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1. Introduction 

 

At the end of the 19th century, Giacomo Ciamician (1857-1922) and Paul Silber (1851-1930) 

studied the reduction of nitrobenzene to aniline and 2-methylquinoline as a first example for a  

light mediated reaction.1 Both, as well as other scientists before, e.g. J. Priestley (1733-1800), N. 

T. de Saussure (1767-1845) or Sir H. Davy (1778-1829), recognized the diversity of sunlight and 

its potential for applications as the most abundant and sustainable energy source.2 The concept 

of harvesting, storing and using this inexhaustible energy source in ubiquitous biological 

photosynthesis by nature, was an initial signal for chemists to engage in the development of 

new strategies to become more independent from fossil resources.3 Efficient methods for the 

conversion of light into electrical energy4,5 have been developed, however, utilization of sunlight 

in photochemical reactions is limited owing to the insufficient absorption of the visible part of 

the spectrum by most organic molecules.6 The excitation of such compounds generally requires 

short wavelength ( ultra-violet (UV) irradiation, which is problematic due to the instability of 

most chemical bonds under such conditions. Therefore, suitable sensitizers or photocatalysts7 

have been introduced to promote chemical transformations by visible light. 

 

Irradiation of a sensitizer chromophore or a photoredox catalyst via visible light at  = 400 – 800 

nm leads to an excited species. As a result of a significant electron density shift, this state can 

transfer energy8 or an electron to an organic substrate.9 In this process, the substrate should not 

get excited by the irradiation, thus it does not react until activation by the catalyst occurs. 

Therefore, side reactions that are often associated in reactions with high energetic UV light can 

be minimized.10 Similar to UV light, photoredox catalysts can utilize the visible part of the 

electromagnetic spectrum to drive chemical reactions, although the energy content of visible 

light is considerably lower.3 In principle, photoredox catalysis operates as a versatile tool for 

oxidation and reduction processes. Both can be simplified depicted by two different catalytic 

cycles, an oxidative and a reductive quenching process, in which single electron transfer steps 

occur, respectively (Figure 1). Irradiation of the visible light photocatalyst (PCat) populates a 

stable and short-lived singlet excited state (PCat*) via metal to ligand charge transfer (MLCT). 

The following intersystem crossing (ISC) leads to a more stable triplet state.11 Compared to the 

ground state, the excited species can be easier reduced or oxidized and operates either as 

electron donor or acceptor to close the catalytic cycle. In general, the photoredox catalyst is 

involved in two single electron transfer (SET) steps, i.e the quenching process after excitation 
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and subsequently the regeneration of the catalyst itself. Depending on the reaction conditions, 

both single electron transfer steps can be utilized for chemical transformations.6  

 

 

Figure 1. General paradigm of the photoredox catalysis by reduction or oxidation cycle. Oxidative process illustrated 

in red, reduction process in black. PCat = photoredox catalyst, A = acceptor, D = donor, Q = quencher. 

 

 

Ruthenium and iridium based polypyridyl complexes are used for the majority of light mediated 

chemical processes due to their ease of synthesis, superior photoredox properties and excellent 

stability in an oxygen atmosphere compared to other inorganic complexes.10 Commercially 

available [Ir(ppy)2(dtb-bpy)]PF6 1 (ppy = phenylpyridine, dtb-bpy = 4,4’-di-tert-butyl-2,2’-

bipyridine),12-14 fac-Ir(ppy)3
14-17 2 and Ru(bpy)3Cl2 3 (bpy = 2,2’-bipyridine)18,19 are arguably the 

most common photoredox catalysts and were employed in this thesis, too. Notable properties 

of these catalysts are their high oxidation and reduction potentials for single electron transfer, 

as well as the sufficient long lifetimes of their excited triplet states, and their emission maximas 

for the choice of suitable lightning devices (Table 1). Hence, the most suitable catalyst has to be 

selected considering the reduction (ERed) or oxidation (EOx) potential of the compounds that are 

desired to be transformed, either following a reductive (Chapter 3) or an oxidative quenching 

cycle (Chapter 4 and 5). Furthermore, the redox potentials of the photocatalysts can be further 

tuned by modification of the ligands.20 
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Table 1. Redox potentials and selected photophysical properties of the visible light photoredox catalysts used in this 

thesis.11 

 

Redox potentials for the oxidative quenching process framed in red, reductive quenching process in black. Other 

photophysical properties framed in blue. All potentials are given in V vs. saturated calomel electrode (SCE) in CH3CN 

at ambient temperature. aDetermined in 1:1 EtOH/MeOH mixture at 77 K.  

 

 

During the last years, the number of applications for chemical transformations based on visible 

light has increased considerably. Up to now, a broad variety of approaches have been developed 

for the activation of small molecules based on this catalytic method. Two examples have been 

chosen to illustrate the usage of these photocatalysts for a detailed presentation of 

aforementioned catalytic quenching processes.  

 

 

1.1 Photoredox catalyzed aza – Henry reaction via carbon – hydrogen bond functiona-

lization on a reductive quenching cycle of [Ir(ppy)2(dtb-bpy)]PF6 (1) 

 

In 2010 Stephenson et al.21 published a light mediated amine functionalization via catalytic 

oxidation of sp3 hybridized carbon – hydrogen bonds (Scheme 1).22,23 High chemical yields were 

achieved for the oxidative coupling of nitroalkanes with tertiary N-arylamines using only 

1.0 mol% catalyst 1. Irradiation of the photoredox catalyst 1 with visible light induces its excited 

state 4. A single electron transfer from the electron donor 5 to the excited species of the catalyst 

4 forms the oxidized radical cation 6 and the reduced radical anion of the catalyst 7 by reductive 

quenching of 4. This generated catalyst species 7 is a strong reducing agent (ERed Ir3+/Ir2+ = - 1.51 

V vs SCE). Through a second single electron transfer from 7 to reagent 8, the catalytic cycle will 
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be closed. Therefore, the catalyst will be oxidized and gives the regenerated catalyst 1, whereas 

nitromethane and/or adventitious oxygen will be reduced to their corresponding radical anion 

9. Iminium ion 10 formation results from subsequent hydrogen abstraction of this radical anion 

9 from the oxidized trialkylammonium radical cation 6. Intermolecular carbon – carbon bond 

formation of 11 with the iminium ion 10 gives the desired product 12. 

 

Scheme 1. Examples of visible light driven aza - Henry reaction of tertiary N-arylamines with nitroalkanes in very good 

yields depicted on the left. Proposed mechanism on the reductive quenching cycle of [Ir(ppy)2(dtb-bpy)]PF6 1 on the 

right. Oxidation steps marked in red, reduction steps in violet. Photoredox catalyst blue framed. 
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1.2 Photoredox catalyzed reduction of unactivated alkyl iodides utilizing an oxidative 

quenching cycle of fac-Ir(ppy)3 (2) 

 

The reductive deiodination of unactivated alkyl, alkenyl and aryl iodides is another visible light 

mediated activation of small organic molecules, reported by the group of Stephenson.20 As an 

example, the catalytic carbon – iodide defunctionalization of primary and secondary alkyl 

iodides and its proposed mechanistic pathway is depicted (Scheme 2). This light mediated 

reaction is applicable to a broad substrate scope with high functional group tolerance under 

mild reaction conditions and only utilizes inexpensive reagents. Therefore, this method is 

superior to common iodide bond cleavages which employ metal – halogen exchanges24,25 or 

hydride sources26 and often lead to undesired side reactions.  

The proposed mechanism involves the oxidative quenching of the excited fac-Ir(ppy)3
* 13 by a 

single electron transfer to the alkyl iodide 15. By reductive carbon – iodide bond cleavage a 

carbon – centered radical 16 and oxidized Ir4+ species 14 will be generated. Subsequent hydrogen 

abstraction from Hantzsch ester/trialkylamine combination, which acts as an effective electron 

/hydrogen atom donor system, leads to the desired deiodinated product 17. The catalytic cycle 

will be closed by reduction of Ir4+ to the Ir3+ ground state 2 in the presence of tributylamine 18 

and/or Hantzsch ester that will be oxidized simultaneously. 
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Scheme 2. Examples of visible light catalyzed deiodination of unactivated alkyl iodides in very good yields depicted 

on the left. Proposed mechanism on the oxidative quenching cycle of fac-Ir(ppy)3 2 on the right. Oxidation steps 

marked in red, reduction steps in violet. Photoredox catalyst blue framed.  

 

 

1.3 Setup for photoreactions 

 

For the performance of photoredox catalyzed reactions lighting devices are necessary. 

Commonly used fluorescent household bulbs have been partially replaced by more efficient 

LEDs (light-emitting diode). Their narrow emission peak at a specific wavelength is 

advantageous, since they can be adapted to each photoredox catalyst. Based on the absorption 

maximum of the catalyst, LEDs with different wavelengths, typically blue ( = 455 nm) or green 

light ( = 530 nm), are installed. Moreover, utilization of LED devices lead to higher light 

intensities and a more efficient energy transfer.  

A common setup for a photoreaction is build up by a snap cap vail or a round-bottom flask 

including the reaction mixture and an external irradiation system (Figure 2).  
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Figure 2. Common setup for photoreactions with a round-bottom flask while irradiation with six blue high power LED 

takes place from below. 

 

In our group, Dr. Peter Kreitmeier developed an improved device which allows direct irradiation 

of the reaction solution via an optical fiber (Figure 3). Internal irradiation is beneficial in several 

aspects. Higher light intensities and more photon emission by the photoredox catalyst are 

ensured due to less light scattering on the glass wall of the vessel, as well as an easier setup of 

inert reaction conditions by utilizing enclosed Schlenk flask systems. Moreover, installation of 

the LED source from above facilitates the temperature control from below.  

 

 

Figure 3. Developed irradiation system. Blue light (455 nm) generated from a high power LED is channeled through a 

glass rod directly in the reaction solution from above while magnetic stirring and heating in a metal block is applied 

from below. 
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Furthermore, industrially applied micro flow reactor technologies were adapted for light 

mediated reactions (Figure 4). Therefore, the microreactor was encased by a metal block which 

ensures demand-orientated temperature control. The light source is installed from above and 

enables irradiation by eight LEDs. The reaction time can be easily controlled by the help of a 

syringe pump and the adjustment of an accurate pump speed. Considering the precise 

installation of the light source on the metal block, exposure of the reaction mixture before and 

after trespassing the flow reactor is avoided. Thus, undesired side and over-reactions can be 

minimized. The high surface area of the flow reactor leads to shorter reaction times as well as a 

decrease of the catalyst loading due to a beneficial number of excited molecules of the catalyst 

simultaneously. 

 

 

 

Figure 4. Developed microreactor irradiation system. Blue light (455 nm) generated from 8 high power LEDs exposures 

directly the reaction solution in the flow reactor. Heating or cooling will be controlled by a modified metal case. 

Pumping speed and therefore reaction time is adjusted by a syringe pump. 
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2. Aim of this work 

 

During the last years visible light photoredox catalysis emerged as a versatile tool for the 

activation of small molecules. As a mild and environmentally friendly alternative to literature 

known protocols, the broad applicability of visible light photoredox catalysis for new bond 

formations with various functionalization patterns as well as in natural product synthesis 

motivates scientist to further investigate this scientific field.  

The aim of this work was the development of new and efficient visible light mediated synthetic 

applications of various photoredox catalysts via single electron transfer. In my thesis I 

investigated deoxygenations as well as couplings of photochemically generated vinyl radicals. 

 

 

2.1 Deoxygenation of alcohols by iridium photoredox catalysts using oxidative and 

reductive quenching cycles  

 

The defunctionalization of carbon – oxygen bonds in molecules stemming from renewable 

feedstock offers a potential access to products that are normally manufactured from fossil 

resources.1 However, efficient and environmentally friendly methods for the chemical 

conversion of this highly functionalized carbohydrates are rare. Compared to previous reported 

protocols, e.g. the deoxygenation under Barton McCombie conditions, we were interested in 

the development of a mild and environmentally benign protocol for the defunctionalization of 

carbon – oxygen single bonds of alcohols. Due to the high carbon – oxygen bond strength and 

accordingly the minor tendency for the direct reduction of this bond, for the defunctionalization 

of alcohols, this group has to be activated by suitable auxiliaries.2 Nevertheless, strong reductive 

agents have still to be used for the cleavage of an activated carbon – oxygen bond. Therefore, 

in my thesis I investigated iridium based photoredox catalysts are chosen as potential strong 

reducing reagents3,4 for the visible light mediated carbon – oxygen bond cleavage (Chapter 3 

and 4).  
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2.2 Visible light mediated vinyl radical generation following acrylamide preparation 

via intermolecular carbon – carbon bond formation with 1-isocyano-2,4-

dimethoxybenzene 

 

Vinyl radicals are known as highly reactive species, which can be utilized for various applications 

involving new bond formations.5 These radicals can be generated under thermal6,7 as well as 

under photochemical8 conditions. Based on our interest and our previous results in the visible 

light mediated reductive debromination9 of vic-dibromoalkene, we utilized -bromochalcones 

as vinyl radical sources for chemical transformations. Depending on the trapping reagents, we 

envisioned new synthetic pathways for the preparation of inter- and intramolecular carbon – 

carbon bond formations. Thus, alternative concepts for the synthesis of polycyclic frameworks 

via cascade reactions or annulations have been established.10,11 

To enlarge the field of applications for the utilization of vinyl radicals, we wanted to investigate 

1-isocyano-2,4-dimethoxybenzene as alternative trapping reagent. Thereby, potentially 

bioactive acrylamide derivatives can be synthesized and subjected to pharmaceutical tests 

(Chapter 5). 
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3. Visible light photoredox catalyzed one-pot deoxygenation of alcohols 

 

3.1 Introduction 

The development of strategies for the control, conversion and utilization of chemicals stemming 

from renewable feedstock into fine chemicals is an important aspect in industrial research. The 

rising energy consumption and the increase in population worldwide have forced scientists to 

rethink their ideas concerning sustainable development over the last decades. On behalf of 

sustainability, fine chemicals must be harnessed from renewable feedstock.1 Contradictory to 

fossil resources, renewable feedstock based on carbohydrates is characterized by a relative high 

number of identical functional groups, which complicates further chemical transformation. The 

defunctionalization of carbon – oxygen single bonds in natural materials to their respective 

carbon – hydrogen bonds leads to increased compatibility for further chemical transformations 

in accordance with established oil based protocols used by the chemical industry.2 The direct 

reduction of alcohols to the corresponding alkanes is difficult considering the strong carbon – 

oxygen bond. In accordance to the poor nucleofugality of the hydroxyl group, a modification, 

e.g. to an ester or halide function is required.3 Despite the usage of superstoichiometric amounts 

of highly noxious chemicals and the production of difficult to separate toxic tin-byproducts, the 

Barton McCombie4 reaction is still the classical radical deoxygenation method of alcohols due to 

its broad substrate scope. Alternative protocols performed electrochemically5-7 or 

photochemically2,8-13 require an activation of the alcohol group via esterification or 

transformation into the corresponding halide to decrease the reduction potential.  

Related to this work, Overman et al. elegantly succeeded in the visible light mediated 

deoxygenation of tertiary alcohols followed by subsequent intermolecular carbon – carbon bond 

formation with electron-deficient alkenes by their conversion into N-phthalimidoyl oxalates 

(Scheme 1).10 This protocol is applicable to a broad range of tertiary alcohols, however, the 

sensibility of the oxalates to aqueous workup and silica gel chromatography makes the 

operation of this reaction difficult. Moreover, the preparation of iPr2NEt.HBF4 as electron donor 

to ensure the stability of the N-phthalimidoyl oxalates during the reaction, requires additional 

effort compared to the use of commercially available iPr2NEt. In a second report, Stephenson et 

al. showed the deoxygenation of primary and secondary alcohols by their in situ conversion to 

iodides followed by visible light mediated reduction in the presence of an amine as a sacrificial 

electron donor and fac-Ir(ppy)3 (ppy = 2-phenylpyridine) as photoredox catalyst.14,15 This 

protocol for the deoxygenation of alcohols still suffers from the production of byproducts owing 
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to stoichiometric transformations of triphenylphosphine to triphenylphosphine oxide and iodine 

to iodide (Scheme 1). A more convenient method including the recovery and reuse of the 

auxiliary activation group, a redox economic deoxygenation of alcohols under visible light 

photocatalysis was investigated by Reiser et al.2 However, the preparation of the expensive 3,5-

bis(trifluoromethyl)benzoic anhydride as activation group involves multiple preparation steps 

(Scheme 1).  
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Scheme 1. Strategies on visible light mediated deoxygenation processes of alcohols (reagents needed in 

superstoichiometric amounts are depicted in blue).2,10,14,15 One-pot deoxygenation of alcohols via in situ generated 

oxalate esters (first step) followed by light mediated carbon – oxygen bond cleavage in the presence of water and 

catalyst (second step). 

 

Here we report an inexpensive, simple, and rapid deoxygenation method of alcohols, in which 

formation of radicals is achieved under mild visible light photocatalyzed conditions using ethyl 

oxalyl chloride for the alcohol esterification. The reaction can be performed in one-pot without 

additional isolation of the oxalate derivatives. This protocol ultimately requires a tertiary amine 

and ethyl oxalyl chloride as stoichiometric reagents and leads to high yields for the 

deoxygenation of benzylic and allylic alcohols, as well as -hydroxyl carbonyls after short 

irradiation times and under mild reaction conditions (Figure 1). Moreover, the development of 

an one-pot method ensures significant savings in solvent, energy, and time. 

 

3.2 Literature precedent 

Following the electrochemical strategy for the deoxygenation of oxalate esters published by 

Utley et al.3 and the use of methyl oxalyl ester intermediates in natural products16 and sugar 

analogues17 for the Barton-McCombie deoxygenation, we envisioned oxalyl ester derivatives as 

suitable substrates for initial photochemical test reactions. Ethyl oxalyl esters were chosen for 

the activation of alcohols due to their promising reduction potentials and the low price of ethyl 

oxalyl chloride as esterification reagent. Based on the Utley protocol, we assumed a related 

deoxygenation process under photoredox catalyzed conditions would be possible, including an 

electron transfer to the carboxylic moiety followed by subsequent defragmentation and 

hydrogen abstraction (Scheme 2). Due to the comparability between the deoxygenation under 

visible light photoredox catalyzed and electrochemical conditions, test substrate 1, which was 
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also used by Utley et al. as initial oxalate ester, was synthesized. Moreover, the Utley group 

reported only partial cleavage of both diphenyl moieties and the generation of the stable 

Ph2CHOC.CO2
- anion species.  Due to incomplete defragmentation of the second diphenyl moiety 

only 70% yield of the deoxygenated product 3a was achieved under electrochemical conditions 

by the use of 1 equivalent of dibenzhydryl oxalate 1. Thus, mono-substituted ethyl oxalate ester 

2a was synthesized. Thereby, a possible partial cleavage of the ethyl moiety should have no 

effect on the yield. This modification of the test substrate could lead to a complete 

deoxygenation of the diphenyl moiety and hence, to an increased yield of the deoxygenated 

product 3a.   

 

Scheme 2. Comparison of the proposed deoxygenation process under electrochemical3 and photochemical 

conditions. Reduction potentials of oxalate esters in 1 and 2a in DMF. 
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3.3 Initial screening experiments 

Initial experiments were carried out with isolated oxalate derivatives 1 and 2a, either 

Ru(bpy)3Cl2•6H2O (bpy = 2,2’-bipyridine) or [Ir(ppy)2(dtb-bpy)]PF6 (ppy = phenylpyridine, dtb-

bpy = 4,4’-di-tert-butyl-2,2’-bipyridine) as photocatalyst, Hantzsch ester (diethyl 1,4-dihydro-

2,6-dimethyl-3,5-pyridinedicarboxylate) as hydrogen source, and iPr2NEt as sacrificial electron 

donor in CH3CN (Figure 1). 

Irradiation was ensured by a high power blue LED (455 nm) bundled through a glas rod directly 

into the reaction solution while heating was enabled from below in a metal block. The reaction 

mixture was degassed by freeze - pump - thaw technique using a Schlenk tube and a lockable 

screw cap including a Teflon inlet.  

 

 

Figure 1. Initial reaction conditions for the deoxygenation of 1 and 2a. 
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Cyclovoltammetric measurements gave the half-wave reduction potential of ERed = -1.68 V for 

test compound 1 and ERed = -1.69 V for 2a (Scheme 2), which is in the same range as [Ir(ppy)2(dtb-

bpy)]PF6 (ERed Ir3+/Ir2+ = -1.51 V). Initial test reactions revealed the Ir complex is a superior 

photoredox catalyst in comparison to Ru(bpy)3Cl2•6H2O (ERed Ru2+/Ru+= -1.31 V) owing to the 

increased reduction potential.14 Appliying [Ir(ppy)2(dtb-bpy)]PF6 and using a combination of 

Hantzsch ester and Hünigs base as sacrificial donors, compound 2a yielded 92% of the 

corresponding deoxygenated compound 3a after 20 h, whereas only 68% could be obtained for 

1 (Table 1). The lower yield for substrate 1 is fully in agreement with the reported yield under 

electrochemical conditions (lit. 70%) and can be explained by only partial cleavage of both 

diphenyl moieties and the generation of the stable Ph2CHO2C.CO2
- anion species (Scheme 2).  

 

Table 1. Deoxygenation comparison of different esters 1 and 2a in the presence of various photoredox catalysts. 

 

Photoredox catalyst 

 

                  Compound yield [%]a 

          1                                                2a 

Ru(bpy)3Cl2 -                  9 

[Ir(ppy)2(dtb-bpy)]PF6        68           91 

aall yields were determined by GC – FID analysis with naphthalene as internal standard. All reactions were degassed 

and performed under an N2 atmosphere. 

 

Considering the moderate yield for test substrate 1 and the promising initial reaction for ester 

2a (Table 1), optimization experiments were carried out for 2a by variation of temperatures, 

catalyst loadings and potential hydrogen sources (Figure 2 and 3). Water/Hünig’s base as an 

alternative hydrogen source system compared to Hantzsch ester/Hünig’s base turned out to 

lead to faster deoxygenation processes. Deoxygenation using 10 equiv water was performed at 

ambient temperature and 60 °C. Both experiments gave the desired corresponding 

diphenylmethane 3a in high yields after shorter irradiation times compared to the reaction with 

Hantzsch ester. Moreover, using only 1 mol% of catalyst still resulted in 85% yield of 3a after 30 

min., being comparable to the profile obtained when 2.5 mol% of catalyst were employed. 
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Noteworthy, further decrease to 0.1 mol% still yielded 75% after slightly prolonged irradiation 

(90 min.), however, full conversion was not observed even after 20 h (Figure 2), pointing to a 

deactivation of the catalyst with time. 

 

 

Figure 2. Catalyst loading and temperature dependence for the visible light mediated deoxygenation of 2a with 

Hantzsch ester and water as hydrogen sources. Reaction conditions: ethyl oxalate ester 2a (0.1 mmol), Hünig’s base 

(2.0 equiv), [Ir(ppy)2(dtb-bpy)]PF6 (0.1 – 2.5 mol%), CH3CN (c = 0.1 M), T. All yields were determined by GC – FID 

analysis with naphthalene as internal standard. All reactions were degassed and performed under an N2 atmosphere. 

  

 

 

 

 

 

 

 

 

 

 



Chapter 3 Visible light photoredox catalyzed one-pot deoxygenation of alcohols       2015 

 

19 
 

Further experiments elucidated the need for utilizing higher temperatures (Figure 3). Leaving 

out Hantzsch ester or water as an additional hydrogen source resulted in a slower deoxygenation 

of 2a, especially at ambient temperature compared to 60 °C. However, addition of 1 equiv water 

and notably 10 equiv water was superior considering the reaction time and yield, whereas 100 

equiv water yielded only 12% and mainly hydrolysis of the starting material 2a was observed. 

iPrOH/Hünig’s base as a hydrogen source system at 60 °C did not have any impact on the rate of 

product formation compared to the reaction using exclusively Hünig’s base as hydrogen source 

(Figure 3).  

 

Figure 3. Temperature and additive equivalent dependence for the visible light mediated deoxygenation of 2a with 

water and iPrOH as hydrogen sources at 1 mol% catalyst loading. Reaction conditions: ethyl oxalate ester 2a (0.1 

mmol), Hünig’s base (2.0 equiv), [Ir(ppy)2(dtb-bpy)]PF6 (0.1 – 2.5 mol%), CH3CN (c = 0.1 M), T. All yields were 

determined by GC – FID analysis with naphthalene as internal standard. All reactions were degassed and performed 

under an N2 atmosphere. 
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Solvent analogy and control experiments for benzhydryl ethyl oxalate 2a were carried out. As 

expected, aprotic polar solvents, e.g. CH3CN and DMF (Table 3, entry 1 and 2) turned out to be 

superior for visible light mediated deoxygenation, whereas almost no conversion was observed 

for the less polar solvent CH2Cl2 (Table 3, entry 3). Control experiments revealed that the 

deoxygenation of 2a is indeed a photochemically induced process (Table 3, entry 4 and 5). When 

either photocatalyst (Table 3, entry 4) or the light source (Table 3, entry 5) were absent, no 

reaction was observed even for prolonged reaction times of up to 20 h. Leaving out Hünig’s base 

resulted in no conversion (Table 3, entry 6). Moreover, degassing can be omitted, which 

economizes time and effort, and appears surprisingly considering the literature known 

quenching process of the excited triplet state of the photoredox catalyst by oxygen. Even higher 

yield of 96% could be achieved for 3a without previous degassing of the reaction mixture (Table 

3, entry 7), which can be explained by the formation of OOH∙ radicals as hydrogen donors during 

the reaction in the presence of O2. Reduction of O2 via photocatalytic electron transfer gives O2
∙- 

radical anions which will be subsequent protonated by water to give OOH∙ radicals (see 3.6 

proposed mechanism).  

 

Table 3. Solvent dependence and control experiments of the deoxygenation reaction of compound 2aa. 

 

Entry Solvent, modification Yield [%]a 

1 none 85 

2 DMF 36 

3 CH2Cl2 3 

4 CH3CN, w/o photocatalyst 0b 

5 CH3CN, w/o light source 0b 

6 CH3CN, w/o Hünig’s base 0b 

7 CH3CN, not degassed 96 

aDetermined by GC – FID analysis using Naphthalene as internal standard. 0.3 mmol scale. Reactions were degassed 

by freeze – pump – thaw cycle (5x). breaction time 20 h. 
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3.4 Photoredox catalyzed deoxygenation of oxalate esters 

Initial deoxygenation (Table 4, entry 1-3) was performed under the aforementioned conditions 

using Hantzsch ester as additional hydrogen source. Both, an electron withdrawing ester 

containing compound 2b and an electron deficient heteroaromatic dibenzylic oxalate ester 2c 

were tested and furnished the respective deoxygenated products 3b and 3c in very good isolated 

yields (Table 4, entry 2 and 3). Variation to a mono-benzylic oxalate ester 3d gave acceptable 

yield of 66% for 3d (Table 4, entry 4). Having the newly optimized reaction conditions in hand 

using water as hydrogen source instead of Hantzsch ester (Table 3), different dibenzylic alcohol 

derivatives were investigated (Table 4, entry 4 - 12). Using 10 equiv of water yielded in 96% for 

the deoxygenation of diphenyl oxalate ester 2a. However, the amount of water had to be 

adapted to 1 equiv for the remaining dibenzylic-, monobenzylic ester and -carbonyl 

compounds (2e – 2l) in order to achieve good yields. Sterically demanding groups (Table 4, entry 

5), as well as aryl chlorides (Table 4, entry 6) were well tolerated and gave the corresponding 

deoxygenated products in high yields. Moreover, compound 2g containing an electron 

withdrawing p-nitro substituent yielded the corresponding deoxygenated product 3g in 48% 

(Table 4, entry 7). Modification to mono-benzylic phenylpropane ester 2h gave an acceptable 

yield of 75% for 3h (Table 4, entry 8). In addition, -carbonyl substituted benzylic ester, and 

especially acetylated derivative 2i gave excellent yield of methyl 2-phenylacetate 3i (Table 4, 

entry 9), whereas, the deoxygenated benzoin derivative 3j was isolated in moderate 57% after 

prolonged reaction time of 3 h (Table 4, entry 10), as already observed by Utley et al. for 

electrochemical deoxygenations. Interestingly, the substrate scope could be extended to non-

benzylic -carbonyl compounds 2k and 2l, and in particularly the conversion from (+)-diethyl 

tartrate to unnatural (+)-diethyl malate 3k on even larger scale is noteworthy (Table 4, entry 11 

and 12). 

Simple alkyl-substituted alcohols (primary, secondary and tertiary), however, did not show any 

conversion. 
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Table 4. Visible light mediated deoxygenation process of ethyl oxalate ester derivatives. 
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aIsolated yields on a 0.3 - 1.0 mmol scale. b10 equiv H2O. c5 mol% catalyst loading, Hantzsch ester. d2.5 mol% catalyst 

loading, Hantzsch ester. eGC-FID analysis using naphthalene as internal standard. f 1H NMR yield (5 mmol scale). 

R = (CO)2OEt 
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3.5 Visible light mediated deoxygenation of alcohols in one – pot via in situ generated 

oxalate esters 

Having established a visible light mediated deoxygenation process for isolated oxalate esters, a 

direct deoxygenation of benzylic and allylic alcohols in an one pot procedure via in situ 

generated esters as activating species, was performed. This approach is more ecologically 

worthwhile than a foregoing reaction step. Advantageously, solvent consumption, additional 

work up and purification steps, the associated labor time, as well as energy loss can be 

minimized. Therefore, large scale applications appear more economic and environmentally 

sustainable.  

Uniformly good yields after short reaction times were achieved in case of dibenzylic and allylic 

alcohols derivatives (Table 5). To examine a certain range of compounds with different 

electronic properties, benzylic alcohols with e.g., an electron deficient heteroaromatic system 

(Table 5, entry 2), chlorinated (Table 5, entry 3) and electron donating p-methoxy substituted 

aryls (Table 5, entry 4), as well as a rigid fluorenol compound (Table 5, entry 5), were investigated 

and well tolerated, giving the corresponding deoxygenated products in good yields after short 

reaction times (1 – 2 h) by filtration through a short plug of SiO2 gel.  

Moving to allylic alcohols resulted in good to very good yields (Table 5, entry 6 and 7). Assuming 

a possible 5-exo trig or 6-endo trig cyclization for -Jonone 4o after radical induction, exclusively 

deoxygenated product was observed. The deoxygenation process turns out to be faster 

compared to a competitive intramolecular cyclization (Table 5, entry 6). Furthermore, cinnamyl 

alcohol 4p resulted in a very good yield of 86% as determined by GC analysis. Surprisingly, 59% 

of the deoxygenated product was identified as the isomerized cis species, whereas only 17% 

trans configuration and 24% allylbenzene were detected as minor products (Table 5, entry 7). 

Addition of Pd/C under H2 atmosphere after complete alcohol deoxygenation accomplished a 

hydrogenation of the double bond as a third step in one pot in moderate 62% yield of 3h (Table 5, 

entry 7). 
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Table 5. Visible light mediated deoxygenation process of alcohols following a carbon – hydrogen bond formation in 

one-pot.

aIsolated yields on a 1.0 mmol scale. bDetermined by GC-FID with naphthalene as internal standard. cMixture of 

isomeric products (cis:trans:allybenzene = 59:17:24). dHydrogenation with Pd/C and H2 in a third step after 

deoxygenation. 
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Unlike aforementioned deoxygenation and corresponding carbon – hydrogen bond formation, 

benzylic alcohols with strong electron donating substituents induced carbon – carbon bond 

formation yielding dimerized products (Table 6, entry 1, 2 and 3). Thus, it can be assumed that 

the crucial electrophilic character and the stability of the radical is reduced, thereby a radical - 

radical recombination is favored.  

Although we acknowledged that the deoxygenation for simple alkyl-substituted alcohols was 

not successful, fluorene methanol 4t as a primary alcohol turned out to be an exception (Table 

6, entry 4). The formation of the product 3t could be possible explained by radical addition of 

the nucleophilic -aminoalkyl radical of the oxidized iPr2NEt species with the induced electron 

deficient alkene radical of the deoxygenated compound 4t.18-22  
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Table 6. Visible light mediated deoxygenation process of alcohols following a carbon – carbon bond formation in one-

pot.

aIsolated yields on a 1.0 mmol scale.  
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3.6 Proposed Mechanism 

 

We assumed that the mechanism of the deoxygenation process involves an electron uptake by 

the ester moiety from the reductively quenched Ir2+ species via Hünig’s base followed by several 

defragmentation steps und subsequent hydrogen abstraction from the generated iPr2NEt radical 

cation or Hantzsch ester as additional hydrogen source. Without further degassing of the 

reaction mixture, we assume that O2 can be reduced by a second excited species of the catalyst 

to the radical anion O2
∙-. This reactive species will be protonated in the presence of H2O to give 

∙OOH 9, which acts as an additional hydrogen donor. Aforementioned GC-FID kinetic 

measurements (Figure 2 and 3) indicate an electron density shift towards the carbon – oxygen 

bond which has to be cleaved, by generating a neutral radical species 6a via protonation of 5a 

in the presence of water. Therefore, faster defragmentation is achieved. Emerging radical 

species were characterized by trapping with TEMPO (2,2,6,6-Tetramethylpiperdinyloxyl) to give 

7a. In presence of 10 equiv D2O exclusively deuterated diphenylmethane 8a was observed 

(Scheme 3). In contrast to a photochemical induced deoxygenation, alternatively a simple Ir-

catalyzed hydrogenation in the presence of H2 would be conceivable. However, this reaction 

pathway could be eliminated, as exclusion of light and performance under the same reaction 

conditions yielded no deoxygenation product, even after three days of reaction time. 

