
Studying and Assisting the Practice of Java and C# Exception Handling

Guilherme Bicalho de Pádua

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Applied Science (Software Engineering) at

Concordia University

Montréal, Québec, Canada

February 2018

c© Guilherme Bicalho de Pádua, 2018

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Concordia University Research Repository

https://core.ac.uk/display/211520384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Guilherme Bicalho de Pádua

Entitled: Studying and Assisting the Practice of Java and C# Exception

Handling

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

Chair

Examiner
Dr. Nikolaos Tsantalis

Examiner
Dr. Yann-Gaël Guéhéneuc

Supervisor
Dr. Weiyi Shang

Approved by
Dr Volker Haarslev, Graduate Program Director

TBD
Dr Amir Asif, Dean

Faculty of Engineering and Computer Science

Abstract

Studying and Assisting the Practice of Java and C# Exception Handling

Guilherme Bicalho de Pádua

Modern programming languages, such as Java and C#, typically provide features that handle

exceptions. These features separate error-handling code from regular source code and aim to assist in

the practice of software comprehension and maintenance. Nevertheless, their misuse can still cause

reliability degradation or even catastrophic software failures. Prior studies on exception handling

aim to understand the practices of exception handling in its different components, such as the origin

of the exceptions and the handling code of the exceptions. Previous research presented anti-patterns

of exception handling; while little knowledge was shared about the prevalence of these anti-patterns.

Furthermore, little is known about the relationship between exception handling practices and soft-

ware quality. In this thesis, to complement prior research findings on exception handling, we, first,

study the exception handling features by enriching the knowledge of handling code with a flow analy-

sis of exceptions. Second, we investigate the prevalence of exception-handling anti-patterns. Finally,

we investigate the relationship between software quality (measured by the chance of having post-

release defects) and: (i) exception flow characteristics and (ii) 17 exception handling anti-patterns.

Our case study is conducted with over 10K exception handling blocks, and over 77K related exception

flows from 16 open-source Java and C# (.NET) libraries and applications. We collected a thorough

list of exception flow characteristics and their anti-patterns using an automated exception flow anal-

ysis tool. On three Java and C# projects, we built statistical models of the chance of post-release

defects using traditional software metrics and metrics that are associated with exception handling

practice. We study whether exception flow characteristics and exception handling anti-patterns have

a statistically significant relationship with post-release defects. Our case study results show that

each try block has up to 12 possible potentially recoverable yet propagated exceptions. More im-

portantly, 22% of the distinct possible exceptions can be traced back to multiple methods (average

of 1.39 and max of 34). Moreover, we found that although exception handling anti-patterns widely

exist in all of our subjects, only a few anti-patterns (e.g. Unhandled Exceptions, Catch Generic,

Unreachable Handler, Over-catch, and Destructive Wrapping) can be commonly identified. Finally,

we conclude that exception flow characteristics in Java projects have a significant relationship with

post-release defects and there exist anti-patterns that can provide significant explanatory power to

the chance of post-release defects. Our findings highlight the opportunities of leveraging automated

iii

software analysis to assist in exception handling practices and signify the need for more further in-

depth studies on exception handling practice. Development teams should consider allocating more

resources to improving their exception handling practices and avoid the anti-patterns that are found

to have a relationship with post-release defects.

iv

Acknowledgments

In this short space of acknowledgments of people and the opportunities or support they provided

me, I would like to express my gratitude and how much they represent to this work. It is a short

space, nevertheless, nothing that this thesis represents, neither all the work that was put into it,

could have been done without them.

First, I would like to thank Dr. Weiyi Shang, my supervisor. This work started because of

his interesting research-oriented course. Since then, he has been always present by immediately

answering all my questions and providing above and beyond support. Moreover, his feedback,

guidance and brilliant ideas contributed enormously to the success of this work.

As this journey achieves its end, I’m grateful to have Dr. Nikolaos Tsantalis and Dr. Yann-Gaël

Guéhéneuc as readers and evaluators. It is not only due to this thesis evaluation that Dr. Tsantalis,

Dr. Guéhéneuc, and also other professors and students of the Software Engineering group that I’m

thankful. Throughout the whole journey, I was always inspired by their work, as well as their ability

to positively support all students in the group, towards improving our software engineering research.

To that extent, I also thank the Department of Computer Science and Software Engineering.

I’m very thankful to my previous employer ERA Environmental, lead by Sarah Sajedi. ERA’s

support during the initial phases of my Master’s was essential and I could not have come this far

without it. I’m grateful for the years of work and experience we shared, and how they contributed

to this work.

To not forget, I’m grateful to Canada. Through Canada’s support via the Natural Sciences

and Engineering Research Council of Canada (NSERC), I was awarded the Canada Graduate

Scholarships-Master’s Program (CGS-M). Such scholarship and recognition made me go above and

beyond to achieve better research results. I’m also grateful for other Canadian researchers that

through the Consortium for Software Engineering Research (CSER) provided valuable feedback to

this work.

I’m thankful for the software engineering community. The kind volunteer work of peer reviewers

improves our work by bringing the outsider view, reminding myself to put things in perspective and

adjust our direction where needed.

v

Closer to my daily life outside of the scope of this work, I’m thankful for the SENSE lab mates

and the DAS lab members. Together, we shared many moments in our research endeavours. I

could not do it without the simple daily things we shared or the more intense experiences during

conferences, seminars, courses and meetings.

Some close special people were always there for me during this whole process. My dear friends

Stefan, Supreet, David and Kavijit were always open to listen and provide kind words of support.

My parents, Selma and Oto, who always guided me and helped me stick to my own goals.

Finally, more than anyone else, I would like to thank my beloved fiancée Laura Weinkam. Laura’s

unconditional love, support, care and encouragement made me have the best of times during this

academic experience. You were an inspiration to work hard, give my best and, more than anything,

enjoy all parts of this learning experience. I dedicate this thesis to you.

vi

Related Publications

The following publications are related to this thesis:

• Chapter 3: Bicalho de Padua G, Shang W. (2017). Revisiting Exception Handling Practices

with Exception Flow Analysis. 2017 IEEE 17th International Working Conference on Source

Code Analysis and Manipulation (SCAM) (11-20)

• Chapter 4: Bicalho de Padua G, Shang W. (2017). Studying the Prevalence of Excep-

tion Handling Anti-Patterns. 2017 IEEE/ACM 25th International Conference on Program

Comprehension (ICPC) (328-331). Best ERA Paper Award.

• Chapter 5: Bicalho de Padua G, Shang W. (2018). Studying the Relationship between

Exception Handling Practices and Post-release Defects. 2018 IEEE/ACM 15th International

Conference on Mining Software Repositories (MSR) (Submitted)

vii

Contents

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Research Hypothesis . 2

1.2 Thesis overview . 2

1.2.1 Chapter 2: Background and Literature Review 2

1.2.2 Chapter 3: Revisiting Exception Handling Practices with Exception Flow

Analysis . 3

1.2.3 Chapter 4: Studying the Prevalence of Exception Handling Anti-Patterns . . 4

1.2.4 Chapter 5: Studying the Relationship between Exception Handling Practices

and Post-release Defects . 4

1.3 Thesis contributions . 5

1.4 Thesis organization . 5

2 Background and Literature Review 6

2.1 An illustrative example of exception handling practices 6

2.1.1 Handling possible exceptions . 6

2.1.2 Raising and propagating exceptions . 7

2.1.3 Documenting exceptions . 8

2.2 Empirical studies on exception handling practices . 8

2.3 Anti-patterns of exception handling . 9

2.4 Improving exception handling practices . 11

2.5 Software quality and defect modeling . 11

3 Revisiting Exception Handling Practices with Exception Flow Analysis 13

3.1 Introduction . 14

viii

3.2 Methodology . 15

3.2.1 Exception flow analysis . 15

3.2.2 Subject projects . 18

3.3 Quantity of Exceptions . 18

3.3.1 All and propagated possible exceptions . 18

3.3.2 Potentially recoverable yet propagated exceptions 20

3.4 Diversity of Exceptions . 21

3.5 Sources of Exceptions . 23

3.5.1 Multiple sources of the same exception . 23

3.5.2 Sources of exception documentation . 24

3.6 Exception Handling Strategies and Actions . 24

3.6.1 Exception handling strategies . 25

3.6.2 Exception handling actions . 27

3.7 Threats to Validity . 30

3.7.1 External validity. 30

3.7.2 Internal validity. 30

3.7.3 Construct validity. 31

3.8 Conclusion . 31

4 Studying the Prevalence of Exception Handling Anti-Patterns 33

4.1 Introduction . 33

4.2 Methodology . 34

4.2.1 Subject projects . 34

4.2.2 Detecting exception handling anti-patterns 35

4.3 The prevalence of exception handling anti-patterns 35

4.4 The amount of exception flows . 38

4.5 Discussion . 38

4.6 Threats to validity . 40

4.6.1 External validity . 40

4.6.2 Internal validity . 41

4.6.3 Construct validity . 41

4.7 Conclusion . 41

5 Studying the Relationship between Exception Handling Practices and Post-release

Defects 42

5.1 Introduction . 43

ix

5.2 Case Study Design . 44

5.2.1 Research questions . 44

5.2.2 Subject projects . 45

5.2.3 Metrics . 45

5.2.4 Model construction . 52

5.2.5 Model analysis . 54

5.2.6 Preliminary results . 55

5.3 Case Study Results and Discussion . 56

5.4 Threats to Validity . 60

5.4.1 External validity . 60

5.4.2 Internal validity . 61

5.4.3 Construct validity . 61

5.5 Conclusion . 62

6 Conclusions and Future Work 64

6.1 Conclusion . 64

6.2 Future Work . 65

Bibliography 67

x

List of Figures

1 An illustrative example. 7

2 Number of possible exceptions per try block for each project broken down by Propa-

gated and Potentially Recoverable, Propagated, and Total. 20

3 Quantity of identified possible exceptions per source of information. 25

4 Quantity of possible exceptions per try block per project by handling strategy. . . . 26

5 Percentage of possible exceptions that are handled using each type of action. 28

6 Examples of differences between Java and C# and between applications and libraries.

Differences between Java and C# are significant based on Wilcoxon Rank Sum test

(p-value <0.05). Based on the same test, all differences between applications and

libraries are not statistically significant. 40

7 An overview of our modeling approach: model construction and model analysis. . . . 53

xi

List of Tables

1 List of the detected anti-patterns. 10

2 Our findings and implications on exception handling practices: quantity and diversity. 15

3 Our findings and implications on exception handling practices: sources and handling

strategies and actions. 16

4 An overview of the selected subject projects. 19

5 Total amount of distinct exception types and the percentages of distinct exception

types that appear in different quantity of try blocks. 22

6 Percentage of distinct exceptions that are traced back to one, two or over two methods. 23

7 List of the detected actions. 27

8 List of top 10 common exception types in the studied projects. 30

9 Overview of the selected subject projects. 35

10 Percentage of affected catch per project per anti-pattern. 37

11 Percentage of affected throws per project per anti-pattern. 37

12 Distribution of affected catch blocks according to flow anti-patterns and the quantity

of affected flows. 39

13 An overview of the subject projects. 46

14 Exception handling flow characteristics metrics: part one of three. The symbol

†indicates the rows where each metric represents multiple metrics. 48

15 Exception handling flow characteristics metrics: part two of three. The symbol

†indicates the rows where each metric represents multiple metrics. 49

16 Exception handling flow characteristics metrics: part three of three. The symbol

†indicates the rows where each metric represents multiple metrics. 50

17 Exception handling anti-patterns metrics. The symbol †indicates the rows where each

metric represents multiple metrics. 51

18 A summary of the fitted models’ construction and analysis. 56

xii

19 Significant metrics in the final models with Wald χ2 and effect values. Effect is

measured by setting a metric to 110% of its mean value, while the other metrics are

kept at their mean values. A positive impact (i.e., direction ↗) means that higher

values of the metric, higher chance of bugs. 63

xiii

Chapter 1

Introduction

Modern programming languages, such as Java and C#, typically provide exception handling features,

such as throw statements and try-catch-finally blocks. These features separate error-handling code

from regular source code and are leveraged widely in practice to support software comprehension

and maintenance [MSR85, CCHW09].

Having acknowledged the advantages of exception handling features, their suboptimal usage can

still cause catastrophic software failures, such as application crashes [YLZ14, KZP+13], or reliability

degradation, such as information leakage [Car96, ZC14]. A large portion of systems has suffered

from system crashes that were due to exceptions [Cri82]. Additionally, the importance of exception

handling source code has been illustrated in prior research and surveys [BGB14, ECS15].

Prior studies aim to understand the practices of exception handling in its different components:

exception sources and handling code [SCKB16]. Findings from recent empirical studies have advo-

cated the suboptimal use of exception handling features in open-source software [NHT16, KLM16,

AARS16, BCR+15]. These prior research findings imply the lack of a thorough understanding of

the practice of exception handling.

Prior research has reported a slew of anti-patterns on exception handling [YLZ14, CCHW09,

McC06, BGB14]. These anti-patterns describe the problematic exception handling source code that

may exist in the entire life cycle of exceptions, i.e., the propagation of the exception, the flow of the

exception and the handling of the exception. Although these anti-patterns are discussed in prior

research [SCKB16], the prevalence of these anti-patterns is not studied in-depth.

Moreover, the suboptimal practices and anti-patterns might not share a relationship with software

quality, and, if that is the case, it may provide evidence to explain the findings from prior studies.

However, little is known about the existence of such relationship.

In this thesis, to complement prior research findings on exception handling, we, first, study the

1

exception handling features by enriching the knowledge of handling code with a flow analysis of

exceptions. Second, we investigate the prevalence of exception-handling anti-patterns. Finally, we

investigate the relationship between software quality (measured by the chance of having post-release

defects) and: (i) exception flow characteristics and (ii) 17 exception handling anti-patterns.

The rest of this chapter is organized as follows: Section 1.1 present our research hypothesis.

Section 1.2 describes an overview of our case studies. Section 1.3 presents the main contributions of

our case studies. Section 1.4 presents the organization of the rest of this thesis.

1.1 Research Hypothesis

Previous research findings and our industrial experience lead us to formulate the following research

hypothesis:�

�

�

�

The previously observed findings of exception handling characteristics and anti-patterns were

scattered and diverse. Yet, it is not clear if the suboptimal practices are prevalent in practice

and if they are related to software quality. We hypothesize that some suboptimal practices

might be prevalent in practice and they might be related to software quality.

The goal of this thesis is to empirically explore this hypothesis by revisiting the exception handling

practices, studying the prevalence of suboptimal practices and modeling their relationship with

software quality. In particular, we mine software repositories using automated tools we developed.

Moreover, we aim to specify and indicate which practices can and should be supported by auto-

mated tools that assist developers when handling exceptions. Our experience shows that developers

have numerous sources of recommendations which can be overwhelming. In the case of that some

suboptimal practices are related to software quality, software teams might be able to focus their

efforts on specific suboptimal practices using automated analysis tools. Our findings are expected

to pave a path for further research and knowledge transference to industrial settings.

1.2 Thesis overview

1.2.1 Chapter 2: Background and Literature Review

This chapter presents relevant research exception handling practices, exception handling anti-patterns,

improving exception handling practices and the prior research on software defect modeling.

Overall, the previous research reviewed general aspects of exception handling, such as exception

handling practices with and without flow analysis (i.e., handler actions); exception handling anti-

patterns and smells are proposed; exception handling quantity, complexity and user studies on

2

developer difficulties when dealing with exception handling; documentation of exception handling;

exception handling defects and impact; exception handling code changes and evolution. All of

the studies provide empirical evidence that unveils the existence of suboptimal exception handling

practices.

On one hand, undesired practices, especially defined anti-patterns, or rules are proposed as

indicators of suboptimal exception handling practices [YLZ14, SCKB16, CCHW09, McC06, BGB14].

On the other hand, some researchers propose specific improvements for exception handling, such

as tools to understand exception flow; exception handling design and mechanisms changes were

proposed; automation of exception handling. However, the undesired practices and anti-patterns

were not empirically studied.

As we discuss software quality, we also evaluate prior research on software quality measurement.

We review previous research that used basic product and process metrics, as well as other aspects

of software engineering (e.g. software logging or code review) and post-release defects. More impor-

tantly, we present the previous research on software patterns and anti-patterns and their relationship

with post-release defects.

1.2.2 Chapter 3: Revisiting Exception Handling Practices with Excep-

tion Flow Analysis

In this chapter, we re-visit exception handling practices by conducting an in-depth study on 16

open-source Java and C# libraries and applications. To understand and analyze the state-of-the-

practice of exception handling in these projects, we perform source code analysis to track the flow

of exceptions from the source of exceptions, through method invocations, to the attempting blocks

of exceptions (try block) and the exception handling block (catch block). With such flow analysis,

we extract information about exception handling practice in over 10K exception handling blocks,

and over 77K related exception flows from the studied subject systems.Our case study focuses on

four aspects of the exception handling practices: 1) the quantity of exceptions, 2) the diversity of

exceptions, 3) the sources of exceptions and 4) the exception handling strategies and actions.

Our results confirm the challenge of composing quality exception handling code. For example,

we find a considerable amount of potentially recoverable yet propagated exceptions. However, more

importantly, we highlight the opportunities of leveraging our automated source code analysis to

complement the information that is valuable for developers when handling exceptions. More in-

depth analyses are needed to ensure and improve the quality and usefulness of exception handling

in practice.

3

1.2.3 Chapter 4: Studying the Prevalence of Exception Handling Anti-

Patterns

In this chapter, we extend our analysis from the previous chapter and we investigate the prevalence

of exception handling anti-patterns in 16 open-source Java and C# applications and libraries. We

find that all of the studied subjects have exception handling anti-patterns detected in their source

code. Whereas only five anti-patterns (Unhandled Exceptions, Catch Generic, Unreachable Handler,

Over-catch, and Destructive Wrapping) are prevalently observed, i.e., in median detected in over 20%

of the catch blocks or throws statements in the subject systems. We observe that these anti-patterns

are often associated with multiple flows of exception, leading to bigger impact and more challenging

resolution of such anti-patterns. By further investigation, we find that programming languages (e.g.,

Java or C#) may have a relationship to the existence of anti-patterns, while we do not observe such

relationship with the type of projects (e.g., application or library).

Our results imply that, despite the prior research on exception handling, there is still lacking

a deep understanding of the practice of exception handling. More in-depth analyses are needed to

ensure the quality and usefulness of exception handling in practice.

1.2.4 Chapter 5: Studying the Relationship between Exception Handling

Practices and Post-release Defects

In this chapter, based on the previous chapters findings of suboptimal exception handling practices

(i.e., anti-patterns and flow characteristics), we perform an empirical study of the relationship be-

tween exception handling practices and post-release defects (as a proxy to software quality). In

particular, our case study is conducted on two open-source Java projects (Hadoop and Hibernate)

and one open-source C# project (Umbraco). Through the case study results, we would like to

answer the following two research questions:

RQ1: Do exception flow characteristics contribute to better explaining the chance of

post-release defects?

RQ2: Do exception handling anti-patterns contribute to better explaining the chance

of post-release defects?

We find that, in some project (e.g., Umbraco), we do not observe any statistically significant

relationship between exception flow characteristics and post-release defects. However, in the other

two Java projects, the suboptimal practices of exception handling (e.g, the ambiguity of possible

exceptions) indeed have a statistically significant relationship with post-release defects. In addition,

although the majority of the anti-patterns do not have a statistically significant relationship with

post-release defects, four anti-patterns are observed to be statistically significant. More importantly,

4

these anti-patterns may be prevalent ones and may provide large explanatory power to the chance

of post-release defects in the studied projects.

