Visualization of Software Architectures in Virtual
Reality and Augmented Reality

Andreas Schreiber
German Aerospace Center (DLR)

Lisa Nafeie
German Aerospace Center (DLR)

Artur Baranowski
German Aerospace Center (DLR)

Linder Hohe Linder Hohe Linder Hohe
51147 Koln, Germany 51147 Koln, Germany 51147 Koln, Germany
andreas.schreiber @dIr.de lisa.nafeie @dlr.de artur.baranowski@dlr.de

Peter Seipel Martin Misiak
German Aerospace Center (DLR) TH Koln—University of Applied Sciences
Linder Hohe Betzdorfer Strafie 2
51147 Koln, Germany 50679 Koln, Germany
peter.seipel @dlr.de University of Wiirzburg

Abstract—Software architecture is abstract and intangible. Tools
for visualizing software architecture can help to comprehend
the implemented architecture but they need an effective and
feasible visual metaphor, which maps all relevant aspects of a
software architecture and fits all types of software. We present
the visualization of component-based software architectures in
Virtual Reality (VR) and Augmented Reality (AR). We describe
how to get all relevant data for the visualization by data mining
on the whole source tree and on source code level of OSGi-based
projects. The data is stored in a graph database for further
analysis and visualization. The software visualization uses an
island metaphor, which represents every module as a distinct
island. The whole island is displayed in the confines of a virtual
table, where users can explore the software visualization on
multiple levels of granularity by performing navigational tasks.
Our approach allows users to get a first overview about the
complexity of an OSGi-based software system by interactively
exploring its modules as well as the dependencies between them.

TABLE OF CONTENTS

1. INTRODUCTION . teteeeenrensencensencancascancanes 1
2. SOFTWARE VISUALIZATION ... 0tveteaceacencescnsons 2
3. DATA MINING tiuveueeecensensansssssscsacascascnsans 2
4. VISUAL METAPHOR ..cteutinrenrencencaacancancanans 3
5. VISUALIZATION IN VIRTUAL REALITY 6
6. VISUALIZATION IN AUGMENTED REALITY......... 7
7. EXPLORATION OF SOFTWARE SYSTEMS............ 8
8. RELATED WORK ..0vvvtiniententosssscsscascessansns 9
9. CONCLUSION 1iiutiutensenseassssssssscascescnssnss 10
ACKNOWLEDGMENTS ..tieteeteateaceacascascascnsans 10
REFERENCES «.iutiutintonrontsncoscssssscoscescnssnss 10
BIOGRAPHY .1viiiiniinrnnrenssassscsocsscescescnsanss 11

1. INTRODUCTION

Software is abstract and intangible but with increasing func-
tionality, its hidden complexity grows and hinders its further
development. Visualization techniques, that map intangible
software aspects onto visually perceivable entities, help to

978-1-5386-6854-2/19/$31.00 (©2019 IEEE

Sanderring 2
97070 Wiirzburg, Germany
martin.misiak @th-koeln.de

understand software systems and to reduce their costs of
development [1].

Classic software architecture visualizations, such as UML
diagrams, are widely used in practice but are not always the
best solution. For example, to get an high level overview
of large component-based software systems more abstract or
more interactive visualizations might be feasible. We show
how useful it is, to choose a suitable technology for soft-
ware visualization in order to understand complex software
architectures, how software visualization can help during the
development, and what are the resulting benefits for software
developers, maintainers, and project managers.

As an example, we describe the software ISLANDV1Z, which
allows to visualize component-based software architectures
in Virtual Reality (VR) and Augmented Reality (AR). IS-
LANDVI1Z visualizes OSGi-based software systems (Figure 1)
using an island metaphor, where islands on a virtual water
level or the desk represents OSGi bundles, regions on the
islands represents packages, and buildings represents classes.
We describe how to get all relevant data for the visualiza-
tion by repository mining on the whole source repository
and data mining on source code level. We store all data
in a graph database for further analysis and visualization.
Through software visualization we are able to answer many
questions, which already takes a lot of time in development
and test-phases. In addition, it’s possible to make the software
architecture tangible, which makes it easier to talk about tech-
nical problems within teams formed by people with different
technical knowledge, communications skills, and educational
backgrounds.

The hardware platforms that we use for implementation and
testing of ISLANDVIZ are standard consumer headsets (i.e,
head-mounted displays). For VR, we use the devices OCU-
LUS RIFT and HTC VIVE, where we also use the stand-
alone headset OCULUS GO to be able to use the visualization
without any connected laptop and an eye-tracking-enabled
version of HTC VIVE (Tobii eye-tracking) for our upcoming
user studies. For AR, we use the MICROSOFT HOLOLENS
headset.

We use software visualization on real DLR software sys-
tems from the aerospace domain: The distributed integration
environment RCE (Remote Component Environment) [2],

1
]

provides
/

Bundle) uses Bundle }
II \
Service Service
Component Component
imports implements
\\A —
Package Package
Class

Figure 1. Bundles, services, service components, and
their dependencies in OSGi.

[3], which is used for design, simulation, and evaluation of
systems, and VIRSAT (Virtual Satellite) [4], [5] for model-
based design and simulation of satellites.

In the remaining paper, we present our contributions on
visualizing OSGi-based software systems as follows:

1) A brief overview about software visualization as back-
ground information (Section 2).

2) Description of our data mining approach for extracting
all relevant information from source code repositories and
storing them in a graph database (Section 3).

3) Description of the visual metaphor of islands for visual-
izing software architectures, which we introduced in earlier
work [6], [7] (Section 4).

4) Some details on the particular implementations of the
island metaphor for VR (Section 5) and AR (Section 6).

5) An example for exploring a large OSGi-based software
from aerospace (Section 7).

2. SOFTWARE VISUALIZATION

Software visualization is a very large research field. Existing
work can be classified based on multiple categories. A dif-
ferentiation between static and dynamic aspects of a software
can be made. While dynamic aspects capture information of
a particular program run, static aspects are valid for all execu-
tion paths of a software. Additionally, they can be extended
to capture the entire evolution of a software architecture.

