Synthesis and pharmacological characterization of homo- and hetero-dimeric compounds, targeting the $\mathrm{hH}_{1} \mathrm{R}$ and/or $\mathrm{hH}_{4} \mathrm{R}$

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.)
an der Fakultät für Chemie und Pharmazie
der Universität Regensburg

vorgelegt von
Jianfei Wan
aus
Ürümqi (China)

The experimental part of this work was carried out between January 2013 and September 2016 under the supervision of PD. Dr. Andrea Straßer and Prof. Dr. Armin Buschauer at the Institute of Pharmacy, Faculty of Natural Sciences IV - Chemistry and Pharmacy, University of Regensburg.

The thesis was submitted on:
Date of the colloquium:
$1^{\text {st, }}$, March, 2017

Board of examiners:
Apl. Prof. Dr. Rainer Müller (Chairman)
PD. Dr. Andrea Straßer ($1^{\text {st }}$ Referee)
Prof. Dr. Armin Buschauer (2 ${ }^{\text {nd }}$ Referee)
Prof. Dr. Sigurd Elz (Examiner)

Acknowledgements

I would like to express my sincere gratitude
to my research supervisor Prof. Dr. Armin Buschauer for giving me the chance to study in Germany, and gave me such an interesting project to explore, I am grateful to his guidance and assistance for my project and the admission of GRK1910,
to my supervisor PD Dr. A. Strasser for scientific advice and valuable discussions on my project,
to Prof. Dr. Günther Bernhardt for constructive criticism on my thesis,
to Prof. Dr. Detlef Neumann (Institute of Pharmacology, Hannover medical School) and his group members for assistance for my stay in Hannover,
to Maria Beer-Krön for excellent technical assistance and Peter Richthammer for solving technical problems, Karin Reindl for helping to solve organizational matters,
to all employees of the analytical department of the University of Regensburg for the help in the interpretation of NMR, mass spectra and elemental analyses data,
to Ulla Seibel for the help in the assays,
to all members of the Buschauer- and Elz- group for their help, especially my lab mates Dr. Paul Baumeister, Dr. Christian Textor for helping me quite a lot when my PhD study started, Sabrina Biselli, Edith Bartole for providing a very enjoyable atmosphere in the lab,
to Dr. Paul Baumeister, Dr. Daniel Bücherl for all the fun times we spend together in Germany and China,
to Xueke She for her encouragement and help for solving problems in experiments, and my parents for their supports and concerns,
to China Scholarship Council and the Project „International Quality Network - Medicinal Chemistry" for providing financial support to me, and Research Training Group GRK1910 of the Deutsche Forschungsgemeinschaft for financial support and scientific promotion.

Poster Presentations:

06/2014	Jianfei Wan, Hans-Joachim Wittmann, Andrea Strasser, Armin
	Buschauer. Synthesis and pharmacological characterization of combined histamine $\mathrm{H}_{1} / \mathrm{H}_{4}$ receptor ligands. Emil Fischer Graduate School Research Day, Erlangen, Germany.
09/2014	Jianfei Wan, Hans-Joachim Wittmann, Andrea Strasser, Armin
	Buschauer. Synthesis and pharmacological characterization of combined histamine $\mathrm{H}_{1} / \mathrm{H}_{4}$ receptor ligands. XXIIIth International
	Symposium on Medicinal Chemistry (EFMC-ISMC), Lisbon, Portugal.
09/2014	Jianfei Wan, Hans-Joachim Wittmann, Andrea Strasser, Armin
	Buschauer. Synthesis and pharmacological characterization of combined histamine $\mathrm{H}_{1} / \mathrm{H}_{4}$ receptor ligands. The 7th International Summer School in Medicinal Chemistry. Regensburg, Germany.
04/2016	Jianfei Wan, Hans-Joachim Wittmann, Andrea Strasser, Armin
	Buschauer. Benzimidazole type derivatives as dual histamine $\mathrm{H}_{1} / \mathrm{H}_{4}$ receptor ligands. GLISTEN meeting, Erlangen, Germany.
09/2016	Jianfei Wan, Hans-Joachim Wittmann, Andrea Strasser, Armin
	Buschauer. Benzimidazole type derivatives as dual histamine $\mathrm{H}_{1} / \mathrm{H}_{4}$ receptor ligands. The 8th International Summer School in Medicina Chemistry. Regensburg, Germany.

Professional Training:

02/2014 Radioanalytical working methods for pharmacists. Regensburg, Germany.
12/2013-03/2017 Associated member of the Research Training Group (Graduiertenkolleg 1910) "Medicinal Chemistry of Selective GPCR Ligands" of the German Research Foundation. Regensburg, Germany.
06/2014-03/2017 Member of the Emil Fischer Graduate School of Pharmaceutical Sciences and Molecular Medicine.
Regensburg, Erlangen, Germany.

Contents

1.Introduction 2
1.1. G-protein coupled receptors 2
1.1.1. Classification 2
1.1.2. Structure 2
1.1.3. Function 3
1.1.4. Signaling 4
1.1.4.1. G-protein cycle 4
1.1.4.2. G-Proteins and their pathways 5
1.1.5. Oligomerization 5
1.1.6. Allosteric modulation 6
1.1.7. Bivalent ligands for GPCRs 6
1.2. Histamine and its receptors 7
1.2.1. Histamine 7
1.2.2. Histamine receptors 7
1.2.2.1. The histamine $\mathrm{H}_{1} \mathrm{R}$ 7
1.2.2.2. The histamine $\mathrm{H}_{2} \mathrm{R}$ 8
1.2.2.3. The histamine $\mathrm{H}_{3} \mathrm{R}$ 9
1.2.2.4. The histamine $\mathrm{H}_{4} \mathrm{R}$ 10
1.2.3. Dual ligands of histamine receptors 11
1.3. Reference 13
2.Scope and objectives 4
2.1. References 5
3.Homo-dimeric ligands as human histamine H_{1} receptor ligands or dual $\mathrm{H}_{1} / \mathrm{H}_{4}$ receptor ligands 8
3.1. Introduction 8
3.2. Results and discussion 10
3.2.1. Chemistry 10
3.2.2. Results and discussion 12
3.2.2.1. Competition binding studies 12
3.2.2.2. Conclusion 15
3.3. Experimental section 16
3.3.1. Chemistry 16
3.3.1.1. General conditions 16
3.3.1.2. Synthesis 17
3.3.2. Pharmacology 31
3.3.2.1. Competition binding experiments 31
3.3.2.2. Preparation of compound stock solutions 32
3.4. References 32
4. Benzimidazole- and Quinazoline-type histamine $\mathrm{H}_{1} / \mathrm{H}_{4}$ receptor ligands: Dual vs subtype selective antagonism 38
4.1. Introduction 38
4.2. Results and discussion 41
4.2.1. Chemistry 41
4.2.2. Pharmacology 44
4.2.2.1. Competition binding data at the $\mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$. 45
4.2.2.2. Histamine receptor subtype selectivity and activity of selectedcompounds48
4.3. Conclusion 52
4.4. Experimental section 53
4.4.1. Chemistry 53
4.4.1.1. General conditions 53
4.4.1.2. Synthesis 53
4.4.2. Pharmacological Methods 80
4.4.2.1. Preparation of compound stock solutions 81
4.4.2.2. Competition binding experiments 81
4.4.2.3. ${ }^{35}$ S]GTPүS binding assay ${ }^{76,77}$ 82
4.5. References 83
5. Summary 90
6. Appendix 94
6.1. Abbreviations 94
6.2. Purity determined by HPLC 97
6.3. Saturation binding at the $\mathrm{hH}_{3} \mathrm{R}$ with N^{1} - [3- (1H-imidazol- $\left.4-\mathrm{yl}\right)$ propyl] N^{2} propionylguanidine ($\left[{ }^{3} \mathrm{H}\right] \mathrm{UR}-\mathrm{PI} 294$) 98
6.4. NMR spectra of selected compounds 98
6.4.1. NMR spectra (COSY, HSQC, HMBC, NOESY) of 4.13a: 98
6.4.2. NMR spectra (COSY, HSQC, HMBC, NOESY) of 4.13b: 103
6.4.3. NMR spectra (COSY, HSQC, HMBC, ROESY) of 4.16a: 105
6.4.4. NMR spectra (COSY, HSQC, HMBC) of 4.16b 107
6.5. References 108

Chapter 1

Introduction

1. Introduction

1.1. G-protein coupled receptors

G-protein coupled receptors, also known as seven-transmembrane receptors, are the largest class of membrane proteins in the human genome ${ }^{1}$ and one of the most ubiquitous and versatile receptor family ${ }^{2}$. For mankind, about 800 GPCRs have been identified, and these receptors regulate a lot of physiological processes. ${ }^{3}$

1.1.1. Classification

About 50 \% of the GPCRs have sensory functions or mediate olfaction, taste, light perception and pheromone signaling. ${ }^{4}$ The remaining non-sensory GPCRs which mediate inter-signaling by ligands from small molecules to large proteins, are targets for the majority of clinical drugs. ${ }^{5,6}$ Based on sequence homology, GPCRs can be divided into: rhodopsin-like, secretin receptor family, metabotropic glutamate, fungal mating pheromone receptors, cyclic AMP receptors and frizzled/smoothened. ${ }^{7}$ As fungal mating pheromone receptors and cyclic AMP receptors are not discovered in vertebrates, the classification "GRAFS" (Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2 and Secretin) was suggested based on evolutionary aspects. ${ }^{8}$

1.1.2. Structure

The characteristic features of GPCRs (Fig. 1.1) are an extracellular amino terminus, an intracellular carboxyl terminus and seven hydrophobic transmembrane (TM) domains connected by three extracellular loops (ECL1-3) and three intracellular loops (ICL1-3). ${ }^{9}$ Extracellular and intracellular regions are involved in ligand binding and signal transduction respectively, which show the least conservation between different GPCRs. ${ }^{10-12}$ The first high-resolution 3D structure of a GPCR, the x-ray crystallography of bovine rhodopsin, was reported by Palczewski et al. in $2000 .{ }^{9}$ In 2007 the structure of the β_{2} adrenergic receptor ($\beta_{2} A R$) was solved by Rasmussen et al..13 and Cherezov et al. ${ }^{14}$. Another milestone in crystallography of GPCR was published 2011, when Rasmussen et al. reported on the
structure of the $\beta_{2} A R$ active state. ${ }^{15}$ Meanwhile, the structures of more than 30 different GPCRs are described in the literature.

Figure. 1.1 Schematic representation of a prototypical class A GPCR (ICL = intracellular loop; ECL = extracellular loop; 1-7 = transmembrane domains)

1.1.3. Function

GPCRs may be considered to act as molecular switches which transmit extracellular signals to intracellular responses through conformational change. In a simplified model, a GPCR exists in an "on mode" (active, R_{a}), stabilized by an agonist, and an "off mode" (inactive, R_{i}), stabilized by an inverse agonist (Fig. 1.2). Agonists eliciting the maximal biological response are named full agonists, while ligands, which are less effective in stabilizing the active state are referred to as partial agonists, and their intrinsic activity ranges from 0 to $<100 \% .{ }^{16}$ When the intrinsic activity of a ligand is 0%, it does not alter the basal equilibrium between both, the active R_{a} and the inactive R_{i} state. Such ligands are referred as neutral antagonists. GPCRs can change their conformation from the inactive to the active state in the absence of an agonist, resulting in constitutive activity. Ligands capable of decreasing the basal activity of a receptor by stabilizing the inactive conformation are referred to as partial or full inverse agonists. ${ }^{17}$

Figure. 1.2 Two state model of a GPCR. The receptor toggles between the inactive state R_{i} and the active state R_{a}. (modified according to Seifert and Wenzel-Seifert ${ }^{17}$)

1.1.4. Signaling

1.1.4.1. G-protein cycle

According to the classical model (Fig. 1.3), the GPCR active state, for example, stabilized by an agonist, is capable of interacting with the inactive form of a heterotrimeric G-protein (consisting of a G_{α} subunit with bound GDP and a $\mathrm{G}_{\beta \gamma}$ complex) resulting in the activation of the G-protein by evoking the exchange of GDP by GTP. ${ }^{18,19}$ Subsequently, the G_{α} subunit is detached from the $\mathrm{G}_{\beta \gamma}$ subunit and both of them interact with effector proteins, resulting in changes of second messenger concentrations and various cellular responses. The G-protein returns to the inactive state upon cleavage of GTP to GDP by the intrinsic GTPase activity of the G_{α} subunit and re-associates with $\mathrm{G}_{\beta \gamma}$ marking the completion of the cycle. ${ }^{11}$ Regulators of G-protein signalling (RGS proteins; GTPase activating proteins, GAPs) can enhance the activity of the GTPase. ${ }^{20-22}$

Figure. 1.3 Generalized diagram of the G-protein cycle. (modified according to Bridges et al. ${ }^{23}$)

1.1.4.2. G-Proteins and their pathways

Till now, 16 different $\mathrm{G}_{\alpha^{-}}, 5 \mathrm{G}_{\beta^{-}}$and $12 \mathrm{G}_{\gamma^{-}}$-subunits are known: The G_{α} subunits are grouped into four main families: $\mathrm{Ga}_{\mathrm{s}}, \mathrm{Ga}_{\mathrm{i} / 0}, \mathrm{Ga}_{\mathrm{q} / 11}$ and $\mathrm{Ga}_{12 / 13}$ based on the differences in structure and signaling pathway. ${ }^{24,25}$ The Ga_{s} family can activate the adenylyl cyclases (AC 1-9), resulting in an increase in concentration of the second messenger cAMP ($3^{\prime}, 5^{\prime}$ 'cyclic adenosine monophosphate). The opposite effect on cAMP levels is caused by the Ga i_{io} family as a consequence of the inhibition of adenylyl cyclase activity (AC 5 and AC 6). ${ }^{26,27}$ The second messenger cAMP activates the protein kinase A (PKA) or the mitogen-activated protein kinase (MAPK) pathway. ${ }^{28}$ The $\mathrm{Ga}_{\mathrm{q} / 11}$ family regulates the activity of phospholipase C $\left(\mathrm{PLC}_{\beta}\right)$, leading to the hydrolysis of phosphatidylinositol-4,5-bisphosphate $\left(\mathrm{PIP}_{2}\right)$ into inositol-1,4,5-trisphosphate $\left(\mathrm{IP}_{3}\right)$ and diacylglycerol (DAG). Both are second messengers, being responsible for various intracellular effects including the release of Ca^{2+} ions from intracellular stores ${ }^{29}$ and the stimulation of protein kinase C (PKC) which further modulates the function of cellular proteins by phosphorylation. ${ }^{30}$ The $\mathrm{Ga}_{12 / 13}$ family interferes with the cytoskeletal assembly by interaction with Rho-GEFs (Ras homology guanine nucleotide exchange factors). ${ }^{11,24,31}$ Besides the G_{α}-subunits, the $\mathrm{G}_{\beta \gamma}$-heterodimer is also involved in effector regulation, e.g., PLC_{β} and $\mathrm{K}^{+}, \mathrm{Ca}^{2+}$ ion channels. ${ }^{24}$

1.1.5. Oligomerization

An oligomer refers to a macromolecular complex formed by non-covalent bonding of a few macromolecules. A homo-oligomer would be formed by few identical molecules and by contrast, a hetero-oligomer would be made of different macromolecules.

Over a long period of time, GPCRs were thought to exist and function exclusively as monomeric units. However, there was evidence from native cells and heterologous expression systems that GPCRs are able to form dimers or even higher-order oligomers. ${ }^{32-35}$ Trafficking, signaling and internalization have been demonstrated for GPCR monomers as well as for dimers/oligomers. ${ }^{33,34,36}$ Compared to GPCR monomers, GPCR dimers may provide distinct properties with respect to ligand binding ${ }^{37}$, signaling ${ }^{38-40}$, receptor trafficking, ${ }^{41}$ and it may be speculated about the clinical relevance of such differences. ${ }^{42,43}$

1.1.6. Allosteric modulation

The term allosterism is used to describe a phenomenon which enables proteins to sense changes in their environment and to respond to them. ${ }^{44,45}$ Regarding GPCRs, an allosteric site is physically distinct from the orthosteric binding site, that is, the binding pocket of the endogenous ligand. ${ }^{23,46-48}$ Allosteric modulators cooperatively effect the binding of a ligand to the orthosteric ligand binding in a positive or a negative manner. A positive allosteric modulator (PAM) induces a receptor conformational change enhancing the binding affinity or the functional efficacy of an orthosteric agonist, ${ }^{49}$ whereas a negative allosteric modulator (NAM) has the opposite effect. Besides PAM and NAM, there are silent allosteric modulator (SAM) and allosteric agonists (ago-PAM). A SAM doesn't effect orthosteric binding, and an ago-PAM can activate the receptor in the absence of an orthosteric ligand. ${ }^{50}$ Allosteric modulation may offer a possibility to increase the receptor subtype selectivity of ligands due to lower conservation of allosteric compared to orthosteric sites. ${ }^{44,51,52}$

1.1.7. Dimeric/bivalent ligands for GPCRs

The term "dimeric/bivalent ligand" refers to molecules composed of two pharmacophoric moieties covalently linked through a spacer. ${ }^{53-55}$ The pharmacophores can be identical (homo-bivalent) or different (hetero-bivalent ligands). Such dimeric or bivalent ligands may be useful as pharmacological tools to investigate receptor dimers (Fig. 1.4 B). ${ }^{56-58}$ With a spacer of appropriate length attached in the right position, bivalent ligands might achieve higher affinity and selectivity compared to their monomeric counterparts. ${ }^{42,43,53,54,59}$ In principle, a bivalent or dimeric ligand with a relatively short spacer might address interactions sites on the same protomer (Fig. 1.4 A) and allow for the detection of accessory binding sites such as allosteric binding pockets. ${ }^{60,61}$

Figure 1.4 Bivalent ligand binding to (A) a GPCR with an accessory binding site or to (B) a GPCR dimer (modified according to Portoghese et al. ${ }^{53}$ and Birnkammer et al. ${ }^{61}$).

1.2. Histamine and its receptors

1.2.1. Histamine

Histamine, (2-(1H-imidazol-4-yl)ethanamine), discovered more than a century ago, ${ }^{62}$ acts as an endogenous mediator, immunomodulator and neurotransmitter targeting histaminergic receptors. Histamine is a biogenic amine, synthesized from the amino acid L-histidine by decarboxylation. ${ }^{63}$

1.2.2. Histamine receptors

1.2.2.1. The histamine $H_{1} R$

The histamine H_{1} receptor $\left(H_{1} R\right)$ is expressed mainly in mammalian brain, smooth muscle, endothelium cells and lymphocytes and is involved in pathophysiological processes such as allergic and inflammatory reactions. ${ }^{64} \mathrm{H}_{1}$ R-mediated biological effects include, for instance, vasodilatation, bronchoconstriction, increased vascular permeability, pain and itching upon insect stings. ${ }^{65}$ The $H_{1} R$ preferentially couples to the $G \alpha_{q}$ protein, resulting in an increase in intracellular $\mathrm{Ca}^{2+} .{ }^{64,66}$ Betahistine (e.g. Aequamen ${ }^{\circledR}$) is the only marketed $\mathrm{H}_{1} \mathrm{R}$ agonist (Fig. 1.5), approved for the treatment of Menière's disease. $H_{1} R$ antagonists, also known as antihistamines, have been used to treat allergic disorders (allergic rhinitis, chronic urticarial and atopic dermatitis), nausea and vomiting, as well as to cause sedation. ${ }^{67,68}$ The first generation antagonists like pyrilamine or diphenhydramine (Fig. 1.5) have been replaced by
the second generation antagonists, e.g., cetirizine (Fig. 1.5), in order to reduce sedation, which is a side effect of the classical antihistamines, which are capable of penetrating across the blood-brain barrier. ${ }^{63,69,70}$ Regardless of that, pyrilamine is still the most commonly used reference $H_{1} R$ antagonist and radioligand ($\left.{ }^{3} \mathrm{H}\right]$ pyrilamine) for pharmacological studies. ${ }^{71}$ X-ray crystallography of the $\mathrm{H}_{1} \mathrm{R}$ in complex with doxepine gave insights in ligand binding on the molecular level. ${ }^{72}$ Recently, Na^{+}was identified as a negative allosteric regulator bound to Asp ${ }^{2.50}$ of $\mathrm{H}_{1} \mathrm{R}^{73}$
$1^{\text {st }}$ generation antagonists

$2^{\text {st }}$ generation antagonists

cetirizine

betahistine

Figure 1.5 Structures of selected $H_{1} R$ agonist and antagonists.

1.2.2.2. The histamine $H_{2} R$

The histamine H_{2} receptor $\left(\mathrm{H}_{2} \mathrm{R}\right)$ is expressed in a variety of tissues including brain, gastric parietal cells, heart, airways and uterus. ${ }^{69}$ The $\mathrm{H}_{2} \mathrm{R}$ couples to the Ga_{s} protein, which leads to an increase in cAMP followed by activation of PKA. ${ }^{74}$ The $\mathrm{H}_{2} \mathrm{R}$ was pharmacologically characterized in 1972 using the first $\mathrm{H}_{2} \mathrm{R}$ antagonist burimamide (Fig. 1.6), which was able to inhibit the histamine-stimulated gastric acid secretion and the positive chronotropic effect on the heart. ${ }^{75}$ Cimetidine (Tagamet ${ }^{\circledR}$) was the first clinically available $\mathrm{H}_{2} \mathrm{R}$ antagonist, followed by non-imidazoles such as ranitidine and famotidine (Fig. 1.6), with reduced pharmacokinetic interactions with CYP450 enzymes. ${ }^{63}$ The $\mathrm{H}_{2} \mathrm{R}$ antagonists had been very important antiulcer drugs over decades, but were replaced by the more effective proton pump inhibitors. Impromidine (Fig. 1.6) was the first highly potent $\mathrm{H}_{2} \mathrm{R}$ agonist demonstrated to be clinically effective in the treatment of severe catecholamine-refractory congestive heart failure. ${ }^{76,77}$ In a
bivalent ligand approach, $\mathrm{H}_{2} \mathrm{R}$ agonists such as UR-AK381 (Fig. 1.6) were developed, which are among the most potent and selective $\mathrm{H}_{2} \mathrm{R}$ agonists known so far. ${ }^{61}$ A potential application for highly selective $\mathrm{H}_{2} \mathrm{R}$ agonists might be the treatment of acute myeloid leukemia (AML). ${ }^{78 \text {, }}$ 79

Figure 1.6 Structures of selected $\mathrm{H}_{2} \mathrm{R}$ agonists and antagonists.

1.2.2.3. The histamine $\mathrm{H}_{3} \mathrm{R}$

The histamine H_{3} receptor $\left(\mathrm{H}_{3} \mathrm{R}\right)$ was first discovered in 1983^{80} and cloned in $1999 .{ }^{81}$ It is predominantly located in the CNS, acts as a presynaptic auto- and heteroreceptor and controls the release of histamine and various other neurotransmitters, including dopamine, serotonin, noradrenalin and acetylcholine. ${ }^{82-86}$ The $\mathrm{H}_{3} \mathrm{R}$ couples to $\mathrm{Ga}_{\mathrm{i} / 0}$ proteins and has been shown to interfere with various transduction pathways apart from the modulation of the AC activity, for example activation of PLA_{2} and inhibition of K^{+}-induced Ca^{2+} mobilization. ${ }^{87}$ Consequently, $\mathrm{H}_{3} \mathrm{R}$ influences the regulation of a broad variety of physiological functions like food intake, sleep-wake cycle, body temperature and blood pressure. The first approved
H_{3} receptor inverse agonist, pitolisant (Fig. 1.7), used in the therapy of narcolepsy, is also considered to have potential value in the treatment of Parkinson's disease and obstructive sleep apnoea. ${ }^{88,} 89$ Numerous $\mathrm{H}_{3} \mathrm{R}$ ligands, e.g. thioperamide, clobenpropit, immethridine and methimepip (Fig. 1.7) are derived from histamine. Due to the imidazole moiety, these compounds are not $H_{3} R$ selective but show also $H_{4} R$ affinity, and they are potential CYP450 binders, which may cause drug-drug interactions.
antagonists/ inverse agonists

Figure 1.7 Structures of selected $\mathrm{H}_{3} \mathrm{R}$ agonists and antagonists.

1.2.2.4. The histamine $\mathrm{H}_{4} \mathrm{R}$

The histamine H_{4} receptor $\left(H_{4} R\right)$ is the latest member of histamine receptor family. An "eosinophil" histamine receptor was already postulated more than 40 years ago. ${ }^{90,91}$ In 2000 and 2001, the $\mathrm{H}_{4} \mathrm{R}$ was independently identified and cloned by six research groups, ${ }^{92-98}$ and the $H_{4} R$ was reported to be expressed in bone marrow and immunocytes. ${ }^{99}$ Like the $H_{3} R$, the $H_{4} \mathrm{R}$ interacts with the $\mathrm{Ga}_{\mathrm{i} / 0}$ protein, leading to an inhibition of the AC and an activation of the phospholipase $\mathrm{C}-\beta\left(\mathrm{PLC}_{\beta}\right)$ via $\mathrm{G}_{\beta \gamma}$ complexes. ${ }^{99-101}$ As a major player in immunological and inflammatory reactions, the $\mathrm{H}_{4} \mathrm{R}$ was suggested to be a potential drug target for the treatment of asthma, pruritus, and rheumatoid arthritis. ${ }^{100,} 102-109$ The indole derivative JNJ-7777120 (Fig. 1.8) was the first selective high-affinity non-imidazole $H_{4} R$ antagonist and has been widely used as a reference compound in vitro and in vivo. ${ }^{110}$ However, the pharmacological action of JNJ-7777120 is species-dependent, for example, to a rather low sequence identity comparing human and rodent H_{4} Rs and to a different extent of constitutive activity of the $\mathrm{H}_{4} \mathrm{R}$ orthologues. ${ }^{111-113}$ Furthermore, JNJ-7777120 was reported to be a biased agonist,
stimulating $H_{4} R$ mediated β-arrestin recruitment. ${ }^{114}$ Several $H_{4} R$ antagonists, e.g. PF-3893787, JNJ-39758979 and Toreforant (Fig. 1.8), entered clinical trials for the treatment of allergic rhinitis, allergic asthma, atopic dermatitis and rheumatoid arthritis. ${ }^{115,}{ }^{116}$ Compared with antagonists, $H_{4} R$ agonists (Fig. 1.8) are important as pharmacological tools rather than as drugs.

antagonists/ inverse agonists

JNJ-39758979 phase II (discontinued)

PF-3893787 / ZPL-3893787 phase II

Toreforant / JNJ-38518168 phase II
agonists

UR-PI376
Figure 1.8 Structures of selected $H_{4} R$ agonists and antagonists.

1.2.3. Dual ligands of histamine receptors

Ligands with moderate to high affinity for two histamine receptor subtypes are referred as dual histamine receptor ligands. Theoretically, a single ligand which can address multiple desired receptor targets may enhance affinity, potency, efficacy and safety, ${ }^{56,117}$ e.g. lower the risk of drug-drug interactions compared to drug cocktails. ${ }^{18}$ In the histamine receptor field, a
synergistic effect of $H_{1} R$ and $H_{4} R$ antagonism was observed in various models of inflammation. ${ }^{119-121}$ Some ligands exhibiting affinity to both, $H_{1} R$ and $H_{4} R$, were discovered (Fig. 1.9). These results suggest that despite the low sequence homology between both receptors it should be feasible to obtain $H_{1} R / H_{4} R$ ligands with balanced receptor subtype affinity. ${ }^{122-125}$ Another combination is $H_{1} R$ and $H_{3} R$ antagonists: series of $H_{1} R / H_{3} R$ antagonists were developed by GSK. GSK835726 and GSK1004723 (Fig. 1.9) entered clinical trials to treat allergic rhinitis, but both compounds did not show a differentiation from $\mathrm{H}_{1} \mathrm{R}$ antagonist treatment. ${ }^{126,127}$ Considering the high sequence similarity between the transmembrane domains (TMs) of the human $H_{3} R$ and $H_{4} R$, it is not surprising that many $H_{4} R$ ligands containing imidazole moieties show also $H_{3} R$ affinity. ${ }^{128}$ Dual $H_{3} R / H_{4} R$ antagonists (Fig. 1.9) may have a potential in the treatment of pain and cancer since it is likely these two targets contribute to the development of pain sensation and itching as well as cell-proliferation-associated effects ${ }^{129}$.

Figure 1.9 Structures of selected dual $H_{x} R$ ligand structures.

1.3. Reference

1. Alexander, S. P.; Davenport, A. P.; Kelly, E.; Marrion, N.; Peters, J. A.; Benson, H. E.; Faccenda, E.; Pawson, A. J.; Sharman, J. L.; Southan, C. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. Br. J. Pharmacol. 2015, 172, 5744-5869.
2. Pierce, K. L.; Premont, R. T.; Lefkowitz, R. J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 2002, 3, 639-650.
3. Lefkowitz, R. J. Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends. Pharmacol. Sci. 2004, 25, 413-422.
4. Mombaerts, P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat. Rev. Neurosci. 2004, 5, 263-278.
5. Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug. Discov. 2006, 5, 993-996.
6. Rask-Andersen, M.; Masuram, S.; Schiöth, H. B. The druggable genome: evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annu. Rev. Pharmacol. 2014, 54, 9-26.
7. Kolakowski Jr, L. GCRDb: a G-protein-coupled receptor database. Receptor. Channel. 1994, 2, 1.
8. Schiöth, H. B.; Fredriksson, R. The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen. Comp. Endocrinol. 2005, 142, 94-101.
9. Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B. A.; Le Trong, I.; Teller, D. C.; Okada, T.; Stenkamp, R. E. Crystal structure of rhodopsin: AG protein-coupled receptor. Science 2000, 289, 739-745.
10. Kobilka, B. K. G protein coupled receptor structure and activation. Biochim. Biophys. Acta 2007, 1768, 794-807.
11. Luttrell, L. M. Reviews in molecular biology and biotechnology: transmembrane signaling by G protein-coupled receptors. Mol. Biotechnol. 2008, 39, 239-264.
12. Ji, T. H.; Grossmann, M.; Ji, I. G protein-coupled receptors I. Diversity of receptor-ligand interactions. J. Biol. Chem. 1998, 273, 17299-17302.
13. Rasmussen, S. G.; Choi, H.-J.; Rosenbaum, D. M.; Kobilka, T. S.; Thian, F. S.; Edwards, P. C.; Burghammer, M.; Ratnala, V. R.; Sanishvili, R.; Fischetti, R. F. Crystal structure of the human $\beta 2$ adrenergic G-protein-coupled receptor. Nature 2007, 450, 383-387.
14. Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G.; Thian, F. S.; Kobilka, T. S.; Choi, H.-J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K. High-resolution crystal structure of an engineered human β_{2}-adrenergic G protein-coupled receptor. Science 2007, 318, 1258-1265.
15. Rasmussen, S. G.; Choi, H.-J.; Fung, J. J.; Pardon, E.; Casarosa, P.; Chae, P. S.; DeVree, B. T.; Rosenbaum, D. M.; Thian, F. S.; Kobilka, T. S. Structure of a nanobody-stabilized active state of the β_{2} adrenoceptor. Nature 2011, 469, 175-180.
16. Kenakin, T. Inverse, protean, and ligand-selective agonism: matters of receptor conformation. FASEB J. 2001, 15, 598-611.
17. Seifert, R.; Wenzel-Seifert, K. Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn-Schmiedeberg's Arch. Pharmacol. 2002, 366, 381-416.
18. Gilman, A. G. G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 1987, 56, 615-649.
19. Offermanns, S. G-proteins as transducers in transmembrane signalling. Prog. Biophys. Mol. Bio. 2003, 83, 101-130.
20. Neitzel, K. L.; Hepler, J. R. In Cellular mechanisms that determine selective RGS protein regulation of G protein-coupled receptor signaling, Seminars in cell \& developmental biology, 2006; Elsevier: 2006; pp 383-389.
21. Willars, G. B. In Mammalian RGS proteins: multifunctional regulators of cellular signalling, Seminars in cell \& developmental biology, 2006; Elsevier: 2006; pp 363-376.
22. Wieland, T.; Lutz, S.; Chidiac, P. Regulators of G protein signalling: a spotlight on emerging functions in the cardiovascular system. Curr. Opin. Pharmacol. 2007, 7, 201-207.
23. Bridges, T. M.; Lindsley, C. W. G-protein-coupled receptors: from classical modes of modulation to allosteric mechanisms. ACS Chem. Biol. 2008, 3, 530-541.
24. Cabrera-Vera, T. M.; Vanhauwe, J.; Thomas, T. O.; Medkova, M.; Preininger, A.; Mazzoni, M. R.; Hamm, H. E. Insights into G protein structure, function, and regulation. Endocr. Rev. 2003, 24, 765-781.
25. Downes, G.; Gautam, N. The G protein subunit gene families. Genomics 1999, 62, 544-552.
26. Hanoune, J.; Defer, N. Regulation and role of adenylyl cyclase isoforms. Annu. Rev. Pharmacol. 2001, 41, 145-174.
27. Pavan, B.; Biondi, C.; Dalpiaz, A. Adenylyl cyclases as innovative therapeutic goals. Drug discovery today 2009, 14, 982-991.
28. Marinissen, M. J.; Gutkind, J. S. G-protein-coupled receptors and signaling networks: emerging paradigms. Trends. Pharmacol. Sci. 2001, 22, 368-376.
29. Mikoshiba, K. IP_{3} receptor/ Ca^{2+} channel: from discovery to new signaling concepts. J. Neurochem. 2007, 102, 1426-1446.
30. Thomsen, W.; Frazer, J.; Unett, D. Functional assays for screening GPCR targets. Curr. Opin. Biotechnol. 2005, 16, 655-665.
31. Kristiansen, K. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol. Ther. 2004, 103, 21-80.
32. Milligan, G. G protein-coupled receptor dimerization: function and ligand pharmacology. Mol. Pharmacol. 2004, 66, 1-7.
33. Milligan, G. A day in the life of a G protein-coupled receptor: the contribution to function of G protein-coupled receptor dimerization. Br. J. Pharmacol. 2008, 153, S216-S229.
34. Milligan, G. The role of dimerisation in the cellular trafficking of G-protein-coupled receptors. Curr. Opin. Pharmacol. 2010, 10, 23-29.
35. Palczewski, K. Oligomeric forms of G protein-coupled receptors (GPCRs). Trends Biochem. Sci. 2010, 35, 595-600.
36. Gurevich, V. V.; Gurevich, E. V. How and why do GPCRs dimerize? Trends. Pharmacol. Sci. 2008, 29, 234-240.
37. Gomes, I.; Gupta, A.; Filipovska, J.; Szeto, H. H.; Pintar, J. E.; Devi, L. A. A role for heterodimerization of μ and δ opiate receptors in enhancing morphine analgesia. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5135-5139.
38. Rashid, A. J.; So, C. H.; Kong, M. M.; Furtak, T.; El-Ghundi, M.; Cheng, R.; O'Dowd, B. F.; George, S. R. $D_{1}-D_{2}$ dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of $\mathrm{G}_{\mathrm{q} / 11}$ in the striatum. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 654-659.
39. Rozenfeld, R.; Devi, L. A. Receptor heterodimerization leads to a switch in signaling: β-arrestin2-mediated ERK activation by μ - δ opioid receptor heterodimers. FASEB J. 2007, 21, 2455-2465.
40. White, J. F.; Grodnitzky, J.; Louis, J. M.; Trinh, L. B.; Shiloach, J.; Gutierrez, J.; Northup, J. K.; Grisshammer, R. Dimerization of the class AG protein-coupled neurotensin receptor NTS1 alters G protein interaction. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 12199-12204.
41. Uberti, M. A.; Hall, R. A.; Minneman, K. P. Subtype-specific dimerization of a1-adrenoceptors: effects on receptor expression and pharmacological properties. Mol. Pharmacol. 2003, 64, 1379-1390.
42. Messer Jr, W. S. Bivalent ligands for G protein-coupled receptors. Curr. Pharm. Design 2004, 10, 2015-2020.
43. Halazy, S. G-protein coupled receptors bivalent ligands and drug design. Expert. Opin. Ther. Pat. 1999, 9, 431-446.
44. Kenakin, T.; Miller, L. J. Seven Transmembrane Receptors as Shapeshifting Proteins: The Impact of Allosteric Modulation and Functional Selectivity on New Drug Discovery. Pharmacol. Rev. 2010, 62, 265-304.
45. Fenton, A. W. Allostery: an illustrated definition for the 'second secret of life'. Trends Biochem. Sci. 2008, 33, 420-425.
46. Conn, P. J.; Christopoulos, A.; Lindsley, C. W. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat. Rev. Drug. Discov. 2009, 8, 41-54.
47. Christopoulos, A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat. Rev. Drug. Discov. 2002, 1, 198-210.
48. Kenakin, T. P. '7TM receptor allostery: putting numbers to shapeshifting proteins. Trends. Pharmacol. Sci. 2009, 30, 460-469.
49. May, L. T.; Leach, K.; Sexton, P. M.; Christopoulos, A. Allosteric modulation of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 1-51.
50. Gregory, K. J.; Malosh, C.; Turlington, M.; Morrison, R.; Vinson, P.; Daniels, J. S.; Jones, C.; Niswender, C. M.; Conn, P. J.; Lindsley, C. W. Identification of a high affinity MPEP-site silent allosteric modulator (SAM) for the metabotropic glutamate subtype 5 receptor (mGlu5). 2015.
51. Christopoulos, A.; Kenakin, T. P. G protein-coupled receptor allosterism and
complexing. Pharmacol. Rev. 2002, 54, 323-374.
52. Wootten, D.; Christopoulos, A.; Sexton, P. M. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat. Rev. Drug. Discov. 2013, 12, 630-644.
53. Portoghese, P. S. From models to molecules: opioid receptor dimers, bivalent ligands, and selective opioid receptor probes. J. Med. Chem. 2001, 44, 2259-2269.
54. Portoghese, P. S. Bivalent ligands and the message-address concept in the design of selective opioid receptor antagonists. Trends. Pharmacol. Sci. 1989, 10, 230-235.
55. Shonberg, J.; Scammells, P. J.; Capuano, B. Design strategies for bivalent ligands targeting GPCRs. ChemMedChem 2011, 6, 963-974.
56. Erez, M.; Takemori, A.; Portoghese, P. Narcotic antagonistic potency of bivalent ligands which contain. beta.-naltrexamine. Evidence for simultaneous occupation of proximal recognition sites. J. Med. Chem. 1982, 25, 847-849.
57. Portoghese, P.; Larson, D.; Sayre, L.; Yim, C.; Ronsisvalle, G.; Tam, S.; Takemori, A. Opioid agonist and antagonist bivalent ligands. The relationship between spacer length and selectivity at multiple opioid receptors. J. Med. Chem. 1986, 29, 1855-1861.
58. Portoghese, P.; Ronsisvalle, G.; Larson, D.; Yim, C.; Sayre, L.; Takemori, A. Opioid agonist and antagonist bivalent ligands as receptor probes. Life Sci. 1982, 31, 1283-1286.
59. Jones, R. M.; Hjorth, S. A.; Schwartz, T. W.; Portoghese, P. S. Mutational evidence for a common κ antagonist binding pocket in the wild-type κ and mutant μ [K303E] opioid receptors. J. Med. Chem. 1998, 41, 4911-4914.
60. Valant, C.; Robert Lane, J.; Sexton, P. M.; Christopoulos, A. The best of both worlds? Bitopic orthosteric/allosteric ligands of g protein-coupled receptors. Annu. Rev. Pharmacol. 2012, 52, 153-178.
61. Birnkammer, T.; Spickenreither, A.; Brunskole, I.; Lopuch, M.; Kagermeier, N.; Bernhardt, G. n.; Dove, S.; Seifert, R.; Elz, S.; Buschauer, A. The bivalent ligand approach leads to highly potent and selective acylguanidine-type histamine H_{2} receptor agonists. J. Med. Chem. 2012, 55, 1147-1160.
62. Dale, H. H.; Laidlaw, P. P. The physiological action of β-iminazolylethylamine. J. Physiol. 1910, 41, 318.
63. Parsons, M. E.; Ganellin, C. R. Histamine and its receptors. Br. J. Pharmacol. 2006, 147, S127-S135.
64. Hill, S. J. Distribution, properties, and functional characteristics of three classes of histamine receptor. Pharmacol. Rev. 1990, 42, 45-83.
65. Bongers, G.; de Esch, I.; Leurs, R. Molecular pharmacology of the four histamine receptors. In Histamine in Inflammation, Springer: 2010; pp 11-19.
66. Leurs, R.; Smit, M.; Timmerman, H. Molecular pharmacological aspects of histamine receptors. Pharmacol. Ther. 1995, 66, 413-463.
67. Simons, F. E. R. Advances in H1-Antihistamines. N. Engl. J. Med. 2004, 351, 2203-17.
68. Simons, F. E. R.; Simons, K. J. Histamine and H_{1}-antihistamines: celebrating a century of progress. J. Allergy Clin. Immunol. 2011, 128, 1139-1150. e4.
69. Hill, S.; Ganellin, C.; Timmerman, H.; Schwartz, J.; Shankley, N.; Young, J.; Schunack, W.; Levi, R.; Haas, H. International Union of Pharmacology. XIII. Classification of
histamine receptors. Pharmacol. Rev. 1997, 49, 253-278.
70. Yanai, K.; Rogala, B.; Chugh, K.; Paraskakis, E.; Pampura, A.; Boev, R. Safety considerations in the management of allergic diseases: focus on antihistamines. Curr. Med. Res. Opin. 2012, 28, 623-642.
71. Hill, S.; Young, J.; Marrian, D. Specific binding of ${ }^{3} \mathrm{H}$-mepyramine to histamine H_{1} receptors in intestinal smooth muscle. 1977.
72. Shimamura, T.; Shiroishi, M.; Weyand, S.; Tsujimoto, H.; Winter, G.; Katritch, V.; Abagyan, R.; Cherezov, V.; Liu, W.; Han, G. W. Structure of the human histamine H_{1} receptor complex with doxepin. Nature 2011, 475, 65-70.
73. Hishinuma, S.; Kosaka, K.; Akatsu, C.; Uesawa, Y.; Fukui, H.; Shoji, M. Asp73-dependent and-independent regulation of the affinity of ligands for human histamine H_{1} receptors by Na^{+}. Biochem. Pharmacol. 2016.
74. JOHNSON, C. L.; WEINSTEIN, H.; GREEN, J. P. Studies on Histamine H2 Receptors Coupled to Cardiac Adenylate Cyclase Blockade by H_{2} and H_{1} Receptor Antagonists. Mol. Pharmacol. 1979, 16, 417-428.
75. Black, J.; Duncan, W.; Durant, C. J.; Ganellin, C. R.; Parsons, E. Definition and antagonism of histamine H_{2}-receptors. Nature 1972, 236, 385-390.
76. Baumann, G.; Permanetter, B.; Wirtzfeld, A. Possible value of H_{2}-receptor agonists for treatment of catecholamine-insensitive congestive heart failure. Pharmacol. Ther. 1984, 24, 165-177.
77. Baumann, G.; Felix, S. B.; Heidecke, C. D.; Rieß, G.; Loher, U.; Ludwig, L.; Blömer, H. Apparent superiority of H_{2}-receptor stimulation and simultaneous β-blockade over conventional treatment with β-sympathomimetic drugs in post-acute myocardial infarction: Cardiac effects of impromidine-a new specific H_{2}-receptor agonist-in the surviving catecholamine-insensitive myocardium. Agents Actions 1984, 15, 216-228.
78. Aurelius, J.; Martner, A.; Brune, M.; Palmqvist, L.; Hansson, M.; Hellstrand, K.; Thoren, F. B. Remission maintenance in acute myeloid leukemia: impact of functional histamine H_{2} receptors expressed by leukemic cells. Haematologica 2012, 97, 1904-1908.
79. Werner, K.; Neumann, D.; Seifert, R. Analysis of the histamine H_{2}-receptor in human monocytes. Biochem. Pharmacol. 2014, 92, 369-379.
80. Arrang, J.-M.; Garbarg, M.; Schwartz, J.-C. Auto-inhibition of brain histamine release mediated by a novel class $\left(\mathrm{H}_{3}\right)$ of histamine receptor. 1983.
81. Lovenberg, T. W.; Roland, B. L.; Wilson, S. J.; Jiang, X.; Pyati, J.; Huvar, A.; Jackson, M. R.; Erlander, M. G. Cloning and functional expression of the human histamine H_{3} receptor. Mol. Pharmacol. 1999, 55, 1101-1107.
82. Schlicker, E.; Fink, K.; Detzner, M.; Göthert, M. Histamine inhibits dopamine release in the mouse striatum via presynaptic H_{3} receptors. J. Neural. Transm-Gen. 1993, 93, 1-10.
83. Schlicker, E.; Betz, R.; Göthert, M. Histamine H_{3} receptor-mediated inhibition of serotonin release in the rat brain cortex. Naunyn-Schmiedeberg's Arch. Pharmacol. 1988, 337, 588-590.
84. Clapham, J.; Kilpatrick, G. Histamine H_{3} receptors modulate the release of $\left[{ }^{3} \mathrm{H}\right]$-acetylcholine from slices of rat entorhinal cortex: evidence for the possible
existence of H_{3} receptor subtypes. Br. J. Pharmacol. 1992, 107, 919-923.
85. Saxena, S. P.; Brandes, L. J.; Becker, A. B.; Simons, K. J.; Labella, F. S.; Gerrard, J. M . Histamine is an intracellular messenger mediating platelet aggregation. Science 1989, 243, 1596-1599.
86. Gemkow, M. J.; Davenport, A. J.; Harich, S.; Ellenbroek, B. A.; Cesura, A.; Hallett, D. The histamine H_{3} receptor as a therapeutic drug target for CNS disorders. Drug discovery today 2009, 14, 509-515.
87. Bongers, G.; Bakker, R. A.; Leurs, R. Molecular aspects of the histamine H_{3} receptor. Biochem. Pharmacol. 2007, 73, 1195-1204.
88. Schwartz, J. C. The histamine H_{3} receptor: from discovery to clinical trials with pitolisant. Br. J. Pharmacol. 2011, 163, 713-721.
89. Inocente, C.; Arnulf, I.; Bastuji, H.; Thibault-Stoll, A.; Raoux, A.; Reimao, R.; Lin, J.-S.; Franco, P. Pitolisant, an inverse agonist of the histamine H_{3} receptor: an alternative stimulant for narcolepsy-cataplexy in teenagers with refractory sleepiness. Clin. Neuropharmacol. 2012, 35, 55-60.
90. Raible, D. G.; Lenahan, T.; Fayvilevich, Y.; Kosinski, R.; Schulman, E. S. Pharmacologic characterization of a novel histamine receptor on human eosinophils. Am. J. Respir. Crit. Care Med. 1994, 149, 1506-1511.
91. Clark, R.; Gallin, J. I.; Kaplan, A. P. The selective eosinophil chemotactic activity of histamine. J. Exp. Med. 1975, 142, 1462-1476.
92. Oda, T.; Morikawa, N.; Saito, Y.; Masuho, Y.; Matsumoto, S.-i. Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J. Biol. Chem. 2000, 275, 36781-36786.
93. Nguyen, T.; Shapiro, D. A.; George, S. R.; Setola, V.; Lee, D. K.; Cheng, R.; Rauser, L.; Lee, S. P.; Lynch, K. R.; Roth, B. L. Discovery of a novel member of the histamine receptor family. Mol. Pharmacol. 2001, 59, 427-433.
94. Nakamura, T.; Itadani, H.; Hidaka, Y.; Ohta, M.; Tanaka, K. Molecular cloning and characterization of a new human histamine receptor, hH4R. Biochem. Bioph. Res. Co. 2000, 279, 615-620.
95. Zhu, Y.; Michalovich, D.; Wu, H.-L.; Tan, K.; Dytko, G. M.; Mannan, I. J.; Boyce, R.; Alston, J.; Tierney, L. A.; Li, X. Cloning, expression, and pharmacological characterization of a novel human histamine receptor. Mol. Pharmacol. 2001, 59, 434-441.
96. Morse, K. L.; Behan, J.; Laz, T. M.; West, R. E.; Greenfeder, S. A.; Anthes, J. C.; Umland, S.; Wan, Y.; Hipkin, R. W.; Gonsiorek, W. Cloning and characterization of a novel human histamine receptor. J. Pharmacol. Exp. Ther. 2001, 296, 1058-1066.
97. Liu, C.; Ma, X.-J.; Jiang, X.; Wilson, S. J.; Hofstra, C. L.; Blevitt, J.; Pyati, J.; Li, X.; Chai, W.; Carruthers, N. Cloning and pharmacological characterization of a fourth histamine receptor $\left(\mathrm{H}_{4}\right)$ expressed in bone marrow. Mol. Pharmacol. 2001, 59, 420-426.
98. Cogé, F.; Guénin, S.-P.; Rique, H.; Boutin, J. A.; Galizzi, J.-P. Structure and expression of the human histamine H_{4}-receptor gene. Biochem. Bioph. Res. Co. 2001, 284, 301-309.
99. Seifert, R.; Strasser, A.; Schneider, E. H.; Neumann, D.; Dove, S.; Buschauer, A.