Our case study results imply the importance of avoiding suboptimal exception handling practices.

Furthermore, although not all anti-patterns are shown to be harmful, developers should at least

consider avoiding the ones that are found to have a relationship with post-release defects in this

study. Our findings can be used as a guideline for avoiding suboptimal exception handling practices.

1.3 Thesis contributions

Our thesis highlights the importance of avoiding suboptimal exception handling practices and advo-

cates the need for techniques that can improve exception handling in software development practice.

In particular, the contributions of our thesis are:

1. We design automated tools that recovers exception flows from both Java and C#.

2. We present empirical evidence to illustrate the challenges and complexity of exception handling

in open-source systems.

3. We present empirical evidence of the prevalence of exception handling anti-patterns.

4. Our exception flow and anti-patterns analysis, as an automated tool, can already provide valu-

able information to assist developers better understand and make exception handling decisions.

5. Our thesis is the first work that empirically studies the relationship between exception handling

practice and the chance of post-release defects.

6. Our results provide guidelines to practitioners for improving their exception handling practices.

1.4 Thesis organization

The rest of this thesis is organized as follows: Chapter 2 presents the background and literature

review of this thesis. Chapter 3 presents a study in which we revisit the exception handling practices

with exception flow analysis. Chapter 4 reveals the prevalence of exception handling anti-patterns.

Chapter 5 models post-release defects based on the exception handling practices. Finally, Chapter 6

summarizes our work and proposes future work.

5

Chapter 2

Background and Literature Review

In this chapter, we present the background and the prior research that is related to this thesis. In

particular, we present an illustrative example and the prior research on exception handling practices,

exception handling anti-patterns, improving exception handling practices and the prior research on

software defect modeling.

2.1 An illustrative example of exception handling practices

In this section, we explain an illustrative example that handles, raises and propagates exceptions

(see Figure 1). The example also illustrates the means of documenting exceptions.

2.1.1 Handling possible exceptions

In this example, a developer would like to implement a method named A. The method A requires to

execute method B. The developer, by other means, has the knowledge that B can face two issues:

1) having an invalid path as input and 2) I/O faults. Therefore, instead of executing as expected,

method B would possibly throw two types of exceptions: InvalidPathException and IOException,

which correspond to the two issues, respectively. To deal with the two possible exceptions in method

B, the developer needs to either handle the exception, i.e., determine the alternative actions when

such exception happens, or propagate the exception such that a different method would manage the

issue. In our example, the developer decides to handle InvalidPathException only and to propagate

IOException.

6

Fig. 1. Flows related to A.

is propagated by A, that is IOException, represented by the
bottom double line arrow in Figure ??.

2) Handling practice complements: raising, documenting
and propagating practice: We mentioned that the developer
already know that B can throw two exception types. However,
such exception types are not always so clear at the develop-
ment moment. Moreover, B could be executing other functions
that are propagating the issues.

In our example, if a developer consult the source code of B
(listing ??) he would identify the propagation of IOException
in the throws blocks. He would also discover the calls to C and
getPath. These methods are then consulted. C is represented
in listing ??.

public void B() throws IOException
{
C();
fileSystem.getPath(invalidPath);

}

Listing 2. An exception handling example. B propagates two exceptions from
two different methods.

/**
*
* @throws IOException
* Method called when disk failed.
*
*/
public static void C() throws IOException

{
throw new IOException();

}

Listing 3. An exception handling example. C raises and propagates one
exception.

III. METHODOLOGY

In this section, we present the methodology of our study. In
order to ease the explanation of our methodology, we first
use an illustrative example with which we then introduce
our exception flow analysis. Finally, we present the subject
projects of our study.

A. An illustrative example of exception handling practices

In this subsection, we explain an illustrative example that
handles, raises and propagates exceptions. The example also

illustrates the means of documenting possible exceptions.
1) Handling possible exceptions: In this example, a devel-

oper would like to implement a method named A. The method
A requires to execute a method named B. The developer, by
other means, has the knowledge that B can potentially face
two issues: 1) having a invalid path as input and 2) I/O issues.
Therefore, instead of executing as expected, method B would
possibly throw two types of exceptions: InvalidPathException
and IOException, which correspond to the two issues. To
deal with the two possible exceptions in method B, devel-
oper needs to either handle the exception, i.e., determine the
alternative actions when such exception happens, or propagate
the exception such that a different method would handle the
exception. In our example, developers decide to only handle
InvalidPathException exception and to propagate IOException.

2) Raising and propagating exceptions: As mentioned, de-
velopers have the knowledge that B can have two issues, corre-
sponding to two possible exceptions. These two exceptions can
be either newly raised or propagated from another method that
B calls (e.g., method C and the method getPath). Developers
can use the throws blocks to newly raise an exception. In
our example, developers raise IOException with the throws
block in the method C. Such newly raised exceptions will be
propagated to all the methods that call C.

3) Documenting exceptions: In our example, a developer
can consult the source code of B and C to identify the raise of
IOException in the throw statement. However, source code is
not always available for a method. For example, the method
getPath called in method B is declared by an externals API.
Developers would need to consult the documentation (such as
JavaDoc) of the method to discover the propagation of the
possible InvalidPathException.

There could be cases when an exception is thrown but still
not available in documentation. Therefore, in some program-
ming languages (like Java), a possible exception can be part of
the method declaration. For example, method B and C declares
the possible exception that is propagated by using throws in the
method declaration. However, some exceptions can be remain
undeclared (like InvalidPathException).

B. Exception flow analysis

In the previous subsection, we presented an example of
a exception handling scenario with its related flows. In this
section, we present our methodology that automatically extract
all possible exceptions and their flows in Java and C# projects.
Our automated tool is built by leveraging Eclipse JDT Core
and .NET Compiler Platform (“Roslyn”) to parse the Java and
C# source code, respectively. As an overview, our automated
tool consistent of three steps. Second, using the AST, we
identify all sources of possible exceptions. Third, we identify
the exception handling blocks (catch blocks) where exceptions
are handled. Finally, we recover the flow of exceptions by con-
structing call graph that is relevant to the possible exceptions.
1

1Our source code, binaries and Tableau visualizations with raw data are
available online at https://guipadua.github.io/scam2017.

Fig. 1. Flows related to A.

is propagated by A, that is IOException, represented by the
bottom double line arrow in Figure ??.

2) Handling practice complements: raising, documenting
and propagating practice: We mentioned that the developer
already know that B can throw two exception types. However,
such exception types are not always so clear at the develop-
ment moment. Moreover, B could be executing other functions
that are propagating the issues.

In our example, if a developer consult the source code of B
(listing ??) he would identify the propagation of IOException
in the throws blocks. He would also discover the calls to C and
getPath. These methods are then consulted. C is represented
in listing ??.

public void B() throws IOException
{
C();
fileSystem.getPath(invalidPath);

}

Listing 2. An exception handling example. B propagates two exceptions from
two different methods.

/**
*
* @throws IOException
* Method called when disk failed.
*
*/
public static void C() throws IOException

{
throw new IOException();

}

Listing 3. An exception handling example. C raises and propagates one
exception.

III. METHODOLOGY

In this section, we present the methodology of our study. In
order to ease the explanation of our methodology, we first
use an illustrative example with which we then introduce
our exception flow analysis. Finally, we present the subject
projects of our study.

A. An illustrative example of exception handling practices

In this subsection, we explain an illustrative example that
handles, raises and propagates exceptions. The example also

illustrates the means of documenting possible exceptions.
1) Handling possible exceptions: In this example, a devel-

oper would like to implement a method named A. The method
A requires to execute a method named B. The developer, by
other means, has the knowledge that B can potentially face
two issues: 1) having a invalid path as input and 2) I/O issues.
Therefore, instead of executing as expected, method B would
possibly throw two types of exceptions: InvalidPathException
and IOException, which correspond to the two issues. To
deal with the two possible exceptions in method B, devel-
oper needs to either handle the exception, i.e., determine the
alternative actions when such exception happens, or propagate
the exception such that a different method would handle the
exception. In our example, developers decide to only handle
InvalidPathException exception and to propagate IOException.

2) Raising and propagating exceptions: As mentioned, de-
velopers have the knowledge that B can have two issues, corre-
sponding to two possible exceptions. These two exceptions can
be either newly raised or propagated from another method that
B calls (e.g., method C and the method getPath). Developers
can use the throws blocks to newly raise an exception. In
our example, developers raise IOException with the throws
block in the method C. Such newly raised exceptions will be
propagated to all the methods that call C.

3) Documenting exceptions: In our example, a developer
can consult the source code of B and C to identify the raise of
IOException in the throw statement. However, source code is
not always available for a method. For example, the method
getPath called in method B is declared by an externals API.
Developers would need to consult the documentation (such as
JavaDoc) of the method to discover the propagation of the
possible InvalidPathException.

There could be cases when an exception is thrown but still
not available in documentation. Therefore, in some program-
ming languages (like Java), a possible exception can be part of
the method declaration. For example, method B and C declares
the possible exception that is propagated by using throws in the
method declaration. However, some exceptions can be remain
undeclared (like InvalidPathException).

B. Exception flow analysis

In the previous subsection, we presented an example of
a exception handling scenario with its related flows. In this
section, we present our methodology that automatically extract
all possible exceptions and their flows in Java and C# projects.
Our automated tool is built by leveraging Eclipse JDT Core
and .NET Compiler Platform (“Roslyn”) to parse the Java and
C# source code, respectively. As an overview, our automated
tool consistent of three steps. Second, using the AST, we
identify all sources of possible exceptions. Third, we identify
the exception handling blocks (catch blocks) where exceptions
are handled. Finally, we recover the flow of exceptions by con-
structing call graph that is relevant to the possible exceptions.
1

1Our source code, binaries and Tableau visualizations with raw data are
available online at https://guipadua.github.io/scam2017.

ensure and improve the quality and usefulness of exception
handling in practice.

The rest of the paper is organized as follows: Section
II presents the background of exception handling features
through an illustrative example. Section III discusses the
related prior research of this paper. Section IV presents the
methodology of the exception flow analysis and our case study
setup. Section V to VIII present the results of our case study.
Section IX discusses the threats to the validity of our findings.
Finally, Section X concludes the paper and discusses potential
future research directions based on our research findings.

II. RELATED WORK

TODO: rewrite to be topic oriented, not paper.
Exception Flow Analysis and Documentation: Previous

work Sena et al. [7] investigated 656 Java libraries from the
Maven repository for exceptions flows. However, based on
their approach only a small number of catch blocks per library
were evaluated. We extend their work looking into a higher
number of flows per system (e.g. in Apache ANT we identified
930 catch blocks, compared to 2 identified by their approach),
different types of system and including also .NET systems.
We also focus on the perspective of the try blocks, not single
flows. Their findings confirms that API runtime exceptions are
poorly documented.

Cabral and Marques [8] identify that infrastructure and
libraries has better exception handling documentation when
compared to applications. The number of documented excep-
tion were 20% and 15% compared to 2% for applications.
They do analysis in call stack levels per caught exception, but
not at the try block level. It cannot be told what is the level
in a common scenario.

Although Coelho et al. [9] considered the exception flows
in Aspect oriented systems, they introduced measurements that
we extended in our work. Similar measurements were applied
at the try block perspective, and in different programming
languages.

Robillard and Murphy [10] created a tool to analyse excep-
tion flows in Java programs at at point of the system. Our work
is similar in terms of approach since we also use AST and call
graph navigation. We also share the ability of identifying the
flows at any point of the program. We complement their work
by including other different analysis and including different
projects and programming languages in our datasets. They
studied subsumption but did not relate to the actions.

A tool called eFlowMining [11] uses a different approach
for .NET related languages, and focus on the evolution of
exception handling code. They applied their tool in smaller
systems, with a maximum of 45 try blocks, using different
measurements.

Java control flows, including inappropriate coding patterns
were evaluated in [12]. They also provide schematic views of
possible exception types at any point in the program, however
they don’t present any relation with documentation or data
analysis at the try block level.

A recent paper, Context Dependent Java Exceptions Hier-
archy, proposes a new exception hirarchy. This could improve
how developers would deal with exception handling complex-
ity.

[13] reveals exceptions on C++. Their work also indicates
the problem that exceptions are hard and also that there
is an educational issue. They list the exception types most
common on C++ and they mentioned that the quantity of types
can indicate the concern of a project in terms of exception
handling.

[14] related caught exception types in Java and .Net with the
actions taken. In our work we include the possible exception
types based on our flow analysis.

Analysis at the try block scenario. Many papers might have
looked into things similar to our work, but they consider
unique flows across methods, they don’t report based in try
blocks. That’s a big differential in our work.

There are different actions and their respective programming
mechanisms involved in exception handling: 1) defining an
exception using a type declaration, 2) raising an exception
using a throw statement, 3) propagating an exception in a
method by not handling it or using a throws statement and
4) handling an exception using a catch block.

In this paper, we focus on the actions of handling of
exceptions from the perspective of the explicit mechanisms
(i.e. try-catch) meanwhile considering the other three actions
(i.e. to define, to raise, to propagate an exception) in our
analysis.

1) Handling practice: an example: As an basic handling
example, imagine that a developer would like to implement
a function called A. This function requires to execute the
function B. However, the developer, by other means, already
know that B can potentially face two issues and, in that case,
instead of executing as expected, B would possibly throw two
exception types. To deal with the possible exception types the
developer needs to either determine the alternative actions that
A will execute or propagate the exception so that a different
method would take care of it. The listing ?? depicts the above
scenario.

public void A() throws IOException
{

try
{

B();
}
catch (InvalidPathException ex)
{
e.printStackTrace();
}

}
}

Listing 1. An exception handling example.

The two exceptions that B can throw are exception flows
that arrive at A. Figure ?? represents such flows. One exception
flow is handled at A, that is InvalidPathException, represented
by the top single line arrow in Figure ??. One exception flow

source of exception 1:
throw statement

method call

IOException

IOException
InvalidPathException

exception
flow(s)

source of exception 3:
documentation in comment

source of exception 2: method declaration

source of
exception

IOException

documentation

source of exception 4:
external documentation

getPath can throw
InvalidPathException

Figure 1: An illustrative example.

2.1.2 Raising and propagating exceptions

As mentioned, the developer knows that B can have two issues, corresponding to two possible

exceptions. These two exceptions can be either newly raised or propagated from another method

that B calls (e.g., method C and method getPath). Developers can use a throw statement to raise

an exception. In our example, developers newly raise IOException with the throw statement in the

method C. Moreover, if the issue happens, such exception will propagate to all the methods that

call C.

7

2.1.3 Documenting exceptions

From our example, a developer could consult the source code of B and C to identify the rise

of IOException in the throw statement. However, the source code is not always available for a

method. For example, the method getPath called in method B is declared by an external API.

Developers would need to consult the documentation (such as JavaDoc) of the method to discover

the propagation of the possible InvalidPathException.

There could be cases when an exception is thrown but still not available in the documentation.

Therefore, in some programming languages (like Java), a possible exception can be part of the

method declaration. For example, method A, B, and C declares that a possible exception can

propagate in the throws block of the method declaration. However, some exceptions can remain

undeclared (like InvalidPathException).

2.2 Empirical studies on exception handling practices

Prior research studied exception handling based on source code and issue trackers. Cabral and Mar-

ques [CM07] studied exception handling practices from 32 projects in both Java and .Net without

considering the flow of exceptions. Prior work by Jo et al. [JCYC04] focuses on uncaught excep-

tions of Java Checked exceptions. They proposed an inter-procedural analysis based on set-based

framework without using declared exceptions.

Coelho et al. [CRG+08] assessed exception handling strategy with exception flows from Aspect-

oriented systems and object-oriented systems. They evaluated the number of uncaught exceptions,

exceptions caught by subsumption, and exceptions caught with specialized handlers.

Sena et al. [SCKB16] investigated sampled exception flows from 656 Java libraries for flow char-

acteristics, handler actions, and handler strategies. We extend their work by looking into a higher

number of flows per system (e.g. in Apache ANT we identified 930 catch blocks, compared to 2),

by considering applications besides libraries and including C# .NET systems.

Some studies reveal that developers consider exception handling hard to learn and to use and

tend to avoid it or misuse it [NHT16, KLM16, AARS16]. Bonifacio et al. [BCR+15] also surveyed

C++ developers encountering revelations of educational issues. Asaduzzaman et al. [AARS16]

found that regardless of their experience all developers exhibit improper exception handling coding

practices. However, some improper exception handling categories, novice developers contribute the

most.

It also has been noted that there is a lack of documentation of exceptions. Kechagia and Spinel-

lis [KS14] found that 69% of the methods had undocumented exceptions and 19% of crashes could

have been caused by insufficient documentation. Sena et al. [SCKB16]’s findings confirm that API

8

runtime exceptions are poorly documented. Cabral and Marques [CSM07] identify that infrastruc-

ture (20%) and libraries (15%) have better exception handling documentation when compared to

applications (2%).

Significant research aimed to indicate exception handling problems and their impacts. Sinha et

al. [SOH04] leveraged exception flow analyses to study the existence of 11 anti-patterns in four Java

systems. Other research [CCHW09, ECS15, BGB14] classified exception-handling related bugs by

mining software issue tracking. Thummalapenta and Xie [TX09] presented a rule-based approach

and detected 160 defects, including 87 new defect not previously known, from 294 real exception-

handling rules in five applications. Coelho et al. [CAG+17] mined Android stack traces and find a

set of defect hazards related to exception handling anti-patterns, such as: cross-type wrappings, null

pointer problems and undocumented runtime exceptions signalled by third-party code.

Cacho et al. [CCF+14, CBA+14] studied the evolution of the behavior of exception handling in

Java and C# source code changes. Their results highlight the impact of the programming language

design differences in the maintenance and robustness of exception handling mechanisms. Osman et

al. [OCC+17] differentiates applications and libraries in terms of the usage of exception handling in

an evolutionary study of Java systems. Oliveira et al. [OBS+18] studied Android software changes

of regular code in comparison with changes in exception handling code. They found that the intro-

duction of new Android-specific abstractions and invocations of methods of these abstractions are

both very strongly correlated with an increase in the number of uncaught exception flows.

Our study revisits and combines different aspects of the studies mentioned above. Moreover, we

present new findings that are not yet highlighted in prior research.

2.3 Anti-patterns of exception handling

There are different actions and their respective programming mechanisms involved in exception

handling: 1) defining an exception using a type declaration, 2) raising an exception using a throw

statement, 3) propagating an exception in a method by not handling it or using a throws statement

and 4) handling an exception using a catch block. These mechanisms are illustrated also in an

example on Section 2.1.

According to the implementation of the above actions, there can be different anti-patterns. In

this thesis, we focus on the actions of propagation and handling of exceptions from the perspective

of the explicit mechanisms (i.e. try-catch and throws). In particular, there exist three categories of

related anti-patterns (see Table 1):

1. Flow anti-patterns are in the intersection of propagation (i.e. methods in the try block and

its thrown exceptions) and handling actions (i.e. the catch block content) [YLZ14, MT97,

9

Table 1: List of the detected anti-patterns.
Group Anti-pattern Short Description

Flow

Over-catch The handler catches multiple different lower-level exceptions [MT97,

SCKB16].

Over-catch and Abort Besides over-catching, the handler aborts the system [YLZ14].

Unhandled Exceptions The handler does not catch all possible exceptions [SOH04].

Unreachable Handler The handler does not catch any possible exception [SOH04].

Handler

Catch and Do Nothing The handler is empty [YLZ14, CCHW09, SOH04].

Catch and Return Null The handler contains return null [McC06, CCHW09].

Catch Generic The handler catches a generic exception type (e.g. Exception) [McC06,

SOH04, MT97].