Software visualization can be made on roughly three different
levels of abstraction [8]. While the lowest abstraction level
deals with the source code, the highest abstraction level deals
with the entirety of the software architecture and belongs to
the most important in software visualization [9]. They convey
the underlying hierarchical component structure, the relation-
ships between these components and the visual representation
usually contains some form of code quality metrics.

A software visualization can consist of one or more views.
Each view can use its own visualization approach and can
therefore focus on different aspects of the software. Multi-
view, as opposed to single-view approaches, can represent
a broad range of information of varying granularity levels,

however at the cost of imposing a significant cognitive burden
and making a communication on common grounds between
users more difficult [10].

Visualizations can be made in the two dimensional and three
dimensional space. While 2D visualizations are easier to
navigate and interact with, they do not scale particularly
well for large data sets. To avoid a cluttered view, 2D
visualizations rely on multiple views. 3D approaches resort
to the added dimension to increase the information density of
the visualization, without exposing the user to any additional
cognitive load, as the task of processing 3D objects is com-
pletely shifted to the perceptual system [11]. They are more
effective at identifying substructures and relationships be-
tween objects [12], [13] and represent real-world metaphors
more closely.

Some examples of real world metaphors are:

1) Solar System Metaphor: A metaphor developed to visu-
alize a Java based project [14]. Each package is mapped to a
sun, which is being orbited by several planets at different or-
bits. While the planets represent classes, the orbits represent
the inheritance level within a package. The size of each planet
is mapped to the number of lines of code in its underlying
class and the color helps to differentiate between classes and
interfaces.

2) City Metaphor: It is one of the most frequently used real-
world metaphors for software visualization. The foremost
reason for its popularity would be the familiarity of the city
concept. Most users know that a city can be organized into
districts, where each district can contain multiple buildings.
These three hierarchical levels are the basis for most imple-
mentations of the city metaphor.

3. DATA MINING

We analyze Java projects that are based on the OSGi frame-
work. This framework modularize and manage software
projects and their services (Figure 1). OSGi projects in-
cludes bundles. Each bundle is a JAR archive with a
MANIFEST .MF file, which describes different informations
such as dependencies and services.

We analyze OSGi-based projects by extracting all relevant
information from the source code repository. The information
from all Java files, MANIFEST.MF files, and XML files
are stored in an intermediate data model. The different
visualization implementations retrieve the information from
the data mode and transforms it into their respective visual
representations for the Web (2D), VR, or AR (Figure 2 [15]).

We used the open source quality assurance tool JQASSIS-
TANT as a basis for acquisition of all relevant data from the
source code repository. JQASSISTANT relies on the graph
database NEO4J. JQASSISTANT scans and analyzes software
projects [16] as follows (Figure 3):

1) Scanning: JQASSISTANT scans software artifacts either
by using the Maven plug-in or the command line tool. We
use command line tool to scan the source tree, which includes
archives of all compiled software fragments. We focus on
scanning projects that are based on the OSGi framework,
where XML files in OSGI-INF directories are important
for declarative service dependencies. Therefore we use the
JQASSISTANT XML plug-in for all XML files at a specific
directory (configuration file scan.properties) and acti-

OSGi Application Visualizations

Jjava

7

xml Analysis

B

:

Figure 2. General overview about the data mining and
visualization process for OSGi-based applications.

/\ Data Mining Visualization
Scanning and "
Repository Analysis \LIJ':KI S:I;?c/’\g;
git JQAssistant 4
OSGi Application
> —>
v

Devices

AN AN N
Graph Database
Neo4j
v —
Figure 3. Architecture of the software stack from
repository mining to virtual reality visualization.

Oculus Rift /
HTC Vive

vated scans for pom. xml files only.

2) Analyzing: After scanning the project, JQASSISTANT an-
alyzes the data with plug-ins, which are implemented using
the CYPHER graph query language. JQASSISTANT already
provides different plug-ins, for example, for JSON, XML,
or OSGi. We extended the OSGi plug-in and added addi-
tional rules for OSGi structures, which creates nodes and
relationships for OSGi elements in the graph database, and
for analyzing if the scanned projects violates certain software
structures.

After scanning the repository and applying all rules, the soft-
ware architecture information with all relevant elements of
OSGi is stored in the graph database (Figure 4). With suitable
graph queries using NEO4J’s query language CYPHER on
the database, we can use this data to analyze the source
code (e.g., for dependency analysis, hotspot analysis, test
coverage analysis, or static code analysis). Our visualizations
of OSGi elements in VR and AR (Sections 5 and 6) use spe-
cific queries to extract all information, which are visualized.
The following CYPHER query is the most straight forward
approach to collect all data for the visualization:

MATCH
(pf:PackageFragment)—[c:CONTAINS]—>
(cu:CompilationUnit),
() —[e :EXPORTS] — >(),
() —[1i:IMPORTS] —>(),
() —[hs : HAS_SERVICE_COMPONENT] — > (),
() —[hi :HAS_IMPLEMENTATION_CLASS] —>(),
() —[ps : PROVIDES_SERVICE] - >(),
() —[hfth : HAS FRAGMENT_HOST] — > (),
() —[hba : HAS_.BUNDLE_ACTIVATOR] — >(),
() —[rb :REQUIRES_BUNDLE] — >()
RETURN pf,c,cu,e,i,hs,hi,ps,hfh, hba,rb

4. VISUAL METAPHOR

The visualization metaphor has to be expressive enough to
provide mappings for all relevant software artifacts [17]. In
the case of OSGi-based software, the metaphor needs to
account for the following artifacts: class types, packages,
bundles, service components, and service interfaces. We are
interested in the import and export relations of individual bun-
dles, as well as the referencing and providing relationships
between service components and their respective interfaces.
The metaphor must enable a software inspection on multiple
abstraction levels, however its main emphasize should be the
bundle layer, as it forms a central aspect of OSGi.

