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Abstract

Intelligent Energy Management for Microgrids with Renewable

Energy, Storage Systems, and Electric Vehicles.

Mosaddek Hossain Kamal Tushar, Ph.D.

Concordia University, 2017

The evolution of smart grid or smart microgrids represents a significant paradigm

shift for future electrical power systems. Recent trends in microgrid systems include

the integration of renewable energy sources (RES), energy storage systems (ESS),

and plug-in electrical vehicles (PEV or EV). However, these integration trends bring

with then new challenges for the design of intelligent control and management sys-

tem. Traditional generation scheduling paradigms rely on the perfect prediction of

future electricity supply and demand. They can no longer apply to a microgrid

with intermittent renewable energy sources. To mitigate these problems, a massive

and expensive energy storage can be deployed, which also need vast land area and

sophisticated control and management. Electrical vehicles can be exploited as the

alternative to the large and expensive storage. On the other hand, the use of elec-

trical vehicles introduces new challenges due to their unpredictable presence in the

microgrid. Furthermore, the utility and ancillary industries gradually adding sensors

and power aware, intelligent functionality to home appliances for the efficient use

of energy. Hence, the future smart microgrid stability and challenges are primarily

dependent on the electricity consumption patterns of the home appliances, and EVs.

Recently, demand side management (DSM) has emerged as a useful method to control

or manipulate the user demand for balancing the generation and consumption. Un-

fortunately, most of the existing DSM systems solve the problem partially either using

ESS to store RES energy or RES and ESS to charging and discharging of electrical

vehicles. Hence, in this thesis, we propose a centralized energy management system

which jointly optimizes the consumption scheduling of electrical vehicles and home ap-

pliances to reduce the peak-hour demand and use of energy produced from the RESs.

In the proposed system, EVs store energy when generation is high or during off-peak

periods, and release it when the demand is high compared to the generation. The
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centralized system, however, is an offline method and unable to produce a solution for

a large-scale microgrid. Further, the real-time implementation of the centralized so-

lution requires continuous change and adjustment of the energy generation as well as

load forecast in each time slot. Thereby, we develop a game theoretic mechanism de-

sign to analyze and to get an optimal solution for the above problem. In this case, the

game increases the social benefit of the whole community and conversely minimizes

each household’s total electricity price. Our system delivers power to each customer

based on their real-time needs; it does not consider pre-planned generation, therefore

the energy cost, uncertainty, and instability increase in the production plant. To

address these issues, we propose a two-fold decentralized real-time demand side man-

agement (RDCDSM) which in the first phase (planning phase) allows each customer

to process the day ahead raw predicted demand to reduce the anticipated electricity

cost by generating a flat curve for its forecasted future demand. Then, in the second

stage (i.e., allocation phase), customers play another repeated game with mixed strat-

egy to mitigate the deviation between the immediate real-time consumption and the

day-ahead predicted one. To achieve this, customers exploit renewable energy and

energy storage systems and decide optimal strategies for their charging/discharging,

taking into account their operational constraints. RDCDSM will help the microgrid

operator better deals with uncertainties in the system through better planning its

day-ahead electricity generation and purchase, thus increasing the quality of power

delivery to the customer. Now, it is envisioned that the presence of hundreds of

microgrids (forms a microgrid network) in the energy system will gradually change

the paradigms of century-old monopolized market into open, unbundled, and com-

petitive market which accepts new supplier and admits marginal costs prices for the

electricity. To adapt this new market scenario, we formulate a mathematical model to

share power among microgrids in a microgrid network and minimize the overall cost

of the electricity which involves nonlinear, nonconvex marginal costs for generation

and T&D expenses and losses for transporting electricity from a seller microgrid to a

buyer microgrid.
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Chapter 1

Introduction

1.1 Overview and Objectives

The current electrical grid is perhaps the greatest engineering achievement of the

20th century and is considered to be the largest machine on the planet. However, it

is increasingly outdated and overburdened, leading to costly blackouts and burnouts

[59, 66, 138, 137]. Current studies show that the existing electric grid converts only

one-third of fuel energy into electricity [35]. Almost 8% of the generated electricity

is lost in transmission while 20% of the electric energy is generated to meet peak

demands for only a short period (5%) [83]. Moreover, existing electricity networks do

not contain storage units, which means that the energy generated from fossil fuels and

nuclear power plants must be balanced with the energy consumed by the end users

[86]. In addition, the existing electric grid suffers from domino-effect failures due to

its hierarchical topology of transmission and distribution networks. In fact, nearly

90% of power disruptions occur in power distribution networks [83]. Further, the

current electricity generation relies heavily on fossil fuels and causes 41% of the world

greenhouse gas emissions (Figure 1.1a) [18]. Coal and peat electricity generators emit

more than 70% of CO2 of the total emission of the electricity sector (Figure 1.1b).
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Conventional transportation vehicles operate on the principles of internal combustion

engine (ICE) that runs on fossil fuel (i.e., gasoline, diesel). ICE emits 23% of the

global CO2 emission [18]. The above two mentioned sectors together emit two thirds

of global CO2 as shown in Figure 1.1a. Road vehicles emit 75% of the total amount

of CO2 released by the transport sector in 2008 and 2009 (Figure 1.1c).

(a) World CO2 emission by
sector in 2009

(b) World CO2 emission from
electricity and heat genera-
tion

(c) World CO2 emission from
transportation in 2008-2009

Figure 1.1: World Greenhouse Gas Emission

Thus, transformation efforts are underway to make the current electrical grid

smarter. The future smart grid could be referred to as the modernization of the

current electric grid by increasing its dependency on cyberspace and renewable energy

resources. The smart grid should not be the replacement of the existing grid rather it

is a complement to the existing grid. Smart grid will coexist with the conventional grid

and gradually add capabilities, functionalities and capacities to the existing power

grid by means of an evolutionary path. This coexistence needs a topology which

allows the organic growth by accommodating modern technology and full backward

compatibility with the current system. Further, the organic growth and development

of smart grid is anticipated to come through the plug-and-play integration of essential

structures known as intelligent (or smart) microgrid [35]. Figure 1.2 compares the

existing grid with the future grid.

The smart grid enables two-way flows of information and electricity in order to

2





optimize customers power consumption [95]. Smart microgrids can be deployed in

two working modes (i) grid connected microgrid, and (ii) islanded microgrid.

1.1.1 The Vision and Benefits of Smartgrid and Microgrid

The interconnection management system manages the power flow from outside the

microgrid in case of shortage of power and to other microgrids or to the external power

grid in case of excessive power generation. The establishment of microgrids increases

the reliability of the electricity supplies by the existence of storage systems. The use

of the emerging information and communication technology (ICT) is essential for the

smart microgrids, i.e. intelligent power distribution networks which automatically

reroute the power flow in case of unexpected line fault. During a power grid failure,

smart microgrids will operate in islanded mode, which continuously supply power to

the community/area intended for. Various studies (see Table 1.1)[87], assessed the

global and country wide positive impact of reducing the CO2. For example, the GeSI

study [87] emphases four main ways the smart grids could reduce CO2 emissions. The

broken down contributions of the levers identified in the GeSI study (see Fig. 1.3)

[87] emphasizes that the ”transmission and distribution losses” and the ”integration

of renewable energy sources” account for most CO2 contributions, i.e. 1, 72 Gt out

of the total 2, 03 Gt CO2 globally. Also, a substantial reduction of 0.28 Gt could be

obtained by the ”reduced consumption through user information”. Fig. 1.4[87] sum-

marizes the positive impact on the environment from EPRI USA studies. It shows

that three major steps (”direct feedback on energy uses”, ”integration of renewable

energy sources” and ”facilitation of PHEV market”) may reduce the US CO2 emis-

sions from 2, 11 Mt to 0, 46 Mt CO2. The use of efficient management and emerging

technologies, such as ICT enable the smart microgrids to use Electric Vehicles (EV)

batteries for power storage of the electricity generated during off-peak hours. The
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Table 1.1: Impact of smart microgrids: the GeSI, EPRI and IPTS studies
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Figure 1.3: Positive Environmental Impact of smart microgrids.

charging/discharging cycle decreases the life of the battery. It appears that if the

battery degradation cost is applied, the corresponding profit alone may provide an

incentive to the EVs’ owner to use their battery pack for electricity storage [95]. V2G

(vehicle to grid) service could be sold in an organized market as ancillary services

or it could be used to avoid grid electricity surcharge. The use of wireless charging

technologies allows the EVs, and eventually other household equipments to charge

without delay. Currently over 40% of fossil-fuel is consumed by transportation sys-

tems and residential houses. Deployment of microgrids and EVs may substantially

reduce the use of fossil-fuel near to almost negligible [87]. Charging a large popula-

tion of EVs has a significant impact on the power grid [50]. The US department of

transportation data indicates that, including overnight hours, a vehicle spends nearly

75% parked at home [30]. In the US, it is predicted that by 2020 25% and 2040 two

thirds of light-duty vehicles ought to be EVs. Further, it is expected that current

research outcomes on high power lithium-ion micro battery technology will accelerate

the replacement of internal combustion cars by the EVs [97].
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Figure 1.4: Positive Environmental Impact of smart microgrids according to EPRI
(2008)

1.1.2 Technology Challenges

Given the fluctuations of power generation in microgrids as a result of unavoidable

natural hazards, and also because the number of EVs charging (simultaneously) is

unknown, therefore, the power sharing between neighboring microgrids must deal

with the following challenges:(a) Integration of intermittent renewable energy sources.

(b) V2G and G2V issues: Policy/protocol and intelligent mechanisms are needed for

V2G operation to provide electric energy to the grid with the high price interval

and for emergency power need. For consuming electricity, EVs need to charge in

low price interval. (c) Wireless and sensor based infrastructure is needed to monitor

EVs’ battery charge level, charging and discharging schedule. (d) Integration of

community energy storage system (ESS). (e) Communication and control required

over microgrids for power generation and consumption. (f) Management System for

Intelligent Power Transmission and Distribution between microgrids. (g) Transition

between ”grid connected” and ”islanded” mode of microgrids. (h) Smart Metering

(i) Frequency and voltage regulation (j) Cyber security: The smart microgrids differ

from the conventional communication networks because they are able to reach every
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equipment which resides in user premises, and return with energy control information

to the microgrid central control system. The microgrids smartly determine the current

energy requirement and decide to distribute and transfer according to the demand,

possibly with valley filling algorithms. So the security of the user data and the secure

transmission of control and electric energy demands are usual concerns.

1.1.3 Thesis Objectives

This research work will investigate and address fundamental and practical problems

related to microgrids resource management and networking. Hence, the technical,

commercial, and residential community will benefit significantly from the extensive

research on microgrids. In particular, this effort will:

• Conduct a first of a kind comprehensive study on stochastic nature of the smart

grid and smart microgrids utilities and renewable energy sources. This will pro-

vide critical guidelines for both, consumers and manufacturers of such utilities.

• Encourage microgrid operators to rely more on renewable energy sources rather

than fossil-fuel electric generators.

• Enable EVs to be used as distributed electricity storage for microgrids, which

will significantly reduce the cost, land space, and investment involved in imple-

menting large electric storage system.

• Integrate community Energy Storage Systems (ESSs) in the grid which will

play a significant role in balancing the generation planning and real-time use of

electricity along with EVs.

This thesis work will focus on the main issues in power generation, distribution and

communications of microgrids.
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The integration of renewable energy sources and electrical vehicles (EVs) into mi-

crogrids is becoming a popular green approach. To reduce greenhouse gas emissions,

several incentives are given to use renewable energy sources and EVs. By utilizing

EVs as electricity storage and renewable energy sources as distributed generators, mi-

crogrids become more reliable, stable, and cost-effective. To optimize energy use, an

optimal centralized scheduling method may play a significant role which jointly con-

trols the electricity consumption of home appliances and plug-in EVs. It discharges

the EVs when they have excess energy, thereby increasing the reliability and stability

of microgrids and giving lower electricity prices to customers.

In a centralized scheduling, customers need to send their detailed information

about the load such as load type, consumption time and duration, driving schedule

of the EV, RES generation pattern, etc., which may expose a potential privacy and

security breach. In addition to this, the centralized system does not give any incen-

tives to EVs owners to participate V2G operation. Also, a centralized system does

not scale well for a large sized microgrid. A distributed real-time electricity alloca-

tion scheme for microgrid based on game theoretic mechanism design may benefit

both the customers and the operator to reduce the client’s electricity bill and lower

the generation in peak-hour. In this scheme, each of the clients is able to choose its

consumption pattern, charging and discharging EVs to reduce their electricity costs

and get incentives from the microgrid operator in real time. The game based mecha-

nism design for real-time consumption will promise to (i) keep privacy of the energy

consumption pattern, (ii) reduce the electricity bill of residential customers, (iii) in-

crease the overall social benefit of the community, as well as (iv) improve the energy

efficiency and reliability of the microgrid to rely on locally generated electricity.

The integration of electric vehicles (EVs), energy storage systems (ESSs) and re-

newable energy sources (RESs) may play a significant role in balancing the planned
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generation of electricity and its real-time use. A utility operator accumulates cus-

tomers day ahead predicted load and plan for the production or purchase power

to serve the clients in the next day. Unfortunately, actual consumption may vary

from the day ahead anticipated demand, thereby increase the instability and reduce

the reliability of the power system which incurs extra cost, and in some cases load

shading. The customer load varies from time to time of a day, which then needs to

generate or purchase more electricity in peak hours compared to off-peak hours. A

two-level real-time decentralized demand-side management may solve this problem.

This system is expected to allow each customer to process the day ahead raw pre-

dicted demand to reduce the anticipated electricity cost by generating a flat curve for

its forecasted future demand. Then at the time of real use, customers will mitigate

the deviation between the real-time consumption and the day-ahead predicted load.

To achieve this, customers exploit renewable energy and energy storage systems and

decide optimal strategies for electricity consumption. It is expected that the decen-

tralized two-level demand-side management system will help the microgrid operator

better deal with uncertainties in the system through better planning its day-ahead

electricity generation and purchase, thus increasing the quality of power delivery to

the customer.

The smart microgrid and its demand-response characteristics are gradually chang-

ing the paradigms of the century-old electric grid and shaping the electricity market.

In this new market scenario, once always energy consumers now may act as sellers

due to the excess of energy generated from newly deployed renewable energy gener-

ators in the consumer premises. Hence, an optimization scheme is required for the

trading of energy among the microgrids and determine overall electricity price. The

marginal cost models for the power generation are nonlinear and non-convex. More-

over, the microgrid network (MGN) uses third party transmission and distribution
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(T&D) system which incurred extra costs to transport electricity from seller to buyer.

Therefore, the solution should be robust enough to find an optimal solution for MGN

in time.

Volt-VAR optimization (VVO) is a well-studied problem, for bringing solutions

to reduce the losses and demand along the transmission and distribution lines. The

current VVO, however, does not acknowledge the role of elastic and inelastic loads,

EVs, and RESs to reduce the reactive power losses and hence the cost of genera-

tion. Therefore, we will develop a method to solve the VVO problem by considering

load shifting, EV as the storage and carrier of the energy, and use of RES. In this

connection, our objective is not only to reduce the reactive load but also flatten the

load curve to reduce the uncertainty in the generation and to decrease the cost. The

system also considers the efficiency of the electrical equipment to enhance the lifetime

of the devices.

1.2 Problem Statement and Motivation

The evolution of microgrid and the integration of renewable energy sources, electri-

cal vehicles (EVs), and energy storage system (ESS) into microgrids is becoming a

popular green approach. The overall load profile of the power grid, as well as of the

microgrid, may change due to the introduction of EVs. Charging a large population of

EVs has a significant impact on the power grid. In addition to this, the intermittent

nature of renewable energy sources and presence of EVs introduce new challenges to

the stability of the power grid. The intelligent management of the integration of EVs,

ESS, and renewable energy sources, as well as of user power consumption may bring

benefits to both operators and consumers.

The construction of efficient energy management systems with the objective of

minimizing energy cost, balancing the energy planning and consumption, reducing the
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transmission and distribution losses, sharing energy among microgrids by integration

of RES, EVs, and ESS is indeed a challenging task, and some solutions already exist.

Most of the existing solutions solve the problems either for integration of RESs or

charging of EVs. Unlike the previous work presented in the literature (chapter 2) our

thesis attempts to solves the energy management problems by utilizing RES, EVs,

and ESS. The thesis investigates and formulates solutions for demand side resource

management to control the power consumption, flatten the load curve, enable energy

sharing among the microgrids, reduce the transmission and distribution losses of

the electrical systems, thereby increasing the reliability and stability by giving lower

electricity prices to customers.

1.2.1 Smart Microgrid: Optimal Joint Scheduling for EV and

Home Appliances

This work investigates a microgrid that is connected to the power grid and has a fixed

number of renewable energy sources (e.g., wind turbine, photovoltaic panels, etc.) for

a small residential community. The microgrid consumers have home appliances and

EVs. In this research, we develop a centralized joint optimal electricity consumption

scheduling method for appliances and EVs with the objective to minimize the amount

of imported electricity from the grid. Here, EVs are used as distributed storage

to store electricity. EVs are mobile and connected to the microgrid in a random

fashion. In case of shortage of power, the microgrid uses the electricity stored in

EVs (with discharge capability) and in cases, when the stored electric energy is not

sufficient, the microgrid gets electricity from the grid. In this model, an independent

residential microgrid is considered which can be operated in islanded mode or grid

connected mode. The scheduling problem is a mixed integer linear programming

problem (MILP) which jointly controls electricity consumption of home appliances as
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well as the charging and discharging of EVs. Our scheduling method results in the

optimal use of electricity generated from renewable energy sources and minimizes the

amount of imported electricity from the grid. Consequently, it reduces the electricity

price for the microgrid customers. Further, the optimal scheduling method enables

EVs to store electricity during peak generation hours, which may be used later during

high demand. In doing so, our approach helps increase the service availability and

stability of the microgrid.

1.2.2 Distributed Real-Time Electricity Allocation (DRTA)

Large Residential Microgrid

The above optimal joint scheduling method is a centralized MILP based method.

Therefore, it is suitable for a small residential microgrid. For a large microgrid, the

centralized method may not produce optimal solutions. Also, the method needs to

send user’s detailed load information to the microgrid operation which may expose

the privacy of the customers and yield potential security breach. Moreover, the

centralized method can be implemented when the load and generation from RES for

the next day is known (by prediction). Unfortunately, the load may vary at the actual

time of consumption.

In this work, we address the problem described above and consider a grid-connected

microgrid with a set of RESs for a large community. The microgrid has a central con-

troller with EMS, servicing a set of homes (customers), each equipped with an AMI

(Advanced Metering Infrastructure) smart meter. We assume a communication net-

work such as NAN (neighborhood area network) which connects smart meters to each

other and the central controller. We propose a new distributed real-time electricity

allocation (DRTA) scheme using mechanism design to reduce the electricity bill of

each microgrid customer and simultaneously increase the overall social benefit of the
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community. In this mechanism design framework, the EMS acts as a controller of the

game and the smart meters act like the players of the game. The smart meter plays

the game to determine the energy consumption strategy of each appliance to reduce

the energy bill based on the current electricity price. If the current set of strategies,

lowering the electricity bill compared to the electricity bill calculated as before then

each smart meter updates its electricity demand and sends it to the controller. The

play will continue until there is no change in the electricity price. The game in the

mechanism design is a non-cooperative repeated game. We show that the game con-

verges to an optimal Nash equilibrium state. In this game, players signal each other

to maximize the their own benefit, which simultaneously reduces the energy bill and

increases fairness.

1.2.3 Real-Time Decentralized Demand-Side Management (RD-

CDSM)

The DRTA method modifies user consumption patterns and allocates electricity in

real time, slot by slot. Hence, the power planner always needs to be aware of mitigat-

ing the variable demand of the customers. This may create an instability problem in

power generation and delivery to the customers. Therefore, we consider a residential

microgrid which is connected to the grid and purchases electricity from it according

to its clients aggregated day-ahead predicted demand. Each client predicts its load

a day-ahead and sends it to the operator. Upon receiving this information, the mi-

crogrid operator plans to purchase electricity for the next day (to satisfy its users’

demands) and determine the power cost accordingly. At the time of operation, how-

ever, the actual user’s demand may change, and the renewable energy generation may

vary, which results in discrepancy and instability in power delivery and thus increases

the cost.
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To solve this problem, we develop a Real-time Decentralized system for DSM

(RDCDSM) which in the first place encourages customers collectively to modify their

day-ahead anticipated coarse consumption to minimize their personal electricity cost,

or inversely increase their payoff to produce a fine-grain predicted demand. Customers

will play a game with mixed strategy profile by sharing their day-ahead anticipated

demand and continuously modify it to increase their payoff. The game terminates in

a Nash equilibrium state, which results in a fine-grain price-aware predicted demand

where a further change of anticipated consumption will not increase the payoff. Then,

each customer sends its resultant predicted demand to the operator. Upon receiv-

ing and accumulating the forecasted demand from its clients, the operator produces

the day ahead aggregate predicted demand and devise a plan to generate and pur-

chase electricity to satisfy the customers. We define this as the prediction phase of

RDCDSM. Next, in step two, known as the allocation phase, the RDCDSM system

encourages customers, in real time, to adjust their consumption pattern by play-

ing mixed strategy in another non-cooperative game to stay close to their predicted

demand. Doing so will allow the microgrid to stick to its pre-determined energy gen-

eration/purchase plan and avoid the higher costs of either activating a new generator

or buying electricity at an instantaneous market price. The RDCDSM will penal-

ize (i.e., higher rate charge) each of deviated users with the proportion of the total

deviation determined by the operator.

1.2.4 Microgrid Network: Energy Sharing and Optimal Elec-

tricity Pricing

It is envisioned that a microgrid network (MGN) may shortly contain hundreds or

even thousands of microgrids (MG) sharing energy with each other [48]. Usually,

an MG produces and consumes energy locally; in the case of shortage, it purchases
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electricity from the neighboring MGs or sells whenever it has a surplus (as in DRTA,

RDCDSM). In such scenarios, the MG operators may not own the transmission and

distribution (T&D) system, and use the existing network which requires T&D costs

besides the generation cost. For the benefit of both customers and providers, an open

competitive market is desirable which accepts new suppliers and admit marginal cost

prices for electricity [54, 28, 128].

Upon developing the internal energy management of the microgrid (such as DRTA,

RDCDSM) an energy management scheme is required for the optimal management

of energy flow amoung microgrids according to their needs. In this circumstances, we

develop a novel method for optimal energy flow between microgrids and to minimize

the electricity cost for the microgrid network (MGN) in a deregulated competitive

electricity market. We study and find that, for a non-decreasing marginal cost, the

model is nonlinear and non-convex. Hence, it does not produce an optimal solution.

Therefore, we decompose the model to separate the marginal cost from the T&D

cost and develop a novel method based on a divide-and-conquer strategy which is

defined as MEPM (minimum electricity pricing model), to solve it optimally. First,

we determine the marginal cost boundary according to the overall demand of the

MGN, also known as the overall marginal cost problem (OMCP). Then, using the

proposed MEPM strategy, we interactively determine the optimal electricity price by

jointly optimizing the OMCP and T&D costs (allocation problem) of the system. The

MEPM algorithm determines the optimal price in a polynomial time [23] for a complex

bidirectional electrical network that uses ICT to control the flow of energy among

the neighborhood grids or MGs. We assume that each MG internally decides its

consumption using a demand response model (such as in [120]) which integrates local

generation from renewable sources, dynamic loads, and storage. The total demand

and the amount generated by each generator and capacity of the generator at the real
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time are known to the MEPM system.

1.2.5 Volt-VAR Control through Joint Optimization of Ca-

pacitor Bank Switching, Renewable Energy, and Home

Appliances

In a microgrid network (MGN) or the existing power grid, most of the energy losses

in electricity transportation are due to the resistance of the energy network and

reactive power which is injected by the reactive load. This causes lower operating

or terminal voltage at the customer (microgrid) point which potentially increases the

demand and reduces the efficiency and lifetime of the user equipment. Therefore,

the generator needs to generate more power to adjust the voltage at the last mile

of the electricity transmission and distribution (T&D) line which again increases

losses. To adjust the voltage level at operating point and reduce the losses often

power T&D system operator uses the compensation devices or mechanism to reduce

the reactive power injected by the user electronic equipment. This is known as the

VVO problem. Several researches have been carried out to solve the VVO problem.

Unlike those, we investigated and found that integration of renewable energy, shifting

consumption from one time slot to another time slot, EVs as energy storage and

community (microgrid) level energy management, along with the conventional shunt

capacitor compensation and CVR (conservative voltage regulation) may solve the

problem optimally and reduce losses and generation cost substantially.

We formulate the problem as a non-cooperative game (VVCO/OECM) between

the communities connected to the feeders. Each of the communities adjusts the

consumption pattern and service drop OLTC tap to minimize its electricity cost (or

maximizes payoff) according to the price signal obtained from the utility. As a result,

the utility operator adjusts the capacitor banks and substation transformers tap and
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recalculate the cost of electricity, known as Volt-VAR and CVR (conservative voltage

regulation) optimization model. The interplay between these two schemes results in

a non-cooperative game which will terminate when there is no change in electricity

cost. This condition is known as the Nash equilibrium state of the non-cooperative

game. The proposed system presents a fine-grain solution for the VVO problem which

considers (1) micro-level DR model, (ii) energy efficiency of the equipment, (iii) roof-

top solar or locally installed energy sources, and (iv) G2V and the V2G control modes

of the electrical vehicles.

1.3 Thesis Contributions

The main contributions of the thesis are summarized as follows:

• We define and classify the residential appliances (in Chapters 3 and 4) according

to their mode of electricity consumption. Then we present the mathematical

models of the load as (i) type-I: hard load which is non-deferrable and non-

interruptable consumption, (ii) type-II: soft load that is non-interruptable and

deferrable consumption, (iii) type-III interruptable and deferrable soft load and

finally (iV) mixed mode appliances which consume electricity like type-I, II or

III in the span of its operational time slots.

• We formulate a centralized MILP mathematical model (Chapter 3) for charging

and discharging of EVs, energy consumption of home appliances and integration

of renewable energy sources to the microgrid to optimize electricity use through-

out the day. Then we simulate the model and evaluate the performance of the

developed joint scheduling method and compare the results with an existing

decentralized and naive allocation method which do not consider discharging of
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EVs and load shifting for a demand-side management of electricity consump-

tion. We show that for all the cases the proposed centralized optimal joint

scheduling of EV and home appliances perform better than decentralized and

naive allocation methods.

• Next, we formulate a game theoretical mechanism design (DRTA) for real-time

distribution of electricity to the residential customer. For the mechanism de-

sign, we define participation constraints for each residential home appliances

and incentive constraints for the electric vehicle. To increase the payoff of a

customer and overall social benefit, a payoff function is defined for the resi-

dential customers. We show that the formulated model converges to a Nash

equilibrium state and results in an optimal solution to the problem. Then, we

develop a simulation to evaluate the performance of the DRTA method and

compare the results with the centralized optimal joint scheduling for EVs and

home appliances, and the unregulated allocation methods. See Chapter 4 for

more detail.

• To balance the day ahead of planned electricity generation and the real-time

consumption, we developed a two-stage solution known as RDCDSM (see Chap-

ter 5). In the first stage, we formulate a mixed strategy non-cooperative game

with MIQP payoff function for the customer to refine their raw day ahead pre-

diction to minimize anticipated electricity costs. Then, for the power delivery

to the customer in real-time, we formulate another non-cooperative game (with

mixed strategy profile) with MILP payoff function to minimize penalty thereby

reduce the deviation of real-time demand from the day ahead refine or price

aware predicted load. In both cases, we show that the mixed integer game

converges to a Nash equilibrium state and produces optimal results.
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• To solve optimal energy management and the marginal cost pricing problem of

deregulated market, we develop two unique methods (see, Chapter 6). First,

OMCP which determines lower and upper bound overall marginal cost for max-

imum and minimum T&D cost for electricity transportation accordingly. Then

we devise a divide-and-conquer method to select the cost pair (overall marginal

cost and T&D cost) which results in minimum electricity price. To design these

solutions, we analyze the original problem and found that the original MEPM

problem is nonlinear and non-convex. Therefore we decompose the problem

into OMCP and allocation problem) and devise a polynomial solution for the

original MEPM.

• Finally, in VVCO/OECM (see, Chapter 7), we developed a non-cooperative

game to determine the terminal voltage of a community such that the efficiency

of devices which are operated under this voltage will not cross a predefined

acceptable range. Then, with the terminal voltage, all the communities try

to adjust the VAR compensation and OLTC transformer such that power loss

alone the T&D line and electricity cost is minimized. The methods work for

multiple time slots interactively to find an optimal solution. Moreover, we define

mathematical models for the reactive and active loads, EVs and shift them from

a time slot to another slot to get the optimal results. We also prove that the

proposed mathematical model ultimately converges to an optimal solution and

flatten the load curve, therefore, minimizes the electricity cost.

1.4 Thesis Outline

The remainder of the thesis is organized as following. Chapter 2 presents the re-

lated work, smartgrid, microgrid, microgrid components including renewable energy
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sources, EVs, ESS, and background concepts of the techniques used to develop the

mathematical model and the solutions. An efficient centralized optimal joint schedul-

ing for electrical vehicle and home appliances is presented in Chapter 3. A game

theoretic mechanism design based distributed real-time electricity allocation for large

residential microgrid is demonstrated in Chapter 4. Real-time demand-side manage-

ment of energy by exploiting RESs, EVs and ESS to reduce the gap between planned

electricity generation and real-time use of electricity is described in Chapter 5. In

Chapter 6, a novel algorithm for optimal energy management and marginal cost elec-

tricity pricing for MGN is presented. Chapter 7 contains a VVCO/OECM method

which demonstrates that the integration of RES, EVs and load shifting, and dis-

tributed DSM may help to reduce transmission and distribution losses in the grid.

Chapter 8 concludes the thesis with future research directions.
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Chapter 2

Literature Review and

Preliminaries

A microgrid, a local energy network, offers integration of intermittent disseminated

energy with elastic loads and energy storage which can operate autonomously to

deliver electricity to customers with the cooperation of existing grid or other micro-

grids. In this chapter, first, we discuss the notion of microgrids, microgrid building

blocks and communication networks, etc. The operation of microgrid may depend on

contending interests among diverse stakeholders in electricity supply such as supply

network operators, DG owners, and operators, use of electric vehicles, energy storage

systems, and customers energy usage pattern. In this context, we present some solu-

tion methodologies which we apply to model most of the problems stated in Chapter

1. Finally, we will manifest contemporary and relevant research works related to our

research.
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for customer cooperation in the electricity enterprise. They form the building blocks

of the ideal power system. Smart microgrids are composed of central controllers,

loads (e.g., home appliances), sources of energy including wind turbines, photovoltaic

systems, fuel cells, and energy storage units.

