule reads

0 = fΣ + fΞ − fΣ
T − fΞ

T +O(δm2) , (4.19)

and it is fulfilled exceptionally well by our data, see table 4.4.
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4.5. Chiral extrapolation
The lattice simulations for the DAs have been performed on four ensembles with four
different — but always unphysical — mass parameters (see table 4.2 on page 101). In
particular, we always have mπ > mphys

π . Such simulations come with the advantage that
they are less computer time intensive than runs with the true physical masses. But in the
end, we are always interested in the DAs at the physical point, and therefore we will have
to find a way to bridge the gap between the unphysical mass regime simulated in lattice
QCD and the physical reality. The proper tools for this task at hand are provided by chiral
perturbation theory [79].

This effective field theory technique approximates QCD via Lagrangians formulated
not in terms of the basic degrees of freedom (quarks and gluons), but rather in terms of
baryons and mesons (i.e., the relevant degrees of freedom in the nonperturbative low-energy
regime of QCD). ChPT has many different applications [178], but we shall focus on its
use alongside lattice simulations: Using ChPT one can determine the behavior of various
observables as a function of the light pseudoscalar meson masses (which are in turn related
to the quark masses). To get a physically relevant result one generates multiple lattices
with different unphysical masses, fits the expected ChPT behavior to the data and then
uses the fitted function to extrapolate to the physical point.

In [33] such extrapolation formulae have been derived for all octet baryon distribution
amplitudes in the framework of covariant baryon chiral perturbation theory [179, 180] with
three flavors in leading one-loop order. The lattice ensembles analysed in our study have
all been tuned to have approximately physical average quark mass, i.e., they lie on the
green line in figure 4.1. This particular choice allows one to parametrize the normalization
constants and shape parameters as functions of the single variable δm, which has been
defined in eq. (4.16a).

As an example, let us look at the ChPT formulas for the leading twist normalization
constants (the formulas for the other quantities can be found in [33]):

fB(δm) = gBΦ+(δm)
(
f? + δm∆fB

)
, (4.20a)

fB 6=Λ
T (δm) = gBΠ (δm)

(
f? + δm∆fBT

)
. (4.20b)

(A fit of these functions to the renormalized lattice data will be shown in figure 4.2.)
Using this ansatz, all our data points pertaining to the 6 observables fN, fΣ, fΞ, fΛ, fΣ

T ,
and fΞ

T are described by a set of 7 fit parameters. They are f?, which corresponds to the
value at the symmetric point (δm = 0) and is therefore independent of the baryon species
(cf. eq. (3.13a)), as well as ∆fN, ∆fΣ, ∆fΞ, ∆fΛ, ∆fΣ

T , and ∆fΞ
T , which are responsible

for the splitting between different baryons away from the symmetric point. The curvature
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of the extrapolation functions is governed by the prefactors gBDA that contain the chiral
logarithms. They are functions of δm, normalized as gBDA(0) = 1, and independent of the
fit parameters.69 The complete expressions for these prefactors will not be given here, as
they can be read off from [33].

Using SU(3) ChPT one also finds that the symmetry breaking behavior in baryon DAs
should, at leading chiral order, obey some additional constraints, i.e., not all amplitudes
are independent [33]. In the leading twist sector, these constraints on the distribution
amplitudes translate to the following relations between the fit parameters introduced above:

∆fΞ = −∆fΣ −∆fN , (4.21a)

∆fΣ
T = −3

2∆fΛ − 1
2∆fΣ , (4.21b)

∆fΞ
T = 3

2∆fΛ + 1
2∆fΣ −∆fN . (4.21c)

This would reduce the number of free parameters in a fit to the normalization constants
from 7 to 4. However, SU(3) constraints such as these need only hold in the continuum
and can in principle be broken by discretization effects on the lattice. Therefore, fits
which simply enforce these relations might not be the best ansatz to describe results at
a fixed nonzero lattice spacing. Indeed, we found that especially for the leading twist
normalization constants these constraints are violated in our data. With our current dataset
that is limited to just one spacing we are unable to examine the continuum limit, but in
future studies it will be interesting to observe whether the breaking of SU(3) constraints
decreases while advancing towards the continuum by analyzing data at various smaller
lattice spacings. In the following, we will only show the analysis where all constraints on
the DAs responsible for the SU(3) flavor symmetry breaking are ignored, as such fits are
better suited for describing data at fixed nonzero a. For more information on the topic
and for plots showing the fits including the SU(3) constraints see [49].

Figures 4.2–4.4 show the results of chiral fits (performed by P. Wein for our article [49])
to the full set of lattice data consisting of the leading twist normalization constants, the
leading twist first order shape parameters, and the higher twist normalization constants.
In all of these figures the red dotted line on the right side marks the physical point, while
the leftmost data point corresponds to the symmetric point with approximately physical
average quark mass (H101 lattice). The curves show the fitted mean value together with
one-sigma error bands. Overall, one can see that the unconstrained leading one-loop order
SU(3) ChPT formulae are suited to treat our lattice data, as most observables are described
rather well by the fitted functions (χ2 per degree of freedom is smaller than 1.5 in all fits).
69They do however depend on other ChPT parameters such as the ubiquitous pion decay constant or the
axial low-energy constants, D and F, which are treated as fixed input values, see [33, 49].

108



4.5. Chiral extrapolation

0.00 0.05 0.10 0.15 0.20

3.5

4.0

4.5

5.0

5.5

δm

[GeV2
× 10−3

]

fΛ

fΞ
T

fΞ

fΣ
T

fΣ

fN

0.00 0.05 0.10 0.15 0.20

3.5

4.0

4.5

5.0

5.5

δm

[GeV2
× 10−3

]

ϕΛ
00,(1)

πΞ
00,(1)

ϕΞ
00,(1)

πΣ
00,(1)

ϕΣ
00,(1)

ϕN
00,(1)

Figure 4.2.: Fit for the leading twist normalization constants fB, fB 6=Λ
T (left) and the

equivalent first moments ϕB00,(1), π
B 6=Λ
00,(1) (right).
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We take the values obtained by extrapolating these fits to the physical point as our final
results, which will be discussed in the next section.

4.6. Results
In table 4.5 we have collected the chirally extrapolated results for all quantities that have
been examined in this study. The values are followed by two types of errors given in
parentheses. The first ones are the statistical uncertainties obtained by propagating the error
bars of the data points via the chiral fits presented in the previous section, while the second
ones try to quantify the uncertainty in the renormalization factors. As mentioned previously,
the statistical errors in the renormalization calculation are extremely small, therfore the
goal shall be to gauge the systematics. To this effect, we perform the analysis including the
chiral extrapolation a total of three times. First, with renormalization factors determined
at µ2 = 4GeV2 (which we take as the central values). Second, with renormalization factors
determined at µ2 = 10GeV2, followed by a perturbative renormalization group evolution
back down to µ2 = 4GeV2 (to account for some uncertainty in setting the renormalization
scale).70 And third, neglecting the perturbative corrections in the conversion factors (to
measure the extent of the loop effects). Then we take the difference between the first and
second analysis as well as one half of the difference between the first and third (as the
effect of higher loop corrections is expected to be smaller than the leading ones) and finally
add these two quantities in quadrature to get an estimate for the error.

Let us now discuss our results in detail, starting with the normalization constants.
To reiterate and illustrate what has been discussed in section 4.4.1, one can see by
comparing the left and right panel in figure 4.2 that the extrapolated values for fB, fB 6=Λ

T

and ϕB00,(1), π
B 6=Λ
00,(1) almost agree with each other, i.e., the sum rules (3.34) are broken

only very mildly by the discretization effects in the derivatives. Comparing the size of
the normalization constants of the nucleon to what has been obtained in the previous
Nf = 2 study [48] our values are larger by 30% in case of fN and by 20% for λN1 and λN2 .
However, the final values quoted therein are taken after a continuum extrapolation has
been performed. As one can see from their figure 7,71 this amount corresponds to the
effect of the continuum extrapolation and therefore our results at a ≈ 0.0857 fm are indeed
compatible with what has been obtained at a ≈ 0.0813 fm in the older analysis. Conversely,
this also means that we have to expect our result for fN to be modified by about 30%

70The nonperturbative determination of the renormalization factors is performed for multiple sets of
momenta of different magnitudes, and therefore different scales, by varying the twist parameter. The
value at a certain target scale is then obtained by interpolating between these data points.

71Here we refer to the figure numbers in the journal version of [48], which differ from the arXiv preprint.
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4.6. Results

Table 4.5.: Couplings and shape parameters obtained from the unconstrained fits. All
values are given in units of GeV2 in the MS scheme at a scale µ = 2GeV. The number in
the first parentheses gives the statistical error after chiral extrapolation. The second one is
an estimate of the systematic error due to the renormalization procedure.

B N Σ Ξ Λ
fB × 103 3.60(6)(2) 5.07(5)(2) 5.38(5)(2) 4.38(6)(2)
fBT × 103 3.60(6)(2) 4.88(5)(2) 5.47(5)(2) —
ϕB00,(1) × 103 3.53(9)(2) 4.91(7)(2) 5.19(6)(2) 4.25(8)(2)
πB00,(1) × 103 3.53(9)(2) 4.70(6)(2) 5.31(6)(2) —
ϕB11 × 103 0.08(2)(1) 0.17(1)(2) 0.01(1)(2) 0.18(1)(1)
πB11 × 103 0.08(2)(1) −0.10(1)(3) 0.30(1)(1) —
ϕB10 × 103 0.060(19)(3) −0.069(10)(3) 0.14(1)(1) 0.48(2)(3)
πB10 × 103 — — — 0.010(16)(1)

λB1 × 103 −49(1)(2) −45.4(4)(21) −47.6(4)(23) −39(1)(2)
λBT × 103 — — — −51(1)(2)
λB2 × 103 98(1)(5) 86(1)(4) 96(1)(5) 101(1)(5)

once we are able to take the continuum limit, as our lattice action is similar to the one
used in [48] and hence the discretization effects should be of comparable size.

As far as the size of fN is concerned, lattice QCD and sum rule calculations have been
known to be in disagreement for quite some time. The previous lattice studies [45–48] all
favor values that are a bit smaller than what has been obtained in older leading order
sum rule calculations [15, 38, 181]. This motivated an updated sum rule calculation at
next-to-leading order [39], which showed that the first order radiative corrections are
reasonably small. Therefore, it is very unlikely that the difference is only due to higher
order perturbative effects. Our new lattice determination of fN falls into the same range
as the values obtained in the other lattice studies. While this shows parity among different
lattice QCD simulations, it also means that, at present, the tension with QCD sum rules is
not resolved. A comparison of some of the different results can be found in table 4.6.

Also for the first moments of the nucleon we find values that are in agreement with the
previous lattice study,72 but are significantly smaller than the older sum rule estimates. In
case of the nucleon the approximate equality ϕN10 ≈ ϕN11 discussed in [48] is fulfilled by our
results within errors. And while the absolute values for the first moments are small, we
do observe enormous relative SU(3) breaking, e.g., πΞ

11 & 3ϕN11 and ϕΛ
10 & 7ϕN10. This is a

72Note that (unlike fN ) the moments have not been extrapolated to the continuum in [48], and that ϕNnk
in our notation corresponds to fNϕNnk in theirs.
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Chapter 4. Application to lattice data

Table 4.6.: Comparison of the central values of our Nf = 2 + 1 results (see table 4.5) with
the Nf = 2 lattice study for the nucleon [48], the Chernyak–Ogloblin–Zhitnitsky (COZ)
model [38] (which is based on leading order sum rules), and the next-to-leading order
sum rule calculation [39]. All values are given in units of GeV2. All quantities have been
converted to the conventions established in this work and rescaled to µ = 2GeV, using the
three-loop evolution equation for the couplings with the anomalous dimensions calculated
in [136] and the one-loop equations (3.19) for the shape parameters. Note that fTΛ in [38]
is proportional to the first moment πΛ

10 in our nomenclature.