We use an island metaphor for the visualization of OSGi-
based software systems (Figure 5). The entire software sys-
tem is represented as an ocean with many islands on it. Each
island represents an OSGi bundle and is split into multiple
regions. Each region represents a Java package and contains
multiple buildings. The buildings are the representatives of
the individual class types which reside inside of a package.
Each region provides enough space to accommodate all of its
buildings without overlapping, and hence the overall size of
an island is proportional to the number of class types inside
of a bundle.

The island metaphor provides a hierarchical structure with
three different levels (island, region, and building). The
navigation between these layers should be based on our
natural understanding of spatial relationships and be therefore
dependent on the relative size of the elements in the users
view frustum. Hence, the transition between the levels
happens implicitly, as the user moves closer or further away
from an element, or the element itself is scaled. This avoids
the introduction of additional complexity into the navigation.

The metaphor is flexible enough to be extended for more than
three abstraction levels. Individual island groups can form
archipelagos, which would provide an additional abstraction
level. In the opposite direction, each island region could be
interpreted as a country, which would open up even more
possible hierarchical subdivisions.

The islands metaphor has several advantages for software
visualization. Islands express the aspect of decoupled enti-
ties, coexisting in the same environment very clearly, which
makes them a good candidate for representing software mod-
ules. Additionally, islands can be relocated at run-time,
while maintaining a certain plausibility. A software evolution
visualization could benefit from this property, as the island
movements would reflect the dependency changes within the
system.

The islands of our visualization metaphor are aimed at having
a high resemblance to their real-world counterparts and in
thus, emphasizing the plausibility of the metaphor. Each
region represents a package and has an irregular, rugged
shape, similar to countries when seen on a map. These
regions share borders, and together, they determine the shape
of the island (Figures 6 and 7). The individual cells of
a region are designed to provide enough accommodation
area for buildings to be placed on top. To maximize their
perceivability from afar a multi-storey building representation
is chosen. For the implemented prototype, a Lines of Code
metric was chosen, where for every n lines of code, a storey
is added to the building.

Figure 4. Visualization of the graph data for one single OSGi bundle (“RCE Core Login Bundle”) and all
dependent nodes.

Figure 5. Island metaphor: a) Bundles are represented
as islands. b) Packages are represented as regions. c)
Class types are represented as buildings d) Package
imports and exports are represented with the help of
ports.

Island Construction

The island construction is based on claiming cells in a
Voronoi diagram (analogous to the work of Yang et al. [18],
while we use a Voronoi diagram instead of a hexagonal grid
as the underlying tile structure). Additionally, no hierarchi-
cal claiming is performed, as all regions of an island are
considered equivalent. This reflects the way packages are
interpreted by Java, as the hierarchical naming convention is
only relevant from a developers perspective.

Figure 6. (left) A minimal cohesion factor leads to very
rugged islands with many holes. (middle) A very high
cohesion factor reduces holes greatly and creates
compact islands. (right) Our dynamic cohesion factor,
combined with the claiming of large regions first, the
island preserves some of the ruggedness, yet it minimizes
holes.

Figure 7. A range of different coast shapes, created with
specific height profiles.

The first step in the construction is to create a Voronoi
diagram from a point distribution. The most aesthetically
pleasing islands were achieved with points exhibiting a blue
noise characteristic. In the next step, each package claims
multiple cells of the created Voronoi diagram, corresponding
to the number of contained classes. Cells are claimed one at
a time and only cells next to already existing entities can be
claimed.

To create rugged and irregular shapes for the package repre-
sentations, cells are selected probabilistically. To avoid non-
continuous regions induced by a random selection mecha-
nism, we use an estimating function as described by Yang
etal. [18].

Before a new tile is selected, each eligible cell counts its
already claimed neighbors. If a cell is surrounded with n
claimed neighbors, the probability of it being a hole grows
with n. A score S,, is calculated for each candidate, based on

Sy = b" ey

where b is a user definable cohesion factor. Once the scores
are known, a new cell can be selected, where the probability
of each candidate is directly proportional to its score S,.
Higher b values result in less holes, but also more regular and
compact shapes.

To preserve the rugged appearance of an island, we use a
simple extension of the cohesion factor. Defining b,,;, and
bmaz, the cohesion factor can be varied on a per region
basis, depending on their size. While the smallest region
is assigned b,,;5,, the cohesion factor is interpolated towards
bmas for larger regions. Additionally, the regions are claimed
in descending order, starting with the largest package first.
This results in islands which contain smaller, irregular regions
at their edge, while the larger, more regular regions reside in
the interior (Figure 6 right). From an usability perspective,
this layout is more advantageous for VR based interaction,
as smaller regions are harder to select when surrounded by
larger ones.

Once all packages have claimed their cells, the coast area
can be added. This is done by claiming neighboring cells
of the existing island boundary. Each time the boundary
is expanded outwards a new height value is associated with
its cells. A user defined height profile controls this process
(Figure 7), where each entry expands the coast by one cell
and assigns the stored height value. In the final construction
step, a polygonal mesh is generated from all claimed cells in
the Voronoi diagram using triangulation.

Visualization of Dependencies

Dependencies Between Modules—Due to the architecture-
oriented focus of our software visualization, dependencies
between individual modules are important. Building on the
island metaphor, an import port and an export port is added to
each island. These ports are situated along the coast line and
manage the incoming and outgoing dependencies. We use the
following two orthogonal types of visualization approaches:

1) Explicit Visualization Building on the simplicity of
straight lines, we us import and export arrows (Figure 9)
to explicitly visualize the package dependencies between
bundles. In the geographic context, such arrows are en-
countered in flow maps [19] and visualize the movement
of various resources or entities, from one point to another,
while the arrow width is proportional to the moved volume.
The resulting dependency visualization resembles a discrete
flow map, as implemented by Tobler [20]. To reduce the
intersection problem of straight lines, the arrows follow a
vertical arc. The start and end points are at the height of a
port, while towards the middle segment the height increases,
reaching its maximum halfway between the anchor points.
The arrows maintain throughout a constant curvature. As
a result, longer arrows also span a greater height range. A
color gradient, together with the arrow head indicate the

by

Figure 8. Island placement based on a force-directed
layout algorithm: Islands with the highest dependencies
are accumulated in the middle, while independent islands
are pushed outwards.

o (W -
s

Figure 9. Package dependencies are visualized via arced
arrows. The island on the right imports packages from
the island on the left.

dependency direction. The width is mapped to the number
of packages which are being imported or exported over the
given connection.