Scheme 3. Proposed visible light mediated mechanism with and without additional water. Trapping of the radical 

species with TEMPO and exclusive hydrogen abstraction with D2O. 
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3.7 Conclusion 

In summary, a mild and environmentally friendly protocol for the deoxygenation of benzylic and 

allylic alcohols, as well as -carbonyl compounds was established under visible light photoredox 

catalysis. Alcohol activation was ensured by esterification with the suitable, commercially 

inexpensive ethyl oxalyl chloride, which is manufactured industrially on large scales. Moreover, 

in situ activation of alcohols and exclusion of inert conditions is possible, and therefore facile 

reaction setup and performance is ensured. As a result of technical feasibility, deoxygenation of 

alcohols by activation with oxalate auxiliaries could become attractive for large scale 

applications.  
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3.8 Experimental part 

Experimental details, characterization data and spectra 

 

3.8.1 General information 

 

All chemicals were used as received or purified according to Purification of Common Laboratory 

Chemicals. Glassware was dried in an oven at 110 °C or flame dried and cooled under a dry 

atmosphere prior to use. All reactions were performed using Schlenk techniques. Blue light 

irradiation in batch processes was performed using a CREE XLamp XP-E D5-15 LED (λ = 450-465 

nm). Analytical thin layer chromatography was performed on Merck TLC aluminum sheets silica 

gel 60 F 254. Reactions were monitored by TLC and visualized by a short wave UV lamp and 

stained with a solution of potassium permanganate, p-anisaldehyde, or Seebach’s stain. Column 

flash chromatography was performed using Merck flash silica gel 60 (0.040-0.063 mm). 

Automatic column purification was conducted by AnaLogix IntelliFlash 310 using Merck flash 

silica gel 60 (0.040-0.063 mm). The melting points were measured on an automated melting 

point system (MPA 100) with digital image processing technology by Stanford Research Systems. 

ATR-IR spectroscopy was carried out on a Biorad Excalibur FTS 3000 spectrometer, equipped 

with a Specac Golden Gate Diamond Single Reflection ATR-System. NMR spectra were recorded 

on Bruker Avance 300 and Bruker Avance 400 spectrometers. Chemical shifts for 1H NMR were 

reported as δ, parts per million, relative to the signal of CHCl3 at 7.26 ppm. Chemical shifts for 

13C NMR were reported as δ, parts per million, relative to the center line signal of the CDCl3 

triplet at 77 ppm. Coupling constants J are given in Hertz (Hz). The following notations indicate 

the multiplicity of the signals: s = singlet, bs = broad singlet, d = doublet, t = triplet, q = quartet, 

p = quintet, sept = septet, and m = multiplet. Mass spectra were recorded at the Central 

Analytical Laboratory at the Department of Chemistry of the University of Regensburg on a 

Varian MAT 311A, Finnigan MAT 95, Thermoquest Finnigan TSQ 7000 or Agilent Technologies 

6540 UHD Accurate-Mass Q-TOF LC/MS. Gas chromatographic analyses were performed on a 

Fisons Instruments gas chromatograph equipped with a capillary column (30 m × 250 µm × 0.25 

µm) and a flame ionization detector. Irradiation was performed with Cree XLamp XP-E LEDs 

(royal blue). Yields reported are referred to the isolated compounds unless otherwise stated. 
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3.8.2 Synthesis of alcohols 

 

General procedure GPI for alcohol preparation according to reported procedure23  

A 100 mL round bottom flask equipped with a magnetic stir bar was charged with ketone (20.0 

mmol, 1.00 equiv), dissolved in MeOH (50 mL, 0.40 M) and treated with NaBH4 (1.89 g, 50.0 

mmol, 2.50 equiv) was added in portions. Water was added after the reaction completed (as 

judged by TLC) and solvent evaporated under reduced pressure. The obtained residue was 

dissolved in Et2O (50 mL), phases were separated, the aqueous layer was extracted with Et2O (3 

x 50 mL), and the combined organic layers were dried over Na2SO4 and evaporated under 

reduced pressure. The obtained oil was purified by flash column chromatography. 

 

 

Phenyl(pyridin-4-yl)methanol (4c)23,24 

Following general procedure GPI using phenyl(pyridin-4-yl)methanone (3.66 g, 20 mmol, 1.00 

equiv) gave 3.70 g (20.0 mmol, quant.) of a white solid without further purification. 1H NMR (300 

MHz, CDCl3): 8.49 (dd, J = 4.5, 1.6 Hz, 2H), 7.39 – 7.28 (m, 7H), 5.80 (s, 1H), 3.06 (bs, 1H). 

 

 

(4-Nitrophenyl)(phenyl)methanol (4g)23,25 

Following general procedure GPI using (4-nitrophenyl)(phenyl)methanone (2.27 g, 10.0 mmol, 

1.00 equiv), MeOH (60 mL) and CH3CN (20 mL), NaBH4 (946 mg, 25.0 mmol, 2.5 equiv) gave 

2.22 g (9.68 mmol, 97%) of an orange oil after column purification (hexanes / EtOAc 3:1). 1H 

NMR (300 MHz, CDCl3): 8.23 – 8.16 (m, 2H), 7.61 – 7.54 (m, 2H), 7.41 – 7.28 (m, 5H), 5.93 (s, 1H), 

2.37 (s, 1H). 
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(4-methoxyphenyl)(phenyl)methanol (4m)23,26 

Following general procedure GPI using (4-methoxyphenyl)(phenyl)methanone (4.24 g, 20.0 

mmol, 1.00 equiv), MeOH (30 mL, 0.67 M), NaBH4 (1.89 g, 50.0 mmol, 2.50 equiv) gave 4.01 g 

(18.7 mmol, 94%) of a white solid without further purification. 1H NMR (400 MHz, CDCl3): 7.42 – 

7.33 (m, 4H), 7.33 – 7.25 (m, 3H), 6.88 (d, J = 8.4 Hz, 2H), 5.75 (s, 1H), 3.79 (s, 3H), 2.77 (bs, 1H). 

 

 

(E)-4-(2,6,6-trimethylcyclohex-2-en-1-yl)but-3-en-2-ol (4o)23,27 

Following general procedure GPI using (E)-4-(2,6,6-trimethylcyclohex-2-en-1-yl)but-3-en-2-one 

(3.85 g, 20.0 mmol, 1.00 equiv), MeOH (50 mL, 0.4 M), NaBH4 (2.27 g, 60.0 mmol, 3.00 equiv) 

gave 3.79 g (19.5 mmol, 98%) of a colorless oil without further purification. 1H NMR (300 MHz, 

CDCl3): 5.57 – 5.34 (m, 3H), 4.30 (p, J = 6.3 Hz, 1H), 2.07 (d, J = 8.7 Hz, 1H), 2.04 – 1.94 (m, 2H), 

1.61 – 1.54 (m, 3H), 1.48 – 1.36 (m, 2H), 1.27 (dd, J = 6.3, 1.0 Hz, 3H), 1.16 (dt, J = 12.2, 4.7 Hz, 

1H), 0.88 (d, J = 1.5 Hz, 3H), 0.81 (d, J = 6.7 Hz, 3H). 

 

 

Bis(4-chlorophenyl)methanol (4f)28 

A 25 mL Schlenk flask equipped with a magnetic stir bar was charged with LiAlH4 (75.6 mg, 1.99 

mmol, 0.50 equiv), dry THF (10 mL) under N2 atmosphere and cooled to 0 °C. Bis(4-

chlorophenyl)methanone (1.00 g, 3.98 mmol, 1.00 equiv) was added in portions. The reaction 

mixture was allowed to warm up to 25 °C, stirred for an additional hour and quenched with sat. 

NH4Cl and H2O. The aqueous layer was extracted with Et2O (3 x 30 mL), and the organic layers 

were dried over Na2SO4 and evaporated under reduced pressure gave 955 mg (3.77 mmol, 95%) 

of a white solid without further purification. 1H NMR (300 MHz, CDCl3): 7.34 – 7.21 (m, 8H), 5.74 

(s, 1H), 2.36 (bs, 1H). 
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3.8.3 Synthesis of Dibenzhydryl oxalate 

 

 
 

Dibenzhydryl oxalate (1) 

Diphenylmethanol (4.27 g, 23.16 mmol, 2.0 equiv.) and iPr2NEt (4.33 mL, 3.29 g, 25.47 mmol, 1.1 

equiv.) were dissolved in DMF (50 mL). Oxalyl chloride (1.47 g, 11.58 mmol, 1.0 equiv.) was 

added slowly at 0 °C. After complete esterification (as judged by TLC) solvent was removed by 

distillation under reduced pressure. Recrystallization with Et2O overnight in the fridge yielded 

white crystals in 83%. 1H NMR (400 MHz, CDCl3): 7.44 – 7.27 (m, 10H), 6.99 (s, 1H); 13C NMR (101 

MHz, CDCl3): 156.90, 138.90, 128.81, 128.56, 127.31, 79.80. 
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3.8.4 Synthesis of ethyl oxalate esters3 

General procedure for the synthesis of oxalate esters GPII 

A 500 mL round bottom flask equipped with a magnetic stir bar was charged with an alcohol 

(5.00 mmol, 1.00 equiv), iPr2NEt (935 L, 711 mg, 5.50 mmol, 1.10 equiv), and dry CH2Cl2 (50 mL, 

0.10 M). The mixture was cooled to 0 °C and ethyl 2-chloro-2-oxoacetate (616 L, 751 mg, 5.50 

mmol, 1.10 equiv) was added dropwise. The reaction mixture was allowed to warm to 25 °C, 

quenched with H2O, and evaporated under reduced pressure. Et2O (25 mL) was added to the 

obtained residue, phases were separated, the organic layer was extracted with 1% HCl (10 mL), 

sat. NaHCO3 (10 mL), and water (2 x 10 mL). The organic layer was dried over Na2SO4 and 

evaporated under reduced pressure. The obtained residue was purified by flash column 

chromatography. 

 

 

Benzhydryl ethyl oxalate (2a) 

Following general procedure GPII using diphenylmethanol (4.61 g, 25.0 mmol, 1.00 equiv), 

iPr2NEt (9.36 mL, 7.11 mg, 55.0 mmol, 2.2 equiv), ethyl 2-chloro-2-oxoacetate (6.16 mL, 7.51 mg, 

55.0 mmol, 2.20 equiv) and dry CH2Cl2 (500 mL, 0.10 M) gave 7.01 g (24.7 mmol, 99%) of a 

colorless oil after flash column purification (hexanes / EtOAc, 5:1). Rf (hexanes / EtOAc, 3:1): 

0.65; IR (neat): 2987, 1741, 1496, 1453, 1373, 1301, 1152, 1015, 954, 862, 756, 696, 603, 544, 

425 cm-1; 1H NMR (400 MHz, CDCl3): 7.43 – 7.28 (m, 10H), 6.99 (s, 1H), 4.36 (q, J = 7.1 Hz, 2H), 

1.38 (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3): 157.88, 157.20, 138.89, 128.80, 128.54, 

127.38, 79.62, 63.35, 14.09; HRMS (EI) m/z calculated for C17H16NaO4 ([M+Na+) 307.0941, found 

307.0947. 
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(4-(ethoxycarbonyl)phenyl)(phenyl)methyl ethyl oxalate (2b) 

Following general procedure GPII using ethyl 4-(hydroxy(phenyl)methyl)benzoate29 (500 mg, 

1.95 mmol, 1.00 equiv), iPr2NEt (365 L, 277 mg, 2.15 mmol, 1.10 equiv), ethyl 2-chloro-2-

oxoacetate (240 L, 293 mg, 2.15 mmol, 1.10 equiv), and dry THF (10 mL) gave 646 mg (1.81 

mmol, 93%) of a colorless oil after flash column purification (hexanes / EtOAc, 7:1). Rf (hexanes 

/ EtOAc, 3:1 ): 0.67; Ir (neat): 2983, 1767, 1744, 1714, 1613, 1455, 1415, 1368, 1273, 1154, 1102, 

1020, 957, 860, 759, 697, 618, 546, 407 cm-1; 1H NMR (300 MHz, CDCl3): 8.07 – 8.01 (m, 2H), 7.47 

(d, J = 8.2 Hz, 2H), 7.43 – 7.28 (m, 5H), 7.00 (s, 1H), 4.37 (qd, J = 7.1, 1.1 Hz, 4H), 1.38 (td, J = 7.1, 

2.0 Hz, 6H); 13C NMR (75 MHz, CDCl3): 166.23, 157.65, 157.04, 143.55, 138.22, 130.61, 130.07, 

128.95, 128.90, 127.55, 127.01, 79.09, 63.49, 61.23, 14.45, 14.08; HRMS (EI) m/z calculated for 

C20H21O6 ([M+H)]+ 357.1333, found 357.1322. 

 

 

Ethyl (phenyl(pyridin-4-yl)methyl) oxalate (2c) 

Following general the procedure GPII using phenyl(pyridin-4-yl)methanol 4c (1.50 g, 8.10 mmol, 

1.00 equiv.), iPr2NEt (997 µL, 1.20 g, 8.91 mmol, 1.10 equiv), ethyl 2-chloro-2-oxoacetate (1.51 

mL, 1.15 g, 8.91 mmol, 1.10 equiv), and dry THF (25 mL, 0.32 M) gave 1.84 g (6.46 mmol, 80%) 

of an orange oil after flash column purification (hexanes / EtOAc, 5:1). Rf (hexanes / EtOAc, 3:1): 

0.18; IR (neat): 2985, 1729, 1634, 1598, 1494, 1450, 1408, 1280, 1198, 1056, 1023, 862, 787, 

747, 699, 647, 422 cm-1; 1H NMR (300 MHz, CDCl3): 8.61 (dd, J = 4.5, 1.6 Hz, 2H), 7.41 – 7.33 (m, 

5H), 7.32 – 7.28 (m, 2H), 6.91 (s, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H); 13C NMR 

(101 MHz, CDCl3): 157.46, 156.91, 150.33, 147.53, 137.37, 129.30, 129.10, 127.82, 121.45, 78.09, 

77.48, 77.16, 76.84, 63.58, 14.06; HRMS (EI) m/z calculated for C16H16NO4 ([M+H]+) 286.1074, 

found 286.1079. 
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Ethyl (4-oxo-1-phenyl-4-(pyrrolidin-1-yl)butyl) oxalate (2d) 

Following general procedure GPII using 4-hydroxy-4-phenyl-1-(pyrrolidin-1-yl)butan-1-one30 

(400 mg, 1.71 mmol, 1.00 equiv), iPr2NEt (371 L, 244 mg, 1.89 mmol, 1.10 equiv), ethyl 2-chloro-

2-oxoacetate (211 L, 258 g, 1.89 mmol, 1.10 equiv) and dry THF (17 mL, 0.1 M) gave 570 g (1.71 

mmol, 100%) of an slightly orange oil without further purification. Rf (hexanes / EtOAc, 3:1 ): 

0.38; IR (neat): 2982, 2470, 1770, 1728, 1639, 1455, 1329, 1299, 1174, 1141, 1020, 985, 940, 

891, 755, 699, 530, 480 cm-1; 1H NMR (400 MHz, CDCl3): 7.45 – 7.27 (m, 5H), 6.03 – 5.91 (m, 1H), 

4.33 (q, J = 7.1 Hz, 2H), 3.44 (t, J = 6.8 Hz, 2H), 3.31 (t, J = 6.7 Hz, 2H), 2.44 – 2.21 (m, 4H), 1.88 

(dp, J = 26.4, 6.7 Hz, 4H), 1.36 (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3): 170.03, 158.04, 

157.48, 138.82, 128.77, 128.64, 126.76, 78.75, 63.23, 46.60, 45.83, 31.19, 30.36, 26.18, 24.50, 

14.07; HRMS (EI) m/z calculated for C15H22NaO4 ([M+Na])+ 289.1410, found 289.1414. 

 

 

Ethyl (mesityl(phenyl)methyl)oxalate (2e) 

Following general procedure GPII using mesityl(phenyl)methanol (1.08 g, 4.76 mmol, 1.00 

equiv), iPr2NEt (891 µL, 677 mg, 5.24 mmol, 1.10 equiv), ethyl 2-chloro-2-oxoacetate (586 µL, 

715 mg, 5.24 mmol, 1.10 equiv) and dry THF (25 mL) gave 1.13 g (3.47 mmol, 73%) of a white 

solid after flash column purification (hexanes / EtOAc, 20:1). Rf (hexanes / EtOAc, 7:1): 0.60; 

m.p.: 98 °C; Ir (neat): 2982, 2927, 1760, 1742, 1610, 1448, 1370, 1320, 1291, 1187, 1112, 1017, 

946, 852, 820, 775, 732, 700, 641, 603, 497 cm-1; 1H NMR (400 MHz, CDCl3): 7.45 (s, 1H), 7.36 – 

7.27 (m, 3H), 7.18 (dd, J = 10.9, 4.2 Hz, 2H), 6.87 (s, 2H), 4.37 (q, J = 7.1 Hz, 2H), 2.30 (d, J = 11.1 

Hz, 9H), 1.38 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, CDCl3): 157.86, 157.51, 138.59, 138.31, 138.31, 

138.05, 131.64, 130.08, 128.59, 127.66, 125.81, 75.77, 63.27, 21.10, 20.58, 14.08; HRMS (EI) m/z 

calculated for C20H22NaO4 ([M+Na]+) 349.1410, found 349.1413. 
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Bis(4-chlorophenyl)methyl ethyl oxalate (2f) 

Following general procedure GPII using bis(4-chlorophenyl)methanol 4f (1.27 g, 5.00 mmol, 1.00 

equiv), iPr2NEt (616 µL, 751 mg, 5.50 mmol, 1.10 equiv), ethyl 2-chloro-2-oxoacetate (935 µL, 

711 mg, 5.00 mmol, 1.10 equiv) and dry CH2Cl2 (50 mL, 0.1 M) gave 1.53 g (4.35 mmol, 87%) of 

a colorless oil after flash column purification (hexanes / EtOAc, 5:1). Rf (hexanes / EtOAc, 3:1) 

0.80; IR (neat): 2985, 1767, 1742, 1596, 1491, 1412, 1296, 1153, 1089, 1014, 960, 859, 812, 771, 

731, 677, 520, 441 cm-1; 1H NMR (400 MHz, CDCl3): 7.36-7.28 (m, 8 H), 6.90 (s, 1 H), 4.37 (q, J = 

7.1, 2 H), 1.38 (t, J = 7.1, 3 H); 13C NMR (101 MHz, CDCl3): 157.53, 156.95, 136.91, 134.79, 129.15, 

128.72, 128.00, 78.15, 63.56, 14.07.; HRMS (EI) m/z calculated for C17H14Cl2NaO4 ([M+Na]+) 

375.0161, found 375.0163. 

 

 

Ethyl ((4-nitrophenyl)(phenyl)methyl) oxalate (2g) 

Following general procedure GPII using (4-nitrophenyl)(phenyl)methanol 4g (1.15 g, 5.00 mmol, 

1.00 equiv), iPr2NEt (935 µL, 711 mg, 5.50 mmol, 1.10 equiv), ethyl 2-chloro-2-oxoacetate (616 

µL, 751 mg, 5.50 mmol, 1.10 equiv.) and dry THF (25 mL, 0.2 M) gave 1.64 g (4.97 mmol, 99%) 

of a slightly yellow oil without any further purification. Rf (hexanes / EtOAc, 3:1): 0.62; IR (neat): 

2988, 2206, 1763, 1743, 1608, 1520, 1455, 1347, 1301, 1152, 1110, 1015, 965, 845, 743, 699, 

617 cm-1; 1H NMR (300 MHz, CDCl3): 8.25 – 8.19 (m, 2H), 7.62 – 7.55 (m, 2H), 7.42 – 7.33 (m, 5H), 

7.02 (s, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, CDCl3): 157.88, 

157.33, 148.27, 146.24, 137.86, 129.60, 129.48, 128.19, 127.86, 124.37, 78.46, 63.57, 13.66; 

HRMS (EI) m/z calculated for C17H19N2O6 ([M+NH4]+) 347.1238, found 347.1240. 
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Ethyl (1-phenylpropyl) oxalate (2h) 

Following general procedure GPII using 1-phenylpropan-1-ol (1.00 g, 7.34 mmol, 1.00 equiv), 

iPr2NEt (1.37 mL, 1.04 g, 8.08 mmol, 1.10 equiv), ethyl 2-chloro-2-oxoacetate (904 L, 1.10 g, 

8.08 mmol, 1.10 equiv) and dry THF (25 mL, 0.3 M) gave 1.28 g (5.42 mmol, 74%) of a colorless 

oil after flash column purification (hexanes / EtOAc, 5:1). Rf (hexanes / EtOAc, 5:1 ): 0.56; 1H NMR 

(300 MHz, CDCl3): 7.41 – 7.27 (m, 5H), 5.79 (t, 1H), 4.34 (q, J = 7.1 Hz, 2H), 2.19 – 1.84 (m, 2H), 

1.37 (t, J = 7.1 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H); 13C NMR (75 MHz, CDCl3): 158.10, 157.55, 138.96, 

128.69, 128.55, 126.92, 80.71, 63.21, 29.15, 14.07, 10.01; HRMS (EI) m/z calculated for 

C13H16NaO4 ([M+Na])+ 259.0941, found 259.0943. 

 

 

Ethyl (2-methoxy-2-oxo-1-phenylethyl) oxalate (2i) 

Following general procedure GPII using methyl 2-hydroxy-2-phenylacetate (1.66 g, 10.0 mmol, 

1.00 equiv), iPr2NEt (3.74 mL, 2.84 g, 22.0 mmol, 2.20 equiv), ethyl 2-chloro-2-oxoacetate (2.46 

mL, 3.00 g, 22.0 mmol, 2.20 equiv) and dry CH2Cl2 (100 mL, 0.1 M) gave 2.29 g (7.33 mmol, 73%) 

of a colorless oil after automatic column purification on SiO2 (hexanes / EtOAc, 100:0 - 0:100). Rf 

(hexanes / EtOAc, 3:1): 0.52; IR (neat): 2986, 2959, 1770, 1742, 1438, 1315, 1272, 1220, 1150, 

1011, 963, 859, 734, 696, 527 cm-1; 1H NMR (300 MHz, CDCl3): 7.54 – 7.46 (m, 2H), 7.45 – 7.39 

(m, 3H), 6.04 (s, J = 4.8 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 3.76 (s, J = 2.2 Hz, 3H), 1.39 (t, J = 7.2 Hz, 

3H); 13C NMR (75 MHz, CDCl3): 168.07, 157.17, 157.04, 132.59, 129.87, 129.10, 127.91, 76.30, 

63.65, 53.14, 14.06; HRMS (EI) m/z calculated for C18H17O5 ([M+H]+) 313.1071, found 313.1074. 
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Ethyl (2-oxo-1,2-diphenylethyl) oxalate (2j)31 

Following general procedure GPII using methyl 2-hydroxy-2-phenylacetate (1.06 g, 5.00 mmol, 

1.00 equiv), iPr2NEt (935 µL, 710 mg, 5.50 mmol, 1.10 equiv), ethyl 2-chloro-2-oxoacetate (615 

µL, 750 mg, 5.00 mmol, 1.10 equiv), and dry CH2Cl2 (50 mL, 0.1 M) gave 1.56 g (5.00 mmol, 100%) 

of a white solid after filtration through a short plug of flash silica gel (hexanes/ EtOAc, 2:1). Rf 

(hexanes / EtOAc, 5:1 ): 0.34; m.p.: 86 °C, IR (neat): 2984, 1757, 1694, 1596, 1496, 1449, 1374, 

1325, 1257, 1230, 1199, 1115, 1011, 938, 858, 761, 697, 597, 534 cm-1; 1H NMR (400 MHz, 

CDCl3): 7.96 – 7.89 (m, 2H), 7.56 – 7.35 (m, 8H), 6.94 (s, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 

7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3): 191.89, 157.35, 157.31, 134.29, 133.90, 132.52, 129.95, 

129.44, 129.06, 129.03, 128.87, 79.93, 77.48, 77.16, 76.84, 63.52, 14.05; HRMS (EI) m/z 

calculated for C18H17O5 ([M+H]+) 313.1071, found 313.1075. 

 

 

(2R,3R)-diethyl 2-(2-ethoxy-2-oxoacetoxy)-3-hydroxysuccinate (2k) 

Following general procedure GPII using (2R,3R)-diethyl 2,3-dihydroxysuccinate (10.31 g, 50.0 

mmol, 1.00 equiv), iPr2NEt (9.35 mL, 7.11 g, 55.0 mmol, 1.10 equiv), ethyl 2-chloro-2-oxoacetate 

(6.16 mL, 7.51 mg, 55.0 mmol, 1.10 equiv) and dry CH2Cl2 (500 mL, 0.1 M) gave 7.77 g (25.4 

mmol, 51%) of a colorless oil after flash column purification (hexanes / EtOAc, 5:1 - 2:1). Rf 

(hexanes / EtOAc, 2:1): 0.49; IR (neat): 3497, 2986, 1740, 1470, 1449, 1371, 1298, 1261, 1173, 

1153, 1055, 1012, 932, 859, 764, 703 cm-1; 1H NMR (400 MHz, CDCl3): 5.54 (d, J = 2.3 Hz, 1H), 

4.81 (dd, J = 7.1, 2.1 Hz, 1H), 4.38 – 4.25 (m, 6H), 3.29 (d, J = 7.4 Hz, 1H), 1.36 (t, J = 7.1 Hz, 3H), 

1.28 (dd, J = 14.0, 7.1 Hz, 6H); 13C NMR (101 MHz, CDCl3): 170.12, 165.31, 156.80, 156.74, 74.96, 

70.45, 63.62, 62.96, 62.74, 14.17, 14.14, 13.98; HRMS (EI) m/z calculated for C12H19O9 ([M+H]+) 

307.1024, found 307.1020. 
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O,O'-((2R,3R)-1,4-diethoxy-1,4-dioxobutane-2,3-diyl) diethyl dioxalate (2l) 

Following general procedure GPII using (2R,3R)-diethyl 2,3-dihydroxysuccinate (10.31 g, 50.0 

mmol, 1.00 equiv), iPr2NEt (9.35 mL, 7.11 g, 55.0 mmol, 1.10 equiv), ethyl 2-chloro-2-oxoacetate 

(6.16 mL, 7.51 mg, 55.0 mmol, 1.10 equiv) and dry CH2Cl2 (500 mL, 0.1 M) gave 2.23 g (5.49 

mmol, 11%) of a colorless oil after flash column purification (hexanes / EtOAc, 5:1 - 2:1). Rf 

(hexanes / EtOAc, 2:1): 0.70; IR (neat): 2988, 2951, 1744, 1470, 1372, 1302, 1272, 1212, 1143, 

1049, 1011, 858, 762, 701 cm-1; 1H NMR (300 MHz, CDCl3): 5.88 (s, 2H), 4.37 (q, J = 7.1 Hz, 4H), 

4.32 – 4.21 (m, 4H), 1.37 (t, J = 7.1 Hz, 6H), 1.27 (t, J = 7.1 Hz, 6H).; 13C NMR (75 MHz, CDCl3): 

164.16, 156.74, 156.59, 72.25, 63.71, 63.15, 14.10, 13.99; HRMS (EI) m/z calculated for C16H23O12 

([M+H]+) 407.1184, found 407.1185. 

 

 

5-(benzyloxy)pentyl ethyl oxalate (2u) 

Following general procedure GPII using 5-(benzyloxy)pentan-1-ol32 (583 mg, 3.00 mmol, 1.00 

equiv), iPr2NEt (561 L, 427 mg, 3.30 mmol, 1.10 equiv), ethyl 2-chloro-2-oxoacetate (369 L, 

451 mg, 3.30 mmol, 1.10 equiv) and dry THF (25 mL, 0.12 M) gave 884 mg (3.00 mmol, 100%) of 

a slightly yellowish oil without further purification. Rf (hexanes / EtOAc, 3:1 ): 0.69. IR (neat): 

2939, 2862, 1741, 1636, 1454, 1363, 1313, 1174, 1098, 1025, 911, 733, 698, 612, 460 cm-1; 1H 

NMR (400 MHz, CDCl3): 7.37 – 7.26 (m, 5H), 4.50 (s, 2H), 4.35 (q, J = 7.1 Hz, 2H), 4.29 (t, J = 6.7 

Hz, 2H), 3.48 (t, J = 6.4 Hz, 2H), 1.81 – 1.71 (m, 2H), 1.70 – 1.62 (m, 2H), 1.54 – 1.43 (m, 2H), 1.37 

(t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3): 158.15, 158.03, 138.67, 128.51, 127.76, 127.68, 

73.09, 70.09, 67.15, 63.24, 29.43, 28.25, 22.66, 14.06. HRMS (EI) m/z calculated for C16H23O5 

([M+H]+) 295.1540, found 295.1541. 
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(3r,5r,7r)-adamantan-1-ylmethyl ethyl oxalate (2v) 

Following the general procedure GPII using (3r,5r,7r)-adamantan-1-ylmethanol (1.66 g, 10.0 

mmol, 1.00 equiv), 4-DMAP (122 mg, 100 mol, 0.100 equiv), iPr2NEt (3.40 mL, 2.58 g, 20.0 

mmol, 2.00 equiv), ethyl 2-chloro-2-oxoacetate (2.24 mL, 2.73 g, 20.0 mmol, 2.00 equiv), and 

dry CH2Cl2 (50 mL, 0.2 M) gave 2.48 g (9.32 mmol, 93%) of a white solid after flash column 

purification (hexanes / EtOAc, 5:1). Rf (hexanes / EtOAc, 5:1): 0.64; m.p.: 47 °C; IR (neat): 2904, 

2853, 1759, 1731, 1453, 1401, 1326, 1274, 1172, 1111, 1016, 962, 914, 866, 804, 592 cm-1;1H 

NMR (400 MHz, CDCl3): 4.34 (q, J = 7.1 Hz, 2H), 3.87 (s, 2H), 1.99 (s, 3H), 1.68 (dd, J = 30.2, 11.8 

Hz, 6H), 1.56 (d, J = 2.5 Hz, 6H), 1.37 (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3): 158.41, 158.14, 

76.27, 63.08, 39.12, 36.91, 33.50, 28.03, 14.05; HRMS (EI) m/z calculated for C15H22NaO4 

([M+Na]+) 289.1410, found 289.1414. 

 

 

(3s,5s,7s)-adamantan-1-yl ethyl oxalate (2w) 

Following general procedure GPII using (3s,5s,7s)-adamantan-1-ol (1.52 g, 10.0 mmol, 1.00 

equiv), iPr2NEt (5.61 mL, 4.26 g, 33.0 mmol, 3.30 equiv), ethyl 2-chloro-2-oxoacetate (3.69 mL, 

4.51 g, 33.0 mmol, 3.30 equiv), and dry CH2Cl2 (100 mL, 0.1 M) gave 0.85 g (3.35 mmol, 34%) of 

a white solid after automatic column purification on SiO2 (hexanes / EtOAc, 100:0 - 0:100). Rf 

(hexanes / EtOAc, 3:1): 0.42; m.p.: 32 °C; IR (neat): 2911, 2854, 1761, 1734, 1457, 1370, 1330, 

1299, 1176, 1155, 1104, 1045, 1017, 964, 920, 876, 822, 788, 556, 445 cm-1; 1H NMR (400 MHz, 

CDCl3): 4.31 (q, J = 7.1 Hz, 2H), 2.20 (d, J = 6.1 Hz, 9H), 1.73 – 1.63 (m, 6H), 1.36 (t, J = 7.1 Hz, 3H); 

13C NMR (101 MHz, CDCl3): 158.82, 156.86, 85.07, 62.88, 41.06, 36.09, 31.10, 14.08; HRMS (EI) 

m/z calculated for C14H20NaO4 ([M+Na])+ 276.1288, found 276.1291. 
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3.8.5 General procedures for photoreactions GPIII 

 

a. Procedure for the deoxygenation of dibenzhydryl oxalate (1) 

A Schlenk tube equipped with a magnetic stir bar was charged with dibenzhydryl oxalate 1 (55.5 

mg, 0.13 mmol, 1.00 equiv.) and [Ir(ppy)2(dtb-bpy)](PF6) (3.00 mg, 4.00 µmol, 2.50 mol%), 

Hantzsch ester (36.5 mg, 0.140 mmol, 1.10 equiv.), iPr2NEt (44.2 µL, 0.260 mmol, 2.00 equiv.), 

naphthalene (33.3 mg 0.260 mmol, 2.00 equiv.) as internal standard, dissolved in CH3CN and 

sealed with a screw-cap. The reaction mixture was degassed by freeze-pump-thaw (5x) and the 

screw-cap was replaced with a Teflon sealed inlet for a glass rod, through which irradiation with 

a 455 nm high power LED took place from above while the reaction was magnetically stirred and 

heated at 60 °C in an aluminum block from below. Afterwards the reaction mixture was 

evaporated under reduced pressure and the residue was purified by filtration through a short 

plug of flash silica gel with a mixture of hexanes and ethyl acetate to give 68% GC – FID yield 

using naphthalene as internal standard. 