B work method fB×103 fBT ×103 ϕB11×103 πB11×103 ϕB10×103 πB10×103

N

ours Nf = 2 + 1 3.60 3.60 0.08 0.08 0.06 —
[48] Nf = 2 2.84 2.84 0.085 0.085 0.082 —
[38] COZ 4.55 4.55 0.885 0.885 0.748 —
[39] NLO SR 4.65 4.65 — — — —

Σ ours Nf = 2 + 1 5.07 4.88 0.17 −0.10 −0.069 —
[38] COZ 4.65 4.46 1.11 0.511 0.523 —

Ξ ours Nf = 2 + 1 5.38 5.47 0.01 0.30 0.14 —
[38] COZ 4.83 4.92 0.685 1.10 0.883 —

Λ ours Nf = 2 + 1 4.38 — 0.18 — 0.48 0.01
[38] COZ 4.69 — 1.05 — 1.39 1.32

remarkable new finding, as it is contrary to the case of the normalization constants, which
differ by at most 50% between the various SU(3) octet baryons.

Our data shows furthermore that both of the first order shape parameters of the nucleon
exhibit almost no δm dependence (see the red bands in figure 4.3), i.e., the light-cone
momentum distribution in a nucleon is mostly invariant under a change of quark masses.
The likely reason is that all valence quarks in a nucleon are light quarks and that there
is no relative change in quark masses when going from the symmetric to the physical
point. All other octet baryons contain at least one strange quark, and (as we will see
from the discussion of figure 4.5 below) these heavier quarks have significant effects on the
momentum distribution. In a sense, nucleons are therefore the real world baryons that are
most similar to the theoretical concept of baryons at the symmetric point.

To best visualize distribution amplitudes one can make so-called barycentric plots [182],
in which the support of the DAs (0 ≤ x1, x2, x3 ≤ 1 with the constraint x1 + x2 + x3 = 1)
is mapped to an equilateral triangle. We shall do so for the standard DAs, [V−A]B

and TB (see section 3.2.1 for the relevant definitions), as these are the most convenient in
phenomenological applications and also come with a straightforward physical interpretation:
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The two DAs directly correspond to the two Fock states f ↑g↓h↑ and f ↑g↑h↓, respectively
(cf. eqs. (3.14)), and the three variables xi are interpreted as light-cone momentum fractions
of the three constituent quarks. In figure 4.5 we show these plots, where for each DA
the “boring” asymptotic part has been subtracted and the relevant overall normalization
factor has been divided out, so that the interesting effects of the shape parameters are
immediately visible and their relative strength can be compared across different DAs. The
plots are realized as combined density and contour plots and are overlaid with red, blue,
and green lines, which are lines of constant x1, x2, and x3, respectively.

In case of the nucleon DA [V−A]B we observe an approximate symmetry under exchange
of x2 and x3 (due to the previously mentioned relation ϕN10 ≈ ϕN11), which means that
in the u↑u↓d↑ Fock state the second and third quark carry similar momentum fractions.
Meanwhile, the leading u↑ quark, which has the same helicity as the nucleon state, carries
the largest fraction of the light-cone momentum. These findings are in agreement with
many earlier works [15, 38, 48]. It is worth mentioning however, that the approximate
equality among the first order shape parameters is observed at a typical hadronic scale
(here we have µ = 2GeV) and need not continue to hold when going to a scale of different
magnitude, as the two first moments have different behavior under scale evolution, see
eqs. (3.20).

In contrast, the symmetry that can be observed in the u↑u↑d↓ nucleon state (which
is described by TN ) is universal and scale independent, as all amplitudes TB have a
definite symmetry property under exchange of x1 and x2, see eqs. (3.10). TN, however, is
not an independent DA. Taking into account the isospin relation (3.11), the spin-flavor
structure of the nucleon light-cone wave function (3.14a) can be presented, schematically,
as [V−A]Nu↑(u↓d↑−d↓u↑). In this picture the symmetry under x2 ↔ x3 may be interpreted
as an indication for these two valence quarks forming a dynamical scalar “diquark” [183].
This symmetry is assumed in many models, e.g., [184].

For the Σ hyperon we observe that the peak of both leading twist distribution amplitudes
is shifted towards the single strange quark. In the d↑d↓s↑ Fock state this happens mostly
at the expense of the d↓ quark, while in the d↑d↑s↓ state the s quark gathers additional
momentum from both light quarks equally. The Ξ baryon contains two strange quarks
which both carry more momentum than the single light quark. In the s↑s↓u↑ state the
s↑ quark carries the largest fraction, while in the s↑s↑u↓ Fock state both s quarks contribute
equally. As far as the size of these effects are concerned we find that for the Σ the magnitude
is comparable to the nucleon, whereas the Ξ exhibits somewhat larger deviations from the
asymptotic shape.

Overall, we find that the picture for the isospin-nonsinglet baryons can be described
in terms of two competing patterns. First, the heavier strange quarks carry in general a
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Figure 4.5.: Barycentric plots (x1+x2+x3 = 1) showing the deviations of the DAs [V−A]B

and TB from the asymptotic shape φas ≡ 120x1x2x3. (TΛ vanishes in the asymptotic limit.)
In this representation the coordinates xi directly correspond to quarks of definite flavor
and helicity.
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larger fraction of the light-cone momentum than any light quarks. Second, the f quark
is preferred over the g quark in the f ↑g↓h↑ state, but both have to behave identically
(by definition) in the DA corresponding to the f ↑g↑h↓ state. This does not apply to the
Λ baryon, since the symmetry properties of its DAs are reversed compared to the remaining
members of the octet, cf. eqs. (3.10).

One can see that [V−A]Λ is clearly dominated by the strange quark. TΛ on the other
hand is a special case. This DA is antisymmetric under x1 ↔ x2, hence it has zero
asymptotic contribution (this is by construction). Furthermore, its only first order shape
parameter, πΛ

10, is numerically very small (this is a new result). The conclusion is that
the corresponding Fock state, u↑d↑s↓, should be expected to be strongly suppressed in
the Λ baryon wave function, eq. (3.14b). This leads to a situation where — akin to the
proton case, albeit for very different reasons — the leading twist sector can in very good
approximation be described by just a single DA, in this case [V−A]Λ.

In order to quantify this picture, we consider normalized first moments of [V−A]B

and TB,

〈xi〉B = 1
ϕB00,(1)

∫
[dx]xi [V−A]B , 〈xi〉B 6=Λ

T = 1
πB00,(1)

∫
[dx]xi TB , (4.22a–b)

which are sometimes referred to as momentum fractions in the literature and interpreted as
the portions of the hadron’s total momentum carried by the individual valence quarks. This
notion is somewhat imprecise since the averaging is done with a DA describing a single Fock
state and not with the true wave function squared, and the interpretation as momentum
fractions breaks down completely in case of TΛ, which has no asymptotic part. That aside,
these objects are nevertheless interesting because they provide a simple quantitative measure
for the relative deviations of a DA from the asymptotic case 〈x1〉as = 〈x2〉as = 〈x3〉as = 1/3.
To the first order, the 〈xi〉 can be expressed in terms of the shape parameters as the
following combinations:

〈x1〉B 6=Λ = 1
3 + 1

3 ϕ̂
B
11 + ϕ̂B10 , 〈x1〉Λ = 1

3 + 1
3 ϕ̂

Λ
11 −

1
3 ϕ̂

Λ
10 , 〈x1〉B 6=Λ

T = 1
3 + 1

3 π̂
B
11 ,

〈x2〉B 6=Λ = 1
3 −

2
3 ϕ̂

B
11 , 〈x2〉Λ = 1

3 −
2
3 ϕ̂

Λ
11 , 〈x2〉B 6=Λ

T = 1
3 + 1

3 π̂
B
11 ,

〈x3〉B 6=Λ = 1
3 + 1

3 ϕ̂
B
11 − ϕ̂B10 , 〈x3〉Λ = 1

3 + 1
3 ϕ̂

Λ
11 + 1

3 ϕ̂
Λ
10 , 〈x3〉B 6=Λ

T = 1
3 −

2
3 π̂

B
11 ,

(4.23a–i)

with the normalized shape parameters

ϕ̂Bnk =
ϕBnk
ϕB00,(1)

, π̂B 6=Λ
11 = πB11

πB00,(1)
. (4.24a–b)
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Table 4.7.: Normalized first moments of the DAs [V−A]B and TB 6=Λ in the MS scheme
at a scale µ = 2GeV, obtained via eqs. (4.23).

B N Σ Ξ Λ
〈x1〉B u↑ 0.358 d↑ 0.331 s↑ 0.361 u↑ 0.310
〈x2〉B u↓ 0.319 d↓ 0.310 s↓ 0.333 d↓ 0.304
〈x3〉B d↑ 0.323 s↑ 0.359 u↑ 0.306 s↑ 0.386
〈x1〉BT u↑ 0.340 d↑ 0.326 s↑ 0.352 —
〈x2〉BT u↑ 0.340 d↑ 0.326 s↑ 0.352 —
〈x3〉BT d↓ 0.319 s↓ 0.348 u↓ 0.296 —

The numerical results are summarized in table 4.7 and they fully support the qualitative
picture suggested by the discussion of figure 4.5.
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In this work we have presented a new renormalization procedure for three-quark operators
that enabled the first lattice study for the distribution amplitudes of the full baryon octet.
We employed a convenient set of DAs defined for this purpose, which provides a unified
description for the whole SU(3) octet (section 3.2). Unlike previous works on this subject,
our approach allows for a simultaneous treatment of nucleons, Σ, Ξ, and Λ baryons as well
as for a systematic study of SU(3) flavor breaking effects.

To provide the basis for a computational determination of distribution amplitudes we
have defined suitable multiplets of local three-quark operators with covariant derivatives
(section 3.4) which facilitate access to DAs in terms of their moments (section 3.3). Using
our knowledge of the underlying symmetry groups (section 2.2) we were able to design
these operators such that they reflect the multiplets of SU(3) flavor symmetry while
simultaneously exhibiting optimal transformation behavior under the spinorial hypercubic
group H(4) (i.e., the relevant symmetry group for fermions on the lattice).

A major part of this work has been dedicated to working out the renormalization
patterns for these operators (section 3.5). In this context, we employed two different renor-
malization schemes: A specifically crafted RI′/SMOM scheme fit for the nonperturbative
renormalization of lattice data serves as an intermediate scheme, while the destination
MS scheme leads to results that can be used in other phenomenological studies. We
connected these two schemes via conversion factors calculated in continuum perturbation
theory.

As a first example of application, chapter 4 features our pioneering lattice study of
baryon octet DAs using CLS ensembles at a single lattice spacing. To enable the numerical
computation of moments of distribution amplitudes we had to find suitable two-point
correlation functions (section 4.2), which have been implemented and measured in state-
of-the-art lattice simulations (section 4.3). The resulting data were renormalized using
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the procedure we developed and then extrapolated to the physical point using input from
chiral perturbation theory (section 4.5).

Main results of this study are values for the normalization constants and first order
shape parameters of the leading twist DAs of the baryon octet, as well as the higher twist
normalization constants (section 4.6). Among our results certainly the most interesting
finding concerns the shape parameters, where we record values which are an order of
magnitude smaller than those from old QCD sum rule calculations. Simultaneously, we
observe very strong relative SU(3) breaking effects. Our study was the first to tackle a
lattice simulation of the DAs for the full baryon octet and these interesting discoveries
undoubtedly warrant further research in this direction.