Destructive Wrapping The handler propagates the exception as a new exception [McC06]

Dummy Handler The handler only display or log some information [CCHW09].

Ignoring Interrupt-

edException

The handler catches InterruptedException and ignores it [McC06].

Incomplete Implemen-

tation

The handler only contains TODO or FIXME comments [YLZ14].

Log and Return Null Besides being a dummy handler, the handler return null [McC06].

Log and Throw The handler logs some information and propagates the exception [McC06].

Multi-Line Log The handler divides log information into multiple log messages [McC06].

Nested Try The handler and its try block is enclosed in another try block [CCHW09].

Relying on getCause() The handler contains a call to getCause() [McC06].

Throw within Finally The handler is followed by a finally block that propagates exceptions

[McC06].

Throws
Throws Generic The throws propagates a generic exception type (e.g. Exception) [McC06].

Throws Kitchen Sink The throws propagates multiple exceptions [McC06].

SOH04, SCKB16].

2. Handler anti-patterns are only in the handling actions and are not related to the propagated

exceptions [CCHW09, YLZ14, MT97, SOH04, McC06].

3. Throws anti-patterns are related to propagation issues, and they are specifically related to

throws statement [SOH04, McC06].

This thesis is the first work to study the prevalence of exception handling anti-patterns exten-

sively.

10

2.4 Improving exception handling practices

Robillard and Murphy [RM99] created a tool to analyze exception flows in Java programs, including a

graphical user interface. Similarly, Garcia and Cacho [GC11] proposed a different approach for .NET

related languages. Garcia and Cacho’s tool supports visualization of metrics over the application

history.

To support the software development lifecycle, Sinha et al. [SOH04] provided automated support

for development, maintenance and testing requirements related to exception handling.

To improve how developers would deal with exception handling complexity, Kechagia et al. [KSS17]

discuss and propose improvements in the design of exception handling mechanisms. Zhang and

Krintz [ZK09] propose an as-if-serial exception handling mechanism for parallel programming. The

programming languages also proposed new mechanisms to improve exception handling (e.g., try

with resources [Rie11]) and previous research showed that they have been early-adopted, but the

majority of the adoption was done in a later stage [AARS16].

The burden of writing exception handling code has been pointed out by Cabral and Mar-

ques [CM11]. They showed that a system with an automated set of recovery actions is capable

of achieving better error resilience than a traditional system.

Barbosa et al. developed strategies with heuristics for recommending exception handling code

as a semi-automated approach. Zhu et al. [ZHF+15] proposed an approach that suggests logging

decisions for exception handling.

By conducting an in-depth study on 16 open-source projects, our findings illustrate the oppor-

tunities of leveraging various analysis to combine information from different sources to understand

and assist in exception handling flows and practices. Our results are valuable to complement and

assist in improving existing exception handling techniques.

However, it is still unclear if the observed and defined suboptimal exception handling practices

are harmful, leading to bad software quality or whether the proposed analysis may improve the

quality of software by improving exception handling. Therefore, in this chapter, we aim to study

whether there exists a statistically significant relationship between the exception handling practices

that are studied and defined in prior research, and the chance of having post-release defects, as one

indicator of software quality.

2.5 Software quality and defect modeling

There exist a large body of research aiming to model software defects using product (e.g., the number

of lines of code) and process metrics (e.g., the number of changes). Emam et al. [EEBGR01] revealed

that size is a common confounding factor for the previously defined object-oriented metrics. In a

11

different work, D’Ambros et al. [DLR10] presented a benchmark for defect prediction comparison in

terms of explanatory and predictive power of well-known defect prediction approaches (i.e., models

with product and process metrics), together with novel approaches. Nevertheless, source code met-

rics are lightweight alternatives with overall good performance. In a comparison, Hassan [Has09]

introduced change complexity metrics (e.g., number of prior faults) as indicators for future faults.

Besides basic product and process metrics, various research proposes metrics quantifying other

aspects of software engineering in order to model software quality. For example, Shihab et al. [SBZ12]

consider branching activities; Zhang et al. [ZKZH14] examine editing patterns, Shang et al. [SNH15]

investigate logging characteristics and McIntosh et al. [MKAH16] study code reviews.

Moreover, researchers investigated the use of programming patterns and anti-patterns and their

impact on software quality. Khomh et al. [KPGA12] and Taba et al. [TKZ+13] considered the use of

anti-patterns because they are more actionable (e.g., developers can apply refactoring) than other

metrics (e.g., churn). Their proposed anti-pattern based metrics provided additional explanatory

power over the traditional metrics. Similar to this work, Khomh et al. [KPGA12] and Taba et

al. [TKZ+13]: used logistic regression; tested which anti-patterns impact more and showed that

size alone cannot explain defective classes. Moreover, Jaafar et al. [JGHK13] demonstrated that

dependencies to classes with anti-patterns increase the chance of post-release defects.

To the best of our knowledge, this thesis is the first attempt to study the relationship between

exception handling flow characteristics and their anti-patterns, and software quality. We base our

study using the best traditional metrics from the afore-mentioned research that are shown to have

a significant relationship with post-release defects.

12

Chapter 3

Revisiting Exception Handling

Practices with Exception Flow

Analysis

As presented in Chapter 2, Background and Literature Review, prior studies on exception handling

aim to understand the practices of exception handling in its different components, such as the origin

of the exceptions and the handling code of the exceptions. Yet, the observed findings were scattered

and diverse. In this chapter, to complement prior research findings on exception handling, we study

its features by enriching the knowledge of handling code with a flow analysis of exceptions. Our case

study is conducted with over 10K exception handling blocks, and over 77K related exception flows

from 16 open-source Java and C# (.NET) libraries and applications. Our case study results show

that each try block has up to 12 possible potentially recoverable yet propagated exceptions. More

importantly, 22% of the distinct possible exceptions can be traced back to multiple methods (average

of 1.39 and max of 34). Such results highlight the additional challenge of composing quality exception

handling code. To make it worse, we confirm that there is a lack of documentation of the possible

exceptions and their sources. However, such critical information can be identified by exception flow

analysis on well-documented API calls (e.g., JRE and .NET documentation). Finally, we observe

different strategies in exception handling code between Java and C#. Our findings highlight the

opportunities of leveraging automated software analysis to assist in exception handling practices and

signify the need of more further in-depth studies on exception handling practice.

13

3.1 Introduction

Modern programming languages, such as Java and C#, typically provide exception handling features,

such as throw statements and try-catch-finally blocks. These features separate error-handling code

from regular source code and are leveraged widely in practice to support software comprehension

and maintenance [MSR85, CCHW09].

Having acknowledged the advantages of exception handling features, their misuse can still cause

catastrophic software failures, such as application crashes [YLZ14], or reliability degradation, such

as information leakage [Car96, ZC14]. A large portion of systems has suffered from system crashes

that were due to exceptions [Cri82]. Additionally, the importance of exception handling source code

has been illustrated in prior research and surveys [BGB14, ECS15].

Prior studies on exception handling aim to understand the practices of exception handling in its

different components: exception sources and handling code. Yet, the observed findings were scattered

and diverse. Recent empirical studies on exception handling practices have advocated the suboptimal

use of exception handling features in open source software [NHT16, KLM16, AARS16, BCR+15].

Moreover, in our previous research, we observe the prevalence of exception handling anti-patterns.

These research findings imply the lack of a thorough understanding of the practice of exception

handling.

Therefore, in this chapter, we re-visit exception handling practices by conducting an in-depth

study on 16 open-source Java and C# libraries and applications. To understand and analyze the

state-of-the-practice of exception handling in these projects, we perform source code analysis to track

the flow of exceptions from the source of exceptions, through method invocations, to the attempting

blocks of exceptions (try block) and the exception handling block (catch block). With such flow

analysis, we extract information about exception handling practice in over 10K exception handling

blocks, and over 77K related exception flows from the studied subject systems.

Our case study focuses on four aspects of the exception handling practices: 1) the quantity of

exceptions, 2) the diversity of exceptions, 3) the sources of exceptions and 4) the exception handling

strategies and actions. Tables 2 and 3 summarizes our findings and their corresponding implications.

Such results confirm the challenge of composing quality exception handling code. For example, we

find a considerable amount of potentially recoverable yet propagated exceptions. However, more

importantly, we highlight the opportunities of leveraging our automated source code analysis to

complement the information that is valuable for developers when handling exceptions. More in-

depth analyses are needed to ensure and improve the quality and usefulness of exception handling

in practice.

The rest of the chapter is organized as follows: Section 3.2 presents the methodology of the

exception flow analysis through an illustrative example (i.e., Section 2.1) and our case study setup.

14

Table 2: Our findings and implications on exception handling practices: quantity and diversity.
Quantity of Exceptions (Section 3.3) Implications

(1) There often exist multiple possible exceptions

in each try block, and, out of those, many are

propagated.

Current state-of-the-practice may not provide in-

formation to developers about all possible excep-

tions. Automated techniques may help developers

be aware of all possible exceptions to make excep-

tion handling decisions.

(2) There exists a considerable amount of poten-

tially recoverable exceptions that are propagated,

even though they are recommended to be handled

by Java and C#.

Exception flow analysis can provide automated

tooling support to alert developers about not han-

dling potentially recoverable exceptions.

Diversity of Exceptions (Section 3.4) Implications

(3) With a significant amount of exceptions exist-

ing in each project, many possible exception types

appear in only one try block.

Developers may not need to be aware of all ex-

ception types in a project by receiving automated

suggestions of the exceptions that he/she needs to

understand.

Section 3.3 to 3.6 presents the results of our case study. Section 3.7 discusses the threats to the

validity of our findings. Finally, Section 3.8 concludes the chapter and discusses potential future

research directions based on our research results.

3.2 Methodology

In this section, we present the methodology of our study. Aiding the explanation of our methodology,

we first consider an illustrative example. Second, we introduce our exception flow analysis. Finally,

we discuss the subject projects used.1

3.2.1 Exception flow analysis

In Section 2.1, we presented an example of an exception handling scenario with its related flows. In

this section, we present our methodology that automatically extracts possible exceptions and their

flows in Java and C# projects. We build an automated tool using Eclipse JDT Core and .NET

Compiler Platform (“Roslyn”) to parse the Java and C# source code, respectively. As an overview,

our analysis consists of three main steps. First, we identify the exception handling blocks (catch

blocks). Second, we recover the flow of exceptions by constructing the call graph that is relevant to
1Source code, binaries, statistical tests and Tableau visualizations with raw data are available online at

https://guipadua.github.io/scam2017.

15

Table 3: Our findings and implications on exception handling practices: sources and handling

strategies and actions.
Sources of Exceptions (Section 3.5) Implications

(4) Over 22% of the exceptions are traced from

different methods.

Automated tools are needed to help developers un-

derstand the source of the exception if it is traced

back to different methods.

(5) The libraries used by the systems can provide

documentation to most of the possible exceptions.

Developers should leverage automated analyses to

understand possible exceptions.

Exception Handling Strategies and Actions (Sec-

tion 3.6)

Implications

(6) Only a small portion of the exceptions are han-

dled with the Specific strategy.

Developers should be guided to prioritize on han-

dling exceptions with the Specific strategy, since

developers cannot optimize the handling of the

exception without knowing its exact type infor-

mation.

(7) Java and C# have differences in leveraging var-

ious actions when handling exceptions.

More in-depth analysis and user studies are needed

to further understand the rationale of differences

of Java and C# exception handling practices.

(8) Actions that are taken when handling excep-

tions with specific or subsumption manners are not

statistically significantly different.

Research and tooling support are needed to guide

how to handle exceptions, especially with the spe-

cific strategy.

(9) With statistical significance, all top 10 Java

and 2 out of top 10 C# exceptions have at least

one action that is taken differently from the rest

of the exceptions.

Developers may consider leveraging automated

suggestions of exception handling actions.

16

the identified catch blocks. Finally, by traversing the flow of exceptions, we identify the sources of

possible exceptions.

As a building block, we obtain the abstract syntax tree (AST) from the source code. In this step,

we include not only the source code but also the binary files of dependencies from the Java Virtual

Machine (JVM) for Java or the .NET Global Assembly Cache (GAC) for C#. The dependencies of

third party libraries used by the projects are also included. These dependencies enrich the analysis

by providing binding information, which draws connections between the different parts of a program

(i.e. any method call and its origin, either if part of an internal declaration or external dependency).

Also, we enrich the AST by parsing the documentation of the dependencies mentioned above as

another source of information.

Identifying the handling of exceptions

We collect all the exception handling scenarios through all the catch blocks available in the AST.

At the catch block, we use the AST elements to identify the methods that are executed to handle

each exception as handling actions. We also obtain the related try blocks, which provide a list of

called methods. These methods are necessary since they might raise or propagate the exceptions

that the catch block potentially handles. In our example, we identify the catch block in method A.

The method printStackTrace is the handling action of the exception InvalidPathException. From

this catch block, we obtain the try block in which we find the call to method B. Method B can

potentially propagate InvalidPathException and IOException.

Constructing call graph

Exceptions are propagated in method calls. Therefore, we leverage call graphs to recover the flow of

exceptions. To handle polymorphism without risking over-estimation, we only consider the possible

exceptions of the method that is declared in the parent class, since they are more generic and often

called within the derived methods. Based on the previous step, for each identified method we traverse

its call graph in a depth-first manner to find its possible exceptions. In our example, we traverse

the call graph of method B and find two possible exceptions: IOException from method C and

InvalidPathException from method getPath. Hence, based on the examples’ catch block, we know

that the InvalidPathException is handled in method A while IOException is propagated without

handling.

Identifying sources of exceptions

During the call graph traverse and based on the AST, we identify four sources of exceptions. They

are: 1) The newly raised exception by the throw statement, 2) the declared exception in the throws

17

of the method declaration (only for Java), 3) the documentation as comments in the source code

(like JavaDoc comments), and 4) the external documentation. In our illustrative example, we can

identify the newly raised IOException in a throw statement in method C (source 1), the declaration

of the IOException in methods A, B, and C (source 2), and the JavaDoc documentation of method

C for IOException (source 3). In addition, since we include the information from external libraries,

our tool can also identify that the method getPath called in method B is a source of a possible

InvalidPathException (source 4).

Some exceptions can be identified from multiple sources. For example, IOException is identified

by three separate sources. We do not consider the multiple sources as different exceptions if the

exceptions are associated with the same method call (e.g. method B). We label the separate sources

of an exception as detailed information for each method call.

3.2.2 Subject projects

Table 4 depicts the studied subject projects. Our study considers Java and C# due to their popu-

larity and prior research (see Section 2). Moreover, we include C# because of its different approach

compared to Java exception handling. To facilitate replication of our work, we chose open-source

projects that are available on GitHub.

We leverage GitHub filters on the number of contributors (i.e. projects with multiple contribu-

tors) and the number of stargazers (i.e. projects with more than ten stargazers), as they can achieve

a good precision for selecting engineered software projects [MKCN17]. To narrow down the number

of projects we also sorted the projects in descending order of the number of stargazers. Moreover, to

potentially investigate the differences in exception handling practices and increase generalizability,

we picked projects based on the filtering mentioned above. After reading the official description of

the projects, we selected multiple applications and multiple libraries (i.e. project type), as well as

multiple projects for different business domains (i.e. project purpose). From each project, we se-

lected the most recent stable version of the source code at the moment of data collection for analysis.

3.3 Quantity of Exceptions

In this section, we study the quantity of all possible exceptions that are in each try block.

3.3.1 All and propagated possible exceptions

Ideally, developers should be aware of all possible exceptions to decide between handling or propa-

gating them. To do that, developers need to navigate the call graph of a system that could extend

18

Table 4: An overview of the selected subject projects.
Project Release Version Type # Try # Catch # Method (K) KLOC

C#

Glimpse 1.8.6 App. 56 57 1 31

Google API v1.15.0 Lib. 22 30 16 628

OpenRA release-20160508 App. 138 143 7 125

ShareX v11.1.0 App. 334 341 7 177

SharpDevelop 5.0.0 App. 940 1,060 41 923

SignalR 2.2.1 Lib. 94 105 2 38

Umbraco-CMS release-7.5.0 App. 595 615 15 362

Java

Apache ANT rel/1.9.7 App. 934 1,139 11 158

Eclipse JDT Core I20160803-2000 Lib. 1,424 1,655 25 383

Elasticsearch v2.4.0 App. 385 408 12 108

Guava v19.0 Lib. 263 317 10 79

Hadoop Common rel/release-2.6.4 Lib. 975 1,144 14 147

Hadoop HDFS rel/release-2.6.4 App. 525 586 4 44

Hadoop MapReduce rel/release-2.6.4 App. 293 367 6 57

Hadoop YARN rel/release-2.6.4 Lib. 1,192 1,529 29 257

Spring Framework v4.3.2.RELEASE Lib. 1,940 2,301 30 349

Total 10,110 11,797 230 3,866

to multiple ramifications. Hence, the more exceptions there are, the more challenging (i.e. expo-

nential growth) it is for developers to comprehend and decide about exception handling. Besides

that, missing possible exceptions can be a reason for the lack of a handler that should exist, which is

considered one of the top causes of exception handlings bugs [ECS15]. For those reasons, we study

the quantity of total and propagated possible exceptions in each exception handling block.

As described in our methodology (see Section 3.2), we collect all the methods called in each try

block. For those methods, we can recover the possible exceptions. Afterward, we can measure the

quantity of possible exception by counting the unique types of exceptions in each try block.

We find that there typically exist multiple possible exceptions in each try block (see Figure 2).

The median number of distinct possible exception per try block is four and two, for C# and Java

respectively. More than 48% (C#) and 38% (Java) of try blocks can throw in between two and

five exceptions. Moreover, more than 36% (C#) and 24% (Java) of the try blocks have six or more

possible exceptions. For example, an important method named processCompiledUnits(int,boolean)

in Eclipse JDT Core in the Compiler class has a try block with 33 distinct possible exceptions.

Developers should properly handle exceptions in such an important method, to ensure reliability.

Among all possible exceptions, there often exist possible exceptions that are not handled by any

19

Language / Project

C# Java

Glimpse Google
API

OpenRA ShareX SharpDe.. SignalR Umbraco Apache
ANT

E. JDT
Core

Elasticse.. Guava H.
Common

H. HDFS H. MapR
educe

H. YARN Spring

0

5

10

15

20

P

ro
p.

 a
nd

 P
ot

en
ti.

.

0

5

10

15

20

P

ro
pa

ga
te

d

0

5

10

15

20

To

ta
l

Median: 0 Median: 0

Median: 0 Median: 1

Median: 4
Median: 2

Figure 2: Number of possible exceptions per try block for each project broken down by Propagated

and Potentially Recoverable, Propagated, and Total.

of the catch blocks that are associated with a try block [RM03]. These unhandled exceptions may

increase the challenge of exception handling practice since they will be propagated and will need

to be handled elsewhere. If the propagated exceptions remain uncaught across the whole system,

there could be a risk of system failures [SOH04, BGB14, ECS15]. Therefore, we identify the possible

exceptions that are not handled by the catch block.

Figure 2 presents the possible propagated exceptions for each try statement. We find that there

may exist a large number (up to 34) of possible exceptions that are unhandled in each try block. For

example, a method execute(List,int) from class org.apache.tools.ant.taskdefs.optional.junit.JUnitTask

in Apache ANT has 25 possible exceptions while the corresponding catch block only handles IOEx-

ception.�

�

�

�

Finding 1: There often exist multiple possible exceptions in each try block, and, out of those,

many are propagated.

Implications: Current state-of-the-practice may not provide information to developers about all

possible exceptions. Automated techniques may help developers be aware of all possible exceptions

to make exception handling decisions.