Molecular and cellular analysis of human histamine receptor subtypes. Trends. Pharmacol. Sci. 2013, 34, 33-58.
100. Thurmond, R. L.; Gelfand, E. W.; Dunford, P. J. The role of histamine H_{1} and H_{4} receptors in allergic inflammation: the search for new antihistamines. Nat. Rev. Drug. Discov. 2008, 7, 41-53.
101. Leurs, R.; Chazot, P. L.; Shenton, F. C.; Lim, H. D.; De Esch, I. J. Molecular and biochemical pharmacology of the histamine H_{4} receptor. Br. J. Pharmacol. 2009, 157, 14-23.
102. Smits, R. A.; Leurs, R.; de Esch, I. J. Major advances in the development of histamine H_{4} receptor ligands. Drug discovery today 2009, 14, 745-753.
103. Cowden, J. M.; Zhang, M.; Dunford, P. J.; Thurmond, R. L. The Histamine H4 Receptor Mediates Inflammation and Pruritus in Th2-Dependent Dermal Inflammation. J. Invest. Dermatol. 2010, 130, 1023-1033.
104. de Esch, I. J.; Thurmond, R. L.; Jongejan, A.; Leurs, R. The histamine H4 receptor as a new therapeutic target for inflammation. Trends. Pharmacol. Sci. 2005, 26, 462-469.
105. Igel, P.; Dove, S.; Buschauer, A. Histamine H4 receptor agonists. Bioorg. Med. Chem. Lett. 2010, 20, 7191-7199.
106. Marson, C. M. Targeting the histamine H_{4} receptor. Chem. Rev. 2011, 111, 7121-7156.
107. Kollmeier, A.; Francke, K.; Chen, B.; Dunford, P.; Greenspan, A.; Xia, Y.; Xu, X.; Zhou, B.; Thurmond, R . The histamine H_{4} receptor antagonist, JNJ 39758979, is effective in reducing histamine-induced pruritus in a randomized clinical study in healthy subjects. J. Pharmacol. Exp. Ther. 2014, 350, 181.
108. Thurmond, R. L.; Chen, B.; Dunford, P. J.; Greenspan, A. J.; Karlsson, L.; La, D.; Ward, P.; Xu, X. L. Clinical and Preclinical Characterization of the Histamine H Receptor Antagonist JNJ-39758979. J. Pharmacol. Exp. Ther. 2014, 349, 176-184.
109. Cowden, J. M.; Yu, F.; Banie, H.; Farahani, M.; Ling, P.; Nguyen, S.; Riley, J. P.; Zhang, M.; Zhu, J.; Dunford, P. J. The histamine H_{4} receptor mediates inflammation and Th17 responses in preclinical models of arthritis. Ann. Rheum. Dis. 2014, 73, 600-608.
110. Jablonowski, J. A.; Grice, C. A.; Chai, W.; Dvorak, C. A.; Venable, J. D.; Kwok, A. K.; Ly, K. S.; Wei, J.; Baker, S. M.; Desai, P. J. The first potent and selective non-imidazole human histamine H_{4} receptor antagonists. J. Med. Chem. 2003, 46, 3957-3960.
111. Brunskole, I.; Strasser, A.; Seifert, R.; Buschauer, A. Role of the second and third extracellular loops of the histamine H_{4} receptor in receptor activation. Naunyn-Schmiedeberg's Arch. Pharmacol. 2011, 384, 301-317.
112. Schnell, D.; Brunskole, I.; Ladova, K.; Schneider, E. H.; Igel, P.; Dove, S.; Buschauer, A.; Seifert, R. Expression and functional properties of canine, rat, and murine histamine H_{4} receptors in Sf9 insect cells. Naunyn-Schmiedeberg's Arch. Pharmacol. 2011, 383, 457-470.
113. Wifling, D.; Löffel, K.; Nordemann, U.; Strasser, A.; Bernhardt, G.; Dove, S.; Seifert, R.; Buschauer, A. Molecular determinants for the high constitutive activity of the human histamine H_{4} receptor: functional studies on orthologues and mutants. Br . J. Pharmacol. 2015, 172, 785-798.
114. Rosethorne, E. M.; Charlton, S. J. Agonist-biased signaling at the histamine H_{4}
receptor: JNJ7777120 recruits β-arrestin without activating G proteins. Mol. Pharmacol. 2011, 79, 749-757.
115. Liu, W. L. Histamine H_{4} receptor antagonists for the treatment of inflammatory disorders. Drug discovery today 2014, 19, 1222-1225.
116. Ohsawa, Y.; Hirasawa, N. The role of histamine H_{1} and H_{4} receptors in atopic dermatitis: from basic research to clinical study. Allergol. Int. 2014, 63, 533-542.
117. Roth, B. L.; Sheffler, D. J.; Kroeze, W. K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug. Discov. 2004, 3, 353-359.
118. Edwards, I. R.; Aronson, J. K. Adverse drug reactions: definitions, diagnosis, and management. The Lancet 2000, 356, 1255-1259.
119. Ohsawa, Y.; Hirasawa, N. The antagonism of histamine H_{1} and H_{4} receptors ameliorates chronic allergic dermatitis via anti-pruritic and anti-inflammatory effects in NC/Nga mice. Allergy 2012, 67, 1014-1022.
120. Roßbach, K.; Wendorff, S.; Sander, K.; Stark, H.; Gutzmer, R.; Werfel, T.; Kietzmann, M.; Bäumer, W. Histamine H_{4} receptor antagonism reduces hapten-induced scratching behaviour but not inflammation. Exp. Dermatol. 2009, 18, 57-63.
121. Wang, M.; Han, J.; Domenico, J.; Shin, Y. S.; Jia, Y.; Gelfand, E. W. Combined Blockade of the Histamine H_{1} and H_{4} Receptor Suppresses Peanut-Induced Intestinal Anaphylaxis by Regulating Dendritic Cell Function. Allergy 2016.
122. Smits, R. A.; Lim, H. D.; Stegink, B.; Bakker, R. A.; de Esch, I. J.; Leurs, R. Characterization of the histamine H_{4} receptor binding site. Part 1. Synthesis and pharmacological evaluation of dibenzodiazepine derivatives. J. Med. Chem. 2006, 49, 4512-4516.
123. Hammer, S. G.; Gobleder, S.; Naporra, F.; Wittmann, H.-J.; Elz, S.; Heinrich, M. R.; Strasser, A. 2, 4-Diaminopyrimidines as dual ligands at the histamine H_{1} and H_{4} receptor- $\mathrm{H}_{1} / \mathrm{H}_{4}$-receptor selectivity. Bioorg. Med. Chem. Lett. 2016, 26, 292-300.
124. Naporra, F.; Gobleder, S.; Wittmann, H.-J.; Spindler, J.; Bodensteiner, M.; Bernhardt, G.; Hübner, H.; Gmeiner, P.; Elz, S.; Strasser, A. Dibenzo [b, f][1, 4] oxazepines and dibenzo [b, e] oxepines: Influence of the chlorine substitution pattern on the pharmacology at the $\mathrm{H}_{1} \mathrm{R}, \mathrm{H}_{4} \mathrm{R}, 5-\mathrm{HT}_{2 A} \mathrm{R}$ and other selected GPCRs. Pharmacol. Res. 2016, 113, 610-625.
125. Smits, R. A.; de Esch, I. J.; Zuiderveld, O. P.; Broeker, J.; Sansuk, K.; Guaita, E.; Coruzzi, G.; Adami, M.; Haaksma, E.; Leurs, R. Discovery of quinazolines as histamine H_{4} receptor inverse agonists using a scaffold hopping approach. J. Med. Chem. 2008, 51, 7855-7865.
126. Procopiou, P. A.; Browning, C.; Buckley, J. M.; Clark, K. L.; Fechner, L.; Gore, P. M.; Hancock, A. P.; Hodgson, S. T.; Holmes, D. S.; Kranz, M. The discovery of phthalazinone-based human H_{1} and H_{3} single-ligand antagonists suitable for intranasal administration for the treatment of allergic rhinitis. J. Med. Chem. 2011, 54, 2183-2195.
127. Daley-Yates, P.; Ambery, C.; Sweeney, L.; Watson, J.; Oliver, A.; McQuade, B. The efficacy and tolerability of two novel $\mathrm{H}_{1} / \mathrm{H}_{3}$ receptor antagonists in seasonal allergic rhinitis. Int. Arch. Allergy Appl. Immunol. 2011, 158, 84-98.
128. Neumann, D.; Beermann, S.; Burhenne, H.; Glage, S.; Hartwig, C.; Seifert, R. The dual $H_{3 / 4} R$ antagonist thioperamide does not fully mimic the effects of the 'standard'H $\mathrm{H}_{4} \mathrm{R}$ antagonist JNJ 7777120 in experimental murine asthma. Naunyn-Schmiedeberg's Arch. Pharmacol. 2013, 386, 983-990.
129. Medina, V. A.; Rivera, E. S. Histamine receptors and cancer pharmacology. Br. J. Pharmacol. 2010, 161, 755-767.

Chapter 2

Scope and objectives

2. Scope and objectives

To reach multiple molecular targets simultaneously, a prevailing way is to use cocktails of drugs. But this approach is sometimes hampered due to poor patient compliance. ${ }^{1}$ A single ligand addressing multiple desired receptor targets (multitarget ligands) might be of advantage to enhance affinity, potency, ${ }^{2}$ efficacy ${ }^{3}$ and safety, e.g., due to a lower risk of drug-drug interactions, compared to drug cocktails. ${ }^{4}$ Besides their potential clinical value, such hybrid compounds may also be useful pharmacological tools for in vitro investigations.

Among the four histamine receptor subtypes $\left(H_{1} R, H_{2} R, H_{3} R\right.$, and $\left.H_{4} R\right)$ both, the $H_{1} R$ and $\mathrm{H}_{4} \mathrm{R}$, were suggested to be involved in type-I allergic reactions. ${ }^{5}$ A synergistic effect of co-administered $H_{1} R$ and $H_{4} R$ antagonists was observed, e. g., regarding inhibition of pruritus and skin inflammation from chronic dermatitis ${ }^{6}$, acute hapten-induced scratching ${ }^{7}$, and peanut-induced intestinal allergy. ${ }^{8}$ All these results suggest that dual $H_{1} R / H_{4} R$ antagonists may have a potential clinical value.

The aim of this work is to synthesize and characterize potential dual $H_{1} R / H_{4} R$ antagonists. Homo- and hetero-dimeric (or bivalent) compounds will be constructed from crucial structural features of various $H_{1} R$ and $H_{4} R$ ligands (Fig. 2.1), which will be combined in different ways, e.g., by merging pharmacophoric moieties or separating the respective substructures by spacers of different chemical nature and appropriate length. The resulting compounds should be useful to explore the interactions with the $H_{1} R$ and the $H_{4} R$ on the molecular level and, possibly, to search for additional binding sites on $H_{1} R$ and $H_{4} R$, respectively.

histamine $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{1} \mathrm{R}\right) 5.6^{\mathrm{a}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{2} \mathrm{R}\right) 4.3^{\text {b }}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{3} \mathrm{R}\right) 8.0^{\mathrm{b}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{4} \mathrm{R}\right) 7.8^{\mathrm{b}}$

quinazoline derivative $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{1} \mathrm{R}\right) 7.70 \pm 0.10^{\mathrm{c}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{4} \mathrm{R}\right) 8.12 \pm 0.02^{\mathrm{c}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{1} \mathrm{R}\right) 6.26 \pm 0.11^{\mathrm{d}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{4} \mathrm{R}\right) 7.37 \pm 0.06^{\mathrm{d}}$

diphenhydramine $\mathrm{pK}_{\mathrm{K}}\left(\mathrm{hH}_{1} \mathrm{R}\right) 7.83 \pm 0.03$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{4} \mathrm{R}\right) 4.37 \pm 0.10^{\mathrm{f}}$

astemizole derivative
$\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{1} \mathrm{R}\right) 8.77 \pm 0.05^{\text {d }}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{4} \mathrm{R}\right) 4.41 \pm 0.14^{\mathrm{d}}$

pyrilamine
$\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{1} \mathrm{R}\right) 8.35 \pm 0.03^{\mathrm{e}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{4} \mathrm{R}\right)<4^{\mathrm{f}}$

homohistamine $\mathrm{pK}_{\mathrm{k}}\left(\mathrm{hH}_{3} \mathrm{R}\right) 7.02^{\mathrm{h}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH} \mathrm{H}_{4} \mathrm{R}\right) 7.50^{\mathrm{h}}$

Fig. 2.1 Structures and affinities of selected $H_{1} R$ and/or $H_{4} R$ ligands as pharmacophores. Pharmacological data were taken from a) Strasser et al. ${ }^{9}$ b) Igel et al. ${ }^{10}$ c) Smits et al..11 d) Wagner et al. ${ }^{12}$ e) Wittmann et al..13 f) Deml et al..14 g) Baumeister ${ }^{15} \mathrm{~h}$) Geyer et al. ${ }^{16}$

2.1. References

1. Eisen, S.; Miller, D.; Woodward, R.; Spitznagel, E.; Przybeck, T. The effect of prescribed daily dose frequency on patient medication compliance. Arch. Intern. Med. 1991, 151, 1236-7.
2. Erez, M.; Takemori, A.; Portoghese, P. Narcotic antagonistic potency of bivalent ligands which contain. beta.-naltrexamine. Evidence for simultaneous occupation of proximal recognition sites. J. Med. Chem. 1982, 25, 847-849.
3. Roth, B. L.; Sheffler, D. J.; Kroeze, W. K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug. Discov. 2004, 3, 353-359.
4. Edwards, I. R.; Aronson, J. K. Adverse drug reactions: definitions, diagnosis, and management. The Lancet 2000, 356, 1255-1259.
5. Thurmond, R. L.; Gelfand, E. W.; Dunford, P. J. The role of histamine H_{1} and H_{4}
receptors in allergic inflammation: the search for new antihistamines. Nat. Rev. Drug. Discov. 2008, 7, 41-53.
6. Ohsawa, Y.; Hirasawa, N. The antagonism of histamine H_{1} and H_{4} receptors ameliorates chronic allergic dermatitis via anti-pruritic and anti-inflammatory effects in NC/Nga mice. Allergy 2012, 67, 1014-1022.
7. Roßbach, K.; Wendorff, S.; Sander, K.; Stark, H.; Gutzmer, R.; Werfel, T.; Kietzmann, M.; Bäumer, W. Histamine H_{4} receptor antagonism reduces hapten-induced scratching behaviour but not inflammation. Exp. Dermatol. 2009, 18, 57-63.
8. Wang, M.; Han, J.; Domenico, J.; Shin, Y. S.; Jia, Y.; Gelfand, E. W. Combined Blockade of the Histamine H_{1} and H_{4} Receptor Suppresses Peanut-Induced Intestinal Anaphylaxis by Regulating Dendritic Cell Function. Allergy 2016.
9. Straßer, A.; Wittmann, H.-J.; Seifert, R. Ligand-specific contribution of the N terminus and E2-loop to pharmacological properties of the histamine H_{1}-receptor. J. Pharmacol. Exp. Ther. 2008, 326, 783-791.
10. Igel, P.; Dove, S.; Buschauer, A. Histamine H_{4} receptor agonists. Bioorg. Med. Chem. Lett. 2010, 20, 7191-7199.
11. Smits, R. A.; de Esch, I. J.; Zuiderveld, O. P.; Broeker, J.; Sansuk, K.; Guaita, E.; Coruzzi, G.; Adami, M.; Haaksma, E.; Leurs, R. Discovery of quinazolines as histamine H_{4} receptor inverse agonists using a scaffold hopping approach. J. Med. Chem. 2008, 51, 7855-7865.
12. Wagner, E.; Wittmann, H.-J.; Elz, S.; Strasser, A. Pharmacological profile of astemizole-derived compounds at the histamine H_{1} and H_{4} receptor- $\mathrm{H}_{1} / \mathrm{H}_{4}$ receptor selectivity. Naunyn-Schmiedeberg's Arch. Pharmacol. 2014, 387, 235-250.
13. Wittmann, H.-J.; Seifert, R.; Strasser, A. Contribution of binding enthalpy and entropy to affinity of antagonist and agonist binding at human and guinea pig histamine H_{1}-receptor. Mol. Pharmacol. 2009, 76, 25-37.
14. Deml, K.-F.; Beermann, S.; Neumann, D.; Strasser, A.; Seifert, R. Interactions of histamine H_{1}-receptor agonists and antagonists with the human histamine H_{4}-receptor. Mol. Pharmacol. 2009, 76, 1019-1030.
15. Baumeister, P. Molecular tools for G-protein coupled receptors: Synthesis, pharmacological characterization and $\left[{ }^{3} \mathrm{H}\right]$-labeling of subtype-selective ligands for histamine H_{4} and NPY Y Y_{2} receptors. University of Regensburg, Regensburg, 2014.
16. Geyer, R.; Kaske, M.; Baumeister, P.; Buschauer, A. Synthesis and functional characterization of imbutamine analogs as histamine H_{3} and H_{4} receptor ligands. Arch. Pharm. 2014, 347, 77-88.

Chapter 3

Homo-dimeric ligands as human histamine H_{1} receptor ligands or dual H_{1} / H_{4} receptor ligands

3. Homo-dimeric ligands as human histamine \mathbf{H}_{1} receptor ligands or dual H_{1} / H_{4} receptor ligands

3.1. Introduction

Over the past decades, our knowledge of GPCR has been changed revolutionarily with the discovery of receptor oligomerization ${ }^{1-4}$ and allosteric modulation ${ }^{5}$, ${ }^{6}$. The existence of oligomers in class A GPCRs including opioid receptors ${ }^{7-9}$, adrenergic receptors ${ }^{10}$, somatostatin receptors ${ }^{11,}{ }^{12}$, dopamine receptors ${ }^{13-15}$, muscarinic receptors ${ }^{16,17}$ and all histamine receptor subtypes ${ }^{18-21}$ has been demonstrated. It is supposed that potentially all GPCRs possess drugable allosteric sites. ${ }^{22}$ Consequently, suitable pharmacological tools for investigating GPCR dimers or high order oligomers and putative allosteric binding sites are required. One possible tool are dimeric ligands, which refer to molecules composed of two pharmacophoric moieties covalently linked through a spacer. ${ }^{23-25} \mathrm{Homo}$ and hetero-dimeric ligands have emerged in the GPCR field in recent years, e.g., histamine ${ }^{26,27}$, dopamine ${ }^{28-30}$, and adenosine ${ }^{31,32}$ and NPY ${ }^{33,} 34$ receptors.

On one hand, dimeric ligands with a long spacer, e.g., a molecular modeling study suggests that the distance between two recognition sites of a contact opioid receptor dimer with a TM5/TM6 interface is about $22-27 \AA^{23}$, can be designed to probe dimerized receptors. On the other hand, a relatively short spacer allows that the duplication of pharmacophores addresses to two neighboring interaction sites on the same protein. ${ }^{26,35}$ Theoretically, bivalent ligands were postulated to increase the affinity compared to their constituent mono-valent ligands because the binding of one of the constituent pharmacophore proceeds through a univalent bound state and therefore allows the unbound partner to be in closer proximity to neighboring binding sites ${ }^{36}$.

The present study was aiming at high affinity dimeric/bivalent $H_{1} R$ and/or $H_{4} R$ ligands as pharmacological tools. Small series of homo-dimeric/homo-bivalent ligands were synthesized using building blocks derived from the well-known $H_{1} R$ antagonists ${ }^{37}$ diphenhydramine (3.1) and pyrilamine (3.2) and from a dual $H_{1} R / H_{4} R$ antagonist, the
quinazoline derivative (3.3). ${ }^{38}$ Alkyl chains with/without amide groups, and various lengths (6-18 atoms) were employed as spacers (Figure. 1). Such compounds should be helpful in searching for putative accessory binding sites on the receptors of interest.

Figure 1 Selected $H_{1} R$ and $H_{1} R / H_{4} R$ dual ligands, and general structures of synthesized homo-dimeric ligands. Pharmacological data were taken from a) Wittmann et al..39 b) Deml et al. ${ }^{40}$ c) Smits et al. ${ }^{38}$ d) Wagner et al. ${ }^{41}$

3.2. Results and discussion

3.2.1. Chemistry

The bivalent ligands 3.6a-d, 3.7a-d, 3.9a-d, 3.13a, 3.13b, 3.15a-d, 3.16a-d were according to the synthetic pathway shown in Schemes 1 and 2.

$$
\begin{aligned}
& 3.9 b, n=2 \\
& 3.9 c, n=3
\end{aligned}
$$

$$
3.9 \mathrm{~d}, \mathrm{n}=4
$$

Scheme 1 Synthesis of compounds 3.6a-d, 3.7a-d and 3.9a-d.

Scheme 2 Synthesis of compounds 3.13a, 3.13b, 3.15a-d and 3.16a-d.

3.2.2. Results and discussion

3.2.2.1. Competition binding studies

Twenty-two novel homo-dimeric ligands were synthesized and routinely analyzed by radioligand competition binding assays. All assays were performed using membrane preparations of Sf9 insect cells expressing the $\mathrm{hH}_{1} \mathrm{R}+\mathrm{RGS4}$ (regulator of G-protein signaling $4)^{42}$ in presence of $5 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$ pyrilamine, or the $\mathrm{hH}_{4} \mathrm{R}+\mathrm{G}_{\text {ai2 }}+\mathrm{G}_{\beta 1 \mathrm{y}_{2}{ }^{43}}$ in presence of 10 nM $\left[{ }^{3} \mathrm{H}\right]$ histamine. The resulting affinity data are summarized in Tables 1-3.

Table $1 \mathrm{hH}_{1} \mathrm{R}$ affinities of compound 3.6a-d and 3.9a-d

cpd.	spacer length	spacer type (X)	$\left(\mathrm{pK}_{\mathrm{i}}\right) \mathrm{hH}_{1} \mathrm{R}$
diphenhydramine (3.1)			7.82 ± 0.03
3.6a	6	$\left(\mathrm{CH}_{2}\right)_{6}$	6.94 ± 0.15
3.6b	8	$\left(\mathrm{CH}_{2}\right)_{8}$	7.04 ± 0.10
3.6c	10	$\left(\mathrm{CH}_{2}\right)_{10}$	6.95 ± 0.13
3.6d	12	$\left(\mathrm{CH}_{2}\right)_{12}$	6.24 ± 0.19
3.9a	10	$\stackrel{\mathrm{O}}{\left(\mathrm{H}_{2} \mathrm{C}\right)_{2} \mathrm{HN} \stackrel{\mathrm{C}}{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{2} \stackrel{\mathrm{O}}{\mathrm{C}} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2}}$	7.82 ± 0.08
3.9b	12	$\stackrel{\mathrm{O}}{\left(\mathrm{H}_{2} \mathrm{C}\right)_{2} \mathrm{HN} \stackrel{\mathrm{C}}{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{4} \stackrel{\mathrm{O}}{\mathrm{C}} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2}}$	7.84 ± 0.12
3.9c	14	$\stackrel{\mathrm{O}}{\left(\mathrm{H}_{2} \mathrm{C}\right)_{2} \mathrm{HN} \stackrel{\mathrm{C}}{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{6} \stackrel{\mathrm{O}}{\mathrm{C}} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2}}$	7.61 ± 0.06
3.9d	16	$\stackrel{\mathrm{O}}{\left(\mathrm{H}_{2} \mathrm{C}\right)_{2} \mathrm{HN} \stackrel{\mathrm{C}}{\mathrm{C}}\left(\mathrm{CH}_{2}\right)_{8} \stackrel{\mathrm{O}}{\mathrm{C}} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2}}$	7.58 ± 0.08

Values represent the mean \pm SEM of at least three independent experiments each performed in triplicate.

Table $2 \mathrm{hH}_{1} \mathrm{R}$ affinities of compound 3.7a-d

cpd.	spacer length	spacer type (X)	$\left(\mathrm{pK}_{\mathrm{i}}\right) \mathrm{hH} \mathrm{H}_{1} \mathrm{R}$
pyrilamine (3.2)			8.35 ± 0.03
3.7a	6	$\left(\mathrm{CH}_{2}\right)_{6}$	7.94 ± 0.14
3.7b	8	$\left(\mathrm{CH}_{2}\right)_{8}$	7.69 ± 0.08
3.7c	10	$\left(\mathrm{CH}_{2}\right)_{10}$	7.91 ± 0.23
3.7d	12	$\left(\mathrm{CH}_{2}\right)_{12}$	7.14 ± 0.10

Values represent the mean \pm SEM of at least three independent experiments each performed in triplicate.

Two types of spacers, alkyl chains with/without amide groups, with different length were used to bridge two identical pharmacophores. However, both spacer types failed to improve affinities of all homo-dimeric ligand series at $h_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$ in an obvious way. Thus, introducing amide bearing alkyl spacers by analogy with a report by McRobb et al ${ }^{30}$ on diphenhydramine (3.1), pyrilamine (3.2) and quinazoline derivative (3.3) proved unsuccessful. The spacer length from this given study was $9-20 \AA$, shorter than a suggested receptor dimer interface (22-27 \AA), ${ }^{23}$ were more suitable for probing potential accessory binding sites on the receptors of interest rather than receptor dimers. At $\mathrm{hH}_{1} \mathrm{R}$, all homo-dimeric ligands with spacers containing amide groups (3.9a-d, 3.15a-d and 3.16a-d) showed similar affinities compared to corresponding monomeric parent leads (Tables 1-3) and no significant influence of spacer length variation on binding affinities was observed. The homo-dimeric ligands with amide-free-spacers present much lower affinities at $\mathrm{hH}_{1} \mathrm{R}$ compared to the amide-containing ones. A reason for that may be the introducing of the pure alkyl spacers raised up the lipophilicity of the compound resulted a solubility problem and high non-specific binding in assays. At $\mathrm{hH}_{4} \mathrm{R}$, it may propose the introducing of spacers to the piperazine moiety of quinazoline derivative hindered the pharmacophore from optimally bound to orthosteric
binding site, leading to a considerable affinity drop for all quinazoline type homo-dimeric ligands.

Table $3 \mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$ affinities of compound 3.13a, 3.13b, 3.15a-d and 3.16a-d

cpd.	spacer length	spacer type (X)	$\left(\mathrm{pK}_{\mathrm{i}}\right) \mathrm{hH}_{1} \mathrm{R}$	$\left(\mathrm{pK}_{\mathrm{i}}\right) \mathrm{hH}_{4} \mathrm{R}$
3.3			$6.26 \pm 0.11^{\text {a }}$	$7.37 \pm 0.06^{\text {a }}$
3.13a	10	$\left(\mathrm{CH}_{2}\right)_{6}$	5.14 ± 0.05	5.19 ± 0.19
3.13b	12	$\left(\mathrm{CH}_{2}\right)_{8}$	<5	<5
3.15a	10		6.30 ± 0.23	<5
3.15b	12	$\stackrel{\mathrm{O}}{\left(\mathrm{H}_{2} \mathrm{C}\right)_{2} \mathrm{HN} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \stackrel{\mathrm{O}}{\mathrm{C}} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2}}$	5.77 ± 0.10	<5
3.15c	14	$\stackrel{\mathrm{O}}{\left(\mathrm{H}_{2} \mathrm{C}\right)_{2} \mathrm{HN} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{6} \stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2}}$	6.13 ± 0.13	<5
3.15d	16	$\stackrel{\mathrm{O}}{\left(\mathrm{H}_{2} \mathrm{C}\right)_{2} \mathrm{HNC}\left(\mathrm{CH}_{2}\right)_{8} \stackrel{\mathrm{O}}{\mathrm{C}} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2}}$	6.82 ± 0.09	<5
3.16a	12	$\stackrel{\mathrm{O}}{\left(\mathrm{H}_{2} \mathrm{C}\right)_{3} \mathrm{HN} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C} \mathrm{C} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3}}$	6.06 ± 0.04	5.60 ± 0.23
3.16b	14	$\stackrel{\mathrm{O}}{\left(\mathrm{H}_{2} \mathrm{C}\right)_{3} \mathrm{HN} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \stackrel{\mathrm{O}}{\mathrm{C}} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3}}$	6.48 ± 0.07	<5
3.16c	16	$\stackrel{\mathrm{O}}{\left(\mathrm{H}_{2} \mathrm{C}\right)_{3} \mathrm{HN} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{C} \mathrm{C} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3}}$	6.55 ± 0.07	<5
3.16d	18	$\stackrel{\mathrm{O}}{\left(\mathrm{H}_{2} \mathrm{C}\right)_{3} \mathrm{HN} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{C} \mathrm{C} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3}}$	6.26 ± 0.04	<5

Values represent the mean \pm SEM of at least three independent experiments each performed in triplicate. ${ }^{\mathrm{a}}\left(\mathrm{pK}_{\mathrm{i}}\right) \mathrm{hH}_{1} \mathrm{R}=7.70, \mathrm{hH}_{4} \mathrm{R}=8.12$ (Smits et al. ${ }^{38}$)

3.2.2.2. Conclusion

Aiming at $H_{1} R$ and/or $H_{4} R$ pharmacological tools with high affinities, $H_{1} R$ antagonists or dual $H_{1} R / H_{4} R$ antagonists were employed as building blocks to generate series of homo-dimeric ligands. Based on the competition binding study results, it was speculated while one of the pharmacophore (diphenhydramine, pyrilamine or quinazoline moiety) of homo-dimeric ligand bound to receptor's orthosteric binding site, the other pharmacophore did not contribute to the binding of receptor. Later, a computational MD simulation of compound 3.15d together with $\mathrm{hH}_{1} \mathrm{R}$ (crystal structure $3 R Z E^{44}$) confirmed this proposed binding mode (Figure 2). This suggested either there were no accessory binding sites, or diphenhydramine, pyrilamine and quinazoline derivative have no enough affinities to bind to the putative accessory binding sites.

flexiblely waving around on the receptor surface

Figure 2 An overlay of two snapshots of 3.15 d bound to hH_{1} R. (MD simulation, performed by PD Dr. Andrea Strasser)

To sum up, no concrete proof of an additional binding site at the extracellular surface of $\mathrm{hH}_{1} \mathrm{R}$ or $\mathrm{hH}_{4} \mathrm{R}$ can be found from given competition binding results. In order to prove or disprove the existence of accessory binding sites on $\mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$, different linkage point for spacer or a hetero-dimeric ligand approach should be considered in future studies.

3.3. Experimental section

3.3.1. Chemistry

3.3.1.1. General conditions

Commercially available reagents were from the following suppliers: Merck (Darmstadt, Germany), Acros Organics (Geel, Belgium), Sigma Aldrich (Munich, Germany) and TCI Europe (Eschborn, Germany). All solvents were of analytical grade or distilled prior to use and stored under protective gas. Deuterated solvents for NMR spectroscopy were from Deutero (Kastellaun, Germany). Millipore water was used throughout for the preparation of buffers and HPLC eluents. If moisture-free conditions were required, reactions were performed in dried glassware under argon. Column chromatography was carried out using Merck silica gel Geduran 60 ($0.063-0.200 \mathrm{~mm}$) and Merck silica gel 60 ($0.040-0.063 \mathrm{~mm}$) for flash-column chromatography. In certain cases, flash-chromatography was performed on an Intelli Flash-310 Flash-Chromatography Workstation from Varian Deutschland GmbH (Darmstadt, Germany). Reactions were monitored by thin layer chromatography (TLC) on Merck silica gel 60 F254 aluminium sheets and spots were visualized with UV light at 254 nm and/or iodine vapor, ninhydrine spray. Nuclear Magnetic Resonance (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) spectra were recorded on an Avance-300 ($\left.{ }^{1} \mathrm{H}: 300 \mathrm{MHz},{ }^{13} \mathrm{C}: 75 \mathrm{MHz}\right)$, Avance-400 (${ }^{1} \mathrm{H}: 400$ $\mathrm{MHz},{ }^{13} \mathrm{C}: 101 \mathrm{MHz}$), or Avance-600 (${ }^{1} \mathrm{H}: 600 \mathrm{MHz},{ }^{13} \mathrm{C}: 151 \mathrm{MHz}$) NMR spectrometer from Bruker BioSpin (Karlsruhe, Germany). Multiplicities are specified with the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet), bs (for broad singulet), as well as combinations thereof. The multiplicity of carbon atoms (${ }^{13} \mathrm{C}-\mathrm{NMR}$) was determined by DEPT 135 (distortionless enhancement by polarization transfer): "+" primary and tertiary carbon atom (positive DEPT 135 signal), "-" secondary carbon atom (negative DEPT 135 signal), "quat" quaternary carbon atom. In certain cases, 2D-NMR techniques were used to assign ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts. All spectra were analyzed using the program MestReNova (Mestrelab Research, Santiago de Compostela, Spain). High-resolution mass spectrometry (HRMS) was performed on an Agilent 6540 UHD Accurate-Mass Q-TOF LC/MS system (Agilent Technologies, Santa Clara, CA) using an ESI source. Melting points (mp) were measured on a Büchi 530 (Büchi GmbH, Essen, Germany)
and are uncorrected. Lyophilisation of the products was done with a Christ alpha 2-4 LD, equipped with a Vacuubrand RZ 6 rotary vane vacuum pump. Preparative HPLC was performed with a pump model K-1800 (Knauer, Berlin, Germany), the column was a Eurospher-100 (250 x 32 mm) (Knauer, Berlin, Germany) or a Nucleodur 100-5 C18 ec (250 $\times 21 \mathrm{~mm}, 5 \mu \mathrm{~m}$ (Macherey-Nagel, Düren, Germany), which was attached to the UV-detector model K-2000 (Knauer, Berlin, Germany). UV-detection was done at 220 nm . The temperature was between rt and $30^{\circ} \mathrm{C}$ and the flow rate was $15 \mathrm{~mL} / \mathrm{min}$. All compounds were filtered through PTFE-filters ($25 \mathrm{~mm}, 0.2 \mu \mathrm{~m}$, Phenomenex, Aschaffenburg, Germany) prior to preparative HPLC. Analytical HPLC analysis was performed on a system from Merck, composed of an L-5000 controller, a 655A-12 pump, a 655A-40 auto sampler, a L-4250 UV-VIS detector, and a RP column Kinetex-XB $\mathrm{C}_{18}, 5 \mu \mathrm{~m}, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ (Phenomenex, Aschaffenburg, Germany) at a flow rate of $0.8 \mathrm{~mL} / \mathrm{min}$. Mixtures of acetonitrile (A) and 0.1% aqueous TFA solution (B) were used as mobile phase. Detection was performed at 220 nm , the oven temperature was $30^{\circ} \mathrm{C}$. Helium degassing prior to HPLC analysis was performed. Compound purities were calculated as percentage peak area of the analyzed compound by UV detection at 220 nm . HPLC conditions, retention times (t_{R}), the capacity (retention) factors were calculated according to $\mathrm{k}=\left(t_{\mathrm{R}}-t_{0}\right) / t_{0}$, and purities of the synthesized compounds are listed in the appendix. Purity of tested compounds was $>95 \%$ as determined by high-performance liquid chromatography. For all compounds, which were obtained as TFA salts, the number of respective hydrotrifluoroacetate were calculated by ACD/I-lab (ACD/Labs, Toronto, Ontario, Canada).

3.3.1.2. Synthesis

Benzyl (2-bromoethyl)carbamate. ${ }^{45}$
Benzyl (2-bromoethyl)carbamate was synthesized according to Aissaoui et al. ${ }^{45}$

tert-Butyl(3-bromopropyl)carbamate. ${ }^{46}$

tert-butyl(3-bromopropyl)carbamate were synthesized according to Jörg et al. ${ }^{46}$

A solution of piperazine ($8.6 \mathrm{~g}, 100 \mathrm{mmol}$) in $\mathrm{DCM}(100 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. Di-tert-butyl dicarbonate ($10.9 \mathrm{~g}, 50 \mathrm{mmol}$) dissolved in DCM (100 mL) was added dropwise. The resulting mixture was stirred at rt overnight and concentrated under reduced pressure. The crude product was dissolved in brine (100 mL) and extracted with diethyl ether (3×50 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and organic solvent was evaporated, then subjected to silica gel column chromatography ($\mathrm{EtOAc} / \mathrm{MeOH}, 9 / 1$) to yield a white solid (6.67 $\mathrm{g}, 35.9 \mathrm{mmol}, 71.8 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 3.40-3.36 (m, 4H), 2.83-2.78 (m, $4 \mathrm{H}), 1.77(\mathrm{~s}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.

2-(Benzhydryloxy)-N-methylethanamine (3.4). ${ }^{48}$

Diphenhydramine hydrochloride ($15 \mathrm{~g}, 51.4 \mathrm{mmol}$) was dissolved in a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(10.5 \mathrm{~g}, 76 \mathrm{mmol})$ in 100 mL water. The mixture was extracted three times with $150 \mathrm{~mL}(50 \mathrm{x}$ 3) DCM. After removal of the solvent, the remaining crystal oil was dissolved in a solution of 150 mL of 1,2-dichloroethane, $\mathrm{Na}_{2} \mathrm{CO}_{3}(6 \mathrm{~g}, 56.61 \mathrm{mmol})$ was added. The mixture was cooled to $-10^{\circ} \mathrm{C}$, and 1 -chloroethyl chloroformate ($11.13 \mathrm{~mL}, 104 \mathrm{mmol}$) was added dropwise. After stirring for 10 min at $-10^{\circ} \mathrm{C}$, the solution was heated under reflux for $2 \mathrm{~h}\left(94^{\circ} \mathrm{C}\right)$. The solvent was removed, the remaining oily residue was dissolved in 150 mL methanol and heated at $50^{\circ} \mathrm{C}$ for 2 h . The solvent was removed and the resulting pale brown crystalline residue was dissolved in a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(8 \mathrm{~g}, 75.48 \mathrm{mmol})$ in 150 mL of water in order to get the free base of the product, which was extracted with DCM and purified by column chromatography (EtOAc/MeOH containing $1 \% \mathrm{NH}_{3}, 4 / 1$). Yellow oil ($4.51 \mathrm{~g}, 18.69 \mathrm{mmol}, 35.9 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(300 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right) \delta[\mathrm{ppm}]: 7.43-7.18(\mathrm{~m}, 10 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.69$ (t, J = 5.6 Hz, 2H), 2.28 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}\right) \delta$ [ppm]: 142.59 ($\mathrm{C}_{\text {quat }}$), 128.18 (+, Ar-CH), 127.08 (+, Ar-CH), 126.42 (+, Ar-CH), 82.46 (+, CH), 67.64 (-, $\left.\mathrm{CH}_{2}\right), 50.77$ (-, CH_{2}), $35.92\left(+, \mathrm{CH}_{3}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}^{[}\left[\mathrm{MH}^{+}\right]$242.1539, found 242.1549.

N^{1}-(4-Methoxybenzyl)- N^{2}-methyl- \boldsymbol{N}^{1}-(pyridin-2-yl)ethane-1,2-diamine (3.5).

Compound 3.5 was prepared from pyrilamine maleate ($20 \mathrm{~g}, 49 \mathrm{mmol}$) by analogy with the procedure for the preparation of compound 3.4. Yellow oil was obtained. ($910 \mathrm{mg}, 3.35 \mathrm{mmol}$, 6.7\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 8.16-8.12(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.09$
$(\mathrm{m}, 2 \mathrm{H})$, 6.85-6.81 (m, 2H), 6.57-6.52 (m, 1H), 6.52-6.48 (m, 1H), $4.69(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.70(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 158.66 ($\mathrm{C}_{\text {quat }}$), 158.43 ($\mathrm{C}_{\text {quat }}$), 147.88 (+, Ar-CH), 137.41 (+, Ar-CH), 130.37 ($\mathrm{C}_{\text {quat }}$), 128.01 (+, 2Ar-CH), 114.00 (+, 2Ar-CH), 112.08 (+, Ar-CH), 106.16 (+, Ar-CH), 55.28 $\left(+, \mathrm{CH}_{3}\right), 51.61\left(-, \mathrm{CH}_{2}\right), 49.90\left(-, \mathrm{CH}_{2}\right), 48.11\left(-, \mathrm{CH}_{2}\right), 36.32\left(+, \mathrm{CH}_{3}\right)$.

N^{1}, N^{6}-Bis[2-(benzhydryloxy)ethyl]- N^{1}, N^{6}-dimethylhexane-1,6-diamine (3.6a).