 

b. General procedure for the deoxygenations of oxalate esters with H2O as additive GPIV. 

A Schlenk tube equipped with a magnetic stir bar was charged with oxalate ester (1.00 mmol, 

1.00 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 10.0 µmol, 1.00 mol%), H2O (18.0 L, 18.0 mg, 

1.00 mmol, 1.00 equiv), iPr2NEt (340 µL, 259 mg, 2.00 mmol, 2.00 equiv), dissolved in CH3CN 

(10.0 mL, 0.1 M) and sealed with a Teflon inlet for a glass rod, through which irradiation with a 

455 nm high power LED took place from above while the reaction was magnetically stirred and 

heated at 60 °C in an aluminum block from below. Afterwards the reaction mixture was 

evaporated under reduced pressure and the residue was purified by filtration through a short 

plug of flash silica gel with a mixture of hexanes and ethyl acetate. 

 

c. General procedure for the deoxygenations of oxalate esters with Hantzsch ester as additive 

GPV. 

A Schlenk tube equipped with a magnetic stir bar was charged with oxalate ester (1.00 mmol, 

1.00 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (22.9 mg, 10.0 µmol, 2.50 mol%) and Hantzsch ester (279 

mg, 1.10 mmol, 1.10 equiv). CH3CN (10.0 mL, 0.1 M) and iPr2NEt (340 µL, 259 mg, 2.00 mmol, 

2.00 equiv) was added. The reaction mixture was degassed by freeze-pump-thaw (5x) and the 
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screw-cap was replaced with a Teflon sealed inlet for a glass rod, through which irradiation with 

a 455 nm high power LED took place from above while the reaction was magnetically stirred and 

heated at 60 °C in an Aluminum block from below. Afterwards the reaction mixture was 

evaporated under reduced pressure and the residue was purified by filtration through a short 

plug of flash silica gel with a mixture of hexanes and ethyl acetate.  

 

 

Diphenylmethane (3a)33,34 

a. Following general procedure GPIV using benzhydryl ethyl oxalate 2a (284 mg, 1.00 mmol, 

1.00 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 10.0 µmol, 1.00 mol%), H2O (180 L, 180 mg, 

10.0 mmol, 10.0 equiv), iPr2NEt (340 µL, 258 mg, 2.00 mmol, 2.00 equiv), and CH3CN (10 mL, 

0.1 M) gave 153 mg (910 mol, 91%) of a colorless oil after filtration through a short plug of 

flash silica gel with hexanes. 

b. Following general procedure GPV using benzhydryl ethyl oxalate 2a (284 mg, 1.00 mmol, 

1.00 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (45.7 mg, 50.0 µmol, 5.00 mol%), Hantzsch ester (279 

mg, 1.10 mmol, 1.10 equiv), iPr2NEt (340 µL, 259 mg, 2.00 mmol, 2.00 equiv), and CH3CN (10 

mL, 0.1 M) gave 143 mg (850 mol, 85%) of a colorless oil after filtration through a short 

plug of flash silica gel with hexanes.  

1H NMR (400 MHz, CDCl3): 7.33 – 7.27 (m, 4H), 7.24 – 7.16 (m, 6H), 4.00 (s, 2H). 

 

 

Ethyl 4-benzylbenzoate (3b)33,34 

Following general procedure GPV using (4-(ethoxycarbonyl)phenyl)(phenyl)methyl ethyl oxalate 

2b (100 mg, 281 mol, 1.00 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (12.8 mg, 14.0 µmol, 5.00 mol%), 

Hantzsch ester (78.2 mg, 309 mol, 1.10 equiv), iPr2NEt (95.4 µL, 72.5 mg, 561 mol, 2.00 equiv), 

and CH3CN (2.8 mL, 0.1 M) gave 64.8 mg (270 mol, 96%) of a colorless oil after flash column 
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chromatography (hexanes / EtOAc 5:1). 1H NMR (300 MHz, CDCl3): 7.99 – 7.93 (m, 2H), 7.34 – 

7.14 (m, 7H), 4.36 (q, J = 7.1 Hz, 2H), 4.03 (s, 2H), 1.38 (t, J = 7.1 Hz, 3H). 

 

 

4-benzylpyridine (3c)35 

Following general procedure GPV using ethyl (phenyl(pyridin-4-yl)methyl) oxalate 2c (100 mg, 

351 mol, 1.00 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (16 mg, 17.6 µmol, 5.00 mol%), Hantzsch ester 

(97.7 mg, 386 mol, 1.10 equiv), iPr2NEt (119 µL, 90.6 mg, 701 mol, 2.00 equiv), and CH3CN (3 

mL, 0.12 M) gave 54.7 mg (323 mol, 92%) of a colorless oil after flash column chromatography 

(hexanes / EtOAc 5:1). 1H NMR (300 MHz, CDCl3): 8.50 (dd, J = 4.4, 1.6 Hz, 2H), 7.36 – 7.25 (m, 

3H), 7.18 (dd, J = 5.2, 3.0 Hz, 2H), 7.10 (dd, J = 4.4, 1.6 Hz, 2H), 3.97 (s, 2H). 

 

 

4-phenyl-1-(pyrrolidin-1-yl)butan-1-one (3d)36 

Following general procedure GPV using ethyl (4-oxo-1-phenyl-4-(pyrrolidin-1-yl)butyl) oxalate 

2d (100 mg, 300 mol, 1.00 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (6.86 mg, 7.50 µmol, 2.50 mol%), 

Hantzsch ester (83.6 mg, 330 mol, 1.10 equiv), iPr2NEt (102 µL, 77.5 mg, 600 mol, 2.00 equiv), 

and CH3CN (3.0 mL, 0.1 M) gave 43.0 mg (198 mol, 66%) of a slightly yellow oil after flash 

column chromatography (hexanes / EtOAc 3:1). 1H NMR (400 MHz, CDCl3): 7.30 – 7.24 (m, 2H), 

7.22 – 7.14 (m, 3H), 3.45 (t, J = 6.8 Hz, 2H), 3.32 (t, J = 6.7 Hz, 2H), 2.68 (t, J = 7.6 Hz, 2H), 2.26 (t, 

J = 7.5 Hz, 2H), 2.02 – 1.80 (m, 6H). 
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2-benzyl-1,3,5-trimethylbenzene (3e)35 

Following general procedure GPIV using ethyl (mesityl(phenyl)methyl)oxalate 2e (326 mg, 1.00 

mmol, 1.00 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 10.0 µmol, 1.00 mol%), H2O (18.0 L, 18.0 

mg, 1.00 mmol, 1.00 equiv), iPr2NEt (340 µL, 259 mg, 2.00 mmol, 2.00 equiv), and CH3CN (10 mL, 

0.1 M) gave 207 mg (980 mol, 98%) of a colorless oil after filtration through a short plug of flash 

silica gel (hexanes / EtOAc, 95:5). 1H NMR (400 MHz, CDCl3): 7.26 – 7.02 (m, 5H), 6.90 (s, 2H), 

4.03 (s, 2H), 2.30 (s, 3H), 2.21 (s, 6H). 

 

 

Bis(4-chlorophenyl)methane (3f)37 

Following general procedure GPIV using bis(4-chlorophenyl)methyl ethyl oxalate 2f (352 mg, 

1.00 mmol, 1.00 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 10.0 µmol, 1.00 mol%), H2O (18.0 L, 

18.0 mg, 1.00 mmol, 1.00 equiv), iPr2NEt (340 µL, 258 mg, 2.00 mmol, 2.00 equiv), and CH3CN 

(10 mL, 0.1 M) gave 210 mg (890 mol, 89%) of a colorless oil after filtration through a short 

plug of flash silica gel (hexanes / EtOAc, 95:5). 1H NMR (300 MHz, CDCl3). 7.31 – 7.25 (m, 2H), 

7.14 – 7.08 (m, 2H), 3.93 (s, 1H). 

 

 

1-benzyl-4-nitrobenzene (3g)38 

Following general procedure GPIV using ethyl ((4-nitrophenyl)(phenyl)methyl) oxalate 2g (117 

mg, 355 mol, 1.00 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (3.24 mg, 3.55 µmol, 1.00 mol%), H2O (6.40 

L, 6.40 mg, 1.00 mmol, 1.00 equiv), iPr2NEt (121 µL, 91.8 mg, 711 mmol, 2.00 equiv), and CH3CN 

(3.5 mL, 0.1 M) gave 36.5 mg (171 mol, 48%) of a colorless oil after filtration through a short 
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plug of flash silica gel (hexanes / EtOAc, 10:1). 1H NMR (400 MHz, CDCl3): 8.18 – 8.11 (m, 2H), 

7.37 – 7.29 (m, 4H), 7.25 (dt, J = 7.1, 3.5 Hz, 1H), 7.17 (dd, J = 7.8, 0.9 Hz, 2H), 4.08 (s, 2H). 

 

 

Propylbenzene (3h)39 

Following general procedure GPV using ethyl (1-phenylpropyl) oxalate 2h (100 mg, 423 mol, 

1.00 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (19.3 mg, 21.2 µmol, 5.00 mol%), Hantzsch ester (118 mg, 

466 mol, 1.10 equiv), iPr2NEt (144 µL, 109 mg, 847 mol, 2.00 equiv), and CH3CN (3.0 mL, 0.14 

M) gave 75% GC – FID yield using naphthalene as internal standard. 

 

 

Methyl 2-phenylacetate (3i)40 

Following general procedure GPIV using ethyl (2-methoxy-2-oxo-1-phenylethyl) oxalate 2i (266 

mg, 1.00 mmol, 1.00 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 10.0 µmol, 1.00 mol%), H2O (18.0 

L, 18.0 mg, 1.00 mmol, 1.00 equiv), iPr2NEt (340 µL, 258 mg, 2.00 mmol, 2.00 equiv), and CH3CN 

(10 mL, 0.1 M) gave 148 mg (990 mol, 99%) of a colorless oil after filtration through a short 

plug of flash silica gel (hexanes / EtOAc, 10:1). 1H NMR (400 MHz, CDCl3): 7.36 – 7.26 (m, 5H), 

3.70 (s, 3H), 3.63 (s, 2H). 

 

 

1,2-diphenylethanone (3j)41  

Following general procedure GPIV using ethyl (2-oxo-1,2-diphenylethyl) oxalate 2j (312 mg, 1.00 

mmol, 1.00 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 10.0 µmol, 1.00 mol%), H2O (18.0 L, 18.0 

mg, 1.00 mmol, 1.00 equiv), iPr2NEt (340 µL, 258 mg, 2.00 mmol, 2.00 equiv), and CH3CN (10 mL, 
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0.1 M) gave 112 mg (570 mol, 57%) of an orange solid after filtration through a short plug of 

flash silica gel (hexanes / EtOAc, 95:5). 1H NMR (400 MHz, CDCl3): 8.13 (dt, J = 8.5, 1.6 Hz, 2H), 

7.65 – 7.59 (m, 1H), 7.53 – 7.45 (m, 2H). 

 

 

(R)-diethyl 2-hydroxysuccinate (3k)34 

Following general procedure GPIV using (2R,3R)-diethyl 2-(2-ethoxy-2-oxoacetoxy)-3-

hydroxysuccinate 2k (306 mg, 1.00 mmol, 1.00 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 10.0 

µmol, 1.00 mol%), H2O (18.0 L, 18.0 mg, 1.00 mmol, 1.00 equiv), iPr2NEt (340 µL, 258 mg, 2.00 

mmol, 2.00 equiv), and CH3CN (10 mL, 0.1 M) gave 124 mg (650 mol, 65%) of a colorless oil 

after filtration through a short plug of flash silica gel (hexanes / EtOAc 10:1).D
20 = +12.4° (lit. 

D
23 +11.2° c = 2.15, EtOH);42 1H NMR (300 MHz, CDCl3): 4.48 (dd, J = 10.3, 5.5 Hz, 1H), 4.32 – 

4.22 (m, 2H), 4.17 (q, J = 7.1 Hz, 2H), 3.22 (d, J = 5.4 Hz, 1H), 2.89 – 2.73 (m, 2H), 1.28 (dt, J = 

10.8, 7.1 Hz, 6H). 

 

 

Diethyl succinate (3l)34 

Following general procedure GPIV using O,O'-((2R,3R)-1,4-diethoxy-1,4-dioxobutane-2,3-diyl) 

diethyl dioxalate 2l (406 mg, 1.00 mmol, 1.00 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 10.0 

µmol, 1.00 mol%), H2O (18.0 L, 18.0 mg, 1.00 mmol, 1.00 equiv), iPr2NEt (340 µL, 258 mg, 2.00 

mmol, 2.00 equiv), and CH3CN (10 mL, 0.1 M) gave 60 mg (345 mol, 35%) of a colorless oil after 

filtration through a short plug of flash silica gel (hexanes / EtOAc 95:5). 1H NMR (400 MHz, CDCl3): 

4.14 (q, J = 7.1 Hz, 2H), 2.61 (s, 2H), 1.25 (t, J = 7.1 Hz, 3H). 
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Diphenylmethane-d (8a) 

Following general procedure GPIV using benzhydryl ethyl oxalate 2a (284 mg, 1.00 mmol, 1.00 

equiv), [Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 10.0 µmol, 1.00 mol%), D2O (200 L, 200 mg, 10.0 

mmol, 10.0 equiv), iPr2NEt (340 µL, 258 mg, 2.00 mmol, 2.00 equiv), and CH3CN (10 mL, 0.1 M) 

gave 140 mg (830 mol, 83%) of a colorless oil after filtration through a short plug of flash silica 

gel (hexanes / EtOAc 95:5). 1H NMR (400 MHz, CDCl3): 7.51 – 7.43 (m, 4H), 7.43 – 7.35 (m, 6H), 

4.17 (d, J = 8.0 Hz, 1H). 

 

 

1-(benzhydryloxy)-2,2,6,6-tetramethylpiperidine (7a)43 

Following general procedure GPV using benzhydryl ethyl oxalate 2a (85.3 mg, 0.30 mmol, 1.00 

equiv), [Ir(ppy)2(dtb-bpy)](PF6) (2.70 mg, 3.00 µmol, 1.00 mol%), TEMPO (188 mg, 1.20 mmol, 

4.00 equiv), triphenylamine (147 mg, 0.60 mmol, 2.00 equiv) and MeCN (1.5 mL). The reaction 

mixture was degassed by freeze-pump-thaw (5x) and the screw-cap was replaced with a Teflon 

sealed inlet for a glass rod, through which irradiation with a 455 nm high power LED took place 

from above while the reaction was magnetically stirred. After 91 h of irradiation, TEMPO trapped 

compound 7a was detected by mass spectra. Exact Mass = 323.22 g/mol. 
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3.8.6 General procedure for an “one-pot” in situ esterification following a photoredox 

catalyzed deoxygenation of alcohols GPIV. 

 

A 35 mL Schlenk flask equipped with a magnetic stir bar was charged with an alcohol (1.00 mmol, 

1.00 equiv), iPr2NEt (680 L, 4.00 mmol, 4.00 equiv), dissolved in CH3CN (10.0 mL, 0.1 M) and 

cooled to 0 °C. Ethyl 2-chloro-2-oxoacetate (123 L, 1.10 mmol, 1.10 equiv) was added dropwise. 

The reaction mixture was allowed to warm up to 25 °C. After complete esterification (as judged 

by TLC), [Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 1.00 mol%) and H2O (180 L, 10.0 mmol, 10.0 equiv) 

was added. The Schlenk flask was sealed with a Teflon inlet for a glass rod, through which 

irradiation with a 455 nm high power LED took place from above while the reaction was 

magnetically stirred and heated at 60 °C in an aluminum block from below. Afterwards the 

reaction mixture was evaporated under reduced pressure and the residue was purified by 

filtration through a short plug of flash silica gel with a mixture of hexanes and ethyl acetate. 

 

 

Diphenylmethane (3a)33,34 

Following general procedure GPIV using benzhydrol 4a (184 mg, 1.00 mmol, 1.00 equiv) gave 

91% GC-FID yield using naphthalene as internal standard (mole ratio 1:1). 

 

 

4-Benzylpyridine (3c)35 

Following general procedure GPIV using phenyl(pyridin-4-yl)methanol 4c (185 mg, 1.00 mmol, 

1.00 equiv) iPr2NEt (680 L, 4.00 mmol, 4.00 equiv), CH3CN (10.0 mL, 0.1 M), Ethyl 2-chloro-2-

oxoacetate (123 L, 1.10 mmol, 1.10 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 1.00 mol%) and 

H2O (36 L, 2.00 mmol, 2.00 equiv) gave 107.9 mg (0.64 mmol, 64%) of a slightly yellow oil after 

filtration through a short plug of flash silica gel (hexanes/ EtOAc 95:5). 1H NMR (300 MHz, CDCl3): 
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8.50 (dd, J = 4.4, 1.6 Hz, 2H), 7.36 – 7.25 (m, 3H), 7.18 (dd, J = 5.2, 3.0 Hz, 2H), 7.10 (dd, J = 4.4, 

1.6 Hz, 2H), 3.97 (s, 2H). 

 

 

Bis(4-chlorphenyl)methane (3f)37 

Following general procedure GPIV using bis(4-chlorophenyl)methanol 4f (253 mg, 1.00 mmol, 

1.00 equiv) gave 173 mg (0.73 mmol, 73%) of a colorless oil after filtration through a short plug 

of flash silica gel (hexanes / EtOAc 95:5). 1H NMR (300 MHz, CDCl3). 7.31 – 7.25 (m, 4H), 7.14 – 

7.08 (m, 4H), 3.93 (s, 2H). 

 

 

1-benzyl-4-methoxybenzene (3m)35 

Following general procedure GPIV using (4-methoxyphenyl)(phenyl)methanol 4m (214 mg, 1.00 

mmol, 1.00 equiv) iPr2NEt (680 L, 4.00 mmol, 4.00 equiv), CH3CN (10.0 mL, 0.1 M), ethyl 2-

chloro-2-oxoacetate (123 L, 1.10 mmol, 1.10 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 1.00 

mol%) and H2O (36 L, 2.00 mmol, 2.00 equiv) gave 150 mg (0.76 mmol, 76%) of a colorless oil 

after filtration through a short plug of flash silica gel with hexanes. 1H NMR (400 MHz, CDCl3): 

7.31 – 7.26 (m, 2H), 7.22 – 7.16 (m, 3H), 7.13 – 7.09 (m, 2H), 6.86 – 6.81 (m, 2H), 3.93 (s, 2H), 

3.79 (s, 3H). 
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9H-fluorene (3n)44 

Following general procedure GPIV using 9H-fluoren-9-ol 4n (182 mg, 1.00 mmol, 1.00 equiv) 

iPr2NEt (680 L, 4.00 mmol, 4.00 equiv), 4-DMAP (12.2 mg, 100 mol, 0.100 equiv), CH3CN (10.0 

mL, 0.1 M), ethyl 2-chloro-2-oxoacetate (123 L, 1.10 mmol, 1.10 equiv), [Ir(ppy)2(dtb-bpy)](PF6) 

(9.14 mg, 1.00 mol%) and H2O (36 L, 2.00 mmol, 2.00 equiv) gave 135 mg (0.81 mmol, 81%) of 

a colorless oil after filtration through a short plug of flash silica gel (hexanes / EtOAc 95:5).  1H 

NMR (400 MHz, CDCl3): 7.83 (d, J = 7.5 Hz, 2H), 7.58 (d, J = 7.4 Hz, 2H), 7.42 (t, J = 7.1 Hz, 2H), 

7.35 (td, J = 7.4, 1.2 Hz, 2H), 3.94 (s, 2H). 

 

 

(E)-6-(but-1-en-1-yl)-1,5,5-trimethylcyclohex-1-ene (3o)45 

Following general procedure GPIV using -Jonon 4o (194 mg, 1.00 mmol, 1.00 equiv) iPr2NEt 

(680 L, 4.00 mmol, 4.00 equiv), CH3CN (10.0 mL, 0.1 M), ethyl 2-chloro-2-oxoacetate (123 L, 

1.10 mmol, 1.10 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 1.00 mol%) and H2O (36 L, 2.00 

mmol, 2.00 equiv) gave 132 mg (0.74 mmol, 74%) of a colorless oil after filtration through a short 

plug of flash silica gel (petrol ether / EtOAc 95:5). 1H NMR (300 MHz, CDCl3): 5.44 – 5.08 (m, 3H), 

2.20 – 1.93 (m, 4H), 1.62 – 1.53 (m, 3H), 1.49 – 1.11 (m, 3H), 0.99 – 0.77 (m, 9H). 

 

 

(Z)-prop-1-en-1-ylbenzene (3p)46 

Following general procedure GPIV using (E)-3-phenylprop-2-en-1-ol 4p (134 mg, 1.00 mmol, 

1.00 equiv) iPr2NEt (680 L, 4.00 mmol, 4.00 equiv), CH3CN (10.0 mL, 0.1 M), ethyl 2-chloro-2-

oxoacetate (123 L, 1.10 mmol, 1.10 equiv), [Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 1.00 mol%) and 
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H2O (36.0 L, 2.00 mmol, 2.00 equiv) gave 86% (cis : trans: allylbenzene 17: 59: 24) GC-FID yield 

using naphthalene as internal standard (mole ratio 1:1). 

 

 

Propylbenzene (3h)39 

A Schlenk flask equipped with a magnetic stir bar was charged with (E)-3-phenylprop-2-en-1-ol 

4p (134 mg, 1.00 mmol, 1.00 equiv), iPr2NEt (680 L, 4.00 mmol, 4.00 equiv), dissolved in CH3CN 

(10.0 mL, 0.1 M) and cooled to 0 °C. Ethyl 2-chloro-2-oxoacetate (123 L, 1.10 mmol, 1.10 equiv) 

was added dropwise. The reaction mixture was allowed to warm up to 25 °C. After complete 

esterification (as judged by TLC), [Ir(ppy)2(dtbbpy)](PF6) (9.14 mg, 1.00 mol%) and H2O (36.0 L, 

2.00 mmol, 2.00 equiv) were added. The Schlenk flask was sealed with a Teflon inlet for a glass 

rod, through which irradiation with a 455 nm high power LED took place from above while the 

reaction was magnetically stirred and heated in an aluminum block from below. Afterwards a 

spatula Pd/C (1 wt%) was added to the reaction mixture and a H2 balloon was placed on the 

Schlenk flask overnight gave 62% GC-FID yield using naphthalene as internal standard (mole 

ratio 1:1). 

 

 

3,3'-(ethane-1,2-diyl)bis(N,N-dimethylaniline) (3q)  

Following general procedure GPIV using (3-(dimethylamino)phenyl)methanol 4q (151 mg, 1.00 

mmol, 1.00 equiv) iPr2NEt (680 L, 4.00 mmol, 4.00 equiv), 4-DMAP (12.2 mg, 100 mol, 0.100 

equiv), CH3CN (10.0 mL, 0.1 M), Ethyl 2-chloro-2-oxoacetate (185 L, 1.60 mmol, 1.60 equiv), 

[Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 1.00 mol%) and H2O (36 L, 2.00 mmol, 2.00 equiv) gave 47 

mg (0.35 mmol, 35%) of a dark green oil after filtration through a short plug of flash silica gel 

(hexanes / EtOAc 5:1). Rf (hexanes / EtOAc, 5:1): 0.26; IR (neat): 2926, 2858, 2802, 1677, 1601, 

1497, 1439, 1345, 1227, 1177, 1114, 1061, 995, 847, 773, 695 cm-1; 1H NMR (300 MHz, CDCl3): 

7.24 – 7.16 (m, 2H), 6.70 – 6.61 (m, 6H), 2.96 (s, J = 5.7 Hz, 12H), 2.91 (s, 4H); 13C NMR (75 MHz, 
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CDCl3): 150.73, 143.19, 129.16, 117.34, 113.21, 110.71, 40.99, 38.73; HRMS (EI) m/z calculated 

for C18H25N2 ([M+H]+) 269.2012, found 269.2015. 

 

 

1,2-bis(3,4,5-triethoxyphenyl)ethane (3r)  

Following general procedure GPIV using (3,4,5-triethoxyphenyl)methanol 4r (240 mg, 1.00 

mmol, 1.00 equiv) iPr2NEt (680 L, 4.00 mmol, 4.00 equiv), 4-DMAP (12.2 mg, 100 mol, 0.100 

equiv), CH3CN (10.0 mL, 0.1 M), ethyl 2-chloro-2-oxoacetate (123 L, 1.10 mmol, 1.10 equiv), 

[Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 1.00 mol%) and H2O (36 L, 2.00 mmol, 2.00 equiv) gave 126 

mg (0.56 mmol, 56%) of a white solid after filtration through a short plug of flash silica gel 

(hexanes / EtOAc 5:1). Rf (hexanes / EtOAc, 5:1): 0.36; m.p. 120 °C; IR (neat): 2974, 2931, 2881, 

1585, 1504, 1435, 1389, 1329, 1226, 1096, 1041, 905, 823, 636, 533, 501 cm-1; 1H NMR (300 

MHz, CDCl3): 6.33 (s, J = 3.4 Hz, 4H), 4.06 – 3.98 (m, 12H), 2.79 (s, 4H), 1.42 – 1.32 (m, 18H); 13C 

NMR (101 MHz, CDCl3): 152.72, 136.94, 107.39, 68.76, 64.65, 38.23, 15.62, 15.02; HRMS (EI-MS, 

APCI) m/z calculated for C26H39O6 ([M+H]+) 447.2741, found 447.2742. 

 

 

1,2-bis(2,3,4-trimethoxyphenyl)ethane (3s)47 

Following general procedure GPIV using (2,3,4-trimethoxyphenyl)methanol 4s (198 mg, 1.00 

mmol, 1.00 equiv) iPr2NEt (680 L, 4.00 mmol, 4.00 equiv), 4-DMAP (12.2 mg, 100 mol, 0.100 

equiv), CH3CN (10.0 mL, 0.1 M), ethyl 2-chloro-2-oxoacetate (123 L, 1.10 mmol, 1.10 equiv), 

[Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 1.00 mol%) and H2O (36 L, 2.00 mmol, 2.00 equiv) gave 93 

mg (0.51 mmol, 51%) of a white solid after filtration through a short plug of flash silica gel 

(hexanes / EtOAc 5:1). Rf (hexanes / EtOAc, 5:1): 0.26; 1H NMR (300 MHz, CDCl3): 6.83 (d, J = 8.5 

Hz, 2H), 6.60 (d, J = 8.5 Hz, 2H), 3.88 (d, J = 0.5 Hz, 12H), 3.84 (s, 6H), 2.79 (s, 4H); 13C NMR (101 

MHz, CDCl3): 152.17, 152.12, 142.46, 128.39, 124.05, 107.31, 77.48, 77.16, 76.84, 61.06, 60.87, 
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56.18, 31.40; HRMS (EI-MS, MAT95) m/z calculated for C20H26O6 ([M]*) 362.1729, found 

362.1732. 

 

 

1-(9H-fluoren-9-yl)-N,N-diisopropylpropan-2-amine (3t)  

Following general procedure GPIV using (3-(dimethylamino)phenyl)methanol 4t (196 mg, 1.00 

mmol, 1.00 equiv) iPr2NEt (680 L, 4.00 mmol, 4.00 equiv), 4-DMAP (12.2 mg, 100 mol, 0.100 

equiv), CH3CN (10.0 mL, 0.1 M), ethyl 2-chloro-2-oxoacetate (185 L, 1.60 mmol, 1.60 equiv), 

[Ir(ppy)2(dtb-bpy)](PF6) (9.14 mg, 1.00 mol%) and H2O (36 L, 2.00 mmol, 2.00 equiv) gave 106 

mg (0.36 mmol, 36%) of a blue solid after filtration through a short plug of flash silica gel with 

hexanes. Rf (hexanes / EtOAc, 5:1): 0.68; m.p. 97 °C; IR (neat): 2968, 2929, 1736, 1444, 1392, 

1365, 1166, 1134, 1030, 1002, 737, 622, 577, 539, 425 cm-1; 1H NMR (400 MHz, CDCl3): 7.82 (td, 

J = 6.5, 1.5 Hz, 2H), 7.69 (d, J = 7.5 Hz, 1H), 7.59 – 7.49 (m, 1H), 7.45 – 7.36 (m, 4H), 4.27 (dd, J = 

8.2, 3.7 Hz, 1H), 3.57 – 3.46 (m, 1H), 3.37 (hept, J = 6.7 Hz, 2H), 2.14 (ddd, J = 12.1, 7.9, 3.1 Hz, 

1H), 1.74 – 1.62 (m, 1H), 1.24 – 1.15 (m, 15H); 13C NMR (101 MHz, CDCl3): 149.60, 149.53, 140.96, 

140.80, 127.02, 126.96, 126.72, 126.67, 124.29, 124.22, 119.94, 119.81, 48.44, 44.93, 44.36, 

41.20, 24.59, 22.54, 21.46; 13C NMR (DEPT-135, 101 MHz, CDCl3): 126.96, 126.90, 126.66, 126.61, 

124.24, 124.17, 119.88, 119.76, 48.39, 44.86, 44.30, 41.14, 24.53, 22.49, 21.41; HRMS (EI-MS, 

MAT95) m/z calculated for C22H29N ([M]*) 307.2300, found 307.2298. 
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3.8.7 Spectra of compounds 
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4. Visible light photoredox catalyzed synthesis of chiral 

tetrahydrofuranes 

 

4.1 Introduction 

Due to their broad biological activity, tetrahydrofurans represent an important class of 

heterocycles. A huge variety of natural products and pharmaceuticals bear a chiral 

tetrahydrofuran ring as a structural element.1,2 Recently, Wujiong et al. reported the synthesis 

of -bromotetrahydrofurans and –tetrahydropyrans using alkenols and tetrabromomethane via 

bromine addition to the alkene followed by an intramolecular nucleophilic cyclization under 

visible light photocatalysis (Scheme 1).3 Moreover, Nicewicz et al. elegantly showed the facile 

visible light mediated synthesis of butyrolactones4 and highly substituted tetrahydrofurans by 

polar radical crossover cycloaddition (Scheme 1).5,6 Based on our recent studies on the 

deoxygenation of alcohols via 3,5-bis(trifluoromethyl)benzoate7 and the feasible deoxygenation 

with ethyl oxalate auxiliaries (Chapter 3), we intended to expand this methodology for the 

preparation of chiral tetrahydrofuran derivatives utilizing the simple deoxygenation of activated 

mono-allylated succinates, followed by an intramolecular carbon – carbon bond formation 

(Scheme 1).  
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Scheme 1. Strategies on visible light mediated carbon - carbon and carbon – hydrogen bond formations.3-8 

 

Owing to the excellent radical deoxygenation behavior of activated tartrates, we started our 

investigations looking into intramolecular cyclization capabilities of modified tartrate 

derivatives. Starting from the commercially available low cost (+)-diethyl tartrate 1a, we 

performed an initial mono-allylation in the presence of copper(II) chloride as coordinating Lewis 

acid, potassium carbonate as base and allyl bromide as coupling reagent in DMF yielding 2a 

(Scheme 2). In a second reaction step, the esterification of the remaining alcohol group was 

achieved in quantitative yield for the corresponding product 3a, using ethyl oxalyl chloride and 

Hünig’s base in CH2Cl2.  
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Scheme 2. Two-step synthesis for the preparation of the starting material 3a.9 

 

Two plausible cyclization products could emerge from test compound 3a. After visible light 

induced deoxygenation of the ethyl oxalyl ester moiety, the generated -carbonyl radical 5a can 

interact with the nearby allyl group in an intramolecular cyclization, giving rise either to a 

kinetically favored chiral tetrahydrofuran derivative 4a via 5-exo trig ring closure, or alternatively 

to a conceivable tetrahydropyran product 6a via 6-endo trig cyclization (Scheme 3).  