3.3.2 Potentially recoverable yet propagated exceptions

In the previous subsection, we find that a significant amount of the possible exceptions are prop-

agated. However, not all exceptions are easy to recover or, more importantly, should even be re-

covered. For example, exceptions such as ThreadDeath in Java, and OutOfMemoryException in C#

20

cannot feasibly be recovered. In fact, both Java and C# define the recoverability level of exceptions

in their documentation [GJS+15, .NE]. In particular, they suggest that developers should handle

potentially recoverable exceptions while developers may not handle potentially unrecoverable ones.

Hence, we first group all the propagated exceptions into either potentially recoverable or potentially

unrecoverable, according to the specific guidance on Java or C# documentation. Then we count the

number of propagated exceptions with potential recoverability.

We find that almost 8% (117) of C# and more than 19% (1,359) of Java try blocks have at

least one potentially recoverable yet propagated exception. For example, a method named rename

in Hadoop HDFS for file renaming features has a possible and potentially recoverable exception

called FileAlreadyExistsException. This exception indicates the situation where a file is renamed to

another existing file. However, this potentially recoverable exception is not handled by any catch

block in that method.�

�

�

�

Finding 2: There exists a considerable amount of potentially recoverable exceptions that are

propagated, even though they are recommended to be handled by Java and C#.

Implications: Exception flow analysis can provide automated tooling support to alert developers

about not handling potentially recoverable exceptions.

3.4 Diversity of Exceptions

There can be a diverse set of exceptions being used across try blocks. Prior research discusses that

the use of a high number of distinct exception types might represent a greater concern with exception

handling [BCR+15]. Therefore, in this section, we study the diversity of exceptions in our subject

projects.

We count the total number of distinct exception types in each project, and the amount of try

blocks in which each type of exception appears. Table 5 shows the percentage of the exception types

of each project that appear in different quantities of try blocks. Despite the large number (up to 97

in C# and 249 in Java) of distinct exception types, there exist a considerable amount of exception

types that only appear in few try blocks. In fact, over half of the exception types in C#, and almost

1/3 of the exception types in Java only appear in one try block. Such results imply that although

the high number of distinct exception types may be a burden to developers, the burden may not be

as high since a considerable amount of the exception types would only affect a small portion of the

code.�

�

�

�

Finding 3: With a large amount of exceptions exist in each project, many possible exception types

appear in only one try block.

Implications: Developers may not need to be aware of all exception types in a project by receiving

automated suggestions of the exceptions that he/she needs to understand.

21

Table 5: Total amount of distinct exception types and the percentages of distinct exception types

that appear in different quantity of try blocks.

Project
Try blocks

Total1 2 3 4 5 >5

C#

Glimpse 27.78% 38.89% 11.11% 22.22% 18

Google API 28.00% 40.00% 12.00% 4.00% 16.00% 25

OpenRA 35.71% 4.76% 7.14% 16.67% 2.38% 33.33% 42

ShareX 13.04% 8.70% 6.52% 2.17% 6.52% 63.04% 46

SharpDevelop 19.59% 8.25% 6.19% 4.12% 2.06% 59.79% 97

SignalR 56.67% 16.67% 3.33% 6.67% 16.67% 30

Umbraco 27.69% 9.23% 4.62% 1.54% 56.92% 65

Total 55.88% 25.00% 13.97% 9.56% 5.15% 47.79% 214

Java

Apache ANT 15.73% 6.74% 6.74% 3.37% 3.37% 64.04% 89

E. JDT Core 5.56% 2.78% 2.78% 4.17% 1.39% 83.33% 72

Elasticsearch 27.78% 12.50% 16.67% 9.72% 4.17% 29.17% 72

Guava 24.00% 12.00% 16.00% 2.00% 10.00% 36.00% 50

H. Common 14.53% 15.12% 9.88% 11.63% 8.14% 40.70% 172

H. HDFS 27.50% 13.75% 16.25% 7.50% 1.25% 33.75% 80

H. MapReduce 21.74% 8.70% 4.35% 8.70% 2.17% 54.35% 46

H. YARN 17.53% 4.12% 11.34% 6.19% 3.09% 57.73% 97

Spring 22.09% 12.05% 7.63% 10.04% 4.82% 43.37% 249

Total 32.93% 17.76% 15.97% 14.77% 8.38% 42.32% 662

Grand Total 37.83% 19.31% 15.54% 13.66% 7.69% 43.49% 876

22

3.5 Sources of Exceptions

The same exception may be traced back from different sources. In this section, we study the sources

of exceptions per try block.

3.5.1 Multiple sources of the same exception

The multiple sources of exceptions may increase the complexity of exception handling. Consequently,

a developer would need to comprehend and investigate more methods in the source code to effectively

handle exceptions. For example, developers may encounter a FileNotFoundException due to missing

an input file or configuration file. However, developers may need different actions to handle such an

exception since missing an input file may be caused by users’ mistake while missing a configuration

file is a critical issue of the software. Multiple sources of the same exception may also impact testers

since they would need to properly test the exception behavior as well as the multiple possible paths

of control flow.

Table 6: Percentage of distinct exceptions that are traced back to one, two or over two methods.
Distinct methods

Total0 1 2 >2

C# 1.05% 76.11% 14.05% 8.80% 7,638

Java 0.61% 77.18% 13.00% 9.20% 28,854

We group each possible exception by the distinct methods that act as a source of exceptions. We

only consider distinct methods since the same method may not need different ways to handle the

exception while the exception propagated from various methods may need to be handled differently.

In Table 6, we present the percentage of possible exceptions that are traced back from zero, one,

two and more than two distinct methods. The first group is from zero methods, which means that

these possible exceptions were traced back to explicit throw invocations, not method invocations.

Although most of the possible exceptions (above 76%) are traced back to a single method, we

observe that more than 22% of the exceptions are traced back to multiple invoked methods. The

try blocks with the highest number of methods can have from two to 17 among C# projects; while,

for Java, it is between five and 34. For example, the Umbraco C# class called TypeFinder performs

lazy accesses to all assemblies inside a single try block and therefore System.ArgumentNullException

can be traced back from 14 different invoked methods. We also noticed that exceptions that are

super classes of other exceptions (e.g., IOException) have a higher than average chances of being

from multiple sources.

23

�

�

�

�
Finding 4: Over 22% of the exceptions are traced from different methods.

Implications: Automated tools are needed to help developers understand the source of the ex-

ception if it is traced back to different methods.

3.5.2 Sources of exception documentation

Prior studies revealed that lacking immediate documentation is one of the challenges of exception

handling [CM07, SCKB16, KS14]. Prior studies observed a small number of documented exceptions.

As shown in our illustrative example (see Section 2.1), possible exceptions can be recovered from

up to four different sources. They are: 1) the newly raised exception by the throw statement

in the source code, 2) the declared exception in the throws of the method declaration (only for

Java), 3) the documentation as comments in the source code (like JavaDoc comments) and 4)

the external documentation. By recovering the sources of each possible exception using exception

flow analysis, we may be able to provide the documentation of possible exceptions. For Java, we

only recover documentation for unchecked exceptions since checked exceptions must be specified in

method declarations.

We find that, from all the possible exceptions that we identify, 93% for Java and 71% for C# can

be retrieved from the external documentation of dependencies. Figure 3 depicts the sets of possible

exceptions per try block that were retrieved by our exception flow analysis. Our findings show that

the challenge of having a low amount of documented exceptions can be well addressed by applying

exception flow analysis with the information from external documents of libraries. We find that

such rich documents are typically from the exceptions that are provided by the system libraries.

Therefore, the high availability of such documentation can be expected to assist developers not only

for our subject systems but also for the majority of Java and C# projects.�

�

�

�

Finding 5: The libraries used by the systems can provide documentation to most of the possible

exceptions.

Implications: Developers should leverage automated flow analysis to understand possible excep-

tions.

3.6 Exception Handling Strategies and Actions

In this section, we study the strategy and actions in exception handling practices considering the

exception flows of each handler.

24

(a) Java Unchecked Exceptions.

(b) C# Exceptions

Figure 3: Quantity of identified possible exceptions per source of information.

3.6.1 Exception handling strategies

Exception handling strategy describes the manner in which an exception is handled. In particular,

the relationship between the possible exception in a try block and the handler exception in the

corresponding catch blocks. There exist in total two handling strategies:

• Specific, is the strategy when the type of a possible exception is exactly the same as the handler

25

Lang.. Project

0 5 10 15
Subsumption

0 5 10 15
Specific

C# Glimpse

Google API

OpenRA

ShareX

SharpDevel..

SignalR

Umbraco

Total

Java Apache ANT

E. JDT Core

Elasticsearch

Guava

H. Common

H. HDFS

H. MapRedu..

H. YARN

Spring

Total

Median: 2 Median: 0

Median: 0 Median: 1

Figure 4: Quantity of possible exceptions per try block per project by handling strategy.

exception.

• Subsumption, is the strategy when the handler exception is a superclass of a possible exception.

Since there can be multiple possible exceptions, it can be overwhelming for a developer to handle

each possible exception with a Specific strategy. On the other hand, the Subsumption strategy may

introduce uncertainty to the caught exception. To study the handling strategies, we compare each

possible exception with the handler exception in the corresponding catch block. Figure 4 depicts

the quantity of distinct possible exception per try block that is handled according to each strategy.

The majority of the exceptions are handled with a subsumption strategy, while only a small

portion of the exceptions are handled specifically. The results show that developers tend to over-

catch exceptions. The extreme case of subsumption strategy is the “Catch Generic” exception han-

dling anti-pattern [BdPS17b], where developers simply use an exception type which can catch any

26

exceptions in the software, e.g., Exception in Java. Such practice is heavily discussed in prior re-

search [SOH04, SCKB16] and is considered to be harmful since developers cannot optimize the

handling of the exception based on the exact type of the exception, but rather only know that there

may exist some exceptions during run-time.�

�

�

�

Finding 6: Only a small portion of the exceptions are handled with the Specific strategy.

Implications: Developers should be guided to prioritize on handling exception with the Specific

strategy, since developers cannot optimize the handling of an exception without knowing its exact

type information.

3.6.2 Exception handling actions

During the exception flow analysis (see Section 3.2), we collect a set of method calls in each catch

block to know how each exception is handled. Prior studies [YLZ14, SCKB16, CM07, CRG+08,

ZHF+15] propose a list of actions based on the combination of method calls in the catch block as

Exception handling actions. Table 7 presents the list of actions that are defined in prior research and

are used in this thesis. To further understand how exceptions are handled, we study the exception

handling actions in our subject projects.

Table 7: List of the detected actions.
Action Short Description

Abort The handler contains an abort statement [YLZ14].

Continue The handler contains a continue statement [CM07].

Default The handler contains the IDE suggested method (Java only).

Empty The handler is empty [YLZ14, SCKB16, CM07, CRG+08].

Log The handler display or log some information [SCKB16, CM07, CRG+08].

Method The handler contains a method invocation different than the other actions

listed in this table. [CM07, SCKB16].

Nested Try The handler contains a new try statement [ZHF+15].

Return The handler contains a return statement [SCKB16, CM07].

Throw w/o New The handler contains a throw statement without a new exception instan-

tiation [SCKB16, CM07, CRG+08].

Throw New The handler contains a throw statement with a new exception instantia-

tion [SCKB16, CM07, CRG+08].

Throw Wrap The handler contains a throw statement using the original exception or

its associated information [CRG+08].

Todo The handler contains TODO or FIXME comments [YLZ14].

27

Language

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 45.00% 50.00% 55.00% 60.00% 65.00% 70.00%
Value

Method Java

C#

Throw
Wrap

Java

C#

Log Java

C#

Throw
New

Java

C#

Throw
Current

Java

C#

Return Java

C#

Nested
Try

Java

C#

Empty Java

C#

Continue Java

C#

Abort Java

C#

Todo Java

C#

Default Java

C#

50.78%

48.08%

26.64%

19.56%

11.85%

10.24%

4.67%

4.23%

0.26%

0.13%

0.09%

0.00%

Figure 5: Percentage of possible exceptions that are handled using each type of action.

Figure 5 presents the percentages of possible exceptions of each project that are handled using

a particular type of action. We observe that Java and C# have differences in executing various

actions when handling exceptions. To determine the differences, we perform Wilcoxon Rank Sum

test [WW64] to compare the percentage of possible exceptions that are handled using each type

of action in each C# and Java project. Hence, we examined if there exists statistically significant

difference (i.e. p-value < 0.05) between Java and C#. A p-value < 0.05 means that the difference

is likely not by chance. We choose Wilcoxon Rank Sum test since it does not have an assumption

on the distribution of the data.

28

We find statistically significant difference between Java and C# for exception handing with ac-

tions “Throw Wrap”, “Throw New”, “Nested Try”, “Continue” and “Todo”. Among these actions,

“Throw Wrap”, “Throw New”and “Todo” may indicate that the exceptions are not effectively han-

dled but rather propagated or ignored. All these three actions show up more in Java than C#. We

consider the reason may be that Java compiler forces developers to explicitly manage checked excep-

tions while developers may not have the knowledge of how to handle them properly. To simply make

the program compile, developers potentially take these actions. Further studies should investigate

why such actions are chosen more in Java than C#.�

�

�

�
Finding 7: Java and C# have differences in leveraging various actions when handling exceptions.

Implications: More in-depth analysis and user studies are needed to further understand the

rationale of differences of Java and C# exception handling practices.

We also compare the actions that are taken when the exceptions are handled with either specific

or subsumption strategy. We perform Wilcoxon Rank Sum test similar as when comparing Java and

C#. This time, for each particular programming language and type of action, the test compared

the percentage of specific handling in each project with subsumption handling in each project.

Nonetheless, we observe only one action, i.e., Log, that is handled differently (statistically significant)

with specific or subsumption strategy.�

�

�

�

Finding 8: Only one action, Log in Java, is taken differently when exceptions are handled with

specific or subsumption strategy.

Implications: Research and tooling support are needed to guide how to handle exceptions, espe-

cially with the specific strategy.

We would like to know if any particular actions are taken when handling some special possible

exception. With such knowledge, we may be able to suggest actions automatically to developers

handling exceptions. We gather a list of the ten most handled types of possible exceptions in Java

and C#, respectively (see Table 8). We also obtain the percentage of possible exceptions that are

handled using each action for each exception type. Similarly, we use Wilcoxon Rank Sum test to

compare. For each particular programming language, action, and exception type, the test compared

the percentage of the given type in each project with the combined value of all other types of

exceptions in each project. We find with statistical significance that, for Java, all top exceptions

have at least one action that is taken differently from the rest of the exceptions, and, for C#, two

top exceptions has such difference.

29

Table 8: List of top 10 common exception types in the studied projects.
C# Java

System.ArgumentNullException java.io.IOException†

System.ArgumentException java.lang.IllegalArgumentException†

System.NotSupportedException† java.lang.NullPointerException†

System.ArgumentOutOfRangeException java.lang.IndexOutOfBoundsException†

System.InvalidOperationException java.lang.SecurityException†

System.FormatException java.lang.IllegalStateException†

System.IO.IOException java.lang.ExceptionInInitializerError†

System.IO.PathTooLongException† java.lang.ArrayStoreException†

System.Security.SecurityException java.lang.IllegalAccessException†

System.ObjectDisposedException java.lang.ClassNotFoundException†

†The exception has at least one actions that taken statistically significantly differently from the rest

exceptions.

�

�

�

�

Finding 9: All top 10 Java and 2 out of top 10 C# exceptions have at least one action that is

taken statistically significantly differently from the rest exceptions.

Implications: Developers may consider leveraging automated suggestions of exception handling

actions.

3.7 Threats to Validity

In this section, we discuss the threats to validity of our findings.

3.7.1 External validity.

Our study is based on a set of open-source Java and C# projects from GitHub. Our findings

may not generalize to other projects, languages or commercial systems. Replicating our study on

other subjects may address this threat and further understand the state-of-the-practice of exception

handling.

3.7.2 Internal validity.

We aim to include all possible sources of information in our automated exception flow analysis.

However, our analysis may still miss possible exceptions, if there is a lack of documentation or

the source code is not compilable. Also, the documentation of the exception may be incorrect or

outdated. In our analysis, we trust the content of documentation. Therefore, we cannot claim that

30

our analysis fully recovers all possible exceptions nor that the recovered information is impeccable.

Further studies may perform deeper analysis on the quality of exception handling documentation to

address this threat.

Our study aims to consider the try-catch block since that is an actionable place for developers.

For that reason, we study only exception flows that are under the scope of try-catch blocks. Future

work might consider analyzing all other scopes (i.e., code outside try-catch blocks).

3.7.3 Construct validity.

Our study may not cover all possible handling actions. We selected actions based on the previous

research in the subject [YLZ14, SCKB16, CM07, CRG+08, ZHF+15]. Some actions are not included

in our study if they are either 1) require heuristic to detect or 2) are not well explained in details

in related work. Moreover, we may not include differences due to newer features provided by the

programming languages (e.g., try with resources [Rie11, AARS16]) might affect the results of our

studies and such features might not be applicable in all programming languages.

Our possible exception identification approach is based on a call graph approximation from static

code analysis. We may still miss possible exceptions due to under-estimation for polymorphism or

unresolved method overload. Although such approximation may impact our findings, our choice

of under-estimation would not significantly alter the existence of observed challenges of exception

handling, i.e., the challenge may appear even worse without the under-estimation. Nevertheless, to

complement our study, dynamic analysis on the exception flow may be carried out to understand

the system exceptions during run-time.

3.8 Conclusion

Exception handling is an important feature in modern programming languages. However, prior

studies unveil the suboptimal usage of exception handling features in practice. In this chapter, we

revisit practice of exception handling in 16 open source software in Java and C#. Although we

confirm that there exist suboptimal manners of exception handling, more importantly, we highlight

the opportunities of performing source code analysis to recover exception flows to help practitioners

tackle various complex issues of handling exceptions. In particular, the contributions of this chapter

are:

1. We design an automated tool that recovers exception flows from both Java and C#.

2. We present empirical evidence to illustrate the challenges and complexity of exception handling

in open source systems.

31

3. Our exception flow analysis, as an automated tool, can already provide valuable information

to assist developers better understand and make exception handling decisions.

This chapter highlights the opportunities and urgency of providing automated tooling to help

developers make exception handling decisions during the development of quality and reliable software

systems.

32

Chapter 4

Studying the Prevalence of Exception

Handling Anti-Patterns

After revisiting the exception handling practices with flow analysis and highlighting the suboptimal

practices, in this chapter, we extend our exception flow analysis to investigate the prevalence of

specific previously defined exception handling anti-patterns. Prior studies suggested anti-patterns

of exception handling; while little knowledge was shared about the prevalence of these anti-patterns.

In this chapter, we investigate the prevalence of exception-handling anti-patterns. We collected a

thorough list of exception anti-patterns from 16 open-source Java and C# libraries and applications

using an automated exception flow analysis tool. We found that although exception handling anti-

patterns widely exist in all of our subjects, only a few anti-patterns (e.g. Unhandled Exceptions,

Catch Generic, Unreachable Handler, Over-catch, and Destructive Wrapping) can be commonly

identified. On the other hand, we find that the prevalence of anti-patterns illustrates differences

between C# and Java. Our results call for further in-depth analyses on the exception handling

practices across different languages.

4.1 Introduction

Exception handling features, such as throw statements and try-catch-finally blocks, are widely used in

modern programming languages. These features separate error-handling code from regular code and

are proven to enhance the practice of software reliability, comprehension, and maintenance [MSR85,

CCHW09]. On the other hand, the misuse of exception handling features can cause catastrophic

failures [YLZ14]. A prior study shows that two-thirds of the studied system crashes were due to

exceptions [Cri82]. Barbosa et al. [BGB14] illustrate the importance of the quality of exception

33

handling code. Similar findings were also discussed in a prior survey [ECS15].