To a solution of compound 3.4 ($241 \mathrm{mg}, 1 \mathrm{mmol}$) in 5 mL acetone, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($325 \mathrm{mg}, 1$ mmol) was added, and 1,6-diiodohexane ($169 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added dropwise. The mixture was stirred at room temperature for 8 h (control by TLC). The solvent was removed under reduced pressure and the remaining mixture was subjected to preparative TLC over silica gel (EtOAc/MeOH containing 1\% $\mathrm{NH}_{3}, 50 / 1$). Yellow oil ($62.8 \mathrm{mg}, 0.11 \mathrm{mmol}, 22.2 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.36-7.22(\mathrm{~m}, 20 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=5.9 \mathrm{~Hz}, 4 \mathrm{H})$, $2.74(\mathrm{t}, J=5.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.44(\mathrm{t}, J=5.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.21(\mathrm{~m}$, 4H). ${ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm]: 142.14 ($4 \mathrm{C}_{\text {quat }}$), 128.39 (+, 8Ar-CH), 127.47 (+, $4 \mathrm{Ar}-\mathrm{CH}), 126.96(+, 8 \mathrm{Ar}-\mathrm{CH}), 84.06(+, 2 \mathrm{CH}), 66.86\left(-, 2 \mathrm{CH}_{2}\right), 57.89\left(-, 2 \mathrm{CH}_{2}\right), 56.63(-$, $\left.2 \mathrm{CH}_{2}\right), 42.65\left(+, 2 \mathrm{CH}_{3}\right), 27.28\left(-, 2 \mathrm{CH}_{2}\right), 26.77\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{2}$ $\left[\mathrm{MH}^{+}\right] 565.3789$, found 565.3790.

N^{1}, N^{β}-Bis[2-(benzhydryloxy)ethyl]- N^{1}, N^{β}-dimethyloctane-1,8-diamine (3.6b).

Compound 3.6b was prepared from compound 3.4 ($241 \mathrm{mg}, 1 \mathrm{mmol}$) and 1,8-diiodooctane ($183 \mathrm{mg}, 0.5 \mathrm{mmol}$) by analogy with the procedure for the preparation of compound $\mathbf{3 . 6 a}$. Yellow oil ($37.7 \mathrm{mg}, 0.06 \mathrm{mmol}, 12.8 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.37-7.20$ (m, $20 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{t}, J=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.70(\mathrm{t}, J=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.40(\mathrm{t}, J=6.1 \mathrm{~Hz}, 4 \mathrm{H})$, $2.29(\mathrm{~s}, 6 \mathrm{H}), 1.55-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.24(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]:$ 142.27 ($4 \mathrm{C}_{\text {quat }}$), 128.36 (+, 8Ar-CH), 127.42 (+, 4Ar-CH), 126.98 (+, 8Ar-CH), 84.02 (+, 2CH), $67.20\left(-, 2 \mathrm{CH}_{2}\right), 58.15\left(-, 2 \mathrm{CH}_{2}\right), 56.77\left(-, 2 \mathrm{CH}_{2}\right), 42.84\left(+, 2 \mathrm{CH}_{3}\right), 29.57\left(-, 2 \mathrm{CH}_{2}\right), 27.46(-$, $\left.2 \mathrm{CH}_{2}\right), 27.08\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{40} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right] 593.4102$, found 593.4101.

N^{1}, N^{10}-Bis[2-(benzhydryloxy)ethyl]- $N^{1}, N^{1^{0}}$-dimethyldecane-1,10-diamine (3.6c).

Compound 3.6c was prepared from compound 3.4 (241 mg, 1 mmol) and 1,10-diiododecane ($197 \mathrm{mg}, 0.5 \mathrm{mmol}$) by analogy with the procedure for the preparation of compound 3.6a. Yellow oil ($136.8 \mathrm{mg}, 0.22 \mathrm{mmol}, 44.0 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: $7.37-7.20(\mathrm{~m}, 20 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.71(\mathrm{t}, J=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.41(\mathrm{t}, J=$ $6.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 1.54-1.39(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: $142.30\left(4 \mathrm{C}_{\text {quat }}\right), 128.36$ (+, 8Ar-CH), 127.41 (+, 4Ar-CH), 126.98 (+, 8Ar-CH), 84.01 (+, 2CH), $67.26\left(-, 2 \mathrm{CH}_{2}\right), 58.19\left(-, 2 \mathrm{CH}_{2}\right), 56.81\left(-, 2 \mathrm{CH}_{2}\right), 42.89\left(+, 2 \mathrm{CH}_{3}\right)$, $29.61\left(-, 4 \mathrm{CH}_{2}\right), 27.51\left(-, 2 \mathrm{CH}_{2}\right), 27.17\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{42} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right]$ 621.4415 , found 621.4419 .

N^{1}, N^{12}-Bis[2-(benzhydryloxy)ethyl]- N^{1}, N^{12}-dimethyldodecane-1,12-diamine (3.6d).

Compound 3.6d was prepared from compound 3.4 (241 mg, 1 mmol) and 1,12-dibromododecane ($164 \mathrm{mg}, 0.5 \mathrm{mmol}$) by analogy with the procedure for the preparation of compound 3.6a. Yellow oil ($270 \mathrm{mg}, 0.42 \mathrm{mmol}, 84.0 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CH}_{3} \mathrm{OD}\right) \delta$ [ppm]:7.39-7.12 (m, 20H), $5.36(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{t}, J=5.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.64(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 4 \mathrm{H})$, 2.44-2.30 (m, 4H), 2.22 (s, 6H), 1.52-1.38 (m, 4H), 1.31-1.19 (m, 16H). ${ }^{13}$ C-NMR (75 MHz , $\mathrm{CH}_{3} \mathrm{OD}$) $\delta[\mathrm{ppm}]: 143.88$ ($4 \mathrm{C}_{\text {quat }}$), 129.43 (+, 8Ar-CH), 128.54 (+, 4Ar-CH), 128.15 (+, 8Ar-CH), 85.36 (+, 2CH), $67.94\left(-, 2 \mathrm{CH}_{2}\right), 59.01\left(-, 2 \mathrm{CH}_{2}\right), 57.68\left(-, 2 \mathrm{CH}_{2}\right), 43.30\left(+, 2 \mathrm{CH}_{3}\right)$, $30.85\left(-, 2 \mathrm{CH}_{2}\right), 30.82\left(-, 2 \mathrm{CH}_{2}\right), 30.78\left(-, 2 \mathrm{CH}_{2}\right), 28.75\left(-, 2 \mathrm{CH}_{2}\right), 27.81\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{44} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right] 649.4728$, found 649.4728.

N^{1}, N^{\prime}-(Hexane-1,6-diyl)bis[N^{2}-(4-methoxybenzyl)- N^{1}-methyl- N^{2}-(pyridin-2-yl)ethane-1,2diamine] (3.7a).

To a solution of compound 3.5 ($350 \mathrm{mg}, 1.29 \mathrm{mmol}$) in $5 \mathrm{~mL} \mathrm{MeCN}, \mathrm{K}_{2} \mathrm{CO}_{3}(178 \mathrm{mg}, 1.29$ mmol) was added, and 1,6 -diiodohexane ($216 \mathrm{mg}, 0.64 \mathrm{mmol}$) was added dropwise. The mixtures were stirred at room temperature for 8 h (control by TLC). The solvent was removed under reduced pressure, and the remaining mixtures were subjected to column chromatography over silica gel (EtOAc/MeOH containing 1\% $\mathrm{NH}_{3}, 20 / 1$). Yellow oil (58 mg , $0.09 \mathrm{mmol}, 14.5 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 8.16-8.13 (m, 2H), 7.40-7.37 (m, 2H), 7.18-7.11 (m, 4H), 6.86-6.79 (m, 4H), 6.56-6.44 (m, 4H), 4.69 (s, 4H), 3.77 (s, 6H), 3.74-3.64
$(\mathrm{m}, 4 \mathrm{H}), 2.72-2.56(\mathrm{~m}, 4 \mathrm{H}), 2.51-2.38(\mathrm{~m}, 4 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 1.55-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.22(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: $158.66\left(2 \mathrm{C}_{\text {quat }}\right)$, 158.06 ($2 \mathrm{C}_{\text {quat }}$), $148.02(+, 2 \mathrm{Ar}-\mathrm{CH})$, 137.28 (+, 2Ar-CH), 130.59 ($2 \mathrm{C}_{\text {quat }}$), 128.16 (+, 4Ar-CH), 113.97 (+, 4Ar-CH), 111.88 (+, $2 \mathrm{Ar}-\mathrm{CH}$), 105.90 (+, 2Ar-CH), 57.75 (-, $2 \mathrm{CH}_{2}$), 55.28 (+, $2 \mathrm{CH}_{3}$), $54.34\left(-, 2 \mathrm{CH}_{2}\right), 51.49(-$, $\left.2 \mathrm{CH}_{2}\right), 45.92\left(-, 2 \mathrm{CH}_{2}\right), 42.27\left(+, 2 \mathrm{CH}_{3}\right), 27.23\left(-, 4 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{38} \mathrm{H}_{52} \mathrm{~N}_{6} \mathrm{O}_{2}$ $\left[\mathrm{MH}^{+}\right]$625.4225, found 625.4227.

N^{\top}, N^{\prime}-(Octane-1,8-diyl)bis[N^{2}-(4-methoxybenzyl)- N^{1}-methyl- N^{2}-(pyridin-2-yl)ethane-1,2diamine] (3.7b).

Compound 3.7b was prepared from compound 3.5 ($271 \mathrm{mg}, 1 \mathrm{mmol}$) and 1,8-diiodooctane ($183 \mathrm{mg}, 0.5 \mathrm{mmol}$) by analogy with the procedure for the preparation of compound 3.7a. Yellow oil ($121 \mathrm{mg}, 0.19 \mathrm{mmol}, 37.1 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 8.16-8.13 (m, 2H), 7.40-7.34 (m, 2H), 7.15 (d, J = $8.7 \mathrm{~Hz}, 4 \mathrm{H}$), 6.86-6.79 (m, 2H), 6.55-6.49 (m, 2H), 6.46 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.68-3.62(\mathrm{~m}, 4 \mathrm{H}), 2.61-2.56(\mathrm{~m}, 4 \mathrm{H}), 2.43-2.33(\mathrm{~m}$, $4 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 1.53-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.24(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]:$ 158.62 ($2 \mathrm{C}_{\text {quat }}$), 158.12 ($2 \mathrm{C}_{\text {quat }}$), 148.04 (+ , $2 \mathrm{Ar}-\mathrm{CH}$), 137.20 (+, $2 \mathrm{Ar}-\mathrm{CH}$), 130.77 (2 $\mathrm{C}_{\text {quat }}$), 128.19 (+, 4Ar-CH), 113.92 (+, 4Ar-CH), 111.71 (+, 2Ar-CH), 105.78 (+, 2Ar-CH), 58.05 (-, $\left.2 \mathrm{CH}_{2}\right), 55.26\left(+, 2 \mathrm{CH}_{3}\right), 54.48\left(-, 2 \mathrm{CH}_{2}\right), 51.35\left(-, 2 \mathrm{CH}_{2}\right), 46.20\left(-, 2 \mathrm{CH}_{2}\right), 42.52\left(+, 2 \mathrm{CH}_{3}\right)$, $29.55\left(-, 2 \mathrm{CH}_{2}\right), 27.41\left(-, 2 \mathrm{CH}_{2}\right), 27.09\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{40} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right]$ 653.4538 , found 653.4535 .

N^{1}, N^{\prime}-(Decane-1,10-diyl)bis[N^{2}-(4-methoxybenzyl)- N^{\top}-methyl- N^{2}-(pyridin-2-yl)ethane-1,

 2-diamine] (3.7c).Compound 3.7c was prepared from compound 3.5 ($200 \mathrm{mg}, 0.74 \mathrm{mmol}$) and 1 , 10-diiododecane ($146 \mathrm{mg}, 0.37 \mathrm{mmol}$) by analogy with the procedure for the preparation of compound 3.7a. Yellow oil ($110 \mathrm{mg}, 0.16 \mathrm{mmol}, 43.0 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 8.17-8.12 (m, 2H), 7.40-7.34 (m, 2H), 7.19-7.12 (m, 4H), 6.86-6.79 (m, 4H), 6.55-6.41 (m, 4H), 4.71 (s, 4H), 3.78 (s, 6H), 3.66-3.58 (m, 4H), 2.58-2.50 (m, 4H), 2.39-2.30 (m, 4H), 2.26 (s, $6 \mathrm{H})$, 1.49-1.35 (m, 4H), 1.29-1.21 (m, 12H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 158.60 $\left(2 \mathrm{C}_{\text {quat }}\right), 158.17\left(2 \mathrm{C}_{\text {quat }}\right), 148.07$ (+, 2Ar-CH), 137.17 (+, 2Ar-CH), $130.89\left(2 \mathrm{C}_{\text {quat }}\right), 128.22(+$,

4Ar-CH), 113.91 (+, 4Ar-CH), 111.64 (+, 2Ar-CH), 105.71 (+, 2Ar-CH), 58.21 (-, 2CH2), 55.27 $\left(+, 2 \mathrm{CH}_{3}\right), 54.60\left(-, 2 \mathrm{CH}_{2}\right), 51.27\left(-, 2 \mathrm{CH}_{2}\right), 46.37\left(-, 2 \mathrm{CH}_{2}\right), 42.69\left(+, 2 \mathrm{CH}_{3}\right), 29.64\left(-, 4 \mathrm{CH}_{2}\right)$, $27.52\left(-, 2 \mathrm{CH}_{2}\right), 27.35\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{42} \mathrm{H}_{60} \mathrm{~N}_{6} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right] 681.4851$, found 681.4850.
$N^{1}, N^{\prime}-$ (Dodecane- 1, 12- diyl)bis[$N^{N^{-}}$- (4- methoxybenzyl)- N^{1} - methyl- N^{2} - (pyridin- 2-yl)ethane-1, 2- diamine] (3.7d).

Compound 3.7d was prepared from compound 3.5 ($542 \mathrm{mg}, 2 \mathrm{mmol}$) and 1,12-dibromododecane ($328 \mathrm{mg}, 1 \mathrm{mmol}$) by analogy with the procedure for the preparation of compound 3.7a. Yellow oil ($410 \mathrm{mg}, 0.58 \mathrm{mmol}, 57.9 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 8.17-8.13 (m, 2H), 7.40-7.34 (m, 2H), 7.19-7.12 (m, 4H), 6.86-6.80 (m, 2H), 6.55-6.49 (m, 2H), 6.48-6.43 (m, 2H), $4.70(\mathrm{~s}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.67-3.62(\mathrm{~m}, 4 \mathrm{H}), 2.61-2.55(\mathrm{~m}, 4 \mathrm{H})$, 2.42-2.33 (m, 4H), 2.28 (s, 6H), 1.50-1.37 (m, 4H), 1.30-1.20 (m, 16H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 158.61\left(2 \mathrm{C}_{\text {quat }}\right), 158.12\left(2 \mathrm{C}_{\text {quat }}\right), 148.08$ (+, 2Ar-CH), 137.21 (+, 2Ar-CH), $130.78\left(2 \mathrm{C}_{\text {quat }}\right), 128.20(+, 4 \mathrm{Ar}-\mathrm{CH}), 113.92$ (+, 4Ar-CH), 111.71 (+, 2Ar-CH), 105.77 (+, 2Ar-CH), $58.09\left(-, 2 \mathrm{CH}_{2}\right), 55.27\left(+, 2 \mathrm{CH}_{3}\right), 54.47\left(-, 2 \mathrm{CH}_{2}\right), 51.33\left(-, 2 \mathrm{CH}_{2}\right), 46.22\left(-, 2 \mathrm{CH}_{2}\right)$, $42.55\left(+, 2 \mathrm{CH}_{3}\right), 29.65\left(-, 6 \mathrm{CH}_{2}\right), 27.48\left(-, 2 \mathrm{CH}_{2}\right), 27.14\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{44} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right] 709.5164$, found 709.5167 .

N^{1}-[2-(Benzhydryloxy)ethyl]- N^{\top}-methylethane-1,2-diamine (3.8).

To a mixture of compound $3.4(3.31 \mathrm{~g}, 13.73 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.68 \mathrm{~g}, 41.19 \mathrm{mmol})$ in 50 mL of MeCN benzyl (2-bromoethyl)carbamate ($4.24 \mathrm{~g}, 16.48 \mathrm{mmol}$) was added. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled to rt , concentrated, and the residue dissolved in 15 mL MeOH. After addition of 5% palladium-on-charcoal catalyst $(450 \mathrm{mg})$ a slow stream of hydrogen was passed via a glass tube into the vigorously stirred suspension at 1 atm H_{2} for 17 h . After depletion of the starting material (control by TLC) the catalyst was removed by filtration through Celite. The filtrate was concentrated in vacuo to give the product as a white solid ($2.0 \mathrm{~g}, 7.04 \mathrm{mmol}, 98 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]$: $7.38-7.19(\mathrm{~m}, 10 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.47(\mathrm{t}, J=6.0$ Hz, 2H), 2.27 (s, 3H).

N^{1}, N^{4}-Bis(2-\{[2-(benzhydryloxy)ethyl](methyl)amino\}ethyl)succindiamide (3.9a).

To a solution of compound 3.8 ($284 \mathrm{mg}, 1 \mathrm{mmol}$) and TEA ($303 \mathrm{mg}, 3 \mathrm{mmol}$) in 3 mL of anhydrous THF, succinyl dichloride ($101 \mathrm{mg}, 0.65 \mathrm{mmol}$) were added dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The mixture was allowed to warm to room temperature with stirring for 2 h (control by TLC). The solvent was evaporated, and the remaining mixture was poured into water. The aqueous layer was extracted with DCM, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure the product was purified by column chromatography (silica gel, DCM/MeOH/25\% aqueous ammonia, 100/2.5/1). Colorless oil ($170 \mathrm{mg}, 0.26 \mathrm{mmol}, 52.3 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.38-7.18(\mathrm{~m}, 20 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 4 \mathrm{H})$, 3.32-3.25 (m, 4H), 2.70-2.64 (m, 4H), $2.52(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 2.24-2.22(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 172.05 ($2 \mathrm{C}_{\text {quat }}$), 142.19 ($4 \mathrm{C}_{\text {quat }}$), 128.45 (+, 8Ar-CH), 127.52 (+, 4Ar-CH), 126.96 (+, 8Ar-CH), 83.99 (+, 2CH), $67.11\left(-, 2 \mathrm{CH}_{2}\right), 56.59\left(-, 2 \mathrm{CH}_{2}\right)$, $56.02\left(-, 2 \mathrm{CH}_{2}\right), 42.48\left(+, 2 \mathrm{CH}_{3}\right), 36.85\left(-, 2 \mathrm{CH}_{2}\right), 31.43\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{4}\left[\mathrm{MH}^{+}\right] 651.3905$, found 651.3910 .

N^{1}, N^{6}-Bis(2-\{[2-(benzhydryloxy)ethyl](methyl)amino\}ethyl)adipdiamide (3.9b).

Compound 3.9b was prepared from compound 3.8 ($542 \mathrm{mg}, 2 \mathrm{mmol}$) and adipoyl dichloride ($357 \mathrm{mg}, 1.95 \mathrm{mmol}$) by analogy with the procedure for the preparation of compound 3.9a. Yellow oil ($63 \mathrm{mg}, 0.09 \mathrm{mmol}, 12.4 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[p p m]$: 7.37-7.20 (m, 20H), $5.37(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{t}, J=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.37-3.27(\mathrm{~m}, 4 \mathrm{H}), 2.71(\mathrm{t}, J=5.4$ $\mathrm{Hz}, 4 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm]: $171.85\left(2 \mathrm{C}_{\text {quat }}\right), 141.00\left(4 \mathrm{C}_{\text {quat }}\right)$, 127.42 (+, 8Ar-CH), 126.53 (+, 4Ar-CH), $125.86(+, 8 A r-C H), 82.95(+, 2 C H), 65.65\left(-, 2 \mathrm{CH}_{2}\right), 56.42\left(-, 2 \mathrm{CH}_{2}\right), 56.00(-$, $\left.2 \mathrm{CH}_{2}\right), 42.42\left(+, 2 \mathrm{CH}_{3}\right), 36.52\left(-, 2 \mathrm{CH}_{2}\right), 35.97\left(-, 2 \mathrm{CH}_{2}\right), 25.08\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{4}\left[\mathrm{MH}^{+}\right]$679.4218, found 679.4221.

N^{1}, N^{β}-Bis(2-\{[2-(benzhydryloxy)ethyl](methyl)amino\}ethyl)octanediamide (3.9c).

Compound 3.9c was prepared from compound 3.8 ($284 \mathrm{mg}, 1 \mathrm{mmol}$) and octanedioyl dichloride ($116 \mathrm{mg}, 0.55 \mathrm{mmol}$) by analogy with the procedure for the preparation of compound 3.9a. Yellow oil ($205 \mathrm{mg}, 0.29 \mathrm{mmol}, 58.1 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 7.34-7.20 (m, 20H), $5.37(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{t}, J=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.36-3.28(\mathrm{~m}, 4 \mathrm{H}), 2.70(\mathrm{t}, J=5.4$ $\mathrm{Hz}, 4 \mathrm{H}), 2.57(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 1.98-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.16$ (m, 4H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 173.20 ($2 \mathrm{C}_{\text {quat }}$), 142.08 ($4 \mathrm{C}_{\text {quat }}$), 128.47 (+, 8Ar-CH), 127.58 (+, 4Ar-CH), 126.92 (+, 8Ar-CH), 84.00 (+, 2CH), 66.76 (-, 2CH2), 56.45 (-, $\left.2 \mathrm{CH}_{2}\right), 56.01\left(-, 2 \mathrm{CH}_{2}\right), 42.42\left(+, 2 \mathrm{CH}_{3}\right), 36.50\left(-, 2 \mathrm{CH}_{2}\right), 36.39\left(-, 2 \mathrm{CH}_{2}\right), 28.93\left(-, 2 \mathrm{CH}_{2}\right)$, $25.53\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{44} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{4}\left[\mathrm{MH}^{+}\right] 707.4531$, found 707.4532.

N^{1}, N^{10}-Bis(2-\{[2-(benzhydryloxy)ethyl](methyl)amino\}ethyl)decanediamide (3.9d).

Compound 3.9d was prepared from compound 3.8 ($284 \mathrm{mg}, 1 \mathrm{mmol}$) and octanedioyl dichloride ($116 \mathrm{mg}, 0.55 \mathrm{mmol}$) by analogy with the procedure for the preparation of compound 3.9a. Yellow oil ($264 \mathrm{mg}, 0.36 \mathrm{mmol}, 71.9 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]:$ $7.37-7.20(\mathrm{~m}, 20 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.37-3.28(\mathrm{~m}, 4 \mathrm{H}), 2.70(\mathrm{t}, J=5.4$ $\mathrm{Hz}, 4 \mathrm{H}), 2.57(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.16$ (m, 8H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 173.30 ($2 \mathrm{C}_{\text {quat }}$), 142.09 ($4 \mathrm{C}_{\text {quat }}$), 128.47 (+, 8Ar-CH), 127.58 (+, 4Ar-CH), 126.92 (+, 8Ar-CH), 84.00 (+, 2CH), $66.75\left(-, 2 \mathrm{CH}_{2}\right), 56.40(-$, $\left.2 \mathrm{CH}_{2}\right), 55.96\left(-, 2 \mathrm{CH}_{2}\right), 42.39\left(+, 2 \mathrm{CH}_{3}\right), 36.53\left(-, 2 \mathrm{CH}_{2}\right), 36.48\left(-, 2 \mathrm{CH}_{2}\right), 29.23\left(-, 4 \mathrm{CH}_{2}\right)$, $25.69\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{46} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{4}\left[\mathrm{MH}^{+}\right] 735.4844$, found 735.4846.

2,4,6-Trichloroquinazoline (3.10)

2,4,6-Trichloroquinazoline was prepared according to Smits et al. ${ }^{38}$

tert- Butyl 4- \{6- chloro- 4- [(thiophen- 2- ylmethyl)amino]quinazolin- 2-yl\}piperazine-1carboxylate (3.11).

A mixture of compound 3.10 ($2.33 \mathrm{~g}, 9.7 \mathrm{mmol}$), EtOAc (15 mL), DIPEA ($2.47 \mathrm{~g}, 19.14$ $\mathrm{mmol})$, 2-thienylmethylamine ($1.08 \mathrm{~g}, 9.55 \mathrm{mmol}$) in a $20-\mathrm{mL}$ microwave tube was stirred at rt for 30 min . tert-Butyl piperazine-1-carboxylate ($4.5 \mathrm{~g}, 23.9 \mathrm{mmol}$) was added, the microwave tube was sealed, and the mixture was subjected to microwave irradiation $\left(120^{\circ} \mathrm{C}\right)$ for 10 min .

Solid material was filtered off and washed with EtOAc. The filtrate was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Purification by column chromatography (EE/PE, 1/5) yielded a white solid ($3.69 \mathrm{~g}, 8.02 \mathrm{mmol}, 83.8 \%$); mp $184{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 7.42-7.35 (m, 3H), 7.20-7.14 (m, 1H), 7.01 (d, J=2.7 Hz, 1H), 6.94-6.90 (m, 1H), 4.89 (d, J=5.5 Hz, 2H), 3.89-3.85 (m, 4H), 3.48-3.44 (m, 4H), $1.44(\mathrm{~s}, 9 \mathrm{H})$.

6-Chloro-2-(piperazin-1-yl)-N-(thiophen-2-ylmethyl)quinazolin-4-amine (3.12).

TFA (15 mL) was added to a solution of compound 3.11 ($3.69 \mathrm{~g}, 8.02 \mathrm{mmol}$) in DCM (150 $\mathrm{mL})$. After stirring for 3 h , the mixture was evaporated to dryness under reduced pressure, yielding 3.12 di(hydrotrifluoroacetate) as a white solid ($3.0 \mathrm{~g}, 8.06 \mathrm{mmol}, 100 \%$); mp $157^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6}) δ [ppm]: 8.11 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.53-7.48 (m, 1H), 7.38-7.34 (m, 1H), 7.27 (d, J = $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.83-3.75 (d, J=4.7 Hz, 4H), 2.82-2.78 (m, 4H).

2,2'- [Decane- 1,10- diylbis(piperazine- 4,1- diyl)]bis[6- chloro- N - (thiophen- 2- ylmethyl) quinazolin- 4- amine] (3.13a).

Compound 3.13a was prepared from compound 3.12 ($360 \mathrm{mg}, 1 \mathrm{mmol}$) and 1,10-diiododecane ($182 \mathrm{mg}, 0.5 \mathrm{mmol}$) by analogy with the procedure for the preparation of compound 3.7a. Yellow oil ($30 \mathrm{mg}, 0.03 \mathrm{mmol}, 7 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.52$ (d, $J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.42-7.38 (m, 4H), 7.24-7.20 (m, 2H), 7.06-7.04 (m, 2H), $4.93(\mathrm{~d}, J=5.4$ Hz, 4H), 4.02-3.97 (m, 8H), 3.06-2.96 (m, 4H), 2.59 (t, J = 5.0 Hz, 8H), 2.46-2.40 (m, 4H), 1.32-1.29 (m, 12H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: $158.60\left(6 \mathrm{C}_{\text {quat }}\right), 141.18$ (2Cquat), 133.15 (+, 2Ar-CH), 127.48 (+, 2Ar-CH), 126.69 (+, 2Ar-CH), 126.25 (+, 2Ar-CH), 125.87 ($2 \mathrm{C}_{\text {quat }}$), 125.39 (+, 2Ar-CH), 120.51 (+, 2Ar-CH), 110.98 ($2 \mathrm{C}_{\text {quat }}$), 58.71 (-, 2CH2), 53.07 (-, $\left.2 \mathrm{CH}_{2}\right), 45.42\left(-, 4 \mathrm{CH}_{2}\right), 43.50\left(-, 2 \mathrm{CH}_{2}\right), 39.74\left(-, 2 \mathrm{CH}_{2}\right), 34.46\left(-, 2 \mathrm{CH}_{2}\right), 29.49\left(-, 2 \mathrm{CH}_{2}\right)$, $27.60\left(-, 2 \mathrm{CH}_{2}\right), 26.24\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{44} \mathrm{H}_{54} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{~S}_{2}\left[\mathrm{MH}^{+}\right] 857.3424$, found 857.3417 .

2,2'-[Dodecane-1,12-diylbis(piperazine-4,1-diyl)]bis[6-chloro- N -(thiophen-2-ylmethyl) quinazoline-4-amine] (3.13b).

Compound 3.13b was prepared from compound 3.12 (360 mg , 1 mmol) and 1,12-dibromododecane ($164 \mathrm{mg}, 0.5 \mathrm{mmol}$) by analogy with the procedure for the preparation of compound 3.7a. Yellow oil ($22 \mathrm{mg}, 0.02 \mathrm{mmol}, 4 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]$: $7.47(\mathrm{~s}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 2 \mathrm{H})$, $4.93(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.05-3.93(\mathrm{~m}, 8 \mathrm{H}), 3.63(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H})$, 2.61-2.52(m, 8H), 2.45-2.39 (m, 4H), 1.28-1.21 (m, 16H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 158.54 ($6 \mathrm{C}_{\text {quat }}$), 141.09 ($2 \mathrm{C}_{\text {quat }}$), 133.20 (+, 2Ar-CH), 127.34 (+, 2Ar-CH), 126.73 (+, 2Ar-CH), 126.32 (+, $2 \mathrm{Ar}-\mathrm{CH}), 125.86$ (+, 2Ar-CH), $125.47\left(2 \mathrm{C}_{\text {quat }}\right), 120.38(+, 2 \mathrm{Ar}-\mathrm{CH}), 110.98\left(2 \mathrm{C}_{\text {quat }}\right), 62.99(-$, $\left.2 \mathrm{CH}_{2}\right), 58.90\left(-, 2 \mathrm{CH}_{2}\right), 53.27\left(-, 2 \mathrm{CH}_{2}\right), 43.64\left(-, 4 \mathrm{CH}_{2}\right), 43.50\left(-, 2 \mathrm{CH}_{2}\right), 39.94\left(-, 2 \mathrm{CH}_{2}\right)$, $32.80\left(-, 2 \mathrm{CH}_{2}\right), 29.53\left(-, 2 \mathrm{CH}_{2}\right), 27.53\left(-, 2 \mathrm{CH}_{2}\right), 25.75\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{46} \mathrm{H}_{58} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{~S}_{2}\left[\mathrm{MH}^{+}\right] 885.3737$, found 885.3736.

tert-Butyl [2-(4-\{6-chloro-4-[(thiophen-2-ylmethyl)amino]quinazolin-2-yl\}piperazin-1-yl) ethyl]carbamate (3.14a).

To a solution of compound 3.12 ($910 \mathrm{mg}, 2.5 \mathrm{mmol}$) in acetonitrile, DIPEA ($323 \mathrm{mg}, 2.51$ mmol), tert-butyl (2-bromoethyl)carbamate ($614 \mathrm{mg}, 2.75 \mathrm{mmol}$) and sodium iodide (375 mg , 2.51 mmol) were added. The reaction mixture was heated to reflux for 2 h (control by TLC), the solvent was evaporated, and the remaining mixture was poured into water. The product was extracted with DCM, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under reduced pressure, and the residue was subjected to column chromatography (DCM/MeOH/25\% aqueous ammonia, 100/2.5/1), yielding a yellow solid ($680 \mathrm{mg}, 1.35 \mathrm{mmol}, 54.8 \%$). m.p. $171^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 7.45-7.41 (m, $2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 1 \mathrm{H})$, 6.99-6.94 (m, 1H), $4.94(\mathrm{~d}, \mathrm{~J}=$ $5.3 \mathrm{~Hz}, 2 \mathrm{H})$, 3.99-3.89 (m, 4H), 3.33-3.21 (m, 2H), 2.55-2.45 (m, 6H), $1.46(\mathrm{~s}, 9 \mathrm{H})$.

tert-Butyl [3-(4-\{6-chloro-4-[(thiophen-2-ylmethyl)amino]quinazolin-2-yl\}piperazin-1-yl) propyl]carbamate (3.14b).

Compound 3.14b was prepared by analogy with the procedure for the preparation of 3.14a, using compound 3.12 ($579 \mathrm{mg}, 1.59 \mathrm{mmol}$) and tert-butyl (3-bromopropyl)carbamate (530 mg , $1.59 \mathrm{mmol})$. After purification of column chromatography (DCM/MeOH/25\% aqueous
ammonia, $100 / 2.5 / 1$), a white solid was obtained ($501 \mathrm{mg}, 0.97 \mathrm{mmol}, 61.3 \%$). m.p. $167^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H})$, 7.06-7.03 (m, 1H), 6.96-6.92 (m, 1H), 4.93 (d, J = 5.4 Hz, 2H), 4.00-3.89 (m, 4H), 3.26-3.15 ($\mathrm{m}, 2 \mathrm{H}$), 2.56-2.40 (m, 6H), 1.74-1.63 (m, 2H), $1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 158.57 ($\mathrm{C}_{\text {quat }}$), 158.51 ($\mathrm{C}_{\text {quat }}$), 156.16 ($\mathrm{C}_{\text {quat }}$), 150.71 ($\mathrm{C}_{\text {quat }}$), 141.24 ($\left.\mathrm{C}_{\text {quat }}\right)$, 133.15 (+, Ar-CH), 127.24 (+, Ar-CH), 126.66 (+, Ar-CH), 126.30 (+, Ar-CH), 125.77 ($\mathrm{C}_{\text {quat }}$), 125.38 (+, Ar-CH), 120.59 (+, Ar-CH), $110.97\left(\mathrm{C}_{\text {quat }}\right), 78.94\left(\mathrm{C}_{\text {quat }}\right), 66.83\left(-, \mathrm{CH}_{2}\right), 57.01\left(-, \mathrm{CH}_{2}\right), 53.33$ $\left(-, 2 \mathrm{CH}_{2}\right), 43.90\left(-, 2 \mathrm{CH}_{2}\right), 42.75\left(-, \mathrm{CH}_{2}\right), 39.83\left(-, \mathrm{CH}_{2}\right), 28.48\left(+, 3 \mathrm{CH}_{3}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{ClN}_{6} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{MH}^{+}\right] 517.2147$, found 517.2148 .

N^{1}, N^{4}-Bis[2-(4-\{6-chloro-4-[(thiophen-2-ylmethyl)amino]quinazolin-2-yl\}piperazin-1-yl) ethyl]succinamide (3.15a).

Compound 3.14a ($251 \mathrm{mg}, 0.50 \mathrm{mmol}$) was dissolved in 10 mL DCM, 10 mL of TFA was added dropwise, the mixture was stirred at rt for 3 h (control by TLC). The solvent was evaporated, the remaining oil was dissolved in anhydrous THF, succinyl dichloride (32 mg , $0.20 \mathrm{mmol})$ were added dropwise in presence of TEA ($128 \mathrm{mg}, 0.80 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for another 30 min , then allowed to warm to room temperature with stirring for 2 h (control by TLC). The solvent was evaporated, and the remaining mixture was poured into water. The aqueous layer was extracted with DCM, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, and the product was purified by column chromatography (DCM/MeOH/25\% aqueous ammonia, $100 / 2 / 1$). White solid ($40 \mathrm{mg}, 0.05 \mathrm{mmol}, 20.3 \%$), m.p. $112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- d_{6}) δ [ppm]: 8.19 (d, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.52-7.44 (m, 2H), 7.37-7.31 (m, 2H), 7.26 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.07 (d, $J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 2 \mathrm{H}), 4.81(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 4 \mathrm{H})$, 3.94-3.66 (m, 8H), 3.42-3.35 (m, 4H), 3.26-3.12 (m, 4H), 2.53-2.47 (m, 8H), 2.33-2.30 (m, 4H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta[p p m]: 171.24$ ($2 \mathrm{C}_{\text {quat }}$), 158.54 ($2 \mathrm{C}_{\text {quat }}$), 158.18 ($2 \mathrm{C}_{\text {quat }}$), 150.46 ($2 \mathrm{C}_{\text {quat }}$), 142.24 ($4 \mathrm{C}_{\text {quat }}$, 132.57 (+, 2Ar-CH), 126.83 (+, 2Ar-CH), 126.22 (+, 2Ar-CH), 125.87 (+, 2Ar-CH), 125.07 (+, 2Ar-CH), 122.13 (+, 2Ar-CH), 111.11 ($2 \mathrm{C}_{\text {quat }}$), 56.98 (-, $\left.2 \mathrm{CH}_{2}\right), 52.64$ $\left(-, 2 \mathrm{CH}_{2}\right), 43.25\left(-, 2 \mathrm{CH}_{2}\right), 38.53\left(-, 4 \mathrm{CH}_{2}\right), 35.85\left(-, 2 \mathrm{CH}_{2}\right), 30.80\left(-, 4 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{42} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}\left[\mathrm{MH}^{+}\right]$887.2914, found 887.2908.

N^{1}, N^{6}-Bis[2-(4-\{6-chloro-4-[(thiophen-2-ylmethyl)amino]quinazolin-2-yl\}piperazin-1-yl) ethyl]adipamide (3.15b).

Compound 3.15b was prepared by analogy with the procedure for the preparation of 3.15a, using compound 3.14a ($407 \mathrm{mg}, 0.81 \mathrm{mmol}$) and adipoyl dichloride ($33 \mathrm{mg}, 0.17 \mathrm{mmol}$). White solid ($117 \mathrm{mg}, 0.13 \mathrm{mmol}, 32.0 \%$), m.p. $192{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CH}_{3} \mathrm{OD}\right) \delta$ [ppm]: 8.23 (d, $J=2.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.85-7.80 (m, 2H), 7.64 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34-7.30 (m, 2H), 7.15-7.12 (m, 2H), 7.00-6.96 (m, 2H), 5.04 (s, 4H), 4.40-4.20 (m, 8H), 3.67-3.45 (m, 12H), 3.36-3.32 ($\mathrm{m}, 4 \mathrm{H}$), 2.35-2.25 ($\mathrm{m}, 4 \mathrm{H}$), 1.70-1.63 (m, 4H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CH}_{3} \mathrm{OD}\right) \delta$ [ppm]:177.32 ($2 \mathrm{C}_{\text {quat }}$), $160.43\left(2 \mathrm{C}_{\text {quat }}\right)$, $153.38\left(2 \mathrm{C}_{\text {quat }}\right), 140.70\left(4 \mathrm{C}_{\text {quat }}\right), 136.88(+, 2 \mathrm{Ar}-\mathrm{CH})$, 132.22 ($2 \mathrm{C}_{\text {quat }}$), 128.11 (+ , $2 \mathrm{Ar}-\mathrm{CH}$), 127.88 (+ , $2 \mathrm{Ar}-\mathrm{CH}$), 126.71 (+ , $2 \mathrm{Ar}-\mathrm{CH}$), 124.43 (+, $2 \mathrm{Ar}-\mathrm{CH}), 120.82(+, 2 \mathrm{Ar}-\mathrm{CH}), 112.60\left(2 \mathrm{C}_{\text {quat }}\right), 58.00\left(-, 2 \mathrm{CH}_{2}\right), 52.48\left(-, 4 \mathrm{CH}_{2}\right), 43.45(-$, $\left.4 \mathrm{CH}_{2}\right), 41.35\left(-, 2 \mathrm{CH}_{2}\right), 36.42\left(-, 2 \mathrm{CH}_{2}\right), 35.36\left(-, 2 \mathrm{CH}_{2}\right), 26.06\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{Cl}_{2} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}\left[\mathrm{MH}^{+}\right]$915.3227, found 915.3226.

N^{1}, N^{β}-Bis[2-(4-\{6-chloro-4-[(thiophen-2-ylmethyl)amino]quinazolin-2-yl\}piperazin-1-yl) ethyl]octanediamide (3.15c).

Compound 3.15 c was prepared by analogy with the procedure for the preparation of $\mathbf{3 . 1 5 a}$, using compound 3.14 a ($231 \mathrm{mg}, 0.46 \mathrm{mmol}$) and octanedioyl dichloride ($42 \mathrm{mg}, 0.20 \mathrm{mmol}$). White solid ($110 \mathrm{mg}, 0.12 \mathrm{mmol}, 52.1 \%$), m.p. $194^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta[\mathrm{ppm}]:$ 8.10 (d, $J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.09-7.05 (m, 2H), 6.96-6.92 (m, 2H), $4.82(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 8 \mathrm{H}), 3.23-3.14$ ($\mathrm{m}, 4 \mathrm{H}$), 2.46-2.31 (m, 12H), $2.04(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 4 \mathrm{H})$, 1.53-1.40 (m, 4H), 1.26-1.18 (m, 4H). ${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) δ [ppm]: 171.91 ($2 \mathrm{C}_{\text {quat }}$), $158.52\left(2 \mathrm{C}_{\text {quat }}\right.$), 158.22 ($2 \mathrm{C}_{\text {quat }}$), $150.52\left(2 \mathrm{C}_{\text {quat }}\right)$, 142.22 ($2 \mathrm{C}_{\text {quat }}$), 132.56 (+, 2Ar-CH), 126.89 (+, 2Ar-CH), 126.24 (+, 2Ar-CH), 125.84 (+, 2Ar-CH), 125.10 (,$+ 2 \mathrm{Ar}-\mathrm{CH}$), $123.97\left(2 \mathrm{C}_{\text {quat }}\right), 121.91$ (+, 2Ar-CH), 111.03 ($2 \mathrm{C}_{\text {quat }}$), $57.14\left(-, 2 \mathrm{CH}_{2}\right), 52.71\left(-, 4 \mathrm{CH}_{2}\right), 43.32\left(-, 4 \mathrm{CH}_{2}\right), 38.67\left(-, 2 \mathrm{CH}_{2}\right), 35.91\left(-, 2 \mathrm{CH}_{2}\right), 35.28(-$, $2 \mathrm{CH}_{2}$), $28.30\left(-, 2 \mathrm{CH}_{2}\right)$, $25.12\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{46} \mathrm{H}_{56} \mathrm{Cl}_{2} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}\left[\mathrm{MH}^{+}\right]$ 943.3540 , found 943.3533 .

N^{1}, N^{10}-bis[2-(4-\{6-chloro-4-[(thiophen-2-ylmethyl)amino]quinazolin-2-yl\}piperazin-1-yl) ethyl]decanediamide (3.15d).

Compound 3.15d was prepared by analogy with the procedure for the preparation of 3.15a, using compound 3.14 a ($231 \mathrm{mg}, 0.46 \mathrm{mmol}$) and decanedioyl dichloride ($57 \mathrm{mg}, 0.24 \mathrm{mmol}$). White solid ($140 \mathrm{mg}, 0.14 \mathrm{mmol}, 61.4 \%$), m.p. $219^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 7.62 (d, $J=1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.26-7.19 (m, 4H), 7.07-7.03 (m, 2H), 6.98-6.93 (m, 2H), $4.90(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.99-3.91(\mathrm{~m}, 8 \mathrm{H}), 3.44-3.35(\mathrm{~m}, 4 \mathrm{H}), 2.60-2.52$ ($\mathrm{m}, 12 \mathrm{H}$), $2.19(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.27(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ [ppm]:173.47 ($\left.6 \mathrm{C}_{\text {quat }}\right), 158.52\left(2 \mathrm{C}_{\text {quat }}\right), 140.69\left(2 \mathrm{C}_{\text {quat }}\right), 133.42(+, 2 \mathrm{Ar}-\mathrm{CH}), 126.79(+$, $2 \mathrm{Ar}-\mathrm{CH}$), 126.55 (+, 2Ar-CH), 125.43 (+, 4Ar-CH), 121.22 (+, 2Ar-CH), 110.92 (4Cquat), $56.74\left(-, 2 \mathrm{CH}_{2}\right), 52.79\left(-, 4 \mathrm{CH}_{2}\right), 45.71\left(-, 2 \mathrm{CH}_{2}\right), 43.92\left(-, 2 \mathrm{CH}_{2}\right), 39.86\left(-, 2 \mathrm{CH}_{2}\right), 36.70(-$, $\left.2 \mathrm{CH}_{2}\right), 35.73\left(-, 2 \mathrm{CH}_{2}\right), 29.19\left(-, 2 \mathrm{CH}_{2}\right), 29.19\left(-, 2 \mathrm{CH}_{2}\right), 25.71\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{Cl}_{2} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}\left[\mathrm{MH}^{+}\right] 971.3853$, found 971.3848 .

N^{1}, N^{4}-Bis[3-(4-\{6-chloro-4-[(thiophen-2-ylmethyl)amino]quinazolin-2-yl\}piperazin-1-yl) propyl]succinamide (3.16a).