 

 

Scheme 3. Possible product cyclization pathways for an intramolecular ring closure. R = Et, iPr. 
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4.2 Initial experiment  

The first attempt to synthesize a chiral tetrahydrofuran starting from ethyl oxalate activated O-

allylated tartrate 3a was performed under the established conditions for the deoxygenation 

process (Chapter 3) using [Ir(ppy)2(dtb-bpy)]PF6 (ppy = phenylpyridine, dtb-bpy = 4,4’-di-tert-

butyl-2,2’-bipyridine) as photoredox catalyst and iPr2NEt as sacrificial electron donor in CH3CN 

at 60 °C (Scheme 4). As the presence of water as additional hydrogen source greatly increases 

the deoxygenation of oxalate esters (as shown in chapter 3), these reaction conditions were 

adapted: The addition of water was omitted to favor the reaction pathway of kinetically slower 

intramolecular cyclization over faster competitive simple reduction of the initially formed radical 

in the presence of water. The irradiation was carried out by a high power blue LED (455 nm), 

channeled through a glass rod directly into the reaction solution while heating was enabled from 

below in a metal block. Cyclized product 4a was obtained in 28% yield and a diastereomeric ratio 

of 62:28:8:2. Nevertheless, the starting material 3a gave also simple deoxygenated product 7a 

in 9% as well as hydrolyzed succinate derivative 8a in 32% yield. The results were not fully 

satisfactory and leave room for further improvement. 

 

Scheme 4. Photoredox catalyzed deoxygenation process in a reductive quenching process.  
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4.3 Change of the catalytic cycle and screening investigations 

The competitive hydrolysis and deoxygenation of 3a occurs in the presence of an external 

sacrificial electron donor (iPr2NEt). After irradiation, iPr2NEt will be oxidized by transferring an 

electron to the excited Ir3
+* species of the catalyst to form the reduced Ir2+. This oxidized species 

acts as an additional hydrogen source and leads to the formation of the byproducts 7a and 8a.  

Therefore, an alternative oxidative quenching pathway was investigated (Schema 5). Instead of 

electron transfer by Hünig’s base, the electron can be directly donated from the excited species 

of the photoredox catalyst into the ester moiety of the oxalates. In that case, Hünig’s base can 

be omitted and consequently, competitive hydrolysis and simple deoxygenation can be 

minimized. 

 

 

Scheme 5. General pathways for single electron transfers induced by visible light either via reductive or oxidative 

quenching process for the fac-Ir(ppy)3 photoredox catalyst. Q = quencher, A = acceptor, D = donor, E1/2 = half potential. 

Oxidative quenching process marked in red, reductive quenching process in black. 

 

To ensure a first electron transfer to the oxalate moiety, feasible catalysts based on the 

reduction potential of 3a (ERed = -1.65 V vs SCE in DMF) were investigated (Table 1). Initial 

screenings were carried out with mono-allylated oxalate derivative 3a, using well established 

photoredox catalysts for the oxidative quenching cycle (Scheme 6), i.e. Cu(dap)2Cl 11 (ERed 

Cu+*/Cu2+ = -1.43 V vs SCE,10 dap = 2,9-bis(4-anisyl)-1,10-phenanthroline, entry 1) or Ru(bpy)3Cl2 

12 (ERed Ru2+/Ru+ = -1.33 V,11 bpy = 2,2’-bipyridine, entry 2). Both catalysts gave no conversion at 

80 °C in DMF, suggesting that the reduction potentials are not sufficient to transfer an electron 
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to the oxalate ester moiety. However, switch to iridium based catalysts was more promising. 

[Ir(ppy)2(dtb-bpy)]PF6 13 (ERed Ir3+/Ir2+ = -1.51 V,12 ppy = phenylpyridine, dtb-bpy = 4,4’-di-tert-

butyl-2,2’-bipyridine, entry 3) and Ir[dF(CF3)ppy]2(dtb-bpy)PF6 14 (ERed Ir3+*/Ir4+ = -1.21 V,12 

dF(CF3)ppy =2-(2,4-difluorophenyl)-5-trifluoromethylpyridine, dtb-bpy = 4,4’-di-tert-butyl-2,2’-

bipyridine, entry 4) led to 22% and 44% conversion, respectively, although their reduction 

potentials are lower compared to Cu(dap)2Cl 11. Fluorinated iridium catalyst 14 yielded 

negligible 5% of the 5-membered cyclized product 4a. The best results could be achieved for 

highly reducing fac–Ir(ppy)3 photoredox catalyst 15 (ERed Ir3+*/Ir4+ = -1.73 V vs SCE,13 ppy = 

phenylpyridine, entry 5, scheme 7). Full conversion and 70% yield of the chiral tetrahydrofuran 

product 4a, in a diastereomeric ratio of 62:28:8:2 was obtained after 20 h of irradiation, while 

no tetrahydropyran formation was observed. Having identified fac–Ir(ppy)3 15 as most 

promising photoredox catalyst, different reaction temperatures were examined to increase the 

yield. Ambient temperature (Table 1, entry 6) as well as an elevated temperature of 40 °C (Table 

1, entry 7) gave no conversion of starting material 3a at all. A further increase of the temperature 

was identified as crucial parameter for the photoinduced cyclization, since 89% conversion and 

51% yield were achieved at 60 °C after 20 h irradiation time. A prolonged reaction time of up to 

44 h gave full conversion and yielded 81% (Table 1, entry 8, scheme 7). This could be rationalized 

by the elevated temperature, which increases the rotational freedom of the substrate and thus, 

may lead to an increased population of the conformation needed for the cyclization. Addition of 

2 equivalents of water to provide an additional hydrogen source and therefore, an accelerated 

product formation due to faster hydrogen abstraction, surprisingly led to lower conversion of 

only 53% and yielded 36% of 4a after a prolonged reaction time of 24 h (Table 1, entry 9, scheme 

7). Decrease of the catalyst loading to 0.1 mol% gave 64% conversion and poor 18% yield after 

20 h irradiation time (Table 1, entry 10). Constant increase in conversion and yield was observed 

using 0.2 mol%, 0.5 mol%, and 1.0 mol% catalyst loading (Table 1, entry 11, 12 and 13). Despite 

similar conversions of 74% and 75%, higher yield of 38% was achieved for 0.5 mol% catalyst 

loading compared to 23% for 0.2 mol%. Moreover, a catalyst loading of 1.0 mol% gave 80% 

conversion and yielded 47% of the corresponding cyclized product 4a (Table 1, entry 13). Control 

experiments corroborated our assumption that the deoxygenation of 3a is indeed a 

photochemically induced process (Table 1, entry 15 and 16). When either light (Table 1, entry 

15) or the photocatalyst (Table 1, entry 16) were absent, no reaction was observed. The 

performance of the reaction without prior degassing gave 26% conversion and 8% yield. This 

result was not surprising, due to the literature known quenching process of the excited triplet 

state of the photoredox catalyst in the presence of oxygen atmosphere (Table 1, entry 17). In 
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addition, DMF turned out to be superior for visible light mediated intramolecular cyclization 

compared to CH3CN (Table 1, entry 17). Only 34% conversion of 3a and 1% yield for the desired 

tetrahydrofuran derivative 4a was observed using CH3CN (Table 1, entry 18). 

 

Scheme 6. Various photoredox catalysts used for the initial screening experiments for the light mediated chiral 

tetrahydrofuran synthesis. 
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Table 1. Catalyst screening, solvent/temperature dependence and control experiments of the cyclization reaction of 

compound 3a. 

 

Entry Catalyst, solvent, modification Conversion [%]a Yield 4a [%]a 

1 Cu(dap)2Cl2 11 2 0 

2 Ru(bpy)3Cl2 12 6 0 

3 [Ir(ppy)2(dtb-bpy)]PF6 13 22 0 

4 Ir[dF(CF3)ppy]2(dtb-bpy)PF6 14 44 5 

5 fac–Ir(ppy)3 15 100 70 

6 25 °C 0 0 

7 40 °C 0 0 

8 60 °C 89/100b 51/81b 

9 60 °C 53c 36c 

10 0.1 mol% 15 64 18 

11 0.2 mol% 15 74 23 

12 0.5 mol% 15 75 38 

13 1.0 mol% 15 80 47 

15 no light 1 0 

16 no catalyst 5 0 

17 oxygen atmosphere 26 8 

18 CH3CN 34 1 

a2 mol% photoredox catalyst, 3a (0.1 mmol), DMF (c = 0.1 M), 80 °C, 20 h. GC – FID Yield (Naphthalene as internal 

standard). b44 h, c2 equiv water, 24 h.  
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Scheme 7. Temperature dependence for the intramolecular cyclization of 4a at 60 °C and 80 °C. Reaction conditions: 

2 mol% photoredox catalyst 15, 3a (0.1 mmol), DMF (c = 0.1 M), N2. GC – FID Yield (Naphthalene as internal standard). 

 

4.4 Comparison of batch and microreactor systems 

Having identified the best reaction conditions using 1.0 mol% fac–Ir(ppy)3 as photoredox 

catalyst, we scaled up from 0.1 mmol to a preparative scale of 1.0 mmol, while keeping all other 

parameters constant. Since the light intensity decreases in a larger reaction flask, prolonged 

reaction times of 7 days were required to achieve full conversion and 54% isolated yield of 4a 

(Table 2, entry 1).  

Setting up the reaction in a microreactor would give numerous advantages compared to 

conventional batch mode, as was already discussed on multiple occasions in the context of 

photochemistry.14,15 The higher surface and improved miscibility of the continuous flow mode, 

typically offers shorter reaction times, higher yields, lower catalyst loadings, and makes 

upscaling trivial. By performance of the reaction in a microreactor, full conversion was achieved 

after only 28 h at a pump rate of 0.35 mL/h and yielded 73% of 4a, which is a 19% increase 

compared to the batch reaction system (Table 2, entry 2).  
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Table 2. Comparison of yield and reaction time in a batch reaction and microreactor. 

Entry Reaction system Time Conversion 3a [%]a Yield 4a [%]b 

1 batch 7 d 100 54 

2 microreactorc 28 h 100 73 

aOxalate ester (1 mmol) 3a , fac–Ir(ppy)3 (1.0 mol%), DMF (c = 0.1 M), 80 °C, 455 nm LED irradation, N2 atmosphere. 

GC-FID yield using naphthalene as internal standard bisolated yields cflow rate 0.35 mL/h. 

 

4.5 Preparation of starting materials 

Having identified the best reaction conditions for the visible light mediated tetrahydrofuran 

preparation in a microreactor system, multiple allylated tartrate derivatives were synthesized 

to explore the substrate scope (Table 3). Both enantiomers, (+)-diethyl tartrate 1a and (-)-diethyl 

tartrate 1b gave good yields of the mono-allylated products 2a and 2b following the procedure 

of Onomura et al.9 using K2CO3 as base, copper(II) chloride as Lewis acid and allyl bromide as 

coupling reagent in DMF at ambient temperature (Table 3, entry 1 and 2). In order to improve 

the diastereomeric ratio of the initial test compound 3a, slightly sterically more demanding allyl 

groups were investigated. Reaction of (+)-diethyl tartrate 1a with crotyl bromide or 1-bromo-3-

methylbut-2-ene gave compounds 2c and 2d in 48% and 60% yield, respectively (Table 3, entry 

3 and 4). Moreover, (+)-diethyl tartrate 1a was replaced by (+)-diisopropyl tartrate 1e to increase 

bulkiness (Table 3, entry 5). Acryloyl chloride as coupling reagent yielded 46% of the 

corresponding allylated hydroxysuccinate 2f including an additional carbonyl group at the allylic 

moiety (Table 3, entry 6). So far, three possible stereocenters could be generated for the chiral 

tetrahydrofurans by using the aforementioned allylated tartrates. Therefore, substituted 

coupling reagents in -position ensure a reduction to two stereocenters by creating a tertiary 

carbon center in a 5-exo-trig cyclization (Table 3, entry 7 and 8). Allylated alcohol 2g with an 

additional methyl group in -position yielded moderate 42% (Table 3, entry 7), whereas 

improved yield of 65% was achieved for ,-unsaturated ester 2h (Table 3, entry 8). Considering 

a possible limitation of the visible light mediated cyclization, mono-benzoylation of (+)-diethyl 

tartrate 1a was performed in 46% yield (Table 3, entry 9). The five membered ring cyclization of 

its corresponding oxalate ester 2i could lead to a dearomatization of the energetically more 

favored benzyl ring. Furthermore, 18% and 52% yield were achieved for the cinnamyl 

hydroxysuccinate 2j and cyclohexene derivative 2k by treatment of (+)-diethyl tartrate 1a with 

silver(I) oxide in Et2O (Table 3, entry 9 and 10).16 Both compounds are contemplable as 

limitations due to their steric hindrance and additional conjugation in case of cinnamyl 
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hydroxysuccinate 2j. In a second synthesis step, the remaining hydroxyl group was esterified in 

a SN2 reaction by ethyl 2-chloro-2-oxoacetate in the presence of iPr2NEt as base in dry CH2Cl2 

(Table 3, Procedure C). The oxalate moiety ensures the photoinduced carbon – oxygen bond 

cleavage and subsequent radical formation at the -carbonyl position from where radical 

cyclization can occur. In general, esterification of the mono-allylated compounds gave excellent 

yields after very short reaction times of 10 - 30 min. (Table 3, entry 1-5 and 8-11). In case of 

(2R,3R)-diethyl 2-(2-ethoxy-2-oxoacetoxy)-3-((2-methylallyl)oxy)succinate 3g (Table 3, entry 7) 

only 46% yield could be achieved, whereas no isolation was possible for the corresponding 

oxalate ester of 3f (Table 3, entry 6). The product immediately polymerized after solvent 

evaporation. Moreover, attempts for a photoredox catalyzed ring formation by in situ generated 

oxalate ester 3f and subsequent performance of the photoreaction were not successful.  
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Table 3. Synthesis of allylated alcohols 2a-k and continuative ethyl oxalate esters 3a-k.

 

 



Chapter 4 Visible light photoredox catalyzed synthesis of chiral tetrahydrofuranes      2015 

 

101 
 

 

aProcedure A: Dihydroxysuccinate 1a or 1e (1.0 equiv), CuCl2 (0.1 equiv), K2CO3 (1.5 equiv), coupling reagent 

(2.0 equiv), DMF (c = 0.5 M), 25 °C, isolated yields bProcedure B: Dihydroxysuccinate 1a (1.0 equiv), Ag2O (2.6 equiv), 

coupling reagent (1.0 equiv), dry Et2O (c = 0.25 M), reflux, isolated yields cProcedure C: Hydroxysuccinate 2a-k 

(1.0 equiv), iPr2NEt (1.1 equiv), Ethyl 2-chloro-2-oxoacetate (1.1 equiv), dry CH2Cl2, N2, 0 °C – 25 °C, isolated yields. R1 

= Et, iPr, R2 = allyl group. 
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4.6 Visible light mediated deoxygenation following an intramolecular 5-exo trig 

cyclization 

The photoinduced cyclization of chiral tetrahydrofurans was performed in a microreactor using 

fac–Ir(ppy)3 15 as photoredox catalyst in DMF at 80 °C (Table 4). The aforementioned allyloxy 

succinate 3a yielded 73% of the corresponding tetrahydrofuran 4a in a diastereomeric ratio of 

62:28:8:2 (Table 4, entry 1) at a flow rate of 0.35 mL/h in analytical pure form after filtration 

through a short plug of silica. The second enantiomer 3b was prepared to verify that the induced 

stereocenter of the allylic moiety has no effect on the stereoselectivity (Table 4, entry 2). 71% 

yield of the inverted tetrahydrofuran 4b at a diastereomeric ratio of 57:37:6 was isolated. 

Chirality at the allylated hydroxyl function during the photoredox process is preserved as is 

evident from the comparison of chiral HPLC analysis of 4a and 4b. Concerning steric hindrance, 

allylic succinate derivative 3c including an additional methyl group at the -position yielded 75% 

of 4c, however, no improvement of the diasteromeric ratio (60:34:5:1) was observed (Table 4, 

entry 3). A further increase of steric bulk in -position with a second methyl group, on the one 

hand diminished the product yield from 75% to 53%, while on the other hand also inverting the 

stereochemistry in 3-position, exclusively gave the all-trans configured tetrahydrofuran 

derivative 4d (Table 4, entry 4). Moreover, major amounts of alkene were observed, originating 

from a hydrogen elimination rather than an abstraction after cyclization. Replacement of ethyl 

ester backbone structure by more bulky isopropyl esters yielded 65% of the cyclized diisopropyl 

containing product 4e, although the diastereoselectivity prevalence remained unchanged with 

a ratio of 60:32:5:3 (Table 4, entry 5). Methyl substitution in -position in 3g again gave good 

product yield of 70% of the corresponding tetrahydrofuran derivative 4g with excellent 

diastereomeric induction (Table 4, entry 6). By construction of a quaternary carbon, only two 

diastereomeric centers are formed. Considering the induced stereocenter and the steric 

hindrance of the ethyl ester groups, only one enantiomer was detected. ,-unsaturated 

compound 4h containing an electron withdrawing ester group at the -position did not give the 

desired cyclized product and decomposed during the photocatalyzed reaction (Table 4, entry 7). 

For benzylated succinate derivative 3i only simple deoxygenation was observed, hence 5-

membered as well as 6-membered ring cyclization was not feasible as it would have required 

dearomatization of the energetically favorable  system (Table 4, entry 8). Neither 

deoxygenation nor light mediated cyclization was observed for conjugated cinnamyl including 

succinate 3j (Table 4, entry 9). Bulky cyclohexenated derivative 3k yielded 54% of the 

corresponding cyclohexenyl annulated tetrahydrofuran 4k in a diasteromeric ratio of 57:43 via 

carbon – carbon bond formation (Table 4, entry 10). 
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Table 4. Photoredox catalyzed synthesis of chiral tetrahydrofurans. 
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aisolated yields. balkane/alkene ratio (25 : 75). R1 = Et, iPr; R2 = H, cyclohexen; R3 = H, Me, CO2Et; R4 = H, Me, Ph; 

R5 = H, Me. 
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4.7 Proposed reaction mechanism 

We assumed that the mechanism of the 5-exo-trig cyclization process involves an electron 

uptake by the oxalate ester moiety from the visible light mediated excited triplet state of the 

Ir3+* species followed by several defragmentation steps and the generation of an -carbonyl 

radical 5a, which undergoes an intramolecular cyclization with the opposite allylic moiety. After 

carbon – carbon bond formation subsequent hydrogen abstraction from the solvent takes place. 

Regeneration of the photocatalyst is accomplished by reduction with either ethyl oxalate17 or 

solvent. Emerging radical species were characterized by trapping with TEMPO (2,2,6,6-

tetramethylpiperdinyloxyl) to give 9. In the presence of DMF-d7 chiral tetrahydrofuran 10 was 

observed by deuteration at the terminal methyl group (Scheme 8).  

 

Scheme 8. Proposed mechanism for a visible light mediated deoxygenation of 3a following a 5-exo-trig cyclization for 

the synthesis of chiral tetrahydrofuran. Trapping of the radical species with TEMPO and hydrogen abstraction from 

DMF-d7. 
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4.8 Conclusion 

In summary, a mild protocol for the preparation of chiral tetrahydrofuran derivatives was 

developed based on the visible light mediated deoxygenation of mono-allylated succinates 

followed by an intramolecular 5-exo trig cyclization. The method features inexpensive, naturally 

occurring, chiral starting materials (tartrates) and a sustainable activation of the hydroxyl group. 

Radical reaction was realized by the transformation of the remaining hydroxyl group into ethyl 

oxalate ester in very good yield. Continuative photoredox catalyzed reaction for sugar analogues 

under mild reaction conditions only requires heat, photoredox catalyst and visible light. 

Moreover, improvement in yield and reaction time was achieved by the use of microreactor 

technology.  

 

4.9 Experimental part 

Experimental details, characterization data and spectra 

 

4.9.1 General information 

All chemicals were used as received or purified according to Purification of Common Laboratory 

Chemicals. Glassware was dried in an oven at 110 °C or flame dried and cooled under a dry 

atmosphere prior to use. All reactions were performed using Schlenk techniques. Blue light 

irradiation in batch processes was performed using a CREE XLamp XP-E D5-15 LED (λ = 450-465 

nm). In micro reactor processes 8 OSRAM OSLON Black Series LD H9GP LEDs (λ = 455±10 nm) 

were employed. Analytical thin layer chromatography was performed on Merck TLC aluminum 

sheets silica gel 60 F 254. Reactions were monitored by TLC and visualized by a short wave UV 

lamp and stained with a solution of potassium permanganate, p-anisaldehyde, or Seebach’s 

stain. Column flash chromatography was performed using Merck flash silica gel 60 (0.040-0.063 

mm). The melting points were measured on an automated melting point system (MPA 100) with 

digital image processing technology by Stanford Research Systems. ATR-IR spectroscopy was 

carried out on a Biorad Excalibur FTS 3000 spectrometer, equipped with a Specac Golden Gate 

Diamond Single Reflection ATR-System. NMR spectra were recorded on Bruker Avance 300 and 

Bruker Avance 400 spectrometers. Chemical shifts for 1H NMR were reported as δ, parts per 

million, relative to the signal of CHCl3 at 7.26 ppm. Chemical shifts for 13C NMR were reported 

as δ, parts per million, relative to the center line signal of the CDCl3 triplet at 77 ppm. Coupling 

constants J are given in Hertz (Hz). The following notations indicate the multiplicity of the signals: 
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s = singlet, bs = broad singlet, d = doublet, t = triplet, q = quartet, p = quintet, sept = septet, and 

m = multiplet. DEPT-135 for Avance 400 CH3, CH peaks down, CH2 peaks up. DEPT-135 for Avance 

300 CH3, CH peaks up, CH2 peaks down. Mass spectra were recorded at the Central Analytical 

Laboratory at the Department of Chemistry of the University of Regensburg on a Varian MAT 

311A, Finnigan MAT 95, Thermoquest Finnigan TSQ 7000 or Agilent Technologies 6540 UHD 

Accurate-Mass Q-TOF LC/MS. Gas chromatographic analyses were performed on a Fisons 

Instuments gas chromatograph equipped with a capillary column (30 m × 250 µm × 0.25 µm) 

and a flame ionization detector. The yields reported are referred to the isolated compounds 

unless otherwise stated. 

 

4.9.2 Synthesis of fac-Ir(ppy)3
1,2 photoredox catalyst 

 

fac-Ir(ppy)3
18 

Following the literature procedure using 2-phenylpyridine (1.05 g, 6.75 mmol, 5.00 equiv), 

tetrakis(2-phenylpyridine-C2,N’)(-dichloro)diiridium19 (1.45 g, 1.35 mmol, 1.00 equiv), AgOTf 

(694 mg, 2.84 mmol, 2.00 equiv) and 2-ethoxyethanol (130 mL), refluxed for 24 h to give 1.51 g 

(85%) as a yellow solid after flash column purification (CH2Cl2 / hexanes 2:1). 1H NMR (300 MHz, 

CDCl3): 7.88 (d, J = 8.3 Hz, 3H), 7.65 (d, J = 7.4 Hz, 3H), 7.62 – 7.57 (m, 3H), 7.56 – 7.51 (m, 3H), 

6.94 – 6.80 (m, 12H). 
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4.9.3 General procedure GPI & GPII for the synthesis of monoallylated compounds9,16 

 

a. GPI9 

A 25 mL round bottom flask equipped with a magnetic stir bar was charged with 

dihydroxysuccinate (5.00 mmol, 1.00 equiv), 67.2 mg CuCl2 (500 mol, 0.100 equiv), 1.04 g K2CO3 

(7.50 mmol, 1.50 equiv) and dissolved in DMF (10.0 mL, 0.5 M). Allylating reagent (10.0 mmol, 

2.00 equiv) was added dropwise at 25 °C. After stirring for three days, the mixture was poured 

into water (100 mL) and extracted with EtOAc (4 x 100 mL). The organic layers were combined, 

dried over Na2SO4 and evaporated under reduced pressure. The obtained residue was purified 

by automatic flash silica gel column chromatography. 

 

 

(2R,3R)-diethyl 2-(allyloxy)-3-hydroxysuccinate (2a)9 

Following general procedure GPI using (2R,3R)-diethyl 2,3-dihydroxysuccinate 1a (10.3 g, 50.0 

mmol, 1.00 equiv), CuCl2 (672 mg, 5.00 mmol, 0.100 equiv), K2CO3 (10.4 g, 75.0 mmol, 15.0 

equiv), DMF (100 mL, 0.5 M) and allyl bromide (8.65 mL, 12.1 g, 100 mmol, 2.00 equiv) gave 

8.05 g (32.7 mmol, 65%) of (2R,3R)-diethyl 2-(allyloxy)-3-hydroxysuccinate as a colorless oil after 

automatic column purification (hexanes / EtOAc 100:0 – 0:100). 1H NMR (300 MHz, CDCl3): 5.81 

(dddd, J = 17.0, 10.3, 6.5, 5.3 Hz, 1H), 5.32 – 5.12 (m, 2H), 4.59 (s, 1H), 4.39 – 4.19 (m, 6H), 3.92 

(ddt, J = 12.7, 6.6, 1.2 Hz, 1H), 3.08 (bs, 1H), 1.31 (td, J = 7.1, 0.9 Hz, 6H). 
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(2S,3S)-diethyl 2-(allyloxy)-3-hydroxysuccinate (2b) 

Following general procedure GPI using (2S,3S)-diethyl 2,3-dihydroxysuccinate 1b (1.03 g, 5.00 

mmol, 1.00 equiv), CuCl2 (67.2 mg, 500 mol, 0.100 equiv), K2CO3 (1.04 g, 7.50 mmol, 1.50 

equiv), DMF (10.0 mL, 0.5 M) and allyl bromide (865 L, 1.21 g, 10.0 mmol, 2.00 equiv) gave 

867 mg (3.52 mmol, 70%) of (2S,3S)-diethyl 2-(allyloxy)-3-hydroxysuccinate as a colorless oil 

after automatic column purification (hexanes / EtOAc 100:0 – 0:100). Rf (hexanes / EtOAc 1:1) = 

0.73; IR (neat): 3512, 2988, 2937, 2162, 1983, 1946, 1745, 1464, 1369, 1254, 1195, 1139, 1089, 

1021, 1020, 929, 860, 816, 691, 577, 470, 431 cm-1; 1H NMR (300 MHz, CDCl3): 5.82 (dddd, J = 

17.0, 10.3, 6.5, 5.3 Hz, 3H), 5.31 – 5.15 (m, 6H), 4.60 (d, J = 2.3 Hz, 3H), 4.39 – 4.19 (m, 18H), 3.92 

(ddt, J = 12.7, 6.5, 1.2 Hz, 3H), 3.05 (s, 2H), 1.32 (td, J = 7.1, 0.9 Hz, 18H); 13C NMR (75 MHz, 

CDCl3): 171.28, 169.49, 133.52, 118.57, 78.40, 72.48, 72.33, 62.25, 61.71, 14.34; 13C NMR (DEPT-

135, 75 MHz, CDCl3): 133.40, 118.45, 78.28, 72.36, 72.21, 62.13, 61.59, 14.22; HRMS (ESI) m/z 

calculated for C11H19O6 ([M+H]+) 247.1176, found 247.1175. 

 

 

(2R,3R)-diethyl 2-((E)-but-2-en-1-yloxy)-3-hydroxysuccinate (2c) 

Following general procedure GPI using (2R,3R)-diethyl 2,3-dihydroxysuccinate 1a (1.03 g, 5.00 

mmol, 1.00 equiv), CuCl2 (67.2 mg, 500 mol, 0.100 equiv), K2CO3 (1.04 g, 7.50 mmol, 1.50 

equiv), DMF (10.0 mL, 0.5 M) and crotyl bromide (1.03 mL, 1.35 g, 10.0 mmol, 2.00 equiv) gave 

396 mg (1.52 mmol, 30%) of (2R,3R)-diethyl 2-((E)-but-2-en-1-yloxy)-3-hydroxysuccinate as a 

colorless oil as a mixture E / Z = 75:25 after automatic column purification (hexanes / EtOAc 

100:0 – 0:100). Rf (hexanes / EtOAc 1:1) = 0.78; IR (neat): 2981, 2944, 2086, 1988, 1748, 1448, 

1374, 1261, 1196, 1134, 1090, 1020, 968, 915, 869, 518, 426 cm-1; HRMS (ESI) m/z calculated for 

C12H20NaO6 ([M+Na]+) 283.1152, found 283.1155. 
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1H NMR (E - Isomer, 300 MHz, CDCl3): 5.76 – 5.58 (m, 1H), 5.53 – 5.37 (m, 1H), 4.58 (s, 1H), 4.36 

– 4.13 (m, 6H), 3.94 – 3.79 (m, 1H), 3.06 (bs, 1H), 1.69 (ddd, J = 6.4, 2.4, 1.1 Hz, 3H), 1.31 (td, J = 

4.6, 2.3 Hz, 6H). 

1H NMR (Z - Isomer, 300 MHz, CDCl3): 5.76 – 5.58 (m, 1H), 5.53 – 5.37 (m, 1H), 4.58 (s, 1H), 4.36 

– 4.13 (m, 6H), 4.13 – 4.01 (m, 1H), 3.06 (bs, 1H), 1.64 – 1.27 (m, 3H), 1.31 (td, J = 7.1, 1.2 Hz, 

6H). 

13C NMR (E - Isomer, 75 MHz, CDCl3): 171.33, 169.68, 131.28, 126.40, 125.44, 77.80, 72.49, 71.99, 

62.17, 61.63, 17.91, 14.34. 

13C NMR (Z - Isomer, 75 MHz, CDCl3): 171.28, 169.66, 129.67, 125.44, 78.04, 72.52, 71.99, 66.13, 

62.17, 61.63, 14.34, 13.21. 

13C NMR (E - Isomer, 75 MHz, CDCl3): 131.17, 126.28, 77.68, 72.38, 71.88, 62.06, 61.52, 17.80, 

14.23. 

13C NMR (Z - Isomer, 75 MHz, CDCl3): 131.17, 125.33, 77.92, 72.41, 66.01, 62.06, 61.52, 17.80, 

13.10. 

 

 

(2R,3R)-diethyl 2-hydroxy-3-((3-methylbut-2-en-1-yl)oxy)succinate (2d) 

Following general procedure GPI using (2R,3R)-diethyl 2,3-dihydroxysuccinate 1a (2.06 g, 10.0 

mmol, 1.00 equiv), CuCl2 (134 mg, 1.00 mmol, 0.100 equiv), K2CO3 (2.07 g, 15.0 mmol, 1.50 

equiv), DMF (20.0 mL, 0.5 M) and 1-bromo-3-methylbut-2-ene (2.31 mL, 2.98 g, 20.0 mmol, 2.00 

equiv) gave 1.63 g (5.95 mmol, 60%) of (2R,3R)-diethyl 2-hydroxy-3-((3-methylbut-2-en-1-

yl)oxy)succinate as a colorless oil after automatic column purification (hexanes / EtOAc 100:0 – 

0:100). Rf (hexanes / EtOAc 1:1) = 0.68; IR (neat): 3675, 3501, 2979, 2910, 2205, 2126, 1976, 

1744, 1738, 1450, 1373, 1259, 1199, 1135, 1090, 1017, 861, 781, 697, 605, 437 cm-1; 1H NMR 

(300 MHz, CDCl3): 5.19 (ttd, J = 6.7, 2.8, 1.4 Hz, 1H), 4.51 (dd, J = 9.0, 7.2 Hz, 1H), 4.27 – 4.13 (m, 

6H), 4.00 – 3.85 (m, 1H), 3.09 (d, J = 8.4 Hz, 1H), 1.74 – 1.64 (m, 3H), 1.58 (s, 3H), 1.26 (tt, J = 4.2, 

2.1 Hz, 6H); 13C NMR (75 MHz, CDCl3): 171.21, 169.67, 138.78, 119.71, 77.63, , 72.39, 67.19, 
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61.97, 61.43, 25.80, 17.90, 14.21, 14.19; 13C NMR (DEPT-135, 75 MHz, CDCl3): 119.67, 77.59, 

72.36, 67.15, 61.94, 61.39, 25.76, 17.86, 14.18, 14.16; HRMS (ESI) m/z calculated for C13H22NaO6 

([M+Na]+) 297.1309, found 297.1308. 