To improve the quality of exception handling, prior research has reported a slew of anti-patterns

on exception handling. These anti-patterns describe the problematic exception handling source code

that may exist in the entire life cycle of exceptions, i.e., the propagation of the exception, the flow

of the exception and the handling of the exception. Although these anti-patterns are discussed in

prior research [SCKB16], the prevalence of these anti-patterns is not studied in-depth.

In this chapter, we investigate the prevalence of exception handling anti-patterns in 16 open-

source Java and C# applications and libraries. We find that all of the studied subjects have exception

handling anti-patterns detected in their source code. Whereas only five anti-patterns (Unhandled

Exceptions, Catch Generic, Unreachable Handler, Over-catch, and Destructive Wrapping) are preva-

lently observed, i.e., in median detected in over 20% of the catch blocks or throws statements in the

subject systems. We observe that these anti-patterns are often associated with multiple flows of ex-

ception, leading to bigger impact and more challenging resolution of such anti-patterns. By further

investigation, we find that programming languages (e.g., Java or C#) may have a relationship to

the existence of anti-patterns, while we do not observe such relationship with the type of projects

(e.g., application or library).

Our results imply that, despite the prior research on exception handling, there is still lacking

a deep understanding of the practice of exception handling. More in-depth analyses are needed to

ensure the quality and usefulness of exception handling in practice.

The rest of the chapter is organized as follows: Section 4.2 presents our case study methodology.

Section 4.3 presents the results of prevalence exception handling anti-patterns. Section 4.4 reveals the

amount of exception flows are affect by anti-patterns. Section 4.5 discusses our results. Section 4.6

discusses the threats to the validity of our findings. Finally, Section 4.7 concludes the chapter and

discusses potential future research directions based on our early researching findings.

4.2 Methodology

4.2.1 Subject projects

Table 9 depicts the studied subject projects. All subject projects are open-source projects obtained

from GitHub. We selected subject projects (see Table 9) by considering their number of stargazers

and contributors. These are the same projects discussed in previous chapter, Section 3.2.2, however

we include now the information about the number of catch blocks and the number of throws blocks.

34

Table 9: Overview of the selected subject projects.
Project Release Version Type # Throws # of Catch # Method (K) KLOC

C#

Glimpse 1.8.6 App. - 57 1 31

Google API v1.15.0 Lib. - 30 16 628

OpenRA release-20160508 App. - 143 7 125

ShareX v11.1.0 App. - 341 7 177

SharpDevelop 5.0.0 App. - 1060 41 923

SignalR 2.2.1 Lib. - 105 2 38

Umbraco-CMS release-7.5.0 App. - 615 15 362

Java

Apache ANT rel/1.9.7 App. 1,622 1139 11 158

Eclipse JDT Core I20160803-2000 Lib. 1,686 1655 25 383

Elasticsearch v2.4.0 App. 1,782 408 12 108

Guava v19.0 Lib. 509 317 10 79

Hadoop Common rel/release-2.6.4 Lib. 4,495 1144 14 147

Hadoop HDFS rel/release-2.6.4 App. 1,538 586 4 44

Hadoop MapReduce rel/release-2.6.4 App. 1,221 367 6 57

Hadoop YARN rel/release-2.6.4 Lib. 4,146 1529 29 257

Spring Framework v4.3.2.RELEASE Lib. 5,856 2301 30 349

Total - - - 22,855 11,797 230 3,866

4.2.2 Detecting exception handling anti-patterns

We detected all the exception handling anti-patterns presented in Table 1. In particular, we leverage

the automated tool described in previous chapter (see 3.2.1). We use Eclipse JDT and .NET

Compiler Platform (“Roslyn”) to parse the Java and C# source code, respectively. To precisely

detect these anti-patterns, we not only parse the try-catch blocks but also analyze the flow of the

exceptions. Our exception flow analysis collects the possible exceptions from four different sources:

documentation in the code syntax, documentation for third party and system libraries, explicit throw

statements, and binding information of exceptions (not available for C#).1

4.3 The prevalence of exception handling anti-patterns

Our goal is to put in perspective the existence of exception handling anti-patterns. We collected

source code information from a diverse set of subject projects in different programming languages.

The knowledge of the prevalence of anti-patterns would help developers improve exception handling

practices.

In total, we detected 17 exception handling anti-patterns from the perspective of the catch block,
1Source code, binaries and Tableau visualizations with raw data are available online at

https://guipadua.github.io/icpc2017.

35

i.e., whether each catch block contains an anti-pattern. We also detected two exception handling

anti-patterns from the perspective of the throws statements. Throws statements are used to indicate

the propagation of exceptions explicitly. Since this feature is not available in C#, we only detect

throws level anti-patterns in the Java projects.

36

Table 10: Percentage of affected catch per project per anti-pattern.

Project

Flow Handler

Over- Over-catch Unhandled Unreachable Catch Catch Catch Destructive Dummy Ignoring Incomplete Log Log Multi-Line Nested Relying Throw #

catch and Exceptions Handler and Do and Return Generic Wrapping Handler Interrupted Implementation and Return and Log Try on within Catch

Abort Nothing Null Exception Null Throw getCause() Finally

C#

Glimpse 33.33% 0.00% 12.28% 63.16% 7.02% 7.02% 75.44% 1.75% 21.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.51% 0.00% 57

Google API 40.00% 0.00% 43.33% 60.00% 10.00% 0.00% 56.67% 20.00% 10.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 6.67% 0.00% 30

OpenRA 23.08% 0.70% 14.69% 58.74% 23.08% 19.58% 76.22% 1.40% 12.59% 0.00% 0.00% 14.69% 0.00% 3.50% 0.00% 0.00% 0.00% 143

ShareX 65.10% 0.00% 8.50% 24.63% 11.14% 1.47% 90.62% 1.47% 30.79% 0.00% 0.00% 0.59% 0.29% 1.76% 1.17% 0.29% 1.47% 341

Sharp D. 32.17% 0.09% 40.38% 45.75% 18.30% 10.00% 45.75% 4.15% 13.40% 0.00% 0.38% 3.30% 0.09% 11.79% 8.96% 0.66% 0.66% 1,060

SignalR 17.14% 0.95% 10.48% 74.29% 6.67% 9.52% 80.00% 0.00% 13.33% 0.00% 0.00% 3.81% 0.95% 4.76% 0.00% 0.00% 0.95% 105

Umbraco 43.09% 0.00% 16.10% 36.10% 10.57% 6.67% 84.23% 4.72% 17.07% 0.00% 0.16% 1.46% 0.16% 1.79% 1.46% 1.14% 0.00% 615

Java

Apache ANT 31.26% 0.09% 69.80% 6.94% 11.76% 3.34% 17.56% 37.14% 5.09% 2.81% 0.26% 0.53% 0.26% 1.67% 5.79% 0.35% 14.05% 1,139

E. JDT Core 11.72% 0.24% 69.06% 11.78% 31.24% 11.18% 3.14% 4.71% 7.25% 1.09% 0.06% 0.48% 0.06% 0.06% 2.36% 0.18% 8.22% 1,655

Elasticsearch 24.26% 0.00% 24.51% 24.51% 10.54% 4.17% 33.82% 31.62% 8.09% 3.43% 0.00% 0.98% 0.00% 1.23% 4.41% 0.98% 3.19% 408

Guava 19.87% 0.00% 27.44% 37.22% 4.73% 10.09% 26.50% 24.61% 5.05% 7.89% 0.32% 0.95% 0.00% 0.32% 0.95% 6.94% 10.73% 317

H. Common 25.00% 0.44% 53.41% 16.26% 4.90% 3.85% 18.97% 29.55% 9.70% 4.98% 0.00% 1.66% 0.44% 1.14% 4.02% 1.49% 18.71% 1,144

H. HDFS 12.46% 0.17% 41.30% 30.55% 3.24% 1.37% 2.22% 34.13% 5.29% 11.43% 0.00% 1.02% 0.68% 1.88% 1.19% 0.85% 4.44% 586

H. MapReduce 15.80% 0.00% 49.32% 16.08% 3.00% 7.08% 13.35% 41.69% 8.17% 14.99% 0.00% 3.54% 0.54% 1.09% 3.27% 0.82% 30.25% 367

H. YARN 15.57% 0.39% 43.75% 20.01% 2.55% 6.80% 12.69% 30.80% 10.01% 4.91% 0.13% 1.70% 0.26% 1.64% 2.62% 1.05% 35.71% 1,529

Spring 28.55% 0.00% 48.46% 25.51% 7.95% 3.00% 29.99% 40.03% 7.82% 0.74% 0.00% 1.56% 0.04% 0.91% 2.17% 1.78% 4.82% 2,301

Table 11: Percentage of affected throws per project per anti-pattern.
Apache E. JDT Elastic Guava Hadoop Hadoop Hadoop Hadoop Spring

ANT Core search Common HDFS MapReduce YARN

Throws Kitchen Sink 6.54% 2.19% 0.34% 11.79% 10.23% 10.86% 3.77% 9.62% 8.21%

Throws Generic 1.85% 1.42% 7.13% 7.86% 3.07% 0.59% 4.50% 9.19% 14.05%

Throws 1,622 1,686 1,782 509 4,495 1,538 1,221 4,146 5,856

37

All anti-patterns are detected at least once in subject projects, while only a small

amount of anti-patterns are prevalent. As shown in Tables 10 and 11, all anti-patterns exist

in our subject projects. In fact, the least found anti-pattern, Incomplete Implementation, can still

be found in six projects. This finding implies that prior research indeed captures anti-patterns that

correspond to the smell in practice. The existence of all anti-patterns shows the lack of awareness

to the importance of quality exception handling code.

On the other hand, we find that only a small number of anti-patterns are prevalent. In particular,

only five anti-patterns, i.e., Unhandled Exceptions, Catch Generic, Unreachable Handler, Over-catch

and Destructive Wrapping, are detected in over 20% (40.8%, 31.9%, 28.0%, 24.6%, 22.3%, respec-

tively) of the catch blocks or throws statements in median. On the other hand, all other anti-patterns

are rather rare in the source code. Yuan et al. [YLZ14] claimed that three exception handling anti-

patterns (Over-catch and Abort, Catch and Do Nothing and Incomplete Implementation) could cause

catastrophic system failure, while we find that all these three anti-patterns are rarely detected. There

are only 12 Incomplete Implementation anti-pattern instances detected in all the studied projects.

Another surprising finding is that the most widely detected anti-pattern is Unhandled exceptions.

This anti-pattern has been known as the common root-cause of system crashes [CCHW09], and prior

research has proposed techniques to help identify all possible exceptions [RM99, SOH04]. However,

our results imply that developers still overlook the importance of this anti-pattern and it may lead

to potential crash at system run-time.

4.4 The amount of exception flows

The anti-patterns can be related to a single, multiple, or no exception flow at all (e.g. Unreachable

Handler). We aim to study the number of flows affected by those anti-patterns. The larger the

quantity of flows, the larger the impact of those anti-patterns.

Multiple flows are impacted by each anti-pattern. Table 12 depicts the quantity of affected

flows for the flow-based anti-patterns. For Unhandled Exceptions and Unreachable Handler, 83%

(C#) and 67% (Java) of the affected catch blocks have multiple impacted (uncaught) flows, with a

maximum of 37 flows. For Over-catch and Over-catch and Abort, 84% (C#) and 60% (Java) of the

affected catch blocks have multiple impacted (over-caught) flows, with a maximum of 43 flows.

4.5 Discussion

In this subsection, we aim to understand the existence of anti-patterns from different perspectives.

Programming languages. The prevalence of exception handling anti-patterns can vary between

38

Table 12: Distribution of affected catch blocks according to flow anti-patterns and the quantity of

affected flows.

Affected Anti-patterns Language
Quantity of Flows

1 2 3 4 5 >5

Unhandled Exceptions C# 17% 18% 13% 11% 7% 34%

and Unreachable Han-

dler

Java 33% 16% 11% 8% 5% 28%

Over-catch and C# 16% 16% 12% 10% 6% 31%

Over-catch and Abort Java 40% 17% 12% 7% 6% 19%

Java and C# (see Table 10). Figure 6 presents examples of anti-patterns that have a large difference

in prevalence between Java and C#. The box plots represent the distribution of percentages of catch

blocks that contain anti-patterns in each project. For example, the median value of Destructive

Wrapping in Java (31.6%) is almost 18 times bigger than in C# (1.8%). Another example is Catch

Generic, in which the minimum value (45.0%, median: 74.3%) in C# is 33% higher than the

maximum value (33.8%, median: 17.6%) in Java. The reason of such differences can be the nature

of different exception handling strategies in C# and Java. Java forces that certain kinds of exception

(i.e. Checked exceptions) are handled or explicitly propagated before compilation while C# does not.

To support that, popular Java IDEs suggest the exceptions that should be handled. For example, if

a developer adds a function call to read a file, the IDE will propose that the non-generic exception

IOException should be handled or propagated.

Types of projects. Library and application projects may have different exception handling prac-

tice, where, intuitively, libraries would propagate exceptions and applications handle exceptions.

We examine whether such difference impacts the prevalence of exception handling anti-patterns.

Figure 6 presents examples of anti-patterns that have a substantial difference in prevalence between

libraries and applications. The differences are not statistically significant (p-value >0.05). We can

see that the variance of each distribution is high, which implies that the results may be due to the

nature of each project instead of the project type, i.e., library or application.

Generic and non-generic catch blocks. Generic exceptions is an anti-pattern by itself, while

some other anti-patterns, e.g., Dummy Handler, may be related to Generic catch blocks. We iden-

tified that there exists a significant difference (Wilcoxon Rank Sum test, p-value <0.05) between

generic and non-generic catch regarding anti-patterns. Generic catch is a sign of developers’ lack

of knowledge on the possible exception(s), which explains the reason why developer may not know

how to handle the exception but only log the exception instead (Dummy Handler). On the other

hand, since generic catch may cover all possible exceptions from a try block, the chance of having

39

0.00% 10.00% 20.00% 30.00% 40.00%
Value

C# App
Lib

Java App
Lib

(a) Destructive Wrapping

0.00% 20.00% 40.00% 60.00% 80.00%
Value

C# App
Lib

Java App
Lib

(b) Catch Generic

Figure 6: Examples of differences between Java and C# and between applications and libraries.

Differences between Java and C# are significant based on Wilcoxon Rank Sum test (p-value <0.05).

Based on the same test, all differences between applications and libraries are not statistically signif-

icant.

Unhandled exception anti-pattern is smaller. Yet, such exception handling may mix critical issues

with minor issues by only superficial handling strategies (like Dummy Handler), which may cause

catastrophic failures of the software.

Runtime and non-runtime exceptions. Software is expected to recover more from non-runtime

exceptions than runtime exceptions [GJS+15]. We compare anti-patterns detected with runtime

and non-runtime exceptions in non-generic catch blocks, since generic exceptions are typically non-

runtime. We find significant differences (Wilcoxon Rank Sum test, p-value <0.05) for Destructive

Wrapping, Incomplete Implementation and Throw within Finally, only in Java projects. In all

of those, the percentage of affected catch blocks is lower for runtime exceptions. Java does not

force developers to handle runtime exceptions. Therefore, they are handled only if developers well

understand the runtime exceptions, leading to fewer anti-patterns.

4.6 Threats to validity

4.6.1 External validity

Our findings may not generalize for other software, other programming languages or commercial

software.

40

4.6.2 Internal validity

Our study may not cover all possible anti-patterns. We selected anti-patterns based on the current

research in the subject. Some anti-patterns that either 1) are out of the scope of exception handling

(yet still mentioned in related work), 2) require heuristic to detect or 3) are not well explained in

details in related work, are not included. Missing necessary documentation may also impact the

identification of anti-patterns.

4.6.3 Construct validity

The results in our study are based on catch blocks and throws statements. There may be other ways

to measure the exception handling anti-patterns and their prevalence. Some anti-patterns might

be mitigated according to the use of newer exception handling features (e.g., multi-catch [Rie11,

AARS16]).

4.7 Conclusion

In this chapter, we perform an empirical study using automatically detected 19 exception handling

anti-patterns in 16 open-source projects. We find that although all studied projects contain exception

handling anti-patterns and every anti-pattern is detected in the source code, there exist only a

small number of anti-patterns that are prevalent. These anti-patterns are often associated with

multiple exception flows, making them more impactful and more difficult to address. With further

investigation on the prevalence of anti-patterns, we find that the choice of programming languages

may have a relationship to the introduction of anti-patterns. Our results suggest the need of in-

depth study on exception handling practices. In particular, more user studies are required to further

understand the choices of exception handling code and the introduction of exception handling anti-

patterns. More importantly, future work should consider the impact of such exception handling code

to assist in better resolution of exception handling anti-patterns and issues.

41

Chapter 5

Studying the Relationship between

Exception Handling Practices and

Post-release Defects

Previous chapters discussed the exception handling practices: the flow characteristics (i.e., Chap-

ter 3) and their anti-patterns (i.e., Chapter 4). However, little is known about the relationship

between exception handling practices and software quality. In this chapter, we investigate the re-

lationship between software quality (measured by the chance of having post-release defects) and:

(i) exception flow characteristics and (ii) 17 exception handling anti-patterns. We perform a case

study on three Java and C# open-source projects. By building statistical models of the chance

of post-release defects using traditional software metrics and metrics that are associated with ex-

ception handling practice, we study whether exception flow characteristics and exception handling

anti-patterns have a statistically significant relationship with post-release defects. We find that

exception flow characteristics in Java projects have a significant relationship with post-release de-

fects. In addition, although majority of the exception handing anti-patterns are not significant in

the models, there exist anti-patterns that can provide significant explanatory power to the chance

of post-release defects. Therefore, development teams should consider allocating more resources to

improving their exception handling practices, and avoid the anti-patterns that are found to have a

relationship with post-release defects. Our findings also highlight the need for techniques that assist

in handling exceptions in the software development practice.

42

5.1 Introduction

Modern programming languages, such as Java and C#, typically provide exception handling features,

such as throw statements and try-catch-finally blocks. These features separate error-handling code

from regular source code and are leveraged widely in practice to support software comprehension

and maintenance [MSR85, CCHW09].

Having acknowledged the advantages of exception handling features, their suboptimal usage can

still cause catastrophic software failures, such as application crashes [YLZ14, KZP+13], or reliability

degradation, such as information leakage [Car96, ZC14]. A large portion of systems has suffered

from system crashes that were due to exceptions [Cri82]. Additionally, the importance of exception

handling source code has been illustrated in prior research and surveys [BGB14, ECS15].

Prior studies aim to understand the practices of exception handling in its different components:

exception sources and handling code [SCKB16]. Findings from those empirical studies have advo-

cated the suboptimal use of exception handling features in open source software [NHT16, KLM16,

AARS16, BCR+15, BdPS17a]. Moreover, exception handling anti-patterns that are defined by

prior research [YLZ14, CCHW09, McC06, BGB14] are observed to be prevalent in open source

projects [BdPS17b]. These prior research findings imply the lack of a thorough understanding of the

practice of exception handling. If the suboptimal practices do not share a relationship with software

quality, our results may provide evidence to explain the findings from prior studies. However, little

is known about the existence of such relationship.