For the moment, the numerical values we present still have to be considered preliminary
since they have been obtained from just four ensembles with the same lattice spacing and
have not yet been extrapolated to the continuum. The plan for the future is to extend
the analysis to the full set of CLS lattices, which also contains many ensembles with
various smaller lattice constants. Using this wealth of data we will be able to perform
a continuum limit extrapolation with high precision and provide final results for the
distribution amplitudes of octet baryons.
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AppendixAMatrices

A.1. Pauli matrices
The Pauli matrices are defined as three traceless, Hermitian, and unitary (with detσi = −1)
matrices,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.1a–c)

that (usually with an additional normalization factor of 1
2) can serve as generators for SU(2).

They are orthonormal with respect to the trace operation and, together with the identity
matrix, form a basis of the complex vector space of 2×2 matrices, leading to a completeness
relation:

tr{σiσj} = 2δij , (A.2a)

(σi)αβ(σi)γδ = 2δαδδγβ − δαβδγδ . (A.2b)

The commutator and anticommutator of Pauli matrices take the simple forms

[
σi, σj

]
= 2iεijkσk , (A.3a){

σi, σj
}

= 2δij12 , (A.3b)

where εijk is the totally antisymmetric Levi-Civita symbol. There is one quadratic Casimir
invariant,

σiσi = 312 , (A.4)

that commutes with all Pauli matrices and, in the context of SU(2) as (iso-)spin algebra,
corresponds to the square of the total (iso-)spin operator.
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A.2. Gell-Mann matrices
The tA appearing, e.g., in covariant derivatives (2.2) or matrix parametrizations (2.64) are
the generators of the Lie algebra of the special unitary group SU(3). In the fundamental
representation they are 3× 3 matrices related to the Gell-Mann matrices λA via

tA = λA

2 , A ∈ {1, . . . , 8} . (A.5)

These traceless Hermitian matrices are given by

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 ,

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 . (A.6a–h)

As an interesting sidenote we can immediately relate the form of the generators to some
concepts of SU(3) flavor symmetry. The first three generators are obviously extended Pauli
matrices, signaling that SU(3) has an SU(2) subalgebra.73 This motivates SU(3) flavor
symmetry as a generalization of its SU(2) isospin subgroup. Second, the generators of
the Cartan subalgebra (which commute with each other and are represented by diagonal
matrices), t3 and t8, are proportional to the two additive quantum numbers, isospin
z-component and hypercharge (i.e., baryon number plus strangeness).

Moving on, we find that these generators are chosen such that their properties closely
match those of the Pauli Matrices of SU(2) (see appendix A.1), being trace orthonormal
and satisfying a Fierz-type relation (a, b, c, d ∈ {1, 2, 3}):

tr
{
tAtB

}
= 1

2δ
AB , (A.7a)(

tA
)
ab
(
tA
)
cd = 1

2δ
adδcb − 1

6δ
abδcd . (A.7b)

The Lie bracket (i.e., the commutator) of two generators as well as their anticommutator
73Actually there are 3 overlapping SU(2) subalgebras: {t1, t2, t3}, {t4, t5, 1

2 (
√

3t8+t3)}, {t6, t7, 1
2 (
√

3t8−t3)}.
While the former one corresponds to isospin, the latter two are called V- and U-spin, cf. appendix C.1.
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can be expressed as a linear combination of matrices:74

[
tA, tB

]
= ifABCtC , (A.8a){

tA, tB
}

= 1
3δ

AB13 + dABCtC . (A.8b)

The coefficients are the totally antisymmetric structure constants fABC and the totally
symmetric constants dABC, which can be obtained from

ifABC = 2 tr
{
tA
[
tB, tC

]}
, (A.9a)

dABC = 2 tr
{
tA
{
tB, tC

}}
. (A.9b)

These constants are real by construction and take the following values: (All index combi-
nations not shown are either related to the ones below via permutation or are equal to
zero.)

f123 = 1 , (A.10a)

f147 = −f156 = f246 = f257 = f345 = −f367 = 1
2 , (A.10b)

f458 = f678 =
√

3
2 , (A.10c)

and

d118 = d228 = d338 = −d888 = 1√
3
, (A.11a)

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 = 1
2 , (A.11b)

d448 = d558 = d668 = d778 = − 1
2
√

3
. (A.11c)

There is one quadratic and one cubic Casimir invariant:

tAtA = 4
313 , (A.12a)

dABCtAtBtC = 10
9 13 . (A.12b)

Aside from the 3-dimensional fundamental representation we also have to consider the
8-dimensional adjoint representation, which is relevant for the transformation behavior
of gluons as well as the ghost-gluon interaction, see eq. (2.12). In this representation,
the generators are 8× 8 matrices whose components are given directly by the structure
constants, (

tA
)
BC = −ifABC . (A.13)

74While the first equation actually holds for the generators in all representations of SU(3), the second
equation is specific to the fundamental representation, where the eight generators together with the
identity matrix form a basis of the matrix space.
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We use uppercase letters for the component indices to indicate that they run from 1 to 8 (as
opposed to the indices in the fundamental representation running from 1 to 3). Employing
the Jacobi identity,

0 = fABZfZCD + fACZfZDB + fADZfZBC , (A.14)

it is straightforward to show that the generators of the adjoint representation also fulfill
the commutator equation (A.8a). Since the structure constants are real, the adjoint
representation is a fully real matrix representation of SU(3).

A.3. Dirac matrices
The Dirac gamma matrices are a set of 4× 4 matrices that generate the Clifford algebra.
In Euclidean spacetime the gamma matrices have to obey the anticommutation relation

{γµ, γν} = 2δµν14 ∀µ, ν ∈ {1, . . . , 4} , (A.15)

with the metric being the Kronecker delta symbol δµν . For the relation to gamma matrices
in Minkowski spacetime see appendix A.4. There are many explicit realizations for these
matrices; for all calculations in Euclidean space we follow the convention of [47]:

γ1 =


0 0 0 i

0 0 i 0
0 −i 0 0
−i 0 0 0

 , γ2 =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 ,

γ3 =


0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0

 , γ4 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 . (A.16a–d)

It is helpful to define a fifth gamma matrix,

γ5 = γ1γ2γ3γ4 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 , (A.17)

that anticommutes with the other four matrices:

{γµ, γ5} = 0 . (A.18)
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A.4. Minkowski and Euclidean space

This Weyl (chiral) representation can be related to the Pauli matrices as follows:

γµ =
(

0 σ+
µ

σ−µ 0

)
, with σ± = (±iσ,12) . (A.19)

The shape of γ5 in this representation ensures that the chiral projectors γR/L = 1
2(14 ± γ5)

take a simple form, projecting out two-component right/left-handed spinors from a Dirac
four-spinor.

Furthermore, we define
σµν = i

2[γµ, γν ] . (A.20)

In our choice of representation all these matrices are Hermitian and self-inverse:

γ†µ = γ−1
µ = γµ , (A.21a)

γ†5 = γ−1
5 = γ5 , (A.21b)

σ†µν = σ−1
µν = σµν (µ 6= ν) . (A.21c)

The 16 objects 14, γµ, γ5, γµγ5, and σµν (µ < ν) form a basis of the 16-dimensional
complex vector space of 4× 4 matrices with complex entries.

The charge conjugation matrix C can be used to transpose the gamma matrices:

γTµ = −C−1γµC . (A.22)

Our choice for its realization,
C = γ2γ4 , (A.23)

implies the additional properties

C† = C−1 = CT = −C . (A.24)

A.4. Minkowski and Euclidean space
Minkowski spacetime has O(1, 3) symmetry that leaves invariant the spacetime interval
gµνdxµdxν with the metric g ≡ diag(1,−1,−1,−1).75 This type of spacetime appears in
formulations of special relativity and therefore provides the mathematical foundation of
the real world in regions where the spacetime can be considered flat.
75Alternatively, we could also work with O(3, 1) symmetry without changing the relevant physics. For
ways to possibly distinguish these two Lorentz groups see [124].
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On the other hand, Euclidean spacetime has O(4) symmetry that leaves invariant the
spacetime interval δµνdxµdxν with the metric δ ≡ diag(1, 1, 1, 1). Analytic continuation
to Euclidean spacetime is used in lattice simulations because it allows for a probabilistic
interpretation of the action in the QCD path integral.

When going from Minkowski to Euclidean spacetime one should perform the following
replacements for four-vectors in position space,

x0
M → −ixE4 , (A.25a)

xjM → xEj , (A.25b)

and for the corresponding covariant derivatives:

D0
M → iDE

4 , (A.26a)

Dj
M → −D

E
j . (A.26b)

(We use the super/subscripts E/M to indicate Euclidean/Minkowski space.) While not
strictly necessary, it is convenient to define for the gamma matrices:

γ0
M = γE4 , (A.27a)

γjM = iγEj , (A.27b)

γ5
M = −γE5 . (A.27c)

Both sets of matrices generate Clifford algebras with the appropriate metric,

{γµM , γ
ν
M} = 2gµν14 , {γEµ , γEν } = 2δµν14 , (A.28a–b)

and we find for the scalar products:

(xµyµ)M → −(xµyµ)E , (A.29a)

(xµγµ)M → −i(xµγµ)E , (A.29b)

(γµ ⊗ γµ)M = (γµ ⊗ γµ)E . (A.29c)
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AppendixBThe hypercubic group

B.1. Properties of the double-covering map
In section 2.2.3 we studied the hypercubic group H(4) and its double cover H(4). We even
postulated an explicit expression for the double covering map, but neglected to give a proof.
In this appendix we will examine the properties of this map, which connects H(4) ⊂ Pin(4)
to H(4) ⊂ O(4) as defined in eq. (2.75):

c : Pin(4) = SU(2)2 o Z2 → O(4) ,

(U+, U−,±) 7→ R .

To aid in the following calculations we give 4 different expressions for the matrix R,

Rµν ≡ [R(U+, U−,±)]µν = 1
2 tr
{
σ+
µ U
−σ∓ν U

+†} = 1
2 tr
{
σ±µ U

∓σ−ν U
±†}

= 1
2 tr
{
σ−µ U

+σ±ν U
−†} = 1

2 tr
{
σ∓µ U

±σ+
ν U
∓†} , (B.1)

which are all equal. (This is easy to see by using that the components of R, generated
as traces of elements of SU(2), are guaranteed to be real.) To check the properties of
the double-covering map we will also utilize some nice properties of the Pauli matrix
vectors σ± = (±iσ,12):

tr
{
σ−µ σ

+
ν

}
= 2δµν , (B.2a)

tr
{
σ−µ σ

+
ν σ
−
ρ σ

+
λ − σ

+
µ σ
−
ν σ

+
ρ σ
−
λ

}
= 4εµνρλ , (B.2b)

(σ−µ )αα′(σ+
µ )ββ′ = 2δαβ′δβα′ . (B.2c)
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First, we confirm the group homomorphism property R(g1)R(g2) = R(g1 ◦ g2). Explicit
calculation shows

[R(U+
1 , U

−
1 ,±1)]µρ[R(U+

2 , U
−
2 ,±2)]ρν = 1

4 tr
{
σ±1
µ U∓1

1 σ−ρ U
±1†
1
}

tr
{
σ+
ρ U
−
2 σ
∓2
ν U+†

2
}

= 1
2 tr
{
σ±1
µ (U∓1

1 U−2 )σ∓2
ν (U±1

1 U+
2 )†
}

= 1
2 tr
{
σ−µ (U+

1 U
±1
2 )σ±1◦±2

ν (U−1 U
∓1
2 )†

}
= [R(U+

1 U
±1
2 , U−1 U

∓1
2 ,±1 ◦ ±2)]µν

=
[
R
(
(U+

1 , U
−
1 ,±1) ◦ (U+

2 , U
−
2 ,±2)

)]
µν , (B.3)

where, in the step from the second to the third line, we have modified all signs by ∓1. The
simultaneous change of all signs leaves the object invariant, see its definition (B.1).