2.1.1 Smart Grid/Microgrid Components

Advanced Metering Infrastructure (AMI)

AMI [129] is dubbed as the convergence of the power grid, the communications infras-

tructure and the supporting information architecture. It refers to the systems that

measure, collect, and analyze energy usage from advanced smart devices, including,

in-home devices as well as electric vehicles charging, through various communication

media, for the purpose of forwarding the data to the grid. AMI is designed to help

consumers know the near real time price of electricity and thus to optimize their

power usage accordingly. It as well aids the grid by obtaining valuable information

about consumers power consumption in order to ensure the reliability of the electrical

power system.

Supervisory Control And Data Acquisition (SCADA)

SCADA systems [33], located in the operations domain, are responsible for the real

time monitoring and control of the power delivery network. Through intelligent re-

mote control and distributed automation management, they reduce operation and

maintenance costs in addition to ensuring the reliability of the power supply. There

are three main elements to a SCADA system [12]; various remote telemetry units

(RTUs) and programmable logic controllers (PLCs), communication systems and a

Human Machine Interface (HMI). RTUs and PLCs effectively collect information from

various sites and allow control actions to be performed automatically and remotely.
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Communication systems bring that information from various plants or RTU sites to

a central location, and occasionally returns instructions to the RTU. The HMI dis-

plays the processed information in an easily understood graphical form, archives the

received data, transmits alarms and permits operator control as required.

Electricity Demand and Forecasting

Electricity demand dependent on the area such as industrial, commercial, residential,

etc., but focusing on a particular environment allows a clear perception of it by sec-

tor. This will enable deployment of DR or DSM since different electricity prices could

be offered based on certain guidelines set by utility companies [52]. The electricity

consumption are different in different countries in different seasons and geographical

position. According to 2013 world bank statistic world per person average annual

electricity consumption is 4024.95 kWh, whereas USA annually consumed 12,988.256

kWh, China 3,762.08 kWh, and Canada 15,519.336 kWh [7]. Moreover, daily elec-

tricity consumption varies according to time of the day. Figure 2.3 present the daily

consumption of a typical house hold customer, where energy use is high from 4:00

pm to 10 pm, moderate from 6:00 am to 3:00 pm and low from midnight to morning.

The electricity use is related to daily activity and behavior of the customers.

The evolution and the concepts of the smart microgrid changes and creates new

environment with diverse consideration to optimize energy uses. Inteligence deployed

in building, integration of renewable energy, smart equipment, interconnected sensors

to attain energy efficiency [7]. To achieve the building energy efficiency together with

another model (such as prediction), the control of this equipment must be integrated

within the Home Energy Management (HEMS) system. The energy efficiency can

not be obtained perfectly without the load forecast. Most practical load forecast

models are based on offline schemes, where predictions are conducted in advance. The
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the availability and capacity of the renewable energy sources are dependent on the

geographic position of the microgrids. Renewable energy sources such as wind turbine

and solar energy need weather forecasting model for reliable generation of the tar-

geted amount of electricity which is committed to the energy buyer market. Several

stochastic models exist to predict the short-term and/or long-term power generation

such as ANN, ARMA, hybrid ANN-ARAMA etc [49, 42, 55].

Electric Vehicles (EVs)

EVs and Plug-in Hybrid EVs [13] are environmentally friendly and reduce carbon

emissions, in addition to being a distributed energy storage in the smart grid; that is

parked EVs can supply electric power to the grid. This vehicle-to-grid concept [47]

would improve the efficiency and increase the reliability of the power grid. Electrical

vehicles (EVs) have been around since a century. They were very popular and were

sold reasonably well till 1918 [18]. However, the use of EVs for transportation died out

as the gasoline powered engine continued to improve. As environment preservation

becomes an important issue around the world, EVs are poised to gain more acceptance

from governments and the general public. EVs offer many benefits over traditional

fuel run vehicles, such as high energy efficiency, low greenhouse gas emission, potential

to use locally produced electricity (microgrid). Moreover, EVs’ batteries can be used

as energy storage for microgrids, since for a large amount of time (nearly 90%) they

are idle [3]. The intermittent nature of the energy sources of smart microgrids requires

storage to store excess power generated during off-peak hours in order to use it during

peak hours. Hence, EVs may play a dual role in microgrids. They can appear as loads

when charging and as energy sources when discharging. The EVs charging load on

smart microgrids may vary in time as does the SOC (state of charge) of the vehicle

batteries. Therefore, to charge n EVs at time t, a total electricity (EVd(t)) is required
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from a microgrid and can be expressed as follows,

EVd(t) =
n
∑

i=0

{EV isoc(t)− EV isoc(t− 1)}, n ∈ N (2.1)

where EVd(t) equals the total energy demand of n EVs at time t, EV isoc(t) and

EV isoc(t − 1) represent the SOC of i-th EV at time t and t − 1, respectively, with

1 ≤ t ≤ 24 hours. N refers to the set of EVs in the microgrid. If the EVs are used as

storage for grid electric power, then the effective electricity (GE(t) required at hour t

is given by,

GE(t) = EVd(t)−
m
∑

j=1

{EVjsoc(t)}, m ∈ N (2.2)

where EVjsoc(t) > PEV
min
j , i 6= j, and m is the number of EVs in V 2G (Vehicle to

Grid) operation and m + n = |N |. PEVminj represents the minimum discharge (see,

table 3.1) SOC of EV j, below which EV can not be discharged. If EVjsoc(t) ≤ PEV
min
j

then, the contribution of EV j to grid is zero.

The most significant challenges currently facing EVs are the cost and performance

of their components, namely, EV batteries with $485 to $650 per kWh battery makes

up large portion of an Electric Vehicle costs. With a usable range of 100km, the

24kWh battery-powered Nissan Leaf achieves about one fifth of the compatible ICE

(Internal Combustion Engine) vehicle [3]. All electric vehicle with larger battery

capacity such as, 100kWh ”Telsa Model S” offers 594km [81] with a greater cost

which is out of range of most of the buyers [3]. These limitations seem to be holding

back many potential buyers to buy EVs. Although, a survey shows that in the United

States average distance traveled per person in a day is 46km and average trip distance

is 15km [3]. Recently, the cost of the batteries has been steadily decreasing due to

the public-private initiative in pack design optimization, cell count reduction, lower

cost of cell material, economies of scale, improved manufacturing process [3].
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vehicles, sensors, and computer and information technology systems. Power industry

gradually adopting different network technology for the partitioning of command-and-

control layer of smart grid/microgrid. Fig. 2.5b [27] shows the smart grid distribution

network communication mechanism. The communication networks of smart grid are

classified as (i) Home Area Network (HAN) and (ii) Neighborhood Area Network

(NAN).

I) Home Area Network (HAN): HANs are composed of three components, [27]

(i) in-house device which provide demand side management such as energy efficiency

and demand response, (ii) smart meter which collects data from the smart devices and

perform specific actions according to the command sent by the grid central controller,

and (iii) the gateway which connects HAN with NAN. Several network technologies

are available to implement the functionality of HAN:

1. WLAN (IEEE 802.11): The 802.11 is a set of standard development technol-

ogy for wireless local area networks. WLAN can be a feasible solution for

HAN. In case of implementation of WLAN as HAN, All smart devices (home

appliances) must be equipped with WLAN adapter. All in-home smart de-

vices communicate with WLAN enabled smart meter (home gateway) to send

demand request to the smart grid/microgrid management system and receive

command-response. WLAN is easy to deploy and home market penetration is

high. Strengths of the WLAN are: (i) easy deployment (ii) cost is falling (iii)

high home market penetration. Weaknesses are: suffer from (i) Eavesdrop, DoS

attack (ii)confidentiality of sensitive information may leak.

2. ZigBee (IEEE 802.15.4 : ZigBee is a specification for small, low power and dig-

ital radio based communication protocol and also known as low rate, wireless

personal area network (LR-WPLAN). ZigBee protocols are intended for embed-

ded applications requires for low rate and low power consumption. The ZigBee
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application profile (also known as ”ZigBee smart Energy”) for home automa-

tion was evolved in Nov. 2007. ZigBee gateway supporting two communication

stream to joining the the utility AMI central database to home appliances.

Strengths of ZigBee are: (i)low power requirement (ii) low implementation cost

(iii) good scalability (iv) design for home and industry use (v) relatively se-

cure. Weaknesses are: (i) limited range, (ii) limited data rate, (iii) flooding and

jamming may cause network unavailability, and (iv) single point of failure.

3. Mobile Communication and Femtocell : Femtocells are cellular network access

point that connects home appliances (in case of HAN) to the mobile operator

core network through ADSL, broadband cable Network or optical fibers network.

The technology behind femtocell is UTMS, LTE and WiMAX. Femtocell is

a costlier solution and signal strength varies on location of the access point

(indoor, outdoor). Strengths of Femtocell are: (i) good scalability, (ii) design

for home and industry use, (iii) relatively secure. Weaknesses are: (i)high cost,

(ii) privacy and confidentiality, (iii) fraud and service theft, (iv) flooding attack,

and (v) possible indoor health issue.

All the current HAN network protocols have their positive and negative issues in

performance, coverage, cost, and security issues. For smart grid/microgrid it is chal-

lenging to choose best HAN protocol which dependent on various constraint like cost,

geographic location, availability of NAN (WAN) technology etc.

II) Neighborhood Area Network (NAN): NAN (WAN) [27] technologies can

be used to control and to manage smart microgrid components. There is various

wide area network technology such as ADSL, cable modem, fiber to home, cellular

network services, satellite services, and etc. Choice of HAN technologies will depend

on various factors such as geography, population densities, availability, as well as the

reliability of the technology, the cost, the security and the network infrastructure
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that is already available. It is emphasized that the ADSL is highly available, but its

bandwidth decreases with the increasing distance while the cable modem has high

bandwidth and high availability, but inconsistent in bandwidth if the number of user

increases. The fiber to the home (FTTH) is highly available in the urban area, it has

high bandwidth and security, but it incurs high deployment costs. Cellular services

have a high coverage area, potentially low costs, but security and policy matters.

WiMax deployment does not require a huge investment as compared to the wired

network, but bad weather may reduce the transmission range. The satellite service,

as universally available technology, has a high cost, low effective bandwidth and low

reliability during bad weather condition. BPL (Broadband over power line) can be

deployed on the existing power line infrastructure specially in the rural area, but

BPL deployment is high. BPL is not suited for applications as it is dependent on

current on the power line and it is mostly proprietary technology. LTE is a wireless

technology for fourth generation mobile network. LTE features are all IP-flat network

with end-to-end quality of service operates on peak download 300Mbps and upload

75Mbps. It renders very promising choice for NAN communication network. The

choice of NAN technology depends on cost, availability and geographic position of

the smart grid/microgrid.

2.2 Game Theory

Game theory can be described as the subject of mathematical paradigms of conflict

and interaction between intelligent, rational players or decision makers. Game theory

presents general mathematical technique explaining a circumstance where two or more

individuals make decisions that will affect one another actions [39, 9]. Normal form

of game can be defined by the tuple (N,A, σ), where,
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• N is a finite set of player,

• A = A1 × A2, · · · ,×An, where Ai is a set of finite actions of player i,

• σ = (σ1, σ2, · · · , σn), where σi → R is a real-value utility (or payoff) function

player i.

We will use agame model to solve the consumption scheduling or energy allocation,

EV charging and discharging problem in this thesis work. In a residential microgrid,

each home’s HEMS acts as player which may have delivery of electricity or control con-

sumption pattern of the equipment of the household. Each of the equipment has a set

of actions for example, EVs’ actions are ‘charging’, ‘discharging’ or ‘remain idle’, hence

the action set for the EVs’ are Aev = (chargingev, dischargingev, idleev) and dish

washer actions are: Ad = (consumed, idled). Now, if the player wants to charge EV

and starts ‘dish washer’ at t, then the set of actions at t is Sti = (chargingev, consumd)

of household i. The set of actions sti is the consumption strategy of player i and the

player has a strategy set sti = Aev ×Ad. Therefore, player i may choose any strategy

at any time t of a day such that its payoff or utility is maximized, let the payoff of

player i be σi then we can define the payoff for player i for consumption of electricity

()say for 24 hours) to be,

σi =
24
∑

t=1

f(sti) (2.3)

where f(.) is mapping function to map consumption to cost or price. Therefore,

payoff will be maximum iff σi = min
24
∑

t=1

f(sti) which means the household will pay

less. If there are N players, then each energy household wants to maximize their

individual payoff but the production cost of electricity increases with the increase of

demand. Therefore the strategy of each player will affect the payoff of other player.

Game theory is a very rich subject; it is used to solve the strategic problems in variety

of subjects like, economics, business, computer science and logic, philosophy, biology,
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political science and many others.

2.2.1 Mixed Strategy

The pure strategy of a game renders a complete description of how a player will play

a game. In particular, it determines the move of a player in any circumstance he or

she could handle [39, 9]. In the previous example we present the strategy of player i

such as, sti = Aev×Ad. Let the charging and discharging rate of an EV be +9.0 kWh

and -9.0 kWh, and dishwasher consumption be 2.0kWh. Now, if at t the strategy

sti = (+9.0, 2.0) is selected then the strategy sti is a pure strategy. In this case the

player decides to charge (9.0 kWh) the EV and dishwasher consume electricity (2.0

kWh), so the charging and consumption actions are chosen.

Now, let the actions in the strategy be selected with a probability; such as EV

charging with probability p, and discharging with probability (1−p) and consumption

with probability q and idle with probability (1 − q), then the strategy sti of player i

is a mixed strategy.

Nash Equilibrium

Definition 2.1. (Nash Equilibrium) A (pure strategy) Nash equilibrium is a strategic

form of game (N,Si, σi), and the strategy profile s∗ ∈ S such that for all i ∈ N , we

have

σi(s
∗
i , s
∗
−i) ≥ σi(si, s

∗
−i)∀si ∈ Si (2.4)

where s∗i is the best response (or best strategy played) of strategies (s∗−i) of other

players. There are many cases where a pure strategy game does not have a Nash

equilibrium, i.e., the two players coin flipping game does not have a Nash equilibrium

when the payoff is specified in table 2.1. Let player one strategy be on the top and

player 2’s strategy be on left side of the table. If the game repeated many times, then
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Head Tail
Head -1, 1 1 -1
Tail 1,-1 -1, 1

Table 2.1: Coin flipping game

at least one player always has options to change (best response) the current strategy

to increase the payoff. [39, 9].

Definition 2.2. (Nash Equilibrium) A (mixed strategy) Nash equilibrium is a strate-

gic form of game (N,Si, σi), and the mixed strategy profile s∗ ∈ S such that for all

i ∈ N [39, 9], we have

σi(s
∗
i , s
∗
−i) ≥ σi(si, s

∗
−i)∀si ∈ Si (2.5)

Here, Si is a set of mixed strategies of any player i. Now, for the above payoff

table 2.1, p and q for ‘head’ of player 1 and player 2 respectively. Hence, (1− p) and

(1 − q) are for choosing action ‘tail’ respectively. Then the game will have a Nash

equilibrium.

Pareto optimality

Definition 2.3. Pareto efficiency, or Pareto optimality, is a state of allocation of

resources in which it is impossible to make any one individual better off without

making at least one individual worse off [39, 9]

A Pareto improvement occurs when a least one individual becomes better off

without someone worse off. Pareto optimality occurs when all the household has the

better price by choosing the best consumption strategy (mixed). There are no other

combination of strategies which gives better results at least for one household. Nash

equilibrium is not always Pareto optimal. Nash equilibrium in the other sense can

be described as the local optimal solution of a problem. The bad move of a player
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may stick to a point which may disable the player to increase its payoff because of

the best response of other players to that move, e.g., prisoner-dilemma game. [39, 9].

2.2.2 Mechanism Design

In mechanism design, one player needs to devise a set of rules so that the other

players’ incentives were aligned with the first player’s goals. The less-informed player

works to create motives for the more informed player to take actions beneficial to the

less informed. The less-informed player is called the principal (the designer) while

the more-informed is referred to as the agent. The process that the principal uses

to devise the correct set of incentives for the agent is known as mechanism design.

One of the examples of mechanism design is auction game in which a seller wants

a higher price for auction and a buyer wants a lower price; they compete to set the

value of transaction neither buyer nor seller has all available information because

only one party holds some information. The game theoretic mechanism design needs

participation constraint and incentive constraint. Participation constraint also is

known as voluntary constraints which allow with the fact that the players are not

obligated to participate a mechanism but can decide whether or not to participate.

The restriction creates rational places constraints for an individual on the level of

expected payoff for participation. A player gets incentives in case of participation,

and an incentive constraint limits the incentives to achieve the designer goal.

In our thesis (chapter 4), the operator designs the consumption game to increase

the overall social benefit. Here, the operator is designer or principal of the mechanism

design. Each of the households decides their energy consumption pattern to maximize

the social benefit. In this mechanism design, the essential participation constraint is

the strategy for charging and discharging EVs. The operator also gives incentives to

EV owners those participates in V2G operation. The user decides the consumption
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strategy, but the payoff and constraint are defined by the operator to achieve the

maximum social benefit.

2.3 Related Work

Microgrid demand response model, use of RES, and charging of EV

Power system planners face today a pressing challenge, which requires engineering

solutions to keep the system running, owing to the bulk growth of renewable energy

based on variable generation technology [3]. Large scale energy storage can play a

vital role in balancing supply and demand; this, however, requires vast land spaces,

high installation and maintenance cost [60]. Conversely, plug-in electrical vehicles

(PEV or EV) can be used as a cheap alternative to the large scale energy storage

and good alternative for conventional vehicles which are considered as significant

GHG emitters, producing 23% of the world GHG [1]. PEVs promise to reduce the

dependency on fossil- fuel, and tap into a source of electricity that is often domestic

and relatively inexpensive. In the long term, EVs are necessary to countries seeking

to decarbonise the transport sector. To meet the IEA’s 2DS (2◦C – BLUE map

scenario) in 2050, transportation systems will play a major role in reducing the GHG

almost by 21%. PEVs can further be used to store excess energy (known as G2V)

when the production is high, and later the stored energy can be dispatched to the

grid (known as V2G) when the output is low.

Evidently, the need for electricity varies throughout the day and across the seasons

[2]. Current power systems are designed to meet peak demands; hence, during the

off-peak period, the system remains underutilized [2]. To ensure proper functioning

and quality of service, systems need to (i) estimate the load, (ii) electricity production

and, (iii) a mechanism to control the electricity use. Hence, based on the electricity
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and load information, smart grids or microgrids (MG) can reduce the peak demand

by giving incentives to users to enable them to shift the consumption (such as EV,

home appliances, etc.) away from the period of peak demand.

Several opportunities and limitations concerning the integration of EVs with the

power grid and renewable energy sources were identified and used to formulate control

methods for charging EVs [22]. The authors discussed two such methods: (i) a

global control method for charging EVs based on global load information that is

communicated utilizing load signaling, and (ii) local control methods for charging

EVs based on local load conditions of the microgrid. Preliminary results show that

an energy control strategy based on load information offers benefits, especially by

avoiding the need for additionally generated capacity, which originates from additional

peak loads. The design goal of both strategies is to charge EVs by shifting the charging

from peak hours to off-peak hours to flatten the electricity demand of the grid. The

authors assume that residential loads are not flexible (i.e., deferrable) to consume

electricity from the grid. Further, the paper does not consider EVs for electricity

storage.

A dispatch model based on a cost-benefit analysis of microgrids for selling electric-

ity from a residential area to office buildings was presented in [76]. Simulation results

show that incorporating EVs into the microgrids not only minimizes the storage and

operational costs but also results in cost savings for the owners of EVs. In [76], the

microgrid charges EV batteries at home at a low electricity price after office hours

and dispatch the energy to office buildings at a higher rate during the day. In their

work, the authors assumed that EVs do not feed power back into the grid.

The authors of [139] demonstrated a decentralized EV charging scheme using the

Nash certainty equivalence principle. Their approach may be viewed as a valley filling

approach. The system shifts the charging of EVs from peak hours to off-peak hours
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by controlling the peak and off-peak electricity prices. The multiplayer game theory

in the Nash equilibrium condition determines the peak and off-peak hour electricity

price. In their work, the authors claimed that centralized control for charging a large

number of EVs is computationally intractable and impractical.

Another decentralized EV charging protocol was proposed in [41]. The primary

objective of this work is to shift vehicle charging from peak hours to off-peak hours by

imposing a penalty on the electricity price. The proposed protocol considers different

prices for different hours of the day and minimizes the peak hour load by imposing

penalties on vehicles intended to be charged in peak hours.

The stochastic nature of EVs and renewable energy sources was considered for

EV charging in [140] and [141]. They model the charging system using a continuous

time Markov chain. Two performance metrics, called vehicle charging-blocking prob-

ability and average reward, are considered to evaluate their charging policies. They

classify EVs on their different charging capacity and prioritize them accordingly [141].

The motivation of the paper is to devise an optimal charging strategy to serve the

maximum number of EVs.

Most of the researchers give emphasis to use RES and microgrid technologies to

charge EVs to lessen the extra burden imposed by a large number EVs to the grid.

Unlike the existing research, we admit EVs as an opportunity and use as a dynamic

storage which can mitigate the intermittency of RES generation by storing extra

energy at high production periods and use it at peak-hour with the obligation that

EV must contain target charge when departing for next drive (see Chapter 3).

Distributed strategy for real-time electricity allocation

Several researchers took initiatives to mitigate the challenges of integrating a large

number of EVs, RESs and varying loads of customers. Most of the initiatives and
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models are based on offline schemes and were simulated either estimating load and

energy generation for a day ahead. Further, a very few of these offline algorithms

consider renewable energy sources. Apart from these, a few online schemes are en-

deavored to mitigate the demand of microgrid customers in the microgrid scenarios

which contains intermittent RESs, EVs, and loads.

In [21], the authors proposed a real time stochastic and robust optimization for a

Monte-Carlo price based demand response management for residential appliances. In

[56] the authors used Lyapunov optimization technique to derive an adaptive electric-

ity scheduling algorithm by introducing the QoSE virtual queue and energy storage

virtual queue to minimize the MG operation cost.

Another online-convex-optimization (OCO) programming for microgrid with sin-

gle turbine-boiler generator is proposed in [82] to minimize the production cost in

each time step of a microgrid. An incentive-based game-theoretic automatic energy

consumption scheduling (ECS) scheme for future residential smart grid with a non-

renewable energy generation is proposed in [80].

In [64] the authors proposed a hierarchical smart grid interactive architecture

for grid stability and quality of service. The authors used a hidden mode Markov

decision process at the controller for centralized sequential decision to maximize an

accumulated reward for the microgrid and distributed auction (Vickrey auction) game

to obtain optimal load profile (a solution derived by the controller) of the customers

(smart homes).

The authors of [72] proposed a stochastic programming for energy planning of

grid-connected microgrid, which contains renewable energy sources. The stochastic

programming model is a two-stage formulation where, in the first-step, decisions are

made for energy generation scheduling and adjustable load set point. In the second

stage, the energy transaction as well as load adjustment decision is made based on
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the load set point. The proposed stochastic programming model is a centralized man-

agement scheme, which deals with energy trading with the main grid by scheduling

energy generation and load adjustment without considering the detailed characteris-

tics of the load.

In [19] the authors presented a smart energy management system (SEMS) for

optimizing the operation of the microgrid; the system consisted of a power fore-

casting module and an energy storage system. There, the optimal management of

energy storage system across multiple time-step, considering energy price structure,

stochastic generation from renewable energy sources, is evaluated and simplified to

a single-object optimization problem. Finally, the authors used a matrix real-coded

genetic algorithm to achieve the underlined objective of the problem.

Unlike the existing online schemes, in Chapter 4, we manifest an online distributed

system which gives responsibilities and opportunities to each customer to determine

their consumption profile by shifting load, utilizing EVs and RES to minimize energy

costs in real-time while increase overall social benefit of the microgrid.

Power generation planning and Demand Side Management (DSM)

The rapid surge in demand for electricity is one of the most significant problems that

is facing the power grid. To achieve higher reliability, robustness, and stability, the

power grid is designed to serve peak demands rather than the average load. This,

indeed, can result in a power generation and distribution system that is under-utilized

as well as the waste of natural resources [108, 44]. Hence, utility companies are

continuously adjusting the power generation of their plants to balance the total loads

and their variations. Indeed, fast-responding generators such as fossil-fuel generators

are costly and have a significant GHG (greenhouse gas) footprint [32]. Power system

planners are also facing a pressing challenge to meet their customers surging demands
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while ensuring electricity systems integrity.

To mitigate problems of uncertainties, numerous methods have been proposed to

regulate users’ consumption profiles. The objectives of these methods (also known as

demand-side management or DSM) are to deploy the current capacity more efficiently

without modifying the existing grid infrastructure [90, 69, 135, 136, 44]. The evolu-

tion of the smart grid, integration of RES, smart meters, EVs and dynamic pricing

schemes have all added momentum to solve the DSM problem efficiently. Further,

the widespread deployment of home energy management systems (HEMS) and com-

municating devices will upgrade the existing power grid structure and transform it

into a more intelligent and decentralized system [17].

Recently, much research work has been done to address the DSM problem. In

[69], the authors presented a heuristic-based Evolutionary Algorithm to solve the

DSM based on a day-ahead load shifting technique for a microgrid which contains

a large number of devices. Their results show that the proposed strategy achieves

substantial savings while reducing the peak load. In [135], the authors studied the

reverse power flow problem from rooftop photovoltaic (PV) elements to the substa-

tion which causes a rise in voltage when generation is larger than the aggregated

load. The authors proposed a DSM system that shifts the operation of deferrable

loads from peak consumption hours to high PV production periods. The simulation

results showed that the proposed methods solve the voltage rise problem in an area

with penetration of PVs. In [136], the authors studied a real-time based demand-side

management system with advanced communication networks and proposed a game

theoretic solution to smooth the peak-to-average ratio. In [79], a new approach to

forecasting the residential electricity demand over 24 hours is presented; each con-

sumer is responsible for predicting his future loads and sharing that outlook with

the operator. For DSM, the authors discuss a reward which will be given to the
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customers based on the accuracy of their forecasts. The authors of [17] provide a

dynamic pricing scheme to motivate the customers to come up with an aggregate

load profile suitable for the utility. In [105], the authors assessed the performance

of exponential smoothing forecasting techniques in forecasting the energy demands

of residential users. A real-time game theoretic distributed algorithm is proposed to

minimize customer bills by reducing peak demand [121].RESs and EVs are used to

transfer energy from one duration to another duration and schedule equipment to

reduce the peak-demand and flatten the load curve [121].

In Chapter 5 we address the challenges of generation planning and DSM system

and build a relation between day-ahead power planning and real-time DSM. Unlike the

existing methods, our solution helps the power retailer to plan a day ahead of a cost-

effective generation or purchase of electricity from the grid and deliver electricity to

customers without modifying the original production plan at the time of consumption.

Enegy management and pricing in micorgrid network (MGN)

Nowadays, a regulatory body controls the vertically integrated energy supply system

with an important feature that is, reliance on average-cost pricing rather than the

marginal cost prices of the competitive market. Under this controlled scenario, it

is nearly impossible for a new player with a small investment (e.g., a microgrid) to

enter the energy market and survive [54]. For the benefit of both customers and

providers, an open competitive market is desirable which accepts new suppliers and

admit marginal cost prices for electricity. Several investigations have shown that the

electricity market paradigm is changing with the modernization of the grid and the

integration of new technology like smart grid, renewable sources, electric vehicle, and

storage system [54, 28, 128].
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Moreover, the evolution of smart grid, renewable energy sources (RES), and elec-

tric vehicles (EVs) are gradually changing the power flow of the network from unidi-

rectional to bidirectional [68, 36]. It is envisioned that a microgrid network (MGN)

may shortly contain hundreds or even thousands of microgrids (MG) sharing energy

with each other [48]. Usually, an MG produces and consumes energy locally; in

the case of shortage, it purchases electricity from the neighboring microgrids or sells

whenever it has a surplus. In such scenarios, the microgrid operators may not own

transmission lines, and use the existing electrical network which requires transmission

costs besides the generation cost. The economic dispatch model of the MGN, there-

fore, is more complex than the MCP (market clearing price) and LMP (locational

marginal price) model for the existing one-way energy transmission network [110].

Smart grids or microgrids add new features such as, distributed generation, storage

and demand response (DR) which can improve the flexibility of demand but introduce

uncertainty in the unbundled energy market. In [107], the authors studied the problem

based on a game theoretical framework. They proposed an algorithm that forms MGs

coalitions and minimizes the power loss and price within a coalition. In [67], the

authors introduced an optimization problem that minimizes the electricity costs and

peer-to-peer energy sharing losses in a distribution network consisting of MGs. They

initially formulated the problem as a non-convex and later relaxed it to a second-

order cone programming. For calculating the electricity price, they used TOU (time

of use) price given by a central grid. In [132], the authors discussed the energy

trading in a hybrid electricity market controlled by a non-profit or profit oriented local

trading center (LTC) that maximizes the benefits for each consumer and seller. They

formulated the trading as two optimization problems which (i) maximize the benefit of

the consumer and seller with non-profit LTC and (ii) maximize the profit of the LTC

by ensuring the benefits of the consumer and seller. A demand management of an
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electrical network of interconnected MGs formulated as a power dispatch optimization

problem is given in [38]. Here, a real time price is employed as the motivation for

interaction between MGs.

To address the challenges and problems to integrate new suppliers and marginal

cost pricing of electricity in an open competitive market a novel solution for sharing

energy among microgrids in a microgrid network is demonstrated in Chapter 6.

Vol-VAR optimization

Currently, electric power systems use (and for many years have used) Volt-VAR (volt-

ampere reactive) Optimization (VVO) to reduce the distribution losses and increase

efficiency as well as to reduce the electricity peak demand [43, 71]. The primary

goal of VVO is to maintain an acceptable voltage at all points of the distribution

system. VVO is an advanced process which periodically responds to the operator’s

real-time demand using a two-way communication network and adjusts the voltage

regulator and reactive compensation elements for energy delivery. Proper control of

capacitor banks and voltage regulators may yield in reactive power compensation,

which improves voltage regulation, power factor, and quality as well as loss reduction

[74].

A few years back, the American Electric Power in Ohio took several initiatives

to increase the efficiency and improve the service of the electricity delivery system.