Compound 3.16a was prepared by analogy with the procedure for the preparation of 3.15a, using compound $\mathbf{3 . 1 4 b}$ ($345 \mathrm{mg}, 0.67 \mathrm{mmol}$) and succinyl dichloride ($46 \mathrm{mg}, 0.30 \mathrm{mmol}$). White solid ($180 \mathrm{mg}, 0.20 \mathrm{mmol}, 59.7 \%$), m.p. $106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]:$ $7.50(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.92$ ($\mathrm{m}, 2 \mathrm{H}$), $4.91(\mathrm{~d}, ~ J=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 4-3.85(\mathrm{~m}, 8 \mathrm{H}), 3.41-3.25(\mathrm{~m}, 4 \mathrm{H}), 2.60-2.40(\mathrm{~m}, 16 \mathrm{H})$, 1.77-1.60 (m, 4H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 172.02 ($2 \mathrm{C}_{\text {quat }}$), 158.59 (4Cqua), $150.77\left(2 \mathrm{C}_{\text {quat }}\right)$, $141.23\left(2 \mathrm{C}_{\text {quat }}\right)$, 133.15 (+, 2Ar-CH), 127.33 (+, 2Ar-CH), 126.69 (+, 2Ar-CH), 126.26 (+, 2Ar-CH), 125.79 ($2 \mathrm{C}_{\text {quat }}$), 125.44 (+, 2Ar-CH), 120.53 (+, 2Ar-CH), 111.01 (2Cquat), $57.29\left(-, \mathrm{CH}_{2}\right), 53.31\left(-, 2 \mathrm{CH}_{2}\right), 43.99\left(-, 2 \mathrm{CH}_{2}\right), 39.92\left(-, \mathrm{CH}_{2}\right), 39.28\left(-, \mathrm{CH}_{2}\right), 31.95\left(-, \mathrm{CH}_{2}\right)$, $25.32\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{Cl}_{2} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}\left[\mathrm{MH}^{+}\right]$915.3227, found 915.3227. N^{1}, N^{6}-Bis[3-(4-\{6-chloro-4-[(thiophen-2-ylmethyl)amino]quinazolin-2-yl\}piperazin-1-yl) propyl]adipamide (3.16b).

Compound 3.16b was prepared by analogy with the procedure for the preparation of 3.15a, using compound 3.14b ($306 \mathrm{mg}, 0.59 \mathrm{mmol}$) and adipoyl dichloride ($46 \mathrm{mg}, 0.25 \mathrm{mmol}$).

White solid ($210 \mathrm{mg}, 0.22 \mathrm{mmol}, 74.1 \%$), m.p. $91^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]:$ $7.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.92$ ($\mathrm{m}, 2 \mathrm{H}$), $4.92(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.00-3.85(\mathrm{~m}, 8 \mathrm{H}), 3.43-3.34(\mathrm{~m}, 4 \mathrm{H}), 2.60-2.39(\mathrm{~m}, 12 \mathrm{H})$, 2.20-2.10 (m, 4H), 1.73-1.61 (m, 8H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 172.63 (2C quat), $158.74\left(2 \mathrm{C}_{\text {quat }}\right)$, $158.62\left(2 \mathrm{C}_{\text {quat }}\right)$, $150.91\left(2 \mathrm{C}_{\text {quat }}\right)$, $141.25\left(2 \mathrm{C}_{\text {quat }}\right)$, 133.16 (+, $\left.2 \mathrm{Ar}-\mathrm{CH}\right), 127.40$ (+, 2Ar-CH), 126.69 (+, 2Ar-CH), 126.25 (+ , 2Ar-CH), 125.81 ($2 \mathrm{C}_{\text {quat }}$), 125.43 (+, 2Ar-CH), $120.54\left(+, 2\right.$ Ar-CH), $111.05\left(2 \mathrm{C}_{\text {quat }}\right), 57.59\left(-, \mathrm{CH}_{2}\right), 53.36\left(-, 2 \mathrm{CH}_{2}\right), 44.06\left(-, 2 \mathrm{CH}_{2}\right), 39.93(-$, $\left.\mathrm{CH}_{2}\right), 39.45\left(-, \mathrm{CH}_{2}\right), 36.47\left(-, \mathrm{CH}_{2}\right), 25.23\left(-, 4 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{46} \mathrm{H}_{56} \mathrm{Cl}_{2} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}\left[\mathrm{MH}^{+}\right] 943.3540$, found 943.3535 .

N^{1}, N^{β}-Bis[3-(4-\{6-chloro-4-[(thiophen-2-ylmethyl)amino]quinazolin-2-yl\}piperazin-1-yl) propyl]octanediamide (3.16c).

Compound 3.16 c was prepared by analogy with the procedure for the preparation of $\mathbf{3 . 1 5 a}$, using compound $\mathbf{3 . 1 4 b}$ ($327 \mathrm{mg}, 0.63 \mathrm{mmol}$) and octanedioyl dichloride ($45 \mathrm{mg}, 0.21 \mathrm{mmol}$). White solid ($130 \mathrm{mg}, 0.13 \mathrm{mmol}, 41.0 \%$), m.p. $97^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]:$ $7.52(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.92$ $(\mathrm{m}, 2 \mathrm{H}), 4.92(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.01-3.84(\mathrm{~m}, 8 \mathrm{H}), 3.40-3.27(\mathrm{~m}, 4 \mathrm{H}), 2.58-2.40(\mathrm{~m}, 12 \mathrm{H})$, 2.13-2.06 (m, 4H), 1.72-1.69 (m, 4H), 1.63-1.54 (m, 4H), 1.27-1.23 (m, 4H). ${ }^{13}$ C-NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: $172.95\left(2 \mathrm{C}_{\text {quat }}\right), 158.76\left(2 \mathrm{C}_{\text {quat }}\right), 158.65\left(2 \mathrm{C}_{\text {quat }}\right), 150.92\left(2 \mathrm{C}_{\text {quat }}\right), 141.27$ ($2 \mathrm{C}_{\text {quat }}$), 133.19 (+, 2Ar-CH), 127.38 (+, 2Ar-CH), 126.68 (+, 2Ar-CH), 126.22 (+, 2Ar-CH), 125.84 ($2 \mathrm{C}_{\text {quat }}$), 125.40 (+, 2Ar-CH), 120.60 (+, 2Ar-CH), 111.08 ($2 \mathrm{C}_{\text {quat }}$), 57.76 (-, CH_{2}), $53.38\left(-, 2 \mathrm{CH}_{2}\right), 44.05\left(-, 2 \mathrm{CH}_{2}\right), 39.92\left(-, \mathrm{CH}_{2}\right), 39.55\left(-, \mathrm{CH}_{2}\right), 36.88\left(-, 2 \mathrm{CH}_{2}\right), 28.97(-$, $2 \mathrm{CH}_{2}$), $25.73\left(-, 2 \mathrm{CH}_{2}\right), 25.16\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{Cl}_{2} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}\left[\mathrm{MH}^{+}\right]$ 971.3853 , found 971.3852 .

N^{1}, N^{10}-Bis[3-(4-\{6-chloro-4-[(thiophen-2-ylmethyl)amino]quinazolin-2-yl\}piperazin-1-yl) propyl]decanediamide (3.16d).

Compound 3.16d was prepared by analogy with the procedure for the preparation of 3.15a, using compound 3.14b ($339 \mathrm{mg}, 0.66 \mathrm{mmol}$) and decanedioyl dichloride ($87 \mathrm{mg}, 0.36 \mathrm{mmol}$). White solid ($250 \mathrm{mg}, 0.25 \mathrm{mmol}, 76.0 \%$), m.p. $110^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]:$
$7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.91$ ($\mathrm{m}, 2 \mathrm{H}$), $4.91(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.97-3.85(\mathrm{~m}, 8 \mathrm{H}), 3.43-3.27(\mathrm{~m}, 4 \mathrm{H}), 2.59-2.41(\mathrm{~m}, 12 \mathrm{H})$, 2.13-2.03 (m, 4H), 1.75-1.62 (m, 4H), 1.63-1.50 (m, 4H), 1.30-1.15 (m, 8H). ${ }^{13}$ C-NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: $173.08\left(2 \mathrm{C}_{\text {quat }}\right), 158.78\left(2 \mathrm{C}_{\text {quat }}\right), 158.68\left(2 \mathrm{C}_{\text {quat }}\right), 150.90\left(2 \mathrm{C}_{\text {quat }}\right), 141.31$ ($2 \mathrm{C}_{\text {quat }}$), 133.18 (+, 2Ar-CH), 127.36 (+, 2Ar-CH), 126.66 (+, 2Ar-CH), 126.19 (+, 2Ar-CH), 125.85 ($2 \mathrm{C}_{\text {quat }}$), 125.36 (+, 2Ar-CH), 120.66 (+, 2Ar-CH), 111.11 ($2 \mathrm{C}_{\text {quat }}$), $57.89\left(-, \mathrm{CH}_{2}\right)$, $53.39\left(-, 2 \mathrm{CH}_{2}\right), 44.07\left(-, 2 \mathrm{CH}_{2}\right), 39.89\left(-, \mathrm{CH}_{2}\right), 39.68\left(-, \mathrm{CH}_{2}\right), 37.06\left(-, 2 \mathrm{CH}_{2}\right), 29.29(-$, $\left.2 \mathrm{CH}_{2}\right), 29.23\left(-, 2 \mathrm{CH}_{2}\right), 25.93\left(-, 2 \mathrm{CH}_{2}\right), 25.04\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) calcd for $\mathrm{C}_{50} \mathrm{H}_{64} \mathrm{Cl}_{2} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}\left[\mathrm{MH}^{+}\right]$999.4166, found 999.4166.

3.3.2. Pharmacology

3.3.2.1. Competition binding experiments

Competition binding experiments were performed on membrane preparations of Sf9 insect cells expressing the $h H_{1} R+R G S 4$ or the $h H_{4} R+G_{\text {ai2 }}+\beta_{1 Y_{2}}$. General procedures for the generation of recombinant baculoviruses, culture of Sf9 cells and membrane preparation are described elsewhere. ${ }^{49}$ The respective membranes were thawed and sedimented by centrifugation at $4^{\circ} \mathrm{C}$ and 13000 rpm for 10 min . Membranes were re-suspended in binding buffer (12.5 mM MgCl , 1 mM EDTA, and 75 mM Tris/HCl, pH 7.4). Each tube (total volume $100 \mu \mathrm{~L})$ contained $30 \mu \mathrm{~g}\left(\mathrm{hH}_{1} \mathrm{R}\right)$ or $100 \mu \mathrm{~g}\left(\mathrm{hH}_{4} \mathrm{R}\right)$ of membrane protein and increasing concentrations of unlabeled ligands. Radioligands: $\mathrm{H}_{1} \mathrm{R}$: $\left.{ }^{3} \mathrm{H}\right]$ pyrilamine, specific activity 20.0 $\mathrm{Ci} / \mathrm{mmol}, \mathrm{K}_{\mathrm{d}}=4.5 \mathrm{nM},{ }^{50} \mathrm{c}=5 \mathrm{nM}$, nonspecific binding determined in the presence of $10 \mu \mathrm{M}$ of diphenhydramine; $\mathrm{H}_{4} \mathrm{R}$: $\left.{ }^{3} \mathrm{H}\right]$ histamine, specific activity $25 \mathrm{Ci} / \mathrm{mmol}, \mathrm{K}_{\mathrm{d}}=10 \mathrm{nM},{ }^{43} \mathrm{c}=10 \mathrm{nM}$, nonspecific binding determined in the presence of $10 \mu \mathrm{M}$ of histamine. Filtration through glass microfiber filters (for $\mathrm{hH}_{4} \mathrm{R}$, glass microfiber filters was pretreated with 0.3% polyethylenimine, Whatman GF/B, Maidstone, UK) using a Brandel 96 sample harvester (Brandel, Gaithersburg, MD) separated unbound from membrane associated radioligand. After three washing steps with binding buffer, filter pieces for each well were punched out and transferred into 96 -well sample plates 1450-401 (Perkin Elmer, Rodgau Germany). Each well was supplemented with $200 \mu \mathrm{~L}$ of scintillation cocktail (Rotiscint Eco plus, Roth, Karlsruhe, Germany) and incubated in the dark. Radioactivity was measured with a Micro Beta² 1450 scintillation counter (Perkin

Elmer, Rodgau, Germany). Protein concentration was determined by the method of Lowry using bovine serum albumin as standard. ${ }^{51}$ Data analysis of the resulting competition curves was accomplished by non-linear regression analysis using the algorithms in PRISM GraphPad Software (GraphPad Prism 5.0 software, San Diego, CA). K_{i} values were calculated according to the Cheng-Prusoff equation. ${ }^{52}$ Values represent the mean \pm SEM of 3 independent experiments each performed in triplicate.

3.3.2.2. Preparation of compound stock solutions

All compounds were dissolved in 50% DMSO and 50% double distilled water (v / v) with appropriate equivalents of aqueous HCl . The final DMSO concentration was adjusted to 5% $(\mathrm{v} / \mathrm{v})$ in all assays. As demonstrated previously, DMSO concentrations up to $5 \%(\mathrm{v} / \mathrm{v})$ are tolerated and have no influence on pK_{i} and pEC_{50} values. ${ }^{50,53}$ Ligand concentrations were used in the range from 0.1 nM up to 1 mM .

3.4. References

1. Kleinau, G.; Müller, A.; Biebermann, H. Oligomerization of GPCRs involved in endocrine regulation. J. Mol. Endocrinol. 2016, 57, R59-R80.
2. George, S. R.; O'Dowd, B. F.; Lee, S. P. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat. Rev. Drug. Discov. 2002, 1, 808-820.
3. Smith, N. J.; Milligan, G. Allostery at G protein-coupled receptor homo-and heteromers: uncharted pharmacological landscapes. Pharmacol. Rev. 2010, 62, 701-725.
4. Tadagaki, K.; Jockers, R.; Kamal, M. History and biological significance of GPCR heteromerization in the neuroendocrine system. Neuroendocrinology 2011, 95, 223-231.
5. Wootten, D.; Miller, L. J.; Koole, C.; Christopoulos, A.; Sexton, P. M. Allostery and biased agonism at class BG protein-coupled receptors. Chem. Rev. 2016.
6. Conn, P. J.; Christopoulos, A.; Lindsley, C. W. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat. Rev. Drug. Discov. 2009, 8, 41-54.
7. McVey, M.; Ramsay, D.; Kellett, E.; Rees, S.; Wilson, S.; Pope, A. J.; Milligan, G. Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer the human δ-opioid receptor displays constitutive oligomerization at the cell surface, which is not
regulated by receptor occupancy. J. Biol. Chem. 2001, 276, 14092-14099.
8. Cvejic, S.; Devi, L. A. Dimerization of the δ opioid receptor: implication for a role in receptor internalization. J. Biol. Chem. 1997, 272, 26959-26964.
9. Jordan, B. A.; Devi, L. A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature 1999, 399, 697-700
10. Angers, S.; Salahpour, A.; Joly, E.; Hilairet, S.; Chelsky, D.; Dennis, M.; Bouvier, M. Detection of $\beta 2$-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 3684-3689.
11. Grant, M.; Kumar, U. The role of G-proteins in the dimerisation of human somatostatin receptor types 2 and 5. Regul. Peptides. 2010, 159, 3-8.
12. Durán-Prado, M.; Malagón, M. M.; Gracia-Navarro, F.; Castaño, J. P. Dimerization of G protein-coupled receptors: new avenues for somatostatin receptor signalling, control and functioning. Mol. Cell Endocrinol. 2008, 286, 63-68.
13. Scarselli, M.; Novi, F.; Schallmach, E.; Lin, R.; Baragli, A.; Colzi, A.; Griffon, N.; Corsini, G. U.; Sokoloff, P.; Levenson, R. $\mathrm{D}_{2} / \mathrm{D}_{3}$ dopamine receptor heterodimers exhibit unique functional properties. J. Biol. Chem. 2001, 276, 30308-30314.
14. Lee, S. P.; So, C. H.; Rashid, A. J.; Varghese, G.; Cheng, R.; Lança, A. J.; O'Dowd, B. F.; George, S. R. Dopamine D_{1} and D_{2} receptor Co-activation generates a novel phospholipase C-mediated calcium signal. J. Biol. Chem. 2004, 279, 35671-35678.
15. Łukasiewicz, S.; Polit, A.; Kędracka-Krok, S.; Wędzony, K.; Maćkowiak, M.; Dziedzicka-Wasylewska, M. Hetero-dimerization of serotonin $5-\mathrm{HT}_{2 \mathrm{~A}}$ and dopamine D_{2} receptors. Biochim. Biophys. Acta 2010, 1803, 1347-1358.
16. Zeng, F.-Y.; Wess, J. Molecular aspects of muscarinic receptor dimerization. Neuropsychopharmacology 2000, 23, S19-S31.
17. Hern, J. A.; Baig, A. H.; Mashanov, G. I.; Birdsall, B.; Corrie, J. E.; Lazareno, S.; Molloy, J. E.; Birdsall, N. J. Formation and dissociation of M_{1} muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 2693-2698.
18. Bakker, R. A.; Dees, G.; Carrillo, J. J.; Booth, R. G.; López-Gimenez, J. F.; Milligan, G.; Strange, P. G.; Leurs, R. Domain swapping in the human histamine H_{1} receptor. J. Pharmacol. Exp. Ther. 2004, 311, 131-138.
19. Fukushima, Y.; Asano, T.; Saitoh, T.; Anai, M.; Funaki, M.; Ogihara, T.; Katagiri, H.; Matsuhashi, N.; Yazaki, Y.; Sugano, K. Oligomer formation of histamine H_{2} receptors expressed in Sf9 and COS7 cells. FEBS Lett. 1997, 409, 283-286.
20. Shenton, F.; Hann, V.; Chazot, P. Evidence for native and cloned H_{3} histamine receptor higher oligomers. Inflamm. Res. 2005, 54, S48-S49.
21. Van Rijn, R. M.; Chazot, P. L.; Shenton, F. C.; Sansuk, K.; Bakker, R. A.; Leurs, R. Oligomerization of recombinant and endogenously expressed human histamine H_{4} receptors. Mol. Pharmacol. 2006, 70, 604-615.
22. Lane, J. R.; Sexton, P. M.; Christopoulos, A. Bridging the gap: bitopic ligands of G-protein-coupled receptors. Trends. Pharmacol. Sci. 2013, 34, 59-66.
23. Portoghese, P. S. From models to molecules: opioid receptor dimers, bivalent ligands, and selective opioid receptor probes. J. Med. Chem. 2001, 44, 2259-2269.
24. Portoghese, P. S. Bivalent ligands and the message-address concept in the design of selective opioid receptor antagonists. Trends. Pharmacol. Sci. 1989, 10, 230-235.
25. Shonberg, J.; Scammells, P. J.; Capuano, B. Design strategies for bivalent ligands targeting GPCRs. ChemMedChem 2011, 6, 963-974.
26. Birnkammer, T.; Spickenreither, A.; Brunskole, I.; Lopuch, M.; Kagermeier, N.; Bernhardt, G. n.; Dove, S.; Seifert, R.; Elz, S.; Buschauer, A. The bivalent ligand approach leads to highly potent and selective acylguanidine-type histamine H_{2} receptor agonists. J. Med. Chem. 2012, 55, 1147-1160.
27. Kagermeier, N.; Werner, K.; Keller, M.; Baumeister, P.; Bernhardt, G.; Seifert, R.; Buschauer, A. Dimeric carbamoylguanidine-type histamine H_{2} receptor ligands: A new class of potent and selective agonists. Bioorg. Med. Chem. 2015, 23, 3957-3969.
28. Huber, D.; Hubner, H.; Gmeiner, P. 1, 1^{\prime}-Disubstituted ferrocenes as molecular hinges in mono-and bivalent dopamine receptor ligands. J. Med. Chem. 2009, 52, 6860-6870.
29. Kühhorn, J.; Hübner, H.; Gmeiner, P. Bivalent dopamine D_{2} receptor ligands: synthesis and binding properties. J. Med. Chem. 2011, 54, 4896-4903.
30. McRobb, F. M.; Crosby, I. T.; Yuriev, E.; Lane, J. R.; Capuano, B. Homobivalent ligands of the atypical antipsychotic clozapine: design, synthesis, and pharmacological evaluation. J. Med. Chem. 2012, 55, 1622-1634.
31. Soriano, A.; Ventura, R.; Molero, A.; Hoen, R.; Casadó, V.; Cortés, A.; Fanelli, F.; Albericio, F.; Lluís, C.; Franco, R. Adenosine $A_{2 A}$ receptor-antagonist/dopamine D_{2} receptor-agonist bivalent ligands as pharmacological tools to detect $A_{2 A}-D_{2}$ receptor heteromers. J. Med. Chem 2009, 52, 5590-5602.
32. Jacobson, K. A.; Xie, R.; Young, L.; Chang, L.; Liang, B. T. A novel pharmacological approach to treating cardiac ischemia binary conjugates of A_{1} and A_{3} adenosine receptor agonists. J. Biol. Chem. 2000, 275, 30272-30279.
33. Weiss, S.; Keller, M.; Bernhardt, G.; Buschauer, A.; König, B. Modular synthesis of non-peptidic bivalent NPY Y_{1} receptor antagonists. Bioorg. Med. Chem. 2008, 16, 9858-9866.
34. Keller, M.; Teng, S.; Bernhardt, G.; Buschauer, A. Bivalent Argininamide-Type Neuropeptide $\mathrm{Y} \mathrm{Y}_{1}$ Antagonists Do Not Support the Hypothesis of Receptor Dimerisation. ChemMedChem 2009, 4, 1733-1745.
35. Valant, C.; Robert Lane, J.; Sexton, P. M.; Christopoulos, A. The best of both worlds? Bitopic orthosteric/allosteric ligands of g protein-coupled receptors. Annu. Rev. Pharmacol. 2012, 52, 153-178.
36. Dupuis, D. S.; Perez, M.; Halazy, S.; Colpaert, F. C.; Pauwels, P. J. Magnitude of $5-\mathrm{HT}_{1 \mathrm{~B}}$ and $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor activation in guinea-pig and rat brain: evidence from sumatriptan dimer-mediated $\left[{ }^{35}\right.$ S] GTPyS binding responses. Mol. Brain. Res. 1999, 67, 107-123.
37. Hill, S.; Ganellin, C.; Timmerman, H.; Schwartz, J.; Shankley, N.; Young, J.; Schunack, W.; Levi, R.; Haas, H. International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol. Rev. 1997, 49, 253-278.
38. Smits, R. A.; de Esch, I. J.; Zuiderveld, O. P.; Broeker, J.; Sansuk, K.; Guaita, E.; Coruzzi, G.; Adami, M.; Haaksma, E.; Leurs, R. Discovery of quinazolines as
histamine H_{4} receptor inverse agonists using a scaffold hopping approach. J. Med. Chem. 2008, 51, 7855-7865.
39. Wittmann, H.-J.; Seifert, R.; Strasser, A. Contribution of binding enthalpy and entropy to affinity of antagonist and agonist binding at human and guinea pig histamine H_{1}-receptor. Mol. Pharmacol. 2009, 76, 25-37.
40. Deml, K.-F.; Beermann, S.; Neumann, D.; Strasser, A.; Seifert, R. Interactions of histamine H_{1}-receptor agonists and antagonists with the human histamine H_{4}-receptor. Mol. Pharmacol. 2009, 76, 1019-1030.
41. Wagner, E.; Wittmann, H.-J.; Elz, S.; Strasser, A. Pharmacological profile of astemizole-derived compounds at the histamine H_{1} and H_{4} receptor- H_{1} / H_{4} receptor selectivity. Naunyn-Schmiedeberg's Arch. Pharmacol. 2014, 387, 235-250.
42. Seifert, R.; Wenzel-Seifert, K.; Bürckstümmer, T.; Pertz, H. H.; Schunack, W.; Dove, S.; Buschauer, A.; Elz, S. Multiple differences in agonist and antagonist pharmacology between human and guinea pig histamine H_{1}-receptor. J. Pharmacol. Exp. Ther. 2003, 305, 1104-1115.
43. Schneider, E. H.; Schnell, D.; Papa, D.; Seifert, R. High Constitutive Activity and a G-Protein-Independent High-Affinity State of the Human Histamine H_{4}-Receptor. Biochemistry 2009, 48, 1424-1438.
44. Shimamura, T.; Shiroishi, M.; Weyand, S.; Tsujimoto, H.; Winter, G.; Katritch, V.; Abagyan, R.; Cherezov, V.; Liu, W.; Han, G. W. Structure of the human histamine H_{1} receptor complex with doxepin. Nature 2011, 475, 65-70.
45. Aissaoui, H.; Boss, C.; Koberstein, R.; Siegrist, R.; Sifferlen, T. 5, 6, 7, 8-tetrahydro-imidazo [1, 5-a] pyrazine compounds. In Google Patents: 2009.
46. Jörg, M.; May, L. T.; Mak, F. S.; Lee, K. C. K.; Miller, N. D.; Scammells, P. J.; Capuano, B. Synthesis and pharmacological evaluation of dual acting ligands targeting the adenosine $\mathrm{A}_{2 \mathrm{~A}}$ and dopamine D_{2} receptors for the potential treatment of Parkinson's disease. J. Med. Chem. 2014, 58, 718-738.
47. Moussa, I. A.; Banister, S. D.; Beinat, C.; Giboureau, N.; Reynolds, A. J.; Kassiou, M. Design, synthesis, and structure- affinity relationships of regioisomeric N -benzyl alkyl ether piperazine derivatives as $\sigma-1$ receptor ligands. J. Med. Chem. 2010, 53, 6228-6239.
48. Wagner, E.; Wittmann, H.-J.; Elz, S.; Strasser, A. Mepyramine-JNJ7777120-hybrid compounds show high affinity to $\mathrm{hH}_{1} \mathrm{R}$, but low affinity to $\mathrm{hH}_{4} \mathrm{R}$. Bioorg. Med. Chem. Lett. 2011, 21, 6274-6280.
49. Schnell, D.; Brunskole, I.; Ladova, K.; Schneider, E. H.; Igel, P.; Dove, S.; Buschauer, A.; Seifert, R. Expression and functional properties of canine, rat, and murine histamine H_{4} receptors in Sf9 insect cells. Naunyn-Schmiedeberg's Arch. Pharmacol. 2011, 383, 457-470.
50. Straßer, A.; Striegl, B.; Wittmann, H.-J.; Seifert, R. Pharmacological profile of histaprodifens at four recombinant histamine H_{1} receptor species isoforms. J. Pharmacol. Exp. Ther. 2008, 324, 60-71.
51. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the Folin phenol reagent. J biol Chem 1951, 193, 265-275.
52. Yung-Chi, C.; Prusoff, W. H. Relationship between the inhibition constant (Ki) and the
concentration of inhibitor which causes 50 per cent inhibition (150) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.
53. Wittmann, H.-J.; Elz, S.; Seifert, R.; Straßer, A. N α-Methylated phenylhistamines exhibit affinity to the $\mathrm{hH}_{4} \mathrm{R}$-a pharmacological and molecular modelling study. Naunyn-Schmiedeberg's Arch. Pharmacol. 2011, 384, 287-299.

Chapter 4

Benzimidazole- and Quinazoline-type histamine $\mathrm{H}_{1} / \mathrm{H}_{4}$ receptor ligands: Dual vs. subtype selective antagonism

4. Benzimidazole- and Quinazoline-type histamine H_{1} / H_{4} receptor ligands: Dual vs. subtype selective antagonism

4.1. Introduction

Histamine (4.1, Figure 1) is a mediator and neurotransmitter involved in numerous physiological and pathological processes mediated via four histamine receptor subtypes, which all belong to class A of G-protein-coupled receptors. ${ }^{1-4}$ The human histamine H_{1} receptor is expressed on various cell types including endothelial cells and smooth muscle cells ${ }^{5}$ and involved in allergic and inflammatory reactions, e.g., bronchial asthma, allergic rhinitis, and urticaria. ${ }^{6}$ The human histamine H_{4} receptor which was identified and cloned around $2001,{ }^{7-13}$ is mainly localized in cells of the immune system, such as neutrophils, eosinophils, basophils, dendritic cells, mast cells and monocytes. ${ }^{7-14}$ As a major player in histamine-induced immunological and inflammatory reactions, the $\mathrm{hH}_{4} \mathrm{R}$ was suggested as a potential target for the treatment of asthma, pruritus, and rheumatoid arthritis.5, 15-22 Due to the complementary and overlapping functions of $\mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$, it has been speculated that the combination of $\mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$ antagonists in treating allergic diseases might be superior to monotherapy. ${ }^{5,}{ }^{23}$ In various experimental models of allergy, a synergistic effect of co-administered $\mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$ antagonists was observed regarding inhibition of pruritus and skin inflammation from chronic dermatitis, ${ }^{24}$ acute hapten-induced scratching, ${ }^{25}$ and peanut-induced intestinal allergy. ${ }^{26}$ Thus, dual $h H_{1} R / h H_{4} R$ antagonists with balanced high affinities at both receptors might harbor a great potential for the treatment of allergic diseases.

In order to reach multiple molecular targets simultaneously, a prevailing way is to use cocktails of drugs. But this approach may be hampered by poor patient compliance ${ }^{27}$ and the risk of drug-drug interactions. In principle, dual or multiple target ligands ${ }^{28}$ capable of addressing multiple desired biological targets are suggested to be superior with respect to higher affinity, potency, efficacy and reduced reliance on multiple drug regimens upon
administration, ${ }^{29,30}$ and enhanced or modified physiological responses. ${ }^{31-34}$ Besides their potential clinical value, such hybrid compounds may be useful pharmacological tools for in vitro investigations. Previously, ligands showing affinities at both histamine receptor subtypes, $\mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$, were described, e.g. quinazoline, ${ }^{35}$ aminopyrimidine, ${ }^{36}$ astemizole, ${ }^{37,38}$ and loxapine derivatives ${ }^{39,40}$ (Figure 1). But due to the low homology between $\mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$ (23.0\%), ${ }^{7}$ most of the putative dual receptor ligands preferred one of the receptor subtypes and failed to bind with adequate balanced affinities to both, $\mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$.

4.1
histamine $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{1} \mathrm{R}\right) 5.6^{\mathrm{a}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{2} \mathrm{R}\right) 4.3^{\mathrm{b}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{3} \mathrm{R}\right) 8.0^{\mathrm{b}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{4} \mathrm{R}\right) 7.8^{\mathrm{b}}$

3.3
quinazoline derivative $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{1} \mathrm{R}\right) 7.70 \pm 0.10^{\mathrm{c}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{4} \mathrm{R}\right) 8.12 \pm 0.02^{\mathrm{c}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{1} \mathrm{R}\right) 6.26 \pm 0.11^{\mathrm{d}}$ $\mathrm{pK}_{i}\left(\mathrm{hH}_{4} \mathrm{R}\right) 7.37 \pm 0.06^{\mathrm{d}}$

4.2

aminopyrimidine

 derivative $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{1} \mathrm{R}\right) 5.95 \pm 0.04 \mathrm{e}^{\mathrm{e}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{4} \mathrm{R}\right) 6.02 \pm 0.06^{\mathrm{e}}$
4.3
astemizole derivative $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{1} \mathrm{R}\right) 7.07 \pm 0.04^{\mathrm{d}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{4} \mathrm{R}\right) 5.61 \pm 0.08^{\mathrm{d}}$

4.4
astemizole derivative $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{1} \mathrm{R}\right) 8.77 \pm 0.05^{\mathrm{d}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{4} \mathrm{R}\right) 4.41 \pm 0.14^{\mathrm{d}}$

VUF6884
$\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{1} \mathrm{R}\right) 8.11 \pm 0.10^{\mathrm{f}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{4} \mathrm{R}\right) 7.55 \pm 0.10^{\mathrm{f}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{1} \mathrm{R}\right) 7.76 \pm 0.11 \mathrm{~g}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{4} \mathrm{R}\right) 6.99 \pm 0.019$

4.6
loxapine derivative $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{1} \mathrm{R}\right) 9.23 \pm 0.28^{9}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{4} \mathrm{R}\right) 6.90 \pm 0.10^{9}$

4.8
2-arylbenzimidazole derivative
$\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{1} \mathrm{R}\right) 4.98^{\mathrm{h}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{4} \mathrm{R}\right) 8.07^{\mathrm{h}}$

4.9
homohistamine
$\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{3} \mathrm{R}\right) 7.02^{\mathrm{i}}$ $\mathrm{pK}_{\mathrm{i}}\left(\mathrm{hH}_{4} \mathrm{R}\right) 7.50^{\mathrm{i}}$

Figure 1 Structures and affinities of selected $H_{1} R$ and/or $H_{4} R$ ligands. Pharmacological data were taken from a) Strasser et al. ${ }^{41}$ b) Igel et al. ${ }^{18}$ c) Smits et al. ${ }^{35}$ d) Wagner et al. ${ }^{37}$ e) Hammer et al. ${ }^{36}$ f) Smits et al. ${ }^{39}$ g) Naporra et al..40 h) Baumeister ${ }^{42}$ i) Geyer et al. ${ }^{43}$

In the present work, aiming at ligands with dual actions on $\mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$, compounds derived from high affinity $\mathrm{hH}_{1} \mathrm{R}$ and/or $\mathrm{hH}_{4} \mathrm{R}$ ligands were synthesized and characterized at the four human histamine receptors. For this purpose, benzimidazole-type derivatives 4.3 and 4.4 (Figure 1) were employed. Compound 4.4, a 'truncated' analog of astemizole 4.7 (Figure 1), shows high affinity to the $\mathrm{hH}_{1} \mathrm{R}\left(\mathrm{pK}_{\mathrm{i}} 8.77\right)$ but almost no affinity to the $\mathrm{hH}_{4} \mathrm{R}\left(\mathrm{pK}_{\mathrm{i}}\right.$ 4.41), compound 4.3 is a modified version of compound 4.4 with higher $\mathrm{hH}_{4} \mathrm{R}$ affinity $\left(\mathrm{pK}_{\mathrm{i}} 5.61\right)$ but reduced $\mathrm{hH}_{1} \mathrm{R}$ affinity ($\mathrm{pK}_{\mathrm{i}} 7.07$). ${ }^{37,38}$ Twenty-four derivatives with different substituents at various positions of the benzimidazole scaffold were synthesized, aiming at compounds with increased $\mathrm{hH}_{4} \mathrm{R}$ affinity but retained $\mathrm{hH}_{1} \mathrm{R}$ affinity (Figure 2). In addition, several compounds derived from 4.8 (Figure 1), a potent and selective $\mathrm{hH}_{4} \mathrm{R}$ ligand, ${ }^{42,44}$ were prepared. The $\mathrm{H}_{1} \mathrm{R}$ ligand 4.4 and the $H_{4} R$ ligand 4.8 share structural features, suggesting a combination of these two moieties to increase the affinity at both receptors. In a second approach, structural modifications in 2-position of the quinazoline scaffold of compound 3.3 (Figure 1) were carried out. For both approaches, imidazole containing building blocks, e.g., histamine 4.1 and homohistamine 4.9 (Figure 1), were employed to boost the $\mathrm{hH}_{4} \mathrm{R}$ affinity. By linking these pharmacophoric moieties to benzimidazole or quinazoline scaffold with or without a spacer, series of putative dual target ligands ${ }^{28}$ were synthesized.

Figure 2 Structural variations of benzimidazoles and quinazolines synthesized as putative dual H_{1} and H_{4} receptor ligands.

4.2. Results and discussion

4.2.1. Chemistry For the synthesis of benzimidazole derivatives (Scheme 1 and 2), N-substituted 2-chlorobenzimidazoles 4.12a-e were allowed to react with various amines under microwave radiation in the presence of a base to obtain compounds 4.19a, 4.19b, 4.20a, 4.20b, 4.23 and intermediates 4.21a, 4.21b, 4.31a-c. In case of intermediate 4.28, the reaction was performed under acidic conditions in order to increase the nucleophilic attack in favor of the amino group compared to the hydroxy group of 4-aminophenol. ${ }^{45}$

Building blocks 4.3, 4.4, 4.14a-c were synthesized in two steps according to a procedure described by Rainer et al. ${ }^{46}$ The 2-phenylbenzimidazole scaffold 4.24 was built based on a procedure described by Xu , et al. ${ }^{47}$ The propylamine moiety was introduced to compounds 4.3, 4.4, 4.24 and 4.28 by alkylation with tert-butoxycarbonyl protected bromopropylamine. In case of compound 4.26, the benzimidazole was alkylated with 1-(chloromethyl)-4-fluorobenzene prior to the cleavage of the Boc group. Compounds 4.16a, 4.16b, 4.27, 4.30, 4.32a, 4.32b were prepared by alkylation of respective amine precursors and 4-(2-bromoethyl)-1-tritylimidazole. The corresponding intermediates were not isolated but directly subjected to de-protection, followed by column chromatography or preparative HPLC to yield the title compounds. In some cases (compounds 4.18a, 4.18b, 4.22a, 4.22b), higher yields were obtained when the imidazole moiety was left unprotected, that is, 4-(2-bromoethyl)imidazole was used instead of 4-(2-bromoethyl)-1-tritylimidazole. Urocanic acid was coupled to compounds 4.31a, 4.31c affording the corresponding amides (4.33a, 4.33b), which were subjected to hydrogenation or reduction with lithium aluminum hydride to give compounds 4.34 and 4.35 a, 4.35 b, respectively.

Scheme 1 Synthesis of the benzimidazole derivatives 4.16-20, 4.22 and 4.23 $^{\text {a }}$

*compound 4.12a is a mixture of 2,5 -dichloro-1-phenethyl-1 H -benzo[d]imidazole and 2,6 -dichbro-1-phenethyl-1 H -benzoldfimidazole
${ }^{\text {aR }}$ Reagents and conditions: (i) $\mathrm{R}^{2}-\mathrm{Cl}, \mathrm{NaOH}, \mathrm{ACN}, 95^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (ii) ethyl 4 -aminopiperidine- 1 -carboxylate, $170{ }^{\circ} \mathrm{C}$, overnight; (iii) $47 \% \mathrm{HBr}$ in $\mathrm{H}_{2} \mathrm{O}, 126{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (iv) tert-butyl (3-bromopropyl)carbamate, Nal, DIPEA, ACN, reflux, 2 h ; (v) TFA, DCM, rt, 3 h ; (vi) 4-(2-bromoethyl)-1-tritylimidazole, Nal, DIPEA, ACN, reflux, 48 h ; (vii) Mel, DIPEA, ACN, 0.5 h , rt; (viii) 4-(2-bromoethyl)imidazole, DIPEA, ACN, microwave, $120^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (ix) histamine dihydrochloride, DIPEA, NMP, microwave, $200^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (x) 2-(4-methylpiperazin-1-yl)ethan-1-amine, DIPEA, NMP, microwave, $180^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (xi) piperazine, DIPEA, NMP, microwave, $180^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (xii) 4-(2-bromoethyl)imidazole, DIPEA, NMP, microwave, $120^{\circ} \mathrm{C}, 50 \mathrm{~min}$; (xiii) 1-methylpiperazine, DIPEA, NMP, microwave, $180^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

Scheme 2 Synthesis of the benzimidazole derivatives 4.26, 4.27, 4.30, 4.32, 4.33, 4.34 and 4.35^{a}

aReagents and conditions: (i) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}, \mathrm{DMF}, 90{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}, 4 \mathrm{~h}, \mathrm{O}^{\circ} \mathrm{C}$; (ii) tert-butyl(3-bromopropyl)carbamate, $\mathrm{K}_{2} \mathrm{CO}_{3}$, aceton, $60^{\circ} \mathrm{C}, 17 \mathrm{~h}$; (iii) 1-(chloromethyl)-4-fluorobenzene, $\mathrm{NaOH}, \mathrm{ACN}$, reflux, 2 h ; (iv) TFA, DCM, rt, 3 h ; (v) 4-(2-bromoethyl)-1-trityl-imidazole, Nal, DIPEA, ACN, reflux, 48 h ; (vi) 4 -aminophenol, EtOH, HCl in iso-propanol, 48 h ; (vii) diamine, DIPEA, microwave, $160-180^{\circ} \mathrm{C}$, $10 \mathrm{~min}-3 \mathrm{~h}$; (viii) urocanic acid, HOBT, TBTU, DIPEA, rt, 30 min ; (ix) 5% $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}, \mathrm{rt}, 19 \mathrm{~h}$; (x) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to rt to $70^{\circ} \mathrm{C}, 3 \mathrm{~h}, 15 \% \mathrm{NaOH}$ in $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to rt, 30 min.

Quinazoline derivatives 4.40, 4.41, 4.42 and 4.44^{35} (Scheme 3) as well as the required building blocks 4-(2-bromoethyl)-imidazole, ${ }^{48}$ 4-(2-bromoethyl)-1-trityl-imidazole, ${ }^{49}$ 4-methyl-1-piperazineethanamine, ${ }^{50}$ tert-butyl piperazine-1-carboxylate ${ }^{51}$ and 2-(1-trityl-imidazol-4-yl)ethan-1-amine, ${ }^{52}$ were synthesized according to described procedures.

Scheme 3 Synthesis of the quinazoline derivatives 4.40, 4.41, 4.42 and 4.44^{a}

${ }^{\text {aReagents }}$ and conditions: (i) thiophen-2-ylmethanamine, DIPEA, EtOAc, rt, 0.5 h ; (ii) tert-butyl piperazine-1-carboxylate, DIPEA, EtOAc, microwave, $120^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (iii) TFA, DCM, rt, 3 h ; (iv) 4-(2-bromoethyl)-imidazole, DIPEA, EtOAc, microwave, $120{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (v) 2-(4-methylpiperazin-1-yl)ethan-1-amine, DIPEA, NMP, microwave, $180{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (vi) 1-methylpiperidin-4-amine, DIPEA, NMP, microwave, $180{ }^{\circ} \mathrm{C}, \quad 50 \mathrm{~min} ; \quad$ (vii) 2-(1-tritylimidazol-4-yl)ethan-1-amine, DMF, microwave, $160^{\circ} \mathrm{C}$, 10 min.

4.2.2. Pharmacology

The title compounds were analyzed by radioligand competition binding assays on $\mathrm{hH}_{1} \mathrm{R}$ and $h H_{4} R$, and selected compounds were additionally tested on $h H_{2} R$ and $h H_{3} R$. For functional characterization, the compounds were investigated for agonism and antagonism in $\left[{ }^{35} \mathrm{~S}\right]$ GTPyS binding assays at the four human histamine receptor subtypes. All assays were performed using membrane preparations of Sf 9 insect cells expressing the $\mathrm{hH}_{1} \mathrm{R}+\mathrm{RGS4}$ (regulator of G-protein signaling 4), ${ }^{53} \mathrm{hH}_{2} R-\mathrm{G}_{\text {sas }}{ }^{54} \mathrm{hH}_{3} \mathrm{R}+\mathrm{G}_{\text {ai2 }}+\mathrm{G}_{\beta 112{ }^{55}}$ or the $\mathrm{hH}_{4} \mathrm{R}+\mathrm{G}_{\text {di2 }}+$ $\mathrm{G}_{\beta 1 y_{2}{ }^{56} \text {. }}$

4.2.2.1. Competition binding data at the $\mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$.

The affinities of the title compounds at the $\mathrm{hH}_{1} \mathrm{R}$ and the $\mathrm{hH}_{4} \mathrm{R}$ are summarized in Table 1. Based on the substituents at the 2-position of compounds 4.3 and 4.4 the benzimidazoles can be grouped into four types (Figure 4, red box). A piperazine moiety ("Type A"), attached directly or via a spacer decreased the affinity at both, the $h H_{1} R$ and the $h H_{4} R$ (e.g. compounds $4.20 \mathrm{a}, 4.20 \mathrm{~b}, 4.22 \mathrm{~b}, 4.23$). In case of compounds bearing a piperidin-4-ylamino group ("Type B"), an aminopropyl substituent at the piperidine nitrogen (4.3) increased the $\mathrm{hH}_{1} \mathrm{R}$ affinity but decreased $\mathrm{hH}_{4} \mathrm{R}$ binding (4.15b). Further extension of the substituent by imidazolylethyl moiety led to a moderate increase in $\mathrm{hH}_{4} \mathrm{R}$ affinity, whereas the pK_{i} at the $\mathrm{hH}_{1} \mathrm{R}$ remained unchanged (4.16a and 4.16b). The structural modifications of "Type C" compounds, which are derived from 2-aryl benzimidazole 4.8, were not tolerated at the $\mathrm{hH}_{1} \mathrm{R}$, unless benzimidazole and phenyl ring were connected by a NH group (cf. 4.26, 4.27 and 4.30). Interestingly, compounds 4.27 and 4.30 showed a considerable increase in $\mathrm{hH}_{4} \mathrm{R}$ affinity. Among the investigated benzimidazoles, 4.30 represented the first dual $\mathrm{hH}_{1} \mathrm{R} / \mathrm{hH}_{4} \mathrm{R}$ ligand with nearly balanced affinities in the range of $\mathrm{pK}_{\mathrm{i}} \approx 8$ (4.30, pK_{i} : $\mathrm{hH}_{1} \mathrm{R} \mathrm{8.04}, \mathrm{hH}_{4} \mathrm{R} 7.74$). Comparing compounds with and without an imidazole moiety (cf. 4.16b, 4.27 vs. 4.15b, 4.26), it becomes obvious that this substructure substantially contributes to $H_{4} \mathrm{R}$ binding, provided that the benzimidazole and the imidazole moieties are connected by appropriated linkers (cf. 4.16a, 4.16b vs. 4.18a, 4.18b). With this information, compounds of "Type D" were synthesized to further investigate the influence of the linker. Extending the linker length was beneficial with respect to $\mathrm{H}_{4} \mathrm{R}$ affinity (cf. 4.19a, 4.19b, 4.32a, 4.32b, 4.35a, 4.35b). However, the decrease in $\mathrm{hH}_{1} \mathrm{R}$ was comparable to that observed for Type C analogs. Compound 4.35b, with a distance between the imidazole and the benzimidazole ring which is $13 \AA$, similar to that of 4.30 , was identified as a dual $\mathrm{hH}_{1} \mathrm{R} / \mathrm{hH}_{4} \mathrm{R}$ ligand with balanced affinity $\left(\mathrm{K}_{\mathrm{i}}\right.$ values in the two-digit nM range).

