Knowledge for Tomorrow

Advanced Cyclic Accelerated Aging Testing of Solar Reflector Materials

Johannes Wette

SolarPACES 2018, Casablanca

The Raiselife Project

- EU funded project (H2020)
- Goal: Raising the lifetime of functional CSP materials
- One work package on primary reflectors, includes:
 - Outdoor exposure campaign
 - Accelerated testing
- Develop realistic accelerated aging & lifetime prediction methods
- Work carried out by DLR&CIEMAT at the PSA, Almería

Motivation

- CSP plants require durable mirrors
 - Little degradation causing no or low reflectance loss during service life of 20 – 30 years
 - High number of environmental stresses can cause degradation
- · Accelerated aging tests are used for
 - Lifetime prediction
 - Quality control during manufacturing
 - Comparison of materials
- Goal:
 - Find realistic and fast procedures
 - Standardization of tests
 - UNE (first standard for CSP published)

UNE standard

"Reflector Panels for Concentrating Solar Technologies" UNE 206016 from 2018

- Document includes measurement and testing protocols
- Set of accelerated standard tests adapted from other industries and applications
- Definition of test conditions and parameters
- Set of minimum requirements, durations
- No pass/fail criteria

Test	Standard	Testing conditions	Duration
Neutral Salt Spray (NSS)	ISO 9227	T: $(35\pm2)^{\circ}$ C; pH: 6.5 to 7.2 Sprayed NaCl solution of 50 ± 5 g/l, condensation: 1.5 ± 0.5 ml/h per 80cm ²	480h
Copper-accelerat ed acetic acid salt spray (CASS)	ISO 9227	T: $(50\pm2)^{\circ}$ C; pH: 3.1 to 3.3 Sprayed NaCl solution of 50 ± 5 g/l and 0.26 ± 0.02 g/l CuCl2 Condensation: 1.5 ± 0.5 ml/h per 80cm ²	120h
Condensation	ISO 6270-2	T°: 40°C RH: 100%	480h
UV radiation/ humidity	ISO 16474-3	4h UV exposure at 60°C; 4h 100% r.h. at 50°C	1000h 2 sides (tot. 2000h)
Cyclical temperature and humidity tests	UNE 206016	4h 85°C, 4h -40°C, Method A: 16 h T°: 40°C and 98±2% r.h.	10 cycles (240 h)

Results outdoor in-service facets

- Weak material analyzed in previous work
- Strong degradation outdoor
- After only 7 years of exposure
- UNE tests done, long testing times up 2000-3000 h
- Degradation is not provoked
- But backside degradation in UVH

 Combined UVH & CASS provokes corrosion silver layer

Test of commercial samples

- 1000 h UVH followed by 480 h CASS produces corrosion in silver layer
- This result was reproduced for two further materials from old test campaigns
 - CASS only shows no/little corrosion
 - UVH + CASS provokes considerable corrosion

Conclusion

- Combination of tests with higher number of stresses is necessary
- Design of new test campaign

CASS

UVH+CASS

Set up combination/cycle test campaign

- **High number of parameters** to be investigated (single tests, combinations, duration, cycling)
- 3 materials: A, B, C (weaker, reduced coating thickness)
- Only one sample per material & test
- Investigate influences of parameters on degradation/ corrosion mechanisms
- "Screening test campaign"

Test	Name	Standard	Conditions
NSS	Neutral Salt Spray	ISO9227 [4]	[NaCl]=50±5 g/l; T=35±2°C; r.H.=100%; pH=6.5-7.2
CASS	Copper accelerated salt spray	ISO9227 [4]	[NaCl]=50±5 g/l; [CuCl2]=0.26±0.02 g/l; T=50±2°C; r.H.=100%; pH=3.1-3.3
UVH	UV light/ Humidity	ISO16474-3 [5]	4h: UV (with 1.55W/m ² /nm at340 nm); T=60±3°C 4h: T=50±3°C; r.H.=100%
DH	Damp Heat	IEC 62108 [6]	T=65±2°C; r.H.=85±5%
GAS	H ₂ S/H ₂ S corrosive gases	Based on EN 60068-2-60 [7]	[H ₂ S]=0.025 g/l;[H ₂ S]=0.025 g/l;T=40 ≌C; r.H.=80%
GAS 2	NO ₂ /SO ₂ corrosive gases	ISO21207 [8]	[NO ₂]=1.5x10-6; [SO ₂]=0.5x10-6; T=25 ^o C; r.H.=95%
Dry	Laboratory ambient conditions	-	T=25°C±3°C
Acc. Out	Accelerated Outdoor	Based on ASTM G90 [9]	8x concentrated natural radiation at PSA

Test scheme

- 14 different test
- 2000 h hours

Analyzed degradation parameters

- Specular reflectance drop
- Corrosion spot density
- Degraded area fraction
- Edge corrosion area

Results – detected degradation

- Detected degradation after 2000h
- Only tests with considerable degradation displayed
 - All include CASS, determining factor
 - Most durable material B
 - Important differences between materials
 - Care has to be taken choosing CASS duration, total break down of samples after long exposure
 - CASS degradation is similar to outdoor degradation
 - High frequency cycles are less aggressive

Degraded area & reflectance loss

- Most aggressive tests:
 - T2 (pure CASS)
 - T4 (UVH-CASS weekly)
 - T6 (UVH-CASS seq.)
- Reflectance loss and degraded area correlate well
- Break down point of samples in CASS (measurement intervals)

Number of corrosion spots & edge corrosion area

- Correlation of spot number depends on spot size
- Edge corrosion area usually independent from other parameters
- Edge corrosion more similar for different tests and materials

Combination UVH - CASS

- UVH influence on degradation seems to be weak
- But comparing
 - T2: CASS only
 - T4: UVH-CASS weekly cycles
 - T6: sequence UVH followed by CASS
- When only duration in CASS is considered T4 is the most aggressive one
- This influence was only detected in certain cases

Τ6

Ranking of tests and materials

 Comparing parameter evolution of tests and materials

- Ranking of test aggressiveness and material durability
- Depends on analyzed parameter, only possible when sufficient degradation takes place
- Can be different for tests and materials

Odeillo

Spanie

Almería

Missour

Erfoud

Correlations to outdoor results

- Further analysis with outdoor data
- 11 sites available

but

- Exposure duration of 1 year or less for the analyzed materials
- Considerable corrosion only at 1 site
- Longer outdoor durations necessary

Conclusions

- CASS test is aggressive
 - It is the determining factor also in combination with other tests
 - Useful to provoke degradation in solar mirrors in a reasonable time
 - To compare different mirror materials
 - Appropriate testing duration to avoid unrealistic strong degradation
- The higher frequency cycles are less aggressive
 - Also higher effort, more handling
 - · Possibly interesting when further outdoor data is available
- UVH pre-damaging effect is material dependent
 - Further investigation of UVH-CASS combination
 - More samples and measurements used in next campaigns
- For useful correlations longer outdoor exposure durations necessary
 - Also final test selection will depend on these results

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 686008

Thank you for you attention!