As part of the effort, a Coordinate Volt-VAR Optimization (CVVO) system is de-

ployed to decrease the amount of energy necessary to satisfy the customers need with

the quality of service [111]. One of the objectives of the CVVO is to reduce energy

use and peak load by operating at the lower end of ANSI C84.1 band-A standard.

Another objective is to adjust the capacitors to keep the power factor of a substa-

tion near unity [111]. In [71], the author discussed the impact of AMI smart meter,
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distributed energy sources, and demand response (DR) on the Integrated Volt-VAR

Optimization (IVVO). This investigation presents a significant opportunity and bene-

fit to the IVVO and imposes additional constraint to the energy management system.

In [5], the authors proposed VVCDDR (Volt/VAR Control and Distributed Demand

Response), which is an integrated Volt/VAR DR control scheme to improve the reli-

ability and efficiency of the distribution network. The authors modified the original

Integrated Volt/VAR Controller (IVVC) of GridSpice to show that the IVVC with a

single DR event can tighten the voltage profile and facilitate a more effective voltage

conservation. A coordination scheme for DR and VVC is developed and simulated

on American Electric Power distribution feeders in [115]. A different level of DR and

VVC for the various types of loads show that the integration of DR and VVC in real

time can reduce the demand and feeder voltage through redistribution. [84] demon-

strated an Evolutionary Algorithm using the Modified Teaching-Learning-Algorithm

to solve scenario based multiobjective VVC problem in a distribution network which

is powered by various energy sources. In [40], the authors presented a mechanism to

use the bi-directional charges and V2G function of EVs to compensate the reactive

power of the distribution network. Here, the authors define a three-phase inverter

topology together with DC/DC bi-directional converter which has the interface with

EV battery.

In Chapter 7, we present a game prototype to address the challenges and solve

the VVO problem to reduce the customer electricity cost, increase the efficiency of

underline electronic devices by using RESs, EVs and shifting loads from high demand

durations to low demand periods.
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Chapter 3

Smart Microgrids: Optimal Joint

Scheduling for Electric Vehicles

and Home Appliances

In this chapter, we present an efficient centralized optimal consumption scheduling

(COPCS) to solve the energy management problem of a residential microgrid by the

integration of RES, optimal scheduling of charging and discharging of EVs, shifting

elastic load from peak hours to off-peak hours to minimize the amount of imported

electricity from the grid. We show that our COPCS system has notable performance

compare to the existing DR solutions.

3.1 Motivation

In section 2.3 we present numerous aspects of synthesis of renewable energy sources,

use of electric vehicles and the demand response model. Existing solutions do not

consider both G2V and V2G operations of EVs, household load characteristics and

intermittent nature of the RES generation to optimize residential energy use and
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3.2 System Model

We consider the microgrid shown in Fig. 3.1 with multiple renewable distributed

generators (DGs), a central controller, a set of home appliances N (|N |= N), and a

set of EVsM (|M|=M). For renewable energy sources, home appliances and EVs we

adopt the notations of Table 3.1. The central controller of the microgrid is responsible

for scheduling and controlling the flow of electricity from DGs to the customers’

appliances. A smart meter or aggregator of each customer’s home sends information

(operational time slot, consumption rate, maximum and minimum capacity, etc.) of

each appliance to the central controller. In the following subsections, we discuss each

component of the system model. Finally, in Section 3.2.5 we present the objective

function and constraints of the model.

3.2.1 Renewable Energy

We consider a microgrid with g renewable energy sources (wind turbine, photovoltaic

cell, etc.). The total electricity generated in an hour h ∈ H is given by

E(h) =
∑

g∈G

Eg(h). (3.1)

Note that renewable energy sources are stochastic in nature [116]. Several stochastic

models exist to predict the short-term and/or long-term power generation. In this

thesis, a Markov chain state transition probability is used to predict the next 24

hours of electricity generation, as described next. Also, the proposed system model

is capable to integrate any renewable, non-renewable or weather predicted energy

source model. The only requirement is that the model would be able to forecast

power generation in each time interval for next H (i.e., H = 24) hours.
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Table 3.1: Notations : Centralized Joint Scheduling of EV and Home Appliances

Symbol Description

H set of time slots, (|H|= H), duration of each time slots is one hour.
Energy Sources
G set of Renewable Energy sources, (|G|= G).
Eg(h) electricity (in kWh) generated from renewable energy source g at h.
E(h) electricity (in kWh) generated from renewable energy sources at h.
W set of wind speed (in m/s2) states, (|W|=W ).
Pr(i, j) Markov first order transition probability from wind speed state i to j
Pcdf(i, k) Markov first order cumulative transition probability from wind speed state

i to k
Vl, Vr wind speed boundary of a location, high and low respectively
Ψ Markov transition probability matrix among solar radiation states.
ψi,j Markov transition probability from solar radiation state i to j.
ΨI solar radiation states (in W/m2)
Zi uniform random number over [0, 1].

Home appliances
C set of customers.
Ac set of home appliances of a customer (c).
N set of home appliances, (|N |= N).
Q set of type C home appliances.
B set of type B home appliances.
Xh
n electricity (in kWh) consumption of appliance n in time slot (hour) h

zhn indicative binary variable, for zhn = 1 equipment being used, otherwise idle
Γhn binary value, for Γhn = 1 appliance n is on at h, otherwise switched off.
LTn target energy (in kWh) consumption of home appliance n

EV (Electric Vehicle)
M set of EVs, (|M|=M).
Y h
m defines charging and discharging electric energy (in kWh) of EV m in time

slot (hour) h.
shm is an integer variable, where shm ∈ {1, 0,−1}. Equivalent to 1(charging),

0(remain idle) and −1(discharging).
Λhm is a binary value, for Λhm = 1 EV m is plugged-in (present) in time slot h,

otherwise EV m.
PEVam energy (in kWh) level of EV m when arrived.
PEVminm energy (in kWh) level lower bound for EV m.
PEVmaxm energy (in kWh) level upper bound for EV m.

PEVhm energy (in kWh) level of EV m in time slot h.
PEVm net electric energy (in kWh) level consumed by EV m during a day.

PEVTm minimum or target energy (in kWh) level for EV m when departed.
PEVT net electric energy (in kWh) consumed byM EVs during a day.
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Wind turbine

Wind is a highly unstable phenomenon that cannot be fully described by any prob-

ability distribution science wind speed at every hour is correlated with the speed at

previous hours. A Markov chain represents the system transition from one state to

another over time. The order of the Markov chain gives the number of time steps

influencing the present state of the system [113]. A first order Markov chain is used

for the simulation of wind speed prediction. A second or higher-order Markov chain

model can improve the wind speed prediction. Our Markov chain model for wind

speed prediction uses the historical time series data for a given geographic area [98].

Suppose S = {s1, s2, · · ·} is the historical wind speed time series data representing the

hourly wind speed in meter per second (m/s) for a long duration (3 or more years).

LetW denote the states of wind speed for the time series wind speed data (S). Then,

the first order Markov transition probability matrix can be determined as follows:

Pr(i, j) =
wi,j

W
∑

j=1

wi,j

; ∀i, j ∈ W , (3.2)

where
W
∑

j=1

Pr(i, j) = 1 and wi,j is the total number of transitions from wind speed i

to wind speed j for the next hour in the wind speed time series data (S). Synthetic

wind speed data can be generated by taking the cumulative probability distribution

of the first order Markov state transition probability matrix of Eq. (3.2):

Pcdf(i, k) =
k
∑

j=1

Pr(i, j); ∀i, k ∈ W . (3.3)

For generating sequences of wind speed time series data, an initial state i is selected

randomly. Then a random number is chosen between 0 and 1 using a uniform random

number generator. The value of the random number is compared with the values in
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row i of the cumulative probability distribution of the first order or second order

Markov state transition probability matrix. If the value of the random number is

greater than the previous state and less than or equal to the following state, the

following state is selected. Next, the speed state is converted to wind speed by using

the following equation

V = Vl + Zi(Vl − Vr), (3.4)

where Vl and Vr are the wind speed boundary of the state, and Zi is a uniformly

distributed random number over [0, 1]. In doing so, wind speed time series of any

length can be generated. The validity of this prediction model is described in more

detail in [113].

From the historical (observed) or synthetic wind speed time series data, Markov

first order state transition matrix can be constructed. More precisely, from the current

wind speed using equations (3.3) and (3.4) the next wind speed can be predicted. Let

the predicted wind speed for hour h be V (h). The electricity generated from a wind

turbine in hour h is then given by:

Eg(h) =
1

2
· ρ · A · (V (h))3 · Cp, (3.5)

where ρ, A, and Cp represent the air density in kg/m2, swap area of the turbine

and Betz limit (maximum value of 0.59). Practical wind turbines have a cut-in and

cutoff wind speed approximately from 2m/s to 5m/s and from 15m/s to 25m/s,

respectively. At cutoff wind speed or beyond, a wind turbine generates a constant

amount of electric power at its maximum capacity, whereas below the cut-in wind

speed the wind turbine does not produce any power.
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Solar power

Markov models for solar radiation using historical data have been successfully used

in climatology. Here, a solar radiation model with impact of cloud intensity on solar

radiation is considered [85]. Solar radiation states can be expressed by the following

Markov first order transition probability matrices (3.6) and (3.7).

Ψ =

































ψ0,0 ... ψ0,k

ψ1,0 ... ψ1,k

. . .

. . .

. . .

ψk,0 ... ψk,k

































(3.6)

ΨI =

[

γ0 ... γi .... γk

]

, (3.7)

where k is the total number of radiation states. For example, state i = 0 refers to

the case when the sun is fully covered by clouds and solar cells do not produce any

power. For i = k, γk represents the maximum intensity of solar radiation (in w/m2).

In this case (full sunlight, clear sky), solar cells produce maximum power. In (3.6)

and (3.7), matrices Ψ and ΨI denote the transition probability matrix among solar

radiation states and intensity of the solar radiation (W/m2), respectively. Note that

ψi,j in matrix Ψ denotes the transition probability form solar radiation state γi to γj

in ΨI .

Under the assumption that the cloud size is exponentially distributed with mean

ci, the solar radiation state is γi. Assuming that transitions among solar radiation

states are sequential and circular, the transition matrix for solar radiation can be
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expressed as a continuous time Markov chain [85]

Ψc =



















−Sw

c0

Sw

c0

−Sw

c1

Sw

c1

... ...

Sw

ck
... ... −Sw

ck



















, (3.8)

where Sw

ci
denotes the variation rate between solar radiations [140]. The instantaneous

power of the solar panel, Eg(h), is directly related to the current solar radiation γh.

Thus, the electricity generated by the photovoltaic (PV) panel can be calculated as

follows [73]

Eg(h) = J ·











ec
Kc
· (γh)

2 0 < γh < Kc

ec · γh γh > Kc,
(3.9)

where the value of ec is the corresponding efficiency which depends on the single

PV cell area, ambient temperature, internal impedance, global irradiation, and other

parameters at time h (∀h ∈ H). Kc is a critical radiation point in W/m2 beyond

which an increase of radiation results in a smaller increase in efficiency. J is the

number of photovoltaic cells in the PV panel. We assume, a 0.01 m2 PV cell with

efficiency ec = 0.10 (unit-less), and Kc = 1000W/m2 at 25oC.

3.2.2 Home Appliances

Let C be the set of customers and Ac be the set of home appliances (e.g., washer,

dryer, refrigerator) for each customer c ∈ C. Each appliance is scheduled to consume

electricity or remain idle in each time interval (e.g., an hour) during the day. Resi-

dential customers may have different types of appliances namely, first, Type A (hard

load), where certain appliances may have strict scheduling requirement, for example,

a refrigerator should remain operational at all times, second, Type B (soft load),
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where many appliances may require constant amount of electricity consumption in a

continuous fashion with flexible scheduling for a limited amount of time (e.g., wash-

ing machine) and lastly, Type C (soft load), where some appliances may need a fixed

amount of electricity with irregular scheduling (e.g., EV). Let Xh
n be the electricity

consumption of a home appliance n ∈ Ac in time interval h. Then, the total electric

energy (kWh) consumed (Ln) by appliance n during a day is given by

Ln =
H
∑

h=1

(Xh
n · Γ

h
n · z

h
n), ∀n ∈ |N |, (3.10)

where, H = 24. In case of a hard load (Type A), for each hour h, zhn is equal to 1 if

Γhn = 1. For a soft load (Type C), if an appliance consumes Ln unit of energy (kWh)

during a day then for each hour zhn ∈ {0, 1} if Γhn = 1. In this case, when zhn = 1,

appliance n consumes Xh
n units of electricity, otherwise it remains idle. Suppose that

the microgrid has N home appliances, N = |{A1 ∪ A2 ∪ ... ∪ A|C|}|, then the total

electric energy consumed by appliance (Type C) n ∈ Q (Q ⊆ N ) per day must satisfy

its target amount of electricity LTn , which can be expressed as follows:

LTn =
H
∑

h=1

(Xh
n · Γ

h
n · z

h
n), ∀n ∈ Q. (3.11)

Type B appliances consume electricity in a continuous fashion. Thus, in any time

slot, if a type B equipment n is scheduled to consume electricity, it will continue to

consume electricity until the total consumption is equal to the target LTn such that

LTn · τn(k) =
k+rn−1
∑

h=k

(Xh
n · Γ

h
n · z

h
n), ∀n ∈ B,B ⊆ N , (3.12)

where rn = LTn
Xh

n
denotes the number of time slots needed by appliance n to reach its

target energy consumption LTn and τn(k) is a binary variable, which denotes the start
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time of type B appliance n. If τn(k) = 1, appliance n starts consuming electricity

in time slot k. As type B appliances consume electricity continuously, the following

constraint must be satisfied

H
∑

k=1

τn(k) = 1 ∀n ∈ B. (3.13)

3.2.3 Electric Vehicle

We assume that the arrival of EVs to the microgrid follows a Poisson process with an

arbitrary randomly distributed energy level. The EV stays at home (microgrid) for a

random amount of time period and then departs for driving. At home, an EV charges

its battery to a target energy level for the following driving schedule. EV is a special

type of soft load, which can be scheduled in a flexible way i.e., charging, discharging,

or remaining idle during its residence in the microgrid. If the arrival time of EV m

is tma and departure time is tmd , the energy level at arrival is PEVam and the target

energy level is PEVTm. The energy consumption from the microgrid between arrival

(tma ) and departure(tmd ) by EV m is given by

PEVm =

tm
d
∑

h=tma

(Y h
m · s

h
m) (3.14)

where shm denote the strategies of m (defined in 3.1). If Λhm = 1 for tma ≤ h ≤ tmd and

0 otherwise, then the above equation (3.14) can be rewritten as

PEVm =
H
∑

h=1

(Y h
m · Λ

h
m · s

h
m), (3.15)

For both safety and longevity of EVs’ batteries, each EV must not discharge below
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the minimum discharge level. Therefore,

PEVhm ≥ PEV
min
m , ∀h ∈ H, (3.16)

where PEVhm is defined as

PEVhm = PEVam +
h
∑

t=0

(Y t
m · Λ

t
m · s

t
m), ∀h ∈ H. (3.17)

Note that for the proposed model when we consider only EVs without discharge

capabilities, we simply ignore the state shm = −1. In this case, shm can either take 0

or 1.

Each EV may charge, discharge, or remain idle throughout the duration of its

residence in the microgrid. Therefore, the net energy consumption by M EVs can be

computed as

PEVT =
M
∑

m=1

PEVm. (3.18)

The microgrid central controller must ensure that each EV m has the target energy

level when it departs for driving. Thus, the following relation must hold

PEVam + PEVm ≥ PEV
T
m. (3.19)

However, an EV should not charge beyond its battery capacity and discharge below

PEVminm , as given by

PEVminm ≤ PEVam + PEVm ≤ PEV
max
m (3.20)
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3.2.4 Pricing Model

We define the cost function ρ(h) (in hour h) as the unit price of the electricity con-

sumption (di) from renewable energy sources, discharging of Evs (dd) as well as im-

ported power (de) from the external grid or microgrids, whereby

ρ(h) =
βi · di + βd · dd + βe · de

di + dd + de
(3.21)

Here, βi (e.g., 0.10
$

kWh
) represents a constant for local energy use and βe (e.g.,

0.15 · (de)
1.5 $

kWh
) is a function, which increases with the increase of import from the

external grid or microgrids; βd (e.g., 0.15 $
kWh

) is a constant which represents the

unit selling price of electricity (dd) due to EVs battery discharge; βd is βi plus the

compensation due to the EV’s battery discharge. We assume βi < βd < βe. For each

hour, let the electricity price for the microgrid be θ(h). Then, we have

θ(h) = ρ(h)

(

M
∑

m=1

(Y h
m · Λ

h
m · s

h
m) +

N
∑

n=1

(Xh
n · Γ

h
n · z

h
n)

)

. (3.22)

Let PEVhM =
M
∑

m=1

(Y h
m ·Λ

h
m · s

h
m) and L

h
N =

N
∑

n=1

(Xh
n ·Γ

h
n · z

h
n). Therefore, the daily total

electricity cost is given by

θT =
H
∑

h=1

θ(h) =
H
∑

h=1

ρ(h)(PEVhM + LhN) (3.23)

The microgrid central controller adjusts the electricity unit price for the whole com-

munity by the amount of imported electricity δ(h) in each hour. The controller does

not charge the price to community if the total electricity demand is equal to or lower

(δ(h) = 0) than that of produced. Consequently, the daily total updated electricity
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price for the microgrid community is given by

θT =
H
∑

h=1

θ(h) =
H
∑

h=1

ρ(h)[(PEVhM + LhN) + δ(h)]. (3.24)

The cost of adjustment, δ(h), is as follows

δ(h) =











0 if η(h) ≤ 0

η(h) otherwise
, (3.25)

where the import electricity η(h) is obtained as

η(h) = PEVhM + LhN − E(h); ∀h ∈ H (3.26)

The adjustment in Equ. (3.25) can be calculated from the following inequalities:

δ(h) ≤ PEVhM + LhN − E(h) + L(1− µ(h)) (3.27)

δ(h) ≥ PEVhM + LhN − E(h)− L(1− µ(h)) (3.28)

E(h)−
(

PEVhM + LhN
)

≥ µ(h)(−L), (3.29)

where ∀h ∈ H, L is an large integer number and µ(h) is a indicating binary variable.

In case of import, µ(h) = 1 otherwise we set µ(h) = 0.

3.2.5 Problem Formulation

To achieve best (i.e., minimum) daily price for customers, while predicting the hourly

renewable energy generation E(h) and fixed activation matrix for appliances (Γhn) and

EVs (Λhm), we can write the objective function of the problem as follows:
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Objective:

min

(

θT − ρ(h) ·
H
∑

h=1

E(h)

)

(3.30)

which requires to determine the values of the variables shm and zhn. Therefore, the

optimization problem Equ. (3.30) can be solved by determining the optimal schedule

of the appliances and changing states of EVs during their residence in the microgrid.

Formally,

min(θT − ρ(h) ·
H
∑

h=1

E(h)) (3.31)

is equivalent to

min
H
∑

h=1

[

LhN + PEVhM − E(h) + δ(h)
]

, (3.32)

subject to:

For type A & C

H
∑

h=1

(Xh
n · Γ

h
n · z

h
n) = L

T
n ; ∀n ∈ Q; z

h
n = 1 for type A (3.33)

For type B

LTn · τn(k) =
k+rn−1
∑

h=k

(Xn
h · Γ

h
n · z

h
n); ∀n ∈ {N −Q} (3.34)

H
∑

k=1

τn(k) = 1 ∀n ∈ {N −Q} (3.35)

For EV:

(3.36)PEVmaxm ≥

(

PEVam +
H
∑

h=1

(Y h
m · Λ

h
m · s

h
m)

)

≥ PEVTm, ∀m ∈M

(3.37)

(

PEVam +
H
∑

h=1

(Y h
m · Λ

h
m · s

h
m)

)

≥ PEVminm , ∀m ∈M,

and Eqs. (3.27)-(3.29).
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The formulated mathematical model contains continuous (shm and zhn) and discrete

(δ(h)) decision variables, and hence forms an MILP (Mixed Integer Linear Program-

ming) model). By solving the above MILP problem, we can obtain the optimal

schedule for different working states of home appliances and EVs, respectively. The

minimization of imported electricity model Equ. (3.32) shifts soft loads to consume

electricity from low power generation time slots to high power generation time slots.

EVs charge their batteries in high power generation time slots and discharge, when

the amount of power generated by the microgrid is low. The formulated MILP prob-

lem for joint scheduling of home appliances and EVs is solved using the IBM CPLEX

MILP solver.

3.3 Naive Scheduling Scheme

In our naive scheduling scheme, the microgrid central controller schedules home ap-

pliances and EVs for electricity consumption without prior knowledge of the amount

of generated electricity and operational time slots of the home appliances and EVs.

Thus, as soon as a home appliance and/or an EV is ready, the central controller of

the microgrid schedules the appliance and/or EV to consume electricity regardless

of the amount of electricity generated by the microgrid. Therefore, the amount of

imported electricity from the external grid or microgrids in an hour can be expressed

as:

η(h) =
∑

n∈N

Xh
n +

∑

m∈M

Y h
m − E(h), (3.38)

where ∀h ∈ H and















PEVmaxm ≥ PEVam +
H
∑

h=1

Y h
m ≥ PEV

T
m if m ∈M

H
∑

h=1

Xh
n = LTn if n ∈ N

. (3.39)
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The total amount of imported electrical energy is given by

ηT =
H
∑

h=1

[η(h)] , (3.40)

where,

η(h) =











0, if η(h) > 0

η(h) otherwise.
(3.41)

3.4 Decentralized EV charging control using non-

cooperative game

A Decentralized EV charging control strategy allows each EV to determine its own

charging pattern. The decentralized model is composed of a utility responsible for

collecting all optimal charging strategies proposed by all EVs and broadcasting the

aggregated EV demand along with predicted base demand. The problem is formulated

as a non-cooperative game where each EV is a player and utility of the microgrid is

the controller of the game. Each EV reacts with an optimal charging strategy for

minimizing its own electricity costs by receiving the base and aggregated EV demand.

The game continues until there are no changes in the charging strategy or total energy

costs of any of the EVs. The game is a non-cooperative selfish game because each

EV decides its ”happiness” (charging scheme) by knowing all other EVs’ charging

strategies [139] [70]. For an individual EV m, we adopt the notation in Table 3.1.

Here, base load is calculated by summing up the amount of the electricity requested

by each individual home. Each appliance is scheduled to consume electricity as soon

as an appliance is ready. Therefore, the base load (Lhb ) in each hour h is given by:

Lhb =
∑

n∈N

Xh
n , ∀h ∈ H. (3.42)
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For each time slot h between arrival (tma ) and departure (tmd ), EVm’s charging control

can be defined as follows:

PEVh+1
m = PEVhm + (Y h

m · s
h
m), h ∈ {t

m
a , t

m
a + 1, ..., tmd },

∀h ∈ H,
(3.43)

with an initial energy level of PEVam. Each EV m must be charged to a target energy

level at the time of departure (tdm). Moreover, the energy level of EV m must not

violate the upper and lower bound while residing in the microgrid. Therefore, the

following conditions must hold:

PEVTm ≤ PEV
a
m +

tm
d
∑

h=tma

(Y h
m · s

h
m), (3.44)

and

PEVminm ≤ PEVTm ≤ PEV
max
m , (3.45)

where shm represents the charge control strategy at time slot h and Y h
m denotes the

maximum charging and discharging rate of EV m. Value shm can be chosen from any

finite number of integer values between {−1, 1} that represent the strategies of EV

m. To compare with the proposed optimal charging strategy, the same strategies

(1:charging, 0:remain idle and -1:discharging) are chosen. Therefore, we can define

the set of feasible charging strategies for a predefined target as

Um = {um = (shm); ∀m ∈M, satisfy (3.44) & (3.45)}. (3.46)

Let

u = {um; 1 ≤ m ≤M} (3.47)
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be the set of charging strategies of EVs and

u−n = {um;n 6= m} (3.48)

the set of charging strategies for EVs without EV m. Each EV minimizes its own op-

erating cost by determining a charging strategy with respect to the charging strategy

adopted by other EVs. More specifically, the cost function of EV m can be expressed

as follows:

Jm(u) =

tm
d
∑

h=tma

{ρ(h) · shm · Y
h
m + σ(shm · Y

h
m − avg(uh))

2}, (3.49)

where the tracking cost σ is a non negative constant and

avg(uh) =
1

M

∑

m∈M

Y h
m · s

h
m. (3.50)

The price is given by

ρ(h) = ρ(Lhb +M · avg(uh)). (3.51)

Here, ρ is defined as

ρ = (βi · dres) + (βd · ddischarge) + (βinitiale · (dimport)
ε), (3.52)

where dres, ddischarge, dimport represent the amount of electricity used by the microgrid

customers from renewable energy sources, discharged EV battery, and imported elec-

tricity from the grid, respectively. The parameter values of the price function used

for simulation a set to βi = 0.10 $
kWh

, βd = 0.15 $
kWh

and βe = 0.15r1.5 $
kWh

. Here, r is

the amount of electricity imported from the grid. Here, βi, βd are constant and βe is

convex [70], therefore, ρ is a convex function. Optimal charging strategy for an EV

is obtained via negotiation between electricity cost and cost incurred deviating from
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the strategy. The decentralized charge control strategy thus forms a non-cooperative

dynamic game. Each EV resides at home shares base load information and also tracks

the average charging strategy of the whole EV population. A set of charging controls

u is at Nash-equilibrium if, for all EVs m, um ∈ Um is the charging strategy that

minimizes the operation cost (3.49) with respect to U−m [139] [70]. The negotiation

of charging strategies for a day can be determined by the following procedure [139]

[70]:

(S1) The utility broadcasts the predicted base load Lhb ; ∀h ∈ H to all EV agents.

(S2) Each EV agent proposes a charging control strategy to minimizes its operating

cost (3.49) with respect to the common aggregated EV demand broadcast by

the utility.

(S3) The utility collects all proposed charging control strategies (S2), and updates

the aggregated EV demand. The EVs’ aggregated demand is broadcast to all

EVs.

(S4) Repeat step (S2) and (S3) until the proposed optimal charging strategy of each

EV no longer changes.

Higher values of tracking cost σ put more emphasis on minimizing the deviation

from the average strategy, and on the other hand lower values put more emphasis

on the electricity price. The authors of these algorithms chose σ = 0.007, which

converge the homogeneous system to the Nash-equilibrium by smoothing the valley

filling curve [139] [70]. For heterogeneous system the game converges to ε-Nash equi-

librium. For each EV agent the minimization of equation (3.49) with the constraints

from equation (3.44) to (3.45) and base load Lhb , becomes the mixed integer quadratic

problem(MIQP). We solve the problem by using the IBM CPLEX MIQP solver.
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3.5 Simulation

3.5.1 Simulation Setup

In this section, we evaluate our proposed algorithms (EVs with and without discharge

capabilities) and compare the results with our optimal results with those obtained

from naive scheduling and decentralized EV charging control schemes. In our pro-

posed model, we consider a wind turbine with radius 10m, air density 1.28 kg/m2,

cut-in wind speed 2m/s, cut-off wind speed 25m/s, Cp = 0.59) and photovoltaic

energy sources with maximum radiation: 1000W/m2, photovoltaic panel area 50m2,

and with a maximum production capacity of 1.5MWh (from equ. (5)) and 0.5MWh

(from equ. (9)), respectively. The amount of electricity from the renewable energy

sources is predicted for each hour of a day by using the renewable energy models de-

scribed in Section 3.2. To generate synthetic time series we took observed wind speed

time series during one day from the NCDC (National Climate Data Center) of NOAA

(National Oceanic and Atmospheric Administration, USA). We assume a small com-

munity with 200 residential subscribers for the simulation. In the simulation, we select

1400 appliances randomly distributed over these 200 household customers. Note that

each customer owns 6 to 8 appliances. Such appliances include hard and soft loads.

Hard loads with daily and hourly consumption include: a 4.0 kWh (2.0kWh per hour)

electric oven, a 0.8 kWh (0.8 kWh per hour) microwave, five (0.1 kWh per hour each)

2.0 kWh light bulb, a 0.36 kWh (0.12 kWh per hour) flat screen TV, a 3.6 kWh

(0.150 kWh per hour) refrigerator, a 6 kWh (1.0 kWh per hour) heating system, and

a 0.25 kWh (0.05 kWh per hour) laptop. Soft loads (Type B) with daily and hourly

consumption include: a 1.6 kWh (0.8 kWh per hour) washing machine, a 2.4 kWh

(1.2 kWh per hour) dishwasher, a 6 kWh (2.0 kWh per hour) dryer, and a 0.027 kWh

(0.009 kWh per hour) battery charger. For the simulation, we vary the number of
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EVs from 10 to 600, where each EV applies 3 kWh per hour charging and discharging

rate with 24 kWh capacity and 3 kWh (13.5%) minimum discharge energy level. The

arrival and departure of each EV in a time slot follows a Poisson process, and the

initial PEVam (PEVam ≥ PEV
min
m ) and target energy level (PEVTm is in between 70%

to 100% of PEVmaxm ) are selected randomly, with the restriction that the time span

of each EV is sufficient to charge its battery to the target energy level. We have also

considered certain real life EVs pattern where most of the EVs are unavailable during

morning to afternoon. In this case we took the EVs arrival and departure pattern

extracted from the investigation of NHTS [25].

3.5.2 Numerical Results

To evaluate the performance of the proposed system we developed the simulation pro-

gram using C++ and IBM CPLEX. We execute the simulation with 40 iterations and

compare the obtained results with decentralized and naive methods by considering

both V2G and G2V modes of EV.

Fig. 3.2 depicts the amount of imported electricity vs. number of EVs for optimal

(EV with and without discharge capabilities) and naive scheduling. The amount of

imported electricity is always high in naive scheduling in comparison to the optimal

scheduling schemes. The reason of this improvement in optimal scheduling schemes

over naive scheduling is that optimal scheduling is able to predict future loads and

power generation whereas the naive approach schedules appliances and EVs without

any prior knowledge. We also observe that the optimal scheduling with EVs having

discharge capabilities performs substantially better than EVs without discharge capa-

bilities. Note that both schemes can predict future loads and the amount of generated

electricity but the storage and discharge capabilities EVs leads to a significantly im-

prove performance.
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improvement is 175.37%. As the number of EVs increases, the storage capability of

the system increases as well and the optimal scheduling (EV with discharge) shows a

clearly superior performance over the naive approach. The optimal (with discharge)

scheduling also outperforms optimal scheduling (w/o discharge), as shown in Fig.