Replacing the 4-fluorobenzyl substituent in position 1 of the benzimidazole by 2-thienylethyl phenethyl or 4-chlorobenzyl moiety (Figure 4, purple box), however, no positive influence was observed (cf. 4.14c, 4.17c vs. 4.3, 4.17b). A 4-fluorobenzyl moiety was most favorable with respect to $\mathrm{hH}_{1} \mathrm{R}$ binding (cf. 4.4, 4.16a, 4.18a, 4.19a, 4.20a, 4.22a compare with their counterpart 4.3, 4.16b, 4.18b, 4.19b, 4.20b, 4.22b). Chlorine atom introduced at 5- or

6-position of benzimidazole (Figure 4, blue box) proved detrimental to $\mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$ affinity (cf. 4.14a, 4.14b, 4.17a vs. 4.3, 4.17b). Thus, introducing a piperazine moiety at 2-position, thienylethyl at 1-position and a chlorine atom at 5- or 6-position of the benzimidazole core by analogy with a report by Smits et al. ${ }^{35}$ on quinazoline-type ligands proved unsuccessful.

All variations of the quinazoline-type ligands (Table 2) led to a decrease in affinity at both, the $\mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$, except for compound 4.44 , which showed a three-fold higher $\mathrm{hH}_{4} \mathrm{R}$ affinity, compared to compound 3.3.

Table $1 \mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$ affinities of benzimidazole-type ligands
4.

The compounds were characterized in radioligand competition binding assays using membrane preparations of Sf9 insect cells expressing the $\mathrm{hH}_{1} \mathrm{R}+\mathrm{RGS} 4$ or the $\mathrm{hH}_{4} \mathrm{R}+\mathrm{G}_{\mathrm{ai2}}+\mathrm{G}_{\beta 1 y_{2} 2}$. Radioligands: $H_{1} R$: $\left.{ }^{3} \mathrm{H}\right]$ pyrilamine, $\mathrm{K}_{\mathrm{d}}=4.5 \mathrm{nM}, \mathrm{c}=5 \mathrm{nM}$; $\mathrm{H}_{4} \mathrm{R}$: $\left.{ }^{3} \mathrm{H}\right]$ histamine, $\mathrm{K}_{\mathrm{d}}=10 \mathrm{nM}, \mathrm{c}=10 \mathrm{nM}$. Data represent mean values \pm SEM of at least three independent experiments performed in triplicate. ${ }^{\text {a }}$ Reference data from Wagner et al. ${ }^{37}$

Figure 4 Summarized structure-activity relationships of the benzimidazole-type ligands at $h H_{1} R$ and h_{4} R

Table $2 \mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$ affinities of quinazoline-type ligands

${ }^{\mathrm{a}}$ (pK_{i}) $\mathrm{hH}_{1} \mathrm{R}=7.70, \mathrm{hH} 4 \mathrm{R}=8.12$ (Smits et al. ${ }^{35}$)
The compounds were characterized in radioligand competition binding assays using membrane preparations of $\mathrm{Sf9}$ insect cells expressing the $\mathrm{hH}_{1} \mathrm{R}+\mathrm{RGS} 4$ or the $\mathrm{hH}_{4} \mathrm{R}+\mathrm{G}_{\alpha \mathrm{a} 2}+\mathrm{G}_{\beta 1 \mathrm{y} 2}$. Radioligands:
$\mathrm{H}_{1} \mathrm{R}:\left[{ }^{3} \mathrm{H}\right]$ pyrilamine, $\mathrm{K}_{\mathrm{d}}=4.5 \mathrm{nM}, \mathrm{c}=5 \mathrm{nM}$; $\mathrm{H}_{4} \mathrm{R}$: $\left[{ }^{3} \mathrm{H}\right]$ histamine, $\mathrm{K}_{\mathrm{d}}=10 \mathrm{nM}, \mathrm{c}=10 \mathrm{nM}$. Values represent the mean \pm SEM of at least three independent experiments performed in triplicate.

4.2.2.2. Histamine receptor subtype selectivity and activity of selected compounds.

Table 3 Binding and functional data of selected compounds at $\mathrm{hH}_{\mathrm{x}} \mathrm{R}$, determined by radioligand-competition binding and $\left[{ }^{35} \mathrm{~S}\right]$ GTPyS-binding assays.

	$\mathrm{hH}_{1} \mathrm{R}$		$\mathrm{hH}_{2} \mathrm{R}$		$\mathrm{hH}_{3} \mathrm{R}$		$\mathrm{hH}_{4} \mathrm{R}$	
cpd.	$\begin{gathered} {\left[\mathrm{pK}_{\mathrm{j}},\right.} \\ \left(\mathrm{pEC}_{50}\right) \text { or } \mathrm{pK}_{\mathrm{b}} \end{gathered}$	α	$\begin{gathered} {\left[\mathrm{pK}_{\mathrm{i}},\right.} \\ \left(\mathrm{pEC}_{50}\right) \text { or } \mathrm{pK}_{\mathrm{b}} \end{gathered}$	a	$\begin{gathered} {\left[\mathrm{pK}_{\mathrm{i}},\right.} \\ \left(\mathrm{pEC}_{50}\right) \text { or } \mathrm{pK}_{\mathrm{b}} \end{gathered}$	α	$\begin{gathered} {\left[\mathrm{pK}_{\mathrm{i}},\right.} \\ \left(\mathrm{pEC}_{50}\right) \text { or } \mathrm{pK}_{\mathrm{b}} \end{gathered}$	α
Histamine	(5.43 ± 0.15)	1	(6.07 $\pm 0.10)$	1	(7.97 ± 0.04)	1	(7.73 $\pm 0.06)$	1
Thioperamide	n.d.	n.d.	n.d.	n.d.	7.00 ± 0.11	-0.61 ± 0.09	6.78 ± 0.06	-1.03 ± 0.08
Famotidine	n.d.	n.d.	6.53 ± 0.06	-0.33 ± 0.06	n.d.	n.d.	n.d.	n.d.
Levocetirizine	7.17 ± 0.15	-0.23 ± 0.09	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
4.16a	$\begin{gathered} {[8.50 \pm 0.04]} \\ 7.09 \pm 0.10 \end{gathered}$	0	$\begin{gathered} {[5.06 \pm 0.03]} \\ <5 \end{gathered}$	0	$[6.79 \pm 0.05]$ 6.77 ± 0.05	-0.41 ± 0.08	$\begin{gathered} {[6.61 \pm 0.21]} \\ 5.82 \pm 0.06 \end{gathered}$	0
4.19a	$[7.92 \pm 0.01]$ 7.42 ± 0.17	0	$\begin{gathered} {[5.34 \pm 0.06]} \\ <5 \end{gathered}$	0	$[7.34 \pm 0.02]$ 7.38 ± 0.01	-0.82 ± 0.06	$[6.05 \pm 0.08]$ 5.27 ± 0.15	-0.67 ± 0.07
4.27	$\begin{gathered} {[5.51 \pm 0.18]} \\ <5 \end{gathered}$	0	$\begin{gathered} {[5.50 \pm 0.02]} \\ 5.18 \pm 0.07 \end{gathered}$	0	$\begin{gathered} {[7.39 \pm 0.03]} \\ 7.37 \pm 0.06 \end{gathered}$	0	[7.90 $\pm 0.04]$ (7.57 ± 0.19)	0.99 ${ }^{\text {a }}$. 08
4.30	$\begin{gathered} {[8.04 \pm 0.06]} \\ 7.70 \pm 0.17 \end{gathered}$	0	$\begin{gathered} {[5.48 \pm 0.05]} \\ 5.27 \pm 0.09 \end{gathered}$	0	$\begin{gathered} {[7.26 \pm 0.01]} \\ 7.94 \pm 0.11 \end{gathered}$	-0.34 ± 0.05	$\begin{aligned} & {[7.74 \pm 0.05]} \\ & (7.01 \pm 0.15) \end{aligned}$	0.84 ± 0.08
4.32b	$\begin{gathered} {[8.25 \pm 0.17]} \\ 8.00 \pm 0.16 \end{gathered}$	0	$\begin{aligned} & {[5.74 \pm 0.14]} \\ & (6.29 \pm 0.07) \end{aligned}$	0.44 ± 0.04	[5.88 ± 0.05] 6.10 ± 0.06	-0.66 ± 0.05	$\begin{gathered} {[6.01 \pm 0.05]} \\ <5 \end{gathered}$	0
4.35a	$\begin{gathered} {[7.93 \pm 0.10]} \\ 7.05 \pm 0.09 \end{gathered}$	0	$\begin{gathered} {[6.11 \pm 0.06]} \\ <5 \end{gathered}$	0	$[6.89 \pm 0.03]$ 7.20 ± 0.17	-0.63 ± 0.05	$[6.72 \pm 0.05]$ 6.83 ± 0.08	0
4.35b	$\begin{gathered} {[7.26 \pm 0.02]} \\ 7.37 \pm 0.09 \end{gathered}$	0	$\begin{gathered} {[5.28 \pm 0.06]} \\ <5 \end{gathered}$	0	$\begin{aligned} & {[6.94 \pm 0.01]} \\ & (5.31 \pm 0.07) \end{aligned}$	0.50 ± 0.04	$[7.31 \pm 0.07]$ 6.91 ± 0.04	-0.55 ± 0.01
4.44	$\begin{gathered} {[5.23 \pm 0.03]} \\ <5 \end{gathered}$	0	$\begin{gathered} {[6.70 \pm 0.03]} \\ 6.50 \pm 0.12 \end{gathered}$	0	$[8.33 \pm 0.10]$ 8.88 ± 0.05	-0.98 ± 0.06	$[7.90 \pm 0.02]$ 7.64 ± 0.10	-1.73 ± 0.10

The compounds were characterized in radioligand competition binding and $\left[{ }^{35} S\right]$ GTP γS binding assays, performed on membrane preparations of Sf9 insect cells expressing the $\mathrm{hH}_{1} \mathrm{R}+\mathrm{RGS} 4, \mathrm{hH}_{2} \mathrm{R}-\mathrm{G}_{\mathrm{s} a \mathrm{~S}}$, $h H_{3} R+G_{\alpha i 2}+G_{\beta 1 y 2}$ or the $h_{4} R+G_{\alpha i 2}+G_{\beta 1 y 2}$. Radioligands: $H_{1} R$: $\left[{ }^{3} H\right]$ pyrilamine, $K_{d}=4.5 \mathrm{nM}, \mathrm{c}=5$ nM; $\mathrm{H}_{2} \mathrm{R}$:
[$\left.{ }^{3} \mathrm{H}\right]$ UR-DE 257
(N-[6-(3,4-dioxo-2-\{3-[3-(piperidin-1-ylmethyl)phenoxy]propylamino\}-cyclobut-1-enylamino)hexyl]-[2,3$\left.{ }^{3} \mathrm{H}_{2}\right]$-propion-amide $)^{57}, \quad \mathrm{~K}_{\mathrm{d}}=12.1 \mathrm{nM}, \quad \mathrm{c}=20 \mathrm{nM} ; \quad \mathrm{H}_{3} \mathrm{R}: \quad$ [$\left.{ }^{3} \mathrm{H}\right]$ UR-PI 294 (N^{1}-[3-(1H-imidazol-4-yl)propyl]- N^{2}-propionylguanidine) ${ }^{58}, \mathrm{~K}_{\mathrm{d}}=3.3 \mathrm{nM}, \mathrm{c}=3.5 \mathrm{nM} ; \mathrm{H}_{4} \mathrm{R}:\left[{ }^{3} \mathrm{H}\right]$ histamine, $\mathrm{K}_{\mathrm{d}}=10 \mathrm{nM}, \mathrm{c}=10 \mathrm{nM}$. The pK_{b} values of neutral antagonists and inverse agonists were determined in the antagonist mode in presence of histamine ($10 \mu \mathrm{M}$ for the $\mathrm{hH}_{1} \mathrm{R}, 1 \mu \mathrm{M}$ for the $\mathrm{hH}_{2} \mathrm{R}$, and 100 nM for the $\mathrm{hH}_{3} \mathrm{R}$ and the $\mathrm{hH}_{4} \mathrm{R}$, respectively). Values represent the mean \pm SEM of at least three independent experiments each performed in triplicate. $\alpha=0$ (neutral antagonism): the measured values were in the range between ± 0.15 and not significantly different from zero.

Eight compounds exhibiting high $\mathrm{hH}_{1} \mathrm{R}$ and/or $\mathrm{hH}_{4} \mathrm{R}$ affinities (4.16a, 4.19a, 4.27, 4.30, 4.32b, 4.35a, 4.35b and 4.44) were selected for further pharmacological evaluations regarding $\mathrm{hH}_{2} \mathrm{R}$ and $\mathrm{hH}_{3} \mathrm{R}$ subtype affinity and functional activity at the four human histamine receptor subtypes (Table 3). Whereas $\mathrm{hH}_{2} \mathrm{R}$ binding was low to moderate, for all imidazole containing ligands, poor selectivity for the $\mathrm{hH}_{4} \mathrm{R}$ over the $\mathrm{hH}_{3} \mathrm{R}$ became obvious. The selected compounds showed binding affinities in the same range at the $\mathrm{hH}_{3} \mathrm{R}$ and the $\mathrm{hH}_{4} \mathrm{R}$, except for compound 19a which exhibited a preference for the $\mathrm{hH}_{3} \mathrm{R}$.

In the functional assays compounds 4.16a, 4.32b and 4.35 a were selective $h_{1} R$ antagonists. Compound 4.19a turned out to be an $\mathrm{hH}_{1} \mathrm{R}$ antagonist and a potent inverse agonist at the $\mathrm{hH}_{3} \mathrm{R}$ (Table 2 and Figure 5). A dual $\mathrm{hH}_{1} \mathrm{R} / \mathrm{hH}_{3} \mathrm{R}$ antagonist might be useful to treat allergic rhinitis ${ }^{59-61}$, e.g., a combined H_{1} and H_{3} receptor blockade was reported to reduce histamine-induced nasal congestion ${ }^{62-64}$.

B

Figure 5 Binding and function of compound 4.19a at histamine receptors. Curves shown represent mean values of at least three independent experiments performed in triplicate. A) Competition binding
curves of compound 4.19a at $\mathrm{hH}_{\times} R$. Concentration-response curves of histamine and compound 4.19a at the B) $\mathrm{hH}_{1} \mathrm{R}, \mathbf{C}$) $\left.\mathrm{hH} \mathrm{H}_{2} \mathrm{R}, \mathrm{D}\right) \mathrm{hH} \mathrm{h}_{3} \mathrm{R}$ and E) $\mathrm{hH} \mathrm{H}_{4} \mathrm{R}$, determined in the $\left[{ }^{35} \mathrm{~S}\right] G T P \gamma S$ binding assay. All assays were performed on membrane preparations of Sf9 insect cells expressing the $\mathrm{hH}_{1} \mathrm{R}+\mathrm{RGS} 4$, $h H_{2} R-G_{s a s}, h H_{3} R+G_{a i 2}+G_{\beta 1 y 2}$ or the $h H_{4} R+G_{\text {ai2 }}+G_{\beta 1 y 2}$. Radioligands: $H_{1} R$: $\left[{ }^{3} H\right]$ pyrilamine, $K_{d}=4.5$ $\mathrm{nM}, \mathrm{c}=5 \mathrm{nM} ; \mathrm{H}_{2} \mathrm{R}:\left[{ }^{3} \mathrm{H}\right]$ UR-DE $257^{57}, \mathrm{~K}_{\mathrm{d}}=12.1 \mathrm{nM}, \mathrm{c}=20 \mathrm{nM} ; \mathrm{H}_{3} R:\left[{ }^{3} \mathrm{H}\right]$ UR-PI $294{ }^{58}, \mathrm{~K}_{\mathrm{d}}=3.3 \mathrm{nM}, \mathrm{c}=$ 3.5 nM ; $\mathrm{H}_{4} \mathrm{R}$: $\left[{ }^{3} \mathrm{H}\right]$ histamine, $\mathrm{K}_{\mathrm{d}}=10 \mathrm{nM}, \mathrm{c}=10 \mathrm{nM}$. The pK b values of neutral antagonists and inverse agonists were determined in the antagonist mode in the presence of histamine ($10 \mu \mathrm{M}$ for the $\mathrm{hH}_{1} \mathrm{R}, 1$ $\mu \mathrm{M}$ for the $\mathrm{hH}_{2} \mathrm{R}$, and 100 nM for the $\mathrm{hH}_{3} \mathrm{R}$ and the $\mathrm{hH}_{4} \mathrm{R}$, respectively). In the antagonist mode of $\left[{ }^{35}\right.$ S]GTPyS binding assay, the signal of histamine is referred to 100%.

The quinazoline derivative 4.44 (Table 2 and Figure 6) was a more potent dual $\mathrm{hH}_{3} \mathrm{R} / \mathrm{hH}_{4} \mathrm{R}$ inverse agonist than thioperamide.

B

D

Figure 6 Binding and function of compound 4.44 at histamine receptors. Curves shown represent mean values of at least three independent experiments performed in triplicate. A) Competition binding curves of compound 4.44 at $\mathrm{hH}_{\mathrm{x}} \mathrm{R}$. Concentration-response curves of histamine and compound 4.44 at the B) $\left.\left.\mathrm{hH}_{1} \mathrm{R}, \mathbf{C}\right) \mathrm{hH}_{2} \mathrm{R}, \mathrm{D}\right) \mathrm{hH}_{3} \mathrm{R}$ and $\left.\mathbf{E}\right) \mathrm{hH}_{4} \mathrm{R}$, determined in the $\left[{ }^{35}\right.$ S]GTPүS binding assay. For details cf. legend to Figure 5.

Compound 4.35b was an antagonist at the $\mathrm{hH}_{1} \mathrm{R}$, an inverse agonist at the $\mathrm{hH}_{4} \mathrm{R}$, but a weak $\mathrm{hH}_{3} \mathrm{R}$ partial agonist. Thus, functional characterization revealed opposite qualities of action for compound 4.35b at the $\mathrm{hH}_{3} \mathrm{R}$ and the $\mathrm{hH}_{4} \mathrm{R}$ (Table 2 and Figure 7). Among the studied ligands compounds 4.30 and 4.35b showed the highest (nearly) balanced affinities at both, the $\mathrm{hH}_{1} \mathrm{R}$ and the $\mathrm{hH}_{4} \mathrm{R}$ (Figure 8).

Figure 7 Binding and function of compound $\mathbf{4 . 3 5 b}$ at histamine receptors. Curves shown represent for mean values of at least three independent experiments performed in triplicate. A) Competition binding curves of compound 4.35 b at $\mathrm{hH} \mathrm{H}_{\mathrm{x}} \mathrm{R}$.Concentration-response curves of histamine and compound 4.35b at the B) $\mathrm{hH}_{1} \mathrm{R}, \mathbf{C}$) $\mathrm{hH}_{2} \mathrm{R}$, D) $\mathrm{hH}_{3} \mathrm{R}$ and \mathbf{E}) $\mathrm{hH}_{4} \mathrm{R}$ respectively, determined in the $\left[{ }^{35} \mathrm{~S}\right] \mathrm{GTPyS}$ binding assay. For details cf. legend to Figure 5.

Figure 8 Affinity-selectivity profile of the compounds 3.3, 4.3-4.8, 4.14a-c, 4.15b, 4.16a, 4.16b, 4.17a-c, 4.18a, 4.18b, 4.19a, 4.19b, 4.20a, 4.20b, 4.22a, 4.22b, 4.23, 4.26, 4.27, 4.30, 4.32a, 4.32b, 4.34, 4.35a, 4.35b, 4.40, 4.41, 4.42, 4.44. The data were obtained from competition binding assays at $\mathrm{hH}_{1} \mathrm{R}$ or $\mathrm{hH}_{4} \mathrm{R}$ under comparable conditions.

4.3. Conclusion

Aiming at dual $\mathrm{hH}_{1} \mathrm{R} / \mathrm{hH}_{4} \mathrm{R}$ antagonists, benzimidazole- and quinazoline-type compounds were synthesized and pharmacologically characterized at the four human histamine receptor subtypes. All compounds with high $\mathrm{hH}_{1} \mathrm{R}$ and/or $\mathrm{hH}_{4} \mathrm{R}$ affinities showed only weak affinity to the $\mathrm{hH}_{2} \mathrm{R}$. Unfortunately, ligands comprising imidazolylalkyl moieties did not discriminate between hH_{3} and hH_{4} receptors. Regardless of that, compounds 4.30 and 4.35 b were identified as balanced dual $h H_{1} R / h H_{4} R$ ligands with the highest affinities among the investigated ligands. The data of the presented benzimidazole and quinazoline derivatives are indicative of the complexity of the structure-activity relationships. It appears extremely difficult to identify a common $\mathrm{H}_{1} \mathrm{R} / \mathrm{H}_{4} \mathrm{R}$ pharmacophore at a high level of affinity. Introducing an imidazole moiety may result in balanced $H_{1} R / H_{4} R$ affinities. However, binding and
functional properties of such hybrid compounds become even more complex due to poor discrimination between H_{4} and H_{3} receptors.

4.4. Experimental section

4.4.1. Chemistry

4.4.1.1. General conditions.

See section 3.3.1.1.

4.4.1.2. Synthesis

4-(2-Bromoethyl)imidazole monohydrochloride. ${ }^{48}$

A 250 mL round bottom flask containing 42.4 mL of 1.5 M sulfuric acid, histamine dihydrochloride ($5.34 \mathrm{~g}, 28.9 \mathrm{mmol}$) and potassium bromide ($11.52 \mathrm{~g}, 96.0 \mathrm{mmol}$) was fitted with a magnetic stirrer and cooled to $-15^{\circ} \mathrm{C}$. A saturated solution of sodium nitrite (2.58 g , 37.2 mmol) in 3.8 mL of water was added in one portion to the magnetically stirred sulfuric acid/histamine solution at $-15^{\circ} \mathrm{C}$. A color change from colorless to a deep orange-brown was observed, and a gas evolved in the reaction flask immediately upon addition. After a period of 30 minutes, the reaction mixture was warmed to room temperature. After a total of 3 hours, no more bubbling was observed and the reaction mixture had changed from a deep orange-brown to almost colorless light yellow. The reaction mixture was cooled to $-15^{\circ} \mathrm{C}$ and adjusted to a pH of 10 by dropwise addition of 27.6 mL of 5 M sodium hydroxide solution. This basic solution was transferred to a 100 mL separation funnel where the desired product was quickly extracted with chloroform ($5 \times 10 \mathrm{~mL}$). The colorless chloroform layer was added directly from the separation funnel to 64 mL of 0.5 N HCl in isopropanol in a 250 mL round bottom flask. Concentration of this solution under reduced pressure gave white crystals (1.70 g, 6.72 mmol , yield 23.2%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta[\mathrm{ppm}]: 9.08(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.54 (s, 1H), 3.91-3.76 (m, 2H), 3.27-3.12 (m, 2H). HRMS (El-MS) m/z: calcd for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{BrN}_{2}$ $\left[\mathrm{MH}^{+}\right]$174.9865, found 174.9864.

4-(2-Bromoethyl)-1-tritylimidazole. ${ }^{49}$

A mixture of 4-(2-bromoethyl)imidazole hydrochloride (1.68 g, 9 mmol), triphenylmethylchloride ($3.69 \mathrm{~g}, 13.4 \mathrm{mmol}$) and TEA ($2.73 \mathrm{~g}, 27 \mathrm{mmol}$) in DMF (15 mL) was stirred at rt overnight. The mixture was poured into brine, extracted with DCM (90 mL), and the evaporated organic phase was subjected to column chromatography (PE/EE, 2/1). White solid (2.67g, 6.42 mmol , yield 22.2%); mp $143^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 7.39 (d, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 9 \mathrm{H}), 7.15(\mathrm{~m}, 6 \mathrm{H}), 6.65(\mathrm{~d}, ~ J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.60(\mathrm{~m}, 2 \mathrm{H})$, 3.12-2.95 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[p p m]: 142.38\left(2 \mathrm{C}_{\text {quat }}\right.$), 138.55 (+, Ar-CH), 138.37 ($\mathrm{C}_{\text {quat }}$), 137.62 ($\mathrm{C}_{\text {quat }}$), 129.81 (+, 6Ar-CH), 128.07 (+, 9Ar-CH), 119.39 (+, Ar-CH), $75.29\left(\mathrm{C}_{\text {quat }}\right), 44.07\left(-, \mathrm{CH}_{2}\right), 32.14\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{BrN}_{2}\left[\mathrm{MH}^{+}\right]$ 417.0961, found 417.0962.

tert-Butyl [2-(4-methylpiperazin-1-yl)ethyl]carbamate. ${ }^{65}$

To a solution of 1-methylpiperazine ($500 \mathrm{mg}, 5 \mathrm{mmol}$) and DIPEA ($2 \mathrm{~g}, 15 \mathrm{mmol}$) in acetonitrile (50 mL), tert-butyl (2-bromoethyl)carbamate ($1.4 \mathrm{~g}, 6 \mathrm{mmol}$) was added. The reaction mixture was heated at $50^{\circ} \mathrm{C}$ overnight, the solvent was evaporated, and the remaining mixture was poured into water. The aqueous layer was extracted with DCM, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. Purification of the product by column chromatography (DCM/MeOH/25\% aqueous ammonia, 100/4/1) yielded a yellow oil ($140 \mathrm{mg}, 0.20 \mathrm{mmol}$, yield 17.4%). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]: 3.25-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.31(\mathrm{~m}, 10 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 155.95 ($\mathrm{C}_{\text {quat }}$), 79.12 ($\left.\mathrm{C}_{\text {quat }}\right)$, 57.07 (-, CH_{2}), 55.00 (-, $\left.2 \mathrm{CH}_{2}\right), 52.73\left(-, 2 \mathrm{CH}_{2}\right), 45.94\left(+, \mathrm{CH}_{3}\right), 37.10\left(-, \mathrm{CH}_{2}\right), 28.43\left(+, 3 \mathrm{CH}_{3}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right]$244.2020, found 244.2021.

N-[2-(1-Triphenylmethylimidazol-4-yl)ethyl]phthalimide. ${ }^{52}$

Ethyl phthalimide-N-carboxylate ($2.4 \mathrm{~g}, 11 \mathrm{mmol}$) was added potion-wise to a stirred solution of histamine dihydrochloride ($1.84 \mathrm{~g}, 10 \mathrm{mmol}$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.12 \mathrm{~g}, 20 \mathrm{mmol})$ in distilled water (50 mL) at rt . The resulting snow-white suspension was stirred vigorously at rt for 90 min . The solid was filtered off and thoroughly washed with ice-cold water (20 mL). The solid was collected and dried. The obtained white solid was dissolved in DMF (15 mL), TEA
$(1.47 \mathrm{~g}, 14.6 \mathrm{mmol})$ and triphenylmethylchloride ($3 \mathrm{~g}, 11 \mathrm{mmol}$) was introduced, the reaction was stirred at rt overnight. After the reaction was finished, the mixture was poured into brine and extracted with DCM (90 mL), then subjected to column chromatography (PE/EE, 1/1). White solid ($2.85 \mathrm{~g}, 5.9 \mathrm{mmol}, 81 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.83-7.76(\mathrm{~m}, 2 \mathrm{H})$, 7.73-7.65 (m, 2H), 7.35-7.21 (m, 10H), 7.10-7.01 (m, 6H), 6.58-6.48 (m, 1H), 3.97 (t, J = 7.1 $\mathrm{Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.

2,5-Dichloro-1 H -benzo[d]imidazole and 2,6-dichloro-1 H -benzo[d]imidazole (4.10). ${ }^{66}$

A mixture of urea ($6 \mathrm{~g}, 100 \mathrm{mmol}$), 4-chloro-o-phenylenediamine ($14.2 \mathrm{~g}, 100 \mathrm{mmol}$) and n-butanol (100 mL) was stirred at $120^{\circ} \mathrm{C}$ for 16 h and subsequently cooled to $0^{\circ} \mathrm{C}$. The precipitate was collected and washed with n-butanol $(5 \mathrm{~mL})$ and water $(200 \mathrm{~mL})$. After drying, the precipitated white solid was added to 50 mL POCl 3 and heated at $100^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was cooled to rt , and the excess of POCl_{3} was removed in vacuum. The residue was neutralized with 100 mL of saturated NaHCO_{3} solution and extracted with EtOAc. The organic phase was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. A mixture of 2,5-dichlorobenzimidazole and 2,6-dichlorobenzimidazole was obtained as brown solid (4.62 g, $24.8 \mathrm{mmol}, 86.1 \%$); mp $205^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta[p p m]: 7.58(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}$, 1H), 7.55-7.49 (m, 1H), 7.26-7.20 (m, 1H). ${ }^{13}$ C-NMR (75 MHz , DMSO-d d_{6}) δ [ppm]: 139.86 $\left(2 \mathrm{C}_{\text {quat }}\right), 126.66\left(2 \mathrm{C}_{\text {quat }}\right), 122.54$ (+, 3Ar-CH).

2,5-Dichloro-1-phenethyl-1H-benzo[d]imidazole

 and
2,6-dichloro-1-phenethyl-1 H-benzo[d]imidazole (4.12a).

To a solution of compound $4.10(2.23 \mathrm{~g}, 12 \mathrm{mmol})$ in $\mathrm{ACN}(100 \mathrm{~mL})$, (2-bromoethyl)benzene ($4.44 \mathrm{~g}, 24 \mathrm{mmol}$) and $\mathrm{NaOH}(2.4 \mathrm{~g}, 60 \mathrm{mmol})$ was added inside, the mixture was stirred at $95^{\circ} \mathrm{C}$ for 2 h (control by TLC). The solvent was evaporated yielding a yellow solid ($1.12 \mathrm{~g}, 3.86 \mathrm{mmol}, 32.2 \%$); mp $97^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 7.61 $(\mathrm{m}, 1 \mathrm{H}), 7.32-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.13-6.99(\mathrm{~m}, 3 \mathrm{H}), 4.43-4.30(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$.

Synthesized from 2-chloro-benzoimidazole ($2 \mathrm{~g}, 13.16 \mathrm{mmol}$) and (2-bromoethyl)benzene $(7.3 \mathrm{~g}, 37.5 \mathrm{mmol})$ by analogy with the procedure for the preparation of 4.12a. White solid ($3.21 \mathrm{~g}, 12.54 \mathrm{mmol}, 95 \%$); mp $85^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 7.74-7.65 (m, 1H), 7.33-7.17 (m, 6H), 7.12-7.04 (m, 2H), 4.45-4.33 (m, 2H), $3.09(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H})$.

2-Chloro-1-(4-fluorobenzyl)-1 H-benzo[d]imidazole (4.12c). ${ }^{68}$

Synthesized from 2-chloro-benzoimidazole (6 g, 40 mmol) and 1-(chloromethyl)-4-fluorobenzene ($17.3 \mathrm{~g}, 120 \mathrm{mmol}$) by analogy with the procedure for the preparation of 4.12a. White solid ($10.17 \mathrm{~g}, 39 \mathrm{mmol}, 97 \%$); mp $94^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ [ppm]: 7.76-7.67 (m, 1H), 7.32-7.20 (m, 3H), 7.20-7.13 (m, 2H), 7.06-6.97 (m, 2H), 5.35 (s, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 160.85 ($\mathrm{C}_{\text {quat }}$), 141.84 ($\mathrm{C}_{\text {quat }}$), 140.65 ($\mathrm{C}_{\text {quat }}$), 134.99 ($\mathrm{C}_{\text {quat }}$), 130.85 ($\mathrm{C}_{\text {quat }}$), 128.71 (+, Ar-CH), 128.60 (+, Ar-CH), 123.49 (+, Ar-CH), 122.99 (+, Ar-CH), 119.66 (+, Ar-CH), 116.18 (+, Ar-CH), 115.89 (+, Ar-CH), 109.74 (+, Ar-CH), 47.27 (-, CH_{2}). HRMS (EI-MS) m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{FN}_{2}\left[\mathrm{MH}^{+}\right] 261.0589$, found 261.0589.

2-Chloro-1-(4-chlorophenethyl)-1 H-benzo[d]imidazole (4.12d).

Synthesized from 2-chlorobenzimidazole (760 mg, 5 mmol) and 1-(2-bromoethyl)-4-chlorobenzene ($2.18 \mathrm{~g}, 10 \mathrm{mmol}$) by analogy with the procedure for the preparation of 4.12a. Yellow-white solid ($370 \mathrm{mg}, 1.28 \mathrm{mmol}, 25.6 \%$); mp $69{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm]: 7.79-7.61 (m, 1H), 7.31-7.15 (m, 5H), 7.06-6.91 (m, 2H), 4.37 (m, 2 H), $3.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 141.68 ($\mathrm{C}_{\text {quat }}$), 140.49 ($\mathrm{C}_{\text {quat }}$), 135.52 ($\mathrm{C}_{\text {quat }}$), 134.69 ($\mathrm{C}_{\text {quat }}$), 133.06 ($\mathrm{C}_{\text {quat }}$), 130.15 (+, 2Ar-CH), 128.98 (+, 2Ar-CH), 123.25 (+, Ar-CH), 122.79 (+, Ar-CH), 119.61 (+, Ar-CH), 109.25 (+, Ar-CH), 45.76 (-, $\left.\mathrm{CH}_{2}\right), 34.95$ (-, CH_{2}). HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2}\left[\mathrm{MH}^{+}\right]$291.0450, found 291.0455.

2-Chloro-1-[2-(thiophen-2-yl)ethyl]-1 H-benzo[d]imidazole (4.12e).

Synthesized from 2-chlorobenzimidazole ($1 \mathrm{~g}, 6.58 \mathrm{mmol}$) and 2-(2-bromoethyl)thiophene $(3.75 \mathrm{~g}, 19.74 \mathrm{mmol})$ by analogy with the procedure for the preparation of 4.12a. Yellow-white solid ($730 \mathrm{mg}, 2.79 \mathrm{mmol}, 42.3 \%$); mp $91^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 7.73-7.65

Abstract

$(\mathrm{m}, 1 \mathrm{H}), 7.30-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.85(\mathrm{~m}, 1 \mathrm{H})$, 6.69-6.66 (m, 1H), 4.51-4.34 (m, 2H), 3.31 (t, J=7.2 Hz, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 141.68 (Cquat), 140.56 ($\mathrm{C}_{\text {quat }}$), 138.69 ($\mathrm{C}_{\text {quat }}$), 134.80 ($\mathrm{C}_{\text {quat }}$), 127.32 (+, Ar-CH), 126.17 (+, Ar-CH), 124.70 (+, Ar-CH), 123.25 (+, Ar-CH), 122.77 (+, Ar-CH), 119.56 (+, Ar-CH), 109.25 (+, Ar-CH), 45.99 (-, CH_{2}), 29.57 (-, CH_{2}). HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{CIN}_{2} \mathrm{~S}\left[\mathrm{MH}^{+}\right]$263.0404, found 263.0405.

Ethyl 4- [(5- chloro- 1- phenethyl- 1H- benzo[d]imidazol- 2- yl)amino]piperidine- 1carboxylate (4.13a).

Compound 4.12a ($1.11 \mathrm{~g}, 3.83 \mathrm{mmol}$) was added to ethyl 4-aminopiperidine-1-carboxylate $(3.3 \mathrm{~g}, 19.15 \mathrm{mmol})$. The reaction mixture was heated to $170^{\circ} \mathrm{C}$ overnight. Afterwards the mixture was poured into brine and extracted with DCM, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, and the remaining mixture was subjected to column chromatography ($\mathrm{DCM} / \mathrm{MeOH}=50 / 1$). White solid (360 mg , $0.85 \mathrm{mmol}, 22.2 \%) ; \mathrm{mp} 61^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.42(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.26 (m, 3H), 7.03-7.00 (m, 3H), $6.96(\mathrm{~m}, 3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.09-4.06$ (m, 2H), 4.05-3.85 (m, 2H), 3.78-3.69 (m, 1H), 3.03-3.00 (m, 2H), 2.93-2.83 (m, 2H), 1.86-1.77 (m, 2H), $1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.02-0.92(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: $155.51\left(\mathrm{C}_{\text {quat }}\right), 154.14\left(\mathrm{C}_{\text {quat }}\right), 143.39\left(\mathrm{C}_{\text {quat }}\right), 138.37\left(\mathrm{C}_{\text {quat }}\right), 132.78\left(\mathrm{C}_{\text {quat }}\right), 129.32(+$, $2 \mathrm{Ar}-\mathrm{CH}$), 128.94 (+, 2Ar-CH), 127.45 (+, Ar-CH), 126.81 (Cquat), 119.62 (+, Ar-CH), 116.51 (+, Ar-CH), 107.60 (+, Ar-CH), 61.38 (-, CH_{2}), 49.42 (+, CH), $44.90\left(-, \mathrm{CH}_{2}\right), 42.57\left(-, 2 \mathrm{CH}_{2}\right)$, $35.37\left(-, \mathrm{CH}_{2}\right), 32.12\left(-, 2 \mathrm{CH}_{2}\right), 14.74\left(+, \mathrm{CH}_{3}\right)$.

Ethyl 4- [(6- chloro- 1- phenethyl- 1H- benzo[d]imidazol- 2- yl)amino]piperidine- 1carboxylate (4.13b).

Synthesized from compound 4.12a (1.11 g, 3.83 mmol) and ethyl 4-aminopiperidine-1-carboxylate ($3.3 \mathrm{~g}, 19.15 \mathrm{mmol}$) by analogy with the procedure for the preparation of 4.13a. White solid ($270 \mathrm{mg}, 0.63 \mathrm{mmol}, 10.3 \%$); mp $58^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 2 \mathrm{H})$, 4.12 ($\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 4.07-4.04 (m, 2H), 4.03-3.89 (m, 2H), 3.77-3.69 (m, 1H), 3.03-3.01
(m, 2H), $2.88(\mathrm{~s}, 2 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.01-0.91(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm]: $155.51\left(\mathrm{C}_{\text {quat }}\right), 153.86\left(\mathrm{C}_{\text {quat }}\right), 141.01\left(\mathrm{C}_{\text {quat }}\right), 138.37\left(\mathrm{C}_{\text {quat }}\right), 134.85$ ($\mathrm{C}_{\text {quat }}$), 129.33 (+, 2Ar-CH), 128.96 (+, 2Ar-CH), 127.46 (+, Ar-CH), 125.01 ($\mathrm{C}_{\text {quat }}$), 121.61 (+, Ar-CH), 117.08 (+, Ar-CH), 107.47 (+, Ar-CH), $61.37\left(-, \mathrm{CH}_{2}\right), 49.44(+, \mathrm{CH}), 44.93\left(-, \mathrm{CH}_{2}\right)$, $42.57\left(-, 2 \mathrm{CH}_{2}\right), 35.35\left(-, \mathrm{CH}_{2}\right), 32.10\left(-, 2 \mathrm{CH}_{2}\right), 14.73\left(+, \mathrm{CH}_{3}\right)$.

Ethyl 4- [(1- phenethyl- 1H- benzo[d]imidazol- 2- yl)amino]piperidine- 1- carboxylate

 (4.13c). ${ }^{37}$Synthesized from 4.12b ($385 \mathrm{mg}, 1.5 \mathrm{mmol}$) and ethyl 4-aminopiperidine-1-carboxylate $(1.27 \mathrm{~g}, 7.5 \mathrm{mmol})$ by analogy with the procedure for the preparation of 4.13a. Yellow-white solid ($380 \mathrm{mg}, 0.97 \mathrm{mmol}, 65 \%$); mp $74^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[p p m]: 7.51-7.45(\mathrm{~m}$, 1H), 7.31-7.24 (m, 3H), 7.18-6.96 (m, 5H), 4.17-4.07 (m, 4H), 4.06-3.88 (m, 2H), 3.85-3.70 (m, $1 \mathrm{H}), 3.04(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.96-2.81(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.08-0.87 (m, 2H). ${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm]: 155.52 ($\mathrm{C}_{\text {quat }}$), 153.34 ($\mathrm{C}_{\text {quat }}$), 142.33 ($\mathrm{C}_{\text {quat }}$), $138.64\left(\mathrm{C}_{\text {quat }}\right), 134.10\left(\mathrm{C}_{\text {quat }}\right), 129.25$ (+, 2Ar-CH), 129.00 (+, 2Ar-CH), $127.33(+$, Ar-CH), 121.40 (+, Ar-CH), 119.69 (+, Ar-CH), 116.53(+, Ar-CH), 107.15 (+, Ar-CH), 61.34 (-, $\left.\mathrm{CH}_{2}\right), 49.31(+, \mathrm{CH}), 44.77\left(-, \mathrm{CH}_{2}\right), 42.60\left(-, 2 \mathrm{CH}_{2}\right), 35.46\left(-, \mathrm{CH}_{2}\right), 32.17\left(-, 2 \mathrm{CH}_{2}\right), 14.75(+$, CH_{3}). HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right] 393.2285$, found 393.2295 .

Ethyl 4- (\{1- [2- (thiophen- 2- yl)ethyl]- 1H- benzo[d]imidazol- 2- ylfamino)piperidine-1carboxylate (4.13d).

Synthesized from compound 4.12e ($350 \mathrm{mg}, 1.34 \mathrm{mmol}$) and ethyl 4-aminopiperidine-1-carboxylate ($919 \mathrm{mg}, 5.34 \mathrm{mmol}$) by analogy with the procedure for the preparation of 4.13a. White solid ($500 \mathrm{mg}, 1.26 \mathrm{mmol}, 93 \%$); mp $97^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.51-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{dd}, J=5.1$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.62(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.04(\mathrm{~m}, 6 \mathrm{H}), 3.91-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.23(\mathrm{~m}, 2 \mathrm{H})$, 3.00-2.83 (m, 2H), 2.00-1.85 (m, 2H), $1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.17-1.04 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm]: $155.55\left(\mathrm{C}_{\text {quat }}\right), 153.45\left(\mathrm{C}_{\text {quat }}\right), 142.32\left(\mathrm{C}_{\text {quat }}\right), 140.11$ ($\left.\mathrm{C}_{\text {quat }}\right), 133.95$ ($\mathrm{C}_{\text {quat }}$), 127.91 (+, Ar-CH), 126.77 (+, Ar-CH), 125.06 (+, Ar-CH), 121.52 (+, Ar-CH), 119.73 (+, Ar-CH), 116.53 (+, Ar-CH), 107.04 (+, Ar-CH), 61.39 (-, CH_{2}), 49.45 (+, CH), 44.83 (-, CH_{2}),
$42.65\left(-, 2 \mathrm{CH}_{2}\right), 32.28\left(-, 2 \mathrm{CH}_{2}\right), 29.53\left(-, \mathrm{CH}_{2}\right), 14.75\left(+, \mathrm{CH}_{3}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{MH}^{+}\right]$399.1849, found 399.1849.

Ethyl 4- \{[1- (4- chlorophenethyl)- 1H- benzo[d]imidazol- 2- yl]amino\}piperidine- 1carboxylate (4.13e).

Synthesized from compound 4.12d (350 mg, 1.21 mmol$)$ and ethyl 4 -aminopiperidine-1-carboxylate ($417 \mathrm{mg}, 2.42 \mathrm{mmol}$) by analogy according the procedure for the preparation of 4.13a. Yellow-white solid ($460 \mathrm{mg}, 1.08 \mathrm{mmol}, 89.3 \%$); mp $64{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.48(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.06(\mathrm{~m}$, 3H), 6.97-6.91 (m, 2H), 4.24-4.01 (m, 6H), 3.91-3.76 (m, 1H), 3.01 (t, J = 6.2 Hz, 2H), 2.98-2.84 (m, 2H), 1.88-1.82 (m, 2H), 1.26 (t, J=7.0 Hz, 3H), 1.15-0.93 (m, 2H). ${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm]: $155.50\left(\mathrm{C}_{\text {quat }}\right), 153.09\left(\mathrm{C}_{\text {quat }}\right), 142.28\left(\mathrm{C}_{\text {quat }}\right), 136.89\left(\mathrm{C}_{\text {quat }}\right), 133.89$ ($\mathrm{C}_{\text {quat }}$), 133.38 ($\mathrm{C}_{\text {quat }}$), 130.36 (+, 2Ar-CH), 129.29 (+, 2Ar-CH), 121.54 (+, Ar-CH), 119.77 (+, Ar-CH), 116.61 (+, Ar-CH), 107.14 (+, Ar-CH), 61.39 (-, CH_{2}), 49.56 (+, CH), 44.42 (-, CH_{2}), $42.66\left(-, 2 \mathrm{CH}_{2}\right), 34.67\left(-, \mathrm{CH}_{2}\right), 32.35\left(-, 2 \mathrm{CH}_{2}\right), 14.74\left(+, \mathrm{CH}_{3}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{ClN}_{4} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right]$427.1895, found 427.1893.