Next, we test that R is actually in O(4), i.e., an orthogonal matrix with RRT = 14:

RµρRνρ = 1
4 tr
{
σ±µ U

∓σ−ρ U
±†} tr

{
σ∓ν U

±σ+
ρ U
∓†}

= 1
2 tr
{
σ±µ U

∓U∓†σ∓ν U
±U±†

}
= 1

2 tr
{
σ±µ σ

∓
ν

}
= δµν . (B.4)

From this we already know that |detR(U+, U−,±)| = 1. Still, it is instructive to look at
the determinant in detail. We find that

detR(U+, U−,±) = εµνρλRµ1Rν2Rρ3Rλ4

= 1
4 tr
{
σ−µ σ

+
ν σ
−
ρ σ

+
λ − σ

+
µ σ
−
ν σ

+
ρ σ
−
λ

}
Rµ1Rν2Rρ3Rλ4

= 1
4 tr
{
σ∓1 σ

±
2 σ
∓
3 σ
±
4 − σ

±
1 σ
∓
2 σ
±
3 σ
∓
4
}

= ±ε1234

= ±1 , (B.5)

where we have used

σ−µRµµ′ = U−σ∓µ′U
+† , σ+

µRµµ′ = U+σ±µ′U
−† , (B.6a–b)

which itself follows from the property (B.2c). This illustrates the fact that elements of the
type (U+, U−,+) are mapped to the subgroup of orientation preserving rotations, SO(4),
while elements of the type (U+, U−,−) are mapped to the orientation reversing comple-
ment, O(4) \SO(4).

B.2. Representations
Now that we have established a double cover H(4)→ H(4), we can immediately discuss some
representations of H(4). Two representations in particular are worth highlighting. Obviously,
the double-covering map itself constitutes a 4-dimensional orthogonal representation.
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Since this one descends from the fundamental representation of O(4), we will call it the
fundamental representation of H(4). It is denoted as τ4

1 and defined by eqs. (2.75)–(2.76).
Another important representation is a 4-dimensional unitary representation defined by the
mapping

(U+, U−,+) 7→
(
U+ 0
0 U−

)∗
, (U+, U−,−) 7→

(
0 U+

U− 0

)∗
. (B.7a–b)

(It is straightforward to see that this is indeed a representation of H(4) because it respects
the group operation (2.74).) We call this one the fundamental spinorial representation,
denoted as τ4

1 . Using the explicit matrices given below, the connection between these two
representations can easily be checked: Deduce (U+, U−,±) from τ

4
1 (g) via eqs.(B.7), apply

the double covering map, and verify that the result is equal to τ4
1 (g).

As discussed in section 2.2.3 it is sufficient to write down the explicit forms of the
6 generators I1, I2, I3, I4, γ, and t. In the fundamental single-valued representation τ4

1
they correspond to matrices of reflections and rotations. These matrices provide a four-
dimensional representation for both H(4) and H(4):

τ
4
1 (I1) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , τ
4
1 (I2) =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 , τ
4
1 (γ) =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 ,

τ
4
1 (I3) =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , τ
4
1 (I4) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , τ
4
1 (t) =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 .

(B.8a–f)

To construct the matrices for the generators in the five spinorial representations, which
are unique to H(4), we follow [122] and define the building blocks

S1 =


0 0 0 i

0 0 i 0
0 i 0 0
i 0 0 0

 , S2 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 , Γ = 1√
2


0 0 1 −1
0 0 −1 −1
1 −1 0 0
−1 −1 0 0

 ,

S3 =


0 0 i 0
0 0 0 −i
i 0 0 0
0 −i 0 0

 , S4 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , T = 1√
2


1 −i 0 0
1 i 0 0
0 0 i 1
0 0 −i 1

 .

(B.9a–f)
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The four-, eight-, and twelve-dimensional irreducible spinorial representations of H(4) are
denoted as 4+, 4−, 8, 12+, and 12− in [122], and they are constructed from these blocks as
follows:

4+(Ii) = Si · 1 , 4+(γ) = Γ · i , 4+(t) = T · ei
7π
4 , (B.10a–o)

4−(Ii) = Si · 1 , 4−(γ) = Γ · (−i) , 4−(t) = T · ei
7π
4 ,

8(Ii) = Si ⊗ 12 , 8(γ) = Γ⊗
(

0 ei
π
3

ei
2π
3 0

)
, 8(t) = T ⊗

(
ei

5π
12 0
0 ei

13π
12

)
,

12+(Ii) = Si ⊗ 13 , 12+(γ) = Γ⊗

0 0 −1
0 i 0
1 0 0

 , 12+(t) = T ⊗

0 0 ei
5π
4

1 0 0
0 1 0

 ,

12−(Ii) = Si ⊗ 13 , 12−(γ) = Γ⊗

0 0 −1
0 −i 0
1 0 0

 , 12−(t) = T ⊗

0 0 ei
π
4

1 0 0
0 −1 0

 .

As stated in section 2.2, the explicit form of representation matrices is never uniquely
determined. By a change of basis in the representation space one can obtain different (but
equivalent) matrices. If one were to scrutinize the H(4) transfomation properties of the
operator mutiplets using eq. (3.38), then one would see that it is not actually fulfilled for
the multiplets from [52] together with the representation matrices in the basis of [122].
This can be rectified by a simple change of basis on the representation space. For that
purpose we give the unitary matrices,

U
4
1 = 12 ⊗ 12 , (B.11a)

U
4
2 =

(
0 1
1 0

)
⊗

(
0 1
1 0

)
, (B.11b)

U
8 = 12 ⊗

1√
2


0 0 i ei

2π
3

1 ei
7π
6 0 0

0 0 −1 ei
π
6

−i ei
5π
3 0 0

 , (B.11c)

U
12
1 = 12 ⊗

1√
2



0 0 0 1 ei
7π
4 0

0 0 −
√

2i 0 0 0
0 0 0 −1 ei

7π
4 0

1 ei
3π
4 0 0 0 0

0 0 0 0 0
√

2i
−1 ei

3π
4 0 0 0 0


, (B.11d)
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U
12
2 = 12 ⊗

1√
2



1 ei
3π
4 0 0 0 0

0 0 0 −1 ei
7π
4 0

1 ei
7π
4 0 0 0 0

0 0 0 −1 ei
3π
4 0

0 0 0 0 0
√

2i
0 0

√
2i 0 0 0


, (B.11e)

and perform a change of basis:

τ
4
1 (g) = U

4
1 4+(g)

(
U

4
1
)†
, (B.12a)

τ
4
2 (g) = U

4
2 4−(g)

(
U

4
2
)†
, (B.12b)

τ
8(g) = U

8 8(g)
(
U

8)†
, (B.12c)

τ
12
1 (g) = U

12
1 12+(g)

(
U

12
1
)†
, (B.12d)

τ
12
2 (g) = U

12
2 12−(g)

(
U

12
2
)†
. (B.12e)

We denote the spinorial representations as τ4
1 , τ

4
2 , τ

8, τ12
1 , and τ12

2 , following the notation
of [52]. Using this form of the representation matrices one can verify that the operator
multiplets that we take from there do transform under these irreducible representations
of H(4).

By construction, the transformation matrices given above exhibit a structure consisting
of two blocks, each accounting for half of the representation’s dimension. This is related to
the way the multiplets are defined in [52]. Each multiplet is built such that the operators
in the first half all have the same set of quark chiralities, while those in the second half
have exactly the opposite chiralities.
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B.3. Character table

Table B.1.: Character table of H(4). For each conjugacy class Ch (where a superscript
prime indicates a splitting class as discussed in section 2.2.3) we give its cardinality |Ch|
(the number of elements), the order nh of its elements (the smallest integer for which
hnh = e), a sample element h, and the character afforded by each representation. The
superscript labels give the dimensions of the representations, while the subscripts enumerate
different representations of the same dimension. Spinorial representations are marked by
underlined superscripts. Most of the information presented here has been taken from [122].

Ch |Ch| nh h τ
1
1 τ

1
3 τ

2
1 τ

3
1 τ

3
3 τ

1
2 τ

1
4 τ

2
2 τ

3
2 τ

3
4

1 1 1 e = γ4 1 1 2 3 3 1 1 2 3 3
1′ 1 2 −e = γ2 1 1 2 3 3 1 1 2 3 3
2 8 4 I1 1 1 2 3 3 −1 −1 −2 −3 −3
3 12 4 I2I1 1 1 2 3 3 1 1 2 3 3
4 8 2 I3I2I1 1 1 2 3 3 −1 −1 −2 −3 −3
5 2 2 I4I3I2I1 1 1 2 3 3 1 1 2 3 3
6 24 4 γ 1 −1 0 1 −1 1 −1 0 1 −1
7 48 4 I2γ 1 −1 0 1 −1 −1 1 0 −1 1
8 12 8 I3γ 1 −1 0 1 −1 −1 1 0 −1 1
8′ 12 8 I3γ

3 1 −1 0 1 −1 −1 1 0 −1 1
9 24 2 I4I2γ 1 −1 0 1 −1 1 −1 0 1 −1

10 48 8 I4I3γ 1 −1 0 1 −1 1 −1 0 1 −1
11 24 8 I4I3I2γ 1 −1 0 1 −1 −1 1 0 −1 1
12 24 4 tγtγ 1 1 2 −1 −1 1 1 2 −1 −1
13 48 8 I1tγtγ 1 1 2 −1 −1 −1 −1 −2 1 1
14 12 4 I2I1tγtγ 1 1 2 −1 −1 1 1 2 −1 −1
14′ 12 4 I2I1tγtγ

3 1 1 2 −1 −1 1 1 2 −1 −1
15 32 6 t 1 1 −1 0 0 1 1 −1 0 0
15′ 32 3 γ2t 1 1 −1 0 0 1 1 −1 0 0
16 64 12 I1t 1 1 −1 0 0 −1 −1 1 0 0
17 64 6 I2t 1 1 −1 0 0 −1 −1 1 0 0
18 64 6 I2I1t 1 1 −1 0 0 1 1 −1 0 0
19 96 8 tγ 1 −1 0 −1 1 1 −1 0 −1 1
20 48 8 I1tγ 1 −1 0 −1 1 −1 1 0 1 −1
20′ 48 8 I1tγ

3 1 −1 0 −1 1 −1 1 0 1 −1
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τ
4
1 τ

4
3 τ

8
1 τ

4
4 τ

4
2 τ

8
2 τ

6
3 τ

6
2 τ

6
4 τ

6
1 τ

4
1 τ

4
2 τ

8
τ

12
1 τ

12
2

4 4 8 4 4 8 6 6 6 6 4 4 8 12 12
4 4 8 4 4 8 6 6 6 6 −4 −4 −8 −12 −12
2 2 4 −2 −2 −4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 −2 −2 −2 0 0 0 0 0
−2 −2 −4 2 2 4 0 0 0 0 0 0 0 0 0
−4 −4 −8 −4 −4 −8 6 6 6 6 0 0 0 0 0

2 −2 0 2 −2 0 2 0 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 −2 0 0 0 0 0
2 −2 0 −2 2 0 0 −2 0 2 −2

√
2 2

√
2 0 −2

√
2 2

√
2

2 −2 0 −2 2 0 0 −2 0 2 2
√

2 −2
√

2 0 2
√

2 −2
√

2
−2 2 0 −2 2 0 2 0 −2 0 0 0 0 0 0

0 0 0 0 0 0 −2 0 2 0 0 0 0 0 0
−2 2 0 2 −2 0 0 −2 0 2 0 0 0 0 0

0 0 0 0 0 0 2 −2 2 −2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 2 −2 2 2 2 4 −2 −2
0 0 0 0 0 0 −2 2 −2 2 −2 −2 −4 2 2
1 1 −1 1 1 −1 0 0 0 0 2 2 −2 0 0
1 1 −1 1 1 −1 0 0 0 0 −2 −2 2 0 0
−1 −1 1 1 1 −1 0 0 0 0 0 0 0 0 0