Therefore, in this chapter, based on the previous findings of suboptimal exception handling prac-

tices (i.e., anti-patterns and flow characteristics), we perform an empirical study of the relationship

between exception handling practices and post-release defects (as a proxy to software quality). In

particular, our case study is conducted on two open source Java projects (Hadoop and Hibernate)

and one open source C# project (Umbraco). Through the case study results, we would like to

answer the following two research questions:

RQ1: Do exception flow characteristics contribute to better explaining the chance of

post-release defects?

RQ2: Do exception handling anti-patterns contribute to better explaining the chance

of post-release defects?

We find that, in some project (e.g., Umbraco), we do not observe any statistically significant

relationship between exception flow characteristics and post-release defects. However, in the other

two Java projects, the suboptimal practices of exception handling (e.g, the ambiguity of possible

exceptions) indeed have a statistically significant relationship with post-release defects. In addition,

although majority of the anti-patterns do not have a statistically significant relationship with post-

release defects, four anti-patterns are observed to be statistically significant. More importantly,

43

these anti-patterns may be prevalent ones and may provide large explanatory power to the chance

of post-release defects in the studied projects.

Our case study results imply the importance of avoiding suboptimal exception handling practices.

Furthermore, although not all anti-patterns are shown to be harmful, developers should at least

consider avoiding the ones that are found to have a relationship with post-release defects in this

study. Our findings can be used as a guideline for avoiding suboptimal exception handling practices.

The rest of the chapter is organized as follows: Section 5.2 describes the design of our case study.

Section 5.3 presents the results of our case study. Section 5.4 discusses the threats to the validity of

our findings. Finally, Section 5.5 concludes the chapter and discusses its implications.

5.2 Case Study Design

In this section, we present the design of our case study. We first present our research questions. We

then describe the studied systems. Finally, we present our metrics, modeling approach and relevant

preliminary results.

5.2.1 Research questions

The general goal of this chapter is to understand whether suboptimal exception handling practices

have a relationship with the chance of post-release defects. To achieve the goal of the chapter, in

this subsection, we discuss our formulated research questions and their motivation.

As discussed in Section 2, prior studies often expose the suboptimal exception handling prac-

tices in two ways. First, they generally quantify the exception handling characteristics. Second,

they define particular exception handling anti-patterns. Although prior studies claimed that some

quantified exception handling characteristics (e.g., handling exceptions using the generic handling

strategy) and exception handling anti-patterns are undesired, practitioners still often suboptimally

use exception handling without considering the impact of such inadequate practices. [SCKB16].

On one hand, maybe such undesired exception handling does not impact software quality in

practice. On the other hand, lacking statistically rigorous empirical evidence, practitioners may not

be aware of such impact, leading to the prevalence of suboptimal exception handling practices (e.g.,

anti-patterns) in their source code.

Therefore, we formulate two research questions, according to the two ways of unveiling suboptimal

exception handling practices by prior research.

RQ1: Do exception handling flow characteristics contribute to better explaining the

chance of post-release defects?

44

RQ2: Do exception handling anti-patterns contribute to better explaining the chance

of post-release defects?

We choose to use post-release defects as one widely used indicator of software quality. Since there

exist traditional software metrics that are shown to have a statistically significant relationship with

software quality, we would like to understand whether the suboptimal exception handling practices

provide additional information to complement the traditional metrics in explaining software quality

(i.e., post-release defects in this chapter).

5.2.2 Subject projects

Table 13 depicts the overview of the studied subject projects specifically for the case study of this

chapter. We consider Java and C# due to their popularity and that they are widely studied in prior

research (see Section 2). Moreover, the different approaches of exception handling between Java and

C# may further help us understand our study results. To facilitate replication of our work, we opt

to study open-source projects that are available on GitHub.

We leverage GitHub filters on the number of contributors (i.e. projects with multiple contribu-

tors) and the number of stargazers (i.e. projects with more than ten stargazers), as they are found

to be good indicators for selecting engineered software projects [MKCN17]. To narrow down the

number of projects, we also prioritize on the projects with higher numbers of stargazers and larger

project sizes in terms of lines of code.

After reading the official description of the projects, we investigate the traceability of information

in the projects issue tracker. Similar to previous research (see Section 2), the post-release defects

should be reasonably straightforward to trace to source code files. From each project, we inspected

the release notes of their most recent stable version of the source code at the moment of data

collection for analysis. We selected the versions that have had a higher number of post-release

updates. In the end, to better understand post-releases defects related to exception handling, the

three subject projects and their corresponding releases are chosen also due to (i) the number of files

with catch blocks; (ii) the number of files with post-release defects.

5.2.3 Metrics

In order to study the relationship between exception handling practices and post-release defects,

we extract metrics based on the analysis of source code, development history of the version control

system and issue tracking systems of the subject projects. We extract four categories of metrics for

our study.1

1Detailed metric definition and aggregation rules, data, R notebooks are available online at
https://guipadua.github.io/eh-model-defects2018.

45

Table 13: An overview of the subject projects.
Umbraco Hadoop Hibernate

Language C# Java Java

Purpose CMS Big Data tool Database ORM

Release Version (tag name) release-7.6.0 release-2.6.0 5.0.0.Final

Latest Post Release Version (tag name) release-7.6.12 rel/release-2.6.5 5.0.16

Files 3174 3698 3488

SLOC (K) 247 859 271

Pre Release Changes 1182 2753 11855

Pre Release Defects 126 673 3038

Post Release Changes 317 593 672

Post Release Defects 112 383 499

Files with Post Release Defects 93 226 356

Catch 647 5939 1546

Files with Catch 321 926 478

Post-release defects

We first extract post-release defects of each source code file of the subject projects. We only consider

the fixed defects in the issue tracking systems. We use the ID of the defects to identify code changes

on the corresponding files that fix such defect. We compare the defect report time and the release

date of the subject project to determine whether the defect is a post-release defect or not.

Traditional product metrics

Prior research on defect modeling finds that product metrics such as size (e.g., lines of code) and

complexity (e.g., cyclomatic complexity) are good indicators of post-release defects [DLR10]. There-

fore, we use Understand [Scia] on the release version of the source code of the subject projects to

extract traditional product metrics. In particular, we extract all the 39 file level product metrics

that are provided by Understand for both Java and C#. [Scib].

Traditional process metrics

Process metrics are found to be more powerful in defect modeling than product metrics [MPS08].

We extract traditional process metrics from the development history of the subject projects. In

particular, we extract three categories of the traditional process metrics:

• Change metrics. We calculate the change metrics based on pre-release changes using the

46

specific release branch for a given version. For pre-release changes, we used specific pre-release

branches, the date range based on the subject release notes and the oldest change associated

with the release. We calculate the total number of changes and total code churn as two change

metrics.

• Human factors. Code ownership is observed to have a relationship with software de-

fects [RD11]. We use the number of unique authors of a file as a proxy for code ownership. We

calculate the number of unique authors by checking the associated e-mail address of a change

in the development history of a file.

• Pre-release quality metrics. Prior research finds that pre-release defects are a good indi-

cator of the chance of post-release defects [MPS08, NBZ06]. Therefore, we extract the number

of pre-release defects by following a similar approach to extracting post-release defects that

are explained above.

Exception handling metrics

To study exception handling practice, we extract two sets of the exception handling metrics in order

to answer the two research questions.

• Exception flow characteristics metrics. This set of metrics describes the characteristics

of exception flow. As discussed in Section 2, such characteristics often unveil the suboptimal

exception handling practices. Tables 14, 15, 16 describes the metrics. Each metric is calculated

using its total amount and its average value.

47

Table 14: Exception handling flow characteristics metrics: part one of three. The symbol †indicates the rows where each metric represents multiple

metrics.
Metric Description Rationale

Flow Quantity The distinct number of possible exceptions that

arrives in the handler.

The more exceptions there are, the more challenging it is for developers to

handle all exceptions [BdPS17a]. Missing handling exceptions is one of the

causes of exception handlings defects. [ECS15].

Flow Quantity

- Propagated

The distinct number of possible exceptions that

are propagated by the handler.

Propagated exceptions need to be handled elsewhere. If they remain uncaught,

there could be a risk of system failures [SOH04, BGB14, ECS15].

Flow Quantity

- Propagated

and Potentially

Recoverable

The distinct number of potentially recoverable

possible exceptions that are propagated by the

handler.

Recoverable exceptions are expected to be handled [GJS+15, .NE]. Leaving

recoverable exceptions unhandled might increase the chance of defects since

developers and users do not expect they will happen.

Flow Type

Prevalence

The average prevalence (i.e., measured among all

try blocks of the project) of the flow exception

types of a try block.

Although multiple exception types exist in each project, many appear in only

one try block [BdPS17a]. However, a rare exception could represent a higher

chance of defects since developers might not be familiar with how to handle it.

Flow Sources -

Declared

The average number of declaring method(s) per

possible exception of a try block.

Although an exception might be traced from different invoked meth-

ods [BdPS17a], it might be declared in a unique method. There might be a

higher chance of defects if there is a higher number of declared methods.

Flow Sources -

Invoked

The average number of invoked method(s) per

possible exception of a try block.

Having multiple sources for an exception might increase the chance of defects

since it creates ambiguity for developers/testers handling/testing the different

possible control flow paths of such exception [BdPS17a].

48

Table 15: Exception handling flow characteristics metrics: part two of three. The symbol †indicates the rows where each metric represents

multiple metrics.
Metric Description Rationale

†Flow Sources

- Documenta-

tion

The percentage of the possible exceptions of a

try block found by a given exception documen-

tation source (i.e., throw statements, comments,

external documentation, and, for Java, method

declaration).

Lacking immediate documentation is one of the challenges of exception han-

dling [CM07, SCKB16, KS14]. Lacking documentation of each different docu-

mentation source might increase the chance of defects.

†Flow Han-

dling Strategy

The percentage of the possible exceptions of a try

block that is handled with a given strategy (i.e,

specific and subsumption).

The subsumption handling strategy introduces harmful uncertainty [SOH04,

SCKB16, BdPS17b] and, therefore, could increase the chance of defects. Nev-

ertheless, only a small portion of the exceptions are handled with the specific

strategy [BdPS17a]. Such strategy might not reduce the chance of defects.

†Flow Han-

dling Actions

The number and the percentage of possible excep-

tions of a try block handled with a given action

(i.e., 12 different actions [BdPS17a]).

Chapter 3 indicated differences in the prevalence of handling actions [BdPS17a].

Proper recovery actions taken during handling would reduce the chance of de-

fects, meanwhile inappropriate actions could reveal a higher chance of defects.

49

Table 16: Exception handling flow characteristics metrics: part three of three. The symbol †indicates the rows where each metric represents

multiple metrics.
Metric Description Rationale

Try Quantity The number of try blocks in the file. Try blocks can affect the normal control flow of the program. Such increase can

potentially lead to more defects in the file, as it becomes more complex.

Try Size - LOC The number of lines of code in the try blocks of

the file.

Longer try blocks are more complex and include more code that could poten-

tially go through abnormal situations and have their flow altered due to an

exception.

Try Size -

SLOC

The number of source lines of code in the try

blocks of the file.

The lines of code in a try block might not be source code (e.g., comments).

Therefore, we aim to focus on the effective number of source lines of code as

an indicator for a higher chance of defects in the case of a high number of lines

(i.e., similar to Try Size - LOC).

Invoked Meth-

ods

The number of invoked methods in a try block. Try blocks with more invoked methods can potentially have more possible ex-

ceptions and are inherently more complex. These methods also can be affected

by an exception event since they might not be executed at runtime. More

methods could mean a higher chance of defects.

Try Call Depth The average relative (i.e. to the handler) call

graph depth in which a possible exception was

found for this handler.

The large distance between throw and catch makes the exception handling less

meaningful and testing and debugging more difficult [SOH04, RS03]. Therefore,

a higher distance will likely increase the number of defects of a file.

†Try Scope Scope in which the try statement was declared:

Declaration, Condition, Loop, EH Feature, Other

Nested exception handling constructs are harder to read, test and main-

tain. [CCHW09, CM07, ECS15]. The try scope can be a possible factor to

increase the chance of defects since, for example, a try-block nested in a loop

would be harder to understand than a simple declaration.

50

Table 17: Exception handling anti-patterns metrics. The symbol †indicates the rows where each metric represents multiple metrics.
Metric Description Rationale

†Catch Anti-

patterns

The number and the percentage of handlers af-

fected by a given anti-pattern (i.e., 17 different

anti-patterns on Table 1).

Anti-patterns compromises the robustness of the program and can lead to

defects [CCHW09, McC06, KPGA12]. Exception handling anti-patterns are

prevalent [BdPS17b] and it may increase the chance of defects.

†Catch Recov-

erability

The recoverability of the exception type declared

in the catch block.

Potentially unrecoverable exceptions are more challenging to handle [GJS+15,

.NE]. A higher amount of exception handling for potentially unrecoverable

exceptions may be associated with less reliable code.

Catch Quan-

tity

The number of catch blocks in the file. Catch blocks are only executed during exceptional events. A higher number of

catch blocks may be related with more exceptional scenarios of the execution,

leading to a higher chance of defects.

Catch Size -

LOC

The number of lines of code in the catch blocks

of the file.

Longer catch blocks include more code that take measures in the event of an

exception. This could increase the chance of bugs since it indicates a higher

complexity and bigger size.

Catch Size -

SLOC

The number of source lines of code in the catch

blocks of the file.

The lines of code in a catch block might not be source code (e.g., comments).

Therefore, we aim to focus on the effective number of source lines of code as an

indicator for higher chance of defects in the case of a high number of lines.

51

• Exception handling anti-pattern metrics. This set of metrics describes the anti-patterns

of exception handling since the anti-patterns are claimed to be harmful to software quality.

Table 1 describes all the anti-patterns that are considered in this study. We do not consider

the throws anti-patterns since they do not apply for C# projects. In particular, each of the

17 catch (i.e., flow and handler) anti-patterns have two metrics that measures (i) the total

amount and (ii) the average number of catch blocks that are impacted by the anti-pattern. In

order to provide the basic information about exception handling blocks (catch blocks), we also

calculate four additional metrics as shown in Table 17.

In order to extract these metrics, we use our tools developed in previous chapters. These tools use

Eclipse JDT and .NET Compiler Platform (“Roslyn”) to parse Java and C# source code, respectively.

To precisely detect anti-patterns, the tools not only parse the try-catch blocks but also analyze the

flow of the exceptions. The tools’ exception flow analysis collects the possible exceptions from four

different sources: documentation in the code syntax, documentation for third party and system

libraries, explicit throw statements, and binding information of exceptions (not available for C#).

5.2.4 Model construction

We build logistic regression models to evaluate the explanatory power of the exception handling

practices on post-release defects. Regression models require less data than machine learning and

it is capable of providing exact understanding for each predictor [Har15]. Similarly to previous

studies [SNH15, MKAH16], we consider the explanatory power of the traditional metrics that are

empirically known to have a relationship with post-release defects. For that reason, we first build

a base model (i.e, BASE) with only the traditional software metrics and without the metrics that

are associated with exception handling practices. Section 5.2.3 and 5.2.3 details the traditional

metrics that are used in the base model. Afterwards, we construct a combined model called BSFC

by adding software metrics that are associated with quantified exception flow characteristics from

prior studies [BdPS17a] into the base model. We also add software metrics that are associated with

the exception handling anti-patterns from prior studies [BdPS17b] into the base model to construct

a second combined model called BSAP. By examining the significance and the explanatory power

of the metrics in BSFC and BSAP, we answer our two research questions, respectively. In the rest

of the subsection, we present the detail of our model construction process as illustrated by Figure 7.

MC1: Missing data analysis

After extracting metrics from the data, we might still have missing data. We manually examine the

files with missing data. We find that the reasons may due to the cases where the file is not compilable

52

Figure 7: An overview of our modeling approach: model construction and model analysis.

or cases in which the methods of a try block actually doesn’t throw any exception (e.g., forgotten

try blocks during code evolution). As recommended by statistical modeling researchers [Har15], we

discard the files with missing data since it only stands for less than 3% of the entire data.

MC2: Predictor budget estimation

An overfitted model is a statistical model that contains more parameters than the possible amount

(i.e., budget) that can be justified by the data. Such model will match the training data too closely

and might not be useful to understand the explanatory power of its predictors [Har15]. To lower

the chances of overfitting, one can use as a reference the amount of, at least, 15 observations per

predictor, which is suggested by prior research on statistical modeling [Har15]. Therefore, in our

study, each model will have a budget of the number of files divided by 15.

MC3: Normality adjustment

Logistic regression models expect normality in the outcome and in the predictors. Metrics from

software engineering data typically do not follow a normal distribution [MKAH16, SBZ12]. For

example, post-release defects exist only in a small portion of the files. Therefore, we apply a log

transformation: log10(x + 1) to reduce the skew and adequate the data to the logistic regression

assumption.

MC4: Correlation analysis

Software metrics can be highly correlated to each other [EEBGR01]. Highly correlated metrics (i.e.,

|ρ| > 0.7) can be clustered and then represented in regression modeling by a single predictor [Har15].

Prior to modeling, we evaluate the correlations among our extracted metrics. We use Spearman

pair-wise rank correlation to better adequate to potential lack of normality in the data. We use the

findCorrelation method from the Caret R Package [Kuh17]. Such method automatically removes

the metrics among the highly correlated metrics with the highest mean correlation values.

53

MC5: Redundancy analysis

Besides pair-wise correlations, we can analyze whether one predictor can be explained based on a

model composed of all other predictors [Har15]. This step is executed in an iterative manner in

which predictors are dropped until no predictors can be predicted with a R2 or an adjusted R2

higher than 0.9. We use the redun method from the Hmisc R Package [Jr17a]. After we perform

correlation analysis and redundancy analysis, we have a list of potential predictors for modeling.

MC6: Budget based correlation analysis

We evaluate the number of predictors budget of each project and how many potential predictors exist

in the metric set. We consider a given project as over budget if the number of potential predictors

is higher than the budget. If the number potential predictors is higher than the budget we execute

a new correlation analysis. However, at this time, we use the budget as a target in terms of the

number of predictors. For example, if the budget is eight, we run the correlation analysis reducing

the correlation cutoff and removing the predictors with higher correlation until we only have eight

predictors. We use the findCorrelation method from the Caret R Package [Kuh17]. During the

selection of metrics we force the significant metrics from the BASE model to stay in the model using

the varclus method from the Hmisc R Package [Jr17a].

By using this approach we blind ourselves from the outcome, which is the number of post-release

defects. Therefore, we eliminate any bias which other outcome-based approaches could cause in

the modeling [Har15]. Nevertheless, we aim to still keep the predictors that are different from each

other, which could potentially contribute more to the model.

MC7: Fit regression model

Similar to previous work mentioned in Section 2, we use logistic regressions to model the chance of

post-release defects of our subject projects. As we have the final list of predictors, we use the method

lrm from the RMS R Package [Jr17b]. We use logistic regression since we aim to understand the

likelihood of having post-release defects in a given file instead of building a defect prediction tool.

5.2.5 Model analysis

MA1: Model stability assessment

The initial model analysis is to assess the model fit using the Nagelkerke R2 (provided by the lrm

method). The Nagelkerke R2 is an adjusted version of the Cox & Snell R2 that adjusts the scale of

the statistic to cover the full range from 0 to 1 [N+91], and is an adequate measure for evaluating

54

competing logistic regression models [HJLS13]. The regular R2 does not apply to logistic regression

and deviance explained is inappropriate [Har15].

However, since the model is built using historical data, there is a chance that unseen observations

would reduce the validity of the model. Therefore, to validate our model stability, we use bootstrap

with 1,000 repetitions with the function validate from the RMS R package [Jr17b]. From the

bootstrap, we obtain an optimism-reduced Nagelkerke R2. The optimism-reduced Nagelkerke R2

accounts for noise among the predictors as well as the model stability with different data sample

(i.e., overfitting).