3.3. Optimal (w/o discharge) scheduling performs better than the naive scheduling

scheme. In this case, for 10 and 590 EVs the performance improvement is 4.30%

and 84.34%, respectively. Fig. 3.3 also shows that after reaching a certain number

of EVs (470) the performance improvement(optimal scheduling with EVs discharge)

decreases as the number of EVs increases. This is because the overall load of the

microgrid increases and a small amount of electricity is available to store.

Next, we compare the hourly imported electricity during a day for optimal and

naive scheduling schemes. In most cases, both optimal scheduling models require less

imported electricity than the naive scheduling. However, in some cases (e.g., hour 24

in Fig. 3.4) the imported electricity using the naive scheme is less than that of optimal

scheduling (without EV discharge capability). This is due to the fact that the optimal

scheduling algorithm intelligently shifts the soft load in order to consume electricity

during high power generation hours. In contrast, naive scheduling schedules a load

in a time slot if it is ready at that time and still has not yet achieved its target

consumption. As a result, the total amount of imported electricity is much higher

compared to the optimal scheduling schemes.

Fig. 3.5, depicts the imported electricity with respect to hourly load and hourly

renewable (here, solar cell) energy generation during a day. Fig. 3.5 illustrated how

the optimal scheduling with or without EV discharge capabilities shifts some loads

from low power generation regions to high power generation regions in order to min-

imize the amount of imported electricity. Furthermore, Fig. 3.5 depicts that the
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the other hand, optimal with EV discharge scheduling scheme minimizes the total

import in a day by jointly determining the optimal scheduling of EVs and home ap-

pliances to consume electricity. Therefore, our proposed optimal EV with discharging

imports less electricity compared to the decentralized EV charging control algorithm

in a day. This is also true because the decentralized algorithm only (i) regulates EV

load while the proposed algorithm regulates all soft load including EVs and (ii) for

non-homogeneous systems the decentralized EV charging control method produces

ε-Nash equilibrium. Fig. 3.10 shows the comparison of the hourly requested load,

load regulated by the decentralized EV charging control and the proposed optimal

EV with discharging. Both optimal and decentralized schemes schedule loads with

respect to the amount of electricity generated from the non-renewable energy sources

in each hour. The resultant load regulation shifts loads from peak hours to off-peak

hours in order to follow the energy generation curve. Both algorithms fill the valley

by shifting load from peak hours to off-peak hours. In Figs. 3.8, 3.9, and 3.10, our

simulations started at 1:00pm and ended next day at 1:00pm. Here, the load is shifted

from the evening high demand period to the midnight low demand period. Next,

Figs. 3.11 and 3.12 show the comparison between the decentralized EV charging

scheme and our proposed optimal EV with discharging scheme. In both cases, our

proposed scheduling strategy imports less energy than the decentralized EV charging

strategy. Fig. 3.11 shows the comparison between the amount of electric energy im-

ported by the decentralized EV charging control strategy and our proposed optimal

EV with discharging policy, while using a non-renewable energy source with a capac-

ity of 300kW in each hour. Also, Fig. 3.12 represents the comparison of both schemes

with respect to the amount of imported energy. For both cases, we vary the number of

EVs to determine the effect of EV population on the imported energy. The amount of

imported electric energy reduces for the increasing number of EVs (Fig. 3.12). This
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(Figs. 3.11 and 3.12). The rate of increment of imported energy for optimal EV

with discharging is less compared to the decentralized EV charging control. This is

because the optimal schedule with EV discharging jointly schedules home appliances

and EVs optimally, while the decentralized EV charging control only schedules EVs

for charging and discharging.

3.6 Conclusions

In this chapter, we presented a centralized joint scheduling of EVs and home appli-

ances for a grid connected residential microgrid with an aspiration to rely on renew-

able energy sources. The simulation results showed that the proposed centralized

(COPCS) model reduce the amount of imported energy from the external grid. Also,

we observed from the simulation results that the proposed optimal scheduling method

flatten the load curve throughout the day by using the advanced features of EVs and

home appliances. The proposed scheme is suitable for small to moderate sized micro-

grids. For large microgrid, the may require a long time to produce the solution.

79



Chapter 4

Distributed Real-Time Electricity

Allocation Mechanism For Large

Residential Microgrid

In the previous chapter, we devised a solution for the centralized joint scheduling of

EVs and home appliances to minimize and balance the electric load of a microgrid

throughout the day. The model is profoundly dependent on the day-ahead load

forecast and predicted energy generated from RES. In this chapter, we manifest a

distributed real-time electricity allocation model to meet the immediate demand of a

microgrid customers. The model relies on the real consumption and generation of a

time slot and predicted consumption and generation for rest of the day.

4.1 Motivation

The centralized model COPCS presented in the previous chapter can produce a so-

lution for small and moderate sized microgrid. The COPCS model does not scale

well for a microgrid with a large number of customers. Also, the COPCS is an offline
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solution and heavily dependent on the day-ahead prediction of load, EVs arrival, and

departure, renewable energy generation, etc., which may differ at the time of real

consumption. Moreover, the COPCS is a centralized model thereby all detail specifi-

cation of appliances, and EVs usage pattern should be sent to the central controller or

EMS which may violate the privacy of the microgrid customers and pron to possible

security risks. To address those problems, we investigated (see section 2.3) and de-

veloped an online distributed solution to schedule load based on the real-time use of

electricity at time slot and predicted load as well as energy generation for the rest of

the day. We use mechanism design to emphasize the user choice for scheduling their

consumption and EVs’ charging and discharging operations. Under the mechanism

design, customers play a mixed strategy in a non-cooperative repeated game to adjust

their equipment use, RES energy consumption, storage decision, and charging and

discharging of EVs to decrease the personal energy cost which results the increase of

the overall social benefit for the microgrid community.

4.2 System Model

In our mechanism design, the grid connected residential microgrid (MG) contains a

set of renewable energy sources (W), a set of homes connected each to a smart meter;

each home has a set of appliances including EVs, and a central controller with EMS.

Let N denote the set of residential users and An be the set of appliances of residential

home n ∈ N . The net electricity generation is E(t) at time slot t, where t ∈ T and

T , {ts, ts +∆t, ..., te}; ts and te are current real time slot and end of schedule time

horizon respectively. For energy sources, home appliances, load, electricity price, etc.,

we adopt the notations of Table 4.1.
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Table 4.1: Mathematical Notations for DRTA

Notation Description

W set of renewable energy sources
N set of residential homes
An set of appliances of home n
n index of a residential home, n ∈ N
E(t) net electricity (in kWh) generation from renewable at t
T set of time slots
∆t interval between two consecutive time slots
fren(t, w) electricity (in kWh) generated from source w at t
Fload load forecast model
ti, td start and end operational time slots of an appliance
Tn,a set of operational time slots of appliance a of home n
D(t) total load (in kWh) of the microgrid at time slot t
D−n(t) total electric load (in kWh) of home n at time slot t
te end time slot of simulation time
ts start time slot of simulation
ρt(.) cost function to calculate electricity price at t
dr(t) electricity (in kWh) consumed form renewable at t
dd(t) electricity (in kWh) consumed from EV discharge at t
de(t) electricity (in kWh) consumed from grid at t
βr unit electricity price for consumption form renewable
βe unit electricity price for consumption form grid
βd unit electricity price for consumption form EV or storage
ltn,a consumption/discharge strategy at t of appliance a of n

Ln,a target electricity consumption (in kWh) of a of n
XI
n,a electricity consumption (in kWh) of type-I appliance

XII
n,a electricity consumption (in kWh) of type-II appliance

AIn, A
II
n , AIIIn set of type-I, II & III appliances of n

τkn,a binary; consumption : continuous (1) or no (0) at k

ctn,a charging of EV a of n at time t

dtn,a discharging of EV a of n at time t

Φcn,a, Φ
d
n,a charging and discharging efficiency of EV a

Linitn,a EVs’ energy at arrival

Lmaxn,a , Lminn,a EVs’ maximum and minimum energy level

Ωn,a set of feasible strategies
σn,a feasible strategy
ptn total electricity price of residential customer n at t
pt−n total electricity price of all customers except n at t
Dn(t) total demand of the community except customer n
θ(t) Excess energy at time slot t
ζ(t) shortage of energy at time slot t
M is a very big number
γ(t) binary variable to determine shortage or excess of energy at t
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4.2.1 Renewable Energy

Renewable energy sources (RES) are random in nature [116]. RES, such as wind

and solar energy, need weather forecasting model for reliable generation of the tar-

geted amount of electricity which is committed to the energy buyer market. Several

stochastic models exist to predict the short-term, medium term and/or long-term

energy generation such as ANN (Artificial Neural Network), ARMA (Auto Regres-

sion Moving Average), etc., [49, 42, 55]. Short term prediction is more accurate

than medium term and long term prediction [31]. Roughly, a day ahead predicted

wind/solar energy varies from 15% to 24% in MAPE (Mean Absolute Percentage

Error [63]) from the actual generation [49, 42, 55]. Hence, for residential microgrid,

in every real time slot (ts), the prediction of the electricity generated in the next few

time slots ({ts + ∆t, · · · , te}) is updated. Let the predicted amount of electricity be

E(t) and the amount of predicted electricity generated from w ∈ W be fren(t, w) at

time t, then,

E(t) =
∑

w∈W

fren(t, w), ∀t ∈ {T \ ts} (4.1)

where fren(t, w) can use any of the prediction models mentioned above.

4.2.2 Load Forecast

Over the last few decades, several researchers attempted to predict the anticipated

load of the power grid to estimate the production capacity. Among all the load

forecast models, ARMA, ARIMA, ANN are the most famous and popular [130]. The

predicted load varies from the actual real-time load. The variation increases with

the increase of forecast time. STLF (short term load forecast) is more accurate than

MTLF (midterm load forecast) or LTLF (long-term load forecast) load prediction.

Several investigations show that STLF varies from 0% to 3% whereas LTLF varies
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up to 19.3% [63, 134]. In the proposed system, we suppose each smart meter is

equipped with a load prediction model Fload
1 and estimates the start (ti) and end (td)

of operation time slots of the appliance if the appliance does not propose. Therefore,

the start and end instances of operation (ti, td) for appliance a of customer n can

be estimated by the forecast method Fload, where {ti, td} ⇐ Fload(a, n). Accordingly,

the set of operational time slots of appliance a of n can be defined as Tn,a , {ti, (ti+

∆t), · · · , (td − ∆t), td}, and T ,
⋃

a∈An,n∈N

Tn,a. Now, the total load of the microgrid

D(t) at any time slot t can be calculated as:

D(t) =
∑

n∈N

Dn(t); Dn(t) =
∑

a∈An

ltn,a ∀t ∈ T , (4.2)

where ltn,a is the amount of electricity consumed by appliance a of home n in the time

slot t.

4.2.3 Electricity Price

We define the cost function ρt(D(t)) at time slot t as the cost of the energy consump-

tion from (i) RES (dr(t)), (ii) discharging of EVs (dd(t)) as well as (iii) imported

amount of electricity (de(t)) from the outside grid or neighboring microgrids; hence:

ρt(D(t)) = βr · dr(t) + βd · dd(t) + βe(de(t)), (4.3)

and D(t) = dr(t) + dd(t) + de(t). Here, βr (e.g., 0.067 $
kWh

TOU (Time of Use) off-

peak price [119]) represents a constant for local energy use and βe(.) (e.g., mid-peak

10.4 cents/kWh, 0.104 · (de)
1.2 $

kWh
) is a function, which increases with the increase

of import from the outside grid or microgrids; βd (e.g., with 1.3 cents compensation,

0.08 $
kWh

) is a constant which represents the unit selling price of electricity (dd(t)) due

1Fload can follow any of the forecast models such as ARMA, ARIMA, ANN, etc.

84



to EVs battery discharge. We assume βr < βd < βe and βr, βd, βe ≥ 0. Let the net

electricity generation from the renewable (local generator) sources be E(t), ∀t ∈ T

and demand is D(t) then equation (4.3) can be evaluated by determining the value

of de(t), dr(t) and dd(t), ∀t ∈ T .

dd(t) =
∑

n∈N

∑

a∈An

dtn,a (4.4)

dr(t) =











D(t) if D(t) ≤ E(t)

E(t) otherwise
(4.5)

de(t) =











0 if (D(t)− dd(t)) ≤ E(t)

D(t)− dd(t)− E(t) otherwise
(4.6)

4.2.4 Residential Load

Each residential customer n has a set of appliances An. Let us assume that each

appliance a ∈ An consumes electricity at any time slot between X low
n,a and Xhigh

n,a .

Suppose, the consumption at time slot t is ltn,a then the value of ltn,a is determined by

the proposed strategy as X low
n,a ≤ ltn,a ≤ Xhigh

n,a . The consumption rate can either be

continuous or take discrete values between X low
n,a and Xhigh

n,a . In our proposed scheme,

the set of consumption rates is also interpreted as the action set of the appliance. The

operation window Tn,a of each appliance (a) of a residential home is either defined by

the user or the appliance (smart) or predicted by the smart metering system. In the

Section 3.2.2 we have discussed basic types of home appliances, here we classify and

explain the home appliance more precisely.

Load Classification: We classify the appliances based on the mode of operation

as (i) Type I : hard load, (ii) Type II : soft load with non-interruptable and deferrable

consumption, (iii) Type III : soft load with interruptible and deferrable consumption,
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and (iv) Type-IV: mixed mode appliance, the consumption pattern is the combination

more than one load type. Now, suppose the target electricity consumption of an

appliance a of n is Ln,a, then each appliance must meet the following participation

constraints [39].

Type I: Hard load

Certain appliances may have strict scheduling requirement; for example, a TV, re-

frigerator, etc., should remain operational between the period of operations. For each

type I appliance, the total electricity consumption is,

∑

t∈Tn,a

ltn,a = Ln,a, ∀a ∈ A
I
n (4.7)

where ltn,a = XI
n,a and (XI

n,a = X lown, a = Xhigh
n,a ) is the non-zero constant consump-

tion for any time slot t. The consumption strategy, ltn,a = 0, iff t /∈ Tn,a; otherwise,

ltn,a = XI
n,a.

Type II: Soft load

Many appliances (such as dishwasher, washing machine etc) may require constant

amount of electricity consumption in a continuous fashion with flexible scheduling for

a limited number of time slots (e.g., washing machine, dishwasher, dryer, etc.). Once

the consumption starts, the appliance continues to consume electricity until the target

consumption is achieved. Let the consumption or action profile of type-II appliance

(a ∈ AIIn ) be ltn,a ∈ {0, X
II
n,a} at any time t ∈ Tn,a. Here, XII

n,a = X low
n,a = Xhigh

n,a . The

total consumption of such appliance must satisfy the following:

∑

t∈Tn,a

ltn,a ≥ Ln,a, ∀a ∈ AIIn , ∀n ∈ N (4.8)
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Also, the continuous consumption of type-II appliance should follow the following

relations,
k+rn,a−1
∑

t=k

ltn,a ≥
(

Ln,a · τ
k
n,a

)

, ∀k ∈ Tn,a, (4.9)

and,
∑

k∈Tn,a

τ kn,a = 1, τ kn,a ∈ {0, 1}, (4.10)

where rn,a is the required time slots (rn,a =
Ln,a

XII
n,a

) to achieve the target consumption.

The consumption strategy ltn,a = 0 for no consumption at t /∈ Tn,a; for all other cases

the consumption strategy is determined in a way that the total electricity price for

home n is minimized.

Type III: Soft load

Some appliances are flexible to consume electricity in irregular fashion (e.g., EVs).

The US NHTS study shows that the arrival and departure of EVs vary over time [109].

For example, the number of EVs is higher in the evening because EV owners come back

home after work and leave at morning. Now, let the EVs’ charging and discharging

strategy be ltn,a ∈ {−X
low
n,a , · · · , 0, · · · , X

high
n,a }, where −X

low
n,a denotes extreme discharge

rate and Xhigh
n,a denotes the maximum charging rate. Now, let the amount of charging

and discharging of an EV at time t be ctn,a and dtn,a respectively, then:

0 ≤ ctn,a ≤ (Xhigh
n,a · α

t
n,a) (4.11)

0 ≤ dtn,a ≤ (X low
n,a · (1− α

t
n,a)), (4.12)

dtn,a ≤ (X low
n,a · Φ

d
n,a); c

t
n,a ≤ (Xhigh

n,a · Φ
c
n,a), (4.13)

and

ltn,a = ctn,a − d
t
n,a. (4.14)
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Where, α is a binary variable and αtn,a = 1 indicates EV a charging its battery at

time t, otherwise discharging, and Φc
n,a, Φ

d
n,a denote the charging and discharging

efficiency of EV a. We assume that the EV’s battery must be charged to a target

energy level before leaving the microgrid for the next driving schedule. Hence, for

EVs, the following constraint must hold,

Linitn,a +
∑

t∈Tn,a

ltn,a ≥ Ln,a, ∀a ∈ A
III
n (4.15)

Note that EV’s battery has a minimum discharging and a maximum charging capacity.

For both safety and longevity, this should always be maintained. Thus, for any time

slot t ∈ Tn,a, EVs’ battery must not discharge beyond the minimum discharge level

Lminn,a , and charge over the battery capacity Lmaxn,a . Thus, the following equation must

be satisfied,

Lmaxn,a ≥ L
init
n,a +

tk
∑

t=ti

ltn,a ≥ L
min
n,a , ∀tk ∈ Tn,a, (4.16)

All other (non-EV) appliances of Type-III must satisfy equations (5.9) to (5.11) and

(4.16) (eg., Backup Battery Bank).

Incentive to the EV owners: EV owners are encouraged to participate in

V2G operation when the demand is high, and production is low. In other words,

EVs should discharge their stored energy when the total demand exceeds the total

electricity generation in a time slot.

Type IV (Mixed Mode Appliance)

Some appliances (e.g., heat water tank, water reservoir, ice reservoir for cooling sys-

tem, etc.,) perform a mix of operations similar to type I and Type II appliances.

When the water or ice level is less than the minimum threshold, the appliance needs
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to start immediately and continues its operation until the level is above the mini-

mum threshold. The controller of these appliances should constantly monitor, and

take actions to start the appliance to keep the water or ice level above the minimum

threshold. Suppose, at a time ti a water motor is switched on to keep the water tank

filled with water above the minimum level. Now, if the water level in the tank is

lower than the minimum threshold, then the motor will be started immediately and

maintain its operation up to tk to raise the water level (to a safety level) above the

minimum level. Next, the water motor will be started sometime later between tk+1

and tl to keep the water in the safety level. The controller of the water motor esti-

mates that after tl the water level will be lower than the minimum threshold. Hence,

the appliance is operated like Type II appliance.

Uncertain Behavior of appliances: Now, suppose the duration of operation

changes from Tn,a to T
′

n,a for appliance a of home n. The changes may occur due

to a prediction error or an unpredictable behavior of the appliance. The system will

automatically adjust the changes in the subsequent time slot. For example, an EV

owner may want to leave earlier due to inevitable circumstances. Therefore, a new

finish time and target (energy level) for the EV is assigned. Depending on the changes

in operational time slots, a new target energy level, and current energy consumption,

the appliances will be operated as type-I, type-II or type-III.

4.2.5 Social welfare and game formulation

Suppose, the unit price of electricity at time slot t is ηt =
ρt(D(t))
D(t)

, where ηt is constant

to every home during each optimization step, and ηt changes (recalculated) before each

optimization step begins. Let Ωn,a be the set of all feasible consumption strategies

and σn,a (σn,a ∈ Ωn,a) be any feasible consumption strategy of appliance a at home

n. Here, we define σn,a , {l
t
n,a|t ∈ Tn,a}. Then, the electricity price (in $) of home n
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at time slot t is:

ptn =
∑

a∈An

(ηt · l
t
n,a), ∀t ∈ T , l

t
n,a ∈ σn,a (4.17)

Hence, the optimal electricity price (in $) of home n at time t is,

p∗tn =
∑

a∈An

(ηt · l
t
n,a), ∀t ∈ T , l

t
n,a ∈ σ

∗
n,a (4.18)

where σ∗n,a ∈ Ωn,a is the optimal strategy of appliance a of home n. Therefore,

ptn ≥ p∗tn . Before optimization, if the total electricity price of the residential home n

at time slot t is P init
n (t), then the utility function u(Dn(t), ηt) for residential home n

can be defined as, un(Dn(t), ηt) = (P init
n (t) − ptn). For the optimal strategy of each

appliance, the utility/payoff at any time period is u∗(Dn(t), ηt) ≥ u(Dn(t), ηt), and

the benefit for the residential customer can be defined as,

∑

t∈T

u∗(Dn(t), ηt) =
∑

t∈T

(

P init
n (t)− p∗tn

)

, (4.19)

where, the electricity cost ptn of home n is determined by playing the dominant strat-

egy2 [114] ltn,a of each appliance a at any t ∈ T . Home n will get the maximum benefit

by determining the optimal strategy ltn,a of each appliance a ∈ An minimizes the total

electricity cost. Next, the highest social benefit of the microgrid can be achieved by

summing up the individual benefits (optimal) of all residential homes:

∑

n∈N

∑

t∈T

(P init
n (t)− p∗tn ) (4.20)

We assume that players are rational, and they play the game to increase its benefit

(or payoff) which ultimately increases the overall social benefit (sum of all customers

personal benefits). Therefore, a home customer will change its current strategy of its

2The formal definition of dominant strategy is given in section 4.4.
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appliances iff there is an increase in its payoff (eq. (4.20)). Hence, the objective of

each home n can be expressed as,

max(
∑

n∈N

∑

t∈T

P init
n (t)− (

∑

t∈T

ptn +
∑

t∈T

pt−n)), (4.21)

where pt−n is the total electricity cost of all homes without n. Therefore, in each

time slot, customer n independently maximizes its own benefit and updates its charg-

ing (or consumption), discharging strategy ltn,a, ∀a ∈ An. Next, the microgrid oper-

ator wants to maximize (minimize the unused energy) the use of local energy and

minimize the amount of imported energy from the outer grid. The amount of excess

or shortage of energy for a microgrid can be expressed as,

des(t) = E(t)− {Dn(t) +D−n(t)} (4.22)

where Dn(t) = ptn
ηt

and D−n(t) =
pt−n

ηt
. At each time slot, either des(t) is positive

(excess energy θ(t)) or negative (shortage of energy ζ(t)). If des = 0, there is nothing

to do and θ(t) and ζ(t) can be expressed as,

θ(t) ≤ des + {(1− γ(t)) ·M} , (4.23)

θ(t) ≥ des − {(1− γ(t)) ·M} , (4.24)

{γ(t) ·M − des(t)} ≥ 0, θ(t) ≥ 0, ζ(t) ≥ 0, (4.25)

ζ(t) ≤ −des + {γ(t) ·M} , ζ(t) ≥ −des − {γ(t) ·M} (4.26)

where γ(t) = 1 indicates the excess of energy and otherwise, a shortage of electric-

ity. The above equations (4.23) to (4.26) are the logical constraints; these constraints

always produce positive value or zero for the objective function in (4.27). Accordingly,
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this will force a customer to either consume energy or restrain from consumption (or

discharge) for certain time slots. Now, the objective function in eq. (4.21) (n ∈ N )

is modified as follows,

Z = max

[

∑

n∈N

∑

t∈T

P init
n (t)−

∑

t∈T

ηt · {θ(t) + ζ(t)}

]

(4.27)

The above objective function eq. (4.27) is the social benefit of the community when

observed from the community point of view and in that case consumption strategies

of all players are determined to get an optimal social benefit. On the other hand,

to an individual player, it is the payoff function where all other players consumption

is known, and the player will play its strategy for the use of electricity to increase

personal benefit or payoff. Note that the electricity bill is dependent on the total

demand for a particular time. Hence a player cannot decrease its electricity bill

ignoring the demand of other players. The consumption strategy of one player will

affects the electricity price for the whole community. A player cannot increase its

payoff by harming payoffs of other players. Therefore, the simultaneous and repeated

play of the game will improve the overall social benefit of the microgrid community.

4.3 Game Theoretic Mechanism Design

Game Controller: The central controller calculates the unit price ηt of electricity

for each time slot and sends it to each home (smart meter). The central controller

executes the following steps in each time slot (ts),

(S1) Receive initial load information from all (n ∈ N ) customers and calculate

initial total load D(t), ∀t ∈ T .

(S2) Forecast electricity generation E(t), ∀t ∈ {T \ ts}
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(S3) Calculate electricity price ηt, ∀t ∈ T , total Initial price P
init, and D−n(t),

n ∈ N , t ∈ T .

(S4) Send ηt, D−n(t),∀t ∈ T and P init to home n upon receiving a request from

home n.

(S5) Receive the proposed load Dn(t) from home n and update the total load

D(t), and unit price ηt, ∀t ∈ T .

(S6) Compare the calculated price in (S5) with the electricity price calculated

before. If there is no change in price, go to (S7). Otherwise, repeat (S4) to

(S6).

(S7) Allocate electricity for time slot ts and update ts ← (ts+1) and te ← (te+1)

in T and go to (S1).

Players: In each real time slot, with a finite number of iterations, residential homes

n (eq. (4.27) ) play the non-cooperative repeated game to maximize its own benefit.

Here, the formulated non-cooperative repeated game calculates payoff for the current

time slots without considering payoffs calculated in the previous (past) time slots.

Each player (home) will change the strategy (ltn,a) of its appliances if the total cost of

electricity is less (or get more benefit) than before. The game converges to optimal

scheduling when there is no change in either the benefit or electricity price. Each

player will continue (repeatedly) to play the game in a time slot ts until the its own

benefit (for current and future slots) does increase. In each play, a home customer

tries to maximize its benefit using the objective (or utility) function expressed in

equation (4.27) and with the constraints in equations (4.7) to (4.16), (4.22) to (4.26)

(S1) Each player (independently) will select an optimal strategy for each of its

appliances to achieve the objective of eq. (4.27).
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(S2) Determine new hourly load profile Dn(t) and calculate the electricity price

and payoff (or benefit).

(S3) Compare the benefit with that from the previous iteration; if no improve-

ment in benefit, the customer will keep the previous strategy, otherwise a new

strategy is adopted and the calculated hourly load Dn(t) is sent to the central

controller with a request for the updated D−n(t) and ηt for the next iteration.

The game will end whenever there is no improvement in each player’s personal benefit

which results from the maximum social benefit of the community. In other words,

the game ends at a Nash equilibrium when the players are unwilling to change their

current strategies if there is no improvement in its benefit. The overall social benefit

for the community will increase for any improvement of a player’s personal payoff.

Further, the operator can terminate the game anytime by broadcasting an hourly

unit price more than once, which facilitates for the microgrid management system to

set the time bound for the electricity allocation process.

4.4 Analysis of the game

Definition 4.1 (Dominant Strategy). A strategy is dominant, if a player is always

better off choosing it instead of choosing all other strategies, regardless of the strategy

chosen by all other players. To be more precise, a strategy is strictly dominant if the

payoff for choosing this strategy is always strictly higher than the payoff of any other

strategy. A strategy is a weak dominant strategy if payoff for choosing this strategy

is as high as the payoff for choosing some other strategies.

Definition 4.2 (Dominant Strategy of MG). Let, Sn , {ltn,a|∀a ∈ An, ∀t ∈ T } be

the set of strategies played by a player n. Sn is dominant if it increases the overall
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social benefit defined in eq. (4.27) and no other strategy can achieve a higher benefit.

If Sn is dominant, we say Sn satisfies (4.27).

At each iteration, player n determines the strategies of its appliances which min-

imize the electricity price and increase the overall social benefit. The strategy Sn is

the best response to the current strategies (S−n) of all the players. The strategies

(S−n) of other players are fixed at the time of optimization. Hence, Sn is a dominant

strategy of all appliances of customer n.

Note: If there exists one (or more) strategy S
′

n which results in the same social

benefit as Sn, then the strategy Sn is referred to as a weak dominant strategy.

Lemma 4.4.1 (Nash Equilibrium). The N player game with a set of strategies

{Sn|n ∈ N} and with objective function (4.27) converges to a Nash equilibrium.

Proof Nash equilibrium: ηt is constant when there is no import and discharge of

energy, otherwise ηt increases with the increase of discharge and/or import energy

(Section 4.2.3).

• case 1 (constant ηt) : The game will terminate immediately with the current

strategy, therefore current strategy of the game is the dominant strategy and

forms a Nash equilibrium. In this case ζ(t) of eq. (4.27) becomes zero ∀t ∈

T , and θ(t) is minimized by charging the EVs beyond their target up to the

maximum capacity, otherwise θ(t) does not have any effect to change the current

strategy of the players.

• case 2 (ηt is an increasing function for any t ∈ T ): Each player n deviates from

the current strategy (to a new strategy S
′

n), as a best response to the other

players current strategies (S−n) to minimize
∑

t∈T

ηt · {θ(t)+ ζ(t)} and to increase

its own benefit (eq. (4.27)). Let ti and tj be two time slots in the simulation time

horizon T , where θ(ti), ζ(tj) > 0 and θ(tj), ζ(ti) = 0. Therefore, by definition
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(Section 4.2.3) ηti < ηtj . Let, the payoff (or overall social benefit) be Z . Now,

player n changes its strategy from Sn to S
′

n, and let, the new benefit be Z
′
.

Then the changes in the benefit of the player became,

(4.28)(Z
′

− Z) = η
′

ti
· θ
′

(ti)− ηti · θ(ti) + η
′

tj
· ζ
′

(tj)− ηtj · ζ(tj)

where θ(ti), θ
′
(ti) are the old and new excess energy, and ηti and η

′

ti
are the unit

prices at ti. Similarly, ζtj , ηtj and ζ
′

tj
, η
′

tj
represent the old and new shortage of

energy and unit prices at tj. Now, according to equation (4.27), the change of

strategy minimizes θ(ti) and ζ(tj). Which definitely forces player n to consume

(and/or charge EVs) energy at ti and seize consumption of those appliances

and/or discharge EVs at tj. We know, βr < βd < βe (Section 4.2.3). Therefore,

ηti = η
′

ti
and ηtj > η

′

tj
while θ

′

ti
≥ 0 and ζ

′

tj
≥ 0. Hence, the overall benefit

will increase. The player n will change its strategy. Conversely, the players

will not change its current strategy if the change causes ηtj ≤ η
′

tj
. The game

terminates where the change of strategy will not improve the benefit of the

player. Therefore, the game always converges to a Nash equilibrium. Further,

at the Nash equilibrium state, the benefit calculated by each user is the social

benefit of the microgrid community because the payoff function of each player

has included the benefits for all other customers.

Lemma 4.4.2 (Optimal Solution). The Nash equilibrium state of N player microgrid

game (in section 4.3) is an optimal solution of the problem.