1 1 −1 −1 −1 1 0 0 0 0 0 0 0 0 0
−1 −1 1 −1 −1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

√
2 −

√
2 0 −

√
2

√
2

0 0 0 0 0 0 0 0 0 0 −
√

2
√

2 0
√

2 −
√

2
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C.1. Phase conventions and flavor wave functions
Starting with the standard representation for the quark triplet,

u =

1
0
0

 , d =

0
1
0

 , s =

0
0
1

 , (C.1a–c)

we define the action of lowering operators T̂−, Û−, and V̂− for the isospin, U-spin, and
V-spin, respectively, in this (fundamental) representation via the matrices (cf. app. A.2)

T− = 1
2(λ1 − iλ2)

=

0 0 0
1 0 0
0 0 0

 ,

U− = 1
2(λ6 − iλ7)

=

0 0 0
0 0 0
0 1 0

 ,

V− = 1
2(λ4 − iλ5)

=

0 0 0
0 0 0
1 0 0

 , (C.2a–c)

so that, as illustrated in figure C.1,

T̂−u = T−u = d , Û−d = U−d = s , V̂−u = V−u = s , (C.3a–c)

while all other combinations result in zero.
The baryon octet can be presented as a traceless 3× 3 matrix [185]

Λ√
6 + Σ0

√
2 Σ+ p

Σ− Λ√
6 −

Σ0
√

2 n

Ξ− Ξ0 −2 Λ√
6

 = pKp + nKn + · · · , (C.4)
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ud

s

T̂
−

Û
−

V̂
−

Figure C.1.: Action of isospin, U-spin, and V-spin lowering operators in the quark triplet.

where KB are 3× 3 matrices defined by this equation. We further define the application
of the lowering operators T̂−, Û−, and V̂− to the octet by the usual expressions for the
adjoint action,

T̂−KB = [T−,KB] , Û−KB = [U−,KB] , V̂−KB = [V−,KB] , (C.5a–c)

without any additional phase factors.
The above choices specify our phase conventions. Starting from the proton state, the

complete octet can be constructed by applying the following transformations as illustrated
in figure C.2:

T̂−|p〉 = |n〉 , (C.6a)

−Û−|p〉 = |Σ+〉 , (C.6b)
1√
2 T̂−Û−|p〉 = |Σ0〉 , (C.6c)

1
2 T̂−T̂−Û−|p〉 = |Σ−〉 , (C.6d)

−V̂−Û−|p〉 = |Ξ0〉 , (C.6e)

T̂−V̂−Û−|p〉 = |Ξ−〉 , (C.6f)
−1√

6

(
V̂− + Û−T̂−

)
|p〉 = |Λ〉 . (C.6g)

Starting from the mixed-symmetric and mixed-antisymmetric flavor wave functions for the
proton defined as (cf. eqs. (3.40))

|pMS〉 = 1√
6

(2|uud〉 − |udu〉 − |duu〉) , |pMA〉 = 1√
2

(|udu〉 − |duu〉) , (C.7a–b)

the wave functions of the octet can now be constructed by applying the transforma-
tions (C.6), see tables C.2 and C.3.
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pn

Σ
+

Σ
0

Σ
−

Ξ
0

Ξ
−

T̂
−

−Û
−

−V̂
−

−T̂
−

/
√

2T̂
−

/
√

2

V̂
−

Û
−

−T̂
−

Figure C.2.: Illustration of our phase conventions. The Λ baryon is not shown since one
needs a linear combination for its construction, cf. eq. (C.6g). Blue arrows indicate the
cases where one has to apply a Fierz transformation to relate the distribution amplitudes
at the symmetric point, see [126]. An explicit calculation shows that this always yields an
additional minus sign that has to be taken into account in order to reproduce eqs. (C.9)
and (3.13).

Together with the choice of flavor ordering in the matrix elements defining the DAs of
the different baryons (cf. eqs. (3.3) and (3.4)),

p =̂ uud , n =̂ ddu , Σ+ =̂ uus , Σ0 =̂ uds ,

Σ− =̂ dds , Ξ0 =̂ ssu , Ξ− =̂ ssd , Λ =̂ uds , (C.8a–h)

our conventions also fix the relative signs of the octet baryon DAs. As shown in [33], this
choice corresponds to the following identities for the DAs in the limit of exact isospin
symmetry:

DAN ≡ DAp = −DAn , (C.9a)

DAΣ ≡ DAΣ− =
√

2DAΣ0 = −DAΣ+
, (C.9b)

DAΞ ≡ DAΞ0 = −DAΞ− . (C.9c)

This also fixes the relative phases at the flavor symmetric point in eqs. (3.13). All phases
in the octet are now unambiguously determined up to a single unphysical global phase,
which is commonly fixed by the condition that fN has to be positive.
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Table C.1.: Totally antisymmetric (A) flavor wave functions.

B |BA〉 =
∑

f,g,h F
B,fgh
S |fgh〉

Λ (|dus〉 − |uds〉+ |usd〉 − |dsu〉+ |sdu〉 − |sud〉)/
√

6

Table C.2.: Mixed-symmetric (MS) flavor wave functions.

B |BMS〉 =
∑

f,g,h F
B,fgh
O,1 |fgh〉

N (2|uud〉 − |udu〉 − |duu〉)/
√

6
Σ (2|dds〉 − |dsd〉 − |sdd〉)/

√
6

Ξ (2|ssu〉 − |sus〉 − |uss〉)/
√

6
Λ (|dsu〉 − |usd〉+ |sdu〉 − |sud〉)/2

Table C.3.: Mixed-antisymmetric (MA) flavor wave functions.

B |BMA〉 =
∑

f,g,h F
B,fgh
O,2 |fgh〉

N (|udu〉 − |duu〉)/
√

2
Σ (|dsd〉 − |sdd〉)/

√
2

Ξ (|sus〉 − |uss〉)/
√

2
Λ (2|dus〉 − 2|uds〉+ |dsu〉 − |usd〉+ |sud〉 − |sdu〉)/

√
12

Table C.4.: Totally symmetric (S) flavor wave functions.

B |BS〉 =
∑

f,g,h F
B,fgh
D |fgh〉

N (|uud〉+ |udu〉+ |duu〉)/
√

3
Σ (|dds〉+ |dsd〉+ |sdd〉)/

√
3

Ξ (|ssu〉+ |sus〉+ |uss〉)/
√

3

C.2. Optimal operator bases for renormalization
For the purpose of renormalization, it is convenient to employ operator multiplets that
transform irreducibly not only with respect to the spinorial hypercubic group H(4) but
also with respect to the group S3 of permutations of the three quark flavors. The latter
group has three inequivalent irreducible representations, which correspond to ground state
particle multiplets in a SU(3) flavor symmetric world (see section 3.4.2). Therefore, we label
multiplets of operators transforming under the one-dimensional trivial representation by D,
the one-dimensional totally antisymmetric representation by S, and the two-dimensional
representation by O.

Furthermore, we want operators that have autonomous scale dependence under one-loop
evolution, resulting in a direct correspondence between the operator multiplets and the
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C.2. Optimal operator bases for renormalization

shape parameters in the SU(3) symmetric limit. The H(4) and S3 constraints discussed
above still leave enough freedom to be able to enforce this property as well.

As a starting point we use the operator multiplets defined in [52], which have been
constructed to transform under irreducible representations of H(4). We construct our new
multiplets (with the desired additional properties) as linear combinations thereof. Since we
will only combine multiplets from a single representation at a time, the H(4) transformation
properties will automatically carry over to our newly defined operator multiplets.

On the right-hand sides of the equations in the following sections we use the operator
definitions and nomenclature of [52]. We use the subscripts f, g, and h to specify a
derivative acting on the first, second, and third quark, respectively. E.g., Ofg4 refers to the
operator multiplet ODD4 with one derivative acting on the first quark and one derivative
acting on the second. The operators in the next three subsections below are defined for
generic flavors, i.e., not for any specific baryon B. To obtain the operators for particular
baryons one has to adorn them with the respective flavor structures (which are defined by
tables C.1–C.4): (

SR
)B
m

=
∑

f1,f2,f3

FB,f1f2f3
S

(
SR

)
m
, (C.10a)

(
OR

)B
m

=
∑

f1,f2,f3

∑
t

FB,f1f2f3
O,t

(
OR

)
m,t

, (C.10b)

(
DR

)B
m

=
∑

f1,f2,f3

FB,f1f2f3
D

(
DR

)
m
, (C.10c)

whereR is a stand-in for any combined H(4) representation and derivative label (such as 12
2,D)

and the quarks of generic flavor contained in the operators on the right-hand side are
implied to be set to f1, f2, and f3.

C.2.1. Zero derivatives

For operators without derivatives we consider all (leading twist and higher twist) operators.
In the H(4) representation τ

12
1 we have 1 doublet of octet multiplets76 and 1 decuplet

multiplet (leading twist):

(
O12

1
)

1,t =


1√
6(O7 +O8 − 2O9) ,

1√
2(O7 −O8) , (C.11a)(

D12
1
)

1 = 1√
3(O7 +O8 +O9) . (C.11b)

76By “doublet of octet multiplets” we refer to two multiplets (which themselves are 12-, 8-, or 4-dimensional,
as indicated by the underlined superscript) of operators transforming irreducibly under H(4), where these
two H(4) multiplets together transform as a doublet under the two-dimensional representation of S3,
which we associate with the SU(3) octet (cf. section 3.4.2). In our notation the first (t = 1) multiplet is
always the mixed-symmetric one, while the second (t = 2) is mixed-antisymmetric.
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In the H(4) representation τ8 we have 1 decuplet multiplet (leading twist):

(
D8)

1 = O6 . (C.12)

In the H(4) representation τ4
1 we have 1 singlet multiplet and 2 doublets of octet multiplets

(higher twist):77 (
S 4

1
)

1 = 1√
3(O3 −O4 −O5) , (C.13a)

(
O4

1
)

1,t =


1√
2(O3 +O4) ,

1√
6(−O3 +O4 − 2O5) , (C.13b)

(
O4

1
)

2,t =

O2 ,

1√
3(2O1 +O2) . (C.13c)

C.2.2. One derivative

For the case of one derivative we present all leading twist operators. In the H(4) repre-
sentation τ12

2 we have 1 singlet multiplet, 4 doublets of octet multiplets, and 3 decuplet
multiplets:

(
S 12

2,D
)

1 = 1√
6

[
(Og5 −Oh5) + (Oh6 −Of6) + (Of7 −Og7)

]
,

(
O12

2,D
)

1,t =


1

3
√

2

[
(Of5 +Og5 +Oh5) + (Of6 +Og6 +Oh6)− 2(Of7 +Og7 +Oh7)

]
,

1√
6

[
(Of5 +Og5 +Oh5)− (Of6 +Og6 +Oh6)

]
,

(
O12

2,D
)

2,t =


1
6
[
(−2Of5 +Og5 +Oh5) + (Of6 − 2Og6 +Oh6)− 2(Of7 +Og7 − 2Oh7)

]
,

1
2
√

3

[
(−2Of5 +Og5 +Oh5)− (Of6 − 2Og6 +Oh6)

]
,

(
O12

2,D
)

3,t =


1
2
[
(Og5 −Oh5)− (Oh6 −Of6)

]
,

− 1
2
√

3

[
(Og5 −Oh5) + (Oh6 −Of6)− 2(Of7 −Og7)

]
,

(
O12

2,D
)

4,t =


1√
6(Of8 +Og8 − 2Oh8) ,

1√
2(Of8 −Og8) ,(

D12
2,D
)

1 = 1
3
[
(Of5 +Og5 +Oh5) + (Of6 +Og6 +Oh6) + (Of7 +Og7 +Oh7)

]
,(

D12
2,D
)