2) Implicit Visualization We use the island adjacency to
implicitly represent the dependency strength (Figure 8). The
island layout is computed with an iterative, force-directed
graph layout algorithm [21], where nodes are interpreted
as particles that are influenced by attractive and repulsive
forces from other particles. These forces are accumulated and
applied to each particle at the end of the iteration. Attractive
forces are exerted between nodes, which are connected by an
edge. The force is dependent on the distance between the two
nodes.

Visualization of Service Dependencies— The main entities
of the OSGi service layer are service interfaces and service
components. As these components are linked to Java class
types, we visualize them as special building types. We
visualize the relationships between the service entities with
a service connection node. These nodes hover above the
service interface and service component buildings at a certain
height and act as connection points for them. Each node has
a visual downward connection to its parent building in order
for the user to quickly locate its associated service entity
(Figure 9 left). There are three distinct types of nodes: service
interface nodes, service provider nodes, and service reference
nodes. They are assigned to different service slices, where
each slice resides at a specific height (Figure 9 right).

Figure 10. Left: Service components (orange) and
service interfaces (blue) are represented as different
building types. The are connected with the help of service
interface/provide/reference nodes (blue sphere, green
capsule, red cube). Right: Service groups are distributed
across individual height layers.

5. VISUALIZATION IN VIRTUAL REALITY

Although the entire software visualization is displayed in
the compounds of the table, the enclosing room plays an
important role. To maintain the plausibility of all “magic”
interactions the table is capable of, a futuristic design is
chosen, where the table is augmented with holographic func-
tionality. With the software visualization interpreted as a
hologram, the room for plausible interactions is very large.
This functionality is implemented by simply discarding all
rendered fragments of the software visualization, that ex-
ceed the table radius. When designing the environment, we
avoided introducing an excessive brightness contrast. This
helps in minimizing the “godray” effect, attributed to the used
Fresnel lenses.

Virtual Table

The software visualization is presented on top of a virtual
table. The entire content of the visualization is confined to the
extents of the table. In contrast to real-world scale visualiza-
tions, which are more likely to cause a feeling of presence of
being inside the data, the table metaphor allows a more strate-
gic and analytic view of the data. Although the table size may
vary based on user preference, the metaphor itself imposes a
restriction on the size of the visualization space. However this
limitation is not a disadvantage, since it enforces to show the
visualization in a space saving representation. While it can
be helpful to see the fine grained details of software artifacts,
it is the higher abstraction levels which contribute mostly to
program and architecture comprehension.

The virtual table metaphor provides a transparent transition
between individual abstraction levels, as the user does not
experience any relocation, since only the visualization in the
confinements of the table has to be changed without altering
the virtual room around it. This reduces user disorientation
and motion sickness, as the room always provides a stable
frame of reference [22], [23]. This is especially important
for the usability of the system for software comprehension,
as users can stay longer immersed in the virtual environment
without interrupting their train of thought.

Interaction and Navigation

To enable the user to fully focus on software comprehension,
the cognitive load introduced by navigating and interacting
with the virtual environment must be minimal. This requires
both activities to be intuitive and natural. We build upon
the available positional information of the input devices and
integrate all interaction possibilities into the environment

Figure 11. Interaction and navigation in VR: (top)
Translation. (middle) Scale. (bottom) Rotation.

itself. This reduces the reliance on various button presses and
keeps the user interface simple.

Due to the use of virtual reality and its inherent navigational
advantages, the user can walk around the virtual table and
inspect the visualization from different perspectives. How-
ever this navigational freedom has its limits when inspecting
elements up close, as the human visual system has a limit to
the distance it can focus on and fuse a stereoscopic image.
Therefore it is crucial to be able to additionally manipulate
the visualization itself.

The displayed island system has great resemblance to a carto-
graphic map. Similar to other digital maps, our navigational
technique provides translation, rotation, and scaling [23]. We
constrain the rotation to one axis (Figure 11 bottom). The
scaling operation is especially important, as zooming is di-
rectly tied to the transition between the individual abstraction
layers of the software architecture. This mode of navigation
basically follows a level of detail scheme, where the elements
belonging to a specific layer can be interacted with, as soon
as they are large enough for the user to see and select.

The visualization can be translated along the axis defined by
the table plane. This usually results in left, right, forward,
and backward panning, while the translation in the height
dimension given by the table normal is prohibited. To apply
the translation, the user grabs the visualization and drags it in
the direction he wishes to translate, releasing it again when
finished.

To perform rotation and scaling, the visualization needs to
be grabbed with both controllers. To rotate the visualization,
both controllers are moved in a circular motion around a pivot
point.

Virtual Tablet

While world space anchored text labels are good for dis-
playing object names, they are not suitable for the display
of larger amounts of text. However such a functionality is

Figure 12. To activate the virtual tablet, the underside of
the controller is rotated into the users field of view,
providing access to additional textual information and
functionality.

greatly needed, as some information are best presented in
their textual form.

A virtual tablet can be anchored somewhere in the envi-
ronment. When the user interacts with diverse elements,
additional information is displayed on this tablet (Figure 12).
We anchor the display to the virtual body of the user. The
panel is attached to the non-dominant hand of the user, so
it can be interacted with, by use of the dominant hand (i.e,
a “double-dexterity” interface [24]). To avoid unnecessary
occlusion and unintentional interactions, the virtual tablet is
disabled per default and has to be explicitly activated by the
user. This is done by turning the underside of the controller,
or the palm of the hand, towards the user.