MA2: Model simplification

Not all predictors in the model significantly contribute to the model fit. To simplify the model

we apply the fast backward predictor selection technique in the fitted model. Such technique is

appropriate since it is not biased and we can judge the impact of the model fit after iteratively

removing each insignificant predictor. We use the fastbw function from the RMS R package [Jr17b].

We use Wald χ2 test of individual predictors and significance level (i.e., p-value) of 0.05 as our

stopping rule. With the remaining predictors, we refit the model for analysis and execute again the

assessment of the model stability.

MA3: Predictors’ explanatory power estimation

We use the Wald χ2 test to identify the predictors with the highest explanatory power among the

significant predictors. A higher Wald χ2 indicates a higher contribution to the model fit [Har15].

MA4: Predictors’ effect in the outcome measurement

Although the previous step can explain the power of each predictor in the model, we cannot measure

what would be the impact of each predictor on the model outcome, i.e., the chance of post-release

defects. In this step, similarly to previous research [SNH15, SBZ12], we calculate the model outcome

by setting all predictors at their mean value. For each significant predictor, we increase its value by

10% while keeping all other significant predictors at their mean values. We measure the differences

of the model outcome as the effect of the predictor. We use the predict function from the RMS R

package [Jr17b].

5.2.6 Preliminary results

As a preliminary analysis, we build models using all available files (i.e., with or without exception

handling constructs) from the subject projects. In the preliminary analysis, the only exception

55

Table 18: A summary of the fitted models’ construction and analysis.
Umbraco Hadoop Hibernate

BASE BSFC BSAP BASE BSFC BSAP BASE BSFC BSAP

Predictors Budget 15 15 15 59 59 59 29 29 29

Potential Predictors 12 23 16 10 31 23 18 27 19

Adjusted Correlation Cutoff 0.70 0.24 0.67 0.70 0.70 0.70 0.70 0.70 0.70

Optimism-reduced Nagelkerke

R2 on Simplified Model

0.09 0.09 0.18 0.33 0.37 0.35 0.21 0.28 0.23

handling metrics we use is the number of exception handling constructs, such as try, catch or throws

blocks. If such simple metric is not significant in the models, further analysis on exception handling

practices is meaningless. As a result, we find that the number of exception handling constructs is

indeed significant in all models and not highly correlated with any other metrics (e.g., for Hadoop,

the number of try blocks only has a 0.4 |ρ| correlation with the lines of code.)

By knowing the significance of basic metric of exception handling, we decide to focus only on the

files with exception handling constructs since our metrics defined in Section 5.2.3 are only meaningful

if there exist exception handling constructs in the file.

5.3 Case Study Results and Discussion

In this section, we present the results of our case study according to our research questions. For

each question, we discuss the model construction and the model analysis results that lead to our

findings.

RQ1: Do exception handling flow characteristics contribute to better ex-

plaining the chance of post-release defects?�
�

�
�

Exception flow characteristics of Java projects complement traditional metrics in explaining

post-release defects.

Table 18 presents the model fits in optimism-reduced Nagelkerke R2 on Simplified Models. By

comparing the model fits of the BASE model of each project and its corresponding BSFC, we find that

in both Java projects, the metrics extracts from exception flow characteristics can statistically sig-

nificantly improve the fit of the BASE model. Nevertheless, such metrics cannot provide statistically

significant explanatory power to the BASE model of Umbraco, even though the optimism-reduced

Nagelkerke R2 of the BASE model is only 9%. By closely looking at the model construction, to

reach the budget of the model, many metrics in the BSFC of Umbraco are discarded, leading to a

56

low correlation threshold of 0.24. Therefore, there may exist metrics with higher explanatory power

that were discarded. However, without more data to support our analysis, we cannot claim the

complementary explanatory power from exception flow metrics in Umbraco.�
�

�
�

The prevalence of the flow exception type has a negative relationship on the chance of post-

release defects.

The significant metric with highest χ2 in BSFC model of Hibernate is the prevalence of particular

exception types. Table 19 shows the large explanatory power of the metric on the chance of post-

release defects. This result shows that a file with very common exception types (i.e., types that

appear in a large number of try blocks of the project as a possible exception) have a lower chance

of post-release defects, while files with rare exception types have a higher chance of post-release

defects. For example, developers of Hibernate may be familiar with how to handle the common

java.sql.SQLException. But might not be the case for exceptions such as org.hibernate.procedure.

ParameterStrategyException. This finding implies that developers should carefully handle files with

rare exceptions.�
�

�
�

The actions in the catch blocks may have a statistically significant relationship with the

chance of post-release defects.

In Hibernate, the files with more possible exceptions handled with Throw Wrap action (i.e., HB-

6) have lower chances of post-release defects (i.e., negative relationship). Throw Wrap means that

the original exception or its associated information was wrapped into a throw statement in the catch

block. Prior research finds that this action is the most prevalent action in Java [BdPS17a] and we

find that this action is present in 55% of the catch blocks in Hibernate. Such wrapping may help in

better explain the exception and provide more customized exception types to handle. By examining

all the catch blocks in Hibernate, we find that java.sql.SQLException and java.lang.Exception are

the two most handled exception types. In particular, most of the wrapping (i.e., 148 out of 205, or

72%) for java.sql.SQLException was done by converting into an exception that is easier to under-

stand by developers. Such wrapping may help developers who use Hibernate as an API to better

handle its thrown exceptions. For java.lang.Exception, 21% (i.e., 36 cases out 174) of the catch

blocks re-throw the exception as HibernateException, which aims to help developers distinguish the

java.lang.Exception thrown by Hibernate and the ones thrown by other APIs in order to handle the

exception accordingly.

The files with a higher percentage of handlers using the Log action in Hadoop have a higher chance

of post-release defects (i.e., positive relationship). The Log action is an indicator that the exception

is not handled, but, instead, the exception is recorded by logging [SCKB16, CM07, CRG+08].

Moreover, for Hadoop, 64% of the logged catch blocks were handled with a generic exception type

57

(i.e., IOException 40%, Exception 15% and Throwable 9%) leading to a possible ambiguity of

properly handling the exception. Therefore, logging the exception is often required to later (i.e., in

the case of a runtime event) examine such exception. Prior research also finds that more logs may

indicate that developers have uncertainties about the source code, leading to a positive relationship

with the post-release defects [SNH15].

The files with a higher percentage of handlers using the Method action in Hadoop have a higher

chance of post-release defects (i.e., positive relationship). The Method action is when other methods

are called in the catch block [SCKB16, CM07]. Invoking other methods often indicates a more

complex handling of exceptions. In particular, we find that 13.19% of the catch blocks with the

Method action handle com.google.protobuf.ServiceException. protobuf is an external library for data

serialization. Developers may face more post-release defects when dealing with data serialization in

Hadoop. Other popular methods include getMessage, and println. Both of them are special cases of

the Log action that is also found to have a positive relationship with post-release defects.�
�

�
�

The characteristics of try blocks may have a statistically significant relationship with the

chance of post-release defects.

The average number of invoked methods per possible exception in the try blocks of the file (HB-

7) has a positive relationship with the chance of post-release defects in Hibernate. We find that

this metric was correlated (i.e.,|ρ > 0.8|) with the average number of declaring methods per possible

exception. In other words, the files with possible exceptions that are originated from multiple

different sources have a higher chance of defects (i.e., positive relationship). Prior research has

claimed that an exception that has multiple distinct sources may have an ambiguous meaning when

thrown [BdPS17a]. Handling such exception is more challenging and requires a better understanding

of the source code by developers.

The average percentage of propagated possible exceptions has a positive relationship with the

chance of post-release defects in Hadoop. A large number of possible exceptions may increase the

challenge of handling them properly within a file. If a large portion of such exceptions is propagated,

it means that the file does not handle the exceptions and the responsibility is transferred to the callers

of the methods of the file. Propagating exceptions is an easy way to transfer the risk of handling

an exception instead of taking action to recover from the exception. However, the exceptions can

still occur and the methods of the file might not work properly since the abnormal behavior was not

dealt properly. We consider this chain reaction may be the reason for such positive relationship.

The scope in which the try statement was declared may also have a relationship with the chance

of post-release defects. HA-8 is the metric that measures the number of try blocks inside another

block that is not declaration, condition, loop or exception handling features. By examining Hadoop’s

source code, we find that try statements are often declared inside a SynchronizedStatement to ensure

58

the correctness of the exclusive access to an object’s state. For example, in Hadoop HDFS class

DatanodeManager, a method handleHeartbeat leverages a try-catch block to access a data node object

in a synchronized manner. The higher chance of post-release defects may due to the complexity of

the SynchronizedStatement.

RQ2: Do exception handling anti-patterns contribute to better explaining

the chance of post-release defects?�

�

�

�
Exception handling anti-patterns complement traditional metrics in explaining post-release

defects. However, the majority of the anti-patterns do not provide statistically significant

explanatory power to post-release defects.

We find that, in all three studied projects, at least one anti-pattern is significant in the BSAP

models, providing additional explanatory power to the BASE models. In particular, Umbraco has

the highest improvement in model fit when adding exception handling anti-pattern related metrics to

the BASE model. However, the majority of the exception handling anti-patterns are not statistically

significant in explaining post-release defects.�
�

�
�

The size of the exceptional handling blocks (catch blocks) have a positive relationship with

the chance of post-release defects.

Similar to the findings of our preliminary analysis, the average number of source lines of code in

the files’ exception handling blocks has a relationship with the chance of post-release defects. This

means that if the file has larger exception handling blocks on average, there is a higher chance of

defects. Intuitively, this may be due to the correlation between the size of the catch blocks and total

lines of code. However, surprisingly we find that the size of exception handling blocks is not highly

correlated with other file size metrics. Therefore, the size of the exception handling blocks brings

unique information to explain the chance of post-release defects.�
�

�
�

Some exception handling anti-patterns may have a positive relationship with the chance of

post-release defects.

The percentage of catch blocks affected by the Dummy Handler anti-pattern has a positive

relationship with the chance of post-release defects in both Umbraco and Hibernate. The Dummy

Handler anti-pattern indicates that the catch block was superficially handled and might not be

really effective in terms of taking care of the exception. In Java, the compiler forces the developers

to catch checked exceptions and therefore Dummy Handler is often used by developers to make the

code compilable [CCHW09, BdPS17b]. However, C# does not force developers to handle exceptions.

When there exists a Dummy Handler, it may mean that developers intentionally leave the exception

59

caught by not handled properly, which may lead to severe issues at run-time and also post-release

defects.

The total amount of Generic Catch anti-pattern has a positive relationship with the chance of

post-release defects in Umbraco. The metric has higher explanatory power than the traditional size

and complexity metric of the base model (i.e., χ2 of 14.82 vs 10.01, see Table 19). Prior study finds

that this anti-pattern is prevalent in practice [BdPS17b]. It is indeed convenient that developers

can use a generic catch block to handle all exceptions. However, exceptions caught by such blocks

cannot be properly recovered without the knowledge of the exact type of the exception. Moreover,

our results imply the harmfulness of this anti-patterns. Developers should consider avoiding using

Generic Catch in practice.

The percentage of catch blocks affected by Ignoring Interrupted Exception has a positive rela-

tionship with the chance of post-release defects in Hadoop. This anti-pattern is related to the Java

exception called InterruptedException, which is used on concurrent programming with threads. Due

to the complex programming feature that is associated with this exception, ignoring the exception

is considered an anti-pattern [McC06]. Especially for Hadoop, a platform where concurrency is a

major feature of the software, ignoring the exception may be even more harmful. The special con-

text of Hadoop and the nature of the anti-pattern may explain the positive relationship between

this anti-pattern and the chance of post-release defects.

The total number of catch blocks affected by Log and Throw has a positive relationship with the

chance of post-release defects in Hadoop. The Log and Throw anti-pattern has been advocated to

be harmful [McC06]. Log and throw in a file can make harder for developers to understand where an

exception comes from. This anti-pattern could affect software operation since repeated exceptions

would show in the logs. This anti-pattern could also affect debugging by preventing developers to

find the errors. Although this anti-pattern is not prevalent in practice [BdPS17b] and it was found

to have a small effect to the chance of post-release defects (see Table 19), practitioners should still

avoid such a suboptimal practice.

5.4 Threats to Validity

In this section, we discuss the threats to the validity of our findings.

5.4.1 External validity

Our study is based on a set of open-source Java and C# projects from GitHub. Our findings

may not generalize to other projects, languages or commercial systems. Replicating our study on

other subjects may address this threat and further understand the state-of-the-practice of exception

60

handling.

5.4.2 Internal validity

We aim to include all possible sources of information in our automated exception flow analysis.

However, our analysis may still miss possible exceptions, if there is a lack of documentation or

the source code is not compilable. Also, the documentation of the exception may be incorrect or

outdated. In our analysis, we trust the content of documentation. Therefore, we cannot claim that

our analysis fully recovers all possible exceptions nor that the recovered information is impeccable.

Further studies may perform deeper analysis on the quality of exception handling documentation to

address this threat.

Our study of the relationship between exception handling practice and post-release defects cannot

claim causal effects. We do not aim to conduct impact studies in this chapter. The explanatory

power of our exception handling metrics on post-release defects does not indicate that exception

handling cause defects. Instead, it indicates the possibility of a relationship that should be studied

in depth through further studies.

There is room for improvement of the model fit in our statistical models. The model fit may be

further improved by adding more predictors to the models in our two research questions. However,

this is expected and should not impact the conclusions, i.e., the found relationship between exception

handling practices and post-release defects.

5.4.3 Construct validity

Our study may not cover all possible handling actions. We selected actions based on the previous

research in the subject [YLZ14, SCKB16, CM07, CRG+08, ZHF+15]. Some actions are not included

in our study if they are either 1) require heuristic to detect, or 2) are not well explained in details

in related work.

Our possible exception identification approach is based on a call graph approximation from static

code analysis. We may still miss possible exceptions due to under-estimation for polymorphism or

unresolved method overload. To complement our study, dynamic analysis on the exception flow may

be carried out to understand the system exceptions during run-time.

We leveraged a list of software metrics to measure exception handling practices. However, there

may exist other aspects of exception handling that we do not measure. Adding more metrics may

provide a further understanding of its relationship with post-release defects. In addition, this chap-

ter only focuses on post-release defects as one aspect of software quality. There exist other aspects

of software quality other than post-release defects. For example, exception handling might have

61

relationship with software maintainability or software understandability. Similar to previous re-

search [SBV+17, PAK+14, KDPG09, KG08], one may consider extending our study by modeling

other aspects of software quality.

We leverage an automated approach to remove predictors in order to keep the number of pre-

dictors under modeling budget. Another approach to resolving this issue is using expert knowl-

edge [Har15]. Expert knowledge would indicate which predictor should not be considered. We do

not opt to leverage expert knowledge since we want to avoid subjective bias in the results. However,

the approach of using expert knowledge can be leveraged if closely working with practitioners on

this empirical study. Such a study is already in our future plan.

5.5 Conclusion

Exception handling is an important feature in modern programming languages. Prior studies unveil

the suboptimal usage of exception handling features in practice and propose exception handling

anti-patterns. In this chapter, we study whether the exception handling practices, including the

characteristics of exception flow and the exception handling anti-patterns, have a statistically sig-

nificant relationship with post-release defects. We find that exception flow characteristics in Java

projects have a significant explanatory power when complementing traditional software metrics in

modelling post-release defect. Such results imply the importance of properly handling exceptions. In

addition, although majority of the exception handling anti-patterns are not significant in explaining

post-release defects, there exist some anti-patterns that indeed have a positive relationship with

post-release defects. Developers should try to avoid such anti-patterns in practice.

In particular, the contributions of this chapter are:

1. We empirically studies the relationship between exception handling practice and the chance of

post-release defects.

2. Our results provide guidelines to practitioners for improving their exception handling practices.

This chapter highlights the importance of avoiding suboptimal exception handling practices and

advocates the need for techniques that can improve exception handling in software development

practice.

62

Table 19: Significant metrics in the final models with Wald χ2 and effect values. Effect is measured

by setting a metric to 110% of its mean value, while the other metrics are kept at their mean values.

A positive impact (i.e., direction ↗) means that higher values of the metric, higher chance of bugs.

Project ID Metric(s) Direction
BASE BSFC BSAP

χ2 χ2 Effect χ2 Effect

Umbraco

UM-1 Size and Complexity ↗ 10.01 10.01 6.9%

UM-2 Catch Anti-patterns (Dummy Handler) ↗ 7.58 2.9%

UM-3 Catch Anti-patterns (Generic Catch),

Catch Recoverability, Catch Quantity,

Catch Size (LOC and SLOC)

↗ 14.82 10.5%

Hadoop

HA-1 Changes and Human Factors ↗ 101.09 102.74 7.0% 108.4 7.0%

HA-2 Size and Complexity ↗ 12.31 7.94 5.7% 10.77 7.8%

HA-3 Complexity ↘ 8.99 4.7 -5.5%

HA-4 Complexity ↗ 6.72

HA-5 Catch Anti-patterns (Ignoring Inter-

rupted Exception)

↗ 12.79 1.4%

HA-6 Catch Anti-patterns (Log and Throw) ↗ 4.44 0.3%

HA-7 Catch Recoverability, Catch Quantity,

Catch Size (LOC and SLOC)

↗ 6.98 2.1%

HA-8 Try Scope (Other) ↗ 8.97 0.5%

HA-9 Flow Handling Actions (Log) ↗ 14.78 2.9%

HA-10 Flow Handling Actions (Method) ↗ 4.64 2.1%

HA-11 Flow Quantity - Propagated ↗ 12.51 5.1%

HA-12 Flow Handling Strategy (Specific) ↗ 15.82 7.5%

Hibernate

HB-1 Changes and Human Factors ↗ 6.62 5.66 5.1% 7.82 5.3%

HB-2 Size ↗ 16.5 13.83 5.9% 13.65 5.2%

HB-3 Documentation ↘ 14.3 15.62 -7.9% 12.61 -6.4%

HB-4 Catch Size - SLOC ↗ 6.52 3.8%

HB-5 Catch Anti-patterns (Dummy Handler) ↗ 4.69 0.8%

HB-6 Flow Handling Actions (Throw Wrap) ↘ 5.84 -2.9%

HB-7 Flow Sources (Invoked and Declared) ↗ 6.21 7.6%

HB-8 Flow Type Prevalence ↘ 19.85 -4.6%

63

Chapter 6

Conclusions and Future Work

6.1 Conclusion

Exception handling is an important feature in modern programming languages. Prior studies unveil

the suboptimal usage of exception handling features in practice and propose exception handling

anti-patterns.

In Chapter 3, we revisit the practice of exception handling in 16 open-source software in Java

and C#. We confirm that there exist suboptimal manners of exception handling, more importantly,

we highlight the opportunities of performing source code analysis to recover exception flows to help

practitioners tackle various complex issues of handling exceptions.

In Chapter 4, we perform an empirical study using automatically detected 19 exception handling

anti-patterns in 16 open-source projects. We find that although all studied projects contain exception

handling anti-patterns and every anti-pattern is detected in the source code, there exist only a

small number of anti-patterns that are prevalent. These anti-patterns are often associated with

multiple exception flows, making them more impactful and more difficult to address. With further

investigation on the prevalence of anti-patterns, we find that the choice of programming languages

may have a relationship to the introduction of anti-patterns.

In Chapter 5, we study whether the exception handling practices, including the characteristics of

exception flow and the exception handling anti-patterns, have a statistically significant relationship

with post-release defects. We find that exception flow characteristics in Java projects have a signif-

icant explanatory power when complementing traditional software metrics in modeling post-release

defects. Such results imply the importance of properly handling exceptions. In addition, although

the majority of the exception handling anti-patterns are not significant in explaining post-release

defects, there exist some anti-patterns that indeed have a positive relationship with post-release

64

defects. Developers should try to avoid such anti-patterns in practice.