2 = 1
3
√

2

[
(−2Of5 +Og5 +Oh5) + (Of6 − 2Og6 +Oh6) + (Of7 +Og7 − 2Oh7)

]
,(

D12
2,D
)

3 = 1√
3(Of8 +Og8 +Oh8) . (C.14a–h)

77The seemingly unorthodox construction and normalization of the operator (C.13c) can be traced back to
the fact that the multiplets O1 and O2 were chosen in a suboptimal, nonorthogonal manner in [51].
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For operators with one derivative in the H(4) representation τ12
1 we have 1 singlet multiplet,

3 doublets of octet multiplets, and 2 decuplet multiplets:(
S 12

1,D
)

1 = 1√
6

[
(Og2 −Oh2) + (Oh3 −Of3) + (Of4 −Og4)

]
,

(
O12

1,D
)

1,t =


1

3
√

2

[
(Of2 +Og2 +Oh2) + (Of3 +Og3 +Oh3)− 2(Of4 +Og4 +Oh4)

]
,

1√
6

[
(Of2 +Og2 +Oh2)− (Of3 +Og3 +Oh3)

]
,

(
O12

1,D
)

2,t =


1
6
[
(−2Of2 +Og2 +Oh2) + (Of3 − 2Og3 +Oh3)− 2(Of4 +Og4 − 2Oh4)

]
,

1
2
√

3

[
(−2Of2 +Og2 +Oh2)− (Of3 − 2Og3 +Oh3)

]
,

(
O12

1,D
)

3,t =


1
2
[
(Og2 −Oh2)− (Oh3 −Of3)

]
,

− 1
2
√

3

[
(Og2 −Oh2) + (Oh3 −Of3)− 2(Of4 −Og4)

]
,(

D12
1,D
)

1 = 1
3
[
(Of2 +Og2 +Oh2) + (Of3 +Og3 +Oh3) + (Of4 +Og4 +Oh4)

]
,(

D12
1,D
)

2 = 1
3
√

2

[
(−2Of2 +Og2 +Oh2) + (Of3 − 2Og3 +Oh3) + (Of4 +Og4 − 2Oh4)

]
.

(C.15a–f)

For operators with one derivative in the H(4) representation τ8 we have 1 doublet of octet
multiplets and 1 decuplet multiplet:

(
O8
D

)
1,t =


1√
6(Of1 +Og1 − 2Oh1) ,

1√
2(Of1 −Og1) , (C.16a)(

D8
D

)
1 = 1√

3(Of1 +Og1 +Oh1) . (C.16b)

C.2.3. Two derivatives

Due to the enormous amount of possible three-quark operators with two derivatives we
focus on those leading twist operators that are relevant in practice. They are the operator
multiplets transforming according to the H(4) representation τ4

2 . In this representation we
have 2 singlet multiplets, 6 doublets of octet multiplets, and 4 decuplet multiplets:(

S 4
2,DD

)
1 = 1

2
√

3

[
(Ofg4 −Ofh4 +Ogg4 −Ohh4)

+ (−Off5 −Ofg5 +Ogh5 +Ohh5)

+ (Off6 +Ofh6 −Ogg6 −Ogh6)
]
, (C.17a)(

S 4
2,DD

)
2 = 1

2
√

15

[
(−3Ofg4 + 3Ofh4 +Ogg4 −Ohh4)

+ (−Off5 + 3Ofg5 − 3Ogh5 +Ohh5)

+ (Off6 − 3Ofh6 −Ogg6 + 3Ogh6)
]
, (C.17b)
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(
O4

2,DD
)

1,t =



1
3
√

10

[
(Off4 + 2Ofg4 + 2Ofh4 +Ogg4 + 2Ogh4 +Ohh4)

+ (Off5 + 2Ofg5 + 2Ofh5 +Ogg5 + 2Ogh5 +Ohh5)

− 2(Off6 + 2Ofg6 + 2Ofh6 +Ogg6 + 2Ogh6 +Ohh6)
]
,

1√
30

[
(Off4 + 2Ofg4 + 2Ofh4 +Ogg4 + 2Ogh4 +Ohh4)

− (Off5 + 2Ofg5 + 2Ofh5 +Ogg5 + 2Ogh5 +Ohh5)
]
, (C.17c)

(
O4

2,DD
)

2,t =



1
6
√

2

[
(−2Off4 −Ofg4 −Ofh4 +Ogg4 + 2Ogh4 +Ohh4)

+ (Off5 −Ofg5 + 2Ofh5 − 2Ogg5 −Ogh5 +Ohh5)

− 2(Off6 + 2Ofg6 −Ofh6 +Ogg6 −Ogh6 − 2Ohh6)
]
,

1
2
√

6

[
(−2Off4 −Ofg4 −Ofh4 +Ogg4 + 2Ogh4 +Ohh4)

− (Off5 −Ofg5 + 2Ofh5 − 2Ogg5 −Ogh5 +Ohh5)
]
, (C.17d)

(
O4

2,DD
)

3,t =



1
2
√

114

[
(2Off4 − 3Ofg4 − 3Ofh4 + 3Ogg4 − 6Ogh4 + 3Ohh4)

+ (3Off5 − 3Ofg5 − 6Ofh5 + 2Ogg5 − 3Ogh5 + 3Ohh5)

− 2(3Off6 − 6Ofg6 − 3Ofh6 + 3Ogg6 − 3Ogh6 + 2Ohh6)
]
,

1
2
√

38

[
(2Off4 − 3Ofg4 − 3Ofh4 + 3Ogg4 − 6Ogh4 + 3Ohh4)

− (3Off5 − 3Ofg5 − 6Ofh5 + 2Ogg5 − 3Ogh5 + 3Ohh5)
]
, (C.17e)

(
O4

2,DD
)

4,t =



1
4
√

129

[
(−6Off4 + 9Ofg4 + 9Ofh4 +Ogg4 − 12Ogh4 +Ohh4)

+ (Off5 + 9Ofg5 − 12Ofh5 − 6Ogg5 + 9Ogh5 +Ohh5)

− 2(Off6 − 12Ofg6 + 9Ofh6 +Ogg6 + 9Ogh6 − 6Ohh6)
]
,

1
4
√

43

[
(−6Off4 + 9Ofg4 + 9Ofh4 +Ogg4 − 12Ogh4 +Ohh4)

− (Off5 + 9Ofg5 − 12Ofh5 − 6Ogg5 + 9Ogh5 +Ohh5)
]
, (C.17f)

(
O4

2,DD
)

5,t =



1
2
√

2

[
(Ofg4 −Ofh4 +Ogg4 −Ohh4)

− (−Off5 −Ofg5 +Ogh5 +Ohh5)
]
,

− 1
2
√

6

[
(Ofg4 −Ofh4 +Ogg4 −Ohh4)

+ (−Off5 −Ofg5 +Ogh5 +Ohh5)

− 2(Off6 +Ofh6 −Ogg6 −Ogh6)
]
, (C.17g)

(
O4

2,DD
)

6,t =



1
2
√

10

[
(−3Ofg4 + 3Ofh4 +Ogg4 −Ohh4)

− (−Off5 + 3Ofg5 − 3Ogh5 +Ohh5)
]
,

− 1
2
√

30

[
(−3Ofg4 + 3Ofh4 +Ogg4 −Ohh4)

+ (−Off5 + 3Ofg5 − 3Ogh5 +Ohh5)

− 2(Off6 − 3Ofh6 −Ogg6 + 3Ogh6)
]
, (C.17h)
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(
D4

2,DD
)

1 = 1
3
√

5

[
(Off4 + 2Ofg4 + 2Ofh4 +Ogg4 + 2Ogh4 +Ohh4)

+ (Off5 + 2Ofg5 + 2Ofh5 +Ogg5 + 2Ogh5 +Ohh5)

+ (Off6 + 2Ofg6 + 2Ofh6 +Ogg6 + 2Ogh6 +Ohh6)
]
, (C.17i)(

D4
2,DD

)
2 = 1

6
[
(−2Off4 −Ofg4 −Ofh4 +Ogg4 + 2Ogh4 +Ohh4)

+ (Off5 −Ofg5 + 2Ofh5 − 2Ogg5 −Ogh5 +Ohh5)

+ (Off6 + 2Ofg6 −Ofh6 +Ogg6 −Ogh6 − 2Ohh6)
]
, (C.17j)(

D4
2,DD

)
3 = 1

2
√

57

[
(2Off4 − 3Ofg4 − 3Ofh4 + 3Ogg4 − 6Ogh4 + 3Ohh4)

+ (3Off5 − 3Ofg5 − 6Ofh5 + 2Ogg5 − 3Ogh5 + 3Ohh5)

+ (3Off6 − 6Ofg6 − 3Ofh6 + 3Ogg6 − 3Ogh6 + 2Ohh6)
]
, (C.17k)(

D4
2,DD

)
4 = 1

2
√

258

[
(−6Off4 + 9Ofg4 + 9Ofh4 +Ogg4 − 12Ogh4 +Ohh4)

+ (Off5 + 9Ofg5 − 12Ofh5 − 6Ogg5 + 9Ogh5 +Ohh5)

+ (Off6 − 12Ofg6 + 9Ofh6 +Ogg6 + 9Ogh6 − 6Ohh6)
]
. (C.17l)

C.3. Relation of lattice operators to H(4) operators
In the following we will relate the lattice operators defined in eqs. (4.5), (4.7), and (D.3)
to those of [52]. It is implied that within the generic operators appearing on the right-
hand sides of these equations the quark flavors are chosen such that they agree with
the conventions (3.3) for the baryon B. For the operators without derivatives in the
H(4) representation τ12

1 we have

OB,000
T ,A = 4


−O(6)

9
+O(1)

9
−O(12)

9
+O(7)

9

 , OB,000
T ,B = 4


−O(4)

9
+O(3)

9
−O(10)

9
+O(9)

9

 , OB,000
T ,C = 4

√
2


+O(2)

9
−O(5)

9
+O(8)

9
−O(11)

9

 , (C.18a–c)

where the operators for the structure V+A (or V−A) can be obtained by replacing O9

by O7 (or O8). For the operators with derivatives it is additionally implied that on the
right-hand side the position of the derivative is set as mandated by the superscripts lmn
(with l +m+ n = 1). In the H(4) representation τ12

2 :

OB,lmnT ,A = 4
√

2


+O(1)

D7
−O(2)

D7
−O(7)

D7
+O(8)

D7

 , OB,lmnT ,B = 4
√

2


+O(3)

D7
−O(4)

D7
−O(9)

D7
+O(10)

D7

 , OB,lmnT ,C = 4


+O(6)

D7
+O(5)

D7
−O(12)

D7
−O(11)

D7

 ,

(C.19a–c)
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where the operators for the structure V+A (or V−A) can be obtained by replacing OD7

by OD5 (or OD6). For operators with two derivatives (l+m+n = 2) we use the multiplets
from the H(4) representation τ4

2 :

OB,lmnT = − 8√
3


O(4)
DD6
O(3)
DD6
O(2)
DD6
O(1)
DD6

 , (C.20)

where the operators for the structure V+A (or V−A) can be obtained by replacing ODD6

by ODD4 (or ODD5).
Similarly, the operators which are relevant for higher twist normalization constants (see

section 4.2.3) can be expressed in terms of O1−5 belonging to the H(4) representation τ4
1 .