5-Chloro-1-phenethyl- N -(piperidin-4-yl)-1 H -benzo[d]imidazol-2-amine (4.14a).

Compound 4.13a ($300 \mathrm{mg}, 0.71 \mathrm{mmol}$) was added to $47 \% \mathrm{HBr}(6 \mathrm{~mL})$ and heated to $126^{\circ} \mathrm{C}$ for 3 h . The solvent was removed under reduced pressure, and the remaining mixture was subjected to column chromatography (DCM/MeOH/25\% aqueous ammonia, 100/10/1). Yellow oil ($140 \mathrm{mg}, 0.4 \mathrm{mmol}, 56.1 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.42(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.05-6.93(\mathrm{~m}, 4 \mathrm{H}), 4.10-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.95(\mathrm{~m}$, $4 \mathrm{H})$, 2.73-2.60 (m, 2H), 1.90-1.80 (m, 2H), 1.06-0.92 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 154.26 ($\mathrm{C}_{\text {quat }}$), 143.52 ($\mathrm{C}_{\text {quat }}$), 138.29 ($\mathrm{C}_{\text {quat }}$), 132.81 ($\left.\mathrm{C}_{\text {quat }}\right)$, 129.29 (+, 2Ar-CH), 128.91 (+, 2Ar-CH), 127.44 (+, Ar-CH), 126.69 (Cquat), 119.42 (+, Ar-CH), 116.41 (+, Ar-CH), 107.50 (+, Ar-CH), $49.75(+, \mathrm{CH}), 45.27\left(-, 2 \mathrm{CH}_{2}\right), 44.85\left(-, \mathrm{CH}_{2}\right), 35.34\left(-, \mathrm{CH}_{2}\right), 33.62\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClN}_{4}\left[\mathrm{MH}^{+}\right] 355.1684$, found 355.1686 .

Synthesized from compound 4.13b ($270 \mathrm{mg}, 0.63 \mathrm{mmol}$) by analogy with the procedure for the preparation of 4.14a. Yellow oil ($140 \mathrm{mg}, 0.4 \mathrm{mmol}, 63.2 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 7.38-7.24 (m, 4H), 7.10-6.96 (m, 4H), 4.17-3.95 (m, 2H), 3.78-3.56 (m, 1H), 3.06-2.99 $(\mathrm{m}, 4 \mathrm{H})$, 2.71-2.60 (m, 2H), 1.84-1.79 (m, 2H), 1.09-0.86 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ [ppm]: 154.01 ($\mathrm{C}_{\text {quat }}$), 141.17 ($\mathrm{C}_{\text {quat }}$), 138.30 ($\mathrm{C}_{\text {quat }}$), 134.89 ($\mathrm{C}_{\text {quat }}$), 129.32 (+, 2Ar-CH), 128.93 (+, 2Ar-CH), 127.47 (+, Ar-CH), 124.81 ($\mathrm{C}_{\text {quat }}$), 121.50 (+, Ar-CH), 117.00 (+, Ar-CH), 107.37 (+, Ar-CH), $49.82(+, \mathrm{CH}), 45.33\left(-, 2 \mathrm{CH}_{2}\right), 44.92\left(-, \mathrm{CH}_{2}\right), 35.34\left(-, \mathrm{CH}_{2}\right), 33.73(-$, $2 \mathrm{CH}_{2}$). HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{CIN}_{4}\left[\mathrm{MH}^{+}\right] 355.1684$, found 355.1687.

N-(Piperidin-4-yl)-1-(2-(thiophen-2-yl)ethyl)-1 H-benzo[d]imidazol-2-amine (4.14c).

Synthesized from compound 4.13 d ($500 \mathrm{mg}, 1.26 \mathrm{mmol}$) by analogy according to the procedure for the preparation of 4.14a. Yellow oil ($455 \mathrm{mg}, 1.12 \mathrm{mmol}, 89.2 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]:$ 7.49-7.44 (m, 1H), 7.23-7.17 (m, 1H), 7.16-7.00 (m, 3H), 6.93-6.88 (m, $1 \mathrm{H}), ~ 6.67-6.63(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.99(\mathrm{~m}$, $2 \mathrm{H}), 2.76-2.66(\mathrm{~m}, 2 \mathrm{H})$, 2.02-1.92 (m, 2H), 1.23-1.09 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 153.56 ($\mathrm{C}_{\text {quat }}$), 142.46 ($\mathrm{C}_{\text {quat }}$), 140.04 ($\mathrm{C}_{\text {quat }}$), 134.00 ($\mathrm{C}_{\text {quat }}$), 127.85 (+, Ar-CH), 126.68 (+, Ar-CH), 125.02 (+, Ar-CH), 121.39 (+, Ar-CH), 119.54 (+, Ar-CH), 116.44 (+, Ar-CH), 106.97 (+, Ar-CH), $49.65(+, \mathrm{CH}), 45.24\left(-, 2 \mathrm{CH}_{2}\right), 44.75\left(-, \mathrm{CH}_{2}\right), 33.52\left(-, 2 \mathrm{CH}_{2}\right)$, $29.47(-$, CH_{2}). HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{~S}\left[\mathrm{MH}^{+}\right]$327.1638, found 327.1640.

1-(4-Chlorophenethyl)- N -(piperidin-4-yl)-1 H-benzo[d]imidazol-2-amine (4.14d).

Synthesized from compound $4.13 \mathrm{e}(460 \mathrm{mg}, 1.08 \mathrm{mmol})$ by analogy with the procedure for the preparation of 4.14a gave 4.14d as a yellow-white solid ($455 \mathrm{mg}, 0.97 \mathrm{mmol}, 90 \%$). HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{~S}\left[\mathrm{MH}^{+}\right] 355.1684$, found 355.1678.

N-[1-(3-Aminopropyl)piperidin-4-yl]-1-phenethyl-1 H-benzo[d]imidazol-2-amine (4.15a).

To a solution of compound 4.3 ($600 \mathrm{mg}, 1.25 \mathrm{mmol}$) in acetonitrile $(25 \mathrm{~mL})$, tert-butyl (3-bromopropyl) carbamate ($591 \mathrm{mg}, 2.50 \mathrm{mmol}$), sodium iodide ($373 \mathrm{mg}, 2.50 \mathrm{mmol}$) and DIPEA ($968 \mathrm{mg}, 7.5 \mathrm{mmol}$) were added. The reaction mixture was heated to reflux for 2 h (control by TLC), the solvent was evaporated and the remaining mixture was poured into
water. The aqueous layer was extracted with DCM, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, the resulting mixture was re-dissolved in 10 mL DCM, 10 mL of TFA was added dropwise, and the mixture was stirred at rt for 3 h . Purification by column chromatography (DCM/MeOH/25\% aqueous ammonia, 100/3/1) yielded a yellow oil ($700 \mathrm{mg}, 0.97 \mathrm{mmol}, 77.6 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta[\mathrm{ppm}]: 7.48-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.04-6.95(\mathrm{~m}, 2 \mathrm{H}), 4.54-4.42(\mathrm{~m}, 2 \mathrm{H})$, 3.90-3.56 (m, 3H), 3.29-3.20 (m, 2H), 3.18-2.99 (m, 6H), 2.23-2.06 (m, 4H), 2.00-1.82 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ [ppm]: 150.04 ($\mathrm{C}_{\text {quat }}$), 138.56 ($\mathrm{C}_{\text {quat }}$), 131.81 ($\mathrm{C}_{\text {quat }}$), 130.24 (C quat), 130.18 (+, 2Ar-CH), 129.89(+, 2Ar-CH), 128.27 (+, Ar-CH), 125.38 (+, Ar-CH), 125.17 (+, Ar-CH), 112.90 (+, Ar-CH), 111.71 (+, Ar-CH), 52.84 (-, $\left.\mathrm{CH}_{2}\right), 50.13$ (+, $\left.\mathrm{CH}_{3}\right), 45.21$ (-, $\left.\mathrm{CH}_{2}\right), 37.87\left(-, 2 \mathrm{CH}_{2}\right), 34.59\left(-, 2 \mathrm{CH}_{2}\right), 30.18\left(-, \mathrm{CH}_{2}\right), 23.54\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{5}\left[\mathrm{MH}^{+}\right] 378.2652$, found 378.2657.

N-[1-(3-Aminopropyl)piperidin-4-yl]-1-(4-fluorobenzyl)-1 H-benzo[d]imidazol-2-amine (4.15b). ${ }^{69}$

Synthesized from compound 4.4 ($390 \mathrm{mg}, 0.98 \mathrm{mmol}$) in acetonitrile (25 mL) and tert-butyl (3-bromopropyl) carbamate ($445 \mathrm{mg}, 1.88 \mathrm{mmol}$) by analogy with the procedure for the preparation of 4.15a. Purification by HPLC yielded 4.15b tri(hydrotrifluoroacetate) as a colorless sticky solid ($435 \mathrm{mg}, 0.6 \mathrm{mmol}, 60.1 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) δ [ppm]: 7.56-7.52 (m, 1H), 7.42-7.35 (m, 3H), 7.32-7.13 (m, 4H), $5.50(\mathrm{~s}, 2 \mathrm{H}), 4.14-4.00(\mathrm{~m}, 1 \mathrm{H})$, 3.76-3.58 (m, 2H), 3.30-3.18 (m, 2H), 3.12-2.86 (m, 4H), 2.38-2.18 (m, 2H), 2.10-1.87 (m, 4H). ${ }^{13}$ C-NMR (100 MHz , DMSO-d ${ }_{6}$) δ [ppm]: 172.93 ($\mathrm{C}_{\text {quat }}$), 153.47 ($\mathrm{C}_{\text {quat }}$), 142.38 ($\mathrm{C}_{\text {quat }}$), 134.50 ($\mathrm{C}_{\text {quat }}$), 131.36 ($\mathrm{C}_{\text {quat }}$), 128.30 (+, Ar-CH), 128.19 (+, Ar-CH), 121.50 (+, Ar-CH), 119.70 (+, Ar-CH), 116.38 (+, Ar-CH), 116.23 (+, Ar-CH), 115.94 (+, Ar-CH), 107.23 (+, Ar-CH), 52.97 (-, $\left.\mathrm{CH}_{2}\right), 50.84\left(-, \mathrm{CH}_{2}\right), 48.98\left(+, \mathrm{CH}_{3}\right), 44.6\left(-, \mathrm{CH}_{2}\right), 36.15\left(-, 2 \mathrm{CH}_{2}\right), 28.56\left(-, \mathrm{CH}_{2}\right), 21.69(-$, $2 \mathrm{CH}_{2}$). HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{FN}_{5}\left[\mathrm{MH}^{+}\right]$382.2402, found 382.2407.

N-[1-(3-\{[2-(1 H-imidazol-4-yl)ethyl]amino\}propyl)piperidin-4-yl]-1-(4-fluorobenzyl)-1 H-benzo[d]imidazol-2-amine (4.16a).

To a solution of compound 4.15b ($810 \mathrm{mg}, 1.12 \mathrm{mmol}$) in ACN (25 mL), 4-(2-bromoethyl)-1-trityl-1 H-imidazole ($700 \mathrm{mg}, 1.67 \mathrm{mmol}$) and DIPEA ($723 \mathrm{mg}, 5.6 \mathrm{mmol}$) were added. The reaction mixture was heated at reflux for 48 h (control by TLC), the solvent was evaporated, and the remaining mixture was poured into water. The aqueous layer was extracted with DCM and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. The mixture was dissolved in DCM (2 mL), TFA (2 mL) was added dropwise, and the mixture was stirred at it for 3 h . Purification by HPLC yielded 4.16a tetra(hydrotrifluoroacetate) as a pale-yellow sticky solid ($70 \mathrm{mg}, 0.075 \mathrm{mmol}, 6.70 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$, DMSO- d_{6}) δ [ppm]: 9.01 (d, $J=1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.53-7.50 (m, 2H), 7.40-7.32 (m, 3H), 7.29-7.14 (m, 4H), 5.48 (s, 2H), 4.07-4.00 (m, 1H), 3.65-3.57 (m, 2H), $3.29(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.24-3.17 (m, 2H), 3.08-3.02 (m, 6H), 2.29-2.23 (m, 2H), 2.11-2.03 (m, 2H), 2.02-1.92 (m, 2H). ${ }^{13} \mathrm{C}-$ NMR ($151 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) δ [ppm]: 162.98 ($\mathrm{C}_{\text {quat }}$), 161.36 ($\mathrm{C}_{\text {quat }}$), 159.56 ($\mathrm{C}_{\text {quat }}$), 149.79 ($\mathrm{C}_{\text {quat }}$), 134.79 (+, Ar-CH), 131.50 (Cquat), 131.04 ($\mathrm{C}_{\text {quat }}$), 129.77 (+, Ar-CH), 129.71 (+, Ar-CH), 129.28 (+, Ar-CH), 124.11 (+, Ar-CH), 123.60 (+, Ar-CH), 117.35 (+, Ar-CH), 116.17 (+, Ar-CH), 112.52 (+, Ar-CH), 110.90 (+, Ar-CH), $53.20\left(-, \mathrm{CH}_{2}\right), 51.19$ (-, $\left.\mathrm{CH}_{2}\right), 49.36\left(+, \mathrm{CH}_{3}\right), 45.35\left(-, \mathrm{CH}_{2}\right), 45.16\left(-, \mathrm{CH}_{2}\right), 44.40\left(-, \mathrm{CH}_{2}\right), 28.89\left(-, \mathrm{CH}_{2}\right), 21.55(-$, $2 \mathrm{CH}_{2}$), $20.85\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{FN}_{7}\left[\mathrm{MH}^{+}\right] 476.2932$, found 476.2937.

N-[1-(3-\{[2-(1 H-imidazol-4-yl)ethyl]amino\}propyl)piperidin-4-yl]-1-phenethyl-1 H-benzo[d]imidazol-2-amine (4.16b).

Synthesized from compound 4.15 a ($170 \mathrm{mg}, 0.23 \mathrm{mmol}$) by analogy with the procedure for the preparation of 4.15b. Yield 4.16b tetra(hydrotrifluoroacetate) as a yellow solid (90 mg , $0.097 \mathrm{mmol} 42.2 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta[p p m]: 9.03(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}$, $J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H}), 4.49(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.95-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.04(\mathrm{~m}$, $4 \mathrm{H}), 3.04-2.94(\mathrm{~m}, 4 \mathrm{H}), 2.16-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$ $\delta[p p m]: 158.64\left(\mathrm{C}_{\text {quat }}\right), 148.51\left(\mathrm{C}_{\text {quat }}\right), 137.11\left(\mathrm{C}_{\text {quat }}\right), 134.22(+, \mathrm{Ar}-\mathrm{CH}), 130.28\left(\mathrm{C}_{\text {quat }}\right)$, 128.92 (+, 2Ar-CH), 128.65 ($\mathrm{C}_{\text {quat }}$), 128.19 (+, 2Ar-CH), 126.57 (+, Ar-CH), 123.38 (+, Ar-CH), 123.06 (+, Ar-CH), 116.80 (+, Ar-CH), 111.54 (+, Ar-CH), 110.32 (+, Ar-CH), $52.52\left(-, \mathrm{CH}_{2}\right)$,
$50.57\left(-, \mathrm{CH}_{2}\right), 48.41\left(+, \mathrm{CH}_{3}\right), 44.74\left(-, 2 \mathrm{CH}_{2}\right), 43.80\left(-, \mathrm{CH}_{2}\right), 43.16\left(-, \mathrm{CH}_{2}\right), 32.86\left(-, 2 \mathrm{CH}_{2}\right)$, $20.95\left(-, 2 \mathrm{CH}_{2}\right), 20.26\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{7}\left[\mathrm{MH}^{+}\right] 472.3183$, found 472.3191 .

5-Chloro- N -(1-methylpiperidin-4-yl)-1-phenethyl-1 H-benzo[d]imidazol-2-amine (4.17a).

4.14a ($230 \mathrm{mg}, 0.65 \mathrm{mmol}$) was dissolved in ACN (10 mL), DIPEA ($168 \mathrm{mg}, 1.3 \mathrm{mmol}$) was added, and $\mathrm{Mel}(83 \mathrm{mg}, 0.58 \mathrm{mmol})$ in $\mathrm{ACN}(5 \mathrm{~mL})$ was dropped slowly into the mixture at rt . After stirring for 30 min , the mixture was concentrated and subjected by HPLC giving 4.17a hydrotrifluoroacetate as a white solid ($57 \mathrm{mg}, 0.12 \mathrm{mmol}, 20.4 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , DMSO-d d_{6} ס [ppm]: 7.55-7.50 (m, 1H), 7.45-7.38 (m, 1H), 7.29-7.12 (m, 6H), 4.47-4.40 (m, $2 \mathrm{H}), 3.85-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.90(\mathrm{~m}, 4 \mathrm{H})$, $2.81(\mathrm{~s}, 3 \mathrm{H})$, 2.19-1.70 (m, 4H). ${ }^{13}$ C-NMR (75 MHz, DMSO- d_{6}) δ [ppm]: 158.39 ($\mathrm{C}_{\text {quat }}$), 149.41 ($\mathrm{C}_{\text {quat }}$), 137.05 ($\mathrm{C}_{\text {quat }}$), 129.65 ($\mathrm{C}_{\text {quat }}$), 128.93 (+, 2Ar-CH), 128.22 (+, 2Ar-CH), 127.27 ($\mathrm{C}_{\text {quat }}$), 126.60 (+, Ar-CH), 122.66 (+, Ar-CH), 111.61 (+, Ar-CH), 111.51 (+, Ar-CH), 52.46 (-, 2CH2), 48.54 (+, $\left.\mathrm{CH}_{3}\right), 43.29$ (-, CH_{2}), $42.43\left(+, \mathrm{CH}_{3}\right), 32.83\left(-, \mathrm{CH}_{2}\right), 28.63\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{CIN}_{4}\left[\mathrm{MH}^{+}\right]$ 369.1841, found 369.1842.

\mathbf{N}-(1-Methylpiperidin-4-yl)-1-phenethyl-1 H -benzo[d]imidazol-2-amine (4.17b).

Synthesized from compound 4.3 ($240 \mathrm{mg}, 0.50 \mathrm{mmol}$) by analogy with the procedure for the preparation of 4.17a. Purification by column chromatography (DCM/MeOH/25\% aqueous ammonia, $100 / 5 / 1$). White solid ($171 \mathrm{mg}, 0.41 \mathrm{mmol}, 82.8 \%$); mp $70{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: ~ 7.52-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.00(\mathrm{~m}, 5 \mathrm{H}), 4.14-4.05(\mathrm{~m}, 2 \mathrm{H})$, 3.71-3.56 (m, 1H), 3.07-3.01 (m, 2H), 2.77-2.63 (m, 2H), 2.25 (s, 3H), 2.12-2.01 (m, 2H), 1.89-1.80 (m, 2H), 1.23-1.01 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 153.59 (Cquat), 142.47 ($\mathrm{C}_{\text {quat }}$), 138.52 ($\mathrm{C}_{\text {quat }}$), 134.13 ($\mathrm{C}_{\text {quat }}$), 129.24 (+, 2Ar-CH), 128.94 (+, 2Ar-CH), 127.38 (+, Ar-CH), 121.29 (+, Ar-CH), 119.50 (+, Ar-CH), 116.48 (+, Ar-CH), 107.04 (+, Ar-CH), $54.48\left(-, 2 \mathrm{CH}_{2}\right), 46.26\left(+, \mathrm{CH}_{3}\right), 44.76\left(-, \mathrm{CH}_{2}\right), 35.43\left(-, \mathrm{CH}_{2}\right), 32.63\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{4}\left[\mathrm{MH}^{+}\right]$335.2230, found 335.2234.

Synthesized from compound 4.14d ($344 \mathrm{mg}, 0.97 \mathrm{mmol}$) by analogy with the procedure for the preparation of 4.17a. Purification by column chromatography (DCM/MeOH/25\% aqueous ammonia, 100/5/1). Yellow-white solid ($80 \mathrm{mg}, 0.22 \mathrm{mmol}, 22.0 \%$); mp $58{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.47(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 1 \mathrm{H})$, 7.07-7.00 (m, 2H), $6.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.81-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{t}$, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.75-2.63 (m, 2H), 2.25 (s, 3H), 2.15-2.03 (m, 2H), 1.92-1.80 (m, 2H), 1.27-1.20 (m, 2H). ${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm]: 153.33 ($\mathrm{C}_{\text {quat }}$), 142.42 ($\mathrm{C}_{\text {quat }}$), 136.73 ($\mathrm{C}_{\text {quat }}$), 133.90 ($\mathrm{C}_{\text {quat }}$), 133.31 ($\mathrm{C}_{\text {quat }}$), 130.28 (+, 2Ar-CH), 129.25 (+, 2Ar-CH), 121.42 (+, Ar-CH), 119.58 (+, Ar-CH), 116.55 (+, Ar-CH), 107.07 (+, Ar-CH), 54.44 (-, 2CH2), 49.04 (+, CH), $46.22\left(+, \mathrm{CH}_{3}\right), 44.27\left(-, \mathrm{CH}_{2}\right), 34.53\left(-, \mathrm{CH}_{2}\right), 32.77\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClN}_{4}\left[\mathrm{MH}^{+}\right]$369.1841, found 369.1840.

$N-\{1-[2-(1 \mathrm{H}-\mathrm{imidazol}-4-\mathrm{yl})$ ethyl]piperidin-4-yl\}-1-(4-fluorobenzyl)-1 H-benzo[d]imidazol-2-amine (4.18a).

Compound 4.4 ($324 \mathrm{mg}, 1 \mathrm{mmol}$) was added to a mixture of ACN (10 mL), DIPEA (1.29 g , 10 mmol) and 4-(2-bromoethyl)-imidazole ($720 \mathrm{mg}, 3 \mathrm{mmol}$) in a $20-\mathrm{mL}$ microwave tube. The microwave tube was sealed and subjected to irradiation $\left(120^{\circ} \mathrm{C}\right)$ for 10 min . The obtained suspension was poured into brine and extracted with EtOAc, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Purification by HPLC yielded 4.18a tri(hydrotrifluoroacetate) as a white solid ($77 \mathrm{mg}, 0.10 \mathrm{mmol}, 10 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ [ppm]: 7.60-7.55 (m, $1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-6.79(\mathrm{~m}, 8 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 3.91-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.10-2.98(\mathrm{~m}$, $2 \mathrm{H})$, 2.89-2.60 (m, 4H), 2.31 (t, J = 11.0 Hz, 2H), 2.15-2.04 (m, 2H), 1.72-1.56 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ [ppm]: 155.36 ($\mathrm{C}_{\text {quat }}$), 143.01 ($2 \mathrm{C}_{\text {quat }}$), 136.02 (+, Ar-CH), 135.38 ($\mathrm{C}_{\text {quat }}$), 133.90 ($\mathrm{C}_{\text {quat }}$), 133.86 ($\mathrm{C}_{\text {quat }}$), 129.72 (+, Ar-CH), 129.61 (+, Ar-CH), 122.52 (+, Ar-CH), 120.87 (+, Ar-CH), 116.65 (+, Ar-CH), 116.36 (+, Ar-CH), 116.10 (+, Ar-CH), 109.14 (+, 2Ar-CH), $64.36\left(-, \mathrm{CH}_{2}\right), 59.36\left(-, \mathrm{CH}_{2}\right), 53.60\left(-, \mathrm{CH}_{2}\right), 51.27(+, \mathrm{CH}), 45.28\left(-, \mathrm{CH}_{2}\right)$, 32.77 (-, $2 \mathrm{CH}_{2}$), 25.19 (-, CH_{2}). HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{FN}_{6}\left[\mathrm{MH}^{+}\right]$419.2354, found 419.2355.

N-\{1-[2-(1H-imidazol-4-yl)ethyl]piperidin-4-yl\}-1-phenethyl-1 H-benzo[d]imidazol-2amine (4.18b).

Synthesized from compound 4.3 ($480 \mathrm{mg}, 1 \mathrm{mmol}$) and 4-(2-bromoethyl)-imidazole (290 $\mathrm{mg}, 1.5 \mathrm{mmol}$) by analogy with the procedure for the preparation of 4.18a. Purification by column chromatography ($\mathrm{DCM} / \mathrm{MeOH} / 25 \%$ aqueous ammonia, $100 / 3 / 1$), yielded a white solid ($140 \mathrm{mg}, 0.34 \mathrm{mmol}, 33.8 \%$); mp $61^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ [ppm]: 7.57 (d, J $=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.06-6.91(\mathrm{~m}, 5 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 1 \mathrm{H})$, $4.22(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.69-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.92(\mathrm{~m}, 4 \mathrm{H}), 2.85-2.77(\mathrm{~m}, 2 \mathrm{H})$, 2.71-2.61 (m, 2 H), 2.28-2.16 (m, 2H), 1.99-1.88 (m, 2H), 1.57-1.41 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ [ppm]: 155.16 ($\mathrm{C}_{\text {quat }}$), 142.87 ($\mathrm{C}_{\text {quat }}$), 139.71 ($\mathrm{C}_{\text {quat }}$), 136.00 ($\mathrm{C}_{\text {quat }}$), 135.99 (+, Ar-CH), 135.15 (C quat), 130.18 (+, 3Ar-CH), 129.66 (+, 2Ar-CH), 127.78 (+, Ar-CH), 122.17 (+, Ar-CH), 120.64 (+, Ar-CH), 115.92 (+, Ar-CH), 108.92 (+, Ar-CH), 59.41 (-, CH_{2}), 53.67 (-, 2CH2), 51.13 (+, CH), $44.33\left(-, \mathrm{CH}_{2}\right), 35.58\left(-, \mathrm{CH}_{2}\right), 32.84\left(-, 2 \mathrm{CH}_{2}\right), 25.25\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{6}\left[\mathrm{MH}^{+}\right] 415.2605$, found 415.2611.

N-[2-(1H-imidazol-4-yl)ethyl]-1-(4-fluorobenzyl)-1 H -benzo[d]imidazol-2-amine (4.19a).

Compound 4.12c ($260 \mathrm{mg}, 1 \mathrm{mmol}$) was added to a mixture of NMP (8 mL), DIPEA (1.8 g , 14 mmol) and histamine dihydrochloride ($1.1 \mathrm{~g}, 6 \mathrm{mmol}$) in a $20-\mathrm{mL}$ microwave tube. The microwave tube was sealed and subjected to irradiation $\left(200{ }^{\circ} \mathrm{C}\right)$ for 10 min . The obtained suspension was poured into brine and extracted with EtOAc, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Purification by column chromatography (DCM/MeOH/25\% aqueous ammonia, $100 / 5 / 1$) yielded a white solid ($230 \mathrm{mg}, 0.69 \mathrm{mmol}, 68.7 \%$); $\mathrm{mp} 194^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6}) δ [ppm]: 7.57 (d, $J=1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26-7.18 (m, 3H), 7.18-7.06 $(\mathrm{m}, 2 \mathrm{H}), 7.06-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.80(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H})$, 3.67-3.57 (m,
 ($\mathrm{C}_{\text {quat }}$), 154.39 ($\left.\mathrm{C}_{\text {quat }}\right), 142.70\left(\mathrm{C}_{\text {quat }}\right), 134.53$ (+, Ar-CH), 134.26 ($\left.\mathrm{C}_{\text {quat }}\right), 133.16$ ($\left.\mathrm{C}_{\text {quat }}\right), 129.06$ (+, Ar-CH), 128.95 (+, Ar-CH), 123.49 (+, Ar-CH), 120.36 (+, Ar-CH), 118.26 (+, Ar-CH), 115.34 (+, Ar-CH), 115.06 (+, Ar-CH), 114.92 (+, Ar-CH), 107.61 (+, Ar-CH), 43.58 (-, CH_{2}), $42.45\left(-, \mathrm{CH}_{2}\right)$, $26.83\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FN}_{5}\left[\mathrm{MH}^{+}\right] 336.1619$, found 336.1625.

N -[2-(1H-imidazol-4-yl)ethyl]-1-phenethyl-1 H-benzo[d]imidazol-2-amine (4.19b).

Synthesized from compound 4.12 b ($520 \mathrm{mg}, 2 \mathrm{mmol}$) by analogy with the procedure for the preparation of 4.19a. White solid ($370 \mathrm{mg}, 1.12 \mathrm{mmol}, 56 \%$); mp $163^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta[\mathrm{ppm}]: 7.58(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.03(\mathrm{~m}$, 2H), 7.01-6.97 (m, 2H), 6.95-6.90 (m, 1H), 6.84 (s, 1H), $4.15(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ [ppm]: $154.28\left(\mathrm{C}_{\text {quat }}\right), 141.39\left(\mathrm{C}_{\text {quat }}\right), 138.11\left(2 \mathrm{C}_{\text {quat }}\right), 134.57(+, \mathrm{Ar}-\mathrm{CH}), 133.84\left(\mathrm{C}_{\text {quat }}\right), 128.64$ (+, 2Ar-CH), 128.16 (+, 2Ar-CH), 126.29 (+, 2Ar-CH), 120.66 (+, Ar-CH), 119.19 (+, Ar-CH), 114.51 (+, Ar-CH), 107.35 (+, Ar-CH), 43.03 (-, CH2), $42.47\left(-, \mathrm{CH}_{2}\right), 34.18\left(-, \mathrm{CH}_{2}\right), 26.47(-$, CH_{2}). HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5}\left[\mathrm{MH}^{+}\right] 332.1870$, found 332.1870.

1-(4-Fluorobenzyl)-N-[2-(4-methylpiperazin-1-yl)ethyl]-1 H-benzo[d]imidazol-2-amine (4.20a).

tert-Butyl [2-(4-methylpiperazin-1-yl)ethyl]carbamate ($630 \mathrm{mg}, 2.6 \mathrm{mmol}$) was dissolved in 20 mL DCM, 20 mL of TFA was added dropwise, the mixture was stirred at rt for 2 h . Afterward, 10 mL DCM was added and the solvent was removed under reduced pressure to yield 4-methyl-1-piperazineethanamine tri(hydrotrifluoroacetate) $)^{50}$ ($\left.1.12 \mathrm{~g}, 2.6 \mathrm{mmol}\right)$. 4-methyl-1-piperazineethanamine tri(hydrotrifluoroacetate) ($1.12 \mathrm{~g}, 2.6 \mathrm{mmol}$) and compound 4.12c ($512 \mathrm{mg}, 2 \mathrm{mmol}$) was added to a mixture of NMP (10 mL), DIPEA ($3.87 \mathrm{~g}, 30 \mathrm{mmol}$) in a $20-\mathrm{mL}$ microwave tube. The microwave tube was sealed and subjected to irradiation $\left(180^{\circ} \mathrm{C}\right)$ for 2 h . The obtained suspension was poured into brine and extracted with DCM, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Purification by column chromatography (DCM/MeOH/25\% aqueous ammonia, 100/5/1), yielded a white solid (270 $\mathrm{mg}, 0.7 \mathrm{mmol}, 35 \%) ; \mathrm{mp} 139^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.51(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.21-6.97 (m, 8H), 5.07 (s, 2H), 3.55-3.46 (m, 2H), 2.63-2.27 (m, 10H), 2.24 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm]: $154.44\left(\mathrm{C}_{\text {quat }}\right), 142.29\left(\mathrm{C}_{\text {quat }}\right), 134.78\left(\mathrm{C}_{\text {quat }}\right), 131.60\left(\mathrm{C}_{\text {quat }}\right), 131.56$ ($\mathrm{C}_{\text {quat }}$), 128.45 (+, Ar-CH), 128.34 (+, Ar-CH), 121.49 (+, Ar-CH), 119.84 (+, Ar-CH), 116.59 (+, Ar-CH), 116.31 (+, Ar-CH), 116.02 (+, Ar-CH), 107.00 (+, Ar-CH), 55.86 (-, CH2), 54.92 (-, $\left.2 \mathrm{CH}_{2}\right), 52.45\left(-, 2 \mathrm{CH}_{2}\right), 45.95\left(+, \mathrm{CH}_{3}\right), 45.06\left(-, \mathrm{CH}_{2}\right), 39.26\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{FN}_{5}\left[\mathrm{MH}^{+}\right] 368.2245$, found 368.2251 .

N-[2-(4-Methylpiperazin-1-yl)ethyl]-1-phenethyl-1 H-benzo[d]imidazol-2-amine (4.20b).

Synthesized from compound 4.12b ($512 \mathrm{mg}, 2 \mathrm{mmol}$) by analogy with the procedure for the preparation of 4.20a. White solid ($130 \mathrm{mg}, 0.36 \mathrm{mmol}, 18.7 \%$); mp $89^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=$ $4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.52-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-2.35(\mathrm{~m}$, 10 H), 2.29 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 154.12 ($\mathrm{C}_{\text {quat }}$), 141.92 ($\mathrm{C}_{\text {quat }}$), 137.99 ($\mathrm{C}_{\text {quat }}$), 134.08 ($\mathrm{C}_{\text {quat }}$), 128.89 (+, 4Ar-CH), 126.99 (+, Ar-CH), 121.29 (+, Ar-CH), 119.65 (+, Ar-CH), 116.21 (+, Ar-CH), 107.18 (+, Ar-CH), $56.47\left(-, \mathrm{CH}_{2}\right), 55.12\left(-, 2 \mathrm{CH}_{2}\right), 52.65\left(-, 2 \mathrm{CH}_{2}\right)$, $46.04\left(+, \mathrm{CH}_{3}\right), 44.25\left(-, \mathrm{CH}_{2}\right), 39.32\left(-, \mathrm{CH}_{2}\right), 35.24\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{5}\left[\mathrm{MH}^{+}\right]$364.2496, found 364.2500.

1-(4-Fluorobenzyl)-2-(piperazin-1-yl)-1 H-benzo[d]imidazole (4.21a). ${ }^{68}$

Compound 4.12c ($520 \mathrm{mg}, 2 \mathrm{mmol}$) was added to NMP (3 mL), DIPEA ($516 \mathrm{mg}, 4 \mathrm{mmol}$) and piperazine ($1.03 \mathrm{~g}, 12 \mathrm{mmol}$) in a $5-\mathrm{mL}$ microwave tube. The microwave tube was sealed and subjected to irradiation $\left(180^{\circ} \mathrm{C}\right)$ for 1 h . The obtained suspension was poured into brine and extracted with EtOAc , the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Purification by column chromatography (DCM/MeOH/25\% aqueous ammonia, 100/5/1) yielded a yellow oil ($630 \mathrm{mg}, 2 \mathrm{mmol}, 100 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.66-7.60$ (m, 1H), 7.21-6.96 (m, 7H), 5.18 (s, 2H), 3.27-3.15 (m, 4H), 3.04-2.94 (m, 4H). ${ }^{13} \mathrm{C}$-NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 158.18 ($\mathrm{C}_{\text {quat }}$), 141.58 ($\mathrm{C}_{\text {quat }}$), 135.24 ($\left.\mathrm{C}_{\text {quat }}\right)$, 134.94 ($\mathrm{C}_{\text {quat }}$), 127.84 (+,Ar-CH), 127.73 (+, Ar-CH), 122.12 (+, Ar-CH), 121.61 (+, Ar-CH), 118.26 (+, Ar-CH), 116.13 (+, Ar-CH), 115.85 (+, Ar-CH), 109.31 (+, Ar-CH), 51.81 (-, $4 \mathrm{CH}_{2}$), 47.02 (-, CH_{2}), $45.61\left(-, 4 \mathrm{CH}_{2}\right)$.

1-Phenethyl-2-(piperazin-1-yl)-1 H-benzo[d]imidazole (4.21b). ${ }^{70}$

Synthesized from compound 4.3 ($768 \mathrm{mg}, 3 \mathrm{mmol}$) by analogy with the procedure for the preparation of 4.21a. Yellow oil ($900 \mathrm{mg}, 2.94 \mathrm{mmol}, 98.0 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 7.70-7.56 (m, 1H), 7.38-7.12 (m, 6H), 7.09-6.92 (m, 2H), 4.28-4.17 (m, 2H), 3.13-2.87 (m, 10H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 158.18 ($\mathrm{C}_{\text {quat }}$), 141.69 ($\mathrm{C}_{\text {quat }}$), 137.98 ($\mathrm{C}_{\text {quat }}$), 134.34 ($\mathrm{C}_{\text {quat }}$), 128.76 (+, 2Ar-CH), 128.69 (+, 2Ar-CH), 126.83 (+, Ar-CH), 121.79 (+, Ar-CH),
121.48 (+, Ar-CH), 118.52 (+, Ar-CH), 109.25 (+, Ar-CH), 51.96 (-, 2CH2), $45.69\left(-, 2 \mathrm{CH}_{2}\right)$, $45.56\left(-, \mathrm{CH}_{2}\right), 35.13\left(-, \mathrm{CH}_{2}\right)$.

2-\{4-[2-(1H-imidazol-4-yl)ethyl]piperazin-1-yl\}-1-(4-fluorobenzyl)-1 H-benzo[d]imidazole (4.22a).

Compound 4.21a ($310 \mathrm{mg}, 1 \mathrm{mmol}$) was added to a mixture of NMP (10 mL), DIPEA (390 $\mathrm{mg}, 3 \mathrm{mmol}$) and 4-(2-bromoethyl)-imidazole ($230 \mathrm{mg}, 1.2 \mathrm{mmol}$) in a $20-\mathrm{mL}$ microwave tube. The microwave tube was sealed and subjected to irradiation (120 ${ }^{\circ} \mathrm{C}$) for 50 min . The obtained suspension was poured into brine and extracted with EtOAc, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Purification by column chromatography (DCM/MeOH/25\% aqueous ammonia, $100 / 2.5 / 1$), yielded a white solid ($180 \mathrm{mg}, 0.44 \mathrm{mmol}, 44.6 \%$); $\mathrm{mp} 59^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.62(\mathrm{~d}, ~ J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.05-6.95(\mathrm{~m}$, 4 H), $6.82(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 3.34-3.22(\mathrm{~m}, 4 \mathrm{H}), 2.85-2.61(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ [ppm]: $163.84\left(\mathrm{C}_{\text {quat }}\right), 160.58\left(\mathrm{C}_{\text {quat }}\right), 157.88\left(\mathrm{C}_{\text {quat }}\right), 141.42\left(\mathrm{C}_{\text {quat }}\right), 135.19$ ($\left.\mathrm{C}_{\text {quat }}\right)$, 134.27 (+, Ar-CH), 131.85 ($\mathrm{C}_{\text {quat }}$), 127.85 (+, Ar-CH), 127.74 (+, Ar-CH), 122.22 (+, Ar-CH), 121.77 (+, Ar-CH), 119.34 (+, Ar-CH), 118.18 (+, Ar-CH), 116.18 (+, Ar-CH), 115.89 (+, Ar-CH), 109.38 (+, Ar-CH), 57.75 (-, CH_{2}), $52.59\left(-, 2 \mathrm{CH}_{2}\right), 50.80\left(-, 2 \mathrm{CH}_{2}\right), 47.02\left(-, \mathrm{CH}_{2}\right)$, 23.06 (-, CH_{2}). HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{FN}_{6}\left[\mathrm{MH}^{+}\right]$405.2197, found 405.2206.

2-\{4-[2-(1H-imidazol-4-yl)ethyl]piperazin-1-yl\}-1-phenethyl-1 H-benzo[d]imidazole (4.22b).

Synthesized from compound 4.21b ($306 \mathrm{mg}, 1 \mathrm{mmol}$) by analogy with the procedure for the preparation of 4.22a yielded a white solid ($210 \mathrm{mg}, 0.52 \mathrm{mmol}, 52.5 \%$); mp $130^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm]: 7.65-7.54 (m, 2H), 7.33-7.20 (m, 6H), 7.02-6.96 (m, 2H), 6.83 (s, $1 \mathrm{H})$, $4.24(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.16-3.03(\mathrm{~m}, 6 \mathrm{H})$, 2.88-2.66 (m, 4H), 2.65-2.55 (m, 4H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 157.90 ($\mathrm{C}_{\text {quat }}$), 141.47 ($\mathrm{C}_{\text {quat }}$), 137.89 (Cquat), 134.26 $\left(2 \mathrm{C}_{\text {quat }}\right), 133.63$ (+, Ar-CH), 128.77 (+, 2Ar-CH), 128.70 (+, 2Ar-CH), 126.87 (+, Ar-CH), 121.93 (+, Ar-CH), 121.66 (+, Ar-CH), 119.58 (+, Ar-CH), 118.41 (+, Ar-CH), 109.37 (+, Ar-CH), $57.74\left(-, \mathrm{CH}_{2}\right), 52.68\left(-, 2 \mathrm{CH}_{2}\right), 50.89\left(-, 2 \mathrm{CH}_{2}\right), 45.54\left(-, \mathrm{CH}_{2}\right), 35.11\left(-, \mathrm{CH}_{2}\right), 22.98$ $\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{6}\left[\mathrm{MH}^{+}\right] 401.2448$, found 401.2449.

2-(4-Methylpiperazin-1-yl)-1-phenethyl-1 H -benzo[d]imidazole (4.23). ${ }^{67}$

Compound 4.12b ($260 \mathrm{mg}, 1 \mathrm{mmol}$) was added to a mixture of NMP (3 mL), DIPEA (390 $\mathrm{mg}, 3 \mathrm{mmol}$) and 1-methylpiperazine ($600 \mathrm{mg}, 6 \mathrm{mmol}$) in a $5-\mathrm{mL}$ microwave tube. The microwave tube was sealed and subjected to irradiation $\left(180{ }^{\circ} \mathrm{C}\right)$ for 1 h . The obtained suspension was poured into brine and extracted with EtOAc, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Purification by column chromatography (DCM/MeOH, 10/1), yielded a yellow oil ($310 \mathrm{mg}, 0.96 \mathrm{mmol}, 96.0 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]$: 7.67-7.59 (m, 1H), 7.31-7.16 (m, 6H), 7.06-7.00 (m, 2H), 4.31-4.11 (m, 2H), 3.18-3.12 (m, 4H), 3.12-3.04 (m, 2H), 2.56-2.45 (m, 4H), $2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]:$ $157.96\left(\mathrm{C}_{\text {quat }}\right), 141.70\left(\mathrm{C}_{\text {quat }}\right), 137.95\left(\mathrm{C}_{\text {quat }}\right), 134.50\left(\mathrm{C}_{\text {quat }}\right)$, 128.75 (+, 2Ar-CH), 128.71 (+, 2Ar-CH), 126.84 (+, Ar-CH), 121.77 (+, Ar-CH), 121.39 (+, Ar-CH), 118.44 (+, Ar-CH), 109.15 (+, Ar-CH), $54.81\left(-, \mathrm{CH}_{2}\right), 50.59\left(-, \mathrm{CH}_{2}\right), 46.22\left(+, \mathrm{CH}_{3}\right), 45.66\left(-, \mathrm{CH}_{2}\right), 35.12\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4}\left[\mathrm{MH}^{+}\right] 321.2074$, found 321.2089.

4-(1 H-benzo[d]imidazol-2-yl)phenol (4.24). ${ }^{71}$

A solution of 1,2-phenylenediamine ($2.16 \mathrm{~g}, 20 \mathrm{mmol}$) and 4-hydroxybenzaldehyde (2.44 g , $20 \mathrm{mmol})$ in DMF (40 mL) was treated with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(3.80 \mathrm{~g}, 20 \mathrm{mmol})$. After heating at $90^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was cooled to rt and subsequently diluted with ice water. The resulting suspension was stirred for 4 h , cooled to $0{ }^{\circ} \mathrm{C}$ and filtered through a glass fritted funnel. The solid was washed with cold water and dried in vacuum and used without further purification. White solid ($4.17 \mathrm{~g}, 19.86 \mathrm{mmol}, 99.3 \%$); mp > $250{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, DMSO-d d_{6}) δ [ppm]: 8.06-7.97 (m, 2H), 7.60-7.49 (m, 2H), 7.21-7.12 (m, 2H), 6.97-6.88 (m,
 128.08 (+, 2Ar-CH), 121.57 (+, 2Ar-CH), 120.68 (quat), 115.59 (+, 2Ar-CH), 114.51 (+, 2Ar-CH). HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{MH}^{+}\right]$211.0866, found 211.0872 .

tert-Butyl \{3-[4-(1 H-benzo[d]imidazol-2-yl)phenoxy]propyl\}carbamate (4.25).