In particular, the contributions of our thesis are:

1. We design automated tools that recovers exception flows from both Java and C#.

2. We present empirical evidence to illustrate the challenges and complexity of exception handling

in open-source systems.

3. We present empirical evidence of the prevalence of exception handling anti-patterns.

4. Our exception flow and anti-patterns analysis, as an automated tool, can already provide valu-

able information to assist developers better understand and make exception handling decisions.

5. Our thesis is the first work that empirically studies the relationship between exception handling

practice and the chance of post-release defects.

6. Our results provide guidelines to practitioners for improving their exception handling practices.

Finally, this thesis highlights the opportunities and urgency of providing automated tooling to

help developers make exception handling decisions during the development of quality and reliable

software systems.

6.2 Future Work

Our findings could lead us to envision that more systematic techniques can assist software practi-

tioners in improving the handling of software exceptions. Future work goals would be to improve

the practice of handling software exceptions, leading to a better software quality and reliability. We

want to make software more reliable through understanding and aiding software engineers when

coping with the complexity of handling unexpected situations. This goal can be broken down into

different objectives and questions that affect developers, testers, and operators. Here, we suggest

future work on the objective of assisting software developers in designing and maintaining exception

handling.

What are the major concerns of software developers and maintainers when handling exceptions?

There exists a need for a research effort to identify the best-applied practices of exception han-

dling. For example, a junior developer would not understand which information is required to handle

an exception adequately. Future research could conduct interviews (e.g., firehouse interviews) with

practitioners from both open-source and commercial software projects. The interview answers will

shed light on the developers’ decisions during their exception handling activities.

Can automated just-in-time suggestions to support developer when handling exceptions be provided?

65

Based on current findings and other future user studies, handling exceptions might still be chal-

lenging since developers may favor concrete recommendations for handling exceptions. Future re-

search could mine software repositories and model the exception handling decisions using. For

example, future research can model whether an exception should be handled and what are the

proper actions that are needed to do so.

66

Bibliography

[AARS16] Muhammad Asaduzzaman, Muhammad Ahasanuzzaman, Chanchal K. Roy, and

Kevin A. Schneider. How developers use exception handling in Java? In Proceed-

ings of the 13th International Workshop on Mining Software Repositories - MSR ’16,

pages 516–519, New York, New York, USA, 2016. ACM Press.

[BCR+15] Rodrigo Bonifacio, Fausto Carvalho, Guilherme N. Ramos, Uira Kulesza, and Roberta

Coelho. The use of C++ exception handling constructs: A comprehensive study. In

2015 IEEE 15th International Working Conference on Source Code Analysis and Ma-

nipulation (SCAM), pages 21–30. IEEE, sep 2015.

[BdPS17a] Guilherme B. de Pádua and Weiyi Shang. Revisiting exception handling practices

with exception flow analysis. In 2017 IEEE 17th International Working Conference on

Source Code Analysis and Manipulation (SCAM), pages 11–20, Sept 2017.

[BdPS17b] Guilherme B. de Pádua and Weiyi Shang. Studying the prevalence of exception han-

dling anti-patterns. In Proceedings of the 25th International Conference on Program

Comprehension, ICPC ’17, pages 328–331, Piscataway, NJ, USA, 2017. IEEE Press.

[BGB14] Eiji Adachi Barbosa, Alessandro Garcia, and Simone Diniz Junqueira Barbosa. Cat-

egorizing Faults in Exception Handling: A Study of Open Source Projects. In 2014

Brazilian Symposium on Software Engineering, pages 11–20. IEEE, sep 2014.

[CAG+17] Roberta Coelho, Lucas Almeida, Georgios Gousios, Arie Van Deursen, and Christoph

Treude. Exception handling bug hazards in android. Empirical Softw. Engg.,

22(3):1264–1304, June 2017.

[Car96] Tom Cargill. C++ Gems. SIGS Publications, Inc., New York, NY, USA, 1996.

[CBA+14] Nelio Cacho, Eiji Adachi Barbosa, Juliana Araujo, Frederico Pranto, Alessandro Garcia,

Thiago Cesar, Eliezio Soares, Arthur Cassio, Thomas Filipe, and Israel Garcia. How

Does Exception Handling Behavior Evolve? An Exploratory Study in Java and C#

67

Applications. In 2014 IEEE International Conference on Software Maintenance and

Evolution, number 1, pages 31–40. IEEE, sep 2014.

[CCF+14] Nelio Cacho, Thiago César, Thomas Filipe, Eliezio Soares, Arthur Cassio, Rafael Souza,

Israel Garcia, Eiji Adachi Barbosa, and Alessandro Garcia. Trading robustness for

maintainability: an empirical study of evolving c# programs. Proceedings of the 36th

International Conference on Software Engineering - ICSE 2014, (iii):584–595, 2014.

[CCHW09] Chien-Tsun Chen, Yu Chin Cheng, Chin-Yun Hsieh, and I-Lang Wu. Exception han-

dling refactorings: Directed by goals and driven by bug fixing. Journal of Systems and

Software, 82(2):333–345, feb 2009.

[CM07] Bruno Cabral and Paulo Marques. Exception Handling: A Field Study in Java and

.NET. In ECOOP 2007 – Object-Oriented Programming, volume 4609, pages 151–175,

Berlin, Heidelberg, 2007.

[CM11] Bruno Cabral and Paulo Marques. A transactional model for automatic exception

handling. Computer Languages, Systems and Structures, 37(1):43–61, 2011.

[CRG+08] Roberta Coelho, Awais Rashid, Alessandro Garcia, Fabiano Ferrari, Nélio Cacho, Uirá

Kulesza, Arndt von Staa, and Carlos Lucena. Assessing the Impact of Aspects on

Exception Flows: An Exploratory Study. In ECOOP 2008 – Object-Oriented Program-

ming: 22nd European Conference Paphos, Cyprus, July 7-11, 2008 Proceedings, volume

5142 LNCS, pages 207–234. 2008.

[Cri82] F Cristian. Exception Handling and Software Fault Tolerance. Computers, IEEE

Transactions on, C-31(6):531–540, 1982.

[CSM07] Bruno Cabral, P. Sacramento, and Paulo Marques. Hidden truth behind .NET’s ex-

ception handling today. Software, IET, 2(1):233–250, 2007.

[DLR10] M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison of bug prediction

approaches. In 2010 7th IEEE Working Conference on Mining Software Repositories

(MSR 2010), pages 31–41, May 2010.

[ECS15] Felipe Ebert, Fernando Castor, and Alexander Serebrenik. An exploratory study on

exception handling bugs in Java programs. Journal of Systems and Software, 106:82–

101, aug 2015.

[EEBGR01] Kalhed El Emam, Saïda Benlarbi, Nishith Goel, and Shesh N. Rai. The confounding

effect of class size on the validity of object-oriented metrics. IEEE Trans. Softw. Eng.,

27(7):630–650, July 2001.

68

[GC11] Israel Garcia and Nélio Cacho. eFlowMining: An Exception-Flow Analysis Tool for

.NET Applications. In 2011 Fifth Latin-American Symposium on Dependable Comput-

ing Workshops, number i, pages 1–8. IEEE, apr 2011.

[GJS+15] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. Chapter 11. ex-

ceptions - java se specification, feb 2015.

[Har15] Frank E. Harrell ,. Regression Modeling Strategies, volume 64 of Springer Series in

Statistics. Springer International Publishing, Cham, 2015.

[Has09] Ahmed E. Hassan. Predicting faults using the complexity of code changes. In Pro-

ceedings of the 31st International Conference on Software Engineering, ICSE ’09, pages

78–88, Washington, DC, USA, 2009. IEEE Computer Society.

[HJLS13] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. Applied logistic

regression, volume 398. John Wiley & Sons, 2013.

[JCYC04] Jang Wu Jo, Byeong Mo Chang, Kwangkeun Yi, and Kwang Moo Choe. An uncaught

exception analysis for Java. Journal of Systems and Software, 72(1):59–69, 2004.

[JGHK13] Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Foutse Khomh. Mining the

relationship between anti-patterns dependencies and fault-proneness. In Reverse Engi-

neering (WCRE), 2013 20th Working Conference on, pages 351–360. IEEE, 2013.

[Jr17a] Frank E Harrell Jr. Hmisc: Harrell Miscellaneous, 2017.

[Jr17b] Frank E Harrell Jr. rms: Regression Modeling Strategies, 2017.

[KDPG09] Foutse Khomh, Massimiliano Di Penta, and Yann-Gael Gueheneuc. An exploratory

study of the impact of code smells on software change-proneness. In Proceedings of

the 2009 16th Working Conference on Reverse Engineering, WCRE ’09, pages 75–84,

Washington, DC, USA, 2009. IEEE Computer Society.

[KG08] Foutse Khomh and Yann-Gael Gueheneuce. Do design patterns impact software quality

positively? In Proceedings of the 2008 12th European Conference on Software Main-

tenance and Reengineering, CSMR ’08, pages 274–278, Washington, DC, USA, 2008.

IEEE Computer Society.

[KLM16] Mary Beth Kery, Claire Le Goues, and Brad A. Myers. Examining programmer prac-

tices for locally handling exceptions. In Proceedings of the 13th International Workshop

on Mining Software Repositories - MSR ’16, pages 484–487, New York, New York,

USA, 2016. ACM Press.

69

[KPGA12] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano Antoniol.

An exploratory study of the impact of antipatterns on class change- and fault-proneness.

Empirical Softw. Engg., 17(3):243–275, June 2012.

[KS14] Maria Kechagia and Diomidis Spinellis. Undocumented and unchecked: exceptions

that spell trouble. In Proceedings of the 11th Working Conference on Mining Software

Repositories - MSR 2014, pages 312–315, New York, New York, USA, 2014. ACM Press.

[KSS17] Maria Kechagia, Tushar Sharma, and Diomidis Spinellis. Towards a context dependent

java exceptions hierarchy. In Proceedings of the 39th International Conference on Soft-

ware Engineering Companion, ICSE-C ’17, pages 347–349, Piscataway, NJ, USA, 2017.

IEEE Press.

[Kuh17] Max Kuhn. caret: Classification and Regression Training, 2017.

[KZP+13] Sunghun Kim, Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, and Shiv-

kumar Shivaji. Predicting method crashes with bytecode operations. In Proceedings of

the 6th India Software Engineering Conference, ISEC ’13, pages 3–12, New York, NY,

USA, 2013. ACM.

[McC06] Tim McCune. Exception handling antipatterns, apr 2006.

[MKAH16] Shane Mcintosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. An empirical

study of the impact of modern code review practices on software quality. Empirical

Softw. Engg., 21(5):2146–2189, October 2016.

[MKCN17] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Curating

GitHub for engineered software projects. Empirical Software Engineering, pages 1–35,

2017.

[MPS08] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative analysis of

the efficiency of change metrics and static code attributes for defect prediction. In

Proceedings of the 30th International Conference on Software Engineering, ICSE ’08,

pages 181–190, New York, NY, USA, 2008. ACM.

[MSR85] P. M. Melliar-Smith and B. Randell. Software Reliability: The Role of Programmed

Exception Handling. Reliable Computer Systems, pages 143–153, 1985.

[MT97] Robert Miller and Anand Tripathi. Issues with exception handling in object-oriented

systems. ECOOP’97 — Object-Oriented Programming, 1241:85–103, 1997.

70

[N+91] Nico JD Nagelkerke et al. A note on a general definition of the coefficient of determi-

nation. Biometrika, 78(3):691–692, 1991.

[NBZ06] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to predict

component failures. In Proceedings of the 28th International Conference on Software

Engineering, ICSE ’06, pages 452–461, New York, NY, USA, 2006. ACM.

[.NE] Handling and Throwing Exceptions - .NET Framework Documentation.

[NHT16] Suman Nakshatri, Maithri Hegde, and Sahithi Thandra. Analysis of exception handling

patterns in Java projects. In Proceedings of the 13th International Workshop on Mining

Software Repositories - MSR ’16, pages 500–503, New York, New York, USA, 2016.

ACM Press.

[OBS+18] Juliana Oliveira, Deise Borges, Thaisa Silva, Nelio Cacho, and Fernando Castor. Do

android developers neglect error handling? a maintenance-centric study on the rela-

tionship between android abstractions and uncaught exceptions. Journal of Systems

and Software, 136:1 – 18, 2018.

[OCC+17] Haidar Osman, Andrei Chiş, Claudio Corrodi, Mohammad Ghafari, and Oscar Nier-

strasz. Exception evolution in long-lived java systems. In Proceedings of the 14th

International Conference on Mining Software Repositories, MSR ’17, pages 302–311,

Piscataway, NJ, USA, 2017. IEEE Press.

[PAK+14] Francis Palma, Le An, Foutse Khomh, Naouel Moha, and Yann-Gaël Guéhéneuc. Inves-

tigating the change-proneness of service patterns and antipatterns. In Service-Oriented

Computing and Applications (SOCA), 2014 IEEE 7th International Conference on,

pages 1–8. IEEE, 2014.

[RD11] Foyzur Rahman and Premkumar Devanbu. Ownership, experience and defects: A fine-

grained study of authorship. In Proceedings of the 33rd International Conference on

Software Engineering, ICSE ’11, pages 491–500, New York, NY, USA, 2011. ACM.

[Rie11] Manfred Riem. Working with java se 7 exception changes, sep 2011.

[RM99] Martin P Robillard and Gail C Murphy. Analyzing Exception Flow in Java Programs.

In Proceedings of the 7th European Software Engineering Conference Held Jointly with

the 7th ACM SIGSOFT International Symp. on Foundations of Software Engineering,

pages 322–337, 1999.

71

[RM03] Martin P Robillard and Gail C Murphy. Static analysis to support the evolution of

exception structure in object-oriented systems. ACM Transactions on Software Engi-

neering and Methodology, 12(2):191–221, 2003.

[RS03] Darell Reimer and Harini Srinivasan. Analyzing exception usage in large java appli-

cations. In Proceedings of ECOOP’2003 Workshop on Exception Handling in Object-

Oriented Systems, pages 10–18, 2003.

[SBV+17] Simone Scalabrino, Gabriele Bavota, Christopher Vendome, Mario Linares-Vásquez,

Denys Poshyvanyk, and Rocco Oliveto. Automatically assessing code understandability:

How far are we? In Proceedings of the 32Nd IEEE/ACM International Conference on

Automated Software Engineering, ASE 2017, pages 417–427, Piscataway, NJ, USA,

2017. IEEE Press.

[SBZ12] Emad Shihab, Christian Bird, and Thomas Zimmermann. The effect of branching

strategies on software quality. In Proceedings of the ACM-IEEE International Sympo-

sium on Empirical Software Engineering and Measurement, ESEM ’12, pages 301–310,

New York, NY, USA, 2012. ACM.

[Scia] Scitools.com. Understand: Visualize your code.

[Scib] Scitools.com. What metrics does understand have?

[SCKB16] Demóstenes Sena, Roberta Coelho, Uirá Kulesza, and Rodrigo Bonifácio. Understand-

ing the exception handling strategies of Java libraries. In Proceedings of the 13th Inter-

national Workshop on Mining Software Repositories - MSR ’16, pages 212–222, 2016.

[SNH15] Weiyi Shang, Meiyappan Nagappan, and Ahmed E. Hassan. Studying the relationship

between logging characteristics and the code quality of platform software. Empirical

Software Engineering, 20(1):1–27, feb 2015.

[SOH04] S. Sinha, A. Orso, and M.J. Harrold. Automated support for development, maintenance,

and testing in the presence of implicit flow control. In Proceedings. 26th International

Conference on Software Engineering, pages 336–345, 2004.

[TKZ+13] Seyyed Ehsan Salamati Taba, Foutse Khomh, Ying Zou, Ahmed E. Hassan, and

Meiyappan Nagappan. Predicting bugs using antipatterns. In Proceedings of the 2013

IEEE International Conference on Software Maintenance, ICSM ’13, pages 270–279,

Washington, DC, USA, 2013. IEEE Computer Society.

72

[TX09] Suresh Thummalapenta and Tao Xie. Mining exception-handling rules as sequence

association rules. In Proceedings of the 31st International Conference on Software

Engineering, ICSE ’09, pages 496–506, Washington, DC, USA, 2009. IEEE Computer

Society.

[WW64] Frank Wilcoxon and Roberta A Wilcox. Some rapid approximate statistical procedures.

Lederle Laboratories, 1964.

[YLZ14] Ding Yuan, You Luo, and Xin Zhuang. Simple Testing Can Prevent Most Critical

Failures. 11th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 14), 2014.

[ZC14] Benwen Zhang and James Clause. Lightweight automated detection of unsafe infor-

mation leakage via exceptions. Proceedings of the 2014 International Symposium on

Software Testing and Analysis - ISSTA 2014, pages 327–338, 2014.

[ZHF+15] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R. Lyu, and Dongmei

Zhang. Learning to Log: Helping Developers Make Informed Logging Decisions. In 2015

IEEE/ACM 37th IEEE International Conference on Software Engineering, volume 1,

pages 415–425. IEEE, may 2015.

[ZK09] Lingli Zhang and Chandra Krintz. As-if-serial exception handling semantics for Java

futures. Sci. of Computer Programming, 74:314–332, 2009.

[ZKZH14] Feng Zhang, Foutse Khomh, Ying Zou, and Ahmed E. Hassan. An empirical study of

the effect of file editing patterns on software quality. J. Softw. Evol. Process, 26(11):996–

1029, November 2014.

73

	List of Figures
	List of Tables
	Introduction
	Research Hypothesis
	Thesis overview
	Chapter 2: Background and Literature Review
	Chapter 3: Revisiting Exception Handling Practices with Exception Flow Analysis
	Chapter 4: Studying the Prevalence of Exception Handling Anti-Patterns
	Chapter 5: Studying the Relationship between Exception Handling Practices and Post-release Defects

	Thesis contributions
	Thesis organization

	Background and Literature Review
	An illustrative example of exception handling practices
	Handling possible exceptions
	Raising and propagating exceptions
	Documenting exceptions

	Empirical studies on exception handling practices
	Anti-patterns of exception handling
	Improving exception handling practices
	Software quality and defect modeling

	Revisiting Exception Handling Practices with Exception Flow Analysis
	Introduction
	Methodology
	Exception flow analysis
	Subject projects

	Quantity of Exceptions
	All and propagated possible exceptions
	Potentially recoverable yet propagated exceptions

	Diversity of Exceptions
	Sources of Exceptions
	Multiple sources of the same exception
	Sources of exception documentation

	Exception Handling Strategies and Actions
	Exception handling strategies
	Exception handling actions

	Threats to Validity
	External validity.
	Internal validity.
	Construct validity.

	Conclusion

	Studying the Prevalence of Exception Handling Anti-Patterns
	Introduction
	Methodology
	Subject projects
	Detecting exception handling anti-patterns

	The prevalence of exception handling anti-patterns
	The amount of exception flows
	Discussion
	Threats to validity
	External validity
	Internal validity
	Construct validity

	Conclusion

	Studying the Relationship between Exception Handling Practices and Post-release Defects
	Introduction
	Case Study Design
	Research questions
	Subject projects
	Metrics
	Model construction
	Model analysis
	Preliminary results

	Case Study Results and Discussion
	Threats to Validity
	External validity
	Internal validity
	Construct validity

	Conclusion

	Conclusions and Future Work
	Conclusion
	Future Work

	Bibliography