Implementation

The original implementation [25], [7] of the VR visualization
uses UNITY3D and C# and reads the data from a JSON
file [15]. We extended this implementation to use data
directly from the NEO4J graph database (Figure 3).

6. VISUALIZATION IN AUGMENTED REALITY

In context of software architecture visualization, AR [26]
solutions can have advantages over comparable VR appli-
cations. They usually provide see-through visors, which
allow for an unobstructed view of the surrounding real-world
environments. This way, classical desktop interfaces with
text-based code-editing tools can be used in combination
with immersive AR devices. Moreover, peers can commu-
nicate seamlessly when exploring software visualizations in
AR collaboratively, because verbal and non-verbal means of
communication remain intact.

Our approach for AR employs the island metaphor (Sec-
tion 4) for visualizing OSGi-based software architectures
very similar to the VR visualization. Within the confines
of a virtual tabletop, a software system is represented as an
archipelago. Software artifacts can be explored at different
levels of granularity (Figure 13). At the highest level, bundles
are mapped to individual islands. Islands are divided into
multiple regions, representing the packages within a bundle.
Finally, each compilation unit contained in a package is
represented as building within a corresponding region. The
size of an island is proportional to the number of a bundle’s
compilation units, ensuring all buildings can be accommo-
dated without overlapping.

Figure 13. Levels of granularity in AR.

Figure 14. Interaction with gestures in AR: selecting a
bundle with an “Air-Tap.”

Interaction and Navigation

We use a state machine, combining HoloLenses three main
input modalities gesture, voice, and gaze, to provide a
context-sensitive interface governing the possible interactions
depending on the applications current state.

Gesture interaction—The gesture control component enables
both one-handed and two-handed input. By performing an
“Air-Tap”-Gesture? (Figure 14), a bundle can be selected. A
selected bundle is enclosed by a green wire-frame, giving the
user visual feedback about the selection (Figure 15(a)). An
information panel appears, giving the user bundle-specific
information (Figure 15(b)). By focusing the gaze-cursor
on the virtual tabletop and performing a “Tap-and-Hold”-
Gesture, the archipelago can be navigated. By performing a
two-handed “Tap-and-Hold”-Gesture and dragging the hands
apart, the visualization can be zoomed.

Voice Control—To enable voice control without using com-
mands based on keywords, we implemented a natural lan-
guage understanding component consisting of two parts. The
first parts task is to convert a natural language string into
a user command [27]. This is implemented by using the
RASA chatbot library [28]. First the natural language string
is processed by RASA NLU, to extract the intent and the
entities. Based on these detected values the RASA Core
component creates a query for a graph database NEO4J.
For simple intentions there is also the possibility to avoid
building a query and returning a command name instead. To
exonerate the HoloLens from additional processing overhead,
this service is implemented as a web server application. The

2nttps://docs.microsoft.com/en—-us/windows/
mixed-reality/gestures

RCE Cluster Component
Execution

‘This Bundle contains: *
1 packages
3 compilation units

s

export

Figure 15. Information for a selected bundle: (a)
Selected bundle enclosed by a green wire-frame; (b)
Information panel with metrics about the bundle;

(Visualization Y Chatbot)

Natural Language
Understanding
Rasa NLU

AR lIslandViz

A\

[
Graph Database
Neodj

A

Graph DB Query
Device Builder

Rasa Core

HoloLens

\. J . J

Figure 16. Software Stack for visualization in AR.

second part contains the speech-to-text process. It sends the
converted string as a request to the server described above
and processes the server’s response. This means a command
is performed on the HoloLens. Depending on this command
either the database is queried, or a basic function is triggered.

Collaboration

Using the Mixed Reality Toolkit’s sharing API, application
states can be shared over multiple devices. Like this, we
enable collaborative exploration of software architectures.
Based on the visualizations, co-located peers can discuss
design decisions or introduce new colleagues to the project.
For the purpose of this demo, we use a simple collabora-
tive technique, where only one user at a time can perform
interactions. As long as a user performs an interaction, all
other users are temporarily blocked from interacting with the
system.

Implementation

The Microsoft HoloLens is an optical see-through head-
mounted mobile system. As such, it features an array of
sensors, enabling it to capture gesture and voice input. More-
over, it is capable of tracking its position and orientation in
3D space. The standard runtime environment for HoloLens
applications is the Universal Windows Platform (UWP). The
Unity3D game engine provides specific tools for UWP devel-
opment. Additionally, the Mixed Reality Toolkit® (MRTK)
for Unity offers a collection of scripts to help HoloLens
application development in Unity3D.

First, we extract all relevant pieces of information regarding

Shttps://github.com/Microsoft/
MixedRealityToolkit-Unity

Figure 17. The DLR distributed integration and
simulation environment RCE (Remote Component
Environment).

a particular software project into a JSON file [15]. On the
HoloLens, this file is read into an in-memory data struc-
ture. It can be queried hierarchically and used to retrieve
and reconstruct the OSGi project. Subsequently, based on
the number of packages and compilation units contained
within each bundle, island structures and their positions are
calculated. Each island is assigned an individual Voronoi
diagram. Regions are formed by iteratively claiming cells
from that diagram. Finally, based on the calculated island
structures, we generate the island polygon meshes and all
objects contained, such as buildings and regions.

7. EXPLORATION OF SOFTWARE SYSTEMS

At DLR, many software systems are developed [29]. Of these
systems, some are developed in Java based on the Eclipse
Rich Client Platform (RCP) and OSGi. For evaluation of our
software visualization approaches we choose the integration
and simulation environment RCE.