 

(2R,3R)-diisopropyl 2-(allyloxy)-3-hydroxysuccinate (2e) 

Following general procedure GPI using (2R,3R)-diisopropyl 2,3-dihydroxysuccinate 1e (1.17 g, 

5.00 mmol, 1.00 equiv), CuCl2 (67.2 mg, 500 mol, 0.100 equiv), K2CO3 (1.04 g, 7.50 mmol, 1.50 

equiv), DMF (10.0 mL, 0.5 M) and allyl bromide (865 L, 1.21 g, 10.0 mmol, 2.00 equiv) gave 

525 mg (1.91 mmol, 38%) of (2R,3R)-diisopropyl 2-(allyloxy)-3-hydroxysuccinate as a colorless 

oil after automatic column purification (hexanes / EtOAc 100:0 – 0:100). Rf (hexanes / EtOAc 1:1) 

= 0.74; IR (neat): 3489, 2984, 1745, 1467, 1375, 1264, 1204, 1144, 1101, 1000, 935, 823, 722, 

425 cm-1; 1H NMR (400 MHz, CDCl3): 5.92 – 5.75 (m, 1H), 5.24 (ddd, J = 17.3, 3.0, 1.4 Hz, 1H), 5.21 

– 5.10 (m, 3H), 4.54 (d, J = 2.1 Hz, 1H), 4.33 – 4.22 (m, 2H), 3.91 (dd, J = 12.5, 6.4 Hz, 1H), 3.05 

(s, 1H), 1.29 (dd, J = 9.1, 4.4 Hz, 12H); 13C NMR (101 MHz, CDCl3): 170.86, 169.03, 133.67, 118.38, 

78.73, 77.48, 72.39, 70.16, 69.45, 21.99, 21.94, 21.93, 21.91; 13C NMR (DEPT-135, 101 MHz, 

CDCl3): 133.53, 118.25, 78.58, 72.40, 72.26, 70.02, 69.32, 21.85, 21.80, 21.79, 21.77; HRMS (ESI) 

m/z calculated for C13H23O6 ([M+H]+) 276.1523, found 276.1523. 

 

 

(2R,3R)-diethyl 2-(acryloyloxy)-3-hydroxysuccinate (2f) 

Following general procedure GPI using (2R,3R)-diethyl 2,3-dihydroxysuccinate 1a (1.03 g, 5.00 

mmol, 1.00 equiv), CuCl2 (67.2 mg, 500 mol, 0.100 equiv), K2CO3 (1.04 g, 7.50 mmol, 1.50 

equiv), DMF (10.0 mL, 0.5 M) and acryloyl chloride (812 L, 905 mg, 10.0 mmol, 2.00 equiv) gave 

602 mg (2.31 mmol, 46%) of (2R,3R)-diethyl 2-(acryloyloxy)-3-hydroxysuccinate as a colorless oil 

after automatic column purification (hexanes / EtOAc 100:0 – 0:100). Rf (hexanes / EtOAc 2:1) = 

0.73; IR (neat): 3493, 2985, 1731, 1637, 1473, 1451, 1407, 1370, 1253, 1172, 1132, 1068, 1017, 
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985, 927, 858, 808, 702, 584, 445 cm-1; 1H NMR (300 MHz, CDCl3): 6.49 (dd, J = 17.3, 1.3 Hz, 1H), 

6.18 (dd, J = 17.3, 10.4 Hz, 1H), 5.93 (dd, J = 10.4, 1.3 Hz, 1H), 5.52 (d, J = 2.3 Hz, 1H), 4.78 (d, J = 

1.2 Hz, 1H), 4.34 – 4.14 (m, 4H), 3.18 (bs, 1H), 1.28 (dt, J = 15.8, 7.1 Hz, 6H); 13C NMR (75 MHz, 

CDCl3): 170.84, 166.61, 164.82, 132.98, 127.05, 73.16, 70.69, 62.79, 62.36, 14.23, 14.21; 13C NMR 

(DEPT-135, 75 MHz, CDCl3): 132.87, 126.93, 73.04, 70.57, 62.67, 62.24, 14.11, 14.09; HRMS (ESI) 

m/z calculated for C11H17O7 ([M+H]+)261.0969, found 261.0970. 

 

 

(2R,3R)-diethyl 2-hydroxy-3-((2-methylallyl)oxy)succinate (2g) 

Following general procedure GPI using (2R,3R)-diethyl 2,3-dihydroxysuccinate 1a (1.03 g, 5.00 

mmol, 1.00 equiv), CuCl2 (67.2 mg, 500 mol, 0.100 equiv), K2CO3 (1.04 g, 7.50 mmol, 1.50 

equiv), DMF (10.0 mL, 0.5 M) and 3-bromo-2-methylprop-1-ene (1.01 mL, 1.35 g, 10.00 mmol, 

2.00 equiv) gave 545 mg (2.10 mmol, 42%) of (2R,3R)-diethyl 2-hydroxy-3-((2-

methylallyl)oxy)succinate as a colorless oil after automatic column purification (hexanes / EtOAc 

100:0 – 0:100). Rf (hexanes / EtOAc 3:1) = 0.64; IR (neat): 3499, 2983, 2370, 2209, 2019, 1742, 

1452, 1371, 1258, 1196, 1135, 1096, 1023, 908, 862, 550, 472 cm-1; 1H NMR (300 MHz, CDCl3): 

4.90 (dd, J = 1.9, 0.9 Hz, 2H), 4.59 (d, J = 2.2 Hz, 1H), 4.35 – 4.17 (m, 6H), 3.81 (d, J = 12.0 Hz, 1H), 

3.03 (bs, 1H), 1.69 (s, 3H), 1.31 (td, J = 7.1, 2.1 Hz, 6H); 13C NMR (75 MHz, CDCl3): 171.31, 169.44, 

140.99, 113.96, 78.60, 75.34, 72.50, 62.24, 61.67, 19.55, 14.34, 14.29; 13C NMR (DEPT-135, 75 

MHz, CDCl3): 113.84, 78.48, 75.22, 72.38, 62.12, 61.56, 19.43, 14.22, 14.17; HRMS (ESI) m/z 

calculated for C12H21O6 ([M+H]+) 261.1333, found 261.1334. 
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(2R,3R)-diethyl 2-((2-(ethoxycarbonyl)allyl)oxy)-3-hydroxysuccinate (2h) 

Following general procedure GPI using (2R,3R)-diethyl 2,3-dihydroxysuccinate 1a (1.03 g, 5.00 

mmol, 1.00 equiv), CuCl2 (67.2 mg, 500 mol, 0.100 equiv), K2CO3 (1.04 g, 7.50 mmol, 1.50 

equiv), DMF (10.0 mL, 0.5 M) and ethyl 2-(bromomethyl)acrylate (693 L, 965 mg, 5.00 mmol, 

1.00 equiv) gave 1.03 g (3.24 mmol, 65%) of (2R,3R)-diethyl 2-((2-(ethoxycarbonyl)allyl)oxy)-3-

hydroxysuccinate as a colorless oil after automatic column purification (hexanes / EtOAc 100:0 

– 0:100). Rf (hexanes / EtOAc 1:1) = 0.7; IR (neat): 3493, 2983, 1726, 1640, 1260, 1189, 1138, 

1098, 1017, 959, 861, 593, 471, 440 cm-1; 1H NMR (400 MHz, CDCl3): 6.34 – 6.26 (m, 1H), 5.85 

(q, J = 1.6 Hz, 1H), 4.61 (d, J = 2.4 Hz, 1H), 4.56 – 4.50 (m, 1H), 4.37 (d, J = 2.4 Hz, 1H), 4.34 – 4.16 

(m, 6H), 4.12 (ddd, J = 4.9, 3.4, 2.1 Hz, 1H), 3.11 (bs, 1H), 1.30 (dtd, J = 9.0, 7.1, 1.9 Hz, 9H); 13C 

NMR (101 MHz, CDCl3): 171.23, 169.20, 165.63, 136.56, 126.77, 79.84, 72.43, 69.68, 62.31, 

61.79, 60.96, 14.33, 14.29; 13C NMR (DEPT-135, 101 MHz, CDCl3): 126.64, 79.70, 72.29, 69.54, 

62.18, 61.66, 60.83, 14.19, 14.16; HRMS (ESI) m/z calculated for C14H23O8 ([M+H]+) 319.1387, 

found 319.1387. 

 

 

(2R,3R)-diethyl 2-(benzyloxy)-3-hydroxysuccinate (2i)20 

Following general procedure GPI using (2R,3R)-diethyl 2,3-dihydroxysuccinate 1a (1.03 g, 5.00 

mmol, 1.00 equiv), CuCl2 (67.2 mg, 500 mol, 0.100 equiv), K2CO3 (1.04 g, 7.50 mmol, 1.50 

equiv), DMF (10.0 mL, 0.5 M) and (bromomethyl)benzene (1.19 mL, 1.71 g, 10.0 mmol, 2.00 

equiv) gave 685 mg (2.31 mmol, 46%) of (2R,3R)-diethyl 2-(benzyloxy)-3-hydroxysuccinate as a 

colorless oil after automatic column purification (hexanes / EtOAc 100:0 – 0:100). Rf (hexanes / 

EtOAc 1:1) = 0.78; IR (neat): 3530, 2978, 2352, 2314, 2197, 2169, 2116, 2051, 1745, 1455, 1367, 
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1260, 1196, 1136, 1093, 1023, 862, 744, 699, 588, 434 cm-1. 1H NMR (300 MHz, CDCl3): 7.37 – 

7.21 (m, 5H), 4.85 (d, J = 11.9 Hz, 1H), 4.57 (s, J = 15.0 Hz, 1H), 4.40 (d, J = 11.9 Hz, 1H), 4.34 – 

4.14 (m, 4H), 4.03 (dq, J = 10.7, 7.1 Hz, 1H), 3.19 (d, J = 6.7 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H), 1.15 

(t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, CDCl3): 171.15, 169.38, 136.79, 128.43, 128.31, 128.15, 

78.15, 72.93, 72.36, 62.07, 61.63, 14.24, 14.05; 13C NMR (DEPT-135, 75 MHz, CDCl3): 128.41, 

128.29, 128.13, 78.12, 72.90, 72.34, 62.05, 61.61, 14.22, 14.03; HRMS (ESI) m/z calculated for 

C15H20NaO6 ([M+Na]+) 319.1152, found 319.1155. 

 

b. GPII16 

 

A solution of dihydroxysuccinate (5.00 mmol, 1.00 equiv) and allylating reagent (5.00 mmol, 1.00 

equiv) in dry Et2O (20.0 mL, 0.25 M) was gently refluxed in the dark. Within 10 min., 3.01 g 

silver(I) oxide (13.0 mmol, 2.60 equiv) was added in three portions. After refluxing for 3 h the 

reaction mixture was stirred for 24 h. The residue was separated with water (20 mL) and washed 

repeatedly with Et2O. The combined organic layers were dried over NaSO4 and evaporated under 

reduced pressure. The obtained residue was purified by automatic flash silica gel column 

purification. 

 

 

(2R,3R)-diethyl 2-(cinnamyloxy)-3-hydroxysuccinate (2j) 

Following general procedure GPII using (2R,3R)-diethyl 2,3-dihydroxysuccinate 1a (1.03 g, 5.00 

mmol, 1.00 equiv), (E)-(3-chloroprop-1-en-1-yl)benzene (686 L, 762 mg, 5.00 mmol, 1.00 

equiv), dry Et2O (20.0 mL, 0.25 M) and silver(I) oxide (3.01 g, 13.0 mmol, 2.60 equiv) gave 289 

mg (900 mol, 18%) of (2R,3R)-diethyl 2-(cinnamyloxy)-3-hydroxysuccinate as a colorless oil as 

a mixture E / Z = 92 : 18 after automatic column purification (hexanes / EtOAc, 100:0 – 0:100). 

Rf (hexanes / EtOAc 3:1) = 0.26; IR (neat): 3497, 2982, 2196, 2014, 1963, 1741, 1449, 1394, 1369, 

1261, 1196, 1138, 1103, 1024, 969, 912, 862, 804, 732, 693, 591 cm-1; HRMS (ESI) m/z calculated 

for C17H23O6 ([M+H]+) 323.1489, found 323.1476. 
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1H NMR (E - Isomer, 400 MHz, CDCl3): 7.40 – 7.22 (m, 5H), 6.56 (d, J = 15.9 Hz, 1H), 6.19 (ddd, J 

= 15.9, 6.9, 5.8 Hz, 1H), 4.62 (dd, J = 8.2, 2.1 Hz, 1H), 4.45 (ddd, J = 12.6, 5.8, 1.4 Hz, 1H), 4.37 (d, 

J = 2.4 Hz, 1H), 4.34 – 4.21 (m, 4H), 4.11 (ddd, J = 12.5, 7.0, 1.2 Hz, 1H), 3.11 (d, J = 8.6 Hz, 1H), 

1.31 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H). 

1H NMR (Z - Isomer, 400 MHz, CDCl3): 7.40 – 7.22 (m, 5H), 6.62 (d, J = 15.9 Hz, 1H), 6.37 (dt, J = 

15.9, 5.7 Hz, 1H), 4.62 (dd, J = 8.2, 2.1 Hz, 1H), 4.45 (ddd, J = 12.6, 5.8, 1.4 Hz, 1H), 4.37 (d, J = 

2.4 Hz, 1H), 4.34 – 4.21 (m, 4H), 4.11 (ddd, J = 12.5, 7.0, 1.2 Hz, 1H), 3.11 (d, J = 8.6 Hz, 1H), 1.31 

(t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3): 171.31, 169.56, 136.45, 133.94, 128.74, 128.13, 126.67, 124.65, 

78.35, 72.53, 72.03, 62.27, 61.73, 14.35, 14.29. 

13C NMR (DEPT-135, 101 MHz, CDCl3): 133.82, 128.62, 128.00, 126.54, 124.52, 78.22, 72.40, 

71.91, 62.15, 61.61, 14.22, 14.16. 

 

 

(2R,3R)-diethyl 2-(cyclohex-2-en-1-yloxy)-3-hydroxysuccinate (2k) 

Following general procedure GPII using (2R,3R)-diethyl 2,3-dihydroxysuccinate 1a (1.03 g, 5.00 

mmol, 1.00 equiv), 3-bromocyclohex-1-ene (575 L, 804 mg, 5.00 mmol, 1.00 equiv), dry Et2O 

(20.0 mL, 0.25 M) and silver(I) oxide (3.01 g, 13.0 mmol, 2.60 equiv) gave 746 mg (2.60 mmol, 

52%) of (2R,3R)-diethyl 2-(cyclohex-2-en-1-yloxy)-3-hydroxysuccinate as a colorless oil as a 

mixture of diastereomers (d.r.: 75 : 25) after automatic column purification (hexanes / EtOAc 

100:0 – 0:100). Rf (hexanes / EtOAc 3:1) = 0.24; IR (neat): 3496, 2938, 2369, 1752, 1741, 1443, 

1402, 1373, 1258, 1195, 1134, 1089, 1067, 1022, 962, 863, 802, 753, 725, 659, 533, 499 cm-1; 

HRMS (ESI) m/z calculated for C14H23O6 ([M+H]+) 287.1489, found 287.1484. 

1H NMR (Major Diastereomer, 300 MHz, CDCl3): 5.93 – 5.78 (m, 2H), 4.60 (dd, J = 5.2, 2.2 Hz, 1H), 

4.42 (dd, J = 9.3, 2.3 Hz, 1H), 4.36 – 4.07 (m, 4H), 4.02 – 3.78 (m, 1H), 3.05 (s, 1H), 2.06 – 1.50 

(m, 6H), 1.31 (m, 6H). 
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1H NMR (Minor Diastereomer, 300 MHz, CDCl3): 5.66 (ddd, J = 10.2, 5.3, 2.1 Hz, 2H), 4.60 (dd, J 

= 5.2, 2.2 Hz, 1H), 4.42 (dd, J = 9.3, 2.3 Hz, 1H), 4.36 – 4.07 (m, 4H), 4.02 – 3.78 (m, 1H), 3.05 (s, 

1H), 2.06 – 1.50 (m, 6H), 1.31 (m, 6H). 

13C NMR (Major Diastereomer, 75 MHz, CDCl3): 171.37, 170.20, 131.75, 127.14, 77.47, 73.05, 

72.79, 62.22, 61.66, 27.32, 25.20, 18.54, 14.33, 14.30. 

13C NMR (Minor Diastereomer, 75 MHz, CDCl3): 171.37, 170.22, 132.42, 125.68, 77.36, 73.48, 

72.79, 62.17, 61.64, 29.06, 25.33, 18.88, 14.33, 14.30. 

13C NMR (DEPT-135, Major Diastereomer, 75 MHz, CDCl3): 131.64, 127.01, 77.35, 72.93, 72.68, 

62.10, 61.54, 27.20, 25.09, 18.42, 14.22, 14.19. 

13C NMR (DEPT-135, Minor Diastereomer, 75 MHz, CDCl3): 132.31, 125.56, 77.05, 73.36, 72.68, 

62.06, 61.54, 28.94, 25.21, 18.77, 14.22, 14.19. 
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4.9.4 General procedure GPIII for the synthesis of ethyl oxalyl esters via acylation with ethyl 

2-chloro-2-oxoacetate 

 

A 50 mL Schlenk flask equipped with a magnetic stir bar was charged with monoallylated 

substrate (2.00 mmol, 1.00 equiv) and dissolved in dry CH2Cl2 (20.0 mL, 0.1 M) under N2 

atmosphere. iPr2NEt (374 L, 284 mg, 2.20 mmol, 1.10 equiv) was added and the reaction 

mixture cooled down to 0 °C. Ethyl 2-chloro-2-oxoacetate (246 L, 300 mg, 2.20 mmol, 1.10 

equiv) was added dropwise and the reaction mixture was allowed to warm to room 

temperature.  After complete esterification (as judged by TLC) the reaction mixture was 

quenched with water (10 mL) and extracted with EtOAc (30 mL). The organic layer was extracted 

with two portions of water (2 x 10 mL), dried over Na2SO4 and evaporated under reduced 

pressure. The obtained residue was purified by filtration through a short plug of flash silica gel.  

 

 

(2R,3R)-diethyl 2-(allyloxy)-3-(2-ethoxy-2-oxoacetoxy)succinate (3a) 

Following general procedure GPIII using (2R,3R)-diethyl 2-(allyloxy)-3-hydroxysuccinate 2a 

(4.92 g, 20.0 mmol, 1.00 equiv), iPr2NEt (3.74 mL, 2.84 g, 22.00 mmol, 1.10 equiv), dry CH2Cl2 

(200 mL, 0.1 M) and ethyl 2-chloro-2-oxoacetate (2.46 mL, 3.00 g, 22.0 mmol, 1.10 equiv) gave 

6.85 g (19.8 mmol, 99%) of (2R,3R)-diethyl 2-(allyloxy)-3-(2-ethoxy-2-oxoacetoxy)succinate as 

an orange oil after filtration through a short plug of flash silica gel (hexanes / EtOAc 3:1). Rf 

(hexanes / EtOAc 1:1) = 0.77; IR (neat): 2985, 1742, 1463, 1372, 1301, 1274, 1176, 1157, 1070, 

1018, 928, 861, 815, 701, 460 cm-1; 1H NMR (400 MHz, CDCl3): 5.92 – 5.78 (m, 1H), 5.67 (d, J = 

3.5 Hz, 1H), 5.33 – 5.17 (m, 2H), 4.58 (d, J = 3.5 Hz, 1H), 4.40 – 4.18 (m, 7H), 4.04 (dd, J = 12.7, 

6.7 Hz, 1H), 1.39 – 1.24 (m, 9H); 13C NMR (101 MHz, CDCl3): 167.99, 165.18, 156.96, 156.73, 

133.15, 118.65, 75.97, 74.47, 72.73, 63.25, 62.31, 61.74, 13.97, 13.92, 13.73; 13C NMR (DEPT-

135, 101 MHz, CDCl3): 133.18, 118.70, 75.99, 74.50, 72.77, 63.29, 62.35, 61.78, 14.02, 13.96, 

13.77; HRMS (ESI) m/z calculated for C15H23O9 ([M+H]+) 347.1337, found 347.1339. 
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(2S,3S)-diethyl 2-(allyloxy)-3-(2-ethoxy-2-oxoacetoxy)succinate (3b) 

Following general procedure GPIII using (2S,3S)-diethyl 2-(allyloxy)-3-hydroxysuccinate 2b (493 

mg, 2.00 mmol, 1.00 equiv), iPr2NEt (374 L, 284 mg, 2.20 mmol, 1.10 equiv), dry CH2Cl2 (20 mL, 

0.1 M) and ethyl 2-chloro-2-oxoacetate (246 L, 300 mg, 2.20 mmol, 1.10 equiv) gave 620 mg 

(1.79 mmol, 89%) of (2S,3S)-diethyl 2-(allyloxy)-3-(2-ethoxy-2-oxoacetoxy)succinate as an 

colorless oil after filtration through a short plug of flash silica gel (hexanes / EtOAc 5:1). Rf 

(hexanes / EtOAc 1:1) = 0.86; IR (neat): 2983, 2362, 2216, 2048, 1775, 1748, 1453, 1372, 1307, 

1270, 1179, 1155, 1071, 1016, 935, 859, 456, 434 cm-1; 1H NMR (300 MHz, CDCl3): 5.84 (dddd, J 

= 17.1, 10.3, 6.7, 5.4 Hz, 1H), 5.66 (d, J = 3.4 Hz, 1H), 5.32 – 5.16 (m, 2H), 4.58 (d, J = 3.4 Hz, 1H), 

4.41 – 4.18 (m, 7H), 4.03 (ddt, J = 12.7, 6.7, 1.1 Hz, 1H), 1.40 – 1.24 (m, 9H); 13C NMR (75 MHz, 

CDCl3): 168.26, 165.45, 157.20, 156.94, 133.30, 119.14, 76.08, 74.75, 73.01, 63.54, 62.60, 62.02, 

14.25, 14.18, 14.01; 13C NMR (DEPT-135, 75 MHz, CDCl3): 133.18, 119.03, 75.95, 74.63, 72.89, 

63.42, 62.48, 61.90, 14.13, 14.06, 13.89; HRMS (ESI) m/z calculated for C15H23O9 ([M+H]+) 

348.1371, found 348.1369;  

 

 

(2R,3R)-diethyl 2-((E)-but-2-en-1-yloxy)-3-(2-ethoxy-2-oxoacetoxy)succinate (3c) 

Following general procedure GPIII using (2R,3R)-diethyl 2-((E)-but-2-en-1-yloxy)-3-

hydroxysuccinate 2c (521 mg, 2.00 mmol, 1.00 equiv), iPr2NEt (374 L, 284 mg, 2.20 mmol, 1.10 

equiv), dry CH2Cl2 (20 mL, 0.1 M) and ethyl 2-chloro-2-oxoacetate (246 L, 300 mg, 2.20 mmol, 

1.10 equiv) gave 711 mg (1.97 mmol, 99%) of (2R,3R)-diethyl 2-((E)-but-2-en-1-yloxy)-3-(2-
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ethoxy-2-oxoacetoxy)succinate as a slightly yellowish oil as a mixture E / Z = 75:25 after filtration 

through a short silica plug (hexanes / EtOAc 3:1). Rf (hexanes / EtOAc 1:1) = 0.84; IR (neat): 2985, 

2231, 2099, 1745, 1467, 1450, 1371, 1302, 1271, 1182, 1151, 1061, 1016, 970, 859 cm-1; HRMS 

(ESI) m/z calculated for C16H25O9 ([M+H]+) 361.1493, found 361.1486. 

1H NMR (E – Isomer, 400 MHz, CDCl3): 5.81 – 5.59 (m, 2H), 5.56 – 5.41 (m, 1H), 4.56 (d, J = 3.5 

Hz, 1H), 4.38 – 4.17 (m, 8H), 1.71 (dd, J = 6.4, 1.2 Hz, 3H), 1.36 (t, J = 7.1 Hz, 3H), 1.32 – 1.24 (m, 

6H). 

1H NMR (Z – Isomer, 400 MHz, CDCl3): 5.81 – 5.59 (m, 2H), 5.56 – 5.41 (m, 1H), 4.56 (d, J = 3.5 

Hz, 1H), 4.38 – 4.17 (m, 7H), 3.98 (dd, J = 11.9, 7.3 Hz, 1H), 1.66 – 1.62 (m, 3H), 1.36 (t, J = 7.1 

Hz, 3H), 1.32 – 1.24 (m, 6H). 

13C NMR (E - Isomer, 101 MHz, CDCl3): 168.45, 165.49, 157.26, 156.99, 131.78, 126.25, 75.61, 

74.81, 72.68, 63.47, 62.51, 61.93, 17.89, 14.26, 14.18, 14.00. 

13C NMR (Z - Isomer, 101 MHz, CDCl3): 168.44, 165.49, 157.26, 156.99, 130.03, 125.27, 75.86, 

74.81, 66.79, 63.47, 62.54, 61.95, 17.89, 14.26, 14.00, 13.22. 

13C NMR (E - Isomer, DEPT-135, 101 MHz, CDCl3): 131.66, 126.12, 75.48, 74.69, 72.55, 63.35, 

62.39, 61.81, 17.76, 14.14, 14.05, 13.88. 

13C NMR (Z - Isomer, DEPT-135, 101 MHz, CDCl3): 129.91, 125.14, 75.72, 74.69, 66.66, 63.35, 

62.42, 61.83, 17.76, 14.14, 13.88, 13.09. 

 

 

(2R,3R)-diethyl 2-(2-ethoxy-2-oxoacetoxy)-3-((3-methylbut-2-en-1-yl)oxy)succinate 3d 

Following general procedure GPIII using (2R,3R)-diethyl 2-hydroxy-3-((3-methylbut-2-en-1-

yl)oxy)succinate 2d (549 mg, 2.00 mmol, 1.00 equiv), iPr2NEt (374 L, 284 mg, 2.20 mmol, 1.10 

equiv), dry CH2Cl2 (20 mL, 0.1 M) and ethyl 2-chloro-2-oxoacetate (246 L, 300 mg, 2.20 mmol, 

1.10 equiv) gave 711 mg (1.90 mmol, 95%) of (2R,3R)-diethyl 2-(2-ethoxy-2-oxoacetoxy)-3-((3-
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methylbut-2-en-1-yl)oxy)succinate as a slightly yellowish oil after filtration through a short plug 

of flash silica gel (hexanes / EtOAc 3:1). Rf (hexanes / EtOAc 3:1) = 0.56; IR (neat): 2980, 1998, 

1744, 1455, 1370, 1300, 1270, 1174, 1150, 1068, 1014, 857, 705, 600, 552 cm-1; 1H NMR (300 

MHz, CDCl3): 5.63 (d, J = 3.4 Hz, 1H), 5.26 (ttd, J = 6.6, 2.7, 1.3 Hz, 1H), 4.55 (d, J = 3.4 Hz, 1H), 

4.41 – 4.19 (m, 7H), 4.10 (dd, J = 11.7, 7.9 Hz, 1H), 1.74 (s, 3H), 1.64 (s, 3H), 1.40 – 1.24 (m, 9H); 

13C NMR (75 MHz, CDCl3): 168.57, 165.49, 157.26, 156.98, 139.47, 119.56, 75.50, 74.86, 67.99, 

63.49, 62.51, 61.92, 25.97, 18.07, 14.26, 14.16, 13.99; 13C NMR (DEPT-135, 75 MHz, CDCl3): 

119.45, 75.39, 74.75, 67.88, 63.38, 62.41, 61.81, 25.86, 17.97, 14.16, 14.05, 13.88. HRMS (ESI) 

m/z calculated for C17H27O9 ([M+H]+) 375.1650, found 375.1630. 

 

 

(2R,3R)-diisopropyl 2-(allyloxy)-3-(2-ethoxy-2-oxoacetoxy)succinate 3e 

Following general procedure GPIII using (2R,3R)-diisopropyl 2-(allyloxy)-3-hydroxysuccinate 2e 

(549 mg, 2.00 mmol, 1.00 equiv), iPr2NEt (374 L, 284 mg, 2.20 mmol, 1.10 equiv), dry CH2Cl2 (20 

mL, 0.1 M) and ethyl 2-chloro-2-oxoacetate (246 L, 300 mg, 2.20 mmol, 1.10 equiv) gave 749 

mg (2.00 mmol, 100%) of (2R,3R)-diisopropyl 2-(allyloxy)-3-(2-ethoxy-2-oxoacetoxy)succinate as 

a slightly yellowish oil after filtration through a short plug of flash silica gel (hexanes / EtOAc 

3:1). Rf (hexanes / EtOAc 1:1) = 0.82; IR (neat): 2986, 2194, 2018, 1779, 1747, 1468, 1376, 1272, 

1211, 1175, 1154, 1101, 1064, 1010, 934, 821, 763, 721, 495 cm-1; 1H NMR (400 MHz, CDCl3): 

5.92 – 5.80 (m, 1H), 5.62 (dd, J = 3.3, 1.1 Hz, 1H), 5.31 – 5.18 (m, 2H), 5.15 – 5.05 (m, 2H), 4.53 

(dd, J = 3.3, 0.8 Hz, 1H), 4.42 – 4.27 (m, 3H), 4.03 (ddd, J = 12.5, 6.5, 1.1 Hz, 1H), 1.35 (td, J = 7.1, 

0.9 Hz, 3H), 1.31 – 1.20 (m, 12H); 13C NMR (101 MHz, CDCl3): 167.72, 164.91, 157.37, 157.08, 

133.45, 118.89, 76.31, 74.88, 73.06, 70.69, 69.92, 63.40, 21.82, 21.80, 21.75, 14.00; 13C NMR 

(DEPT-135, 101 MHz, CDCl3): 133.31, 118.77, 76.17, 74.75, 72.93, 70.56, 69.79, 63.28, 21.70, 

21.68, 21.63, 13.87; HRMS (ESI) m/z calculated for C17H27O9 ([M+H]+) 375.165, found 375.1655. 
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(2R,3R)-diethyl 2-(2-ethoxy-2-oxoacetoxy)-3-((2-methylallyl)oxy)succinate (3g) 

Following general procedure GPIII using (2R,3R)-diethyl 2-hydroxy-3-((2-

methylallyl)oxy)succinate 2g (260 mg, 1.00 mmol, 1.00 equiv), iPr2NEt (187 L, 142 mg, 1.10 

mmol, 1.10 equiv), dry CH2Cl2 (10 mL, 0.1 M) and ethyl 2-chloro-2-oxoacetate (123 L, 150 mg, 

1.10 mmol, 1.10 equiv) gave 164 mg (455 mol, 46%) of (2R,3R)-diethyl 2-(2-ethoxy-2-

oxoacetoxy)-3-((2-methylallyl)oxy)succinate as an colorless oil after flash column purification 

(hexanes / EtOAc 3:1). Rf (hexanes / EtOAc 1:1) = 0.79; IR (neat): 2992, 2184, 1746, 1448, 1372, 

1303, 1271, 1180, 1153, 1075, 1052, 1015, 910, 862, 762 cm-1; 1H NMR (400 MHz, CDCl3): 5.64 

(d, J = 3.7 Hz, 1H), 4.94 (d, J = 5.9 Hz, 2H), 4.54 (d, J = 3.7 Hz, 1H), 4.40 – 4.32 (m, 2H), 4.30 – 4.20 

(m, 5H), 3.92 (d, J = 12.1 Hz, 1H), 1.72 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H), 1.28 (td, J = 7.1, 4.8 Hz, 6H); 

13C NMR (101 MHz, CDCl3): 168.17, 165.50, 157.27, 156.98, 140.78, 114.55, 76.34, 75.96, 74.74, 

63.48, 62.56, 61.95, 19.55, 14.26, 14.14, 14.01; 13C NMR (DEPT-135, 101 MHz, CDCl3): 114.42, 

76.20, 75.83, 74.61, 63.36, 62.43, 61.82, 19.42, 14.13, 14.01, 13.88; HRMS (ESI) m/z calculated 

for C16H25O9 ([M+H]+) 361.1493, found 361.1494. 

 

 

(2R,3R)-diethyl 2-(2-ethoxy-2-oxoacetoxy)-3-((2-(ethoxycarbonyl)allyl)oxy)succinate (3h) 

Following general procedure GPIII using (2R,3R)-diethyl 2-((2-(ethoxycarbonyl)allyl)oxy)-3-

hydroxysuccinate 2h (318 mg, 1.00 mmol, 1.00 equiv), iPr2NEt (187 L, 143 mg, 1.10 mmol, 1.10 

equiv), dry CH2Cl2 (10 mL, 0.1 M) and ethyl 2-chloro-2-oxoacetate (123 L, 150 mg, 1.10 mmol, 

1.10 equiv) gave 419 mg (1.00 mmol, 100%) of (2R,3R)-diethyl 2-(2-ethoxy-2-oxoacetoxy)-3-((2-

(ethoxycarbonyl)allyl)oxy)succinate as a slightly yellowish oil after filtration through a short plug 
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of flash silica gel (hexanes / EtOAc 3:1). Rf (hexanes / EtOAc 1:1) = 0.76; IR (neat): 2987, 2945, 

2363, 1744, 1648, 1471, 1451, 1391, 1371, 1303, 1271, 1180, 1147, 1072, 1015, 859, 764, 485 

cm-1; 1H NMR (300 MHz, CDCl3): 6.28 (d, J = 1.2 Hz, 1H), 5.87 (q, J = 1.5 Hz, 1H), 5.63 (d, J = 3.5 

Hz, 1H), 4.62 (d, J = 3.5 Hz, 1H), 4.55 (dt, J = 13.7, 1.4 Hz, 1H), 4.35 – 4.14 (m, 9H), 1.33 (t, J = 7.2 

Hz, 3H), 1.29 – 1.21 (m, 9H); 13C NMR (75 MHz, CDCl3): 167.89, 165.52, 165.23, 157.09, 156.82, 

136.21, 127.07, 77.51, 74.53, 70.17, 63.44, 62.51, 62.01, 60.89, 14.19, 14.15, 14.06, 13.91; 13C 

NMR (75 MHz, CDCl3): 127.00, 77.44, 74.46, 70.11, 63.37, 62.44, 61.94, 60.82, 14.13, 14.09, 

13.99, 13.84; HRMS (ESI) m/z calculated for C18H27O11 ([M+H]+) 420.1582, found 420.1580. 