In the chiral-odd sector we have

(V+A)B,000 = −4
√

2


O(1)

3
O(2)

3
O(3)

3
O(4)

3

 , (V−A)B,000 = −4
√

2


O(1)

4
O(2)

4
O(3)

4
O(4)

4

 , (C.21a–b)

relevant for λB1 , and

(S−P)B,000 = −2
√

2


O(1)

5
O(2)

5
O(3)

5
O(4)

5

 , (C.21c)

relevant for λΛ
T . In the chiral-even sector (λB2 ) we obtain:

(S+P)B,000 = 2
√

2
3


2O(1)

1 +O(1)
2

2O(2)
1 +O(2)

2
2O(3)

1 +O(3)
2

2O(4)
1 +O(4)

2

 , T B,000 = 4
√

6


O(1)

2
O(2)

2
O(3)

2
O(4)

2

 . (C.21d–e)
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AppendixDSecond order shape parameters
and their renormalization

Over the course of this work we have so far omitted most equations concerning the
renormalization of second order shape parameters in order not to overcrowd the main text
with long formulas. Instead, they are collected in this appendix.

D.1. Expression as second moments of standard DAs
Analogous to what has been shown for the lower orders in section 3.3, the second order shape
parameters of the baryons can be calculated as linear combinations of second moments.
For B 6=Λ we find

ϕB 6=Λ
00,(2) = [V−A]B200 + [V−A]B020 + [V−A]B002

+ 2[V−A]B011 + 2[V−A]B101 + 2[V−A]B110 , (D.1a)

πB 6=Λ
00,(2) = TB200 + TB020 + TB002 + 2TB011 + 2TB101 + 2TB110 , (D.1b)

ϕB 6=Λ
11,(2) = 1

2
(
[V−A]B200 − 2[V−A]B020 + [V−A]B002

− [V−A]B011 + 2[V−A]B101 − [V−A]B110
)
, (D.1c)

πB 6=Λ
11,(2) = 1

2
(
TB200 + TB020 − 2TB002 − TB011 − TB101 + 2TB110

)
, (D.1d)

ϕB 6=Λ
20 = 3[V−A]B200 + 2[V−A]B020 + 3[V−A]B002

− 3[V−A]B011 − 6[V−A]B101 − 3[V−A]B110 , (D.1e)

πB 6=Λ
20 = 3TB200 + 3TB020 + 2TB002 − 3TB011 − 3TB101 − 6TB110 , (D.1f)

ϕB 6=Λ
22 = [V−A]B200 − 6[V−A]B020 + [V−A]B002

+ 9[V−A]B011 − 12[V−A]B101 + 9[V−A]B110 , (D.1g)
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πB 6=Λ
22 = TB200 + TB020 − 6TB002 + 9TB011 + 9TB101 − 12TB110 , (D.1h)

ϕB 6=Λ
10,(2) = 1

2
(
[V−A]B200 − [V−A]B002 − [V−A]B011 + [V−A]B110

)
, (D.1i)

ϕB 6=Λ
21 = [V−A]B200 − [V−A]B002 + 3[V−A]B011 − 3[V−A]B110 , (D.1j)

whereas the Λ once again has a different set of moments, namely

ϕΛ
00,(2) =

√
2
3
(
[V−A]Λ200 + [V−A]Λ020 + [V−A]Λ002

+ 2[V−A]Λ011 + 2[V−A]Λ101 + 2[V−A]Λ110
)
, (D.2a)

ϕΛ
11,(2) = 1√

6

(
[V−A]Λ200 − 2[V−A]Λ020 + [V−A]Λ002

− [V−A]Λ011 + 2[V−A]Λ101 − [V−A]Λ110
)
, (D.2b)

ϕΛ
20 =

√
2
3
(
3[V−A]Λ200 + 2[V−A]Λ020 + 3[V−A]Λ002

− 3[V−A]Λ011 − 6[V−A]Λ101 − 3[V−A]Λ110
)
, (D.2c)

ϕΛ
22 =

√
2
3
(
[V−A]Λ200 − 6[V−A]Λ020 + [V−A]Λ002

+ 9[V−A]Λ011 − 12[V−A]Λ101 + 9[V−A]Λ110
)
, (D.2d)

ϕΛ
10,(2) = −

√
3
2
(
[V−A]Λ200 − [V−A]Λ002 − [V−A]Λ011 + [V−A]Λ110

)
, (D.2e)

πΛ
10,(2) =

√
3
2
(
TΛ

200 − TΛ
020 − TΛ

011 + TΛ
101
)
, (D.2f)

ϕΛ
21 = −

√
6
(
[V−A]Λ200 − [V−A]Λ002 + 3[V−A]Λ011 − 3[V−A]Λ110

)
, (D.2g)

πΛ
21 =

√
6
(
TΛ

200 − TΛ
020 + 3TΛ

011 − 3TΛ
101
)
. (D.2h)

D.2. Lattice correlation functions
To be able to access the second moments on the lattice we define the following leading
twist combination of operators with two derivatives (l +m+ n = 2):

OB,lmnX = −γ1γ2γ3XB,lmn{123} + γ1γ2γ4XB,lmn{124} − γ1γ3γ4XB,lmn{134} + γ2γ3γ4XB,lmn{234} . (D.3)

The general builing block XB,lmn
r̄l̄m̄n̄

is defined in eq. (4.1), and X can be V, A, or T.
In this case we have one four-spinor of operators, in accordance with the fact that we

want to use operators from the four-dimensional H(4) representation τ4
2 , cf. eq. (C.20). As

a reminder: We chose this representation because its operators with two derivatives are
immune to the undesirable mixing with operators of lower dimension, see table 3.1 on
page 64 and the related discussion in section 3.4.1. A consequence of having 4- instead of
12-dimensional multiplets is that there are fewer independent correlation functions than in
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the case of one derivative. For lattice calculations of the second moments (l +m+ n = 2)
we suggest to evaluate the following set:

CB,lmnX ,1 (t,p) =
〈(
γ4γ2γ3OB,lmnX (t,p)

)
τ N̄B

τ ′ (0)(γ+)τ ′τ
〉

= −cXXB
lmn

√
ZBp2p3

EB(mB + kEB) + kp2
1

EB
e−EBt , (D.4a)

CB,lmnX ,2 (t,p) =
〈(
γ4γ1γ3OB,lmnX (t,p)

)
τ N̄B

τ ′ (0)(γ+)τ ′τ
〉

= +cXXB
lmn

√
ZBp1p3

EB(mB + kEB) + kp2
2

EB
e−EBt , (D.4b)

CB,lmnX ,3 (t,p) =
〈(
γ4γ1γ2OB,lmnX (t,p)

)
τ N̄B

τ ′ (0)(γ+)τ ′τ
〉

= −cXXB
lmn

√
ZBp1p2

EB(mB + kEB) + kp2
3

EB
e−EBt . (D.4c)

At least two nonvanishing components of p are required in order to obtain nonzero values
for the correlation functions involving the operators with two derivatives. Naturally, one
should evaluate CB,lmnX ,1 with p = 2π

L (0,±1,±1) and p = 2π
L (0,±1,∓1), evaluate CB,lmnX ,2

with p = 2π
L (±1, 0,±1) and p = 2π

L (±1, 0,∓1) as well as CB,lmnX ,3 with p = 2π
L (±1,±1, 0)

and p = 2π
L (±1,∓1, 0).

By calculating the correlators defined above on the lattice and then fitting the results
to the respective expected expressions on the right-hand sides one can extract lattice values
for the moments XB

lmn of the standard DAs X = V,A, T, and therefore, by virtue of the
equations given in the previous section, also for the second order shape parameters.

D.3. MS Z-factor
In section 3.5.1 we gave results for the Z-factors of three-quark operators with less than
two derivatives. Here we will now present the result for the remaining, most complicated
case. Given two derivatives, there are a total of 6 possibilities for their positions: 3 with
both derivatives acting on the same quark and 3 with derivatives on two different quarks.
The Z-factor has a 6× 6 matrix structure intermixing the vertex functions with the various
derivative positions:

H
α1α2α3,µν, ,
β1β2β3

(p1, p2, p3)
H
α1α2α3, ,µν,
β1β2β3

(p1, p2, p3)
H
α1α2α3, , ,µν
β1β2β3

(p1, p2, p3)
H
α1α2α3, ,µ,ν
β1β2β3

(p1, p2, p3)
H
α1α2α3,µ, ,ν
β1β2β3

(p1, p2, p3)
H
α1α2α3,µ,ν,
β1β2β3

(p1, p2, p3)



MS

= Zα1α2α3
α′1α

′
2α
′
3



H
α′1α

′
2α
′
3,µν, ,

β1β2β3
(p1, p2, p3)

H
α′1α

′
2α
′
3, ,µν,

β1β2β3
(p1, p2, p3)

H
α′1α

′
2α
′
3, , ,µν

β1β2β3
(p1, p2, p3)

H
α′1α

′
2α
′
3, ,µ,ν

β1β2β3
(p1, p2, p3)

H
α′1α

′
2α
′
3,µ, ,ν

β1β2β3
(p1, p2, p3)

H
α′1α

′
2α
′
3,µ,ν,

β1β2β3
(p1, p2, p3)


. (D.5)
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Our one-loop result for this Z-factor is

Z = 16 ⊗ Γ000 − ξ
αs
2π

1
ε̄
16 ⊗ Γ000 +

(
Zss Zsd

Zds Zdd

)
+O(α2

s) , (D.6)

where, for better readability, we have partitioned the nontrivial parts into 3 × 3 blocks
responsible for two derivatives on the same quark, derivatives on two different quarks, or
the mixing between those sectors:78

Zss = αs
48π

1
ε̄
13 ⊗

(
Γ022 + Γ202 + Γ220

)
+ αs

144π
1
ε̄

3Γ022 Γ220 Γ202

Γ220 3Γ202 Γ022

Γ202 Γ022 3Γ220

+ αs
36π

1
ε̄

26 −3 −3
−3 26 −3
−3 −3 26

⊗ Γ000 , (D.7a)

Zdd = αs
36π

1
ε̄
13 ⊗

(
Γ022 + Γ202 + Γ220

)
+ αs

144π
1
ε̄

−Γ022 2Γ220 2Γ202

2Γ220 −Γ202 2Γ022

2Γ202 2Γ022 −Γ220

+ αs
36π

1
ε̄

31 −8 −8
−8 31 −8
−8 −8 31

⊗ Γ000 , (D.7b)

Zsd = 3ZTds = αs
48π

1
ε̄

 0 Γ202 Γ220

Γ022 0 Γ220

Γ022 Γ202 0

+ 5αs
12π

1
ε̄

 0 −1 −1
−1 0 −1
−1 −1 0

⊗ Γ000 . (D.7c)

As far as the anomalous dimension matrix is concerned, we will refrain from writing down
the full expression. Instead, we will point out that in the cases of zero and one derivatives
a relation between the Z-factors (eqs. (3.67) and (3.71)) and the anomalous dimension
matrices (eqs. (3.69) and (3.72)) can be observed: The one-loop anomalous dimension can
be obtained by taking the gauge-independent part of the one-loop contribution to the
Z-factor and multiplying it by 2ε̄. The same also holds for the anomalous dimension matrix
for operators with two derivatives. All of the anomalous dimensions of the shape parameters
given in eqs. (3.20) are related to eigenvalues of this matrix by a factor of αs/(2π).

D.4. Conversion factors
The calculation of the RI′/SMOM-to-MS conversion factors for the second moments proceeds
analogous to section 3.5.3. This time we are working with operators with two derivatives
from the representation τ4

2 . The 2× 2 mixing matrix C
(
S 4

2,DD
)
for the singlet multiplets

78The transpose operation in the last line applies to the 3× 3 matrix structure.
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D.4. Conversion factors

is given by

C
(
S 4

2,DD
)

11 = 1 + αs
4π

(
−11317

2592 −
7393
46656π

2 + 11
30 ln(2) + 3419

9720ψ1
(1

3
)
− 73

960ψ1
(1

4
))
,

C
(
S 4

2,DD
)

22 = 1 + αs
4π

(
−35171

4320 −
1061
4320π

2 + 127
360ψ1

(1
3
)

+ 1
96ψ1

(1
4
))
,

C
(
S 4

2,DD
)

21 =
√

5αs4π

(
−2171

7200 −
5129
64800π

2 − 2
15 ln(2)− 17

5400ψ1
(1

3
)

+ 13
160ψ1

(1
4
))
,

C
(
S 4

2,DD
)

12 =
√

5αs4π

(
− 79

2592 −
1003
46656π

2 − 1
10 ln(2)− 127

9720ψ1
(1

3
)

+ 29
960ψ1

(1
4
))
. (D.8a–d)

In the octet sector we have a 6× 6 conversion matrix C
(
O4

2,DD
)
, which is block diagonal.