Remote Component Environment (RCE)

For the execution of multi-disciplinary design and optimiza-
tion (MDAO) workflows, DLR develops the software system
RCE (Remote Component Environment; [2], [3]). RCE
is an open source, workflow-driven, distributed integration
environment. It supports the design and execution of scien-
tific and engineering workflows. RCE is especially designed
and suited for multidisciplinary collaboration where different
groups or organizations benefit from integrating their specific
tools into larger simulation workflows. So far, it has been
primarily used in preliminary aircraft design [3], but also
for design of launcher vehicles [4] and the optimization of
thermal management of spacecraft (Figure 17) [30].

Some basic metrics of RCE as of version 8.2.2 are: it has
255 OSGi bundles and 3126 Java classes. These bundles and
classes provide 169 OSGi services. The software consists
of 5588 files in 3292 folders. Applying the data mining
with JQASSISTANT (Section 3) leads to 1749211 nodes
(MATCH (n) RETURN count (n)) and 6478780 rela-
tions (MATCH ()—-->() RETURN count (*);) in the
NEO047J graph database.

To explore the software system, one can start the visualization
and view the whole table with bundles (i.e., islands). The user
then can zoom and pan through the islands and select bundles
of interest by pointing or tapping on it. The information panel
(virtual tablet) shows additional information or metrics for the

A
(©)

(d

Figure 18. Exploring the software system RCE in VR: (a) Bundle selection; (b) Bundle dependencies; (c) Service
dependencies; and, (d) Service dependency exploration.

selected bundle (Figure 18(a)).

For further inspections, one can view at dependencies to other
bundles and classes. For that, one can display dependencies,
which are shown as incoming and outgoing arcs from the
island’s docks (Figure 18(b)).

An important information about OSGi bundles are the ser-
vices they provide. For that, one can display all provided
services as blocks above the islands (Figure 18(c)). By
zooming out, one can easily see how these services are
connected, which can be further explored by selected the
according connecting bundles (Figure 18(d)).

8. RELATED WORK

Maletic et al. [31] presented a visualization of C++ code in
a virtual environment. Classes are represented as floating
platforms upon which additional geometric shapes are placed
to visualize attributes and methods. While inheritance is
implemented via platform adjacency, other dependency types
use explicit connections. The presented system is displayed
inside a CAVE environment and showcased only very simple
software systems.

Fittkau et al. [32] proposed an approach for a live trace
visualizations using a city metaphor in virtual reality. The vi-
sualization is presented to the user in a head mounted display
(Oculus DK1). Since the used hardware does not incorporate
any positional tracking, the visualized content is additionally
transformed via gesture based controls. In combination with

a gaze driven pointer, objects can be selected and interacted
with.

Schreiber et al. [33] introduced an approach for visualizing
software modules using the metaphor of electrical compo-
nents. Modules are represented as blocks and the containing
packages are stacked on top of each module. The stacked
modules are visualized in virtual reality by various placement
algorithms based on the relationship between modules. Mod-
ules and packages can be selected an interactively explored by
showing service modules, classes, and dependencies between
modules and packages.

Merino et al. [34] and Vincur et al. [35], [36] presented a VR
visualization for object oriented software (Java, C++) using a
city metaphor. The approaches rely on VR hardware capable
of positional tracking, as the main navigational mechanism is
physical movement and interaction is based on the controller
positions. In contrast, the main navigational mechanism in
our work is the explicit transformation of the visualization
itself and is therefore independent of the available physical
tracking space. Additionally, we also support positional
tracking.

For AR, Merino at al. [37] investigated, whether usability is-
sues of 3D software visualization (e.g., navigation, selection,
occlusion, and text readability issues) can be minimized by
displaying 3D visualizations in immersive augmented reality.

9. CONCLUSION

We presented our approaches for exploring intangible
component-based software architectures in virtual reality and
augmented reality. We used an island metaphor to represents
the modules on different levels and their dependencies vi-
sually. Currently, we are able to visualize the architecture
of software systems that are developed based on the OSGi
component model for Java. OSGi-based software systems are
widely used for large applications, especially in embedded
systems development or in the Eclipse ecosystem. The visual-
izations at the current stage of development allows to visually
explore the overall architecture and to discover dependencies
at various modularity levels.

Future work will foremost focus on conducting user studies to
evaluate the usefulness of our approach, which is somewhat
missing for most software visualization approaches [38]. We
started with a comparative user study between VR and Web-
based 2D visualizations and a user study using eye-tracking
in VR. Other future work aims to support other component
models than OSGi and other programming languages than
Java. Beside visualizing the current state of software projects,
we plan to visualize the evolution of software, too.

ACKNOWLEDGMENTS

The authors thank current and former members of the RCE
team (Brigitte Boden, Jan Flink, Robert Mischke, and Sascha
Zur) for discussions, support, and continuous help in eval-
vating the visualizations and Doreen Seider, AWS, for ini-
tiating the research on software visualization at DLR and
continuously sharing her thoughts and recommendations on
our work.

REFERENCES
[1] R. Mili and R. Steiner, “Software engineering
— introduction,” in Revised Lectures on Software

Visualization, International Seminar. London, UK,
UK: Springer-Verlag, 2002, pp. 129-137. [Online].
Available: http://dl.acm.org/citation.cfm?id=647382.
724792

D. Seider, M. Litz, A. Schreiber, P. M. Fischer, and
A. Gerndt, “Open source software framework for ap-
plications in aeronautics and space,” in 2012 IEEE
Aerospace Conference, March 2012, pp. 1-11.