 

 

(2R,3R)-diethyl 2-(benzyloxy)-3-(2-ethoxy-2-oxoacetoxy)succinate (3i) 

Following general procedure GPIII using (2R,3R)-diethyl 2-(benzyloxy)-3-hydroxysuccinate 2i 

(538 mg, 1.81  mmol, 1.00 equiv), iPr2NEt (339 L, 258 mg, 2.00 mmol, 1.10 equiv), dry CH2Cl2 

(18 mL, 0.1 M) and ethyl 2-chloro-2-oxoacetate (223 L, 272 mg, 2.00 mmol, 1.10 equiv) gave 

695 mg (1.75 mmol, 97%) of (2R,3R)-diethyl 2-(benzyloxy)-3-(2-ethoxy-2-oxoacetoxy)succinate 

as a slightly yellowish oil after filtration through a short plug of flash silica gel (hexanes / EtOAc 

3:1). Rf (hexanes / EtOAc 1:1) = 0.82; IR (neat): 2986, 1743, 1471, 1371, 1302, 1271, 1175, 1151, 

1066, 1014, 920, 859, 746, 698, 623, 580 cm-1; 1H NMR (300 MHz, CDCl3): 7.42 – 7.27 (m, 5H), 

5.64 (d, J = 3.4 Hz, 1H), 4.92 (d, J = 11.9 Hz, 1H), 4.56 (dd, J = 11.4, 7.6 Hz, 2H), 4.40 – 4.05 (m, 

6H), 1.36 (t, J = 7.1 Hz, 3H), 1.28 (t, J =y 7.1 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, 

CDCl3): 168.19, 165.34, 136.54, 128.59, 128.57, 128.38, 76.10, 74.73, 73.66, 63.54, 62.56, 62.05, 

14.28, 14.06, 14.03; 13C NMR (DEPT-135, 75 MHz, CDCl3): 128.47, 128.45, 128.26, 75.97, 74.61, 

73.54, 63.42, 62.44, 61.93, 14.16, 13.93, 13.90; HRMS (ESI) m/z calculated for C19H25O9 ([M+H]+) 

397.1493, found 397.1490. 
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(2R,3R)-diethyl 2-(cinnamyloxy)-3-(2-ethoxy-2-oxoacetoxy)succinate (3j) 

Following general procedure GPIII using (2R,3R)-diethyl 2-(cinnamyloxy)-3-hydroxysuccinate 2j 

(258 mg, 800 mol, 1.00 equiv), iPr2NEt (218 L, 165 mg, 880 mol, 1.60 equiv), dry CH2Cl2 (8 

mL, 0.1 M) and ethyl 2-chloro-2-oxoacetate (143 L, 175 mg, 880 mol, 1.60 equiv) gave 315 mg 

(746 mol, 93%) of (2R,3R)-diethyl 2-(cinnamyloxy)-3-(2-ethoxy-2-oxoacetoxy)succinate as a 

slightly yellowish oil after filtration through a short plug of flash silica gel (hexanes / EtOAc 5:1). 

Rf (hexanes / EtOAc 3:1) = 0.51. IR (neat): 2989, 2164, 1743, 1449, 1370, 1304, 1268, 1179, 1149, 

1112, 1063, 1013, 972, 922, 858, 747, 694, 509, 424 cm-1;.1H NMR (300 MHz, CDCl3): 7.40 – 7.26 

(m, 5H), 6.59 (d, J = 15.9 Hz, 1H), 6.21 (ddd, J = 15.9, 6.9, 6.0 Hz, 1H), 5.68 (d, J = 3.3 Hz, 1H), 4.64 

(d, J = 3.3 Hz, 1H), 4.50 (ddd, J = 12.6, 5.9, 1.2 Hz, 1H), 4.38 – 4.19 (m, 7H), 1.36 (t, J = 7.2 Hz, 3H), 

1.25 (dt, J = 8.5, 7.2 Hz, 6H); 13C NMR (101 MHz, CDCl3): 168.34, 165.51, 157.23, 156.98, 136.40, 

134.38, 128.75, 128.18, 126.73, 124.45, 76.10, 74.76, 72.74, 63.52, 62.62, 62.05, 14.26, 14.15, 

14.02; 13C NMR (DEPT-135, 101 MHz, CDCl3): 134.26, 128.62, 128.05, 126.60, 124.31, 75.96, 

74.63, 72.61, 63.39, 62.50, 61.92, 14.14, 14.02, 13.89; HRMS (ESI) m/z calculated for C21H26KO9 

([M+K]+) 461.1208, found 461.1207. 

 

 

(2R,3R)-diethyl 2-(cyclohex-2-en-1-yloxy)-3-(2-ethoxy-2-oxoacetoxy)succinate (3k) 

Following general procedure GPIII using (2R,3R)-diethyl 2-(cyclohex-2-en-1-yloxy)-3-

hydroxysuccinate 2k (573 mg, 2.00 mmol, 1.00 equiv), iPr2NEt (374 L, 284 mg, 2.20 mmol, 1.10 

equiv), dry CH2Cl2 (20 mL, 0.1 M) and ethyl 2-chloro-2-oxoacetate (246 L, 300 mg, 2.20 mmol, 
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1.10 equiv) gave 690 mg (1.79 mmol, 89%) of (2R,3R)-diethyl 2-(cyclohex-2-en-1-yloxy)-3-(2-

ethoxy-2-oxoacetoxy)succinate as a slightly yellowish oil as a mixture of diastereomers 

(d.r.: 56:43) after filtration through a short plug of flash silica gel (hexanes / EtOAc 5:1). Rf 

(hexanes / EtOAc 3:1) = 0.63; IR (neat): 2986, 2943, 1949, 1744, 1453, 1398, 1371, 1306, 1268, 

1182, 1152, 1062, 1015, 969, 931, 905, 858, 771, 729, 582, 511, 448, 399 cm-1; HRMS (ESI) m/z 

calculated for C18H30O9 ([M+NH4]+) 404.1915, found 404.1915. 

1H NMR (Major Diastereomer, 400 MHz, CDCl3): 5.90 – 5.66 (m, 2H), 5.64 (d, J = 3.8 Hz, 1H), 4.63 

(d, J = 3.8 Hz, 1H), 4.36 – 4.18 (m, 6H), 3.98 (t, J = 3.6 Hz, 1H), 2.07 – 1.88 (m, 2H), 1.83 – 1.61 

(m, 3H), 1.57 – 1.43 (m, 1H), 1.37 – 1.25 (m, 9H). 

1H NMR (Minor Diastereomer, 400 MHz, CDCl3): 5.90 – 5.66 (m, 2H), 5.64 (d, J = 3.8 Hz, 1H), 4.66 

(d, J = 4.0 Hz, 1H), 4.36 – 4.18 (m, 6H), 4.10 – 4.03 (m, 1H), 2.07 – 1.88 (m, 2H), 1.83 – 1.61 (m, 

3H), 1.57 – 1.43 (m, 1H), 1.37 – 1.25 (m, 9H). 

13C NMR (Major Diastereomer, 101 MHz, CDCl3): 168.86, 165.63, 157.38, 157.38, 131.85, 127.12, 

75.65, 75.02, 74.28, 63.38, 61.89, 61.88, 27.37, 25.19, 18.70, 14.24, 14.12, 13.99. 

13C NMR (Minor Diastereomer, 101 MHz, CDCl3): 168.88, 165.60, 157.09, 157.06, 132.54, 125.82, 

75.56, 75.07, 74.80, 63.26, 62.54, 62.46, 28.92, 25.29, 18.91, 14.24, 14.14, 14.05. 

13C NMR (Major Diastereomer, DEPT-135, 101 MHz, CDCl3): 131.74, 126.99, 75.52, 74.90, 74.16, 

63.27, 62.42, 61.78, 27.25, 25.07, 18.58, 14.12, 14.01, 13.86. 

13C NMR (Minor Diastereomer, DEPT-135, 101 MHz, CDCl3): 132.42, 125.69, 75.44, 74.96, 74.68, 

63.15, 62.34, 61.76, 28.79, 25.17, 18.79, 14.12, 14.02, 13.93. 
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4.9.5 General procedure GPIV for photoreactions in a batch scale 

 

A Schlenk tube equipped with a magnetic stir bar was charged with ethyl oxalate ester (346 mg, 

1.00 mmol, 1.00 equiv), fac-Ir(ppy)3 (6.55 mg, 10.0 mol, 1.00 mol%), dissolved in DMF (10 mL, 

0.1M), sealed with a screw-cap and subsequently evacuated for 15 min. and backfilled with N2. 

The screw-cap was replaced with a Teflon sealed inlet for a glass rod, through which irradiation 

with a 455 nm high power LED took place from above while the reaction was magnetically stirred 

and heated in an aluminum block at 80 °C from below. The reaction was monitored by TLC. 

Afterwards the reaction mixture was diluted with EtOAc (300 mL) and extracted with water (5 x 

100 mL). The combined organic layers were dried over NaSO4, the solvent evaporated under 

reduced pressure and the residue purified by flash column chromatography. 

 

 

Diethyl 4-methyltetrahydrofuran-2,3-dicarboxylate (4a) 

Following general procedure GPIV using (2R,3R)-diethyl 2-(allyloxy)-3-(2-ethoxy-2-

oxoacetoxy)succinate 3a (346 mg, 1.00 mmol, 1.00 equiv), fac-Ir(ppy)3 (6.55 mg, 10.0 mol, 1.00 

mol%) and DMF (10 mL, 0.1M) gave 125 mg (543 mol, 54%) of a colorless oil as a mixture of 

diastereomers (d.r.: 62:28:8:2) after flash column purification (hexanes / EtOAc 5:1). Rf (hexanes 

/ EtOAc 1:1) = 0.81; IR (neat): 2979, 2939, 2877, 2190, 1731, 1464, 1372, 1275, 1180, 1095, 1027, 

939, 858, 462 cm-1; HRMS (ESI) m/z calculated for C11H18O5 ([M+H]+) 231.1227, found 231.1230. 

1H NMR (Major Diastereomer, 400 MHz, CDCl3): 4.80 (d, J = 6.1 Hz, 1H), 4.26 – 4.16 (m, 4H), 4.16 

– 4.08 (m, 1H), 3.63 (dd, J = 8.3, 6.2 Hz, 1H), 3.24 (dd, J = 8.3, 6.1 Hz, 1H), 2.67 (dp, J = 13.4, 6.8 

Hz, 1H), 1.32 – 1.23 (m, 6H), 1.01 (d, J = 7.0 Hz, 3H). 

1H NMR (Minor Diastereomer 1, 400 MHz, CDCl3): 4.72 (d, J = 7.4 Hz, 1H), 4.26 – 4.16 (m, 4H), 

4.16 – 4.08 (m, 1H), 3.58 (t, J = 8.7 Hz, 1H), 2.77 (dt, J = 11.1, 5.6 Hz, 1H), 2.62 – 2.51 (m, 1H), 

1.32 – 1.23 (m, 6H), 1.16 – 1.10 (m, 3H). 

1H NMR (Minor Diastereomer 2, 400 MHz, CDCl3): 4.65 (d, J = 8.3 Hz, 1H), 4.26 – 4.16 (m, 4H), 

4.16 – 4.08 (m, 1H), 3.48 (t, J = 8.0 Hz, 1H), 2.95 (t, J = 8.4 Hz, 1H), 2.67 (dp, J = 13.4, 6.8 Hz, 1H), 

1.32 – 1.23 (m, 6H), 1.01 (d, J = 7.0 Hz, 3H). 
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1H NMR (Minor Diastereomer 3, 400 MHz, CDCl3): 4.59 (d, J = 2.3 Hz, 1H), 4.26 – 4.16 (m, 4H), 

4.16 – 4.08 (m, 1H), 3.41 (d, J = 7.3 Hz, 1H), 2.77 (dt, J = 11.1, 5.6 Hz, 1H), 2.62 – 2.51 (m, 1H), 

1.32 – 1.23 (m, 6H), 1.01 (d, J = 7.0 Hz, 3H). 

13C NMR (Major Diastereomer, 101 MHz, CDCl3): 171.98, 171.17, 78.74, 75.67, 61.45, 61.13, 

52.28, 36.87, 14.42, 14.29, 13.40. 

13C NMR (Minor Diastereomer 1, 101 MHz, CDCl3): 172.16, 171.90, 79.85, 76.02, 61.44, 61.36, 

55.81, 39.80, 15.85, 14.34, 14.29. 

13C NMR (Major Diastereomer, DEPT-135, 101 MHz, CDCl3): 78.61, 75.54, 61.33, 61.00, 52.61, 

36.75, 14.30, 14.16, 13.27. 

13C NMR (Minor Diastereomer 1, DEPT-135, 101 MHz, CDCl3): 79.72, 75.89, 61.33, 61.24, 55.68, 

39.67, 15.73, 14.22, 14.10. 
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4.9.6 General procedure GPV for photoreactions in a microreactor 

A Schlenk tube equipped with a magnetic stir bar was charged with ethyl oxalate ester (1.00 

mmol, 1.00 equiv), fac-Ir(ppy)3 (6.55 mg, 10.0 mol, 1.00 mol%) and dissolved in DMF (10 mL, 

0.1 M). The reaction mixture was degassed by sparging with N2 through a needle and a septum 

for 30 min. and pumped through a micro reactor (which was sparged with N2 too) equipped with 

8 LED’s at a flow rate of 0.35 mL/h via a syringe pump while heated at 80 °C. Afterwards the 

reaction mixture was diluted with EtOAc (300 mL) and extracted with water (5 x 100 mL). The 

combined organic layers were dried over NaSO4, the solvent evaporated under reduced pressure 

and the residue purified by flash column chromatography. 

 

 

Diethyl (2R,3R,4S)-4-methyltetrahydrofuran-2,3-dicarboxylate (4a)  

Following general procedure GPV using (2R,3R)-diethyl 2-(allyloxy)-3-(2-ethoxy-2-

oxoacetoxy)succinate 3a (346 mg, 1.00 mmol, 1.00 equiv), fac-Ir(ppy)3 (6.55 mg, 10.0 mol, 1.00 

mol%) and DMF (10 mL, 0.1 M) gave 167 mg (725 mol, 73%) of a colorless oil as a mixture of 

diastereomers (d.r.: 62 : 28 : 8:2) after filtration through a short plug of flash silica gel (hexanes 

/ EtOAc 5:1). (NMR information see General procedure GPIV for photoreactions in a batch scale 

above) 

  

 

Diethyl (2R,3R,4S)-4-methyltetrahydrofuran-2,3-dicarboxylate (4b) 

Following general procedure GPV using (2S,3S)-diethyl 2-(allyloxy)-3-(2-ethoxy-2-

oxoacetoxy)succinate 3b (346 mg, 1.00 mmol, 1.00 equiv), fac-Ir(ppy)3 (6.55 mg, 10.0 mol, 1.00 

mol%) and DMF (10 mL, 0.1 M) gave 163 mg (711 mol, 71%) of a colorless oil as a mixture of 

diastereomers (d.r.: 57:37:6) after filtration through a short plug of flash silica gel (hexanes / 

EtOAc 5:1). 



Chapter 4 Visible light photoredox catalyzed synthesis of chiral tetrahydrofuranes      2015 

 

128 
 

1H NMR (Major Diastereomer, 300 MHz, CDCl3): 4.75 (d, J = 6.1 Hz, 1H), 4.23 – 4.02 (m, 5H), 3.63 

– 3.48 (m, 1H), 3.20 (dd, J = 8.3, 6.1 Hz, 1H), 2.68 – 2.44 (m, 1H), 1.30 – 1.17 (m, 6H), 0.96 (d, J = 

7.0 Hz, 3H). 

1H NMR (Minor Diastereomer 1, 300 MHz, CDCl3): 4.68 (d, J = 7.4 Hz, 1H), 4.23 – 4.02 (m, 5H), 

3.63 – 3.48 (m, 1H), 2.73 (dd, J = 8.8, 7.4 Hz, 1H), 2.68 – 2.44 (m, 1H), 1.30 – 1.17 (m, 6H), 1.08 

(dd, J = 6.6, 3H). 

1H NMR (Minor Diastereomer 2, 300 MHz, CDCl3): 4.61 (d, J = 8.3 Hz, 1H), 4.23 – 4.02 (m, 5H), 

3.44 (t, J = 8.0 Hz, 1H), 2.91 (t, J = 8.4 Hz, 1H), 2.68 – 2.44 (m, 1H), 1.30 – 1.17 (m, 6H), 1.07 (d, J 

= 6.7 Hz, 3H). 

13C NMR (Major Diastereomer, 75 MHz, CDCl3): 172.00, 171.19, 78.71, 75.66, 61.48, 61.15, 52.26, 

36.87, 14.43, 14.30, 13.40. 

13C NMR (Minor Diastereomer 1, 75 MHz, CDCl3): 172.17, 171.92, 79.82, 76.02, 61.48, 61.39, 

55.79, 39.82, 15.84, 14.35, 13.40. 

13C NMR (Major Diastereomer, DEPT-135, 75 MHz, CDCl3): 78.59, 75.54, 61.36, 61.03, 52.14, 

36.75, 14.31, 14.18, 13.28. 

13C NMR (Minor Diastereomer 1, DEPT-135, 75 MHz, CDCl3): 79.70, 75.90, 61.36, 61.27, 55.67, 

39.70, 15.72, 14.23, 13.28. 

 

 

Diethyl (2R,3R,4S)-4-ethyltetrahydrofuran-2,3-dicarboxylate (4c) 

Following general procedure GPV using (2R,3R)-diethyl 2-((E)-but-2-en-1-yloxy)-3-(2-ethoxy-2-

oxoacetoxy)succinate 3c (360mg, 1.00 mmol, 1.00 equiv), fac-Ir(ppy)3 (6.55 mg, 10.0 mol, 1.00 

mol%) and DMF (10 mL, 0.1 M) at a flow rate of 0.3 mL/h gave 183mg (750 mol, 75%) of a 

colorless oil as a mixture of diastereomers (d.r.: 60 : 34 : 5 : 1) after flash column purification 

(hexanes / EtOAc 3:1). Rf (hexanes / EtOAc 1:1) = 0.92; IR (neat): 2970, 2938, 2878, 1729, 1464, 

1372, 1266, 1179, 1135, 1095, 1028, 943, 857, 433 cm-1; HRMS (ESI) m/z calculated for C12H21O5 

([M+H]+) 245.1384, found 245.1388. 
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1H NMR (Major Diastereomer, 300 MHz, CDCl3): 4.71 (d, J = 5.0 Hz, 1H), 4.18 – 4.08 (m, 5H), 3.64 

(dt, J = 13.8, 8.2 Hz, 1H), 3.21 (dd, J = 8.4, 5.0 Hz, 1H), 2.48 – 2.32 (m, 1H), 1.66 – 1.28 (m, 2H), 

1.27 – 1.20 (m, 6H), 0.88 (ddd, J = 7.5, 6.1, 3.9 Hz, 3H). 

1H NMR (Minor Diastereomer 1, 300 MHz, CDCl3): 4.64 (d, J = 7.2 Hz, 1H), 4.18 – 4.08 (m, 5H), 

3.64 (dt, J = 13.8, 8.2 Hz, 1H), 2.82 – 2.74 (m, 1H), 2.48 – 2.32 (m, 1H), 1.66 – 1.28 (m, 2H), 1.27 

– 1.20 (m, 6H), 0.88 (ddd, J = 7.5, 6.1, 3.9 Hz, 3H). 

1H NMR (Minor Diastereomer 2, 300 MHz, CDCl3): 4.52 (d, J = 3.4 Hz, 1H), 4.18 – 4.08 (m, 5H), 

3.64 (dt, J = 13.8, 8.2 Hz, 1H), 2.82 – 2.74 (m, 1H), 2.48 – 2.32 (m, 1H), 1.66 – 1.28 (m, 2H), 1.27 

– 1.20 (m, 6H), 0.88 (ddd, J = 7.5, 6.1, 3.9 Hz, 3H). 

1H NMR (Minor Diastereomer 3, 300 MHz, CDCl3): 4.58 (d, J = 8.3 Hz, 1H), 4.18 – 4.08 (m, 5H), 

3.55 – 3.47 (m, 1H), 2.98 (t, J = 8.1 Hz, 1H), 2.48 – 2.32 (m, 1H), 1.66 – 1.28 (m, 2H), 1.27 – 1.20 

(m, 6H), 0.88 (ddd, J = 7.5, 6.1, 3.9 Hz, 3H). 

13C NMR (Major Diastereomer, 75 MHz, CDCl3): 171.87, 171.37, 79.11, 73.29, 61.36, 61.00, 51.55, 

44.06, 21.00, 14.28, 14.18, 12.75. 

13C NMR (Minor Diastereomer 1, 75 MHz, CDCl3): 172.51, 171.63, 79.93, 74.32, 61.33, 61.26, 

54.16, 46.48, 25.09, 14.28, 14.18, 12.37. 

13C NMR (Major Diastereomer, DEPT-135, 75 MHz, CDCl3): 79.06, 73.23, 61.31, 61.08, 60.94, 

51.49, 44.01, 20.94, 14.22, 14.13, 12.70. 

13C NMR (Minor Diastereomer, DEPT-135, 75 MHz, CDCl3): 79.88, 74.26, 61.27, 61.21, 60.94, 

54.11, 46.43, 25.03, 14.22, 14.13, 12.32. 

 

 

Diethyl (2R,3R,4S)-4-(prop-1-en-2-yl)tetrahydrofuran-2,3-dicarboxylate (4d) 

Following general procedure GPV using (2R,3R)-diethyl 2-((E)-but-2-en-1-yloxy)-3-(2-ethoxy-2-

oxoacetoxy)succinate 3d (374mg, 1.00 mmol, 1.00 equiv), fac-Ir(ppy)3 (6.55 mg, 10.0 mol, 1.00 

mol%) and DMF (10 mL, 0.1 M) gave 137mg (530 mol, 53%) of a colorless oil after flash column 

purification (hexanes / EtOAc 7:1). Rf (hexanes / EtOAc 3:1) = 0.49; IR (neat): 2970, 2938, 2878, 
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1729, 1464, 1372, 1266, 1179, 1135, 1095, 1028, 943, 857, 433 cm-1; IR (neat): 2982, 1732, 1464, 

1379, 1269, 1217, 1183, 1102, 1026, 913, 858, 729, 650, 532, 454, 428 cm-1. HRMS (ESI) m/z 

calculated for major product C13H21O5 ([M+H]+) 257.1384, found 257.1391. 

1H NMR (Major product, 400 MHz, CDCl3): 4.85 (dd, J = 4.0, 2.6 Hz, 2H), 4.69 (d, J = 7.5 Hz, 1H), 

4.27 – 4.09 (m, 5H), 3.84 (t, J = 8.8 Hz, 1H), 3.26 – 3.16 (m, 1H), 3.13 (dd, J = 9.3, 7.5 Hz, 1H), 1.73 

(s, 3H), 1.30 – 1.23 (m, 6H). 

1H NMR (Minor product, 400 MHz, CDCl3): 4.61 (d, J = 7.1 Hz, 1H), 4.27 – 4.09 (m, 5H), 3.75 (t, J 

= 8.6 Hz, 1H), 2.94 – 2.84 (m, 1H), 2.39 (p, J = 8.3 Hz, 1H), 1.69 – 1.61 (m, 1H), 1.30 – 1.23 (m, 

6H), 0.93 (d, J = 6.7 Hz, 3H), 0.88 (d, J = 6.7 Hz, 3H). 

13C NMR (Major product, 101 MHz, CDCl3): 172.03, 171.43, 141.06, 113.45, 80.22, 73.01, 61.50, 

61.43, 52.44, 51.81, 20.21, 14.30, 14.26. 

13C NMR (Minor product, 101 MHz, CDCl3): 173.17, 171.54, 80.83, 73.07, 61.40, 61.33, 52.72, 

51.66, 30.76, 21.03, 20.83, 14.26, 14.23. 

13C NMR (Major product, DEPT-135, 101 MHz, CDCl3): 113.34, 80.10, 72.89, 61.39, 61.31, 61.22, 

52.32, 51.69, 20.09, 14.19, 14.15. 

13C NMR (Minor product, DEPT-135, 101 MHz, CDCl3): 80.71, 72.96, 61.29, 61.22, 52.61, 51.55, 

30.64, 20.91, 20.72, 14.15, 14.11. 

 

 

Diisopropyl (2R,3R,4S)-4-methyltetrahydrofuran-2,3-dicarboxylate (4e)  

Following general procedure GPV using (2R,3R)-diisopropyl 2-(allyloxy)-3-(2-ethoxy-2-

oxoacetoxy)succinate 3e (374mg, 1.00 mmol, 1.00 equiv), fac-Ir(ppy)3 (6.55 mg, 10.0 mol, 1.00 

mol%) and DMF (10 mL, 0.1 M) at a flow rate of 0.3 mL/h gave 168 mg (650 mol, 65%) of a 

colorless oil as a mixture of diastereomers (d.r.: 60 : 32 : 5 : 3) after flash column purification 

(hexanes / EtOAc 3:1). Rf (hexanes / EtOAc 1:1) = 0.83; IR (neat): 2980, 2940, 2879, 1727, 1469, 

1375, 1273, 1180, 1145, 1103, 989, 944, 902, 829 cm-1. HRMS (ESI) m/z calculated for C13H23O5 

([M+H]+) 259.1540, found 259.1545. 
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1H NMR (Major Diastereomer, 300 MHz, CDCl3): 5.10 – 4.91 (m, 2H), 4.69 (d, J = 6.3 Hz, 1H), 4.07 

(ddd, J = 8.3, 6.7, 4.3 Hz, 1H), 3.64 – 3.47 (m, 1H), 3.11 (dd, J = 8.4, 6.3 Hz, 1H), 2.71 – 2.55 (m, 

1H), 1.25 – 1.13 (m, 12H), 0.96 (d, J = 7.0 Hz, 3H). 

1H NMR (Minor Diastereomer 1, 300 MHz, CDCl3): 5.10 – 4.91 (m, 2H), 4.61 (d, J = 7.6 Hz, 1H), 

4.07 (ddd, J = 8.3, 6.7, 4.3 Hz, 1H), 3.64 – 3.47 (m, 1H), 2.71 – 2.55 (m, 1H), 2.55 – 2.40 (m, 1H), 

1.25 – 1.13 (m, 12H), 0.96 (d, J = 7.0 Hz, 3H). 

1H NMR (Minor Diastereomer 2, 300 MHz, CDCl3): 5.10 – 4.91 (m, 2H), 4.54 (d, J = 8.2 Hz, 1H), 

4.07 (ddd, J = 8.3, 6.7, 4.3 Hz, 1H), 3.42 (t, J = 8.0 Hz, 1H), 2.85 (t, J = 8.3 Hz, 1H), 2.71 – 2.55 (m, 

1H), 2.85 (t, J = 8.3 Hz, 1H), 1.25 – 1.13 (m, 12H), 0.96 (d, J = 7.0 Hz, 3H). 

1H NMR (Minor Diastereomer 3, 300 MHz, CDCl3): 5.10 – 4.91 (m, 2H), 4.49 (d, J = 3.3 Hz, 1H), 

4.07 (ddd, J = 8.3, 6.7, 4.3 Hz, 1H), 3.64 – 3.47 (m, 1H), 2.71 – 2.55 (m, 2H), 1.25 – 1.13 (m, 12H), 

0.96 (d, J = 7.0 Hz, 3H). 

13C NMR (Major Diastereomer 1, 75 MHz, CDCl3): 171.41, 170.52, 78.70, 75.60, 68.80, 68.56, 

52.33, 36.69, 21.92, 21.89, 21.77, 21.71, 13.29. 

13C NMR (Major Diastereomer 2, 75 MHz, CDCl3): 171.54, 171.38, 79.79, 75.92, 68.77, 68.63, 

56.05, 39.81, 21.92, 21.82, 21.77, 21.71, 15.51. 

13C NMR (Major Diastereomer 1, DEPT-135, 75 MHz, CDCl3): 78.65, 75.55, 68.75, 68.51, 52.27, 

36.64, 21.87, 21.83, 21.72, 21.66, 13.24. 

13C NMR (Major Diastereomer 2, DEPT-135, 75 MHz, CDCl3): 79.74, 75.87, 68.72, 68.57, 55.99, 

39.76, 21.87, 21.76, 21.72, 21.66, 15.46. 

 

 

Diethyl (2R,3R)-4,4-dimethyltetrahydrofuran-2,3-dicarboxylate (4g) 

Following general procedure GPV using (2R,3R)-diethyl 2-(2-ethoxy-2-oxoacetoxy)-3-((2-

methylallyl)oxy)succinate 3g (144 mg, 400 mol, 1.00 equiv), fac-Ir(ppy)3 (2.62 mg, 4.00 mol, 

1.00 mol%) and DMF (4 mL, 0.1 M) gave 68 mg (278 mol, 70%) of a colorless oil after filtration 

through a short plug of flash silica gel (hexanes / EtOAc 3:1). Rf (hexanes / EtOAc 1:1) = 0.8, IR 

(neat): 2978, 2874, 1729, 1466, 1371, 1337, 1264, 109, 1179, 1093, 1028, 968, 940, 860, 716, 
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441 cm-1. 1H NMR (300 MHz, CDCl3): 4.89 (d, J = 8.0 Hz, 1H), 4.27 – 4.12 (m, 4H), 3.69 (s, 2H), 

2.89 (d, J = 8.0 Hz, 1H), 1.31 – 1.23 (m, 6H), 1.20 (s, J = 3.9 Hz, 3H), 1.02 (s, 3H); 13C NMR (75 MHz, 

CDCl3): 172.26, 170.64, 81.59, 78.79, 61.38, 61.10, 58.11, 43.68, 24.90, 21.99, 14.43, 14.26; 13C 

NMR (DEPT-135, 75 MHz, CDCl3): 81.48, 78.69, 61.28, 61.01, 58.01, 24.80, 21.89, 14.33, 14.16; 

HRMS (ESI) m/z calculated for C12H21O5 ([M+H]+) 245.1384, found 245.1388. 

 

 

(R)-diethyl 2-(benzyloxy)succinate (4i)21 

Following general procedure GPV using (2R,3R)-diethyl 2-(benzyloxy)-3-(2-ethoxy-2-

oxoacetoxy)succinate 3i (396 mg, 1.00 mmol, 1.00 equiv), fac-Ir(ppy)3 (6.55 mg, 10.0 mol, 1.00 

mol%) and DMF (10 mL, 0.1 M) at a flow rate of 0.3 mL/h gave 170 mg (640 mol, 64%) of a 

colorless oil after flash column purification (hexanes / EtOAc 5:1).Rf (hexanes / EtOAc 1:1) = 0.86; 

1H NMR (400 MHz, CDCl3): 7.37 – 7.25 (m, 5H), 4.77 (d, J = 11.4 Hz, 1H), 4.54 (d, J = 11.4 Hz, 1H), 

4.39 (dd, J = 7.8, 5.1 Hz, 1H), 4.25 – 4.10 (m, 4H), 2.85 – 2.71 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H), 1.23 

(t, J = 7.2 Hz, 3H); 13C (101 MHz, CDCl3): 171.43, 170.12, 137.40, 128.43, 128.15, 127.98, 74.76, 

73.11, 61.29, 60.92, 38.15, 14.24, 14.19. 

 

 

Diethyl (2R,3R,3aS,7aS)-octahydrobenzofuran-2,3-dicarboxylate (4k)  

Following general procedure GPV using (2R,3R)-diethyl 2-(cyclohex-2-en-1-yloxy)-3-(2-ethoxy-2-

oxoacetoxy)succinate 3k (386 mg, 1.00 mmol, 1.00 equiv), fac-Ir(ppy)3 (6.55 mg, 10.0 mol, 1.00 

mol%) and DMF (10 mL, 0.1 M) gave 170 mg (629 mol, 63%) of a colorless oil as a mixture of 

diastereomers (d.r.: 57:43) after flash column purification (hexanes / EtOAc 6:1).Rf (hexanes / 

EtOAc 3:1) = 0.6; IR (neat): 2970, 2938, 2878, 1729, 1464, 1372, 1266, 1179, 1135, 1095, 1028, 

943, 857, 433 cm-1; IR (neat): 2992, 2935, 2866, 1730, 1449, 1370, 1271, 1221, 1183, 1115, 1093, 
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1025, 1000, 938, 858, 491, 440 cm-1; HRMS (ESI) m/z calculated for C14H23O5 ([M+H]+) 271.1540, 

found 271.1543. 