To a solution of compound $4.24(1.30 \mathrm{~g}, 6.17 \mathrm{mmol})$ in acetone, $\mathrm{K}_{2} \mathrm{CO}_{3}(851 \mathrm{mg}, 6.17 \mathrm{mmol})$ was added. The mixture was stirred for 30 min , subsequently, tert-butyl (3-bromopropyl)carbamate ($1.61 \mathrm{~g}, 6.79 \mathrm{mmol}$) was added, and the reaction mixture was
heated to reflux for 17 h . Purification by column chromatography (DCM/MeOH, 30/1). White solid ($970 \mathrm{mg}, 2.64 \mathrm{mmol}, 42.8 \%$); mp > $250^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right) \delta[\mathrm{ppm}]$: 8.17-8.06 (m, 2H), 7.65-7.50 (m, 2H), 7.21-7.13 (m, 2H), 7.12-7.06 (m, 2H), 4.06 (t, J=6.2 Hz, 2 H), 3.11 ($\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.87 (quint, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.38(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, DMSO-d d_{6}) [ppm]: 159.86 ($2 \mathrm{C}_{\text {quat }}$), 155.55 (Cquat), 151.23 ($2 \mathrm{C}_{\text {quat }}$), 127.87 (+, 4Ar-CH), $122.48\left(\mathrm{C}_{\text {quat }}\right), 114.70(+, 4 \mathrm{Ar}-\mathrm{CH}), 114.51(+, 2 \mathrm{Ar}-\mathrm{CH}), 77.42\left(\mathrm{C}_{\text {quat }}\right), 65.33\left(-, \mathrm{CH}_{2}\right), 36.79(-$, CH_{2}), $29.05\left(-, \mathrm{CH}_{2}\right), 28.14\left(+, 3 \mathrm{CH}_{3}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}\left[\mathrm{MH}^{+}\right]$ 368.1969 , found 368,1977 .

3-\{4-[1-(4-Fluorobenzyl)-1 H-benzo[d]imidazol-2-yl]phenoxy\}propan-1-amine (4.26).

To a solution of compound $4.25(670 \mathrm{mg}, 1.82 \mathrm{mmol})$ in $\mathrm{ACN}(50 \mathrm{~mL})$, 1-(chloromethyl)-4-fluorobenzene ($788 \mathrm{mg}, 5.47 \mathrm{mmol}$) and $\mathrm{NaOH}(364 \mathrm{mg}, 9.1 \mathrm{mmol})$ were added. The mixture was stirred at rt for 5 h , the obtained suspension was poured into brine and extracted with EtOAc. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was dissolved in 10 mL of DCM, TFA (10 mL) was added dropwise, and the mixture was stirred at rt for 2 h . Purification by column chromatography (DCM/MeOH 25\% aqueous ammonia, $100 / 5 / 1$), yielded a pale oil ($610 \mathrm{mg}, 1.63 \mathrm{mmol}, 89.3 \%$). ${ }^{1} \mathrm{H}$-NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.87-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.12-6.89(\mathrm{~m}$, $6 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.94$ (quint, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 160.38 ($\left.\mathrm{C}_{\text {quat }}\right)$, 154.12 ($\mathrm{C}_{\text {quat }}$), 143.19 ($\left.\mathrm{C}_{\text {quat }}\right)$, 135.94 ($\mathrm{C}_{\text {quat }}$), 132.25 ($\mathrm{C}_{\text {quat }}$), 132.21 ($\mathrm{C}_{\text {quat }}$), 130.63 (+, 2Ar-CH), 127.73 (+, Ar-CH), 127.62 (+, Ar-CH), 122.88 (+, Ar-CH), 122.68 (+, Ar-CH), 122.21 ($\mathrm{C}_{\text {quat }}$, 119.84 (+, Ar-CH), 116.18 (+, Ar-CH), 115.89 (+, Ar-CH), 114.75 (+, 2Ar-CH), 110.22 (+, Ar-CH), 66.00 (-, CH2), 47.75 (-, CH_{2}), $39.13\left(-, \mathrm{CH}_{2}\right), 32.88\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}\left[\mathrm{MH}^{+}\right]$ 376.1820 , found 376.1823 .
N - [2- (1H- imidazol-4- yl)ethyl]- 3- \{4- [1- (4- fluorobenzyl)- 1H- benzo[d]imidazol- 2-yl]phenoxy\}propan- 1- amine (4.27).

Compound 4.27 was prepared by analogy with the procedure for the preparation of compound 4.16a, using compound 4.26 ($480 \mathrm{mg}, 0.67 \mathrm{mmol}$) and

4-(2-bromoethyl)-1-trityl-1 H-imidazole ($416 \mathrm{mg}, 1.0 \mathrm{mmol}$) as educts. Purification by column chromatography (DCM/MeOH/25\% aqueous ammonia, 100/5/1) yielded yellow-white crystals ($80 \mathrm{mg}, 0.17 \mathrm{mmol}, 26.7 \%$); mp $120^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) δ [ppm]: 7.81 (d, J=7.7 $\mathrm{Hz}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.07-6.88(\mathrm{~m}, 6 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H})$, $5.37(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.97-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.70(\mathrm{~m}, 4 \mathrm{H}), 1.97$ (quint, $J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 160.60 ($\mathrm{C}_{\text {quat }}$), 160.38 ($\mathrm{C}_{\text {quat }}$), 154.12 ($\mathrm{C}_{\text {quat }}$), 142.94 ($\mathrm{C}_{\text {quat }}$), 135.81 ($\mathrm{C}_{\text {quat }}$), 134.66 (+, Ar-CH), 132.12 ($\mathrm{C}_{\text {quat }}$), 132.08 ($\mathrm{C}_{\text {quat }}$), 130.65 (+, 2Ar-CH), 127.74 (+, Ar-CH), 127.64 (+, Ar-CH), 123.03 (+, Ar-CH), 122.81 (+, Ar-CH), 122.05 (C quat), 119.61 (+, 2Ar-CH), 116.20 (+, Ar-CH), 115.92 (+, Ar-CH), 114.83 (+, 2Ar-CH), 110.37 (+, Ar-CH), $66.41\left(-, \mathrm{CH}_{2}\right), 49.20\left(-, \mathrm{CH}_{2}\right), 47.73\left(-, \mathrm{CH}_{2}\right), 46.47\left(-, \mathrm{CH}_{2}\right), 29.36\left(-, \mathrm{CH}_{2}\right)$, 26.66. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{FN}_{5} \mathrm{O}\left[\mathrm{MH}^{+}\right] 470.2351$, found 470.2354.

4-\{[1-(4-Fluorobenzyl)-1 H-benzo[d]imidazol-2-yl]amino\}phenol (4.28).

Compound 4.12c ($1.04 \mathrm{~g}, 4.00 \mathrm{mmol}$) and 4 -aminophenol ($2.18 \mathrm{~g}, 20.0 \mathrm{mmol}$) were dissolved in 20 mLEtOH , and 4 mL pf HCl in iso-propanol were added dropwise while stirring. The reaction mixture was stirred and refluxed for two days, subsequently concentrated and subjected to flash column chromatography (MeOH with $10 \% \mathrm{NH}_{3} / \mathrm{DCM}, 5 / 95$), yielding compound 4.28 as sticky oil ($530 \mathrm{mg}, 1.59 \mathrm{mmol}, 40.0 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO-d ${ }^{\text {}}$) δ [ppm]: 7.70-7.56 (m, 2H), 7.33 (d, J = 7.8 Hz, 1H), 7.27-7.20 (m, 2H), 7.19-7.11 (m, 3H), 7.05-6.91 (m, 2H), 6.80-6.68 (m, 2H), $5.47(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right) \delta[\mathrm{ppm}]:$ 163.07 ($\mathrm{C}_{\text {quat }}$), 160.65 ($\mathrm{C}_{\text {quat }}$), 151.50 ($\mathrm{C}_{\text {quat }}$), 142.69 ($\mathrm{C}_{\text {quat }}$), 134.08 ($\left.\mathrm{C}_{\text {quat }}\right), 133.75$ (Cquat), 132.88 ($\mathrm{C}_{\text {quat }}$), 129.31 (+, Ar-CH), 129.23 (+, Ar-CH), 121.37 (+, Ar-CH), 120.80 (+, Ar-CH), 120.70 (+, Ar-CH), 119.86 (+, Ar-CH), 116.33 (+, Ar-CH), 116.00 (+, Ar-CH), 115.79 (+, Ar-CH), 115.53 (+, Ar-CH), 115.48 (+, Ar-CH), 108.71 (+, Ar-CH), 44.47 (-, CH_{2}). HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}\left[\mathrm{MH}^{+}\right] 334.1350$, found 334.1356.

tert- Butyl [3- (4- \{[1- (4- fluorobenzyl)- 1H- benzo[d]imidazol- 2- yl] amino\} phenoxy) propyl] carbamate (4.29).

Compound 4.29 was prepared by analogy with the procedure for the preparation of compound 4.25 , using compound 4.28 ($530 \mathrm{mg}, 1.59 \mathrm{mmol}$) as educt. Purification by flash
column chromatography (MeOH with $10 \% \mathrm{NH}_{3} / \mathrm{DCM}=4 / 96$) yielded a brown oil (290 mg , $0.59 \mathrm{mmol}, 37 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: $7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}$, $2 \mathrm{H}), 7.17-7.06(\mathrm{~m}, 5 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.73(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 3.91-3.84(\mathrm{~m}, 2 \mathrm{H})$, 3.32-3.25 (m, 2H), 1.95-1.85 (m, 2H), $1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]:$ 163.66 ($\mathrm{C}_{\text {quat }}$), 161.21 ($\mathrm{C}_{\text {quat }}$), 156.09 ($\mathrm{C}_{\text {quat }}$), 154.91 ($\mathrm{C}_{\text {quat }}$), 151.02 ($\left.\mathrm{C}_{\text {quat }}\right), 134.05$ ($\mathrm{C}_{\text {quat }}$), 131.24 ($\mathrm{C}_{\text {quat }}$), 131.20 ($\mathrm{C}_{\text {quat }}$), 128.37 (+, $\operatorname{Ar-CH),~} 128.29$ (+, Ar-CH), 121.92 (+, Ar-CH), 121.48 (+, Ar-CH), 120.71 (+, Ar-CH), 116.22 (+, Ar-CH), 116.01 (+, Ar-CH), 115.14 (+, 2Ar-CH), 107.83 (+, Ar-CH), 79.23 ($\mathrm{C}_{\text {quat }}$), 66.17 (-, CH_{2}), $45.46\left(-, \mathrm{CH}_{2}\right), 38.04\left(-, \mathrm{CH}_{2}\right), 29.55$ $\left(-, \mathrm{CH}_{2}\right), 28.46\left(+, 3 \mathrm{CH}_{3}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{FN}_{4} \mathrm{O}_{3}\left[\mathrm{MH}^{+}\right] 491.2453$, found 491.2463.

N-[4-(3-\{[2-(1 H-imidazol-4-yl)ethyl]amino\}propoxy)phenyl]-1-(4-fluorobenzyl)-1 H-benzo

[d]imidazol-2-amine (4.30).

Compound 4.29 ($280 \mathrm{mg}, 0.57 \mathrm{mmol}$) was dissolved in 5 mL of DCM, TFA (5 mL) was added dropwise, and the mixture was stirred at rt for 3 h . After concentration and vacuum drying overnight, 4-(2-bromoethyl)-1-trityl-1 H -imidazole ($200 \mathrm{mg}, 0.48 \mathrm{mmol}$) in ACN (25 mL), DIPEA ($368 \mathrm{mg}, 2.85 \mathrm{mmol}$) and $\mathrm{NaI}(80 \mathrm{mg}, 0.53 \mathrm{mmol})$ were added. The mixture was heated at reflux for 48 h , the solvent was evaporated, the remaining mixture was poured into brine and extracted with DCM. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was dissolved by 2 mL of DCM, TFA (2 mL) was added dropwise, the mixture was stirred at tt for 3 h and dried by evaporation. Purification by column chromatography (DCM/MeOH/25\% aqueous ammonia, 100/8/1) yielded a brown solid ($16 \mathrm{mg}, 0.03 \mathrm{mmol}, 5.8 \%$); mp $83^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$) δ [ppm]: $7.54(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.13-6.96(\mathrm{~m}, 5 \mathrm{H})$, 6.87-6.83 (m, 3H), 5.36 (s, 2H), $3.99(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, 2.87-2.77 (m, 4H), 2.04-1.90 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ [ppm]: 163.43 ($\mathrm{C}_{\text {quat }}$), 161.00 ($\mathrm{C}_{\text {quat }}$), 155.07 ($\mathrm{C}_{\text {quat }}$), 152.04 ($\mathrm{C}_{\text {quat }}$), 41.21 ($\mathrm{C}_{\text {quat }}$), 134.86 (+ , Ar-CH), 133.71 ($\mathrm{C}_{\text {quat }}$), 133.39 ($\mathrm{C}_{\text {quat }}$), 132.38 (Cquat), 128.27 (+, Ar-CH), 128.19 (+, Ar-CH), 122.05 (+, Ar-CH), 121.37 (+, Ar-CH), 120.13 (+, Ar-CH), 115.53 (+, Ar-CH), 115.22 (+, Ar-CH), 115.00 (+, Ar-CH), 114.56 (+, Ar-CH), 108.14 (+, Ar-CH), 66.40 (-, CH_{2}), 48.56 (-, CH_{2}), 46.31 (-, CH_{2}), 44.38 (-, CH_{2}), 28.45
(-, CH_{2}), $26.02\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{FN}_{6} \mathrm{O}\left[\mathrm{MH}^{+}\right] 485.2460$, found 485.2462.

N^{1}-[1-(4-Fluorobenzyl)-1 H-benzo[d]imidazol-2-yl]ethane-1,2-diamine (4.31a).

Compound 4.12c ($2.51 \mathrm{~g}, 9.65 \mathrm{mmol}$) was added to a mixture of ethane-1,2-diamine (15 mL) and DIPEA ($2.49 \mathrm{~g}, 19.31 \mathrm{mmol}$) in a $20-\mathrm{mL}$ microwave tube. The microwave tube was sealed and subjected to irradiation $\left(160^{\circ} \mathrm{C}\right)$ for 40 min . The obtained mixture was poured into brine and extracted with EtOAc , the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The product was used without further purification. White solid ($2.64 \mathrm{~g}, 9.29 \mathrm{mmol}, 96.3 \%$); mp $117{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.52-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~m}$, $4 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 3.54-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.88(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]:$ 160.74 ($\mathrm{C}_{\text {quat }}$), 154.46 ($\mathrm{C}_{\text {quat }}$), $142.35\left(\mathrm{C}_{\text {quat }}\right)$, 134.67 ($\left.\mathrm{C}_{\text {quat }}\right)$, 131.38 ($\left.\mathrm{C}_{\text {quat }}\right)$, 128.34 (+, Ar-CH), 128.23 (+, Ar-CH), 121.53 (+, Ar-CH), 119.79 (+, Ar-CH), 116.50 (+, Ar-CH), 116.17 (+, Ar-CH), 115.88 (+, Ar-CH), 107.25 (+, Ar-CH), $45.37\left(-, \mathrm{CH}_{2}\right), 45.01\left(-, \mathrm{CH}_{2}\right), 41.00\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FN}_{4}\left[\mathrm{MH}^{+}\right]$285.1510, found 285.1513.

N^{1}-[1-(4-Fluorobenzyl)-1 H-benzo[d]imidazol-2-yl]propane-1, 3-diamine (4.31b).

Synthesized from compound 4.12 c ($1.30 \mathrm{~g}, 5 \mathrm{mmol}$) and propane-1,3-diamine (15 mL) by analogy with the procedure for the preparation of 4.31a. Sticky colorless oil ($1.33 \mathrm{~g}, 4.46$ mmol, 89.3\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.50-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.05(\mathrm{~m}, 3 \mathrm{H})$, 7.04-6.93 (m, 4H), $5.03(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.66(\mathrm{~m}$, 2H). ${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm]: 163.92 ($\mathrm{C}_{\text {quat }}$), 160.65 ($\mathrm{C}_{\text {quat }}$), 154.71 ($\mathrm{C}_{\text {quat }}$), 142.57 ($\mathrm{C}_{\text {quat }}$), $134.66\left(\mathrm{C}_{\text {quat }}\right), 131.66\left(\mathrm{C}_{\text {quat }}\right)$, 128.31 (+, Ar-CH), 128.20 (+, Ar-CH), 121.36 (+, Ar-CH), 119.49 (+, Ar-CH), 116.29 (+, Ar-CH), 115.99 (+, Ar-CH), 115.70 (+, Ar-CH), 107.06 (+, Ar-CH), $44.94\left(-, \mathrm{CH}_{2}\right), 43.25\left(-, \mathrm{CH}_{2}\right), 41.08\left(-, \mathrm{CH}_{2}\right), 31.00\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{FN}_{4}\left[\mathrm{MH}^{+}\right]$299.1667, found 299.1670.

N^{1}-[1-(4-Fluorobenzyl)-1 H-benzo[d]imidazol-2-yl]hexane-1,6-diamine (4.31c).

Synthesized from compound 4.12c ($520 \mathrm{mg}, 2 \mathrm{mmol}$) and hexane-1,6-diamine ($1.39 \mathrm{~g}, 12$ $\mathrm{mmol})$ by analogy with the procedure for the preparation of 4.31a. Sticky colorless oil (440 mg ,
$1.29 \mathrm{mmol}, 64.7 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: $7.50(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.07$ $(\mathrm{m}, 3 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 4 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 3.50-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.53$ (m, 2H), 1.42-1.34 (m, 2H), 1.33-1.21 (m, 4H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 161.21 ($\mathrm{C}_{\text {quat }}$), $154.30\left(\mathrm{C}_{\text {quat }}\right), 142.44\left(\mathrm{C}_{\text {quat }}\right), 134.69$ ($\mathrm{C}_{\text {quat }}$), 131.32 ($\mathrm{C}_{\text {quat }}$), 128.23 (+, Ar-CH), 128.15 (+, Ar-CH), 121.51 (+, Ar-CH), 119.74 (+, Ar-CH), 116.60 (+, Ar-CH), 116.24 (+, Ar-CH), 116.03 (+, Ar-CH), 107.10 (+, Ar-CH), 45.01 (-, $\left.\mathrm{CH}_{2}\right), 43.34\left(-, \mathrm{CH}_{2}\right), 42.05\left(-, \mathrm{CH}_{2}\right), 33.54(-$, CH_{2}), $29.68\left(-, \mathrm{CH}_{2}\right), 26.60\left(-, \mathrm{CH}_{2}\right), 26.52\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{FN}_{4}$ $\left[\mathrm{MH}^{+}\right]$341.2136, found 341.2143.

N^{1}-[2-(1 H-imidazol-4-yl)ethyl]- N^{2}-[1-(4-fluorobenzyl)-1 H-benzo[d]imidazol-2-yl]ethane-1,

 2-diamine (4.32a).To a solution of compound 4.31a (330 mg, 1.16 mmol) in ACN (25 mL), 4 -(2-bromoethyl)-1-trityl-1 H -imidazole ($488 \mathrm{mg}, 1.17 \mathrm{mmol}$), DIPEA ($454 \mathrm{mg}, 3.52 \mathrm{mmol}$) and $\mathrm{Nal}(175 \mathrm{mg}, 1.17 \mathrm{mmol})$ were added. The reaction mixture was heated at reflux for 40 h , the solvent was evaporated, and the remaining mixture was poured into water. The aqueous layer was extracted with DCM, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Subsequently, the residue was dissolved in 10 mL DCM, TFA (10 mL) was added dropwise, and the mixture was stirred at rt for 24 h . Purification by column chromatography (DCM/MeOH/25\% aqueous ammonia, 100/10/1), yielded a white solid ($80 \mathrm{mg}, 0.21 \mathrm{mmol}, 18.1 \%$); mp $85^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.41$ (d, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 3 \mathrm{H}), 7.01-6.88(\mathrm{~m}, 4 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H})$, $3.50(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.84-2.75(\mathrm{~m}, 4 \mathrm{H}), 2.65(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ [ppm]: 163.89 ($\left.\mathrm{C}_{\text {quat }}\right), 160.62\left(\mathrm{C}_{\text {quat }}\right), 154.62$ ($\mathrm{C}_{\text {quat }}$), 142.06 ($\left.\mathrm{C}_{\text {quat }}\right)$, 134.74 (+, Ar-CH), 134.54 ($\mathrm{C}_{\text {quat }}$), 131.48 ($\mathrm{C}_{\text {quat }}$), 128.38 (+ , $\mathrm{Ar}-\mathrm{CH}$), 128.27 (+, $\mathrm{Ar}-\mathrm{CH}$), 121.57 (+, $\mathrm{Ar}-\mathrm{CH}$), 119.88 (+, Ar-CH), 117.63 (+, Ar-CH), 116.02 (+, Ar-CH), 116.00 (+, Ar-CH), 115.74 (+, Ar-CH), 107.49 (+, Ar-CH), 48.69 (-, CH_{2}), 48.16 (-, CH_{2}), 44.93 (-, CH_{2}), $42.60\left(-, \mathrm{CH}_{2}\right), 26.68$ $\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{FN}_{6}\left[\mathrm{MH}^{+}\right] 379.2041$, found 379.2047 .

Synthesized from compound 4.31 b ($600 \mathrm{mg}, 2 \mathrm{mmol}$) by analogy with the procedure for the preparation of compound 4.32a. White solid ($130 \mathrm{mg}, 0.33 \mathrm{mmol}, 24.9 \%$); mp $72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm]: 7.46 (s, 1H), 7.39 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.11-6.88 (m, 7H), 6.72 (s, $1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, 2.76-2.62(m, 4H), 1.82-1.70 (m, 2H). ${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm]: $160.60\left(\mathrm{C}_{\text {quat }}\right), 154.80\left(\mathrm{C}_{\text {quat }}\right), 142.22$ ($\mathrm{C}_{\text {quat }}$), 135.46 ($\left.\mathrm{C}_{\text {quat }}\right), 134.83$ (+, Ar-CH), 134.48 ($\left.\mathrm{C}_{\text {quat }}\right), 131.55$ ($\mathrm{C}_{\text {quat }}$), 128.19 (+, Ar-CH), 128.08 (+, Ar-CH), 121.49 (+, Ar-CH), 119.68 (+, Ar-CH), 115.98 (+, Ar-CH), 115.81 (+, Ar-CH), 115.69 (+, Ar-CH), 107.37 (+, Ar-CH), $49.02\left(-, \mathrm{CH}_{2}\right), 47.34\left(-, \mathrm{CH}_{2}\right), 44.82\left(-, \mathrm{CH}_{2}\right)$, $42.39\left(-, \mathrm{CH}_{2}\right), 28.28\left(-, \mathrm{CH}_{2}\right), 26.20\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{FN}_{6}\left[\mathrm{MH}^{+}\right]$ 393.2197, found 393.2199.

N- (2- \{[1- (4- Fluorobenzyl)- 1H- benzo[d]imidazol- 2- yl]amino\}ethyl)- 3- (1H- imidazol-4- yl)acrylamide (4.33a).

To a solution of urocanic acid ($690 \mathrm{mg}, 5 \mathrm{mmol}$) in a mixture of anhydrous DMF (10 mL), HOBT ($675 \mathrm{mg}, 5 \mathrm{mmol}$), TBTU ($3.21 \mathrm{~g}, 10 \mathrm{mmol}$) and DIPEA ($645 \mathrm{mg}, 5 \mathrm{mmol}$) were added. The reaction mixture was stirred at rt for 30 min , subsequently, compound 4.31 a ($1.42 \mathrm{~g}, 5$ mmol), dissolved in DMF (5 mL), was added dropwise, and the mixture was heated to $60^{\circ} \mathrm{C}$ for 1.5 h . After completion of the reaction, the mixture was poured into cold water and the pH value was adjusted to 10 by addition of 25% aqueous ammonia. Precipitated compound 4.33a was collected by filtration. White solid ($1.7 \mathrm{~g}, 4.2 \mathrm{mmol}, 84.2 \%$); mp $141^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO-d d_{6}) [ppm]: 8.29-8.21 (m, 1H), 7.72 (s, 1H), 7.33-7.05 (m, 8H), 6.98-6.81 (m, 2H), $5.23(\mathrm{~s}, 2 \mathrm{H}), 3.49-3.44(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta[p p m]: 165.95$ (Cquat), $162.88\left(\mathrm{C}_{\text {quat }}\right), 159.65\left(\mathrm{C}_{\text {quat }}\right), 154.39\left(\mathrm{C}_{\text {quat }}\right), 142.54$ ($\left.\mathrm{C}_{\text {quat }}\right), 134.26\left(\mathrm{C}_{\text {quat }}\right), 133.14$ ($\left.\mathrm{C}_{\text {quat }}\right)$, 129.09 (+, 2Ar-CH), 128.98 (+, 2Ar-CH), 120.43 (+, CH), 118.37 (+, Ar-CH), 118.19 (+, Ar-CH), 115.37 (+, 2Ar-CH), 115.09 (+, 2Ar-CH), 114.95 (+, CH), 107.69 (+, Ar-CH), 43.66 (-, CH_{2}), $42.09\left(-, \mathrm{CH}_{2}\right), 38.42\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{FN}_{6} \mathrm{O}\left[\mathrm{MH}^{+}\right]$ 405.1834, found 405.1839 .
$N-$ [6- (\{1- [4- Fluorobenzyl)-1H-benzo[d]imidazol- 2- yl]amino\}hexyl)- 3- (1H-imidazol4 - yl)acrylamide (4.33b).

Synthesized from compound 4.31c ($400 \mathrm{mg}, 1.18 \mathrm{mmol}$) and urocanic acid ($163 \mathrm{mg}, 1.18$ mmol) by analogy with the procedure for the preparation of 4.33 a. Yellow oil ($300 \mathrm{mg}, 0.63$ mmol, 53.6\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right.$) δ [ppm]: 8.00-7.93 (m, 1H), 7.70 (s, 1H), 7.31-7.24 (m, 1H), 7.24-7.11 (m, 5H), $7.06(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.77$ $(\mathrm{m}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 3.40-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.38(\mathrm{~m}$, 2H), 1.36-1.26 (m, 4H). ${ }^{13}$ C-NMR (101 MHz, DMSO-d ${ }_{6}$) δ [ppm]: 163.04 ($\mathrm{C}_{\text {quat }}$), 160.62 (Cquat), 155.14 ($\mathrm{C}_{\text {quat }}$), 143.29 ($\mathrm{C}_{\text {quat }}$), 134.87 ($\mathrm{C}_{\text {quat }}$), 133.83 ($\mathrm{C}_{\text {quat }}$), $133.80\left(\mathrm{C}_{\text {quat }}\right)$, $129.43(+, 2 \mathrm{Ar}-\mathrm{CH})$, 129.35 (+, 2Ar-CH), 120.89 (+, CH), 119.03 (+, Ar-CH), 118.74 (+, 2Ar-CH), 115.89 (+, 2Ar-CH), 115.67 (+, CH), 115.43 (+, Ar-CH), 108.11 (+, Ar-CH), $44.09\left(-, \mathrm{CH}_{2}\right), 42.87\left(-, \mathrm{CH}_{2}\right)$, $39.01\left(-, \mathrm{CH}_{2}\right), 29.75\left(-, \mathrm{CH}_{2}\right), 29.58\left(-, \mathrm{CH}_{2}\right), 26.75\left(-, \mathrm{CH}_{2}\right), 26.61\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{FN}_{6} \mathrm{O}\left[\mathrm{MH}^{+}\right] 461.2460$, found 461.2465 .

N - (2- \{[1- (4- Fluorobenzyl)-1H-benzo[d]imidazol- 2- yl]amino\}ethyl)- 3- (1H-imidazol4 - yl)propanamide (4.34).

Compound 4.33a ($1010 \mathrm{mg}, 2.48 \mathrm{mmol}$) was hydrogenated over 500 mg of 5% Pd / C-catalyst in 30 mL of MeOH in an autoclave filled with H_{2} at 10 bar for 19 h . The catalyst was filtered off, the filtrate was concentrated, and the residue was purified by column chromatography (DCM/MeOH/25\% aqueous ammonia, $100 / 5 / 1$). White solid ($1.17 \mathrm{~g}, 2.88$ mmol, 82.3\%); mp $101^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 8.15-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.28$ (m, 2H), 7.08-6.92 (m, 6H), $6.59(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 3.54-3.27(\mathrm{~m}, 4 \mathrm{H}), 2.75(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}$, 2H), 2.38 (t, J = $6.5 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.39$ ($\mathrm{C}_{\text {quat }}$), 163.81 ($\mathrm{C}_{\text {quat }}$), 160.54 ($\mathrm{C}_{\text {quat }}$), 154.73 ($\mathrm{C}_{\text {quat }}$), 141.81 ($\mathrm{C}_{\text {quat }}$), 134.59 ($\mathrm{C}_{\text {quat }}$), 134.48 (+, Ar-CH), 131.52 ($\mathrm{C}_{\text {quat }}$), 128.36 (+, Ar-CH), 128.25 (+, Ar-CH), 121.60 (+, Ar-CH), 119.90 (+, Ar-CH), 117.20 (+, Ar-CH), 115.85 (+, Ar-CH), 115.57 (+, 2Ar-CH), 107.68 (+, Ar-CH), 44.81 (-, CH_{2}), 43.88 (-, CH_{2}), $40.08\left(-, \mathrm{CH}_{2}\right), 36.08\left(-, \mathrm{CH}_{2}\right), 22.65\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{FN}_{6} \mathrm{O}$ $\left[\mathrm{MH}^{+}\right]$407.1990, found 407.1992.

N^{1}-[3-(1 H-imidazol-4-yl)propyl]- N^{2}-[1-(4-fluorobenzyl)-1 H-benzo[d]imidazol-2-yl]ethane-

 1,2-diamine (4.35a).To $\mathrm{LiAlH}_{4}(57 \mathrm{mg}, 1.5 \mathrm{mmol})$ in a 25 mL argon flushed flask, anhydrous THF (5 mL) was dropped slowly under ice cooling. Subsequently, a solution of compound 4.33 a ($200 \mathrm{mg}, 0.5$ mmol) in THF (5 mL) was added dropwise. The mixture was stirred at rt for 21 h and afterwards at $70^{\circ} \mathrm{C}$ for 3 h . To quench the reaction, $57 \mu \mathrm{~L}$ water, $57 \mu \mathrm{~L}$ aqueous solution of $15 \% \mathrm{NaOH}$ and $171 \mu \mathrm{~L}$ of water were dropped to the reaction mixture under ice cooling, and the mixture was stirred at rt for 30 min . A white precipitate was filtered off, and the filtrate was concentrated and subjected to column chromatography ($\mathrm{DCM} / \mathrm{MeOH} / 25 \%$ aqueous ammonia, $100 / 7 / 1$). White solid ($90 \mathrm{mg}, 0.23 \mathrm{mmol}, 46 \%$); mp $91^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]:$ 7.43-7.35 (m, 2H), 7.10-6.93 (m, 5H), 6.92-6.83 (m, 2H), $6.65(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H})$, 3.52-3.45 $(\mathrm{m}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.57-2.45 (m, 4H), 1.66 (quint, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: $163.84\left(\mathrm{C}_{\text {quat }}\right), 160.57\left(\mathrm{C}_{\text {quat }}\right), 154.68\left(\mathrm{C}_{\text {quat }}\right), 142.09\left(\mathrm{C}_{\text {quat }}\right), 136.57$ ($\mathrm{C}_{\text {quat }}$), 134.56 (+, Ar-CH), 131.57 ($\mathrm{C}_{\text {quat }}$), 128.34 (+, Ar-CH), 128.23 (+, Ar-CH), 121.52 (+, Ar-CH), 119.82 (+, Ar-CH), 117.19 (+, Ar-CH), 115.94 (+, Ar-CH), 115.90 (+, Ar-CH), 115.66 (+, Ar-CH), 107.49 (+, Ar-CH), $65.89\left(-, \mathrm{CH}_{2}\right), 48.26\left(-, \mathrm{CH}_{2}\right), 44.89\left(-, \mathrm{CH}_{2}\right), 42.27\left(-, \mathrm{CH}_{2}\right)$, 29.41 (-, CH_{2}), $24.32\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{FN}_{6}\left[\mathrm{MH}^{+}\right] 393.2197$, found 393.2198.

N^{N}-[3-(1 H-imidazol-4-yl)propyl]- N^{6}-[1-(4-fluorobenzyl)-1 H-benzo[d]imidazol-2-yl]hexane

-1,6-diamine (4.35b).

Synthesized from compound 4.33b ($270 \mathrm{mg}, 0.57 \mathrm{mmol}$) by analogy with the procedure for the preparation of 35 . However, purification was performed by HPLC. Yield 4.35b tri(hydrotrifluoroacetate) as a colorless sticky solid ($10 \mathrm{mg}, 0.013 \mathrm{mmol}, 2.2 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (600 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta[p p m]: 8.82(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 2 \mathrm{H})$, $5.41(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.10-2.96(\mathrm{~m}, 4 \mathrm{H}), 2.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-2.02(\mathrm{~m}$, 2H), 1.79-1.66 (m, 4H), 1.48-1.39 (m, 4H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ [ppm]: 161.77 ($\mathrm{C}_{\text {quat }}$), 149.81 ($\mathrm{C}_{\text {quat }}$), $133.67\left(\mathrm{C}_{\text {quat }}\right), 132.46$ ($\mathrm{C}_{\text {quat }}$), 130.72 ($\mathrm{C}_{\text {quat }}$), 130.00 (+, Ar-CH), 129.06 ($\mathrm{C}_{\text {quat }}$), 128.48 (+, Ar-CH), 128.42 (+, Ar-CH), 123.99 (+, Ar-CH), 123.71 (+, Ar-CH), 115.76 (+, Ar-CH), 115.60 (+, Ar-CH), 115.45 (+, Ar-CH), 111.37 (+, Ar-CH), 110.04 (+, Ar-CH), 49.03 (-, $\left.\mathrm{CH}_{2}\right), 48.60\left(-, \mathrm{CH}_{2}\right), 46.46\left(-, \mathrm{CH}_{2}\right), 44.75\left(-, \mathrm{CH}_{2}\right), 43.27\left(-, \mathrm{CH}_{2}\right), 28.26\left(-, \mathrm{CH}_{2}\right), 25.80(-$,
$\left.\mathrm{CH}_{2}\right), 25.77\left(-, \mathrm{CH}_{2}\right)$, $24.71\left(-, \mathrm{CH}_{2}\right), 21.01\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{FN}_{6}$ $\left[\mathrm{MH}^{+}\right]$449.2823, found 449.2825.

2- \{4- [2- (1H- imidazol- 4- yl)ethyl]piperazin- 1-yl\}-6- chloro- \mathbf{N} - (thiophen- 2- ylmethyl) quinazolin- 4- amine (4.40).

A mixture of compound 3.12 ($360 \mathrm{mg}, 1 \mathrm{mmol}$), ACN (10 mL), DIPEA ($387 \mathrm{mg}, 3 \mathrm{mmol}$) and 4 -(2-bromoethyl)-imidazole ($225 \mathrm{mg}, 1.2 \mathrm{mmol}$) in a $20-\mathrm{mL}$ microwave tube was subjected to microwave irradiation $\left(120^{\circ} \mathrm{C}\right)$ for 30 min . The obtained suspension was poured into brine and extracted with EtOAc, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed. Purification by column chromatography (DCM/MeOH/25\% aqueous ammonia, $100 / 3.3 / 1$) yielded a white solid ($140 \mathrm{mg}, 0.31 \mathrm{mmol}, 31.4 \%$); mp $157^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz, CDCl_{3}) δ [ppm]: 7.54 (d, $\left.J=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.51(\mathrm{~d}, ~ J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.37$ (m, $2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}$, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.03-3.96(\mathrm{~m}, 4 \mathrm{H}), 2.85(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-2.56$ (m, 4H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: 158.72 ($\mathrm{C}_{\text {quat }}$), 158.70 ($2 \mathrm{C}_{\text {quat }}$), 150.92 ($\mathrm{C}_{\text {quat }}$), 141.27 ($\mathrm{C}_{\text {quat }}$, 134.20 (+, Ar-CH), 133.18 (+, Ar-CH), 127.43 (+, Ar-CH), 126.71 (+, Ar-CH), 126.22 (+, Ar-CH), 125.88 ($2 \mathrm{C}_{\text {quat }}$), 125.40 (+, Ar-CH), 120.54 (+, 2Ar-CH), 57.92 (-, CH2), $53.17\left(-, 2 \mathrm{CH}_{2}\right), 44.06\left(-, 2 \mathrm{CH}_{2}\right), 39.93\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{CIN}_{7} \mathrm{~S}$ $\left[\mathrm{MH}^{+}\right]$454.1575, found 454.1576.

6-Chloro- N^{2}-[2-(4-methylpiperazin-1-yl)ethyl]- N^{4}-(thiophen-2-ylmethyl)quinazoline-2,4diamine (4.41).

Compound 3.10 ($69 \mathrm{mg}, 0.3 \mathrm{mmol}$) was added to a mixture of EtOAc (5 mL) and DIPEA ($77 \mathrm{mg}, 0.6 \mathrm{mmol}$) in a $5-\mathrm{mL}$ microwave tube. 2-Thienylmethylamine ($34 \mathrm{mg}, 0.3 \mathrm{mmol}$) was added, and the mixture was stirred at rt for 30 min . The solvent was removed by evaporation, and the residue dissolved in DMF. Subsequently, 4-methyl-1-piperazineethanamine tri(hydrotrifluoroacetate) ${ }^{50}$ ($448 \mathrm{mg}, 0.9 \mathrm{mmol}$) was added, the microwave tube was sealed and subjected to irradiation $\left(160^{\circ} \mathrm{C}\right)$ for 10 min . The obtained suspension was poured into brine and extracted with EtOAc , the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed and the residue subjected to HPLC, yielded 4.41 tri(hydrotrifluoroacetate) as a white
solid ($31 \mathrm{mg}, 0.04 \mathrm{mmol}, 13.6 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]: 7.51(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.45-7.31 (m, 2H), 7.25-7.17 (m, 1H), 7.05-7.01 (m, 1H), 6.97-6.93 (m, 1H), 4.93 (d, J=5.0 $\mathrm{Hz}, 2 \mathrm{H}$), $3.66-3.50(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.34(\mathrm{~m}, 10 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ [ppm]: $159.31\left(\mathrm{C}_{\text {quat }}\right), 158.87$ ($\left.\mathrm{C}_{\text {quat }}\right), 150.50\left(\mathrm{C}_{\text {quat }}\right), 140.97$ ($2 \mathrm{C}_{\text {quat }}$), 133.29 (+, $\left.\mathrm{Ar}-\mathrm{CH}\right), 126.78$ (+, 2Ar-CH), 126.38 (+, Ar-CH), 125.81 (Cquat), 125.48 (+, Ar-CH), 120.59 (+, Ar-CH), 57.01 (-, $\left.\mathrm{CH}_{2}\right), 55.09\left(-, 2 \mathrm{CH}_{2}\right), 52.86\left(-, 2 \mathrm{CH}_{2}\right), 46.03\left(+, \mathrm{CH}_{3}\right), 39.84\left(-, \mathrm{CH}_{2}\right), 38.10\left(-, \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{CIN}_{6} \mathrm{~S}\left[\mathrm{MH}^{+}\right]$417.1623, found 417.1624.

6-Chloro- N^{2}-(1-methylpiperidin-4-yl)- N^{4}-(thiophen-2-ylmethyl)quinazoline-2,4-diamine (4.42).

Synthesized from compound 3.10 ($230 \mathrm{mg}, 1 \mathrm{mmol}$) and 1-methylpiperidin-4-amine (460 $\mathrm{mg}, 4 \mathrm{mmol}$) by analogy with the procedure for the preparation of 4.41 . Purification by column chromatography (DCM/MeOH/25\% aqueous ammonia, 100/4/1) yielded a white solid (320 $\mathrm{mg}, 0.83 \mathrm{mmol}, 82.7 \%)$; mp $93^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta[\mathrm{ppm}]: 7.92-7.88(\mathrm{~m}, 1 \mathrm{H})$, 7.48-7.40 (m, 1H), 7.34-7.18 (m, 2H), 7.05-7.00 (m, 1H), 6.94-6.88 (m, 1H), $4.90(\mathrm{~s}, 2 \mathrm{H})$, 4.03-3.85 (m, 1H), 2.88-2.76 (m, 2H), 2.27 (s, 3H), 2.23-2.07(m, 2H), 2.05-1.90 (m, 2H), 1.65-1.48 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ [ppm]: 160.90 ($\mathrm{C}_{\text {quat }}$), 160.69 ($\mathrm{C}_{\text {quat }}$), 151.49 ($\mathrm{C}_{\text {quat }}$), 143.76 ($\mathrm{C}_{\text {quat }}$), 134.19 (+, Ar-CH), 127.49 (+, Ar-CH), $126.92\left(2 \mathrm{C}_{\text {quat }}\right), 126.64$ (+, Ar-CH), 126.47 (+, Ar-CH), 125.58 (+, Ar-CH), 122.98 (+, Ar-CH), 76.73 (+, CH), 55.76 (-, $\left.2 \mathrm{CH}_{2}\right), 46.30\left(+, \mathrm{CH}_{3}\right), 40.38\left(-, \mathrm{CH}_{2}\right), 33.09\left(-, 2 \mathrm{CH}_{2}\right)$. HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{CIN}_{5} \mathrm{~S}\left[\mathrm{MH}^{+}\right] 388.1357$, found 388.1362.

6-Chloro- N^{4}-(thiophen-2-ylmethyl)- N^{2}-[2-(1-trityl-1 H-imidazol-4-yl)ethyl]quinazoline-2,4diamine (4.43).

To a solution of N-[2-(1-Triphenylmethylimidazol-4-yl)ethyl]phthalimide ($1.90 \mathrm{~g}, 3.93 \mathrm{mmol}$) in EtOH (50 mL), hydrazine hydrate ($1.18 \mathrm{~g}, 23.6 \mathrm{mmol}$) was added and stirred at room temperature for 2 h . After reaction (control by TLC), a white precipitate formed was removed by filtration. The filtrate was evaporated to dryness yielded 2-(1-trityl-imidazol-4-yl)ethan-1-amine as a yellow oil (1.37 g, $3.88 \mathrm{mmol}, 98.8 \%$). ${ }^{52}$ Compound 4.43 was synthesized from compound 3.10 ($573 \mathrm{mg}, 2.48 \mathrm{mmol}$) and

2-(1-trityl-imidazol-4-yl)ethan-1-amine ($865 \mathrm{mg}, 2.45 \mathrm{mmol}$) by analogy with the procedure for the preparation of 4.41. Purification by column chromatography ($\mathrm{MeOH} / \mathrm{DCM}, 1 / 20$) yielded a brown oil ($170 \mathrm{mg}, 0.27 \mathrm{mmol}, 10.9 \%$). HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{CIN}_{6} \mathrm{~S}\left[\mathrm{MH}^{+}\right]$ 627.2092, found 627.2096.
N^{2} - [2- (1 H- imidazol- 4- yl)ethyl]-6- chloro- N^{4} - (thiophen- 2- ylmethyl)quinazoline- 2, 4diamine (4.44).

Compound 4.43 ($130 \mathrm{mg}, 0.21 \mathrm{mmol}$) was dissolved in 10 mL DCM, TFA (10 mL) was added dropwise, the mixture was stirred overnight at rt (control by TLC). The solvent was evaporated, and the remaining oil was subjected to HPLC, yielding 4.44 tri(hydrotrifluoroacetate) as a white solid ($60 \mathrm{mg}, 0.08 \mathrm{mmol}, 39.4 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, DMSO-d d_{6}) [ppm]: $8.99(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~d}, ~ J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.36(\mathrm{~m}$, $3 \mathrm{H}), 7.15(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.96(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.78(\mathrm{~m}, 2 \mathrm{H})$, $2.99(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta$ [ppm]: 158.71 (Cquat), 153.00 (Cquat), $139.60\left(\mathrm{C}_{\text {quat }}\right), 138.21$ ($\mathrm{C}_{\text {quat }}$), 135.21 (+ , $\mathrm{Ar}-\mathrm{CH}$), 133.79 (+, $\mathrm{Ar}-\mathrm{CH}$), 130.42 ($\mathrm{C}_{\text {quat }}$), 128.03 (Cquat), 126.87 (+, Ar-CH), 126.67 (+, Ar-CH), 125.79 (+, Ar-CH), 123.44 (+, Ar-CH), 118.67 (+, Ar-CH), 116.42 (+, Ar-CH), 110.56 ($\mathrm{C}_{\text {quat }}$), 39.63 (-, CH2), 39.44 (-, CH2), 24.10 (-, CH2). HRMS (EI-MS) m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{6} \mathrm{~S}\left[\mathrm{MH}^{+}\right]$385.0997, found 385.1001.

4.4.2. Pharmacological Methods

Histamine dihydrochloride was from Alfa Aesar (Karlsruhe, Germany). Guanosine diphosphate (GDP) was from Sigma-Aldrich Chemie (Munich, Germany), unlabeled GTPyS was from Roche (Mannheim, Germany) and thioperamide was from R\&D Systems (Wiesbaden, Germany) $\left[{ }^{3} \mathrm{H}\right]$ pyrilamine and $\left[{ }^{3} \mathrm{H}\right]$ histamine were from Hartmann Analytic (Braunschweig, Germany). ${ }^{35}$ S]GTPyS was from PerkinElmer Life Sciences (Boston, MA) or from Hartmann Analytic (Braunschweig, Germany). GF/C filters were from Whatman (Maidstone, UK). [$\left.{ }^{3} \mathrm{H}\right]$ UR-PI29458 and ${ }^{3} \mathrm{H}$ HUR-DE25757 were synthesized as described previously.