Proof Let Z be the optimal solution of the problem which produces Nash equilibrium

of the game. For the proof, let us assume that there are at least two slots ti and tj of

player n, where increasing of consumption at ti and decreasing of consumption at tj

produce an optimal solution Z
′
(i.e., increases social benefit from Z). Therefore,

(4.29)Z
′

− Z > 0 =⇒ [ηti · θ(ti)− η
′

ti
· θ
′

(ti) + ηtj · ζ(tj)− η
′

tj
· ζ
′

(tj)] > 0
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But, if such strategy exists for player n, then the player n must play the strategy

because by definition the strategy for Z
′
is the dominant strategy (eq. (4.27)). Either,

no such strategy exists (impossible) or the strategy produces the same results as Z,

otherwise, it is a contradiction.

4.5 Simulation and numerical results

4.5.1 Simulation setup

In this section, we evaluate our proposed real time energy allocation algorithm and

compare the results with those obtained from COPCS [120] based on the observed

load and the observed energy generation. In our proposed model, we consider wind

turbines, each with a maximum radius of 3.5m, air density 1.28 kg/m2, cut-in wind

speed 2m/s, cut-off wind speed 25m/s, Cp = 0.59 with a maximum hourly production

capacity of 200kWh. We also consider photovoltaic energy sources with a maximum

radiation 1000W/m2, panel area 5m2, and with 50kWh production capacity. The

amount of electricity from the RES is predicted for each hour of a day by using the

renewable energy models described in [120]. We consider microgrid communities sized

from 100 to 1.0 × 106 homes for the simulation. For each microgrid community, we

choose the number of RES such that the generated energy can fulfill at least 50%

of the demand. Next, in each time step the energy from the renewable sources for

next 24 hours (starting from noon (0h) to next day before noon (23h)) is amended

(with random values) based on the multinational model forecast error growth chart

[31]. The load amendments includes variation of switch on and/or switch off time,

amount of target energy consumption, addition of new appliances, and elimination

from existing appliances of homes.

In the simulation, we choose 10 to 15 appliances at random for each home. Such
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appliances include hard (type I) loads (7 to 10), soft (type II & III) and mixed (type

IV) loads (3 to 5). Hard loads with daily and hourly consumption include electric

ovens, microwave oven, light bulbs, flat screen TV, refrigerators, heating system,

and laptops. Soft loads include washing machines, dishwashers, dryers, and battery

charger. For detailed specification, see [120]. In the simulation, we choose 0 to 2 EVs

randomly for each home. Each EV applies 2.0 to 6.0 kW (0.5 kW interval) per hour

charging and discharging rate with 24 kWh capacity, and randomly selected 3.0 to

7.5 kWh minimum discharge energy level. We assume the charging and discharging

efficiency of each EV to be 0.85 (85%) and 0.95 (95%) respectively. The arrival and

departure of each EV (66% of all EVs) in a time slot follows a Poisson distribution

and the initial Linitn,a (Linitn,a ≥ L
min
n,a ) and target energy level (LTn,a is in between 70%

to 100% of Lmaxn,a ) are selected randomly, with the restriction that the time span of

each EV is sufficient to charge its battery to the target energy level. We have also

considered certain real life EVs pattern where most of the EVs (34%) are unavailable

during the morning to afternoon. In this case, we took the EVs arrival and depar-

ture pattern extracted from the investigation of NHTS [109]. In addition, we also

admit mixed mode appliances such as hot water tank (capacity 60 gallons, energy

consumption 1.2kW, minimum water level 60% of the capacity, minimum and maxi-

mum water temperature 49◦C and 60◦C), ice bank cooling system (capacity: 2000kg,

initial freezing time: 8 hours with 2kW, minimum ice temperature: −5◦C to −3◦C,

consumption rate (in operation): 1.2kW), etc. In case of electricity price we admit

the charging rate from Hydro ONE (see, http://www.hydroone.com/TOU), add in-

centive (CAD$0.02) for EV discharge and CAD$0.0012(de)
1.2 for each 1kWh energy

imported from the grid.

We use C++ MPI, IBM CPLEX concert technology to develop the simulation

programs. The dominant (best response) strategy of each play (iteration) of a player
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is determined by the IBM CPLEX MILP optimizer. The simulation is executed

several times with various setups to get more accurate results. The simulations were

executed on HP cirrus cluster which composed of composed of 100 computing nodes

with AMD Opteron processors x86, 64 bit, 4 to 8 cores in our university.

4.5.2 Numerical results

To evaluate the performance of the DRTA algorithm, we execute both allocation

schemes on variable sized residential microgrid which comprises, 100 · · · 1000 homes.

At each time slot, the microgrid EMS estimates the electricity generation (a day

ahead) for the future slots and correct the errors of previous prediction. We consider

current time slot ts in real time; hence the energy generation at ts gives the actual

amount of electricity. At this slot, all homes correct their appliances predicted op-

erational time slots and amount of electricity consumption. All homes are playing

the game independently to increase the overall social benefit in a rational way. The

microgrid EMS allocates energy to the appliances for the slot (ts) as soon as the

game converges, forward to the next time slot, and repeat the whole procedure again

and again. At the end of the simulation of the 24 time slots, the centralized optimal

algorithms (COPCS) is executed using the observed load and amount of energy gen-

erated. Next, we run the simulation for 2K, 5K, 50K, 100K, 200K, 500K, and 1M

homes and evaluate the performance of the proposed DRTA algorithm.

Fig. 4.1 shows the hourly amount of imported electricity of the day for COPCS,

DRTA and a naive (UREG) system for the microgrid with 500 homes. The UREG is

a consumption scheduling scheme that allocates electricity to the appliances as soon

as it receives a consumption request [120]. The figure shows that the total amount

of electricity imported by UREG is always higher than the amount of electricity

imported by DRTA and COPCS. Next, we found that the distribution of the hourly
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amount of electricity imported in the UREG system is irregular, which in effect

increases the electricity production overhead and price as shown in Fig. 4.2. However,

the distribution of imported electricity in COPCS and DRTA is almost regular. The

reason of this improvement in COPCS and DRTA schemes over UREG system is that,

both schemes are able to predict future loads and electricity generation whereas the

UREG schedules appliances and EVs without any prior knowledge. We also observe

that COPCS imports smaller amount of electricity than DRTA (Fig. 4.1), and that

the hourly distribution of the amount of imported energy is more linear than DRTA,

but for both cases the deviation is very small as shown in Fig. 4.2. The proposed

DRTA scheme optimizes the electricity allocation and schedules appliances with the

knowledge of the current energy production and future estimation of energy and load;

however, the COPCS scheme schedules appliances based on observed energy and

load. In reality, however, the COPCS scheme based on the observed load and energy

generation is not practical and is used as a benchmark for evaluating the efficiency of

DRTA. Further, DRTA outperforms the COPCS scheme based on a day ahead load

and energy prediction (Fig. 4.3). Note that both COPCS (based on prediction) and

DRTA predict future load and electricity generation but the real time adjustment of

load and energy prediction of DRTA significantly improves performance and energy

efficiency over COPCS.

One of the main goals of IEA 2DS is to build energy efficient equipment and/or

to improve the energy efficiency of the existing system. Fig. 4.4 demonstrates the

improvement of energy efficiency of the microgrid, as well as the appliances connected

to it. The DRTA allocates energy in a way that all the appliances can use the

microgrid energy efficiently. This helps the energy sector to build a sustainable energy

system. Fig. 4.4 clearly shows that DRTA and COPCS schemes perform better and

are more energy efficient than UREG. This is because DRTA and COPCS regulate
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Table 4.2: Energy efficiency : increase Microgrid efficiency (%).

Home E/L Saving (%) Home E/L Saving(%)
1.0× 103 0.57 29.43% 5.0× 104 0.79 46.27%
2.0× 103 0.81 39.23% 1.0× 105 0.94 67.18%
5.0× 103 0.80 44.39% 2.0× 105 0.98 81.08%
1.0× 104 0.99 70.56% 5.0× 105 0.96 76.32%
2.0× 104 0.97 72.45% 1.0× 106 0.93 72.74%

Table 4.3: Fairness Index: UREG Vs. DRTA.

No. Home Fairness Index No. Home Fairness Index
UREG DRTA UREG DRTA

1.0× 103 0.96 0.99 5.0× 104 0.87 0.97
2.0× 103 0.95 0.99 1.0× 105 0.85 0.97
5.0× 103 0.93 0.98 2.0× 105 0.86 0.98
1.0× 104 0.91 0.98 5.0× 105 0.87 0.97
2.0× 104 0.89 0.99 1.0× 106 0.82 0.97

and energy cost savings of the microgrid/smart grid. We are unable to present the

percentage of electricity cost saving for COPCS due to the extremely long running

time and large memory requirement to solve the model. From table 4.2, it is evident

that DRTA increases the % electricity cost saving for the microgrid community as the

energy to load ratio (column 2 & 4) increases. Indeed, DRTA flatten the load curve

to minimize the distance between hourly load and energy which results in minimum

imports and decrease the hourly electricity charges for the customers. Also, the higher

energy to load ratio in a randomized system usually increases the deviation (positive

and negative) between hourly load and energy profiles.

Finally, we show that the DRTA scheme not only increases the social benefit but

also increases the fairness of electricity billing for the customers. Table 4.3 demon-

strated the fairness index of the proposed DRTA and UREG schemes. To calculate

the fairness index, we use the Jain’s fairness index described in [61]. Here, for a given
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vector yn ∈ R
|N |
+ , let J : R

|N |
+ → R+ be the fairness index given by,

J(y) =

(
∑

n∈N

yn)
2

|N |·(
∑

n∈N

yn2)
, (4.30)

where yn represents the average electricity unit price for home n that is calculated

as, yn =

∑

t∈T
ptn

∑

a∈An

∑

t∈Tn,a

ltn,a
. In table 4.3, the DRTA scheme constantly shows a very high

fairness in electricity billing for the customers. This is because the DRTA scheme

decreases the electricity price to a near-optimal value by lowering the amount of

import energy and increase the use of local energy.

4.6 Conclusion

We developed a real-time distributed model for energy allocation method to minimize

the electricity cost and increase the overall social benefit of the microgrid customers.

The DRTA scheme reduces the time to obtain a solution for large residential microgrid

and transfers responsibility on the consumer to make the decision of their RES energy

use, schedule their appliances and EV for power consumption. We simulated the

DRTA model and compared the results with the centralized COPCS scheme which

was illustrated in Chapter 3. The DRTA model offers better electricity price for

the microgrid customers because it considered immediate demand and decided the

allocation of power instantly. The design may help the microgrid customers to reduce

their electricity costs but does not support microgrid operator enough for a day ahead

of planned generation or purchase of electricity from the grid.
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Chapter 5

Demand-Side Management by

Regulating Charging and

Discharging of the EV, ESS, and

Utilizing Renewable Energy

In Chapter 4 we described an online electricity allocation model, DRTA to allocate

power to the microgrid customers according to the immediate need by adjusting the

consumption scheduling for the current time slot, and future anticipated demands.

The DRTA scheme exhibits outstanding performance and results in continuous mod-

ification of the electricity usage pattern in each time slots which may increase the

instability in the generation plant. To minimize the uncertainty in the production

plant, we develop a real-time decentralized demand-side management (RDCDSM)

system to help the energy producer or microgrid operator to sketch a price-ware con-

sumption profile for the next day and deliver electricity to the customer according to

day-ahead plan.
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5.1 Motivation

The DRTA method in the previous chapter allocates electricity based on current

demand and adjust the consumption schedule for the rest of the day. The DRTA

scheme is a game based mechanism design which gives preference to the user choice

to determine the current allocation and future consumption profile such that the

social benefit of the whole community is increased conversely reduce the electricity

cost. The DRTA method may introduce instability in power generation and price

because, in each time slot, the DRTA system may change the consumption amount for

current and rest of the time slots. Therefore production plant may face an uncertain

demand which may differ from the original estimation in the previous time slot. In

some cases, this may force the utility to start or shut down a generator instantly or

increase or decrease the amount of generation due to changes in consumption pattern.

Generators need a certain amount of time to lowering or raising the production;

therefore immediate changes in use may increase the electricity generation costs or

cannot be honored at all.

To solve this problem and balancing between electricity prediction and consump-

tion, we review some related work in section 2.3 and proposed RDCDSM scheme

which initially encourages customers to estimates their loads, renewable generation

and processes the predicted load by sharing energy and storage capacities among the

users to obtain a flat load curve for the operator. Thus, results in lower electricity

price. Then, at the time of consumption customers are again encouraged to minimize

the variation from the estimated price-ware predicted load by sharing and depreciate

the differences by using energy stored in the storage in case of shortage or saving the

excess energy.

111





t. At consumption time, each customer compares its real demand with the proposed

predicted demand ptn. Any discrepancy/deviation triggers the customers to play an

allocation game between them to minimize the gap between the predicted and actual

demands. For all t, our proposed system allocates electricity from the microgrid to

every home based on the home’s actual consumption.

To develop a mathematical model for real-time demand-side management, we

analyze and investigate the prediction of residential loads, energy generation from

RESs, ESS features, as well as the EVs’ driving schedules and distances. For simplicity

purposes, we illustrate the consumption pattern of each of the components of the

residential home. We present the mathematical model of each of the elements before

formulating the RDCDSM problem.

5.2.1 Residential Load (ltn,p)

Most practical load forecast models are based on offline schemes, where predictions

are conducted in advance. The uncertainty of prediction increases with the increase

of the forecast time [121]. The STLF is thus more accurate than MTLF (midterm

load forecast) or LTLF (long-term load forecast) [121]. Currently, several STLF tech-

niques exist, but aside from their varieties, these methods mainly depend on historical

demands, weather forecasts, and other variables to estimate the aggregated demand

of all consumers [57]. However, the efficiency of any forecasting algorithm depends

not only on the accuracy and time horizon of the forecast but also on its capabil-

ity to reduce the complexity, cost, and memory needed for predicting the demand

of customers [57, 105]. In the proposed system, we suppose that each residence is

connected to a HEMS. These HEMSs are enabled to assist consumers in forecasting

their demand based on an average household demand [6], refine and send the data

over a data network to other customers and the operator [57]. Moreover, the HEMSs
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provide a real-time two-way interaction with the microgrid operator and other clients.

A consumer first sends its predictions for the next 24 hours at the start of the day.

Next, at each time slot, a consumer determines its consumption strategy for its ac-

tual demand in the current time slot, and modify its forecast demand for the rest

of the day. This forecasting approach reduces the complexity of real-time electricity

demand by shifting the forecast burden from the operator to the customers, enhances

the accuracy of the predictions. Now, let the predicted household load of n be ltn,p

and the predicted load of the microgrid be δtp at t then,

δtp =
∑

n∈N

ltn,p, ∀t (5.2)

5.2.2 Renewable Energy (ωtn,p)

It is assumed that RESs are available for some residences. RESs such as Solar PV

and wind turbines generate electricity in a random manner [117]. However, the RES

provides a great promise for significantly improving the efficiency of distribution, and

residential renewable energy generation is becoming more popular as the installation

cost is decreasing and electricity prices are rising [65, 117]. Hence, several stochastic

models have been developed to forecast the energy generation over time, and thereby,

to enhance RESs exploitation and penetration in smart grids. In our proposed system,

the customer decides whether to store the energy generated by the RES or to supply it

to other clients, according to the power demands in every real-time slot (ts). Let ω
t
n,p

be the predicted amount of electricity used from RES where the predicted generation

is denoted by Ωt
n,p and entire predicted generation at t be ωtp. Then,

(5.3)ωtn,p ≤ Ωt
n,p

(5.4)ωtp =
∑

n∈N

ωtn,p, ∀t
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5.2.3 Energy Storage System - ESS (αtn,p)

The introduction of new types of batteries with higher storage capacities has en-

couraged ESS to emerge as a way to improve the power management in smart grid

[127, 37]. ESSs play a vital role in matching the generation with demand which leads

to an increase in the efficiency and reliability of the system against uncertainties. In

general, every home with a RES has an ESS installed to store the excess energy which

is used later when the demand is high. Now, let the charging and discharging strate-

gies of an ESS b of n at time t be αtn,b ∈ {−X
low
n,b , · · · , 0, · · · , X

high
n,b }, where −X

low
n,b

denotes extreme discharge rate and Xhigh
n,b denotes the maximum charging rate of a

given ESS b. Let the amount of charging and discharging of ESS of n at time t be

ctn,b and d
t
n,b, then ∀t we have:

0 ≤ ctn,b ≤ (Xhigh
n,b · η

t
n,b) (5.5)

0 ≤ dtn,b ≤ (X low
n,b · (1− η

t
n,b)) (5.6)

where, ηtn,b is a binary variable; ηtn,b = 1 indicates that ESS b is charging at time t,

otherwise it is discharging. Let Φc
n,b, Φ

d
n,b be the charging and discharging efficiency

of b then,

αtn,b =
ctn,b
Φc
n,b

− dtn,b · Φ
d
n,b. (5.7)

Note that ESS’s has a maximum capacity and minimum discharge level. For both

safety and longevity, this should always be maintained. Thus, for any time slot t,

ESS b must not discharge below its minimum discharge level Cminn,b , and charge over

the capacity Cmaxn,b . Thus,

Cmaxn,b ≥ C
init
n,b +

T
∑

t=ts

(ctn,b − d
t
n,b) ≥ C

min
n,b (5.8)
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where, Cinitn,b is the initial energy stored in the ESS at the start of the day. Now, let

the probable strategy of battery b at time t be αtn,p, then αtn,p = αtn,b. We assume

that each residential customer has an ESS which is connected to the RES.

5.2.4 Electric Vehicle (θtn,p)

Large-scale energy storage requires vast land spaces, high installation, operation, and

maintenance costs [121, 77]. Conversely, compared with oversized storage devices,

plug-in EVs can be used as a cheap way to store and transport the surplus of energy.

EVs may appear as loads during charging periods, meanwhile they may also be used

as storage to store the surplus of energy or discharge stored energy to balance the

demand and generation in the smart grid[77]. Hence, EV may charge, discharge, or

remain idle throughout the day. According to [92] we assume the EVs arrive home in

the evening an arbitrary initial energy level. An EV stays connected to the home for

a random amount of time and then leaves home in the morning for the next driving.

When connected to the microgrid, the energy stored in a given EV must attain a

certain target level required for the following driving schedule. Let the arrival and

departure time of a given EV e of consumer n be tan,e and t
d
n,e respectively. Also, let,

Tn,e be the set of time slots during which an EV e of n is connected to the grid, where

Tn,e , {t
a
n,e, t

a
e +∆t, tae + 2 ∗∆t, ..., tdn,e}. Now, suppose the charging and discharging

rate of the EV be θtn,e ∈ {−Y
low
n,e , · · · , 0, · · · , Y

high
n,e }; where −Y low

n,e denotes extreme

discharge rate and Y high
n,e denotes the maximum charging rate. For EVs, similar to

the ESSs, equations (5.5) to (5.8) must be satisfied only for timeslots t ∈ Tn,e. Let

the amount of charging and discharging of an EV e of consumer n at time t be rtn,e

and vtn,e accordingly, then:

0 ≤ rtn,e ≤ (Y high
n,e · ζ

t
n,e) (5.9)
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0 ≤ vtn,e ≤ (Y low,e
n,e · (1− ζtn,e)) (5.10)

θtn,e =
rtn,e
Φr
n,e

− vtn,e · Φ
v
n,e. (5.11)

Where, ζtn,e is a binary variable and ζtn,e = 1 indicates EV charging at time t, otherwise

discharging, and Φr
n,e, Φv

n,e denote the charging and discharging efficiency of EV.

Similar to ESS (eq. (5.8)), for any time slot t, EVs’ strategy must satisfy,

Rmax
n,e ≥ R

init
n,e +

tdn,e
∑

t=tan,e

(rtn,e − v
t
n,e) ≥ R

min
n,e , ∀t ∈ Tn,e, ∀e ∈ V (5.12)

where, Rinit
n,e , R

max
n,e and Rmin

n,e are the initial, minimum discharge and maximum ca-

pacity of the EV. Moreover, before leaving the home for the next driving schedule,

the energy stored in a given EV must attain a certain target level Ln,e (in KWh).

Then, for an EVs the following equation must hold,

Rinit
n,e +

∑

t∈Tn,e

(rtn,e − v
t
n,e) ≥ Ln,e (5.13)

In general, an EV consumes 0.13− 0.20 kWh/km [92] and the average daily trip

length of 90% of EVs is between 20 to 60km [131, 94, 104]. Most customers also use

their vehicles from 6 : 00 am to 10 : 00 am to drive to work and return home after

work from 4 : 00 pm to 8 : 00 pm. Let τn,e be the trip length of an EV and the

amount of energy stored in an EV (before the trip) be Ln,e; then, the initial energy

stored in an EV (when arrived at home) can be calculated as,

Rinit
n,e = Ln,e − τn,e ∗ ρn,e (5.14)

where ρn,e is an amount (kWh) of electricity consumed by the EV to drive 1km. Now

Let us assume that a customer has an EV. Then the probable EV consumption profile
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θtn,p at t can be assigned as θtn,p = θtn,e

5.2.5 Problem Formulation

As discussed earlier, we assume the microgrid operator plans its energy production

and/or purchase a day ahead, based on the aggregate demand it received from its

users. However, the actual user’s consumption and need for energy during the day

may vary from its predicted demand. The frequent changes of the demand force

the microgrid to produce a variable amount of power which may not be possible, or

expensive, on a short notice. Moreover, the start or shut down of a generator to

match the user variable demands involve substantial cost and time. Thus, our system

will help the microgrid operator as well as the users to close the gap between the real

time and instantaneous actual and predicted aggregate demands. The integration

of ESS, EVs, and an intelligent energy management system may help in mitigating

the problem and thereby reduce the electricity costs and instability in the power

generation. We address these issues and design an intelligent solution (RDCDSM) to

reduce the electricity costs by flattening the predicted demand at the start of a day.

The system delivers electricity to the customers according to their actual demands,

such that the deviation between nominated and anticipated amounts is minimized.

The RDCDSM has two consecutive phases: (i) prediction or planning phase and (ii)

allocation phase.

Prediction phase

At the start of each day, each home predicts its load, renewable energy generation,

EV arrival and departure times and target energy. Next, all customers individually

optimize their anticipated consumption pattern to reduce the electricity cost, and then

sends the resultant predicted load to the operator. To devise a fine-grain predicted
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consumption profile, each customer plays a mixed strategy with others to determine

the consumption strategy which is expressed by the variables, αtn,p, ε
t
n,p, θ

t
n,p, ω

t
n,p

∀t ∈ T , where εtn,p is the charging or discharging strategy of the MESS (microgrid

ESS). Let γtn be the feasible strategy of n such that γtn = {αtn,p, ε
t
n,p, θ

t
n,p, ω

t
n,p}.

Now, let γt−n be the strategy of all other customers which results in a consumption

pt−n at t given by,

pt−n =
∑

m∈N\n

(ltm,p + αtm,p + εtm,p + θtm,p − ω
t
m,p), ∀t ∈ T (5.15)

and consumption ptn of customer n is calculated as,

ptn = (ltn,p + αtn,p + εtn,p + θtn,p − ω
t
n,p), ∀t ∈ T (5.16)

where (ptn + pt−n) ≥ 0, ∀t. Let γt−n or pt−n be known to customer n which is the

current load of all other customers due to their current consumption strategies. Each

time a customer sends its load profile to other clients when the change of its previous

strategy is profitable. Upon receiving the load profiles from other clients, customer n

determines its next strategy γtn ∀t to increase the payoff which is given by,

σn(γ
t
n, γ

t
−n) = Z −min

[

∑

t∈T

(aP 2
t + bPt + c)

]

(5.17)

where Z is a positive constant, a, b, c are positive coefficients and a >= b. aP 2
t +bPt+c

is a quadratic cost function for electricity. The variable Pt is the total amount of

electricity which will be consumed at t and it is defined as,

Pt = ptn + pt−n, ∀t ∈ T (5.18)
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Pt ≥ 0, thus the cost function aP 2
t + bPt + c is convex and the strategies in γtn are all

continuous and therefore the game will converge to a Nash equilibrium state and gives

an optimal solution. At a Nash equilibrium state, let the strategy of any customer n

be γt∗n , then for any other strategies γtn, σn(γ
t∗
n , γ

t∗
−n) ≥ σn(γ

t
n, γ

t∗
−n). Once done, then

all customers send their fine-grain predicted demand p∗tn , ∀t (for the strategy γt∗n ) to

the microgrid operator. Upon receiving the predicted demand, the operator sets a

plan to produce or purchase electricity from the grid. Hence, the day-ahead predicted

load (P t
N , ∀t) determined by the microgrid operator is,

P t
N =

∑

n∈N

ptn, ∀t ∈ T (5.19)

Allocation Phase

Unfortunately, the uncertainties in household demands, RES generation, EVs arrival

and departure times and target energy may vary at the time of consumption from

the predicted one. In that case, each customer needs to adjust its use of electricity

to reduce the gap between the actual and the predicted demand. Otherwise, the

microgrid will respond by purchasing the extra energy needed (to satisfy the demands)

and hence charges an extra cost (or penalty) proportional to the deviation between

the actual and predicted demand of electricity. Let us assume that the current time

slot is ts. Then the optimal consumption determined in the prediction phase from

ts to |T | may not be optimal in the current scenario. Hence, each customer plays

mixed strategy of a new non-cooperative game, at ts, with the current (real time)

need and the modified (adjusted) predicted demand for rest of the day. Therefore,

the objective of the play is to reduce the penalty for the deviation of present and

anticipated future needs from that of the submitted consumption pattern. Let Q be

a fixed amount of additional cost (penalty) charged for one unit of electricity due to
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the deviation from the original consumption profile. Then, the payoff for customer

(n) can be calculated as,

σ̄n(γ
ts
n , γ

ts
−n) = Z −min

T
∑

t=ts

Q|P t
N − p̄

t
n − p̄

t
−n| (5.20)

where p̄tn is the current (ts) and future demands based on the current and projected

household demands l̄tn,p, EVs’ consumption (charging and discharging) θ̄tn with respect

to new arrival and/or departure times and target energy, ESS consumption ᾱtn, current

and modified predicted generation of RES w̄tn, and new charging and discharging

strategies of the MESS P t
N . The absolute part of the payoff (eq. (5.20)) can be

simplified as,

σ̄n(γ
ts
n , γ

ts
−n) = Z −min

T
∑

t=ts

Qyt, (5.21)

such that,

yt ≥ (P t
N − p̄

t
n − p̄

t
−n) (5.22)

yt ≥ (p̄tn + p̄t−n − P
t
N ) (5.23)

Where p̄tn for the strategy γtsn (θ̄
t
n, ᾱ

t
n, ε̄

t
n, w̄

t
n) at time ts can be determined as,

p̄tn = l̄tn + ᾱtn + ε̄tn − w̄
t
n, ∀t (5.24)

where ts ≤ t ≤ |T |, and p̄t−n is,

p̄t−n = l̄t−n + ᾱt−n + ε̄t−n − w̄
t
−n, ∀t (5.25)

Similar to the game in the earlier Section 5.2.5, the allocation game also terminates

at a Nash equilibrium state where no consumer is willing to change its strategy which

results in reducing the payoff.
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Centralized Allocation Model with Naive Prediction

The centralized allocation model can easily be realized by modifying the parameter

ptn of eq. (5.18) and the terms ltm,p, α
t
m,p, ε

t
m,p, θ

t
m,p, ω

t
m,p of eq. (5.15) to variables.

Hence, the solution of the model with the objective function defined by eq. (5.17)

results in the optimal predicted consumption profile of the microgrid. All customers

transfer their predicted load profile, RES generation, EV and ESS parameters (for a

day) to the microgrid operator. For each time slot, the allocation of the electricity

for each home can be determined, by the operator, by solving (5.21) with the related

constraints where p̄t−n and the terms in eq. (5.25) are considered as variables. Hence,

the objective function for the centralized model is,

min

|T |
∑

t=ts

|P̃ t
N −

∑

n∈N

p̃tn|, ∀ts ∈ T (5.26)

where P̃ t
N is the predicted load, which is determined by the microgrid at the begin-

ning of the day by accumulating raw predicted load sent by the customers (naive

prediction). Here, P̃ t
N =

∑

n∈N

(ltn,p + θtn,p − ωtn,p) such that P̃ t
N ≥ 0, which keeps a

balance between energy production and consumption. θtn,p designates the charging of

EV; here, as soon as an EV arrives, it starts charging at full charging capacity until

a target (Ln,e) is achieved. p̃
t
n is the load which presents the current (i.e., in time slot

ts) and modified future demand of customer n.

5.3 Numerical Evaluation

5.3.1 Simulation Setup

We consider grid connected microgrids with 100, 200, 300, · · · , 1000 homes connected

with each other through an electrical and a data network. Each customer has an
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energy management system (HEMS) which is responsible for forecasting the load,

RES generation, EV arrival and departure times and target energy level, and for

sending (and receiving) information about energy, load, and other control information

to other HEMSs. Each HEMS runs the energy optimization (RDCDSM) model to

optimize the energy usage of the owner. A data network carries load and control

information from one HEMS to other HEMSs as well as to the operator. The HEMS

forecasts the household load for a day based on the average residential load hourly

load which given in [6, 121]. A typical household in U.S./Canada consumes 11,000

kWh to 12,000 kWh whereas in China a customer uses 1,349 kWh per year. For

our simulations, we assume that each household consumes around 4 to 20kWh per

day. We consider RESs with capacities between 0.5 and 1 kW, and the long term

RES generation during a day and forecast is presented in [120]. Both EV and ESS

(such as Tesla, Nissan, Toshiba, Toyota, and etc) configurations are assumed as shown

in Table 5.1. The arrival and departure times, and consumption (kWh/Km) while

Table 5.1: EV and Storage (ESS) configuration

Type Capacity Min Capacity Max Charging Max Discharging

(kWh) (kWh) (kW) (kW)
ESS 6.4, 6.3, 10.0 0.32,0.32, 0.5 2.0, 2.0, 2.5 2.0, 2.0, 2.5
Centralized ESS 2500 500 740 740
EV 90, 85, 70, 60, 24 9, 8.5, 7.0, 6.0, 2.4 9, 9, 9, 8, 3 6, 6, 6, 5, 2.5

driving are assumed as discussed in Section 5.2.4. For electricity price, we assume the

values of coefficients a, b, and c to be 0.0001, 0.0001, and 0.05 respectively. We also

assume the penalty (Q) for each kWh is 0.01 $. We use Cplex and Java to develop

the simulation program and execute the simulation on a desktop computer running

Linux OS with 8 GB RAM, Intel Core i7 processor.