1H NMR (Major Diastereomer, 300 MHz, CDCl3): 4.91 (d, J = 8.4 Hz, 1H), 4.23 – 4.14 (m, 4H), 3.36 

(dd, J = 8.3, 6.5 Hz, 1H), 2.37 – 2.27 (m, 1H), 2.15 – 2.05 (m, 1H), 1.75 – 1.29 (m, 7H), 1.28 – 1.22 

(m, 6H). 

1H NMR (Minor Diastereomer, 300 MHz, CDCl3): 4.72 (d, J = 5.9 Hz, 1H), 4.23 – 4.14 (m, 4H), 3.01 

(dd, J = 5.7, 4.9 Hz, 1H), 2.37 – 2.27 (m, 1H), 1.91 – 1.79 (m, 1H), 1.75 – 1.29 (m, 7H), 1.28 – 1.22 

(m, 6H). 

13C NMR (Major Diastereomer, 75 MHz, CDCl3): 172.98, 170.31, 79.15, 76.39, 61.31, 61.07, 53.33, 

41.29, 27.71, 24.18, 23.24, 19.77, 14.38, 14.28. 

13C NMR (Minor Diastereomer, 75 MHz, CDCl3): 172.94, 171.96, 78.66, 78.34, 61.41, 61.31, 

53.22, 42.72, 28.13, 26.97, 23.30, 21.04, 14.31, 14.28. 

13C NMR (Major Diastereomer, DEPT-135, 75 MHz, CDCl3): 79.05, 76.30, 61.22, 60.98, 53.24, 

41.19, 27.62, 24.09, 23.14, 19.68, 14.29, 14.19. 

13C NMR (Minor Diastereomer, DEPT-135, 75 MHz, CDCl3): 78.56, 78.25, 61.32, 61.22, 53.13, 

42.63, 28.04, 26.88, 23.20, 20.95, 14.22, 14.19. 
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4.9.7 Trapping reactions 

 

 

 

Diethyl (2R,3R,4S)-4-(methyl-d)tetrahydrofuran-2,3-dicarboxylate (7) 

Following general procedure GPIV using (2R,3R)-diethyl 2-(allyloxy)-3-(2-ethoxy-2-

oxoacetoxy)succinate 3a (34.6 mg, 100 mol, 1.00 equiv), fac-Ir(ppy)3 (1.31 mg, 2.00 mol, 2.00 

mol%) and DMF-d7 (1.0 mL, 0.1M) gave deuterated compound 7 detected by mass 

spectroscopy. HRMS (ESI) m/z calculated for C11H18DO5 ([M+H]+) 232.1290, found 232.1288.  
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Diethyl (2R)-2-(allyloxy)-3-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)succinate (8) 

Following general procedure GPIV using (2R,3R)-diethyl 2-(allyloxy)-3-(2-ethoxy-2-

oxoacetoxy)succinate 3a (34.6 mg, 100 mol, 1.00 equiv), TEMPO (31.3 mg, 200 mol, 2.00 

equiv), fac-Ir(ppy)3 (1.31 mg, 2.00 mol, 2.00 mol%) and DMF (1.0 mL, 0.1 M) gave TEMPO 

trapped compound 8. HRMS (ESI) m/z calculated for C20H36NO6 ([M+H]+) 386.2537, found 

386.2537. 
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Chiral HPLC 

 

            

 

 

 

 

     

 

            



Chapter 4 Visible light photoredox catalyzed synthesis of chiral tetrahydrofuranes      2015 

 

137 
 

4.9.8 Spectra of compounds 
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5 Photoredox catalyzed vinyl radical formation following acrylamide 

synthesis 

 

5.1 Introduction 

Stork et al. developed a strategy to use vinyl radicals as a versatile tool in a variety of synthetic 

organic transformations. Their applications range from cyclization processes to intermolecular 

carbon – carbon bond formations, and radical polymerization reactions.1,2 The reactive radical 

intermediates were prepared thermically using tributyltin hydride and a radical initiator such as 

AIBN. As alternative, induction processes were carried out electrochemically3,4 or by photoly-

sis5-7 of vinyl halides and are well established in the literature. Highly reactive and electrophilic 

vinyl radicals derived from -bromochalcones via visible light photoredox catalysis have already 

been trapped by various alkenes to generate carbon – carbon bonds, as reported previously in 

our group. Alkenes with allylic leaving groups have been utilized in atomic transfer radical 

addition (ATRA) processes8, whereas Heck-type couplings as well as cyclization cascades have 

been realized via internal and terminal alkenes (Scheme 1).9,10  

 

 

Scheme 1. Coupling of -bromochalcones with olefins – possible reaction pathways.8-10 

 

Considering the aforementioned photoredox catalyzed couplings of -bromochalcones to 

olefins, continuative studies on intermolecular carbon – carbon bond formation with 1-

isocyano-2,4-dimethoxybenzene have been investigated. Thereby, acrylamide substrates were 

synthesized and subjected to pharmaceutical tests to examine their biological activity.  
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Acrylamides depict a broad substrate class for multiple industrial applications.11 Especially their 

occurrence in food in predominantly heat treated carbohydrate-rich foods is monitored critically 

by the food industry, as they can act as potential toxicants via Maillard reaction12,13.14,15 Beyond, 

acrylamides are mainly used in water and wastewater treatment, mineral and paper processes,11 

as well as active compounds in the pharmaceutical industry, for e.g. anti-inflammation, anti-

rheumatoid arthritis, anti-hypercalcemia, anti-osteoporosis and/or bone resorption-

suppressing.16 Moreover, acrylamide derivatives are useful as insecticides17 in plant protection 

(Scheme 2).  

 

 

Scheme 2. Two examples for biologically active cinnamide compounds against insects and acarina 117 and as bone 

resorption-suppressing agent 216. 

 

5.2 Initial screening experiments 

We initiated our investigations with the visible light mediated reaction between -

bromochalcone 4 and isonitrile 5 in the presence of 2 mol% Cu(dap)2Cl as photoredox catalyst, 

1 equivalent of water and DMF as solvent at ambient temperature and under N2 atmosphere 

resulted in the formation of the desired acrylamide 6, albeit in a yield of only 2% (Table 1, entry 

1). Employing some other well established photoredox catalysts such as Ir(ppy)2(dtb-bpy)PF6 

(Table 1, entry 2), fac-Ir(ppy)3 (Table 1, entry 3) or Ru(bpy)3Cl2 (Table 1, entry 4) which all have 

been utilized in oxidative quenching processes successfully before, gave improved isolated 

yields of 13%, 45%, and 47% after 18 h irradiation time. Having identified Ru(bpy)3Cl2 as most 

suitable catalyst, commonly used solvents in photoredox reactions have been screened. The first 

applied polar CH3CN or CH2Cl2 / THF (9:1) mixture yielded 16% and 15% (Table 1, entry 4 and 5). 

In the absence of THF using of exclusively non polar CH2Cl2, no product formation was detected 

(Table 1, entry 6). Polar aprotic DMF turned out to be superior towards acrylamide formation 6 
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and yielded 47%. Considering the necessity of H2O as nucleophile for the acrylamide 6 formation, 

no reaction took place in its absence (Table 1, entry 8). Moreover, control experiments proved 

that the acrylamide synthesis is indeed a photoredox catalyzed reaction. In the absence of light 

or catalyst no reaction takes place (Table 1, entry 9 and 10). 

 

Table 1. Initial screening experiments for the visible light mediated acrylamide 6 formation. 

 

Entry Photoredox catalyst, solvent, modification Yield [%]a 

1 Cu(dap)2Cl2 2 

2 Ir(ppy)2(dtb-bpy)PF6 13 

3 fac-Ir(ppy)3 45 

4 CH3CN 16 

5 CH2Cl2 / THF (9:1) 15 

6 CH2Cl2 0 

7 none 47 

8 w/o water, fac-Ir(ppy) (2.0 mol%) 0 

9 w/o light source  0 

10 w/o photocatalyst 0 

areaction conditions: 0.3 mmol scale, photocatalyst (2.0 mol%), isonitrile 5 (2.0 equiv), H2O (1.0 equiv), solvent (c = 

0.15 M), 18 h, 25 °C, N2, isolated yields.  
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Beside these screening experiments (Table 1), modifications of the amount of additives and 

other parameters were performed to obtain the best conditions (Table 2). The amount of H2O 

was adapted while using fac-Ir(ppy)3 instead of Ru-based photocatalyst. Increased quantity of 

H2O equivalents to 5 and 10 yielded constantly 46% and 45% of 6 (Table 2, entry 1 and 2), 

whereas highly excess of 100 equiv H2O gave poor yield of 17% of the desired product 6. Since 

no improvement could be achieved, only a prolonged irradiation time of 72 h elevated the yield 

slightly to 51% (Table 2, entry 4). Surprisingly, addition of the original amount of catalyst, 

isonitrile 5 and H2O after 20 h and prolonged reaction time of 48 h yielded only 40% (Table 2, 

entry 5). Further screenings to determine the optimal amount of coupling reagent 5 were 

performed. The use of 1 equiv isonitrile 5 decreased the yield of 6 to 32% (Table 2, entry 6) and 

a yield of 47% was achieved for excess of 3 equiv of 5 (Table 2, entry 7). The yield could further 

be improved to 52% using fourfold amount of isonitrile 5 (Table 2, entry 8). Moreover, 

experiments on the temperature dependence have been investigated. Cooling of the reaction 

mixture during irradiation to 0 °C (Table 2, entry 9) led to 26% yield for the product 6. The 

performance of the reaction at an increased temperature at 40 °C gave 35% isolated yield (Table 

2, entry 10), whereas further temperature increase to 60 °C (Table 2, entry 11) or even 80 °C 

(Table 2, entry 12) revealed the tendency of diminishing yields for photoinduced carbon – 

carbon bond coupling at higher temperatures . Modification of the catalyst loading to 1.0 mol% 

(Table 2, entry 13) yielded lower 22% and negligible increased yield of 53% was isolated for 6 at 

3.0 mol% (Table 2, entry 14). The last parameter was the variation of the concentration in the 

photoreaction. Nevertheless, neither halving the concentration to 0.075 M (Table 2, entry 15) 

nor an increase to 0.3 M (Table 2, entry 16) were propitious. The variation to isonitrile 5 as 

limiting reactant and the use of -bromochalcone 4 in an excess of 1.5 equiv (Table 1, entry 17) 

gave related 45% of the corresponding acrylamide 6 and 38% hydrolyzed N-(2,4-

dimethoxyphenyl)formamide as byproduct. Albeit, no significant improvement in yield was 

achieved by the screening of various parameters, the best result for the photoredox catalyzed 

acrylamide synthesis was obtained using 2 mol% Ru(bpy)3Cl2, 2.0 equiv isonitrile 5, 1.0 equiv H2O 

in DMF at ambient temperature (Table 1).  

 

 

 

 

 



Chapter 5   Photoredox catalyzed vinyl radical formation following acrylamide synthesis   2015 

 

186 
 

Table 2. Advanced screening experiments for the visible light mediated acrylamide 6 formation. 

Entry Changes from standard conditions Yield [%]a 

1 H2O (5.0 equiv), fac-Ir(ppy)3 (2.0 mol%) 46 

2 H2O (10 equiv), fac-Ir(ppy)3 (2.0 mol%) 45 

3 H2O (100 equiv), fac-Ir(ppy)3 (2.0 mol%) 17 

4 fac-Ir(ppy)3 (2.0 mol%)b 51 

5 fac-Ir(ppy)3 (2.0 mol%)c 40 

6 Isonitrile 5 (1.0 equiv) 32 

7 Isonitrile 5 (3.0 equiv) 47 

8 Isonitrile 5 (4.0 equiv) 52 

9 0 °C 26 

10 40 °C 35 

11 60 °C 16 

12 80 °C 7 

13 Ru(bpy)3Cl2 (1.0 mol%) 22 

14 Ru(bpy)3Cl2 (3.0 mol%) 53 

15 c = 0.075 M 40 

16 c = 0.3 M 34 

17 -bromochalcone 4 (1.5 equiv), isonitrile 5 (1.0 equiv)d 45 

areaction conditions: 0.3 mmol scale, Ru(bpy)3Cl2 (2.0 mol%), isonitrile 5 (2.0 equiv), H2O (1.0 equiv), DMF (c = 0.15 

M), 18 h, 25 °C, N2, isolated yields. b72 h reaction time. cadditional catalyst (2.0 mol%), isonitrile 5 (2.0 equiv) and H2O 

(1.0 equiv) after 20 h, 48 h total reaction time. d38% N-(2,4-dimethoxyphenyl)formamide as byproduct. 
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5.3 Starting material synthesis 

After setting up the light mediated reaction conditions for acrylamide preparation, -

bromochalcones and bromoacrylates were prepared in the presence of chalcones, potassium 

salt OXONE as oxidizing agent in the presence of 2N HBr in CH2Cl2 at ambient temperature. After 

complete bromination of the alkene moiety, NEt3 as base was added to give the desired products 

(Table 3). Chlorine substituted chalcones at the para position gave generally good yields of the 

corresponding products with various E/Z ratios (Table 3, entry 1-3). Moreover, moderate yields 

were achieved for para and ortho fluorinated compounds (Table 3, entry 4-6) and electron rich 

heteroaromatic thiophene derivative 4g (Table 3, entry 7) with an excess of cis isomers. 

Chalcone 3h (Table 3, entry 8) and p-methylated compound 3i (Table 3, entry 9) yielded 87% 

and 74% of brominated compounds 4h and 4i with E/Z ratios 13:87 and 22:78. Compound 3j 

containing an electron withdrawing p-nitro substituent yielded corresponding -bromochalcone 

4j in 79% with E/Z ratio 36:64 (Table 3, entry 10). Replacement of one aryl group by an ethyl 

ester gave 78% yield of the mono-brominated ethyl 3-phenylacrylate 4k (Table 3, entry 11). In 

addition, poor yield of 27% was achieved for aromatic free dimethylacrylate compound 4l (Table 

3, entry 12). 
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Table 3. Synthesis of -bromochalcones and bromoacrylates as starting materials for the light mediated acrylamide 

preparation. 
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aisolated yields. 
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5.4 Visible light mediated acrylamide synthesis 

Having -bromochalcones in hand, light mediated acrylamide preparation was performed using 

Ru(bpy)3Cl2 as photoredox catalyst, 1-isocyano-2,4-dimethoxybenzene 5 as coupling reagent 

and H2O as nucleophile in DMF at ambient temperature after 18 h reaction time (Table 4). 

Electron donating and withdrawing groups, as well as halides in either ring of the chalcone were 

examined. Previously screened -bromochalcone 4a yielded 47% of the corresponding 

acrylamide 6a (E/Z = 15:85) in analytical pure form after column purification on flash silica (Table 

4, entry 1). Further p-chlorinated 4b (Table 4, entry 2) and 4c (Table 4, entry 3) compounds, 

likewise gave 40% (E/Z = 16:84) and 49% (E/Z = 13:87) yield of the desired photoredox catalyzed 

products 6b and 6c. Respectively, 47% and 46% yield were achieved for acrylamide derivatives 

6d and 6e by replacement of chlorine to fluorine at the para position (Table 4, entry 4 and 5). 

Modification to o-fluorine including -bromochalcone 4f yielded moderate 47% and an excess 

of trans isomer of 84% of the corresponding product 6f (Table 4, entry 6). Substitution of an aryl 

group by an electron rich thiophene was also well tolerated and gave 43% isolated yield of 6g 

(E/Z = 13:87; Table 4, entry 7). Moreover, slightly increased 55% yield of 6h (E/Z = 13:87) was 

achieved for the photoinduced reaction of unsubstituted -bromochalcone 4h (Table 4, entry 8), 

whereas p-methylated derivative 4i (Table 4, entry 9) yielded 47% yield of 6i (E/Z = 11:89), similar 

to aforementioned substrates. However, the process was limited to electron withdrawing p-

nitro compound 4j as well as -bromo acrylates 4k and 4l, where no conversion of the starting 

materials was observed (Table 4, entry 10 - 12) 
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Table 4. Photoredox catalyst carbon – carbon bond formation for acrylamide synthesis. 
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areaction conditions: 0.3-0.5 mmol scale, Ru(bpy)3Cl2 (2.0 mol%), isonitrile 5 (2.0 equiv), H2O (1.0 equiv), DMF (c = 

0.15 M), 18 h, 25 °C, N2, isolated yields. 
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5.5 Proposed reaction mechanism 

Proposed mechanism for the above photoredox catalyzed transformation is in consistent with 

the oxidative quenching cycle of the Ru(bpy)3Cl2 catalyst, involving the formation of vinyl radical 

7 by the transfer of an electron from the excited Ru2+* species to -bromochalcone 4 (Scheme 

3). Isonitrile 5 then adds intermolecular to the induced electrophilic radical 7 to form a carbon 

– carbon bond and radical 8. A back electron transfer from 8 to the oxidized Ir3+ species 

regenerates the catalyst and forms the cation intermediate 9. In presence of H2O as nucleophile, 

addition to the cation 9 and subsequent intramolecular hydrogen rearrangement 10 gives the 

desired acrylamide 6. 

 

 

Scheme 3. Proposed visible light mediated mechanism of the acrylamide formation in the presence of H2O. 
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5.6 Biological activity 

Synthesized acrylamide compounds have been tested in order to identify novel inhibitors of the 

ATP-binding cassete transporter ABCG2. Comparison of the activities of the compounds showed 

in all cases less inhibition (Table 4). Chlorinated acrylamides depicted 10-20% inhibition (Table 

4, substrate 6a, 6b, 6c), whereas 20% was determined for 6a with an additional p-bromo group. 

Less inhibition of 2-8% was detected for fluorinated test compounds, especially o-fluorinated 

acrylamide 6f turned out to have low 2% (Table 4, substrate 6d, 6e and 6f). However, thiophene 

substituted acrylamide 6g was identified as superior ABCG2 inhibitor with 26% (Table 4, 

substrate 6g). Non-functionalized compound 6h emerged 12% inhibition (Table 4, substrate 6h), 

whereas improved 20% was detected for p-methylated substrate (Table 4, substrate 6i). 

 

Table 4. Acrylamide compounds as potential ABCG2 inhibitors.  

Substrate FAverage SD (F) rel SD (F) [%] Inhibition [%] 

6a 14591 353 2 20 

6b 12077 851 7 10 

6c 12061 294 2 10 

6d 11710 272 2 8 

6e 11532 416 4 7 

6f 10214 650 6 2 

6g 16163 492 3 26 

6h 12552 207 2 12 

6i 14739 515 3 20 

c = 10 M. FAverage = average fluorescence intensity, SD (F) = standard deviation fluorescence, rel SD (F) = relative 

standard deviation fluorescence. 

 

5.7 Conclusion 

In conclusion, a photoredox catalyzed synthesis of acrylamides has been achieved by 

intermolecular vinyl radial carbon – carbon bond formation with 1-isocyano-2,4-

dimethoxybenzene 5 utilizing ruthenium photoredox catalyst and visible light. A diversity of 

halogenated as well as heteroaromatic, methylated and unsubstituted -bromochalcones were 

tolerated giving rise to larger variety of acrylamides. Biological activity studies towards ABCG2 

transporter depicted less inhibitory effects. 
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5.8 Experimental part 

 

Experimental details, characterization data and spectra  

 

5.8.1 General information 

 

All chemicals were used as received or purified according to Purification of Common Laboratory 

Chemicals. Glassware was dried in an oven at 110 °C or flame dried and cooled under a dry 

atmosphere prior to use. All reactions were performed using Schlenk techniques. Blue light 

irradiation processes was performed using a CREE XLamp XP-E D5-15 LED (λ = 450-465 nm). 

Analytical thin layer chromatography was performed on Merck TLC aluminum sheets silica gel 

60 F 254. Reactions were monitored by TLC and visualized by a short wave UV lamp and stained 

with a solution of potassium permanganate, p-anisaldehyde, or Seebach’s stain. Column flash 

chromatography was performed using Merck flash silica gel 60 (0.040-0.063 mm). The melting 

points were measured on an automated melting point system (MPA 100) with digital image 

processing technology by Stanford Research Systems. ATR-IR spectroscopy was carried out on a 

Biorad Excalibur FTS 3000 spectrometer, equipped with a Specac Golden Gate Diamond Single 

Reflection ATR-System. NMR spectra were recorded on Bruker Avance 300 and Bruker Avance 

400 spectrometers. Chemical shifts for 1H NMR were reported as δ, parts per million, relative to 

the signal of CHCl3 at 7.26 ppm. Chemical shifts for 13C NMR were reported as δ, parts per million, 

relative to the center line signal of the CDCl3 triplet at 77 ppm. Coupling constants J are given in 

Hertz (Hz). The following notations indicate the multiplicity of the signals: s = singlet, bs = broad 

singlet, d = doublet, t = triplet, q = quartet, p = quintet, sept = septet, and m = multiplet. Mass 

spectra were recorded at the Central Analytical Laboratory at the Department of Chemistry of 

the University of Regensburg on a Varian MAT 311A, Finnigan MAT 95, Thermoquest Finnigan 

TSQ 7000 or Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS. Gas chromatographic 

analyses were performed on a Fisons Instruments gas chromatograph equipped with a capillary 

column (30 m × 250 µm × 0.25 µm) and a flame ionization detector. The yields reported are 

referred to the isolated compounds unless otherwise stated. 
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5.8.2 Synthesis of-bromochalcones 

General procedure GPI for the preparation of -bromo chalcone9,10,18 

To a mixture of corresponding chalcone19,20 (2.0 mmol, 1.00 equiv) and OXONE (2.40 mmol, 1.20 

equiv) dissolved in CH2Cl2, 2 N HBr (10.0 mmol, 2.00 equiv) was added dropwise to give a dark 

red colored solution. The reaction mixture was stirred at 25 °C until full conversion (monitored 

by TLC) of the chalcone to dibromide. Triethylamine (10.0 mmol, 5.00 equiv) was added and 

continued stirring until full conversion. The reaction mixture was extracted with CH2Cl2 (2 x 10 

mL). The combined organic layers was washed with brine, dried over NaSO4 and the solvent 

evaporated under reduced pressure. The residue was purified by flash column chromatography. 

 

 

2-bromo-3-(4-bromophenyl)-1-(4-chlorophenyl)prop-2-en-1-one (4a) 

Following general procedure GPI using (E)-3-(4-bromophenyl)-1-(4-chlorophenyl)prop-2-en-1-

one (2.57 g, 8.00 mmol, 1.00 equiv), OXONE (5.91 g, 9.60 mmol, 1.20 equiv), 2 N HBr (1.30 mL, 

1.94 g, 24.0 mmol, 3.00 equiv), triethylamine (6.70 mL, 4.86 g, 48.0 mmol, 6.00 equiv) in CH2Cl2 

(40.0 mL, 0.2 M) gave 2.78 g (87%) as a white solid after flash column purification on silica gel as 

a mixture of E/Z = 9:91. Rf (hexanes/EtOAc 9:1) = 0.57. 

1H NMR (400 MHz, CDCl3, E isomer): 7.87 (dd, J = 8.9, 2.1 Hz, 2H), 7.40 – 7.33 (m, 2H), 7.30 – 7.23 

(m, 3H), 6.99 (d, J = 8.4 Hz, 2H). 

1H NMR (400 MHz, CDCl3, Z isomer): 7.77 – 7.65 (m, 4H), 7.57 (s, 1H), 7.56 – 7.48 (m, 2H), 7.47 – 

7.40 (m, 2H). 
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2-bromo-1-(4-chlorophenyl)-3-phenylprop-2-en-1-one (4b)21 

Following general procedure GPI using (E)-1-(4-chlorophenyl)-3-phenylprop-2-en-1-one (485 

mg, 2.00 mmol, 1.00 equiv), OXONE (1.48 g, 2.40 mmol, 1.20 equiv), 2 N HBr (217 L, 324 mg, 

4.00 mmol, 2.00 equiv), triethylamine (1.40 mL, 1.01 g, 10.0 mmol, 5.00 equiv) in CH2Cl2 (10.0 

mL, 0.2 M) gave 530 mg (82%) as a white solid after flash column purification on silica gel as a 

mixture of E/Z = 36:64. Rf (hexanes/EtOAc 9:1) = 0.58. 

1H NMR (400 MHz, CDCl3, E isomer): 7.92 – 7.90 (m, 1H), 7.90 – 7.88 (m, 1H), 7.40 – 7.38 (m, 2H), 

7.38 – 7.35 (m, 1H), 7.21 – 7.10 (m, 5H). 

1H NMR (400 MHz, CDCl3, Z isomer): 7.87 – 7.83 (m, 2H), 7.79 – 7.75 (m, 2H), 7.67 (s, 1H), 7.49 – 

7.42 (m, 5H). 

 

 

2-bromo-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (4c)22 

Following general procedure GPI using (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (485 

mg, 2.00 mmol, 1.00 equiv), OXONE (1.48 g, 2.40 mmol, 1.20 equiv), 2 N HBr (217 L, 324 mg, 

4.00 mmol, 2.00 equiv), triethylamine (1.40 mL, 1.01 g, 10.0 mmol, 5.00 equiv) in CH2Cl2 (10.0 

mL, 0.2 M) gave 545 mg (85%) as a white solid after flash column purification on silica gel as a 

mixture of E/Z = 53:47. Rf (hexanes/EtOAc 9:1) = 0.52. 

1H NMR (300 MHz, CDCl3, E isomer): 7.99 – 7.93 (m, 2H), 7.64 (s, 1H), 7.62 – 7.38 (m, 2H), 7.31 

(s, 1H), 7.18 – 7.07 (m, 4H). 

1H NMR (300 MHz, CDCl3, Z isomer): 7.83 – 7.77 (m, 4H), 7.62 – 7.38 (m, 6H),  

 



Chapter 5   Photoredox catalyzed vinyl radical formation following acrylamide synthesis   2015 

 

198 
 

 

2-bromo-3-(4-fluorophenyl)-1-phenylprop-2-en-1-one (4d)22 

Following general procedure GPI using (E)-3-(4-fluorophenyl)-1-phenylprop-2-en-1-one (453 

mg, 2.00 mmol, 1.00 equiv), OXONE (1.48 g, 2.40 mmol, 1.20 equiv), 2 N HBr (217 L, 324 mg, 

4.00 mmol, 2.00 equiv), triethylamine (1.40 mL, 1.01 g, 10.0 mmol, 5.00 equiv) in CH2Cl2 (10.0 

mL, 0.2 M) gave 465 mg (76%) as a yellow liquid after flash column purification on silica gel as a 

mixture of E/Z = 19:81. Rf hexanes/EtOAc 9:1) = 0.53. 

1H NMR (400 MHz, CDCl3, E isomer): 7.97 (dt, J = 8.5, 1.5 Hz, 2H), 7.63 – 7.53 (m, 1H), 7.46 – 7.40 

(m, 2H), 7.33 (s, 1H), 7.18 – 7.10 (m, 2H), 6.90 – 6.83 (m, 2H). 

1H NMR (400 MHz, CDCl3, Z isomer): 7.91 – 7.84 (m, 2H), 7.80 (dt, J = 8.4, 1.6 Hz, 2H), 7.66 (s, 

1H), 7.63 – 7.53 (m, 1H), 7.53 – 7.46 (m, 2H), 7.18 – 7.10 (m, 2H). 

 

 

2-bromo-1-(4-fluorophenyl)-3-phenylprop-2-en-1-one (4e)21 

Following general procedure GPI using (E)-1-(4-fluorophenyl)-3-phenylprop-2-en-1-one (453 

mg, 2.00 mmol, 1.00 equiv), OXONE (1.48 g, 2.40 mmol, 1.20 equiv), 2 N HBr (217 L, 324 mg, 

4.00 mmol, 2.00 equiv), triethylamine (1.40 mL, 1.01 g, 10.0 mmol, 5.00 equiv) in CH2Cl2 (10.0 

mL, 0.2 M) gave 410 mg (67%) as a yellow oil after flash column purification on silica gel as a 

mixture of E/Z = 34:66. Rf (hexanes/EtOAc 9:1) = 0.64. 

1H NMR (300 MHz, CDCl3, E isomer): 8.03 – 7.95 (m, 2H), 7.38 (s, 1H), 7.23 – 7.12 (m, 5H), 7.12 – 

7.03 (m, 2H). 

1H NMR (300 MHz, CDCl3, Z isomer): 7.87 (ddt, J = 6.0, 4.9, 2.9 Hz, 4H), 7.68 – 7.62 (m, 1H), 7.49 

– 7.40 (m, 3H), 7.23 – 7.12 (m, 2H). 
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2-bromo-3-(2-fluorophenyl)-1-phenylprop-2-en-1-one (4f) 

Following general procedure GPI using (E)-3-(2-fluorophenyl)-1-phenylprop-2-en-1-one (453 

mg, 2.00 mmol, 1.00 equiv), OXONE (1.48 g, 2.40 mmol, 1.20 equiv), 2 N HBr (217 L, 324 mg, 

4.00 mmol, 2.00 equiv), triethylamine (1.40 mL, 1.01 g, 10.0 mmol, 5.00 equiv) in CH2Cl2 (10.0 

mL, 0.2 M) gave 376 mg (62%) as a yellow oil after flash column purification on silica gel as a 

mixture of E/Z = 36:64. Rf (hexanes/EtOAc 9:1) = 0.64. 

1H NMR (300 MHz, CDCl3, E isomer): 8.21 (t, J = 7.6 Hz, 2H), 7.99 – 7.91 (m, 2H), 7.65 – 7.56 (m, 

2H), 7.25 (t, J = 7.6 Hz, 2H), 6.92 (dt, J = 15.8, 8.4 Hz, 2H). 

1H NMR (300 MHz, CDCl3, Z isomer): 7.85 (d, J = 7.1 Hz, 3H), 7.56 – 7.36 (m, 5H), 7.14 (ddt, J = 

15.5, 9.4, 7.7 Hz, 2H). 

 

 

2-bromo-3-(4-chlorophenyl)-1-(thiophen-2-yl)prop-2-en-1-one (4g) 

Following general procedure GPI using (E)-3-(4-chlorophenyl)-1-(thiophen-2-yl)prop-2-en-1-one 

(498 mg, 2.00 mmol, 1.00 equiv), OXONE (1.48 g, 2.40 mmol, 1.20 equiv), 2 N HBr (217 L, 324 

mg, 4.00 mmol, 2.00 equiv), triethylamine (1.40 mL, 1.01 g, 10.0 mmol, 5.00 equiv) in CH2Cl2 

(10.0 mL, 0.2 M) gave 358 mg (55%) as a yellow liquid after flash column purification on silica 

gel as a mixture of E/Z = 13:87. Rf (hexanes/EtOAc 9:1) = 0.3. 

1H NMR (400 MHz, CDCl3, E isomer): 7.67 (ddd, J = 5.0, 4.4, 1.1 Hz, 2H), 7.25 (s, 1H), 7.18 – 7.12 

(m, 4H), 7.03 (dd, J = 4.9, 3.9 Hz, 1H). 

1H NMR (400 MHz, CDCl3, Z isomer): 7.81 – 7.71 (m, 5H), 7.42 – 7.35 (m, 2H), 7.18 – 7.12 (m, 1H). 
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2-bromo-1,3-diphenylprop-2-en-1-one (4h)22 

Following general procedure GPI using (E)-chalcone (416 mg, 2.00 mmol, 1.00 equiv), OXONE 

(1.48 g, 2.40 mmol, 1.20 equiv), 2 N HBr (217 L, 324 mg, 4.00 mmol, 2.00 equiv), triethylamine 

(1.40 mL, 1.01 g, 10.0 mmol, 5.00 equiv) in CH2Cl2 (10.0 mL, 0.2 M) gave 511 mg (89%) as a 

slightly yellow solid after flash column purification on silica gel as a mixture of E/Z = 9:91. Rf 

(hexanes/EtOAc 9:1) = 0.61. 

1H NMR (400 MHz, CDCl3, E isomer): 8.05 – 7.96 (m, 4H), 7.65 (dd, J = 6.8, 2.7 Hz, 2H), 7.38 (s, 

1H), 7.19 – 7.16 (m, 4H). 

1H NMR (400 MHz, CDCl3, Z isomer): 7.89 – 7.78 (m, 4H), 7.70 (s, 1H), 7.63 – 7.57 (m, 1H), 7.53 – 

7.46 (m, 2H), 7.46 – 7.39 (m, 3H),  

 

 

2-bromo-1-phenyl-3-(p-tolyl)prop-2-en-1-one (4i)22 

Following general procedure GPI using (E)-1-phenyl-3-(p-tolyl)prop-2-en-1-one (445 mg, 2.00 

mmol, 1.00 equiv), OXONE (1.48 g, 2.40 mmol, 1.20 equiv), 2 N HBr (217 L, 324 mg, 4.00 mmol, 

2.00 equiv), triethylamine (1.40 mL, 1.01 g, 10.0 mmol, 5.00 equiv) in CH2Cl2 (10.0 mL, 0.2 M) 

gave 443 mg (74%) as a white solid after flash column purification on silica gel as a mixture of 

E/Z = 22:78. Rf (hexanes/EtOAc 9:1) = 0.58. 