4.4.2.1. Preparation of compound stock solutions

See section 3.3.2.2.

4.4.2.2. Competition binding experiments

Competition binding experiments were performed on membrane preparations of Sf9 insect cells expressing the $h H_{1} R+R G S 4, h H_{2} R-G_{\text {sas }}, h H_{3} R+G_{\text {di2 }}+\beta_{1} \gamma_{2}$ or the $h H_{4} R+G_{\text {di2 }}+\beta_{1} \gamma_{2}$. General procedures for the generation of recombinant baculoviruses, culture of Sf9 cells and membrane preparation are described elsewhere. ${ }^{72}$ The respective membranes were thawed and sedimented by centrifugation at $4{ }^{\circ} \mathrm{C}$ and 13000 rpm for 10 min . Membranes were re-suspended in binding buffer ($12.5 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ EDTA, and 75 mM Tris/HCl, pH 7.4). Each tube (total volume $100 \mu \mathrm{~L}$) contained $30 \mu \mathrm{~g}\left(\mathrm{hH}_{1} \mathrm{R}\right), 40 \mu \mathrm{~g}\left(\mathrm{hH}_{2} \mathrm{R}\right), 60 \mu \mathrm{~g}\left(\mathrm{hH}_{3} \mathrm{R}\right)$ or 100 $\mu \mathrm{g}\left(\mathrm{hH}_{4} \mathrm{R}\right)$ of membrane protein and increasing concentrations of unlabeled ligands. Radioligands: $\mathrm{H}_{1} \mathrm{R}$: $\left.{ }^{3} \mathrm{H}\right]$ pyrilamine, specific activity $20.0 \mathrm{Ci} / \mathrm{mmol}, \mathrm{K}_{\mathrm{d}}=4.5 \mathrm{nM},{ }^{73} \mathrm{c}=5 \mathrm{nM}$, nonspecific binding determined in the presence of $10 \mu \mathrm{M}$ of diphenhydramine; $\mathrm{H}_{2} \mathrm{R}$: $\left[{ }^{3} H\right]$ UR-DE257 (radioligand was diluted with unlabeled ligand due to economic reasons), specific activity $33.0 \mathrm{Ci} / \mathrm{mmol}, \mathrm{K}_{\mathrm{d}}=12.1 \mathrm{nM},{ }^{57} \mathrm{c}=20 \mathrm{nM}$, nonspecific binding determined in the presence of $10 \mu \mathrm{M}$ of famotidine; $\mathrm{H}_{3} \mathrm{R}$: $\left[{ }^{3} \mathrm{H}\right] \mathrm{UR}-\mathrm{PI} 294$, specific activity $41.8 \mathrm{Ci} / \mathrm{mmol}, \mathrm{K}_{\mathrm{d}}=$ $3.3 \mathrm{nM}, \mathrm{c}=3.5 \mathrm{nM}$, nonspecific binding determined in the presence of $10 \mu \mathrm{M}$ of thioperamide; $\mathrm{H}_{4} \mathrm{R}$: $\left.{ }^{3} \mathrm{H}\right]$ histamine, specific activity $25 \mathrm{Ci} / \mathrm{mmol}, \mathrm{K}_{\mathrm{d}}=10 \mathrm{nM},{ }^{56} \mathrm{c}=10 \mathrm{nM}$, nonspecific binding determined in the presence of $10 \mu \mathrm{M}$ of histamine. Filtration through glass microfiber filters (for $\mathrm{hH}_{4} \mathrm{R}$, glass microfiber filters was pretreated with 0.3% polyethylenimine, Whatman GF/B, Maidstone, UK) using a Brandel 96 sample harvester (Brandel, Gaithersburg, MD) separated unbound from membrane associated radioligand. After three washing steps with binding buffer, filter pieces for each well were punched out and transferred into 96 -well sample plates 1450-401 (Perkin Elmer, Rodgau Germany). Each well was supplemented with $200 \mu \mathrm{~L}$ of scintillation cocktail (Rotiscint Eco plus, Roth, Karlsruhe, Germany) and incubated in the dark. Radioactivity was measured with a Micro Beta² 1450 scintillation counter (Perkin Elmer, Rodgau, Germany). Protein concentration was determined by the method of Lowry using bovine serum albumin as standard. ${ }^{74}$ Data analysis of the resulting competition curves was accomplished by non-linear regression analysis using the algorithms in PRISM GraphPad

Software (GraphPad Prism 5.0 software, San Diego, CA). K_{i} values were calculated according to the Cheng-Prusoff equation. ${ }^{75}$ Values represent the mean \pm SEM of 3 independent experiments each performed in triplicate.

4.4.2.3. $\left[{ }^{35} \mathrm{~S}\right] \mathrm{GTPyS}$ binding assay ${ }^{76,77}$

The Sf9 cell membranes used in $\left[{ }^{35} \mathrm{~S}\right]$ GTPyS binding assay and their preparations were the same as described above. The respective membranes were thawed and sedimented by 10 min centrifugation at $4^{\circ} \mathrm{C}$ and 13000 rpm . Membranes were re-suspended in binding buffer ($12.5 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ EDTA, and 75 mM Tris/ $\mathrm{HCl}, \mathrm{pH} 7.4$). Each assay tube contained Sf 9 membranes expressing the respective $H_{x} R$ subtype ($10-20 \mu$ G-Protein/tube), $1 \mu \mathrm{M}$ GDP, 0.05% $(\mathrm{w} / \mathrm{v})$ bovine serum albumin, $0.2 \mathrm{nM}\left[{ }^{35} \mathrm{~S}\right] \mathrm{GTPyS}$ and the investigated ligands (dissolved in Millipore water or in a mixture (v / v) of 50% Millipore water and 50% DMSO) at various concentrations in binding buffer (total volume $100 \mu \mathrm{~L}$). In case of $\mathrm{H}_{1} \mathrm{R}$ assays the binding buffer additionally contained 150 mM of NaCl and $50 \mu \mathrm{~g} / \mathrm{mL}$ of saponin, $\mathrm{H}_{4} \mathrm{R}$ assays were performed with buffer containing 100 mM of NaCl . For the determination of K_{b} values (antagonist mode of the $\left[{ }^{35} \mathrm{~S}\right]$ GTPYS binding assay) histamine was added to the reaction mixtures (final concentrations: $\mathrm{hH}_{1 / 2} \mathrm{R}: 1 \mu \mathrm{M}, \mathrm{hH}_{3 / 4} \mathrm{R}$: 100 nM). Incubation was performed at $25{ }^{\circ} \mathrm{C}$ and shaking at 250 rpm for 90 min . Bound $\left[{ }^{35} \mathrm{~S}\right] \mathrm{GTPyS}$ was separated from free $\left[{ }^{35}\right.$ S]GTPyS by filtration through GF/C filters, followed by three washing steps with 2 mL of binding buffer ($4{ }^{\circ} \mathrm{C}$) using a Brandel Harvester. Filter-bound radioactivity was determined by liquid scintillation counting after an equilibration phase of at least 12 h . The experimental conditions chosen ensured that not more than 10% of the total amount of $\left[{ }^{35}\right.$ S $]$ GTPyS added was bound to the filters. Nonspecific binding was determined in the presence of $10 \mu \mathrm{M}$ unlabeled GTPyS. IC_{50} values were converted to K_{b} values using the Cheng-Prussoff equation. ${ }^{75} \mathrm{EC}_{50}$ and K_{b} values from the functional GTPyS assays were analyzed by nonlinear regression and best fit to sigmoidal concentration-response curves (GraphPad Prism 5.0 software, San Diego, CA).

4.5. References

1. Jacoby, E.; Bouhelal, R.; Gerspacher, M.; Seuwen, K. The 7 TM G-protein-coupled receptor target family. ChemMedChem 2006, 1, 760-782.
2. Hill, S.; Ganellin, C.; Timmerman, H.; Schwartz, J.; Shankley, N.; Young, J.; Schunack, W.; Levi, R.; Haas, H. International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol. Rev. 1997, 49, 253-278.
3. Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug. Discov. 2006, 5, 993-996.
4. Jassal, B.; Jupe, S.; Caudy, M.; Birney, E.; Stein, L.; Hermjakob, H.; D’Eustachio, P. The systematic annotation of the three main GPCR families in Reactome. Database 2010, 2010, baq018.
5. Thurmond, R. L.; Gelfand, E. W.; Dunford, P. J. The role of histamine H_{1} and H_{4} receptors in allergic inflammation: the search for new antihistamines. Nat. Rev. Drug. Discov. 2008, 7, 41-53.
6. Leurs, R.; Smit, M.; Timmerman, H. Molecular pharmacological aspects of histamine receptors. Pharmacol. Ther. 1995, 66, 413-463.
7. Oda, T.; Morikawa, N.; Saito, Y.; Masuho, Y.; Matsumoto, S.-i. Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J. Biol. Chem. 2000, 275, 36781-36786.
8. Nguyen, T.; Shapiro, D. A.; George, S. R.; Setola, V.; Lee, D. K.; Cheng, R.; Rauser, L.; Lee, S. P.; Lynch, K. R.; Roth, B. L. Discovery of a novel member of the histamine receptor family. Mol. Pharmacol. 2001, 59, 427-433.
9. Nakamura, T.; Itadani, H.; Hidaka, Y.; Ohta, M.; Tanaka, K. Molecular cloning and characterization of a new human histamine receptor, hH4R. Biochem. Bioph. Res. Co. 2000, 279, 615-620.
10. Zhu, Y.; Michalovich, D.; Wu, H.-L.; Tan, K.; Dytko, G. M.; Mannan, I. J.; Boyce, R.; Alston, J.; Tierney, L. A.; Li, X. Cloning, expression, and pharmacological characterization of a novel human histamine receptor. Mol. Pharmacol. 2001, 59, 434-441.
11. Morse, K. L.; Behan, J.; Laz, T. M.; West, R. E.; Greenfeder, S. A.; Anthes, J. C.; Umland, S.; Wan, Y.; Hipkin, R. W.; Gonsiorek, W. Cloning and characterization of a novel human histamine receptor. J. Pharmacol. Exp. Ther. 2001, 296, 1058-1066.
12. Liu, C.; Ma, X.-J.; Jiang, X.; Wilson, S. J.; Hofstra, C. L.; Blevitt, J.; Pyati, J.; Li, X.; Chai, W.; Carruthers, N. Cloning and pharmacological characterization of a fourth histamine receptor $\left(\mathrm{H}_{4}\right)$ expressed in bone marrow. Mol. Pharmacol. 2001, 59, 420-426.
13. Cogé, F.; Guénin, S.-P.; Rique, H.; Boutin, J. A.; Galizzi, J.-P. Structure and expression of the human histamine H_{4}-receptor gene. Biochem. Bioph. Res. Co. 2001, 284, 301-309.
14. Zampeli, E.; Tiligada, E. The role of histamine H_{4} receptor in immune and inflammatory disorders. Br. J. Pharmacol. 2009, 157, 24-33.
15. Smits, R. A.; Leurs, R.; de Esch, I. J. Major advances in the development of histamine
H_{4} receptor ligands. Drug discovery today 2009, 14, 745-753.
16. Cowden, J. M.; Zhang, M.; Dunford, P. J.; Thurmond, R. L. The Histamine H4 Receptor Mediates Inflammation and Pruritus in Th2-Dependent Dermal Inflammation. J. Invest. Dermatol. 2010, 130, 1023-1033.
17. de Esch, I. J.; Thurmond, R. L.; Jongejan, A.; Leurs, R. The histamine H_{4} receptor as a new therapeutic target for inflammation. Trends. Pharmacol. Sci. 2005, 26, 462-469.
18. Igel, P.; Dove, S.; Buschauer, A. Histamine H_{4} receptor agonists. Bioorg. Med. Chem. Lett. 2010, 20, 7191-7199.
19. Marson, C. M. Targeting the histamine H_{4} receptor. Chem. Rev. 2011, 111, 7121-7156.
20. Kollmeier, A.; Francke, K.; Chen, B.; Dunford, P.; Greenspan, A.; Xia, Y.; Xu, X.; Zhou, B.; Thurmond, R. The histamine H_{4} receptor antagonist, JNJ 39758979, is effective in reducing histamine-induced pruritus in a randomized clinical study in healthy subjects. J. Pharmacol. Exp. Ther. 2014, 350, 181.
21. Thurmond, R. L.; Chen, B.; Dunford, P. J.; Greenspan, A. J.; Karlsson, L.; La, D.; Ward, P.; Xu, X. L. Clinical and Preclinical Characterization of the Histamine H_{4} Receptor Antagonist JNJ-39758979. J. Pharmacol. Exp. Ther. 2014, 349, 176-184.
22. Cowden, J. M.; Yu, F.; Banie, H.; Farahani, M.; Ling, P.; Nguyen, S.; Riley, J. P.; Zhang, M.; Zhu, J.; Dunford, P. J. The histamine H_{4} receptor mediates inflammation and Th17 responses in preclinical models of arthritis. Ann. Rheum. Dis. 2014, 73, 600-608.
23. Daugherty, B. L. Histamine H_{4} antagonism: a therapy for chronic allergy? Br. J. Pharmacol. 2004, 142, 5-7.
24. Ohsawa, Y.; Hirasawa, N. The antagonism of histamine H_{1} and H_{4} receptors ameliorates chronic allergic dermatitis via anti-pruritic and anti-inflammatory effects in NC/Nga mice. Allergy 2012, 67, 1014-1022.
25. Roßbach, K.; Wendorff, S.; Sander, K.; Stark, H.; Gutzmer, R.; Werfel, T.; Kietzmann, M.; Bäumer, W. Histamine H_{4} receptor antagonism reduces hapten-induced scratching behaviour but not inflammation. Exp. Dermatol. 2009, 18, 57-63.
26. Wang, M.; Han, J.; Domenico, J.; Shin, Y. S.; Jia, Y.; Gelfand, E. W. Combined Blockade of the Histamine H_{1} and H_{4} Receptor Suppresses Peanut - Induced Intestinal Anaphylaxis by Regulating Dendritic Cell Function. Allergy 2016.
27. Eisen, S.; Miller, D.; Woodward, R.; Spitznagel, E.; Przybeck, T. The effect of prescribed daily dose frequency on patient medication compliance. Arch. Intern. Med. 1991, 151, 1236-7.
28. Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem. 2005, 48, 6523-6543.
29. Chen, X.; Decker, M. Multi-target compounds acting in the central nervous system designed from natural products. Curr. Med. Chem. 2013, 20, 1673-1685.
30. Cavalli, A.; Bolognesi, M. L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem. 2008, 51, 347-372.
31. Shonberg, J.; Scammells, P. J.; Capuano, B. Design strategies for bivalent ligands targeting GPCRs. ChemMedChem 2011, 6, 963-974.
32. Roth, B. L.; Sheffler, D. J.; Kroeze, W. K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug.

Discov. 2004, 3, 353-359.
33. Erez, M.; Takemori, A.; Portoghese, P. Narcotic antagonistic potency of bivalent ligands which contain. beta.-naltrexamine. Evidence for simultaneous occupation of proximal recognition sites. J. Med. Chem. 1982, 25, 847-849.
34. Russo, O.; Berthouze, M.; Giner, M.; Soulier, J.-L.; Rivail, L.; Sicsic, S.; Lezoualc'h, F.; Jockers, R.; Berque-Bestel, I. Synthesis of specific bivalent probes that functionally interact with 5-HT 4 receptor dimers. J. Med. Chem. 2007, 50, 4482-4492.
35. Smits, R. A.; de Esch, I. J.; Zuiderveld, O. P.; Broeker, J.; Sansuk, K.; Guaita, E.; Coruzzi, G.; Adami, M.; Haaksma, E.; Leurs, R. Discovery of quinazolines as histamine H_{4} receptor inverse agonists using a scaffold hopping approach. J. Med. Chem. 2008, 51, 7855-7865.
36. Hammer, S. G.; Gobleder, S.; Naporra, F.; Wittmann, H.-J.; Elz, S.; Heinrich, M. R.; Strasser, A. 2, 4-Diaminopyrimidines as dual ligands at the histamine H_{1} and H_{4} receptor- $\mathrm{H}_{1} / \mathrm{H}_{4}$-receptor selectivity. Bioorg. Med. Chem. Lett. 2016, 26, 292-300.
37. Wagner, E.; Wittmann, H.-J.; Elz, S.; Strasser, A. Pharmacological profile of astemizole-derived compounds at the histamine H_{1} and H_{4} receptor- $\mathrm{H}_{1} / \mathrm{H}_{4}$ receptor selectivity. Naunyn-Schmiedeberg's Arch. Pharmacol. 2014, 387, 235-250.
38. Janssens, F.; Torremans, J.; Janssen, M.; Stokbroekx, R. A.; Luyckx, M.; Janssen, P. A. New antihistaminic N-heterocyclic 4-piperidinamines. 2. Synthesis and antihistaminic activity of 1- [(4- fluorophenyl) methyl]- N - (4- piperidinyl)- 1 H -benzimidazol- 2- amines. J. Med. Chem. 1985, 28, 1934-1943.
39. Smits, R. A.; Lim, H. D.; Stegink, B.; Bakker, R. A.; de Esch, I. J.; Leurs, R. Characterization of the histamine H_{4} receptor binding site. Part 1. Synthesis and pharmacological evaluation of dibenzodiazepine derivatives. J. Med. Chem. 2006, 49, 4512-4516.
40. Naporra, F.; Gobleder, S.; Wittmann, H.-J.; Spindler, J.; Bodensteiner, M.; Bernhardt, G.; Hübner, H.; Gmeiner, P.; Elz, S.; Strasser, A. Dibenzo [b, f][1, 4] oxazepines and dibenzo [b, e] oxepines: Influence of the chlorine substitution pattern on the pharmacology at the $\mathrm{H}_{1} \mathrm{R}, \mathrm{H}_{4} \mathrm{R}, 5-\mathrm{HT}_{2 A} \mathrm{R}$ and other selected GPCRs. Pharmacol. Res. 2016, 113, 610-625.
41. Straßer, A.; Wittmann, H.-J.; Seifert, R. Ligand-specific contribution of the N terminus and E2-loop to pharmacological properties of the histamine H_{1}-receptor. J. Pharmacol. Exp. Ther. 2008, 326, 783-791.
42. Baumeister, P. Molecular tools for G-protein coupled receptors: Synthesis, pharmacological characterization and $\left[{ }^{3} \mathrm{H}\right]$-labeling of subtype-selective ligands for histamine H_{4} and NPY Y 2 receptors. University of Regensburg, Regensburg, 2014.
43. Geyer, R.; Kaske, M.; Baumeister, P.; Buschauer, A. Synthesis and functional characterization of imbutamine analogs as histamine H_{3} and H_{4} receptor ligands. Arch. Pharm. 2014, 347, 77-88.
44. Savall, B. M.; Edwards, J. P.; Venable, J. D.; Buzard, D. J.; Thurmond, R.; Hack, M.; McGovern, P. Agonist/antagonist modulation in a series of 2-aryl benzimidazole H_{4} receptor ligands. Bioorg. Med. Chem. Lett. 2010, 20, 3367-3371.
45. Rzasa, R. M.; Hu, E.; Rumfelt, S.; Chen, N.; Andrews, K. L.; Chmait, S.; Falsey, J. R.; Zhong, W.; Jones, A. D.; Porter, A. Discovery of selective biaryl ethers as PDE10A
inhibitors: improvement in potency and mitigation of Pgp-mediated efflux. Bioorg. Med. Chem. Lett. 2012, 22, 7371-7375.
46. Martin, R. E.; Green, L. G.; Guba, W.; Kratochwil, N.; Christ, A. Discovery of the first nonpeptidic, small-molecule, highly selective somatostatin receptor subtype 5 antagonists: a chemogenomics approach. J. Med. Chem. 2007, 50, 6291-6294.
47. Xu, H.; Yu, D.-H.; Liu, L.-L.; Yan, P.-F.; Jia, L.-W.; Li, G.-M.; Yue, Z.-Y. Small molecular glasses based on multiposition encapsulated phenyl benzimidazole iridium (III) complexes: toward efficient solution-processable host-free electrophosphorescent diodes. J. Phys. Chem. B 2009, 114, 141-150.
48. Ting, R.; Lermer, L.; Perrin, D. M. Triggering DNAzymes with light: a photoactive C8 thioether-linked adenosine. J. Am. Chem. Soc. 2004, 126, 12720-12721.
49. Altman, J.; Wilchek, M. 4 (5)-vinylimidazole by dehydrobromination of 1-triphenylmethyl-4-(2-bromoethyl) imidazole. J. Heterocycl. Chem. 1988, 25, 915-916.
50. Kumar, P.; Mane, U. R.; Gupta, R. C.; Nadkarni, S. S.; Mohanan, A.; Tandon, R.; Munshi, S. 2-propene-1-ones as hsp 70 inducers. In Google Patents: 2005.
51. Moussa, I. A.; Banister, S. D.; Beinat, C.; Giboureau, N.; Reynolds, A. J.; Kassiou, M. Design, synthesis, and structure- affinity relationships of regioisomeric N-benzyl alkyl ether piperazine derivatives as $\sigma-1$ receptor ligands. J. Med. Chem. 2010, 53, 6228-6239.
52. Lee, Y.; Park, G. Y.; Lucas, H. R.; Vajda, P. L.; Kamaraj, K.; Vance, M. A.; Milligan, A. E.; Woertink, J. S.; Siegler, M. A.; Narducci Sarjeant, A. A. Copper (I)/O2 Chemistry with Imidazole Containing Tripodal Tetradentate Ligands Leading to μ-1, 2-PeroxoDicopper (II) Species. Inorg. Chem. 2009, 48, 11297-11309.
53. Seifert, R.; Wenzel-Seifert, K.; Bürckstümmer, T.; Pertz, H. H.; Schunack, W.; Dove, S.; Buschauer, A.; Elz, S. Multiple differences in agonist and antagonist pharmacology between human and guinea pig histamine H_{1}-receptor. J. Pharmacol. Exp. Ther. 2003, 305, 1104-1115.
54. Wenzel-Seifert, K.; Kelley, M. T.; Buschauer, A.; Seifert, R. Similar apparent constitutive activity of human histamine H_{2}-receptor fused to long and short splice variants of Gsa. J. Pharmacol. Exp. Ther. 2001, 299, 1013-1020.
55. Schnell, D.; Burleigh, K.; Trick, J.; Seifert, R. No evidence for functional selectivity of proxyfan at the human histamine H_{3} receptor coupled to defined $\mathrm{G}_{\mathrm{i}} / \mathrm{G}_{0}$ protein heterotrimers. J. Pharmacol. Exp. Ther. 2010, 332, 996-1005.
56. Schneider, E. H.; Schnell, D.; Papa, D.; Seifert, R. High Constitutive Activity and a G-Protein-Independent High-Affinity State of the Human Histamine H_{4}-Receptor. Biochemistry 2009, 48, 1424-1438.
57. Baumeister, P.; Erdmann, D.; Biselli, S.; Kagermeier, N.; Elz, S.; Bernhardt, G.; Buschauer, A. [$\left.{ }^{3} \mathrm{H}\right]$ UR-DE257: Development of a Tritium-Labeled Squaramide-Type Selective Histamine H_{2} Receptor Antagonist. ChemMedChem 2015, 10, 83-93.
58. Igel, P.; Schnell, D.; Bernhardt, G.; Seifert, R.; Buschauer, A. Tritium-Labeled N^{1}-[3-(1H-imidazol-4-yl) propyl]- N^{2}-propionylguanidine ([$\left.{ }^{3} \mathrm{H}\right]$ UR-PI294), a High-Affinity Histamine H_{3} and H_{4} Receptor Radioligand. ChemMedChem 2009, 4, 225-231.
59. Slack, R.; Russell, L.; Hall, D.; Luttmann, M.; Ford, A.; Saunders, K.; Hodgson, S.; Connor, H.; Browning, C.; Clark, K. Pharmacological characterization of GSK1004723,
a novel, long-acting antagonist at histamine H_{1} and H_{3} receptors. Br. J. Pharmacol. 2011, 164, 1627-1641.
60. Procopiou, P. A.; Browning, C.; Buckley, J. M.; Clark, K. L.; Fechner, L.; Gore, P. M.; Hancock, A. P.; Hodgson, S. T.; Holmes, D. S.; Kranz, M. The discovery of phthalazinone-based human H_{1} and H_{3} single-ligand antagonists suitable for intranasal administration for the treatment of allergic rhinitis. J. Med. Chem. 2011, 54, 2183-2195.
61. Daley-Yates, P.; Ambery, C.; Sweeney, L.; Watson, J.; Oliver, A.; McQuade, B. The efficacy and tolerability of two novel $\mathrm{H}_{1} / \mathrm{H}_{3}$ receptor antagonists in seasonal allergic rhinitis. Int. Arch. Allergy Appl. Immunol. 2011, 158, 84-98.
62. Taylor-Clark, T.; Foreman, J. Histamine-mediated mechanisms in the human nasal airway. Curr. Opin. Pharmacol. 2005, 5, 214-220.
63. McLeod, R. L.; Mingo, G. G.; Herczku, C.; DeGennaro-Culver, F.; Kreutner, W.; Egan, R. W.; Hey, J. A. Combined histamine H_{1} and H_{3} receptor blockade produces nasal decongestion in an experimental model of nasal congestion. Am. J. Rhinol. 1999, 13, 391-399.
64. Procopiou, P. A.; Ancliff, R. A.; Gore, P. M.; Hancock, A. P.; Hodgson, S. T.; Holmes, D. S.; Keeling, S. P.; Looker, B. E.; Parr, N. A.; Rowedder, J. E.; Slack, R. J. The Discovery of Quinoline Based Single-ligand Human H_{1} and H_{3} Receptor Antagonists. Bioorg. Med. Chem. Lett. 2016.
65. Díaz, J. L.; Christmann, U.; Fernández, A.; Torrens, A.; Port, A.; Pascual, R.; Álvarez, I. s.; Burgueño, J.; Monroy, X.; Montero, A. Synthesis and Structure-Activity Relationship Study of a New Series of Selective $\sigma 1$ Receptor Ligands for the Treatment of Pain: 4-Aminotriazoles. J. Med. Chem. 2015, 58, 2441-2451.
66. Ogino, Y.; Ohtake, N.; Nagae, Y.; Matsuda, K.; Moriya, M.; Suga, T.; Ishikawa, M.; Kanesaka, M.; Mitobe, Y.; Ito, J. Design, syntheses, and structure-activity relationships of novel NPY Y_{5} receptor antagonists: 2-\{3-Oxospiro [isobenzofuran-1 $\left({ }^{3} \mathrm{H}\right), 4$ '-piperidin]-1'-yl\} benzimidazole derivatives. Bioorg. Med. Chem. Lett. 2008, 18, 5010-5014.
67. lemura, R.; Kawashima, T.; Fukuda, T.; Ito, K.; Tsukamoto, G. Synthesis of 2-(4-substituted-1-piperazinyl) benzimidazoles as H_{1}-antihistaminic agents. J. Med. Chem. 1986, 29, 1178-1183.
68. Musonda, C. C.; Whitlock, G. A.; Witty, M. J.; Brun, R.; Kaiser, M. Chloroquineastemizole hybrids with potent in vitro and in vivo antiplasmodial activity. Bioorg. Med. Chem. Lett. 2009, 19, 481-484.
69. Janssens, F.; Stokbroekx, R.; Torremans, J.; Luyckx, M. N-Heterocyclyl-4-piperidinamines. In Google Patents: 1980.
70. Parihar, H. S.; Suryanarayanan, A.; Ma, C.; Joshi, P.; Venkataraman, P.; Schulte, M. K.; Kirschbaum, K. S. $5-\mathrm{HT}_{3}$ R Binding of lerisetron: an interdisciplinary approach to drug-Receptor interactions. Bioorg. Med. Chem. Lett. 2001, 11, 2133-2136.
71. Takata, Y.; Tao, M.; Yokota, K. Synthesis of 2-phenylbenzimidazole derivatives. III. Condensation of o-phenylenediamine with aromatic carboxylic acids in the presence of p-toluenesulfonic acid. Bull. Fac. Eng., Univ. Hokkaido 1979, 95, 81-86.
72. Schnell, D.; Brunskole, I.; Ladova, K.; Schneider, E. H.; Igel, P.; Dove, S.; Buschauer,
A.; Seifert, R. Expression and functional properties of canine, rat, and murine histamine H_{4} receptors in Sf9 insect cells. Naunyn-Schmiedeberg's Arch. Pharmacol. 2011, 383, 457-470.
73. Straßer, A.; Striegl, B.; Wittmann, H.-J.; Seifert, R. Pharmacological profile of histaprodifens at four recombinant histamine H_{1} receptor species isoforms. J. Pharmacol. Exp. Ther. 2008, 324, 60-71.
74. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the Folin phenol reagent. J biol Chem 1951, 193, 265-275.
75. Yung-Chi, C.; Prusoff, W. H. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (150) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.
76. HILF, G.; GIERSCHIK, P.; JAKOBS, K. H. Muscarinic acetylcholine receptor-stimulated binding of guanosine 5'-O-(3-thiotriphosphate) to guanine-nucleotide-binding proteins in cardiac membranes. Eur. J. Biochem. 1989, 186, 725-731.
77. Asano, T.; Pedersen, S. E.; Scott, C. W.; Ross, E. Reconstitution of catecholamine-stimulated binding of guanosine 5'-O-(3-thiotriphosphate) to the stimulatory GTP-binding protein of adenylate cyclase. Biochemistry 1984, 23, 5460-5467.

Chapter 5

Summary

5. Summary

G-protein coupled receptors are the most important class of biological targets for drug development. Among them, the histamine receptors may be considered as representative examples for aminergic GPCRs. The latest member of the histamine receptor family, the $\mathrm{H}_{4} R$, was reported to be involved in immunological processes and inflammatory diseases. However, the (patho)physiological role of the $H_{4} \mathrm{R}$ is far from being fully understood. Thus, potent and selective pharmacological tools in various forms targeting $\mathrm{H}_{4} \mathrm{R}$ are required. Based on complementary and overlapping functions of $\mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$, it is presumed that combined $H_{1} R / H_{4} R$ antagonism might be superior to monotherapy in the treatment of allergic diseases.

In the first part of this thesis, twenty-two novel homo-dimeric ligands based on the prominent $H_{1} R$ antagonists diphenhydramine (3.1), pyrilamine (3.2) and dual $H_{1} R / H_{4} R$ antagonist quinazoline derivative (3.3), were synthesized to probe putative accessory binding sites on $\mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$. Furthermore, their binding affinities were determined at the $\mathrm{hH}_{1} \mathrm{R}$ and/or $\mathrm{hH}_{4} \mathrm{R}$. Between the two types of spacers which were employed in this study, connecting chains comprising amide groups exhibited similar affinity compared to their monomeric counterparts. By contrast, alkyl chains without amides showed decreased affinity at the $\mathrm{hH}_{1} \mathrm{R}$, suggesting that the lipophilicity of the compounds plays an important role in binding affinity, e.g., high lipophilicity may result a poor solubility and high non-specific binding of the compound in assays. Since the variation of the spacer length had no significant influence on binding affinities, it may be suggested that one pharmacophore of the homo-dimeric ligand was not binding to the $\mathrm{hH}_{1} \mathrm{R}$, thus it did not contribute to receptor-ligand binding. At the $\mathrm{hH}_{4} \mathrm{R}$, all bivalent quinazoline-type ligands showed no obvious activity. This may be interpreted that the quinazoline-type homo-dimeric ligands are not tolerated at the $h_{4} \mathrm{R}$. In a word, the data of the present study were not sufficient to prove the existence of accessory binding sites on $\mathrm{hH}_{1} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$.

The second part of this thesis was focused on developing dual $h H_{1} R / h H_{4} R$ antagonists. Thirty benzimidazole- and quinazoline-type compounds were synthesized and
pharmacologically characterized at the four human histamine receptor subtypes. The incorporation of an imidazole moiety, separated from the benzimidazole moiety by an appropriate linker, largely improved the binding affinities at the $\mathrm{hH}_{4} \mathrm{R}$ and resulted in a balanced dual $\mathrm{hH}_{1} \mathrm{R} / \mathrm{hH}_{4} \mathrm{R}$ antagonist (compound 4.35 b) with K_{i} values in the two-digit nM range. However, ligands comprising imidazolylalkyl moieties did not discriminate between $\mathrm{hH}_{3} \mathrm{R}$ and $\mathrm{hH}_{4} \mathrm{R}$.

In summary, although the dimeric approach may be an interesting and useful strategy in developing bitopic and dual target ligands targeting $H_{1} R$ and/or $H_{4} R$, there are numerous problems associated with this approach. Due to the low homology between ligand binding sites of $H_{1} R$ and $H_{4} R$, it appears extremely difficult to identify a common $H_{1} R / H_{4} R$ pharmacophore at a high level of affinity. Moreover, as the $\mathrm{H}_{4} \mathrm{R}$ has a relatively high homology with the $\mathrm{H}_{3} \mathrm{R}$, a poor discrimination between both receptor subtypes may result in more complex binding and functional properties of hybrid compounds targeting the $\mathrm{H}_{4} \mathrm{R}$.

Chapter 6

Appendix

6. Appendix

6.1. Abbreviations

a
A
abs
AC
aq
atm
Boc
$\mathrm{Boc}_{2} \mathrm{O}$
BSA
$\left[\mathrm{Ca}^{2+}\right]_{i}$
calcd.
cAMP
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
CHCl_{3}
$\mathrm{CH}_{3} \mathrm{CN}$
Ci
CNS
COSY
cpm
d
DAG
б
DCC
DCM
dd
DIPEA
DMAP
DMF
DMSO
DMSO-d 6
EC_{50}

EDC
eq
EtOAc
$\mathrm{Et}_{2} \mathrm{O}$
EtOH
intrinsic activity or selectivity factor
agonist
absolute
adenylyl cyclase
aqueous
atmosphere
tert-butoxycarbonyl
di-tert-butyl dicarbonate
bovine serum albumin
intracellular calcium ion concentration
calculated
cyclic 3', 5'-adenosine monophosphate
dichloromethane
chloroform
acetonitrile
curie
central nervous system
correlated spectroscopy
counts per minute
day(s) or doublet
diacylglycerol
chemical shift
N, N^{\prime}-dicyclohexylcarbodiimide
dichloromethane
doublet of doublets
diisopropylethylamine
4-dimethylaminopyridine
dimethylformamide
dimethylsulfoxide
per-deuterated dimethylsulfoxide
agonist concentration which induces 50% of the
maximum response
N-(3-dimethylaminopropyl)- N '-ethylcarbodiimide
hydrochloride
equivalents
ethylacetate
diethylether
ethanol

FCS	fetal bovine serum
G	G-Protein
GDP	guanosine diphosphate
GTP	guanosine triphosphate
GPCR	G-protein coupled receptor
h	hour(s) or human
HCl	hydrochloric acid
HMBC	heteronuclear multiple bond correlation
HSQC	heteronuclear single quantum correlation
HOBt	1-Hydroxybenzotriazole hydrate
HPLC	high-performance liquid chromatography
HRMS	high resolution mass spectrometry
Hz	hertz
IC_{50}	radioligand binding assay: ligand concentration inhibiting the binding of a radioligand by 50%
IP_{3}	inositol-1,4,5-trisphosphate
J	coupling constant
k	capacity factor
K	dissociation constant (functional assay)
KBr	potassium bromide
$\mathrm{K}_{2} \mathrm{CO}_{3}$	potassium carbonate
K	dissociation constant (saturation binding)
KHSO_{4}	potassium bisulfate
Ki	dissociation constant (competition binding)
L	liter
LiAlH_{4}	Lithiumaluminiumhydrid
m	multiplet
M	molar (mol/L)
MeCN	acetonitrile
MeOH	methanol
Mel	methyl iodide
mol	mole (s)
min	minute(s)
μ	micro
mp .	melting point
HR	histamine receptor
$\mathrm{H}_{\mathrm{x}} \mathrm{R}$	histamine H_{x} receptor ($\mathrm{x}=1,2,3,4$)
MS	mass spectrometry
n	nano or amount of substance
NaHCO_{3}	sodium bicarbonate
NaI	sodium iodide
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	sodium sulfate
NEt_{3}	triethylamine
NHS	N -hydroxysuccinimide

NMR	nuclear magnetic resonance
PBS	phoshpate buffered saline
PE	petroleum ether
pEC50	negative decadic logarithm of the molar concentration of the agonist causing 50% of the maximal response
Ph	phenyl
$\mathrm{Ph}_{3} \mathrm{P}$	triphenylphosphine
PIP_{2}	Phosphatidylinositol-4,5-bisphosphate
PKC	protein kinase C
pK b	negative decadic logarithm of the dissociation constant (functional assay)
pKi	negative decadic logarithm of the dissociation constant (competition binding assay)
ppm	parts per million
Py	pyridyl or pyrylium
q	quartet
ref	reference
R_{f}	retardation factor
RGS	regulator of G-protein signaling
RP	reversed phase
rpm	revolutions per minute
rt	room temperature
s	singulet or second(s)
sat.	saturated
SEM	standard error of the mean
t	triplet
t_{0}	dead time
TBDPS	tert-butyldiphenysily
TBTU	2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography
	TM transmembrane
TM	transmembrane
TMS	trimethylsilyl
t_{R}	retention time
UV	ultraviolett

6.2. Purity determined by HPLC

cpd.	tr (min)	k	Purity (\%)	Method	cpd.	tr (min)	k	Purity (\%)	Method
3.6a	9.12	2.18	97.34	b	4.16a	15.06	4.25	96.10	d
3.6b	12.54	3.37	97.26	b	4.16b	15.12	4.27	96.85	d
3.6c	14.43	4.03	98.53	b	4.17a	13.51	3.71	98.85	c
3.6d	15.35	4.35	99.94	b	4.17b	11.57	3.03	100.00	c
3.7a	11.15	2.89	96.80	a	4.17c	13.47	3.69	97.15	c
3.7b	5.43	0.89	100.00	b	4.18a	9.71	2.38	97.84	c
3.7c	16.24	4.66	98.60	a	4.18b	15.47	4.39	98.29	d
3.7d	19.16	5.68	95.33	a	4.19a	9.76	2.40	100.00	c
3.9a	18.53	5.46	97.02	c	4.19b	9.89	2.45	100.00	c
3.9b	18.81	5.55	97.57	c	4.20a	8.73	2.04	98.46	c
3.9c	19.87	5.92	96.66	c	4.20b	9.59	2.34	96.71	c
3.9d	21.29	6.42	95.18	c	4.22a	15.08	4.25	97.68	d
3.13a	12.35	3.30	100.00	a	4.22b	14.45	4.03	99.99	d
3.13b	13.81	3.81	96.35	a	4.23	9.64	2.36	98.92	c
3.15a	12.91	3.50	99.14	c	4.26	16.83	4.86	97.51	d
3.15b	13.54	3.72	97.07	c	4.27	16.01	4.57	95.13	d
3.15c	14.15	3.93	97.93	c	4.30	16.86	4.87	98.78	d
3.15d	14.78	4.15	97.60	c	4.32a	15.05	4.24	95.53	d
3.16a	13.33	3.64	97.58	c	4.32b	14.98	4.22	98.23	d
3.16b	13.63	3.75	95.85	c	4.34	15.75	4.49	99.04	d
3.16c	14.05	3.90	100.00	c	4.35a	15.09	4.26	98.11	d
3.16d	14.81	4.16	99.99	c	4.35b	16.36	4.70	95.15	d
4.14a	13.4	3.67	99.24	c	4.40	8.55	1.98	97.70	c
4.14b	13.61	3.74	99.87	c	4.41	9.12	2.18	96.19	c
4.14c	10.73	2.74	99.89	c	4.42	10.92	2.80	97.41	c
4.15b	8.59	2.00	99.93	c	4.44	11.9	3.15	99.87	c

to $=2.87 \mathrm{~min}$; gradient mode: a) $\mathrm{MeCN} / 0.1 \%$ TFA (aq.): $0 \mathrm{~min}: 30 / 70,30 \mathrm{~min}: 90 / 10$, $31 \mathrm{~min}: 95 / 5$, $40 \mathrm{~min}: 95 / 5$, $41 \mathrm{~min}: 20 / 80,50 \mathrm{~min}: 20 / 80 ;$ b) $\mathrm{MeCN} / 0.1 \%$ TFA (aq.): 0 min: 50/50, $30 \mathrm{~min}: 85 / 15$, $32 \mathrm{~min}: 95 / 5$, $40 \mathrm{~min}: 95 / 5,41 \mathrm{~min}: 5 / 95,50 \mathrm{~min}: 5 / 95$; c) MeCN/0.1\% TFA (aq.): $0 \mathrm{~min}: 20 / 80,30 \mathrm{~min}: 90 / 10,31 \mathrm{~min}: 95 / 5,40 \mathrm{~min}: 95 / 5,41$ $\min : 20 / 80,50 \min : 20 / 80 ;$ d) MeCN/0.1\% TFA (aq.): $0 \mathrm{~min}: 5 / 95,30 \mathrm{~min}: 85 / 15,32$ $\min : 95 / 5,40 \mathrm{~min}: 95 / 5,41 \mathrm{~min}: 5 / 95,50 \mathrm{~min}: 5 / 95$.

6.3. Saturation binding at the $\mathrm{hH}_{3} \mathrm{R}$ with N^{1} - [3- (1 H - imidazol- 4-

 yl)propyl]- N^{2}-propionylguanidine ($\left[{ }^{3} \mathrm{H}\right] \mathrm{UR}-\mathrm{PI} 294$)

Representative $\quad N^{1}$-[3-(1H-imidazol-4-yl)propyl]- N^{2}-propionylguanidine ($\left.{ }^{3} \mathrm{H}\right] \mathrm{UR}$-PI294) saturation binding experiment on $\mathrm{Sf9}$ insect cell membranes expressing $\mathrm{hH}_{3} R+\mathrm{G}_{\text {ai2 }}+\mathrm{G}_{\beta 1 \mathrm{y} 2}$ (performed in triplicate). Membranes were incubated with increasing concentrations of N^{1}-[3-(1H-imidazol-4-yl)propyl]- N^{2}-propionylguanidine ($\left.{ }^{3} \mathrm{H}\right]$ UR-PI294). Nonspecific binding was determined in the presence of $10 \mu \mathrm{M}$ thioperamide. Specific binding is the difference between the total and nonspecific binding of N^{1}-[3-(1H-imidazol-4-yl)propyl]- N^{2}-propionylguanidine ($\left[{ }^{3} \mathrm{H}\right] \mathrm{UR}-\mathrm{Pl} 294$) at a given concentration. ($\mathrm{K}_{\mathrm{d}}=3.27 \pm 0.38 \mathrm{nM}$ from three independent experiments performed in triplicate, ref ${ }^{1}: 1.1 \mathrm{nM}$)

6.4. NMR spectra of selected compounds

To verify the position of Cl at benzimidazole scaffold, 2D-NMR spectra of compounds
4.13a and 4.13b were recorded.

6.4.1. NMR spectra (COSY, HSQC, HMBC, NOESY) of 4.13a:

NMR spectra (COSY) of compound 4.13a.

NMR spectra (HMBC) of compound 4.13a.

6.4.2. NMR spectra (COSY, HSQC, HMBC, NOESY) of 4.13b:

NMR spectra (COSY) of compound 4.13b.

NMR spectra (HSQC) of compound 4.13b.

NMR spectra (HMBC) of compound 4.13b.

NMR spectra (NOESY) of compound 4.13b.

To verify the alkylation reaction taking place at 4 -position instead of imidazole ring of histamine, 2D-NMR spectra of compound 4.16a and 4.16b were recorded.

6.4.3. NMR spectra (COSY, HSQC, HMBC, ROESY) of 4.16a:

NMR spectra (COSY) of compound 4.16a.

NMR spectra (HSQC) of compound 4.16a.

NMR spectra (HMBC) of compound 4.16a.

NMR spectra (ROESY) of compound 4.16a.

6.4.4. NMR spectra (COSY, HSQC, HMBC) of 4.16b

NMR spectra (COSY) of compound 4.16b.

NMR spectra (HSQC) of compound 4.16b.

NMR spectra (HMBC) of compound 4.16b.

6.5. References

1. Igel, P.; Schnell, D.; Bernhardt, G.; Seifert, R.; Buschauer, A. Tritium-Labeled N^{1}-[3-(1H-imidazol-4-yl) propyl]- N^{2}-propionylguanidine ([$\left.{ }^{3} \mathrm{H}\right]$ UR-PI294), a High-Affinity Histamine H_{3} and H_{4} Receptor Radioligand. ChemMedChem 2009, 4, 225-231.

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe des Literaturzitats gekennzeichnet.

Regensburg,