5.3.2 Numerical Results

Fig. 5.2 presents the predicted (naive) load, actual load, and hourly electricity deliv-

ery by the centralized method to all 1000 customers throughout the days of a week. In

123















distribution system) that due to capacity and other constraints the ESSs and EVs

may not collectively supply energy to a time slots where demand is very high. On the

other hand, RDCDSM system uses ESSs and EVs optimally such that RES energy

can be used properly. It is also found that the penalty is higher in high load duration

compare to the light load period. This is evident because the actual demand changes

more in high load compare to the low or moderate amount of load duration.

5.4 Conclusion

We formulated two separate non-cooperative games with mixed strategy profiles to

generate the price-ware estimation of electricity use for the next day and deliver power

in real-time according to the price-ware predicted load. Moreover, we developed

a simulation program to evaluate the validity and performance of the RDCDSM

method. In theory, we showed that the proposed RDCDSM scheme converge to an

optimal Nash equilibrium state and produce optimal results. We believe that the

RDCDSM system will help the energy planner to plan for electricity generation and

reduce the power production costs while providing the quality of electricity service to

the customers.
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Chapter 6

A Novel Algorithm for Optimal

Electricity Pricing in a Smart

Microgrid Network

In this chapter, we investigate and present a new algorithm for energy management

and pricing of electricity in a microgrid network (MGN). The primary goal of this

methodology is to control the flow of energy among the microgrids to minimize trans-

mission (T&D) and generation costs of electricity for MG customers.

6.1 Motivation

It is anticipated that shortly the energy network may contain hundreds and thou-

sands of microgrids (which are using DSM, such as DRTA, RDCDSM, etc.) may

need to share electricity and storage to meet their demands as a whole. The MGN

network creates new market scenarios where once always consumer may act as a sup-

plier. It is nearly impossible for these new providers to enter the existing regulatory

market which is controlled by a governing body. For the benefit of both supplier and
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(feeders) be L which are connected with each other using a bidirectional LV/HV

interfaces (transformers) as shown in Fig 6.1. The set of feeders represents the virtual

connections between MGs, therefore creating our MGN. Let a set of all pairs (seller,

buyer) of MGs be Ki (Ki ⊂ N N ), each connected through a feeder li (li ∈ L).

A feeder li has a capacity limit Γi. The flow of energy among them is controlled

by mutual decisions of the management system. At any instance of time, let M

and B be the set of sellers and buyers, where M∩ B = ∅ and M∪ B ⊆ N . Each

MG has a set of DGs Wn (n ∈ N ), primarily to fulfill the local demand. A MG

sells energy in case of surplus or buys energy, when the demand is more than its

production. Let cm,b be the cost of transporting one unit (1 kWh) of electricity from

seller m (m ∈ M) to buyer b (b ∈ B), and En,w (n ∈ N , w ∈ Wn) be the pre-

authorized amount of electricity generation of energy source w with capacity EC
n,w of

smart microgrid n. Here, En,w ≤ EC
n,w, and the pre-authorized generation (En,w) of

DG w of n is controlled by the energy management system (EMS). The EMS decides

the price (µ), to satisfy the MGN electricity demand D̃B (total amount of electricity

buyers want to buy), from the prices (monotonic non decreasing) proposed by each of

the seller MGs. Then, the buyer b (b ∈ B) contacts the sellers (M) to buy electricity

from them to compensate for its shortage.

6.2.1 System Assumption

We employ ANSI C84.1 standard voltage rating for the MGN. Similar to several Volt-

VAR optimization research, we assume that the MGN system uses a lower voltage

(from range A of C84.1) as the service voltage to minimize the losses. Each of the MGs

has a linear vector that comprises the cost of electricity transportation from the sellers

to the buyers, and the capacity of the transmission lines. To minimize the thermal

losses, we assume the maximum capability of the transmission line is predefined,
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Table 6.1: MEPM mathematical notation

Notation Description

N Set of Microgrids
L set of transmission lines
Ki set of microgrids connected by transmission line li
Γi capacity of the feeder li
B,M Set of Buyers and Sellers
b, m buyer and Seller
n a microgrid
Wn Set of DGs in a Microgrid n
En,w amount electricity needed from DG w of n
ECn,w generation capacity of DG w of n

D̃B buyers excess demand or shortage
w generator of a microgrid
µm,w(Em,w) marginal cost function for w of m
cm,b Electricity Transmission Cost from m to b in $/kWh
µ(E) combined or overall marginal cost function
E Total Generation ofM

Rlim,b, X
li
m,b resistance and reactance of li from m to b

Im,b amount of current flow from seller m to buyer b
πm,b capacitance of capacitor bank added to the input of b
xm,b amount of electricity transported from m to b without loss
Vb voltage at buyer MG (b) (predefined)
xdm,b electricity transmission loss from m to b

Vm voltage at seller MG m (predefined)
x̃m,b Actual amount of electricity transferred from m to b with losses

D̃b excess demand or shortage of b

Ẽm Excess or surplus of m
Γi transmission capacity of the line li connecting Ki

µl lower bound overall marginal cost
µu upper bound overall marginal cost

µo, P̂ qB pair of optimal marginal and T&D costs

P̂ lB, P̂
u
B lower and upper bound T&D costs

Dm demand of seller m
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whether they use a shared or dedicated transportation system. Also, transmission

cost cm,b is payable to the owner of the transmission and distribution network which

is imposed by the transmission and distribution operator in a competitive electricity

market. The transmission is equipped with VAR compensation component at the

receiving point to raise the power factor to unity (or near unity). We also assume that

i) bi-directional electricity flow, ii) coupling between microgrids, and iii) integration

of renewable energy sources to the grid should comply with the standard found in

[24, 8, 89] and IEEE1547A, IEEE1547.4 standard. The energy generated from the

renewable sources in predicted using the model described in [120].

6.2.2 Marginal Cost & Cost Function

It is widely accepted that the cost functions are cubic in nature (approximated) but

in reality the only and most important feature of the cost curve is to be monotonic

non-decreasing [45]. The cost of a product (such as electricity) is dependent on

various factors such as, quantity, investment, labor, fuel (such as gas, oil, wind, solar

radiation etc), market demand, establishments, etc. Therefore, it is nearly difficult

to express the cost by a regular curve (function) [45, 46, 51, 102]. The truth is that a

unit cost (marginal cost) or total cost never decreases with the increase of the amount

of production. The amount of production is determined by the total demand of a

market for an instance of time. Let Em,w be the amount of electricity generated by a

generator w of a seller microgrid m; then the total cost of producing Em,w is [45, 102]:

C(Em,w) = v(α,Em,w) + cEm,w + d, (6.1)

where α, c, d ∈ R+, and c & d are the minimum cost (fixed) for producing one unit of

electricity and producing nothing respectively, which is dependent on capital or initial
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The marginal cost is a non-decreasing monotonic function, and it can be deter-

mined by the first order derivative of the total cost function. Hence, the marginal cost

function can be expressed by a linear, quadratic, step, piecewise convex or nonlinear

non-convex cost-function (see fig. 6.2). For simplicity, most researchers assume the

marginal cost or cost function to be convex or approximate it near to a convex func-

tion [45, 93, 53, 125, 133]. In reality, however, this is not accurate; the marginal cost

can not be expressed by a regular function such as linear, nonlinear, convex. Indeed,

it is a function which is irregular in nature and non-decreasing with the increase of

the production quantity. Also, the marginal cost function of a company having more

than one generator is more complex and certainly nonlinear non-convex, even if the

individual cost function is linear [93, 46]. The operation and maintenance cost of the

non-renewable energy sources increase with the amount of production. Therefore, the

marginal cost described in the Appendices (from 6.2.2 to 6.2.2) are suitable for the

non-renewable energy sources. Whereas the operation and maintenance cost of the

renewable energy sources barely increases with the amount of the electricity genera-

tion. The LRMC (long run marginal cost) also known an LCOE (Levelized cost of

electricity) is used to determine the energy cost of the renewable energy sources (see

section 6.2.2).

Quadratic Marginal Cost function

It is widely accepted that the total cost functions are cubic in nature [45] and accord-

ing to eq. (6.1) the cubic cost function for electricity is defined as [45]:

C(Em,w) = αE3
m,w − βE

2
m,w + cEm,w + d (6.3)
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where α, β, c, d ∈ R+ and therefore, the marginal cost function for cubic cost is

quadratic (def. 6.1, see Fig. 6.2) [45],

µm,w(Em,w) =
∂C(Em,w)

∂Em,w
= 3αE2

m,w − 2βEm,w + c (6.4)

Fig. 6.2(c) shows the quadratic marginal cost curve. For the monotonic non-decreasing

quadratic cost function, we assume α ≥ β in eqs. (6.3) and (6.4). Here, c is the long

term minimum cost for one unit of electricity production. Eq. (6.4) determines the

marginal cost for the amount of generation from generator w of m. Now, let the

marginal cost µm,w(Em,w) for Em,w be given as µ, such that µm,w(Em,w) = µ. Then,

by solving (6.4), a utility company can determine the maximum amount of electricity

which needs to generate from a certain generator when the marginal cost is given,

thus

Em,w =
2β +

√

4β2 − 12α(c− µ)

6α
; Em,w ≤ EC

m,w (6.5)

otherwise,

Em,w = EC
m,w (6.6)

Here the generation is only possible when µ ≥ c.

Linear Marginal Cost function

Similarly, marginal cost for a quadratic cost function is linear i.e.

µm,w(Em,w) = αEm,w + c, (6.7)

where α and c are constants. For the linear marginal cost, when the marginal cost (i.e.,

µm,w = µ) for the generation is known, then the amount of generation is determined
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as,

Em,w =
µ− c

α
; where Em,w ≤ EC

m,w (6.8)

otherwise, eq. (6.6), and the generation is possible when µ ≥ c.

Piecewise Marginal Cost function

Sometimes a marginal cost function is expressed as a piecewise convex function to

accommodate the peak hour and off-peak hour electricity price (see Fig. 6.2(b)).

The function is a monotonic increasing function and has a set of convex functions.

Therefore,

µm,w(Em,w) = max(f1(E
1
m,w), f2(E

2
m,w), · · · fk(E

k
m,w)), (6.9)

and Em,w =
∑

j=1···k

Ej
m,w, where f1(.), f2(.), ..., fk() are the convex functions to calculate

the costs for various specific range (amount) of production. For the piecewise convex

marginal cost function, we assume that the convex functions are sorted (or indexed)

according to the lower cost µil with the amount of generation Ei
m,w. The appropriate

function fi is selected such that µil ≤ µ ≤ µi+1
l (where µ: µmw = µ is the given cost),

and the amount of generation is given by,

Em,w = Ei
m,w + arg fi(µ− µ

i
l); where Em,w ≤ EC

m,w, (6.10)

otherwise, eq. (6.6).

Nonlinear Non-Convex Marginal Cost function

Sometimes, the rate of a product increases or remain the same for increasing the

generation of one more unit of electricity. In this case, the marginal cost function is
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a nonlinear and non-convex function such as (see Figs 6.2(a) and 6.2(d)),

µm,w(Em,w) = αnlEm,w + c (6.11)

where αnl and Em,w both are variables and µm,w(Em,w+1) ≥ µm,w(Em,w). The amount

of electricity Em,w needed from generator w of m for a given cost µ (µm,w = µ ) can

be calculated as,

(6.12)
Em,w =

µ− c

αnl
; where Em,w ≤ EC

m,w

Em,w = EC
m,w; otherwise

Eq. (6.12) is similar to eq. (6.8) but here, the denominator αnl is a variable which

varies according to the amount of generation. Therefore, the cost of electricity can

be calculated instantly by maintaining a sorted (according to the cost µm,w) linear

list containing distinct generation costs and the corresponding maximum amount

of generation. Therefore, for a given cost µ (µm,w = µ), the amount of electricity

Em,w can be determined from the linear list. Let the sorted linear list be {µ1 →

E1
m,w, · · · , µi → Ei

m,w, · · ·}, where µi is the unique marginal cost and Ei
m,w is the

corresponding maximum amount of electricity generated from the generator w of

m. Now, suppose the given cost is µ, then the amount of electricity is Ej
m,w, if

µj−1 < µ ≤ µj.

Levelized Cost of Electricity (LCOE)

Levelized Cost of Energy (LCOE) is the most transparent metric used to measure the

electricity generation cost for renewable. LCOE is used for renewable energy since

the renewable energy does not need fuel, maintenance cost is very low, government

incentive for customers and producers, and the technological innovation has reduced

manufacturing cost 100 times [14, 96]. The important and most influential cost for

the RES is land cost, and long term investment costs. Also, in a competitive market
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when grid parity is considered, then the long term average cost or LCOE is used to

calculate the cost of the renewable energy. The most important aspect for renewables

cost calculation is that the variable expense is negligible. The LCOE is a measure of

the marginal cost (MC) of electricity over a long duration and sometimes is referred

to as Long Run Marginal Cost (LRMC) [14, 96]. LCOE cost is calculated in $/kWh

considering total cost and energy generated over the life time of the energy generating

system [14]. LCOE is sensitive to the input assumption. Let the life time of a

RES be Y r, in year y, the initial investment/cost of the system be Iy, operation

and maintenance cost be Oy, interest expenditure be Fy, discount rate be r, energy

production Ey, and degradation rate be dg, then the LCOE for a renewable energy

source w of m can be written as [14, 16],

LCOEm,w =

Y r
∑

y=0

(Iy+Oy+Fy)

(1+r)y

Y r
∑

y=0

Ey(1−dg)y

(1+r)y

(6.13)

where LCOEm,w is the electricity cost or rate (in $/kWh) of a renewable sources

w in a seller microgrid m. The renewable energy cost therefore be a no decreasing

constant value for a instance of time and can be written as,

µm,w(Em,w) = LCOEm,w, ∀Em,w (6.14)

Given a marginal cost µ, the amount of generation used is,

(6.15)Em,w = EC
m,w; where µ ≥ LCOEm,w

Em,w = 0; otherwise

As mentioned, for the survival of a company, the selling price should not be less

than the marginal cost. The marginal cost is a monotonic non-decreasing function
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[93]. Now, let E be the total amount of electricity generated by the MGN system,

then the total cost of the electricity to fulfil excess demand D̃B is,

µ(E) · D̃B (6.16)

where µ(E) is the overall marginal cost of the MGN system, µ(E) ≥ µm,w(Em,w),

and E =
∑

m∈M

∑

w∈Wm

Em,w. We use the marginal cost functions from Appendices 6.2.2

to 6.2.2 to calculate the cost of nonrenewable energy sources and LCOE (Appendix

6.2.2) for renewable energy sources. The model is applicable for any of the other

marginal cost functions by replacing the marginal cost functions illustrated above

with the appropriate non-decreasing marginal cost function.

6.2.3 Electricity Transportation

In our MGN system, we assume that all the microgrids are connected with each

other using electricity transmission and distribution lines. Most of the energy losses

in electricity transportation are due to the resistance of the energy network and

reactive power which is injected by the reactive load. The T&D (transmission and

distribution) losses for a transmission and distribution line is I2m,b(R
li
m,b + jX li

m,b),

where Rli
m,b is the resistance, X

li
m,b is the reactance of the transmission line from m to

b, and j is the complex variable dependent on the phase of the voltage Vm (voltage

at seller m) and current Im,b (amount of current a seller m sends to b). The values of

Rli
m,b and X

li
m,b are dependent on the physical characteristics of the transmission line.

X li
m,b (in ohm) is the reactance of the transmission line which can be expressed as,

X li
m,b = ωLlim,b => 2πfLlim,b (6.17)
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where Llim,b is the inductance (in henries) of the transmission line li from m to b, f is

the frequency in Hz. Therefore, the power factor of the transmission line is cos θ =

R
li
m,b

√

(R
li
m,b

)2+(X
li
m,b

)2
. Here, θ is the angle between apparent power and active power. Now,

to reduce the losses, let the power factor of the transmission be cosφ (near to unity

and θ >> φ); that is θ is reduced to φ. To do so, a reactive compensation equipment

(such as, a shunt capacitor bank) is added at the input of the buyer microgrid (b). Let

the capacitance of the capacitor bank be πm,b and the amount of energy transferred

(without loss) from m to b be xm,b then, (according to [91]),

πm,b =
(xm,b + xdm,b) cos θ(tan θ − tanφ)

2πfV 2
b

, (6.18)

where Vb is the voltage at buyer microgrid and xdm,b is the total loss (resistive and

reactive) of electricity while transmitted from m to b. In general the value of the

receiving voltage (Vb) should be within ±5% (Vm ± 5%) of voltage (Vm) at m [91].

Here, we assume Vb is chosen a value between Vm and (Vm − 1%). Therefore, the

energy loss xdmb, due to transportation of electricity from a seller m to a buyer b is,

xdm,b = I2m,b(R
li
m,b cosφ+X li

m,b sinφ), (6.19)

and the total amount of electricity needed to be transported by a seller m to a buyer

b is,

x̃m,b = xm,b + xdm,b (6.20)

Then, the total transportation cost of MGN is,

TC =
∑

b∈B,m∈M

(cm,b · x̃m,b) (6.21)
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A buyer may choose another seller to decrease the buying amount if the transmission

(or transportation) loss is lower than the current seller. Let D̃b be the shortage of

electricity of buyer b, then
∑

m∈M

xm,b = D̃b

Definition 6.2. [Allocation Problem] The optimal matching of sellers and buyers

which will minimize the overall energy costs to the customers can be formulated as,

minTC = min
∑

b∈B,m∈M

(cm,b · x̃m,b) (6.22)

Transformer thermal limit

Both ends of the transmission line are connected to a delivery (at m) and a receiving

(at b) transformer. The amount of current flow through these transformers generate

heat which is typically resolved by coolant (such as oil). Hence, a transformer has an

upper limit of energy handling capacity to sustain and extend its life time. Beyond

this limit, the transformer temperature increases and may burn out or shorten the

life of a transformer. Therefore, a transformer must not handle electricity beyond a

rated power. The hot-spot temperature of the transformer can be computed for any

load by using the following standard relations which are given in [15],

ωHS = ωTO +∆ωHR

(

Im,b
IRm,b

)2e

(6.23)

where ωHS, ωTO, and ∆ωHR are hot-spot temperature, top-oil temperature, and rated

hot-spot temperature rise above top-oil respectively. Im,b, I
R
m,b, and e are load current,

rated current and winding exponent accordingly. Now, if the voltage at the input of

the transformer is Vb then, the rated power of the transformer is:

Pm,b = IRm,bVb (6.24)
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where Pm,b is the rated power of the transformer and therefore it limits the input

energy of the transformer as,

xm,b ≤ P r
m,b, for receiving transformer (6.25)

and

x̃m,b ≤ P d
m,b, for delivering transformer (6.26)

where P r
m,b and P

d
m,b are the receiving and delivering rated power of transformers at

m and b.

6.3 Electricity Pricing Model

It is clear that the electricity price a buyer has to pay is dependent on both the overall

marginal cost and the transportation cost of electricity. For simplicity, we assume

that the profit of the seller for selling electricity is included within the marginal costs.

Therefore, the price (paid by the buyer) of electricity can thus be expressed as:

µ(E) · D̃B +
∑

b∈B

∑

m∈M

(cm,b · x̃m,b) (6.27)

Here, the overall marginal cost (µ(E)) depends on the marginal costs of the sellers.

Hence, there are ample scopes to determine the optimal electricity price by jointly

considering overall marginal cost and transmission losses, in an optimization model,

and subsequently solve it optimally. Therefore, a model needs to be developed which

will concurrently minimize the overall electricity price (6.27).

145



6.3.1 Minimum Electricity Pricing Model (MEPM)

Eq. (6.27) illustrates the total payment of electricity of the MGN buyers. Therefore,

the minimum total payment for electricity can be determined by solving the following

model,

(6.28)min

(

µ(E) · D̃B +
∑

b∈B

∑

m∈M

(cm,b · x̃m,b)

)

Subject to,
(6.29)

∑

m ∈M

xm,b = D̃b, ∀b ∈ B

(6.30)
∑

li :(m,b)∈Ki

x̃m,b ≤ Γi, ∀li ∈ L

(6.31)x̃m,b = xm,b + xdm,b; x
d
m,b ≤ xm,b, ∀m, ∀b

(6.32)xdm,b = I2m,b(R
li
m,b cosφ+X li

m,b sinφ) ∀m, ∀b

(6.33)Im,b =
x̃m,b
Vm

, ∀m ∈M, ∀b ∈ B

(6.34)πm,b =
x̃m,b cos θ(tan θ − tanφ)

2πfV 2
b

, ∀m, ∀b

(6.35)Vm = Vb + Im,b(R
li
m,b cosφ+X li

m,b sinφ)

(6.36)xm,b ≤ P r
m,b, and x̃m,b ≤ P d

m,b, ∀m, ∀b;

(6.37)
∑

b ∈B

x̃m,b ≤ Ẽm, ∀m ∈M

Ẽm =
∑

w∈Wm

Em,w −Dm, ∀m ∈M (6.38)

∑

m∈M

Ẽm ≥ D̃B, where D̃B =
∑

b∈B

D̃b (6.39)
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(6.40)µ(E) ≥ µm,w(Em,w), ∀m ∈M, ∀w ∈ Wm

E ≥
∑

m∈M

∑

w∈Wm

Em,w ≥ DB (6.41)

where variable Ẽm is the excess generation of electricity by seller m, and DB, Dm

represent the total actual demand of the MGN buyers and the seller demand respec-

tively. Γi (li : (m, b) ∈ Ki) is the transmission capacity of the line (li) which connects

a pair of MGs in Ki. The solution to the above optimization model (from eqs. (6.28)

to (7.11)) will yield the joint optimal overall marginal cost and transportation cost for

the MGN. Eq. (6.29) states that the electricity transmitted from sellers (M) must

be equal to the total shortage (or excess demand: Db) of the buyer microgrid (b).

The constraint in eq. (6.30) limits the total flows of electricity from m to b through

a transmission or distribution line which should not surpass the capacity of the line.

Second part of eq. (6.31) ensures that the amount of electricity transported from m is

zero when xm,b is zero. A number of current flows through li from m to b is calculated

in eq. (6.33). Constraint (6.36) ensures that the delivering and receiving electricity

should be less than the power rating (P d
m,b and P r

m,b) of the transformers attached.

The selling amount of the power should satisfy the amount of electricity buyers (B)

wants to buy from a seller m which is outlined in eq. (6.37). Eq. (6.38) asserts that

the total excess amount of generation is equivalent to the sum of excess electricity

generated by all sellers. The MGN total excess production must satisfy the shortage

of electricity which is manifested in eq. (6.39). Finally, the overall marginal cost of

the electricity for the MGN is determined by eq. (6.40).

Here, if all the marginal cost functions µm,w(Em,w) are convex, then the MEPM

problem remains a nonlinear and non-convex problem due to the overall marginal

cost which is the superimposition [103] of all the marginal costs. Therefore, the

above MEPM problem is a difficult (NP-Hard) problem, and no polynomial solution

exists [124]. Moreover, in practice, the marginal cost function does not need to be
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convex; rather, the more accurate property of the marginal cost function is monotonic

non-decreasing [45]. The monotonic non-decreasing function will increase or remain

the same by increasing the production of electricity. To obtain a polynomial time

solution of the MEPM problem, we decompose into two subproblems, the overall

marginal cost problem (OMCP) and an optimal electricity allocation. These two

sub-problems are both used as modules in our solution methodology of MEPM to

determine the optimal solution to our original problem. OMCP is used to determine

a feasible interval for the optimal marginal cost, with a lower bound (µl) and an upper

bound (µu). Now, the problem reduces to a search for the optimal marginal cost that

yields optimal overall price of electricity (µc+ P̂ c
B). The MEPM performs a search for

the optimal marginal cost and at each iteration (after solving an allocation problem)

it removes a segment of the feasible interval that is of no use (i.e., a marginal cost

in a segment removed by the method will always result in higher overall price). Our

solution methodology follows a divide and conquer approach since such method is

deterministic (it will always converge and return the optimal result) and enjoys low

complexity. In the following sections, we describe the decomposition and polynomial

time solution of MEPM.

6.4 Decomposition of MEPM

The MEPM clearly is a combination of two inter-related optimization problems, (i)

minimum overall marginal cost problem (OMCP) by setting the value of cm,b = 0 and

Em,w = EC
m,w, and (ii) minimum transportation cost problem (allocation problem)

by setting the value of µ(E) = 0 in the objective function (Def. 6.2). The overall

marginal cost has lower and upper bound values. The MEPM is infeasible below the

lower bound overall marginal costs. Beyond the upper bound value, the system will

always produce the same cost for transportation but the overall marginal cost will
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increase.

Definition 6.3. [Lower Bound Overall Marginal Cost, µl] The lower bound overall

marginal cost, µl ≡ µ(E) is the combined marginal cost that is calculated while

(∀w ∈ Wm, ∀m ∈ M), Em,w and cm,b of MEPM are set to EC
m,w and 0 respectively.

In other words, the overall marginal cost below µl must be infeasible for the MGN,

i.e., E < D̃B, where Em,w ≤ EC
m,w.

Definition 6.4. [Upper Bound MGN Overall Marginal Cost, µu] The upper bound

overall marginal cost, µu ≡ µ(E) is the combined marginal cost that is calculated after

the optimization of the transportation costs. The optimization of transportation costs

is carried out with an initial setting of MEPM, where µ(E) = 0 and Em,w = EC
m,w,

(∀w ∈ Wm, ∀m ∈M).

The overall marginal cost beyond µu does not have any effect on the transportation

cost (TC) because any value of Em,w between the value determined by the optimiza-

tion of transportation cost and EC
m,w will yield the same transportation cost TC and

the MGN system is infeasible for Em,w > EC
m,w.

Lemma 6.4.1. The decrease of the overall marginal cost µ(E) from upper bound µu

to lower bound µl will monotonically increase the value of the minimum transportation

cost (TC).

Proof Consider two marginal costs µ(E) and µ(E ′) of the MGN, where µ(E) ≥ µ(E ′)

and E,E ′ ≥ D̃B. In this case, E > E ′, and E ′ =
∑

m∈M

∑

w∈W

(Em,w − ∆Em,w), where

∆Em,w ≥ 0 and E =
∑

m∈M

∑

w∈W

Em,w. Here, (Em,w −∆Em,w) indicates the amount of

production of some generators which will decrease due to decrease of the marginal cost

from µ(E) to µ(E ′). Now, suppose for a generator m,
∑

b∈B

x̃m,b ≥ Ẽm. If
∑

b∈B

x̃m,b = Ẽm

then the transportation cost remains the same but if
∑

b∈B

x̃m,b > Ẽm, then, we have to

find one or more lower cost generators which have surplus electricity to fulfill the need
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of buyer b. Suppose, all these new sellers are S, then cm,b ≤ cm′,b, ∀m
′ ∈ S & m 6= m′.

Therefore,
∑

m∈M

∑

b∈B

(x̃m′,b · cm′,b) ≥
∑

m∈M

∑

b∈B

(x̃m,b · cm,b). Similarly, if we decrease the

overall marginal cost, then the transportation costs will increase gradually or remain

unchanged. The system will choose the same set of generators, and the amount of

electricity generation of the selected generators remain the same if E = E ′. Therefore,

the overall marginal costs in both cases remain the same, i.e., µ(E) = µ(E ′).

From the lemma 6.4.1, we find that each overall marginal cost, µi (µl ≤ µi ≤ µu) has

a minimum transportation cost (TCj) or minimum average transportation cost P̂ j
B,

where, P̂ j
B =

TCj

D̃B
. Let the optimal solution of the MEPM problem be µo× D̃B+ P̂

q
B×

D̃B, then, µ
o × D̃B + P̂ q

B × D̃B ≤ µi × D̃B + P̂ j
B × D̃B, ∀µ

i ∈ {µl, µu} \ µo and ∀P̂ j
B ∈

{P̂ u
B , P̂

l
B} \ P̂

q
B, and P̂

q
B is the minimum average transportation cost due to marginal

cost set to a value, µo.

6.4.1 Algorithmic Solution for MEPM

The MEPM algorithm chooses a value for µi between µu and µl, and determines the

minimum transportation cost (P̂ j
B). The optimal solution is the lowest value of the

summation of µi and P̂ j
B. An efficient polynomial solution (divide-and-conquer) of

the MEPM problem is presented in Fig. 6.3. In Fig. 6.3, steps (III) to (XIV) are

repeated while all the partitions are deleted and the MEPM scheme terminates with

minimum (optimal) per kWh price µc+P c
B of the MGN network. In short, the MEPM

method divides the marginal cost space (Fig. 6.3, step (IV)) into two partitions, then

determines the average transmission cost (Fig. 6.3, step (VI)). Then, the MEPM

discards one or both partitions when the minimum possible cost of the partition(s)

is greater than µc + P c
B (Fig. 6.3, steps (VIII) and (XII)). Otherwise, it updates the

µc + P c
B (Fig. 6.3, steps (IX) and (XIII)) and repeat the same divide-and-conquer

method. The MEPM solution contains two sub-problems, hence the solution of the
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MEPM is derived by combining the solution of OMCP (Fig. 6.3, step (I)) and the

allocation problem (Fig. 6.3, step (VI)) interactively.

Start MEPM

(II) input initial

µl, µu, P̂ l
B
, P̂u

B

and [µc + P̂ c
B
] ←

min[(µl + P̂u
B
), (µu + P̂ l

B
)]

(I)Run OMCP and
MinAvgTransCost

to get the initial val-

ues (µl, µu, P̂ l
B
, P̂u

B
)

(III) Is µu ≤ µl ?
OR

Is P̂u
B
≤ P̂ l

B
?

(IV) Partition [µl, µu]

by µi = µl+µu

2

N

(X.I) For [µu ≤ µl]: [µk +

P̂k
B
] ← [µl + min(P̂u

B
≤ P̂B)]

OR
For [P̂u

B
≤ P̂ l

B
]: [µk +

P̂k
B
] ← [min(µl, µu), P̂ l

B
]

Y

(X.II) [µc + P̂ c
B
] ←

min([µk + P̂k
B
], [µc + P̂ c

B
])

(V) Determine Ẽm, ∀m ∈ M

using marginal cost µi

(VI) Simplex Algorithm For
LP Allocation Problem: Mi-

nAvgTransCost and get P̂
j
B

(VII) Update [µc + P̂ c
B
] ←

min[(µc + P̂ c
B
), (µi + P̂

j
B
)]

(VIII)

L:(µl + P̂
j
B
) <

(µc + P̂ c
B
) ?

(IX) Update µu ←

µi, P̂ l
B
← P̂

j
B

Y

(XI) [µc + P̂ c
B
]

(XII) R:

(µi + P̂u
B
) <

(µc + P̂ c
B
) ?