S. Goertz, C. Ilic, J. Jepsen, M. Leitner, M. Schulze,
A. Schuster, J. Scherer, R. Becker, S. Zur, and
M. Petsch, [I8th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference. American
Institute of Aeronautics and Astronautics, 2017, ch.
Multi-Level MDO of a Long-Range Transport Aircraft
Using a Distributed Analysis Framework. [Online].
Available: https://doi.org/10.2514/6.2017-4326

P. M. Fischer, M. Deshmukh, A. Koch, R. Mischke,
A. M. Gomez, A. Schreiber, and A. Gerndt, “Enabling
a conceptual data model and workflow integration
environment for concurrent launch vehicle analysis,”
in 69th International Astronautical Congress (IAC),
Oktober 2018. [Online]. Available: https://elib.dlr.de/
122158/

P. M. Fischer, D. Liidtke, C. Lange, F.-C. Roshani,
F. Dannemann, and A. Gerndt, “Implementing model-
based system engineering for the whole lifecycle

10

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

of a spacecraft,” CEAS Space Journal, vol. 9,
no. 3, pp. 351-365, Sep 2017. [Online]. Available:
https://doi.org/10.1007/s12567-017-0166-4

M. Misiak, D. Seider, S. Zur, A. Fuhrmann, and
A. Schreiber, “Immersive exploration of OSGi-based
software systems in virtual reality,” in Proceedings of
the 25th IEEE Virtual Reality (VR) conference. 1EEE,
2018.

A. Schreiber and M. Misiak, “Visualizing software ar-
chitectures in virtual reality with an island metaphor,”
in Virtual, Augmented and Mixed Reality: Interaction,
Navigation, Visualization, Embodiment, and Simula-
tion, J. Y. Chen and G. Fragomeni, Eds. Cham:
Springer International Publishing, 2018, pp. 168-182.

R. Koschke, “Software visualization in software
maintenance, reverse engineering, and re-engineering:
A research survey,” Journal of Software Maintenance,
vol. 15, no. 2, pp. 87-109, Mar. 2003. [Online].
Auvailable: http://dx.doi.org/10.1002/smr.270

P. Caserta and O. Zendra, “Visualization of the static
aspects of software: A survey,” IEEE Transactions
on Visualization and Computer Graphics, vol. 17,
no. 7, pp. 913-933, Jul. 2011. [Online]. Available:
http://dx.doi.org/10.1109/TVCG.2010.110

M. A. D. Storey, K. Wong, and H. A. Muller, “How do
program understanding tools affect how programmers
understand programs?” in Proceedings of the Fourth
Working Conference on Reverse Engineering, Oct 1997,
pp. 12-21.

G. G. Robertson, S. K. Card, and J. D.
Mackinlay, “Information visualization using 3d
interactive animation,” Commun. ACM, vol. 36,
no. 4, pp. 57-71, Apr. 1993. [Online]. Available:
http://doi.acm.org/10.1145/255950.153577

P. Trani and C. Ware, “Diagramming information

structures using 3d perceptual primitives,” ACM
Trans. Comput.-Hum. Interact., vol. 10, no. 1,
pp. 1-19, Mar. 2003. [Online]. Available: http:

//doi.acm.org/10.1145/606658.606659

C. Ware and G. Franck, “Evaluating stereo and
motion cues for visualizing information nets in
three dimensions,” ACM Trans. Graph., vol. 15,
no. 2, pp. 121-140, Apr. 1996. [Online]. Available:
http://doi.acm.org/10.1145/234972.234975

H. Graham, H. Y. Yang, and R. Berrigan, “A
solar system metaphor for 3d visualisation of object
oriented software metrics,” in Proceedings of the 2004
Australasian Symposium on Information Visualisation -
Volume 35, ser. APVis ’04. Darlinghurst, Australia,
Australia: Australian Computer Society, Inc., 2004, pp.
53-59. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1082101.1082108

D. Seider, A. Schreiber, T. Marquardt, and
M. Briiggemann, “Visualizing modules and
dependencies of osgi-based applications,” in Software
Visualization (VISSOFT), 2016 IEEE Working
Conference on. 1EEE, 2016, pp. 96-100.

R. Miiller, D. Mahler, M. Hunger, J. Nerche, and
M. Harrer, “Towards an open source stack to create
a unified data source for software analysis and visu-
alization,” in The Sixth IEEE Working Conference on
Software Visualization (VISSOFT 2018). 1EEE, 2018,
pp. 107-111.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

V. L. Averbukh, “Visualization = metaphors,”
Programming and Computer Software, vol. 27,
no. 5, pp. 227-237, Sep. 2001. [Online]. Available:
http://dx.doi.org/10.1023/A:1012333025189

M. Yang and R. P. Biuk-Aghai, “Enhanced hexagon-
tiling algorithm for map-like information visualisation,”
in Proceedings of the 8th International Symposium
on Visual Information Communication and Interaction,
ser. VINCI °15. New York, NY, USA: ACM, 2015,
pp- 137-142. [Online]. Available: http://doi.acm.org/
10.1145/2801040.2801056

M. Parks, American Flow Mapping: A Survey of the
Flow Maps Found in Twentieth Century Geography
Textbooks, Including a Classification of the Various
Flow Map Designs. Georgia State University, 1987.
[Online]. Available: https://books.google.de/books?id=
mgRENwWAACAAIJ

W. Tobler, “Experiments in migration mapping by com-
puter,” The American Cartographer, vol. 14, pp. 155—
163, Apr. 1987.

P. Eades, “A heuristic for graph drawing,” Congressus
numerantium, vol. 42, pp. 149-160, 1984.

H. B.-L. Duh, D. E. Parker, and T. A. Furness, “An
“independent visual background” reduced balance dis-
turbance envoked by visual scene motion: implication
for alleviating simulator sickness,” in Proceedings of
the SIGCHI conference on human factors in computing
systems. ACM, 2001, pp. 85-89.

J. Prothero, M. H Draper, T. Furness, D. Parker,
and M. J Wells, “The use of an independent visual
background to reduce simulator side-effects,” Aviation,

space, and environmental medicine, vol. 70, pp. 277-83,
Apr. 1999.

J. Jerald, The VR Book: Human-Centered Design for
Virtual Reality. New York, NY, USA: Association for
Computing Machinery and Morgan & Claypool, 2016.