The nonzero entries are

C
(
O4

2,DD
)
mn

=

C
(
D4

2,DD
)
mn

∀m,n ∈ {1, 2, 3, 4} ,

C
(
S 4

2,DD
)
m−4,n−4 ∀m,n ∈ {5, 6} . (D.8e)

Finally, there are 4 decuplet multiplets and a corresponding matrix C
(
D4

2,DD
)
specified by

the components

C
(
D4

2,DD
)

11 = 1 + αs
4π

(
−107

135 −
176
1215π

2 + 34
105 ln(2) + 724

2835ψ1
(1

3
)
− 8

315ψ1
(1

4
))
,

C
(
D4

2,DD
)

22 = 1 + αs
4π

(
−4667

864 −
167
576π

2 + 7
120 ln(2) + 41

120ψ1
(1

3
)

+ 179
2880ψ1

(1
4
))
,

C
(
D4

2,DD
)

33 = 1 + αs
4π

(
−50837

7200 −
60523
388800π

2 + 113
200 ln(2) + 5023

16200ψ1
(1

3
)
− 49

960ψ1
(1

4
))
,

C
(
D4

2,DD
)

44 = 1 + αs
4π

(
−2537

300 −
11983
43200π

2− 17
6300 ln(2) + 2063

6300ψ1
(1

3
)

+ 397
6720ψ1

(1
4
))
,

C
(
D4

2,DD
)

21 =
√

5αs4π

(
10
189 −

1009
34020π

2− 8
105 ln(2)− 22

405ψ1
(1

3
)

+ 83
1260ψ1

(1
4
))
,

C
(
D4

2,DD
)

12 =
√

5αs4π

(
73

2700 −
149

97200π
2− 43

4050ψ1
(1

3
)

+ 31
3600ψ1

(1
4
))
,

C
(
D4

2,DD
)

31 =
√

19
15
αs
4π

(
− 818

3591 + 1193
6804π

2 + 556
399 ln(2) + 1166

10773ψ1
(1

3
)
− 395

1596ψ1
(1

4
))
,

C
(
D4

2,DD
)

13 =
√

19
15
αs
4π

(
− 1

60 −
1

6480π
2 + 4

75 ln(2) + 29
1350ψ1

(1
3
)
− 17

1200ψ1
(1

4
))
,

C
(
D4

2,DD
)

32 =
√

19
3
αs
4π

(
−25711

82080 −
125923
1477440π

2− 613
2280 ln(2)− 1217

61560ψ1
(1

3
)

+ 359
3648ψ1

(1
4
))
,

C
(
D4

2,DD
)

23 =
√

19
3
αs
4π

(
− 193

4320 −
7019

388800π
2− 7

120 ln(2)− 103
16200ψ1

(1
3
)

+ 107
4800ψ1

(1
4
))
,

C
(
D4

2,DD
)

41 =
√

43
30
αs
4π

(
− 464

3483 −
7189

125388π
2− 1184

2709 ln(2) + 1886
73143ψ1

(1
3
)

+ 145
3612ψ1

(1
4
))
,

C
(
D4

2,DD
)

14 =
√

43
30
αs
4π

(
1
45 + 7

1620π
2− 8

525 ln(2)− 34
4725ψ1

(1
3
)

+ 1
2100ψ1

(1
4
))
,

C
(
D4

2,DD
)

42 =
√

43
6
αs
4π

(
− 45319

139320 −
1103741
20062080π

2− 2443
15480 ln(2) + 13723

417960ψ1
(1

3
)

+ 547
16512ψ1

(1
4
))
,

C
(
D4

2,DD
)

24 =
√

43
6
αs
4π

(
− 151

7560 −
4253

680400π
2− 13

210 ln(2) + 17
4050ψ1

(1
3
)

+ 29
8400ψ1

(1
4
))
,
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C
(
D4

2,DD
)

43 =
√

43
38
αs
4π

(
− 41401

696600 −
2129159

100310400π
2− 4883

25800 ln(2) + 87457
2089800ψ1

(1
3
)
− 551

82560ψ1
(1

4
))
,

C
(
D4

2,DD
)

34 =
√

43
38
αs
4π

(
1007
4200 + 8353

226800π
2− 47

1050 ln(2) + 347
9450ψ1

(1
3
)
− 103

1680ψ1
(1

4
))
. (D.8f–u)

D.5. Renormalization
The combined renormalization and conversion factors for the second order shape parameters
are calculated using operators with two derivatives from the H(4) representation τ4

2 and
are defined as

ZMϕ2 =
(
CqZ

lat,RI′
q

)3/2
C
(
M 4

2,DD
)
Z lat,RI′(M 4

2,DD
)

for M ∈ {S ,O,D} . (D.9)

At the flavor symmetric point there is only one independent leading twist DA, namely
Φ?

+ + Φ?
−, which is, at second order in the conformal expansion, fully characterized by

the 6 parameters ϕ?00,(2), ϕ?11,(2), ϕ?20, ϕ?22, ϕ?10,(2), and ϕ?21, cf. eqs. (3.17a–b). Their
renormalization is described by the octet matrix ZOϕ2 :

ϕ?00,(2)√
5ϕ?11,(2)√

15
76ϕ

?
20√

15
344ϕ

?
22√

5ϕ?10,(2)
1
2ϕ

?
21


= ZOϕ2



ϕ?00,(2)√
5ϕ?11,(2)√

15
76ϕ

?
20√

15
344ϕ

?
22√

5ϕ?10,(2)
1
2ϕ

?
21



lat

. (D.10)

In the real world, where SU(3) flavor symmetry is broken, the distribution amplitudes ΠB

lead to additional independent parameters. For the N, Σ, and Ξ baryons the moments
of ΦB 6=Λ

+ have siblings in ΠB 6=Λ, called πB 6=Λ
00,(2), π

B 6=Λ
11,(2), π

B 6=Λ
20 , and πB 6=Λ

22 , while for the
Λ baryon the DA ΠΛ contains partners πΛ

10,(2) and πΛ
21 of the moments of ΦΛ

−, leading to a
total of 10 or 8 parameters, respectively. The renormalization pattern is given by

ϕB 6=Λ
00,(2)

πB 6=Λ
00,(2)√

5ϕB 6=Λ
11,(2)√

5πB 6=Λ
11,(2)√

15
76ϕ

B 6=Λ
20√

15
76π

B 6=Λ
20√

15
344ϕ

B 6=Λ
22√

15
344π

B 6=Λ
22√

5ϕB 6=Λ
10,(2)

1
2ϕ

B 6=Λ
21



= Zϕ2,B



ϕB00,(2)
πB00,(2)√

5ϕB11,(2)√
5πB11,(2)√

15
76ϕ

B
20√

15
76π

B
20√

15
344ϕ

B
22√

15
344π

B
22√

5ϕB10,(2)
1
2ϕ

B
21



lat

,



ϕΛ
00,(2)√

5ϕΛ
11,(2)√

15
76ϕ

Λ
20√

15
344ϕ

Λ
22√

5ϕΛ
10,(2)√

5πΛ
10,(2)

1
2ϕ

Λ
21

1
2π

Λ
21


= Zϕ2,Λ



ϕΛ
00,(2)√

5ϕΛ
11,(2)√

15
76ϕ

Λ
20√

15
344ϕ

Λ
22√

5ϕΛ
10,(2)√

5πΛ
10,(2)

1
2ϕ

Λ
21

1
2π

Λ
21



lat

,

(D.11a–b)
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D.5. Renormalization

with the matrices

Zϕ2,B 6=Λ = 1
3



Bϕ2
11 Bϕ2

12 Bϕ2
13 Bϕ2

14

Bϕ2
21 Bϕ2

22 Bϕ2
23 Bϕ2

24

Bϕ2
31 Bϕ2

32 Bϕ2
33 Bϕ2

34

Bϕ2
41 Bϕ2

42 Bϕ2
43 Bϕ2

44

3ZOϕ2
15 3ZOϕ2

16

3ZOϕ2
15 3ZOϕ2

16

3ZOϕ2
25 3ZOϕ2

26

3ZOϕ2
25 3ZOϕ2

26

3ZOϕ2
35 3ZOϕ2

36

3ZOϕ2
35 3ZOϕ2

36

3ZOϕ2
45 3ZOϕ2

46

3ZOϕ2
45 3ZOϕ2

46

ZOϕ2
51 2ZOϕ2

51 ZOϕ2
52 2ZOϕ2

52 ZOϕ2
53 2ZOϕ2

53 ZOϕ2
54 2ZOϕ2

54 3ZOϕ2
55 3ZOϕ2

56

ZOϕ2
61 2ZOϕ2

61 ZOϕ2
62 2ZOϕ2

62 ZOϕ2
63 2ZOϕ2

63 ZOϕ2
64 2ZOϕ2

64 3ZOϕ2
65 3ZOϕ2

66



,

Zϕ2,Λ = 1
3



3ZOϕ2
11 3ZOϕ2

12 3ZOϕ2
13 3ZOϕ2

14 ZOϕ2
15 2ZOϕ2

15 ZOϕ2
16 2ZOϕ2

16

3ZOϕ2
21 3ZOϕ2

22 3ZOϕ2
23 3ZOϕ2

24 ZOϕ2
25 2ZOϕ2

25 ZOϕ2
26 2ZOϕ2

26

3ZOϕ2
31 3ZOϕ2

32 3ZOϕ2
33 3ZOϕ2

34 ZOϕ2
35 2ZOϕ2

35 ZOϕ2
36 2ZOϕ2

36

3ZOϕ2
41 3ZOϕ2

42 3ZOϕ2
43 3ZOϕ2

44 ZOϕ2
45 2ZOϕ2

45 ZOϕ2
46 2ZOϕ2

46

3ZOϕ2
51 3ZOϕ2

52 3ZOϕ2
53 3ZOϕ2

54

3ZOϕ2
51 3ZOϕ2

52 3ZOϕ2
53 3ZOϕ2

54

3ZOϕ2
61 3ZOϕ2

62 3ZOϕ2
63 3ZOϕ2

64

3ZOϕ2
61 3ZOϕ2

62 3ZOϕ2
63 3ZOϕ2

64

Bϕ2
55 Bϕ2

56

Bϕ2
65 Bϕ2

66


. (D.12a–b)

Similar to the situation in case of the first order shape parameters (compare section 3.5.4),
the incorporation of the moments of ΠB 6=Λ requires additional information from the
renormalization matrix of operators with the symmetry of the decuplet (ZDϕ2), while the
renormalization behavior of the moments of ΠΛ is affected by the singlet sector (ZSϕ2).
This nontrivial behavior is manifest in the 2× 2 submatrices

Bϕ2
ij =



(
ZOϕ2
ij + 2ZDϕ2

ij 2ZOϕ2
ij − 2ZDϕ2

ij

ZOϕ2
ij − ZDϕ2

ij 2ZOϕ2
ij + ZDϕ2

ij

)
∀ i, j ∈ {1, 2, 3, 4} ,(

ZOϕ2
ij + 2ZSϕ2

i−4,j−4 2ZOϕ2
ij − 2ZSϕ2

i−4,j−4
ZOϕ2
ij − ZSϕ2

i−4,j−4 2ZOϕ2
ij + ZSϕ2

i−4,j−4

)
∀ i, j ∈ {5, 6} . (D.13)
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