Return

N

(XIII) Update

µl ← µi, P̂u
B
← P̂

j
B

Y

(XIV) Return
or terminate
with [µc, P̂ c

B
]

N

Figure 6.3: Schematic diagram of MEPM Algorithm; L: left partition; R: right par-
tition

Algorithm for OMCP

One of the objectives of our MEPM algorithm is to determine the overall marginal

cost and Ẽm, ∀m ∈ M, by solving the OMCP which is described in Section 6.4.
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Suppose, both µ(E) and Ẽm are unknown and the excess demand D̃B, E
C
m,w are

known. The mathematical model for OMCP can be realized by replacing x̃m,b = 0

in eq. (6.28) (objective) and eqs. (6.38) – (7.11) as constraints of the objective.

The solution of the OMCP model will determine the overall marginal cost µ(E) by

achieving the minimum total cost of the excess demand D̃B for any configuration of

the MGN. Then, µ(E) and Ẽm can be determined by the following steps which are

also shown in Fig. 6.4.

Start OMCP
D̃B and Initialize

Em,w, µmin ← 0

(i) Divide D̃B equally among
the generators ∀(m,w)

(ii) Determine µm,w(Em,w)
for the extra generation

eq. (6.4), (6.7), (6.9), and

(6.11); for Em,w > EC
m,w

: ret µm,w(EC
m,w)

(iii) Determine

µmin ← min{µm,w(Em,w)}
∀w ∈ Wm, ∀m ∈ M

(iv) Adjust the generation
of (Em,w) all genera-

tor according to the cost

µmin (6.5), (6.8), (6.10),
(6.12), (6.14) or (6.6)

(v) Delete generators from

the list where Em,w = EC
m,w

Update D̃B

(vi) Is D̃B > 0

return marginal

cost µmin

N

Stop

Y

Figure 6.4: Schematic diagram of OMCP Algorithm

Step 1: Divide the excess demand D̃B among the generators (∀w ∈ Wm) of all sellers

(∀m ∈M), and determine the marginal costs µm,w(Em,w) (see, eq. (6.4), (6.7), (6.9),

(6.11), and (6.14)). Take the µmin = min{µm,w(Em,w)|w ∈ Wm,m ∈M}.

Step 2: Adjust Em,w with a calculated (step 1) marginal cost µmin using eqs’.(6.5), (6.8),

(6.10), (6.12), (6.15) or (6.6).

Step 3: modify D̃B with the new amount of generation, such as, D̃B = (D̃B −
∑

m∈M
Ẽm)

and discard w ∈ Wm, Em,w ≥ E
C
m,w. Repeat Step 1 to Step 3 while D̃B > 0.
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Step 4: Ẽm =
∑

w∈Wm

(Em,w −Dm), ∀m ∈M and µl = µmin.

Step 1 (above) and (ii) in Fig. 6.4, return the marginal costs of a generator to

produce the excess amount of electricity. However, since a generator cannot produce

more electricity than its capacity, the OMCP (ii in Fig 6.4) will then return a marginal

cost of a generator with only its maximum generation capacity if the requested excess

amount of generation exceeds the capacity (EC
m,w).

Second, let Em,w be known, then the overall marginal cost is µi = max{µm,w(Em,w)|w ∈

Wm, m ∈ M}, and µm,w(Em,w) is determined by Step 2. This is the case when the

allocation of electricity (x̃m,b) is determined by solving the allocation problem before

solving the OMCP. With maximum capacity of the DGs, the solution results into the

upper bound overall marginal cost µu (µu = µi).

Third, when the value of µi is known, then the suggested generation of the DGs

is determined at Step 2 or (iv) in Fig. 6.4. This calculation is repeatedly used in the

MEPM algorithm to determine Ẽm (in Fig. 6.3, V).

Lemma 6.4.2 (Optimal Overall Marginal Cost). The solution of OMCP (Fig. 6.4)

determines the optimal overall marginal costs for any configuration of MGN.

Proof Let the overall marginal cost determined by the solution of OMCP presented

in Fig. 6.4 be µ
′
(E), where E = DB (total demand of the MGN). Now, let the optimal

overall marginal cost for the MGN configuration be µ∗(E). If µ
′
(E) ≤ µ∗(E), then

µ
′
(E) is the optimal overall marginal cost. Now, suppose, the OMCP shown in

Fig. 6.4 is unable to produce an optimal solution of the overall marginal cost for a

configuration of MGN, i.e., µ
′
(E) > µ∗(E). If this is true, then there are at least two

generators (in the proposed solution), which generate different amount of electricity
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compared to the optimal solution (shown below):

(6.42)

Optimal Solution Generation Set (G*)

G∗ = {E1,1, · · · , Em,w , · · · , Em′,w′ · · ·}

and
µ∗(E) = max(µ1,1(E1,1) · · · , µm,w(Em,w) , · · · ,

µm′,w′(Em′,w′) , · · ·)

where

E =
∑

m∈M

(
∑

w∈Wm

Em,w −Dm) = D̃B

(6.43)
MEPM Generation Set (G′)

G′ = {E1,1, · · · , E
′
m,w , · · · , E

′
m′,w′ · · ·}

(6.44)

and

µ′(E) = max(µ1,1(E
′
1,1) · · · , µm,w(E

′
m,w) , · · · ,

µm′,w′(E
′
m′,w′) , · · ·)

(6.45)
where

E =
∑

m∈M

(
∑

w∈Wm

E ′m,w −Dm) = D̃B

Let the index of the two generators be (m,w) (generator w of microgrid m), and

(m′, w′) (generator w′ of microgrid m′). Now, suppose the amount of generation of

both generators determined by optimal solution be Em,w and Em′,w′ (eq. (6.42)) and

OMCP be E ′m,w and E ′m′,w′ (eq. (6.43)). Let us also assume (without loss of generality)

that (m,w) is a low-cost generator and (m′, w′) is a high-cost generator. Now, the

claim (µ′(E) > µ∗(E)) is true if and only if E ′m,w < Em,w and E ′m′,w′ > Em′,w′ ,

therefore, the costs which are calculated in the optimal solution (µ∗(E)) are less

than the costs determined by the OMCP solution (µ′(E)). This leads us to a fact

that the low-cost generator (m,w) must produce more or equal (at least) amount of

electricity (with a greater overall marginal cost µ′(E)) in OMCP than the amount
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of electricity produced by the same generator in the optimal solution (see, step (iv)

in Fig. 6.4)1. This is always true because the marginal cost is non-decreasing (see

Section 6.2.2). Therefore, the total amount of excess electricity produced by the

generators in OMCP must be greater than the total demand of the buyers or E > D̃B

which is a contradiction according to the steps (i) and (vi) of the OMCP solution

presented in Fig. 6.4. In general, let E ′ be the electricity produced by the OMCP,

then we claim that E ′ = E = D̃B, but

(6.46)if µ′(E ′) > µ∗(E) then

E ′ > E,

because, some or all generators in OMCP will produce more electricity (without vio-

lating the capacity constraint) than the amount determined by the optimal solution.

This is a direct violation of steps (i) and (vi) of the OMCP solution (see Fig. 6.4).

The steps (i) and (vi) of the OMCP solution controls the amount of total excess pro-

duction to the total demand of the buyers. The solution is valid, if only if both or all

(in general) generators produce the same amount of electricity which is determined

by the optimal solution. Thus, the OMCP method always determines the optimal

overall marginal cost of any configuration of the MGN system.

Solving the Allocation Problem (MinAvgTransCost)

Step (VI) of Fig. 6.3 is the solution for the allocation problem (defined by Def. 6.2) by

setting the value of µ(E) = 0 of the MEPM objective function in eq. (6.28) and taking

(6.29) to (6.39) as the constraints. We use the Simplex method to solve this problem.

The inputs to the allocation problem are Ẽm, ∀m ∈ M which are determined by

the algorithm for OMCP and the output is the minimum transportation cost P̂ j
B.

The value of P̂ j
B is the lower bound value (P̂ l

B) for electricity transportation, when

1At a higher marginal cost, a generator will produce more electricity compared to the amount
electricity generated due to lower marginal cost.
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Ẽm = (
∑

w∈Wm

EC
m,w − Dm), and upper bound value (P̂ u

B ) when Ẽm is the output of

OMCP for µl. The mathematical model of the allocation problem is a LP problem

with continuous variables x̃m,b (∀m ∈ M, ∀w ∈ Wm). Hence, the problem can

be solved (using the Simplex algorithm) in a polynomial time and takes at least

O(|B|×|M|) comparisons.

Once the minimum transportation cost (P̂ j
B) is determined (for µi), then, we up-

date [µc, P̂ c
B] ← min([µc, P̂ c

B], [µ
i, P̂ j
B]) (see, steps (VII) and (XII) of Fig. 6.3), and

compare the possible minimum payment µi + P̂ l
B and µl + P̂ j

B of right ([µi, µu]) and

left ([µl, µi]) partitions with the current minimum payment (µc + P̂ c
B) (see, Alg. 6.1

from lines 11 to 17). If any or both of the partitions’ possible minimum costs are lower

than (µc+ P̂ c
B), then Alg. 6.1 (or the steps (III) to (XIV) of Fig. 6.3) is repeated with

one (left or right) or both partitions, otherwise (µc + P̂ c
B) is the minimum payment.

The details of the MEPM algorithm are presented in Alg. 6.1. Initially, the algo-

rithm (from lines 5 to 7) compares the upper and lower bound values of both overall

marginal costs and transportation costs. Alg. 6.1 will terminate, if the upper and

lower values of the overall marginal costs or transportation costs are found similar,

otherwise, the algorithm continues as discussed above.

6.4.2 Analysis of the MEPM algorithm

Lemma 6.4.3 (Minimum Payment). Algorithm 6.1 determines the optimal price for

electricity.

Proof Alg. 6.1 divides the overall marginal cost space [µl, µu] into two, [µl, µi] and

[µi, µu], then, it determines the minimum transportation cost, P̂ j
B for overall marginal

cost µi. The solution of the allocation problem (QLP problem) always gives the

optimal value P̂ j
B for an overall marginal cost µi. Alg. 6.1 discards one partition

([µl, µi] or [µi, µu]) or both when the minimum possible cost of each partition is
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Algorithm 6.1 Algorithm for MEPM.
1: procedure MinMGNCost(µl, µu, P̂ l

B, P̂
u
B , µ

c, P c
B)

. µc, P̂ c
B are the global variables, function min() returns the value pair, sum of which is minimum

2: Initialize: [µc, P̂ c
B]← min([µl, P̂u

B ], [µ
u, P̂ l
B])

3: 0 < ε << 1 . ε is a very small value
4: Begin

5: if
∣

∣µu − µl
∣

∣ ≤ ε then return
[

µu,min(P̂ l
B, P̂

u
B )

]

6: else if

∣

∣

∣
P̂u
B − P̂

l
B

∣

∣

∣
≤ ε then return

[

P̂u
B ,min(µl, µu)

]

7: end if

8: µi ← µl+µu

2

9: P̂
j
B ← MinAvgTransCost(B,M) . Simplex method for solving the allocation problem.

10: [µc, P̂ c
B]← min([µc, P̂ c

B], [µ
i, P̂

j
B])

11: if (µl + P̂
j
B) < (µc + P̂ c

B) then . left partition

12: [µk, P̂k
B ]← MinMGNCost(µl, µi, P̂ j

B, P̂
u
B , µ

c, P̂ c
B)

13: [µc, P̂ c
B]← min([µc, P̂ c

B], [µ
k, P̂k
B ])

14: end if

15: if (µi + P̂ l
B) < (µc + P̂ c

B) then . right partition

16: [µk, P̂k
B ]←MinMGNCost(µi, µu, P̂ l

B, P̂
j
B, µ

c, P̂ c
B)

17: [µc, P̂ c
B]← min([µc, P̂ c

B], [µ
k, P̂k
B ])

18: end if

19: return [µc, P̂ c
B]

20: End
21: end procedure

greater than the current global minimum cost (µc + P̂ c
B). Suppose, partition [µi, µu]

is discarded. We claim that there is an overall marginal cost µk, (i ≤ k ≤ u) and

transportation cost P̂ q
B (j ≥ q ≥ l) which produce minimum payment ((µk+P̂ k

B)×DB)

of MGN. The claim indicates that (µk+P̂ k
B) < (µc+P̂ c

B), but it is not possible because

µi ≤ µk ≤ µu and P̂ j
B ≥ P̂ k

B ≥ P̂ l
B, thus (µ

k + P̂ k
B) ≥ (µi + P̂ l

B) and Alg. 6.1 discards

a partition (lines 11 and 15), iff (µi + P̂ l
B) > (µc + P̂ c

B), hence the claim is false.

Further, if the values for any pair (overall marginal costs or transportation cost) are

the same (µl = µu or P̂ l
B = P̂ u

B ), then Alg. 6.1 returns the minimum cost by taking

the minimum of inequal cost pair (overall marginal cost or transportation cost) and

value of equal cost pair. Thus, Alg. 6.1 solves the MEPM problem correctly. The

complexity of the MEPM algorithm is given in Appendix 6.4.2.

Complexity of Algorithm Alg. 6.1

In general the complexity to the quadratic linear programming (QLP) problem can be

solved in polynomial time using interior point method [11]. Our allocation problem
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takes polynomial time to solve, let the complexity be O(Q) (a polynomial function).

For the divide and conquer, let there be η discrete marginal costs between µl and

µu which produce η distinct values between P̂ u
B and P̂ l

B. Let the largest buyer wants

to buy 2ρ unit (in MWh or kWh) of electricity, then it is meaningless (or negligible)

if the total payment (in dollar or any currency unit) contains more than two digits

after the decimal point. Therefore, the set contains less than (µu − µl) × 2ρ values.

Therefore, the precision value for decimal number of Alg.1 is selected as ε = 2−ρ. To

determine the complexity of the MEPM, let η = (µu − µl)× 2ρ or η = 2log2(µ
u−µl)+ρ.

Then, for the best case, the algorithm takes O(Q), that is in the first iteration the

MEPM deletes both partitions. Now, let k = log2(µ
u − µl) + ρ,thereby η = 2k. In

the worst case the MEPM method expands the search for the minimum electricity

price to the depth k of the binary tree of the MEPM search space. Each level the

MEPM compares 2 × 2l, where l is a level of the search space. Therefore the worst

case complexity of the MEPM is O(Q × 2k) ≡ O(Q × η). For the average case, the

algorithm may terminate at any level l of the tree. Therefore, the average number of

comparisons of the search space 2k with depth k is

(6.47)

1

2k

k
∑

i =1

i
∑

j =1

2j =
1

2k
{2(k) + 4(k − 1) + · · ·+ 2k}

<
1

2k
(2k + 4k + · · ·+ 2kk)

<
k

2k
(1 + 21 + 22 + 23 + · · ·+ 2k)

=
k(2k+1 − 1)

(2− 1)2k
<
k(2k+1)

2k
= 2k.

Hence in general, the average case complexity of the proposed MEPM is O(Q ×

log2 η) or O
(

(µu − µl)× 2ρQ
)

.
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6.4.3 The role of ESS to handle the uncertainty in electricity

generation and load

In case of intrinsic uncertainty of electricity load and generation, we use electricity

storage system to store or supply electricity. The storage system will not be used as

the regular electricity source or storage. It is included to resolve the instantaneous

variation of load and generation after the decision is made by the MEPM method.

The price of the electricity to supply is the price decided by the MEPM system for

the MGN. The storage system is an intrinsic part of the demand-response algorithm

of a microgrid which we assume to be the internal energy management system of a

microgrid (whether a buyer or a seller).

Further, in the microgrid level, ESS can play a vital role to reduce the uncertainty

in the power generation and load prediction which leads to an increase in the effi-

ciency and reliability of the system. At the time of actual consumption, ESS can be

used to store extra energy or release energy to compensate the shortage compare to

the amount of energy planned for trading. Studies showed that demand and power

generation varies between 0 to at most 10% from one hour before the prediction.

Hence, the uncertainty of the power system maybe mitigated by storing at least 10%

of the energy which maybe required for next hour and 10% excess storage capacity

to store presumably excess of energy. Let the minimum and maximum capacity to

reduce the uncertainty of the ESS be Essln (i.e., 60% of ESS capacity) and Esshn (i.e.,

80% of ESS capacity) then the amount of energy needed to be stored or released to

meet the uncertainty is xsn, thus Essln≤Ess
c
b
+xsn≤Ess

h
n, where Essc

b
is the current amount

of energy stored in the ESS, xsn can be a zero, positive or negative value which is

accumulated with the demand. In the time of actual purchase, buyers and sellers

charge or discharge energy from the ESS if there is excess energy (demand is reduced

or surplus RES generation) or shortage of energy (or increase demand), thereby the
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mitigation is trivial.

6.5 First Come First Serve (FCFS) Allocation

In FCFS method, the EMS first decides the marginal cost according to the buyers’

demand and a series of bid prices placed by the sellers. Then, it assigns the amount

of electricity to be transported from a seller microgrid to a buyer according to the

minimum transportation costs and not exceeding the capacity of the connected trans-

mission line. The FCFS scheme first determines the overall marginal costs for total

excess demand of the buyers (line 6), then, assigns each of the buyers (b) to the

available sellers to buy x̃m,b amount of electricity from seller m (from lines 10 to 30).

First, in line 9 the transmission costs are sorted in ascending order according to the

buyer. Next, we select a buyer-seller pair and allocate electricity to fulfill the demand

of buyer b with the restriction that the capacity of connected transmission line li is

not exceeded. Otherwise, we select next seller-buyer pair and continue the allocation

of electricity from a seller to a buyer accordingly. In every successful allocation, we

modify the demand of the buyer with the allocation amount. We assume that the

transmission lines have sufficient capacity for the allocation of electricity and at the

end, demands of all the buyers are fulfilled.

6.6 Simulation

6.6.1 Simulation Setup

We consider an MGN system which contains a set of MGs, each with a number of

energy sources (DGs) randomly chosen from a set of renewable and non-renewable

energy sources; such as, (i) renewable: we choose the random (given LCOE range
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Algorithm 6.2 First Come First Serve (FCFS) Allocation
1: procedure FCFS(B,M)
2: DB ← 0; t cost← 0
3: for ∀b ∈ B do

4: DB ← (DB + D̃b)
5: end for

6: Determine µopt for DB by Alg. OMCP of Sec. 6.4.1 (step1 to step4)
7: Cm,b ← {cm,b|∀b ∈ B, ∀m ∈M}
8: Randmize(Cm,b)
9: sort values in Cm,b of each b in ascending order
10: for cm,b ∈ Cmb do

11: if D̃b > 0 then

12: if D̃b ≤ (Ẽm) & D̃b > 0 & (Γi − D̃b) ≥ 0 then

13: xm,b ← D̃b, D̃b ← 0; Ẽm ← (Ẽm − D̃b)
14: calculate xt

m,b
and πm,b (eqs. (6.33),(7.7), (6.32))

15: x̃m,b ← (xm,b + xd
m,b

)

16: t cost← (x̃m,b × cm,b)

17: else if Ẽm ≤ Γi then

18: D̃b ← (D̃b − Ẽm);xm,b ← Ẽm; Ẽm ← 0
19: calculate xt

m,b
and πm,b (eqs. (6.33),(7.7), (6.32))

20: x̃m,b ← (xm,b + xd
m,b

)

21: t cost← (x̃m,b)× cm,b

22: else

23: d← Γi

24: D̃b ← (D̃b − d);xm,b ← d; Ẽm ← (Ẽm − d)
25: calculate xt

m,b
and πm,b (eqs. (6.33),(7.7), (6.32))

26: x̃m,b ← (xm,b + xd
m,b

)

27: t cost← (x̃m,b)× cm,b; Γi ← 0
28: end if

29: end if

30: end for

return (µopt + t cost)
31: end procedure
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in brace) price of the electricity for offshore wind turbine ($0.15 to $0.218/kWh),

onshore wind ($0.05 to $0.116/kWh), solar energy ($0.05 to $0.15/kWh), hydropower

($0.030 to $0.059/kWh). The amount of electricity from the RESs is predicted for

each hour of a day by using the renewable energy models described in our previous

work in [120], (ii) non-renewable: gas turbine generator ($0.144/kWh) with given unit

production costs ($) in [96]. We choose one to five generators at random to power each

of the MGs. For non-renewable sources, in the cubic cost function α, and β are given

random values from 0.2×10−6 ∼ 0.8×10−6, and 0.05×10−6 ∼ 0.2×10−6, respectively.

We generate a set of convex functions to simulate the piecewise convex marginal cost

and choose α between 0.2× 10−6 ∼ 0.8× 10−6 for the linear marginal cost function.

Also, nonlinear non-convex costs are generated with the random values chosen for

α with the variation of Em,w. For all the cases, we choose a random value between

$0.002 to $0.008 for c. The capacity of each generator is chosen randomly from 300kW

to 1MW , and demand for each MG is also chosen at random between 200kWh to

2400kWh. We have chosen ANSI/IEEE standard network transformer with 300kV A

to 2500kV A power range, primary voltage up to 34.5 KV and secondary voltage is

up to 600V [26]. Once the capacity of the generators is fixed, a forecasting algorithm

[120] based on the historical meteorological data is executed to estimate the amount of

electricity generated from the RESs. For the simulation, we place the capacitor banks

with a maximum of 600 MVAR and the impedance of the transmission/distribution

lines (with 11/33KV base voltage) are considered which is given in [29]. An energy

transportation network is set up among the smart microgrids, each of which costs

cm,b ($0.05/kWh ∼ $0.1/kWh) to transport one unit of electricity. We implemented

the algorithms for MEPM in C++ programming language used IBM CPLEX concert

technology to resolve the allocation problem.
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MEPM is always lower than the variation in FCFS electricity price. Also, it is found

that the change of electricity price in MEPM system is insignificant (less than 0.5%).

Therefore, the MEPM system is more stable in predicting the electricity price for any

configuration of the MGN.

6.7 Conclusion

We developed an energy management system and marginal cost-based electricity pric-

ing scheme for the MGN. We showed that our proposed MEPM scheme determines

optimal energy flow among the microgrids with a minimum electricity price for the

MGN customers. We simulated the MEPM algorithm and compared the results with

an FCFS system to evaluate the performance of MEPM. We found that the MEPM

always performed better compared to the FCFS system.
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Chapter 7

Volt-VAR Control through Joint

Optimization of Capacitor Bank

Switching, Renewable Energy, and

Home Appliances

In the previous chapter 6 we have presented a scheme for MGN system to determine

the optimal electricity price by reducing T&D and generation costs of the electricity.

In fact, the T&D losses are assumed to be compensated by the use of compensation

devices (such as capacitor bank) along the transmission and distribution network.

Several types of research have been performed (see section 2.3) to reduce T&D losses

which are known as VVO (Volt-VAR optimization). In this chapter, we provide

a solution for VVO where compensation is jointly done by shifting flexible loads

consumption from peak demand duration to off-peak demand period and integrating

renewable energy sources into the grid.
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7.1 Motivation

It is evident from the discussion in section 2.3 that VVO works by adjusting the feed-

ers and substation components in response to the operator’s demand to reduce losses.

Further, the addition of renewable energy sources and electric vehicles (EVs), and

home appliances with flexible consumption featured the power grid with a new load

dimension. Such load dynamism has become an attractive feature, triggering activi-

ties to reduce peak load and adjust the demand, according to the generation. More-

over, studies show that many electrical devices operate more efficiently at reduced

voltage [71]. However, beyond a certain minimum operating voltage, the efficiency

of the device drops. Unfortunately, all the solutions (see, section 2.3) for VVO/VVC

select the lower voltage from ANSI C84.1 standard without considering the perfor-

mance of the appliances. With the recent technology advancement, a cost-effective

fine-grain solution for the VVO could be achieved while maintaining maximum effi-

ciency of the devices. Moreover, such solution will provide a quality electricity service

without reducing the lifespan of the equipment but with reduced generation and cost.

To address these challenges, we develop a new VVCO/OECM scheme to decrease the

electricity costs, adjust OLTC TAP and capacitor bank for Volt-VAR compensation

while rendering a lower terminal voltage to maintain efficient operations of electrical

and electronic devices in the customer premises.

7.2 System Model

We consider a distribution network which is shown in Fig. 7.1, having n feeders

: f1, f2, · · · , fn. Each of the feeders, i.e., fi (1 ≤ i ≤ n) supplies electricity to a

set of neighborhood1 microgrids ri,j ({ri,j|1 ≤ j ≤ mi}),∀i and mi is the number

1A neighborhood is also considered to be a microgrid.
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the electricity cost µ(Et
g) to the CEMS. Upon obtaining the electricity cost, each of

the community improves the consumption pattern and transfer the control to the

HEMS.

We assume that HEMS connects the appliances of a customer through an HAN

(home area network), and a NAN (neighborhood area networks) connects the HEMS

to the CEMS. Also, CEMSs are connected to the substation EMS using a WAN

(wide area network) to transfer control and measurements between them. Besides,

all other components of the grid (PMU, PDC, etc.) are dedicated to monitoring and

reporting measurements for the stability and the fault-free operation of the electrical

network according to the decision made by the EMS. Based on the mentioned system

architecture, our proposed system is composed of two major energy management

schemes: (i) VVCO and (ii) OECM which are shown in Fig. 7.3 which interact

to achieve the minimum energy generation cost and billing of the customer while

satisfying the demand.

7.3 Volt-VAR and CVR Optimization Model (VVCO)

The primary objective of our proposed VVCO system is to minimize the electricity

generation cost by adjusting the capacitor bank switches and OLTC transformer TAP

(at the substation) to serve the customers demand at time t. The objective can be

accomplished by minimizing losses along the distribution feeders.

7.3.1 Distribution Losses and Volt-VAR

Let the capacitor banks and PMUs (Phasor Measurement Unit) be placed on the

distribution feeders (i.e., fi) to compensate for the reactive power losses and obtain

the measurements (voltage, current, and phase). Let, κi,j be the set of communities
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for which a capacitor bank j is installed, where Ri,j and XLi,j
are the resistance and

inductance of the feeder fi at location j (see Fig. 7.2). Further, assume that the

phase between voltage and current at j is θti,j. Let I ti,j be the amount of current

flowing through the feeder to serve the demand of the communities κi,j during time

slot t. Then, for the communities load, the voltage drop V t
di,j

(magnitude) on the

feeder fi at j can be calculated using the phasor diagram in Fig 7.2 (above) as,

(7.1)V t
di,j

= I ti,jRi,j cos θ
t
i,j + I ti,jXLi,j

sin θti,j

Now, assume a shunt capacitor is added to compensate for the inductive loss; hence

the voltage drop V t
di,j

is modified and equation (7.1) becomes,

V t
di,j

= I ti,jRi,j cos θ
t
i,j + I ti,jXLi,j

sin θti,j

−I tci,jX
t
ci,j

sin θti,j,

(7.2)

where X t
ci,j

is the impedance of the capacitor bank at j on the feeder fi. The value of

X t
ci,j

can be adjusted to minimize the loss, more specifically the loss is reduced when,

(7.3)I ti,jXLi,j
sin θti,j − I

t
ci,j
X t
ci,j

sin θti,j = η.

where η is a very small positive number near to zero. Next, we assume the PMUs at

communities κi,j send the phasor measurement data such as, voltage (V t
i,j), current

(I ti,j), and phase (θ). If a PMU is not available for some or most of the communities,

then data from RTU and SCADA (Supervisory control and data acquisition) can

be used to calculate the phase. Note that, the received data from PMUs or RTUs

may have errors which must go through a filtering and screening process to increase

the accuracy of the measurements to an acceptable level [78]. We assume the power

system has such capabilities.

Now, by applying the measurements, we can easily evaluate the terms of the above

equation (7.2) in real time. The power balance equation for the communities κi,j of
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Figure 7.2: Distribution Feeder and Phasor Diagram

feeder fi is,

P t
i,j =

√

(P t
Ri,j

)2 + (P t
XLi,j

)2 (7.4)

where, P t
i,j, P

t
Ri,j

, P t
XLi,j

are the apparent, real, and reactive power of the feeder at

time t for communities κi,j. Let P t
XCi,j

be the energy supplied by the capacitor to

compensate the reactive power at κi,j then,

(7.5)P t
XLi,j

= P t
XCi,j

from eqs. (7.3) and (7.5), it is evident that the reactive power of the feeder will only

be compensated when the capacitive power is equal to the induction (reactive) power,

then,

X t
Li,j

= X t
Ci,j

(7.6)
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Assume the capacitor bank contains a series of identical capacitors which can be

switched on/off electronically (e.g., using thyristors). Assume the capacitor bank has

l capacitors and st switching state, where, st = 0 means all capacitors are switched

off at t, and st = k (1 ≤ k ≤ l) indicates that k of l capacitors are switched on. Now,

let the capacitance of each capacitor in the bank at (i, j) be ci,j, and then at t,

X t
Ci,j

=
st

2πfci,j
, (7.7)

where the value of variable st is defined as, 0 ≤ st ≤ l, f is the frequency of the line

(50 or 60Hz) and ci,j is the capacitance of each identical capacitor of the bank.

To ensure the quality electricity service, besides capacitor bank switching, the

substation EMS must ensure that the voltage of the furthest service-drop of a feeder

is greater than or equal to the minimum primary voltage of the community (ri,mi
). As-

sume the OLTC of the distribution feeder (fi) has ψi taps, indicated as TAP1, TAP2, · · · , TAPψi
.

Each TAPi represent the ratio of primary and secondary windings of the distribution

transformer. Now, let the primary (at the substation) voltage be V t
p and the sec-

ondary feeder input voltage for feeder fi at t be V
t
s . To ensure uninterrupted services

and quality of power, the following must be satisfied,

V t
s = V t

i,mi
+

mi
∑

j=1

V t
di,j
, ∀i, (7.8)

V t
s ≥ V t

p × TAPk, 1 ≤ k ≤ ψi (7.9)

where V t
i,mi

is the terminal voltage of the last customer on feeder fi. Now, the energy

loss on the distribution system at t is (using eq. (7.2)),

Et
loss =

n
∑

i=1

mi
∑

j=1

j
∑

k=1

V t
di,j
I ti,j, (7.10)
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Figure 7.3: VVCO and OECM interactions, Volt-VAR and energy management.