M. Misiak, Rawi85, and A. Schreiber, “DLR-SC/island-
viz: Islandviz 1.0,” Oct. 2018. [Online]. Available:
https://doi.org/10.5281/zenodo.1464633

J. Rekimoto and K. Nagao, “The world through
the computer: Computer augmented interaction with
real world environments,” in Proceedings of the
8th Annual ACM Symposium on User Interface and
Software Technology, ser. UIST ’95. New York, NY,
USA: ACM, 1995, pp. 29-36. [Online]. Available:
http://doi.acm.org/10.1145/215585.215639

G. Tur and L. Deng,
and Spoken Utterance Classification. Wiley-
Blackwell, 2011, ch. 4, pp. 93-118. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/9781119992691.ch4

T. Bocklisch, J. Faulkner, N. Pawlowski, and A. Nichol,
“Rasa: Open source language understanding and
dialogue management,” CoRR, vol. abs/1712.05181,
2017. [Online]. Available: http://arxiv.org/abs/1712.
05181

A. Schreiber, R. Galoppini, M. Meinel, and T. Schlauch,
“An open source software directory for aeronautics
and space,” in Proceedings of The International
Symposium on Open Collaboration, ser. OpenSym
’14. New York, NY, USA: ACM, 2014, pp. 46:1-
46:7. [Online]. Available: http://doi.acm.org/10.1145/
2641580.2641630

Intent Determination

11

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

D. Seider, A. Basermann, R. Mischke, M. Siggel,
A. Trltzsch, and S. Zur, Ad hoc Collaborative De-
sign with Focus on Iterative Multidisciplinary Process

Chain Development applied to Thermal Management of
Spacecraft, 10 2013.

J. 1. Maletic, J. Leigh, A. Marcus, and G. Dunlap,
“Visualizing object-oriented software in virtual reality,”
in Proceedings 9th International Workshop on Program
Comprehension. IWPC 2001. Washington, DC, USA:
IEEE Computer Society, 2001, pp. 26-35.

F. Fittkau, A. Krause, and W. Hasselbring, “Exploring
software cities in virtual reality,” in 2015 IEEE 3rd
Working Conference on Software Visualization (VIS-
SOFT), Sept 2015, pp. 130-134.

A. Schreiber and M. Briiggemann, “Interactive visu-
alization of software components with virtual reality
headsets,” in 2017 IEEE Working Conference on Soft-
ware Visualization (VISSOFT), 2017, Conference Pro-
ceedings.

L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz,
“CityVR: Gameful software visualization,” in
2017 IEEE International Conference on Software

Maintenance and Evolution (ICSME). 1IEEE,
2017, pp. 633-637. [Online]. Available: http:
/Iscg.unibe.ch/archive/papers/Meril 7c.pdf

J. Vincur, I. Polasek, and P. Navrat, “Searching

and exploring software repositories in virtual reality,”
in Proceedings of the 23rd ACM Symposium on
Virtual Reality Software and Technology, ser. VRST
’17. New York, NY, USA: ACM, 2017, pp. 75:1-
75:2. [Online]. Available: http://doi.acm.org/10.1145/
3139131.3141209

J. Vincur, P. Navrat, and 1. Polasek, “VR city: Software
analysis in virtual reality environment,” in 2017 IEEE
International Conference on Software Quality, Reliabil-
ity and Security Companion (QRS-C), July 2017, pp.
509-516.

L. Merino, A. Bergel, and O. Nierstrasz, “Overcoming
issues of 3d software visualization through immersive
augmented reality,” in VISSOFT’18: Proceedings
of the 6th IEEE Working Conference on Software
Visualization. 1EEE, 2018. [Online]. Available: http:
/Iscg.unibe.ch/archive/papers/Meril 8c.pdf

L. Merino, M. Ghafari, C. Anslow, and
O. Nierstrasz, “A systematic literature review of
software visualization evaluation,” Journal of Systems
and Software, vol. 144, pp. 165 - 180, 2018.
[Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0164121218301237

BIOGRAPHY

Andreas Schreiber received a diploma
in industrial mathematics from Techni-
cal University Clausthal. He worked
at the German Army (Bundeswehr) and
Argonne National Laboratory. Now he
is head of the Department for Intel-
ligent and Distributed Systems of the
German Aerospace Centers (DLR) Sim-
ulation and Software Technology divi-

- sion. His research fields include repro-
ducible science, distributed systems, data provenance, ma-
chine learning, explainable Al information visualization, and
software analytics. He organizes events for Python in high-
performance computing and data science.

Lisa Nafeie is a student of Com-
puter Science and Engineering at TH
Koln. She’s working as a student as-
sistant at the Department for Intelligent
and Distributed Systems of the German
Aerospace Center (DLR). Her research
fields include software systems and soft-
ware visualization. She started to work
in the software visualization team in
Spring 2018. Before that she worked in
the distributed software systems team at DLR, and helped
to develop the distributed integration system RCE, which is
based on OSGi.

Artur Baranowski received a B.Eng. in
Media Technology from the University
of Applied Sciences Diisseldorf. Cur-
rently he is a masters student in Com-
puter Science and Engineering at TH
| Koln. Meanwhile, he is research as-
sistant at the Department for Intelligent
and Distributed Systems of the German
Aerospace Center (DLR), where he sup-
' ports research in the fields augmented
reality, interactive visualization, and software visualization.

Peter Seipel received a B.A. in Phi-
losophy from the University of Marburg
(Philipps-Universitidt Marburg) and a
B.A. in Computer Science (Informa-
tionsverarbeitung) form the University
of Cologne. Currently he is a masters
student in Computer Science with a fo-
cus on Computer Linguistics. Mean-
while, he is research assistant at the De-
partment for Intelligent and Distributed
Systems of the German Aerospace Center (DLR), where he
supports research in the fields augmented reality, speech
recognition, and natural language processing.

Martin Misiak received his M.S degree
in Media Technology from the Univer-
sity of Applied Sciences in Cologne (TH
Koln). He is a PhD student at the
University of Wiirzburg and TH Koln,
where he also works as a research as-
sociate. His research fields include real-
time computer graphics, photo-realistic
rendering, computer human interaction,
virtual reality technologies, and infor-
mation visualization.

12