1H NMR (300 MHz, CDCl3, E isomer): 8.02 – 7.94 (m, 2H), 7.62 – 7.36 (m, 3H), 7.33 (s, 1H), 7.06 

(d, J = 8.2 Hz, 2H), 6.97 (d, J = 8.1 Hz, 2H), 2.22 (s, 3H). 

1H NMR (300 MHz, CDCl3, Z isomer): 7.78 (dd, J = 5.2, 3.1 Hz, 4H), 7.70 (s, 1H), 7.62 – 7.36 (m, 

3H), 7.25 (d, J = 8.0 Hz, 2H), 2.39 (s, 3H). 

 



Chapter 5   Photoredox catalyzed vinyl radical formation following acrylamide synthesis   2015 

 

201 
 

 

2-bromo-3-(4-nitrophenyl)-1-phenylprop-2-en-1-one (4j)23 

Following general procedure GPI using (E)-3-(4-nitrophenyl)-1-phenylprop-2-en-1-one (507 mg, 

2.00 mmol, 1.00 equiv), OXONE (1.48 g, 2.40 mmol, 1.20 equiv), 2 N HBr (217 L, 324 mg, 4.00 

mmol, 2.00 equiv), triethylamine (1.40 mL, 1.01 g, 10.0 mmol, 5.00 equiv) in CH2Cl2 (10.0 mL, 0.2 

M) gave 528 mg (79%) as a an orange solid after flash column purification on silica gel as a 

mixture of E/Z = 19:81. Rf (hexanes/EtOAc 5:1) = 0.60.  

1H NMR (400 MHz, CDCl3, Z isomer): 8.31 – 8.26 (m, 2H), 7.98 – 7.93 (m, 2H), 7.87 – 7.82 (m, 2H), 

7.67 (d, J = 1.6 Hz, 1H), 7.66 – 7.60 (m, 1H), 7.55 – 7.49 (m, 2H). 

1H NMR (400 MHz, CDCl3, E isomer): 8.31 – 8.26 (m, 2H), 8.22 – 8.18 (m, 1H), 8.04 (dt, J = 8.5, 

1.6 Hz, 2H), 7.81 – 7.77 (m, 2H), 7.66 – 7.60 (m, 1H), 7.55 – 7.49 (m, 2H). 

 

 

Ethyl 2-bromo-3-phenylacrylate (4k)18 

Following general procedure GPI using ethyl cinnamate (881 mg, 5.00 mmol, 1.00 equiv), OXONE 

(7.39 g, 12.0 mmol, 2.40 equiv), 2 N HBr (1.09 mL, 1.62 g, 20.0 mmol, 4.00 equiv), triethylamine 

(14.0 mL, 10.1 g, 100 mmol, 20.0 equiv) in CH2Cl2 (25.0 mL, 0.2 M) gave 995 mg (78%) as a 

colorless liquid after flash column purification on silica gel as a mixture of E/Z = 43:57. Rf 

(hexanes/EtOAc 20:1) = 0.28. 

1H NMR (400 MHz, CDCl3, E isomer): 8.22 (s, 1H), 7.85 (dd, J = 6.5, 3.1 Hz, 2H), 7.45 – 7.40 (m, 

3H), 4.36 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H) 

1H NMR (400 MHz, CDCl3, Z isomer): 7.36 (s, 1H), 7.35 – 7.31 (m, 3H), 7.30 – 7.26 (m, 2H), 4.21 

(q, J = 7.1 Hz, 2H), 1.18 (t, J = 7.1 Hz, 3H). 
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Ethyl 2-bromo-3-methylbut-2-enoate (4l) 

Following general procedure GPI using Ethyl 3-methylbut-2-enoate (256 mg, 278 L, 2.00 mmol, 

1.00 equiv), OXONE (1.48 g, 2.40 mmol, 1.20 equiv), 2 N HBr (217 L, 324 mg, 4.00 mmol, 2.00 

equiv), triethylamine (1.40 mL, 1.01 g, 10.0 mmol, 5.00 equiv) in CH2Cl2 (10.0 mL, 0.2 M) gave 

110 mg (27%) as a colorless oil after flash column purification on silica gel. Rf (hexanes/EtOAc 

40:1) = 0.73. 

1H NMR (400 MHz, CDCl3): 4.26 (q, J = 7.1 Hz, 2H), 2.12 (s, 3H), 2.04 (s, J = 5.1 Hz, 3H), 1.33 (t, J = 

7.1 Hz, 3H). 

 

5.8.2 Synthesis of 1-Isocyano-2,4-dimethoxybenzene (5) 

 

1-isocyano-2,4-dimethoxybenzene (5)24  

A round bottom flask was charged with 2,4-dimethoxyaniline (7.60 g, 49.6 mmol, 1.00 equiv) 

and formic acid (5.50 mL, 6.71 g, 146 mmol, 2.94 equiv). The reaction mixture was heated for 15 

h at 90 °C and extracted with EtOAc (3 x 400 mL), dried over NaSO4 and the solvent evaporated 

under reduced pressure to give 8.64 g (95%) of a violet-brown solid after purification on SiO2. 

Rf (hexanes / EtOAc 1:1) = 0.62. The formamide (7.69 g, 42.5 mmol, 1.00 equiv) was dissolved in 

CH2Cl2 (230 mL), triethylamine (17.8 mL, 12.9 g, 127 mmol, 3.00 equiv) was added and the 

reaction mixture was cooled to 0 °C. Distilled POCl3 (4.65 mL, 7.81 g, 50.9 mmol, 1.20 equiv) 

dissolved in CH2Cl2 (20 mL) was added via syringe pump dropwise over 2 h under vigorous 

stirring. The reaction mixture was stirred for 20 h at 25 °C and quenched (carefully!) with aq. 

Na2CO3 solution at 0 °C. The organic layer was separated, dried over NaSO4 and the solvent 

evaporated under reduced pressure. The residue was purified by flash column chromatography 

on silica gel to give 5.68 g (82%) of a brown solid. Rf (hexanes / EtOAc 1:1) = 0.85. 1H NMR (300 

MHz, CDCl3): 7.26 (d, J = 8.6 Hz, 1H), 6.46 (d, J = 2.5 Hz, 1H), 6.42 (dd, J = 8.6, 2.5 Hz, 1H), 3.89 (s, 

3H), 3.82 (s, 3H).  
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5.8.3 Visible light mediated coupling of -bromochalcones with isonitrile (5) 

 

General procedure for photoreactions GPII 

A Schlenk tube equipped with a magnetic stir bar was charged with -bromochalcone (500 

mol, 1.00 equiv), [Ru(bpy)3]Cl2) (6.41 mg, 10.0 µmol, 2.00 mol%), H2O (9.00 L, 9.00 mg, 500 

mol, 1.00 equiv), 1-isocyano-2,4-dimethoxybenzene 5 (163 mg, 1.00 mmol, 2.00 equiv), 

dissolved in DMF (3.30 mL, 0.15 M) and sealed with a screw-cap and subsequently evacuated 

for 15 min. and backfilled with N2. The screw-cap was replaced with a Teflon inlet for a glass rod, 

through which irradiation with a 455 nm high power LED took place from above for 18 h while 

the reaction was magnetically stirred at 25 °C in an aluminum block from below. Afterwards the 

reaction mixture was diluted with EtOAc (100 mL) and extracted with water (5 x 20 mL). The 

combined organic layers were dried over NaSO4, the solvent evaporated under reduced pressure 

and the residue purified by flash column chromatography. 

 

 

3-(4-bromophenyl)-2-(4-chlorobenzoyl)-N-(2,4-dimethoxyphenyl)acrylamide (6a) 

Following general procedure GPII using 4a (120 mg, 300 mol, 1.00 equiv), [Ru(bpy)3]Cl2) (3.84 

mg, 6.00 µmol, 2.00 mol%), H2O (5.40 L, 5.40 mg, 300 mol, 1.00 equiv), 1-isocyano-2,4-

dimethoxybenzene 5 (97.8 mg, 600 mol, 2.00 equiv), dissolved in DMF (2.00 mL, 0.15 M) gave 

71.0 mg (47%) of a yellow solid as a mixture of Z/E = 85:15 after flash column purification 

(hexanes / EtOAc 5:1). Rf (hexanes / EtOAc, 3:1) = 0.38. m.p. = 186 °C, IR (neat): 3399, 2837, 

2374, 2019, 1944, 1669, 1645, 1614, 1583, 1499, 1462, 1399, 1364, 1282, 1220, 1185, 1158, 

1126, 1089, 1032, 1007, 950, 858, 829, 810, 710, 585, 552, 508, 450 cm-1; HRMS (ESI) m/z 

calculated for C24H20BrClNO4 ([M+H]+) 502.0239, found 502.024. 

1H NMR (400 MHz, CDCl3, E isomer): 9.03 (s, 1H), 8.29 (t, J = 9.5 Hz, 1H), 8.11 (s, 1H), 7.86 – 7.81 

(m, 2H), 7.52 – 7.41 (m, 1H), 7.34 – 7.27 (m, 3H), 7.10 (d, J = 8.4 Hz, 2H), 6.48 (dd, J = 11.7, 2.7 

Hz, 2H), 3.87 (s, 3H), 3.80 (d, J = 3.5 Hz, 3H). 
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1H NMR (400 MHz, CDCl3, Z isomer): 8.69 (s, 1H), 8.29 (t, J = 9.5 Hz, 1H), 7.92 – 7.88 (m, 2H), 7.34 

– 7.27 (m, 6H), 7.16 (s, 1H), 6.48 (dd, J = 11.7, 2.7 Hz, 2H), 3.80 (d, J = 3.5 Hz, 6H). 

13C NMR (101 MHz, CDCl3): 197.82, 164.33, 162.23, 160.27, 157.06, 150.12, 141.15, 141.11, 

134.72, 134.40, 132.54, 132.02, 131.68, 131.43, 131.41, 131.18, 129.32, 129.12, 124.59, 121.06, 

103.93, 98.82, 56.11, 55.68. 

 

 

2-(4-chlorobenzoyl)-N-(2,4-dimethoxyphenyl)-3-phenylacrylamide (6b) 

Following general procedure GPII using 4b (161 mg, 500 mol, 1.00 equiv), H2O (45.0 L, 45.9 

mg, 2.50 mmol, 5.00 equiv) gave 84.0 mg (40%) of an orange oil as a mixture of Z/E = 84:16 after 

flash column purification (hexanes / EtOAc 4:1). Rf (hexanes / EtOAc, 3:1) = 0.49. IR (neat): 3338, 

2959, 2836, 2050, 1999, 1670, 1602, 1585, 1524, 1464, 1415, 1365, 1282, 1207, 1157, 1128, 

1090, 1032, 947, 870, 833, 752, 693, 632, 548, 493, 458 cm-1; HRMS (ESI) m/z calculated for 

C24H21ClNO4 ([M+H]+) 422.1154, found 422.1152. 

1H NMR (300 MHz, CDCl3, E isomer): 9.17 (s, 1H), 8.37 – 8.29 (m, 1H), 8.24 (s, 1H), 7.86 – 7.79 

(m, 2H), 7.26 – 7.12 (m, 7H), 6.52 – 6.44 (m, 2H), 3.88 (s, 3H), 3.79 (s, 3H). 

1H NMR (300 MHz, CDCl3, Z isomer): 8.63 (s, 1H), 8.37 – 8.29 (m, 1H), 7.93 – 7.87 (m, 2H), 7.57 

(dd, J = 7.2, 2.2 Hz, 2H), 7.49 – 7.43 (m, 2H), 7.38 – 7.33 (m, 3H), 7.26 – 7.12 (m, 1H), 6.52 – 6.44 

(m, 2H), 3.79 (s, 3H), 3.75 (s, 3H). 

13C NMR (75 MHz, CDCl3): 198.10, 160.55, 156.88, 150.06, 143.13, 140.58, 134.63, 133.89, 

133.61, 131.18, 130.06, 130.02, 129.03, 128.64, 121.19, 120.97, 103.78, 98.72, 56.07, 55.62. 
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2-benzoyl-3-(4-chlorophenyl)-N-(2,4-dimethoxyphenyl)acrylamide (6c) 

Following general procedure GPII using 4c (139 mg, 432 mol, 1.00 equiv), H2O (38.9 L, 38.9 

mg, 2.16 mmol, 5.00 equiv) [Ru(bpy)3]Cl2) (5.66 mg, 8.64 µmol, 2.00 mol%), 1-isocyano-2,4-

dimethoxybenzene 5 (141 mg, 864 mol, 2.00 equiv), dissolved in DMF (2.90 mL, 0.15 M) gave 

89.0 mg (49%) of an orange solid as a mixture of Z/E = 87:13 after flash column purification 

(hexanes / EtOAc 4:1). Rf (hexanes / EtOAc, 3:1) = 0.4. m.p. = 126 °C, IR (neat): 3354, 2844, 1667, 

1615, 1604, 1528, 1496, 1449, 1416, 1360, 1285, 1209, 1181, 1156, 1129, 1093, 1039, 953, 916, 

866, 817, 709, 670, 634, 506, 419 cm-1; HRMS (ESI) m/z calculated for C24H21ClNO4 ([M+H]+) 

422.1154, found 422.1152. 

1H NMR (300 MHz, CDCl3, E isomer): 9.09 (s, 1H), 8.32 (d, J = 8.5 Hz, 1H), 8.14 (s, 1H), 7.96 – 7.87 

(m, 2H), 7.55 – 7.43 (m, 1H), 7.35 – 7.27 (m, 2H), 7.15 (dd, J = 20.5, 8.6 Hz, 4H), 6.54 – 6.42 (m, 

2H), 3.85 (s, 3H), 3.82 – 3.76 (m, 3H). 

1H NMR (300 MHz, CDCl3, Z isomer): 8.85 (s, 1H), 8.32 (d, J = 8.5 Hz, 1H), 7.96 – 7.87 (m, 2H), 

7.61 (t, J = 7.4 Hz, 1H), 7.55 – 7.43 (m, 4H), 7.35 – 7.27 (m, 2H), 7.15 (dd, J = 20.5, 8.6 Hz, 1H), 

6.54 – 6.42 (m, 2H), 3.82 – 3.76 (m, 6H). 

13C NMR (75 MHz, CDCl3): 199.11, 160.49, 156.91, 150.07, 141.00, 136.01, 135.82, 134.84, 

134.44, 132.25, 131.25, 129.84, 128.86, 128.84, 121.17, 120.98, 103.78, 98.71, 56.05, 55.63. 
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2-benzoyl-N-(2,4-dimethoxyphenyl)-3-(4-fluorophenyl)acrylamide (6d) 

Following general procedure GPII using 4d (153 mg, 500 mol, 1.00 equiv) gave 96.0 mg (47%) 

of a yellow solid as a mixture of Z/E = 85:15 after flash column purification (hexanes / EtOAc 

5:1). Rf (hexanes / EtOAc, 3:1) = 0.32. m.p. = 125 °C, IR (neat): 3385, 2937, 2144, 1676, 1599, 

1529, 1496, 1463, 1414, 1372, 1279, 1218, 1158, 1119, 1027, 952, 922, 828, 657, 545, 516 cm-1; 

HRMS (ESI) m/z calculated for C24H21FNO4 ([M+H]+) 406.1449, found 406.1453. 

1H NMR (400 MHz, CDCl3, E isomer): 9.11 (s, 1H), 8.33 (d, J = 8.7 Hz, 1H), 8.17 (s, 1H), 7.91 (dt, J 

= 8.5, 1.5 Hz, 2H), 7.54 – 7.43 (m, 1H), 7.35 – 7.27 (m, 2H), 7.27 – 7.19 (m, 2H), 6.87 – 6.79 (m, 

2H), 6.49 (ddd, J = 7.8, 6.1, 3.2 Hz, 2H), 3.86 (s, 3H), 3.80 (s, 3H). 

1H NMR (400 MHz, CDCl3, Z isomer): 8.84 (s, 1H), 8.33 (d, J = 8.7 Hz, 1H), 7.94 (dd, J = 5.2, 3.3 Hz, 

2H), 7.63 – 7.56 (m, 3H), 7.54 – 7.43 (m, 2H), 7.27 – 7.19 (m, 1H), 7.08 – 6.99 (m, 2H), 6.49 (ddd, 

J = 7.8, 6.1, 3.2 Hz, 2H), 3.82 (s, 3H), 3.81 (s, 3H). 

13C NMR (101 MHz, CDCl3): 199.24, 164.63, 162.12, 160.66, 156.92, 150.12, 141.36, 136.16, 

134.31, 134.23, 132.11, 132.03, 130.07, 129.86, 128.81, 128.70, 121.29, 121.04, 115.86, 115.65, 

103.88, 98.78, 56.07, 55.65. 

 

 

N-(2,4-dimethoxyphenyl)-2-(4-fluorobenzoyl)-3-phenylacrylamide (6e) 

Following general procedure GPII using 4e (153 mg, 500 mol, 1.00 equiv), H2O (45.0 L, 45.9 

mg, 2.50 mmol, 5.00 equiv) gave 93.0 mg (46%) of orange crystals as a mixture of Z/E = 90:10 

after flash column purification (hexanes / EtOAc 4:1). Rf (hexanes / EtOAc, 3:1) = 0.51. m.p. = 
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142 °C, IR (neat): 3351, 2959, 1663, 1620, 2586, 1527, 1496, 1456, 1411, 1366, 1285, 1233, 1208, 

1190, 1154, 1129, 1103, 1047, 1030, 949, 864, 824, 787, 761, 689, 611 cm-1; HRMS (ESI) m/z 

calculated for C24H21FNO4 ([M+H]+) 406.1449, found 406.1446. 

1H NMR (300 MHz, CDCl3, E isomer): 9.19 (s, 1H), 8.37 – 8.30 (m, 1H), 8.23 (s, 1H), 7.97 – 7.87 

(m, 2H), 7.26 – 7.12 (m, 5H), 6.99 – 6.89 (m, 2H), 6.53 – 6.43 (m, 2H), 3.88 (s, 3H), 3.78 (d, J = 8.4 

Hz, 3H). 

1H NMR (300 MHz, CDCl3, Z isomer): 8.67 (s, 1H), 8.01 (dd, J = 8.8, 5.4 Hz, 2H), 7.61 – 7.55 (m, 

2H), 7.38 – 7.33 (m, 3H), 7.26 – 7.12 (m, 4H), 6.53 – 6.43 (m, 2H), 3.78 (d, J = 8.4 Hz, 6H). 

13C NMR (75 MHz, CDCl3): 197.73, 167.98, 160.66, 156.88, 150.09, 142.90, 134.07, 133.69, 

132.70, 132.68, 132.57, 130.03, 129.98, 128.61, 121.25, 120.98, 116.08, 115.79, 103.79, 98.74, 

56.09, 55.65. 

 

 

2-benzoyl-N-(2,4-dimethoxyphenyl)-3-(2-fluorophenyl)acrylamide (6f) 

Following general procedure GPII using 4f (153 mg, 500 mol, 1.00 equiv), H2O (45.0 L, 45.9 

mg, 2.50 mmol, 5.00 equiv) gave 95.6 mg (47%) of an orange solid as a mixture of Z/E = 84:16 

after flash column purification (hexanes / EtOAc 4:1). Rf (hexanes / EtOAc, 3:1) = 0.44. m.p. = 

118 °C, IR (neat): 3364, 2972, 2049, 1671, 1636, 1602, 1531, 1451, 1412, 1363, 1297, 1242, 1202, 

1157, 1102 1028, 931, 856, 811, 760, 721, 684, 570, 452, 430, 415 cm-1; HRMS (ESI) m/z 

calculated for C24H21FNO4 ([M+H]+) 406.1449, found 406.1450. 

1H NMR (400 MHz, CDCl3, E isomer): 9.32 (s, 1H), 8.36 (t, J = 4.3 Hz, 2H), 7.90 – 7.84 (m, 2H), 7.45 

– 7.39 (m, 1H), 7.28 (dd, J = 10.9, 5.0 Hz, 2H), 7.17 – 7.05 (m, 2H), 6.92 – 6.82 (m, 2H), 6.52 – 

6.46 (m, 2H), 3.88 (s, 3H), 3.80 (s, 3H). 

1H NMR (400 MHz, CDCl3, Z isomer): 9.08 (s, 1H), 8.33 – 8.27 (m, 1H), 7.98 (dd, J = 5.2, 3.3 Hz, 

2H), 7.71 – 7.66 (m, 1H), 7.65 – 7.59 (m, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.45 – 7.39 (m, 1H), 7.35 
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(ddd, J = 15.3, 5.4, 1.7 Hz, 1H), 7.17 – 7.05 (m, 2H), 6.52 – 6.46 (d, J = 2.6 Hz, 2H), 3.83 (s, 3H), 

3.80 (s, 3H). 

 

 

3-(4-chlorophenyl)-N-(2,4-dimethoxyphenyl)-2-(thiophene-2-carbonyl)acrylamide (6g) 

Following general procedure GPII using 4g (164 mg, 500 mol, 1.00 equiv) gave 92.0 mg (43%) 

of yellow crystals as a mixture of Z/E = 87:13 after flash column purification (hexanes / EtOAc 

5:1). Rf (hexanes / EtOAc, 3:1) = 0.23. m.p. = 146 °C, IR (neat): 3329, 2057, 2015, 1912, 1666, 

1616, 1532, 1490, 1460, 1410, 1360, 1282, 1256, 1206, 1156, 1129, 1091, 1031, 925, 831, 798, 

720, 670, 625, 530, 500, 415 cm-1; HRMS (ESI) m/z calculated for C22H19ClNO4S ([M+H]+) 

428.0718, found 428.0717. 

1H NMR (400 MHz, CDCl3, E isomer): 9.10 (s, 1H), 8.33 – 8.27 (m, 1H), 8.10 (d, J = 5.5 Hz, 1H), 

7.64 (dd, J = 4.9, 1.1 Hz, 1H), 7.57 – 7.49 (m, 1H), 7.31 – 7.24 (m, 2H), 7.22 – 7.14 (m, 2H), 6.92 

(dd, J = 4.8, 3.9 Hz, 1H), 6.54 – 6.45 (m, 2H), 3.88 (s, 3H), 3.80 (d, J = 3.0 Hz, 3H). 

1H NMR (400 MHz, CDCl3, Z isomer): 8.78 (s, 1H), 8.33 – 8.27 (m, 1H), 7.89 (dd, J = 3.8, 1.0 Hz, 

1H), 7.75 (dd, J = 4.9, 1.0 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.42 (s, 1H), 7.36 – 7.31 (m, 2H), 7.22 – 

7.14 (m, 1H), 6.54 – 6.45 (m, 2H), 3.80 (d, J = 3.0 Hz, 6H). 

13C NMR (101 MHz, CDCl3): 190.51, 160.16, 157.02, 150.18, 143.36, 140.74, 136.65, 136.26, 

135.97, 135.01, 132.42, 131.50, 131.24, 129.10, 129.04, 128.71, 121.21, 121.10, 103.91, 98.80, 

56.12, 55.67. 
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2-benzoyl-N-(2,4-dimethoxyphenyl)-3-phenylacrylamide (6h)  

Following general procedure GPII using 4h (144 mg, 500 mol, 1.00 equiv) gave 106 mg (55%) 

of a yellow oil as a mixture of Z/E = 87:13 after flash column purification (hexanes / EtOAc 5:1). 

Rf (hexanes / EtOAc, 3:1) = 0.22. IR (neat): 3341, 2934, 2005, 1667, 1597, 1522, 1459, 1416, 2371, 

1281, 1206, 1157, 1128, 1029, 953, 933, 829, 805, 753, 689, 629, 489, 411 cm-1; HRMS (ESI) m/z 

calculated for C24H21NO4Na ([M+Na]+) 388.1543, found 388.1546. 

1H NMR (400 MHz, CDCl3, E isomer): 9.15 (s, 1H), 8.38 – 8.32 (m, 1H), 8.22 (s, 1H), 7.98 – 7.87 

(m, 2H), 7.41 (t, J = 7.4 Hz, 1H), 7.30 - 7.22 (ddd, J = 11.3, 9.9, 6.7 Hz, 4H), 7.16 – 7.09 (m, 3H), 

6.51 – 6.44 (m, 2H), 3.84 (s, 3H), 3.78 (d, J = 2.2 Hz, 3H). 

1H NMR (400 MHz, CDCl3, Z isomer): 8.73 (s, 1H), 8.38 – 8.32 (m, 1H), 7.98 – 7.87 (m, 2H), 7.60 – 

7.55 (m, 3H), 7.48 (t, J = 7.6 Hz, 2H), 7.37 – 7.31 (m, 3H), 7.30 - 7.22 (ddd, J = 11.3, 9.9, 6.7 Hz, 

1H), 6.51 – 6.44 (m, 2H), 3.78 (d, J = 2.2 Hz, 3H), 3.75 (s, 3H). 

13C NMR (101 MHz, CDCl3, E isomer): 199.26, 160.74, 156.81, 150.03, 142.57, 136.21, 134.30, 

134.04, 133.74, 130.61, 130.00, 129.95, 129.79, 129.72, 128.74, 128.62, 128.57, 128.44, 121.26, 

120.93, 103.81, 98.68, 55.98, 55.54. 

13C NMR (101 MHz, CDCl3, Z isomer): 195.14, 163.12, 156.91, 149.91, 144.01, 137.16, 136.25, 

133.22, 133.05, 130.45, 130.16, 130.00, 129.95, 129.79, 129.72, 128.74, 128.57, 128.44, 121.23, 

121.09, 103.81, 98.77, 55.83, 55.56. 
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2-Benzoyl-N-(2,4-dimethoxyphenyl)-3-(p-tolyl)acrylamide (6i) 

Following general procedure GPII using 4i (151 mg, 500 mol, 1.00 equiv) gave 95.0 mg (47%) 

of a yellow foam as a mixture of Z/E = 89:11 after flash column purification (hexanes / EtOAc 

5:1). Rf (hexanes / EtOAc, 3:1) = 0.23. IR (neat): 3001, 2928, 2836, 2181, 1944, 1670, 1602, 1526, 

1460, 1416, 1364, 1282, 1206, 1179, 1157, 1128, 1033, 955, 919, 872, 813, 749, 734, 690, 664, 

580, 503, 411 cm-1; HRMS (ESI) m/z calculated for C24H24NO4 ([M+H]+) 402.1700, found 402.1698. 

1H NMR (400 MHz, CDCl3, E isomer): 9.09 (s, 1H), 8.38 – 8.30 (m, 1H), 8.18 (s, 1H), 7.93 (dt, J = 

7.3, 3.5 Hz, 2H), 7.52 – 7.41 (m, 1H), 7.30 (dd, J = 10.7, 4.9 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H), 6.95 

(d, J = 8.0 Hz, 2H), 6.52 – 6.44 (m, 2H), 3.86 (s, 3H), 3.80 (d, J = 5.2 Hz, 3H), 2.21 (s, 3H). 

1H NMR (400 MHz, CDCl3, Z isomer): 8.74 (s, 1H), 8.38 – 8.30 (m, 1H), 7.93 (dt, J = 7.3, 3.5 Hz, 

2H), 7.59 (dd, J = 10.5, 4.3 Hz, 1H), 7.52 – 7.41 (m, 4H), 7.30 (dd, J = 10.7, 4.9 Hz, 1H), 7.15 (d, J 

= 8.1 Hz, 2H), 6.52 – 6.44 (m, 2H), 3.80 (s, 6H), 2.34 (s, 3H). 

13C NMR (101 MHz, CDCl3): 199.58, 161.06, 156.83, 150.12, 142.67, 140.27, 136.39, 134.07, 

133.26, 130.95, 130.43, 130.31, 130.02, 129.91, 129.59, 129.31, 128.74, 128.63, 121.44, 121.03, 

103.88, 98.78, 56.08, 55.65, 21.46.  
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5.8.4 Spectra of compounds 
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X-Ray Data 

 

 

Bond precision:  C-C = 0.0020 A          

Wavelength=1.54184 

 

Cell: a=9.5087(4) b=10.0290(4) c=11.1468(4) 
 alpha=84.025(3) beta=68.125(4) gamma=88.073(3) 
Temperature: 123 K   

 

 Calculated    Reported 
Volume 981.08(7)    981.08(7) 
Space group P -1    P -1 

Hall group -P 1    -P 1 
Moiety formula C22 H18 Cl N O4 S C22 H18 Cl N O4 S 

Sum formula C22 H18 Cl N O4 S C22 H18 Cl N O4 S 
Mr 427.88    427.88 
Dx,g cm-3 1.449    1.448 

Z 2    2 
Mu (mm-1) 2.974    2.974 
F000 444.0    444.0 
F000’ 446.61     

h,k,lmax 11,12,13    11,12,13 
Nref 4031    3923 

Tmin,Tmax 0.531,0.700    0.396,1.000 
Tmin’ 0.403     

 

Correction method= MULTI-SCAN 

 

Data completeness= 0.973 Theta(max)= 74.730  

 

R(reflections)= 0.0343( 3517) 

 

wR2(reflections)= 0.0947( 

 

3923)  

S = 1.029                 Npar= 

 

304 
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6 Summary  

 

This PhD thesis demonstrates the development of new methodologies for visible light mediated 

deoxygenation processes followed by new bond formations, as well as acrylamide synthesis via 

vinyl radical formation. 

 

In chapter 3, a mild and environmentally benign protocol for the defunctionalization of carbon-

oxygen single bonds of alcohols was outlined. Activation of the substrates, followed by reductive 

bond cleavage was accomplished in an one pot strategy under visible light photoredox catalysis. 

The minor tendency to the direct reduction of carbon-oxygen bonds of alcohols was solved by 

in situ generated activated ethyl oxalate esters. By irradiation with blue light in the presence of 

[Ir(ppy)2(dtb-bpy)]PF6 as visible light photocatalyst, iPr2NEt as sacrificial electron donor, water as 

hydrogen source gave generally good to excellent yields of the reduced compounds. Albeit its 

high functional group tolerance, the protocol reveals limitations for the defunctionalization of 

benzylic, -carbonyl and allylic alcohols, exclusively.  

 

In chapter 4, in analogy to the photoredox catalyzed deoxygenation process of (+)-diethyl 

tartrate to unnatural (+)-diethyl malate under visible light (Chapter 3), a strategy for carbon – 

carbon bond coupling reactions was developed, making use of the carbon radicals initially 

formed in the deoxygenation reaction. Thus, using monoallylated tartrates, a subsequent 

intramolecular 5-exo trig cyclization gave access to chiral tetrahydrofuran derivatives. The 

alcohol group of mono-allylated hydroxyl succinates was activated by conversion to their 

respective ethyl oxalyl esters. Consecutive irradiation with blue light in the presence of fac-

Ir(ppy)3 as visible light photoredox catalyst in DMF generally gave good yields of the desired 

cyclized products.  

 

In chapter 5, the synthesis of sterically demanding acrylamides triggered by visible light was 

demonstrated. Therefore, we induced a highly reactive vinyl radical in the presence of 

Ru(bpy)3Cl2 as photoredox catalyst and visible light which was subsequently trapped 

intermolecular by 1-isocyano-2,4-dimethoxybenzene. Studies on biological inhibition of 

acrylamide compounds did not show any promising activity. 
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7 Abbreviations 

ABC  ATP-binding cassette 

AIBN  azobis(isobutyronitril) 

Ar  aryl 

ATP  Adenosintrtiphosphat 

CDCl3  deuterated chloroform 

CH2Cl2  dichloromethane 

CH3CN  acetonitrile 

CFL  compact fluorescent lamp 

d.r.  diastereomeric ratio 

DMF  dimethyl formamide 

DMF-d7 deuterated dimethyl 

formamide 

EtOAc  ethyl acetate 

EI  electron impact (MS) 

equiv  equivalents 

ESI  electronspray ionization  

EtOH  ethanol 

Et  ethyl 

eV  electron volts 

h  hour(s) 

HRMS  high resolution mass 

spectrometry 

iPr  iso-propyl 

IR  infrared spectroscopy 

ISC  intersystem crossing 

LED  light-emitting diode 

Me  methyl 

MHz  mega hertz 

min  minutes 

 

 

mL  milliliter 

MLCT  metal to ligand charge 

transfer 

mmol  millimole 

mol%  mole percent 

m.p.  melting point 

Na2SO4  sodium sulfate 

nm  nanometer 

h  wavelength 

NMR nuclear magnetic 

resonance 

o-  ortho 

p-  para 

Ph  phenyl 

rt  room temperature 

SCE  saturated calomel 

electrode 

SET  single electron transfer 

tBu  tert-butyl 

TEMPO (2,2,6,6,-

Tetramethylpiperidin-1-

yl)oxyl 

TLC thin layer chromatography 

UV ultraviolet 

V volt 

W watt 
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