Next, let the terminal (primary) voltage of each of the communities at j of feeder fi

be V t
i,j, then the total amount of electricity which needs to be supplied/generated at

t is,

Et
g =

n
∑

i=1

mi
∑

j=1

I ti,jV
t
i,j + Et

loss, ∀t (7.11)

7.3.2 Electricity Cost

Let µ(Et
g) be the cost function of the electricity generation at t. We assume that

µ(Et
g) is increasing and strictly convex. Therefore, if Et

g > Ẽt
g then µ(Et

g) > µ(Ẽt
g)
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[45] and the cost function is a quadratic function as [80],

µ(Et
g) = a(Et

g)
2 + bEt

g + c (7.12)

where a > 0 and b, c ≥ 0 and Et
g is the amount of electricity generated by the energy

source or generator. The electricity cost is solely dependent on the total demand of

the customers and various losses throughout the distribution system.

7.3.3 VVCO Mathematical Model

The mathematical model is depicted as follows:

Objective: min
τ
∑

t=1

µ(Et
g) (7.13)

subject to, Eq. (7.2), (7.3), (7.7), (7.8), (7.9), (7.11), and (7.12)

After solving the above VVCO model, the utility determines the amount of energy

to be generated (Et
g) and the cost µ(Et

g). Note that this was decided according to the

input obtained from the CEMS (such as I ti,j), a shown in Fig. 7.3. The rate of the

electricity πt, ∀t (πt =
µ(Et

g)

Et
g
) is now sent back to the CEMS, so that each community

can solve an optimal energy consumption model (OECM) to reschedule local loads,

decide the charging/discharging state of EVs as well as the use of renewable energy.

The objective here is to redistribute the load, using the current price and send back

to the utility for a new decision from the VVCO model.

7.4 Optimal Energy Consumption Model (OECM)

In our proposed model, each community is assumed to be connected to the distribution

feeder through a step-down transformer, known as a service drop transformer. The
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transformer has two hot legs (Hot L1 and L2) output voltage (+120V, -120V) with

opposite phase and a center tap known as neutral. The multi-wire (L1, L2 and

neutral) branch circuit supplies 120/240V for the residential appliances. The hot leg

L1/L2 and neutral are used to supply 120V and for the 240V appliances are connected

to L1 and L2. Some appliances (like EV, electric motor, etc.) are connected to 240V

circuit to get better performance. Devices such as, light bulb, television, microwave

oven, dishwasher, dryer, etc. are connected to the 120V circuit. We assume a voltage

regulator connected to 120V circuit to adjust the voltage level (ANSI C84.1 standard

between 108 to 120V) according to the requirement determined by the CEMS.

7.4.1 Customer Load

A customer may have elastic appliances (such as an EV, heat water tank, heating/air

conditioning system, washing machine, dishwasher, etc.,) and inelastic appliances

(such as light bulbs, electric oven, electric iron, etc.) [121, 120]. Contemporary

technology advances are emerging as one of the growing trends for home appliances.

Evolution of such new devices and IEEE 802.15.4, ZigBee, are enabling the HEMS

with easy access to appliances information and consumption control. Moreover, nu-

merous studies have been done and are ongoing to recognize the non-intelligent home

appliances consumption patterns [20, 4, 62, 106]. Once the operating appliances

are detected, the HEMS can pull the efficiency voltage specification from the local

database. Next, the HEMS sends the measurement (such as minimum terminal volt-

age, consumption duration, admittance, etc.) to the CEMS. The CEMS adjusts the

consumption pattern, and the terminal voltage according to the energy cost received

from the substation EMS. Moreover, to reduce the consumption from the grid, the

CEMS may schedule V2G on EV, and energy use from renewable. Then, the CEMS

sends the demand (current, voltage) to the substation EMS to improve the energy
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cost.

Let w (w ∈ ri,j) be a customer, Aw be set appliances of customer w, and a (a ∈ Aw)

be an appliance. Now, for simplicity an elastic and inelastic load of a customer can

be represented by a tuple as follows,

Lw,a = (V,Ew,a, v
l
w,a, Tw,a) (7.14)

where V is a voltage set (within ANSI C84.1 utilization voltage range) with interval

of 1 volt, Ew,a is a set of power (ZIP power) consumed by a load (appliance) a of

customer w for an operation voltage of V , vlw,a is the minimum operating voltage,

below this voltage the efficiency is low [122, 71], which may cause a shorter lifespan

of the appliances. We assume that vlw,a is a value between the standard voltage range

of ANSI C84.1. Tw,a is the acceptable period of operation such that an appliance a

of customer w may consume electricity exactly for one slot2 in Tw,a (|Tw,a|> 0. When

|Tw,a|= 1, then the load is an inelastic load, otherwise it is an elastic load. Let P k
w,a

and Qk
w,a be the active and reactive power of a load a of w at operating voltage Vk

(where Vk ∈ V ). Then for the constant current, power and impedance, the ZIP model

[118, 10] for the active and reactive power of the load can be expressed as,

P k
w,a = P0

[

Zp(
Vk
V0

)2 + Ip
Vk
V0

+ Pp

]

, ∀Vk ∈ V, (7.15)

and

Qk
w,a = Q0

[

Zq(
Vk
V0

)2 + Iq
Vk
V0

+ Pq

]

, ∀Vk ∈ V, (7.16)

where P0 and Q0 are the active and reactive power consumed at nominal voltage V0.

Zp,Ip and Pp are the ZIP coefficients for active power and Zq,Iq and Pq are the ZIP

coefficients for reactive power [10]. Therefore the magnitude of the consumed energy

2Multiple slots operation of the appliance can easily be extended from this model.
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by load a of w is,

Ek
w,a = [(P k

w,a)
2 + (Qk

w,a)
2]

1
2 (7.17)

For each voltage V k ∈ V , the corresponding power consumption of each a of w can

be determined. Thus, a set Ew,a is determined and Ek
w,a ∈ Ew,a corresponds to the

operating voltage V k.

Now, let the terminal voltage of community ri,j at t be V
t
i,j; then,

V t
i,j =

h
∑

k=1

V kαk,tw,a, ∀t, ∀w, ∀a (7.18)

where h = |V | and αk,tw,a is a binary variable which determines the status of the load

a of w at t. αk,tw,a = 1 indicates that the load is consuming energy at t, otherwise

it remains idle. For energy efficiency and long life operation of the equipment, the

following constraint should be satisfied,

V t
i,j ≥ vlw,aα

k,t
w,a, ∀w, ∀a (7.19)

and the energy consumption of the load a of w at t is

Et
w,a =

h
∑

k=1

Ek
w,aα

k,t
w,a, ∀t (7.20)

The VVCO system must ensure that each of the elastic loads must be scheduled to

consume electricity for one slot within the duration (Tw,a) specified in the tuple (eq.

(7.14)). Therefore,
h
∑

k=1

∑

t∈Tw,a

αk,tw,a = 1 (7.21)
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Therefore, the total electricity consumption of the community ri,j at t can be ex-

pressed as,

Et
i,j =

∑

w∈ri,j

∑

a∈Aw

Et
w,a (7.22)

7.4.2 Electric Vehicle (EV)

Assume each customer has one or a set of electric vehicles EVw which participate in

both V2G and G2V operation. Let the target charging (energy) of the electric vehicle

be Ew,e, and initial energy stored in the EV be Ei
w,e, where e ∈ EVw, the constant

charging rate be Cw,e and maximum discharging rate be Dmax
w,e . Also, let the set of

slots of the EV at home be Tw,e, and discharging rate at t be dtw,e then,

(7.23)G2V Mode : ctw,e = αtw,eCw,eφc

(7.24)V2G Mode : (1− αtw,e)Dw,e ≤ dtw,eφd ≤ 0

(7.25)Ew,e ≤ Ei
w,e +

∑

t∈Tw,e

Et
w,e ≤ Emax

w,e

(7.26)Et
w,e = ctw,e + dtw,e

(7.27)Emin
w,e ≤ Ei

w,e +

ti
∑

t=ts

Et
w,e ≤ Emax

w,e ; ∀ti ∈ Tw,e

where φc and φd are the charging and discharging efficiency of an EV. Emin
w,e and Emax

w,e

are the discharging and charging limit of the EV, and ts is the starting slot in set

Tw,e. Term αtw,e in equations. (7.23) and (7.24) is a binary variable which indicates

that EV e of w charging its battery when (αtw,e = 1) and otherwise discharging at t.

Now, for the community ri,j, EV load at t can be expressed as,

(7.28)Et
i,j,e =

∑

w∈ri,j

∑

e∈EVw

Et
w,e
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7.4.3 Residential Energy Sources

Assume that some customers may have roof-top solar panel or micro wind turbine

to meet the partial demand. Let Et
w,s be the electricity produced by the renewable

source of customer w at t and the maximum capacity be RESw. Then,

(7.29)0 ≤ Et
w,s ≤ RESw,

and for the community, the total renewable energy at t is,

Et
i,j,s =

∑

w∈ri,j

Et
w,s (7.30)

7.4.4 OECM Mathematical Model

To minimize the energy price for a duration T , each of the communities must solve

the following model,

(7.31)
Objective: min

∑

t ∈T

πt(E
t
i,j + Et

i,j,e − E
t
i,j,s)

Subject To: eqs. from (7.17) to (7.30)

where πt is the unit cost of the electricity at t which is received from the EMS of the

substation. We assume that each community always consumes a certain amount of

electricity from the grid. Therefore, Et
i,j + Et

i,j,e − E
t
i,j,s > 0.

7.5 Non-cooperative Game: Iteraction between VVCO

and OECM

The problem presented in Fig. 7.4 can be modelled using a non-cooperative game with

mixed strategy. Let the payoff of each community (player) be β(σi,j, [πt|∀t]) and σi,j

be a set of actions (consumption or discharging) for each of the elastic (including EV)
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and inelastic load of the community ri,j in response to the electricity price πt; ∀t ∈ T .

The payoff of the community is the negative of the cost of total electricity drawn from

the distribution feeder fi. Thus (from eq. (7.31)),

β(σi,j, [πt|∀t]) = max
∑

t∈T

πt(E
t
i,j,s − E

t
i,j − E

t
i,j,e) (7.32)

Unfortunately, the payoff in Eq. (7.32) does not guarantee an optimal solution in

a Nash equilibrium state of the system. At each iteration, upon receiving the cost

due to the strategy determined in the previous state, the game forces the community

to reschedule the consumption to those time slots which have lower electricity costs.

Thus, in the successive iteration, the cost of slots which have lower cost in the previous

iteration will increase, and the expenses of the other slots will decrease. Therefore,

the payoff of each community may not increase. In fact, the payoff of a player is

dependent on the strategies played by other communities, which are unknown. To

design a good payoff function which always results from higher payoff in the following

games, let us consider the ideal scenario where the average load of each client is nearly

the same, and the loads are uniformly distributed throughout the hours of a day. In

this typical scenario, the average cost can be expressed as,

π̄ = µ(Ēt
g), where, Ē

t
g =

T
∑

t=1

Et
g

T
, (7.33)

Lemma 7.5.1. Any deviation from the average cost will decrease the payoff of the

players of the game VVCO/OECM.

Proof Let the average consumption in each time slot t be Ēg. Therefore, the cost of

187



electricity at each time slot t is,

π̄ = a(Ēg)
2 + bĒg + c (7.34)

then, the total cost for the whole time span is,

πT = π̄T = (a(Ēg)
2 + bĒg + c) · T (7.35)

Now, let a player shift its consumption (smallest possible) from time slot t to t
′
, thus

the utility need to decrease generation ∆Eg at t and increase ∆Eg (where ∆Eg > 0)

at t
′
, then the total electricity π

′

T is,

(7.36)

π
′

T = (a(Ēg)
2 + bĒg + c) · (T − 2) + a(Ēg +∆Eg)

2

+b(Ēg +∆Eg) + c) + a(Ēg −∆Eg)
2

+b(Ēg −∆Eg) + c)

= (a(Ēg)
2 + bĒg + c) · T + 2a(∆Eg)

2

> πT

Therefore, the payoff defined in eq. (7.32) will decrease for the player deviated from

the average costs. A higher deviation further will reduce the payoff of the committed

players. Thus, the optimal solution of the OECM game can only be obtained by set-

ting the consumption strategies such that the overall consumption in each slot t has a

minimum deviation from the average consumption. Hence, each player can maximize

its payoff by playing a strategy which minimizes the deviation of the resultant costs

from the average costs.

Therefore, the target of each community is to achieve an electricity cost near the cost

expressed in the above Eq. (7.33). This will result in minimum changes in OLTC

transformer TAP and capacitance of the capacitor bank, flatten the generation curve,

and increases the life of the distribution system components. In practice, however, the
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load may not be uniformly distributed or might not be achieved by rescheduling the

variable loads and the discharging of EVs. Without loss of generality, we assume that

the total consumption of the system is the same. Therefore, for optimal scheduling

of load,
T
∑

t=1

π∗tE
t
g ≥

T
∑

t=1

π̄Ēt
g (7.37)

where π∗t is the optimal electricity costs at any t, and the cost π∗t has the minimum

average distance from π̄. Therefore, we redefine the payoff function as,

β(σi,j, [πt|∀t]) = max{π̄L̄i,jT −
T
∑

t=1

Sti,j} (7.38)

Subject to:
(7.39)Sti,j ≥ π̄L̄i,j − πtL

t
i,j,

(7.40)Sti,j ≥ πtL
t
i,j − π̄L̄i,j; S

t
i,j ≥ 0,

Eqs. (7.17) to (7.30) where L t
i,j = Et

i,j + Et
i,j,e − E

t
i,j,s, and constant L̄i,j =

T
∑

t=1
L t

i,j

T
is

the average load. Let the optimal payoff of the community be β∗(σ∗i,j, [πt|∀t]) then,

β∗(σ∗i,j, [πt|∀t]) = max{π̄L̄i,jT −
T
∑

t=1

St∗i,j} (7.41)

This is possible when each player plays its best strategy, and all other strategies will

result in less payoff for some or all of the communities. This is known as Nash equilib-

rium of the mixed strategy game. The game is a non-cooperative multi-player mixed

strategy game because the player may draw the non-discrete amount of electricity

from the feeders, and discharge continuous (non-discrete) amount of electricity from

the EVs and consume energy from RES. Other than these, the elastic loads have

discrete strategies. In each iteration, the communities play the best strategy to min-

imize (OECM) its consumption cost and send the demand to the EMS, which runs
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the VVCO scheme and returns the electricity unit costs to the community OECM

scheme. The interaction will continue until the game ends in a Nash equilibrium

state. The community CEMS will act as the player of the game while the substation

serves as the controller of the game.

Game Controller Game Player

Start Game
Controller EMS

Initialize send πt =
∞, ∀t to CEMS

Rec. & Update
Measurement:
Iti,j , V

t
i,j , θ

t
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Figure 7.4: Volt-VAR optimization : VVCO/OECM Game.

Players: Each CEMS is the player of the game. In each slot, with a finite number

of iterations, community ri,j plays the game (eq. (7.38)) to maximize its payoff. The

player will change its strategy σ to maximize the payoff for electricity cost (πt) received
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from EMS. The player will continue its play until the payoff reaches its maximum.

Let π
′

t, ∀t ∈ T be the one-time cost of the electricity. Then steps (OECM) of the

play are shown in Fig. 7.4.

Game Controller: The substation EMS will act as the controller of the game.

Upon receiving the demand from the communities, the EMS calculates the electricity

costs πt, ∀t ∈ T using eq. (7.13) for the amount of electricity Et
g (eq. (7.11)) and

send it to the CEMS. The interactions of EMS (VVCO) with the CEMS (OECM)

are shown in Fig. 7.4. Once the game reached to a Nash equilibrium state, then

the substation controller will send the switching command to all the capacitor bank

and set the OLTC tap of the feeder at the substation. Each of the communities also

adjusts voltage regulator or OLTC according to the terminal voltage selected by the

optimization process.

7.5.1 Uncertainty of the community load

Load variation and uncertainty of load is common in the existing electrical network

as well as for the VVO system [100, 101, 126]. The VVO system is designed to min-

imize the impact of the uncertainity of the load. The introduction of EV, customer

load, and the uncertainty of customer’s behaviors will affect the VVO. Most of the

solutions consider and try to minimize the forecast errors [100, 101, 126] which is also

applicable to our proposed system. Moreover, we find that the correct response to the

uncertainty of load is to mitigate and adjust the load locally (community) and mini-

mize the effect on the electrical network in real time. The proposed VVCO/OECM is

a decentralized method and the response time of the system is low (less than 15 Sec-

onds) hence the community load and corresponding capacitor bank can be adjusted

more accurately just before the consumption. Moreover, to reduce the uncertainty

the VVCO/OECM can be run in each operational (just before the time of actual

191



consumption) time slot without any modification. Further, shorter time slot (such

as 1 to 5 minutes) will decrease the uncertainty near to zero. A local storage (com-

munity grade) system may be used to mitigate the change (instantaneous) of load

due to unpredictable behavior of the user. The charging and discharging of the local

storage system are similar to that of EV without the constraint which is presented

by equation (7.25). In this case, the storage system may consume extra energy or

discharge stored energy for the instantaneous change in community load.

7.6 Numerical Evalution

7.6.1 Simulation Setup

We consider a distribution system with several feeders, each of which connects 50 to

100 communities by inexpensive OLTC transformers. Also, an OLTC transformer

connects the distribution line to the substation. Each community has 20 to 25 res-

idential homes with or without the renewable sources, one or more EVs, 5 to 15

inelastic, and elastic loads. The consumption corresponds to terminal voltages rang-

ing from 108 to 127 (with skip 1 volt) volts and are calculated using the ZIP model

(eq. (7.17)) for each elastic and inelastic load. To calculate the load, we use the values

of ZIP coefficients given in [10]. The renewable sources have the maximum capacity

to produce 3 to 10 kW electricity. Here, we use ARMA prediction method to predict

the amount of generation from the renewable sources for the next 24 hours. In our

simulation, the residential load was chosen between 10 to 20 kWh for a day [123]. We

assume that each home has a level 2 charger to charge the EV. The battery capacity

of EV is chosen randomly from 18, 24, 60, 70, and 85kWh with charging and dis-

charging efficiency 80%-95%. For the simulation, we place the capacitor banks with a

maximum of 600 MVAR for 10, 20, 30, 40, or 50 communities and the impedances of
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7.7 Conclusion

We developed a solution VVCO/OECMmixed strategy game based to solve Volt-VAR

problem by exploiting EVs, RESs and customer shiftable loads and adjusting capac-

itor banks, OLTC TAP in a distributed fashion. We proved that the VVCO/OECM

system solves the VVO problem by ensuring minimum electricity costs. We devel-

oped an Open MPI based simulation program to realize the distributed community

environment and thus determine the terminal voltage locally and use it to help the

substation to adjust the capacitor banks and OLTC transformer TAPS. The simula-

tion result showed that the proposed VVCO/OECM system outperform the existing

VVO system while ensuring the efficient operations of the home equipment.
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Chapter 8

Discussion and Future work

8.1 Discussion

In this thesis, we addressed the several challenging issues for modernizing the ex-

isting power grid and presented intelligent solutions by using microgrid technologies

and integrating and exploiting the electric vehicles, energy storage systems, home ap-

pliances, and renewable energy systems. Throughout this thesis, a couple of energy

management schemes were developed to help achieve the objectives the modern power

grid or smart grid is expected to meet. In each of proposed methods, we perform nu-

merical analysis to show the validity of the model. We developed various simulation

programs, and manifest the results in several graphs and tables to evaluate the per-

formance of the proposed schemes. Starting from the micro-level which is energy

management at home to the substation, and transmission and distribution system,

we investigated various critical issues of the grid and proposed schemes to modernize

it with the help of microgrid and smart grid technology. Electricity pricing models,

minimization of electricity price, quality of service of power delivery, planning and

balancing between energy production or purchase and real-time consumption, and

reduction of the T&D losses were the primary goals of this thesis. Our proposed
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systems successfully demonstrated the integration of renewable energy sources, en-

ergy storage systems, electric vehicles and shiftable loads to the power system and

developed management systems which we believe will contribute to addressing the

challenges of the microgrid or smart grid.

First, we proposed joint optimal scheduling schemes for home appliances and EVs

in a grid-connected microgrid powered by renewable energy sources. The scheduling

scheme is also known as centralized optimal consumption schedule (COPCS). The

microgrid uses EVs for electricity storage to improve the efficiency and reliability of

the system. We have observed that the optimal scheduling schemes clearly outper-

form the naive scheduling scheme by better managing the electricity consumption

and shifting soft loads from high demand (and low power generation) periods to low

demand (and high power generation) duration. For instance, our simulation results

show that the performance improvement of optimally scheduling EVs with or without

discharge capability is almost 175% for 400 EVs and 85% for 590 EVs, respectively,

compared to naive scheduling. Also, the optimal algorithm with EV discharge outper-

forms the decentralized EV charging control method using a non-cooperative game.

The running time of the proposed joint scheduling algorithm is small for a residential

community. For 500 homes (3500 home appliances) with 1000 EVs, it took less than

a second to 138 seconds for each iteration on a computer with Intel Core i5 processor

and 4GB memory. In a real-time implementation, upon receiving the requests from

the hard load appliances, the microgrid allocates energy with no delay. In the case

of soft loads (types B and C), the microgrid determines the schedule of electricity al-

location and allocates power according to the schedule. For a very large community,

we observed that the algorithm may have some scalability issues in real-time imple-

mentations. The proposed algorithm has two very significant properties: (i) load
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regulation and (ii) energy or power regulation. The proposed joint charging sched-

ule optimally regulates power and load, which yields a minimum electricity import

needed by the microgrid. This will save energy production costs of the electricity grid

and ensure optimal use of locally generated renewable energy of the microgrid. The

proposed joint, centralized scheduling schemes do not depend on several interactions

between end systems and the central controller, which is essential for decentralized

EV charging control methods to determine the optimal schedule. The interactions

may not produce an optimal EV charging schedule due to inconsistencies in the flow

of information. The proposed joint scheduling policies are capable of accommodating

any energy source model. The optimal joint scheduling is sensitive to the variation of

load, load characteristics and stochastic nature of renewable power generation. We

have shown that our proposed model always produces optimal results for a microgrid

with renewable, non-renewable, or both energy sources.

The centralized scheme, COPCS, does not scale well for a microgrid with a wide

range of residential home. The execution time increases exponentially with the size

of the microgrid which contains more than 800 residential users. Moreover, COPCS

is an offline algorithm which processes and allocates energy based on predicted con-

sumption of the equipment and EVs. Hence, the amount of energy generated from

renewable energy sources, EVs arrival and departure time and target energy, con-

sumption of home appliances vary at the time of consumption from the day ahead

prediction. Also, COPCS needs device detail information for the projected time span

such as consumption start and end time, the rate of consumption or charging, dis-

charging rate of EV, the amount of renewable energy generation in different time

slots, etc. Therefore, the consumer will have to send all this information to the EMS

of microgrid which may cause an issue of privacy and security. To address these prob-

lems, we proposed a distributed real-time allocation (DRTA) scheme of electricity to
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the homes in a grid-connected microgrid power by a mix of renewable and non-RES.

The scheme is an online scheme schedule and allocates power as it is requested from

the user. The microgrid uses EVs as the electricity storage to improve the energy

efficiency and stability of the system. Each home in the microgrid independently

schedules its home appliances and EVs to increase the overall social benefit of the

microgrid. DRTA is a distributed real-time scheme which does not depend on the

number of households in the smart grid or microgrid because, in DRTA scheme, each

home independently optimizes its energy cost and increase the overall social benefit.

In each time slot, DRTA modifies or adjusts the energy allocation plan according

to the observed and predicted amount of load and energy, and allocates energy to

all homes for the current time slot. We have also seen that, in all the cases, DRTA

demonstrated a solution close to the COPCS scheme. Similar to the COPCS, DRTA

has two very significant properties: (i) load regulation which shifts flexible load from

high to the low demand duration, and (ii) energy regulation which stores excess energy

to EVs batteries (G2V) from off-peak hours, and later use the stored energy (V2G)

to meet the peak hours demand. The DRTA scheme converges to a stable state in

few iterations (Fig. 4.6) and has the flexibility to terminate anytime, therefore, the

proposed scheme is suitable and practical for a smart grid or microgrid operator of

any size. The DRTA scheme with a centralized coordinator gives more control to the

microgrid operator for real-time electricity pricing function; therefore, it is indeed a

more practical approach. Conversely, the coordinator functions can easily be adapted

to the customer point. In that case, each customer will send load information to all

other customers, and the total current load and prices will be calculated locally. Each

customer still needs to communicate with the operator to get the current informa-

tion about the amount of electricity produced. In the practical implementation, the

information of energy usage pattern of every home is exposed which may raise some

203



privacy issues.

DRTA is an online scheduling and allocating system which schedule and deliver

electricity according to the immediate demand; it does not however help much the

energy retailer or microgrid operator for a day ahead or hour before generation and

purchase of energy. We addressed this problem and developed a real-time distributed

energy management RDCDSM system to mitigate the intermittent nature of the RESs

and fulfill the demand of a residential microgrid. The proposed RDCDSM processes

the raw predicted load to produce a predicted load curve, balanced throughout time,

for the microgrid and allocates electricity in real time in an intelligent way which

reduces the gap between the predicted and distributed amount of power. Hence,

the proposed system forces customers to produce a flat load profile collectively and

stick to that profile at the time of actual consumption using a penalty. RDCDSM

eases the integration of RESs with the grid by exploiting ESSs and EVs. We also

developed a centralized allocation method to allocate electricity according to the

day ahead simple prediction method to evaluate the performance of RDCDSM. The

RDCDSM system took less time (less than a minute) to produce the results whereas

the centralized scheme needs days (and sometimes weeks) to provide a solution for

a large microgrid. The proposed system requires more sensible equipment (HEMS)

whereas the centralized system required a less intelligent system in the user premises.

The centralized system, however, needs detailed information on consumption from

users which may violate their privacy.

Next, we proposed an optimal pricing scheme, MEPM, for minimizing the elec-

tricity price in a microgrid network. Originally, the power cost optimization prob-

lems are non-linear and non-convex. Hence, the problems are intractable, and no

known polynomial solution exist to solve them. We have analyzed the minimum cost

(MEPM) and decomposed the problem to solve it optimally, and compared with a first
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come first server pricing scheme. For various configurations of the MGN, the MEPM

method showed outstanding performance. The MEPM scheme takes less time to

evaluate the electricity price of an enormous size MGN. Therefore, MEPM is a good

choice for determining real-time electricity pricing of MGN. Moreover, the MEPM

can identify and predict near accurate (optimal) electricity price for the variation of

load and renewable energy generation of the MGN system. Also, the proposed model

considers various energy sources including renewable energy and dynamic behavior

of the smart microgrid in the electricity system as a seller or a buyer. Although we

have presented the model for non-decreasing marginal cost function, the proposed

algorithm produces optimal results for both general convex and monotonic marginal

costs but not for the nonlinear marginal costs with peaks and valleys.

Finally, we proposed a new model (VVCO/OECM) for VVO, which acknowledges

the current technological advancement of the power grid, evolution of the smart grid,

and EVs. We found that the proposed model and its game-theoretic solution could

solve the VVO problem optimally. The existing VVO method only solves the problem

with the coarse-demand received from the customers. In our solution, we developed

an interactive method which enables the utility to communicate with the customer to

flatten the load and ultimately, reduces the reactive loss and flatten the generation.

Thus, VVCO/OECM can reduce the overall production cost of the electricity. The

VVCO/OECM system is scalable and can be implemented for any size power system

infrastructure. The system can be deployed without the intervention of the substation

by calculating the cost at the CEMS premises and adjust the compensation devices

by the local demand.

To evaluate the models we developed simulation programs using C++, MPI, and

IBM CPLEX. The centralized model is developed using C++ and CPLEX and per-

formed the experiment as a single process with several instances of a microgrid or
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microgrids. For the game based model including the mechanism design, we devel-

oped C++ MPI, IBM CPLEX based parallel program where each of the processes

represents a player or agent of the game. Most of the experiments were executed on

Calcul Quebec (Compute Canada) advanced research computing (ARC) system to

emulate the parallel essence of the real system [99].

8.2 Future Work

The work presented in the thesis provided considerable effort to solve the challenges

of the transition from a traditional power grid to a modern smart grid by integrating

renewable energy sources, electric vehicles, shiftable loads, and energy storage sys-

tems. The objective was to minimize losses, optimal power management, and quality

of electricity delivery to the customer with reducing electricity price. However, there

remains several future research directions which may add extra benefits to meet the

challenges of the future power grid.

In our energy management models for the residential microgrid (COPCS, DRTA,

RDCDSM), we assumed that microgrid is connected to the traditional grid which is a

reality. We assume that the shortage of electricity of the residential microgrid will be

purchased from the power grid. In the islanded mode, when microgrid is disconnected

from the power grid due to a natural disaster or cyber-physical attract, the microgrid

needs a contingency and emergency energy management plan. Each residential home

energy management system needs to identify the emergency or essential loads to be

serviced such that all the households in the microgrid have the fair share of available

power. The proper management of storage systems such as EVs and ESSs may always

preserve a sufficient amount of energy to meet the demand of an emergency situation.

In the MGN and VVO/OECM system, we have considered active and reactive

power in the power line due to the resistance and inductance of the power line.
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We do not regard the capacitance of the transmission and distribution line, reactive

power injected by loads (for MGN), renewable energy sources, heat loss, transformer

losses, frequency variation, etc. These parameters may complicate the model, but

it is essential for a perfect design of an energy management system. In general, the

problem is a well known optimal power flow (OPF) problem. Much research has been

done for several decades to solve the optimal power flow problem in the traditional

electrical network which has centralized generation. The modern power system is

more complicated due to the dynamic load, storage, bidirectional flow of energy and

distributed generator; thereby the optimal power flow problem becomes more difficult.

This needs intense investigation, modeling, and solution to address the power flow

problem for the modern power network.

We have used PMU in VVCO/OECM which has potential synchronization and

phase offset problems due to the unaligned clocks of PMU and PDC or central con-

troller. Some control applications may not tolerate clocks drift greater than 1µs.

Therefore, clock synchronization between PMU and PDC or central controller (or

EMS) may result in better management and control system for the power grid.

Alteration or tampering, denial of service, delay due to network congestion or cy-

ber attract on control, demand, and various other messages may create an immediate

problem in power delivery and increase the cost of operation and electricity. This

may not jeopardize to achieve the objectives of the microgrid. Therefore, study and

active research may improve the resiliency, reliability, and availability of power grid.

Microgrid and smart grid are nowadays an active research topic. A significant

investment will be made over next decade to modernizing the century-old power grid.

The experience and expertise obtained through microgrid research will provide market

opportunities for participating enterprises as the demand for microgrid technologies

raises around the world. To improve this position, and ensure continued success,
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given the emphasis on research, the collaboration between national and international

partners will be necessary. These efforts will help to educate all stakeholders and, also,

will stimulate the improvement of next generation power grid, and energy economics.
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