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Abstract 

Two Novel Learning-Based Criteria and Methods Based on Multiple Classifiers 

for Rejecting Poor Handwritten Digits 

Weina Wang 

 In pattern recognition, the reliability and the recognition accuracy of a 

classification system are of same importance, because even a small percentage of 

errors could cause a huge loss in real-life handwritten numeral recognition systems, 

like cheque-reading at financial institutions.  

 Aiming at improving the reliability of recognition systems, this thesis presents 

two novel learning-based rejection criteria for single classifiers including SVM-based 

measurement (SVMM) and Area Under the Curve measurement (AUCM).  

 Voting based combination methods of multiple classifier system (MCS) are also 

proposed for rejecting poor handwritten digits. Different rejection criteria (FRM, 

FTRM and SVMM) are individually combined with MCSs as weight parameters in 

voting. This method is then evaluated on three renowned databases including MNIST, 

CENPARMI and USPS. Experimental results indicate that these combinations 

improve the rejection performances consistently. To further improve the performance 

of the MCS based rejection method, specialist information has been integrated into 

the combination process by introducing a new confidence weight parameter. The best 

result on MNIST is obtained by the simpler one of the two proposed methods of 

deriving this parameter, which reaches 100% reliability with a rejection rate of only 

4.09%, the best value in this field.   
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Chapter 1: Introduction 

 An overview of the research topic, purpose, challenge, previous works and the 

outline of this thesis will be presented in this chapter. Section 1.1 will provide a brief 

description of the research topic. Then, the following Sections 1.2 and 1.3 will explain 

the purpose of this topic and the major challenges respectively. Section 1.4 will 

review some of the previous works that has been completed in this field. An overall 

description of our new method will be depicted in Section 1.5 and finally Section 1.6 

will provide the outline of this thesis. 

1.1 Research Topic 

    Pattern recognition contains many branches including character recognition, 

object recognition, voice recognition, face recognition and etc, among which, 

handwritten recognition has been studied extensively for the last several decades. To 

achieve the goal of creating a machine that could recognize human's handwriting with 

as few errors as possible, tremendous efforts have been made, making handwriting 

recognition important and intriguing to researchers. Two main types, online and 

offline are known in the field of handwriting character recognition. Considering 

online recognition utilizes real time information that is not available to the offline one, 

discrepancies are shown between performances. As a result, the offline handwriting 

recognition requires continuous improvement which explains why more research is 

needed in the field. The main goal of this thesis is to further improve the performance 
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of offline handwriting recognition system, especially on unconstrained numeral tasks, 

allowing the system’s reconfiguration in enhancing its accuracy and reliability. 

1.2 Motivation 

 Handwritten numeral recognition is playing a significant role in solving 

handwriting recognition problems, as it is helpful in a variety of specific applications 

such as cheque processing at the financial institutes, ZIP codes reading in the postal 

system and numbers extracting from forms. A lot of this work that was used to be 

conducted by human beings can now be performed by automatic systems with high 

accuracy rates with the help of handwriting recognition technology. Actually, some 

handwritten recognition systems have already been developed and used in real-world 

applications [1, 2].  

 However, as in most of the other pattern recognition systems, errors still persist in 

any handwriting recognition systems for the reason that it is the machine, instead of 

human, who is conducting the recognition job. Misclassifications can be caused by a 

lot of unpredictable reasons such as confusing nature of some pairs of samples, the 

width of the tip of the pen, different people’s writing styles, cursive writing, low 

quality of scanning instruments, etc. Hence, some handwritten characters cannot be 

classified correctly even by human beings [3]. Although a recognition system learns 

from a large amount of training data inputs, it is requested to classify totally unknown 

data in the testing set. That is why a perfect recognition rate is still difficult to attain. 

Therefore, our goal is to enable automation of handwriting recognition systems 

through the improvements of recognition rate along with the reliability so that the 
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systems will be eventually adopted by institutions.  

1.3 Challenge    

 In pattern recognition, the recognition rate is always an important factor in 

evaluating the classifier’s performance. Plenty of classifiers or multiple classifier 

systems have achieved high recognition rates based on different datasets like MNIST 

digit database [4], CENPARMI digit database [5], USPS handwritten digit database 

[6], NIST character database [7], and so forth in the past decades. Although some 

models have reached error rates of less than 1% on the benchmark MNIST dataset and 

CENPARMI numeral dataset [8, 9], 100% recognition accuracy is still unattainable. 

Therefore, disparity continues to exist between researches in the lab and usages in 

practical applications. In real world applications, a small percentage of errors in 

recognition could still cause an enormous loss at financial institutions. Even if they 

may be discovered later without any fiscal loss, much resources would be spent 

through labor and time loss. So, it is necessary to build systems that focus on the 

reliability, as illustrated through formulas, to prevent this scenario from occurring.  

                  
                         

                               
                                    

                
                          

                               
                                       

            
                                                 

                                                          
         

 In order to improve a classifier's reliability, some confusing patterns must be 

rejected before entering the testing loop in order to prevent errors. That is why some 
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useful rejection criteria are produced to determine and filter out the confusing samples. 

The main challenge is to design rejection criteria that can keep high reliabilities with 

as few samples rejected as possible.  

1.4 Previous Works 

 Handwriting recognition has been intensively investigated by researchers for 

several decades and many of them have made extraordinary achievements in 

improving recognition accuracy and reliability. In this section, recent studies of offline 

handwriting numeral recognition and some benchmark rejection criteria will be 

introduced.  

 During the research history of offline handwritten isolated digits recognition, 

various classic statistical classifiers have been applied to solve the problem, such as 

K-Nearest Neighbors (KNN), Fisher discriminant analysis [10], Modified Quadratic 

Discriminant Function (MQDF) [11] and so forth. In addition, many improved 

machine learning classifiers are widely adopted in this field, including Multi-Layer 

Perceptrons (MLP) [12], Radial Basis Function networks (RBFs) [13], Polynomial 

Classifier (PC) [14, 15] and so on. Among these classifiers, Support Vector Machine 

(SVM) is the most popular one, not only because of its simpler model when compared 

to many others; but also its outstanding recognition ability in various branches of 

pattern recognition such as face recognition [16], text recognition [17], speech 

recognition [18], and handwriting recognition [8, 19]. The introduction of the deep 

learning idea by LeCun et al [20] makes the research of handwriting recognition step 

into a new era. 
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 Most of the studies focus on increasing the recognition rate by choosing more 

recognition-sensitive features and by designing more effective classification models. 

For feature extraction, many approaches have been introduced [21] and among them, 

directional feature has been proven to be one of the most effective features in 

handwriting recognition [22]. Liu et al [9] pre-processed images with normalization 

and blurring, and extracted different types of features for recognition afterwards. With 

a SVM based on 8 direction gradient features, an error rate of only 0.85% was 

obtained on CENPARMI numeral dataset. They also evaluated the proposed 

pre-process method on NIST numeral dataset which yielded a recognition rate of 

99.47% with the same features based on discriminative learning quadratic 

discriminant function (DLQDF) [23]. LeCun, one of the fore-runners of deep learning 

algorithm, achieved a recognition rate of 99.05% with the proposed LeNet5 [20] 

Convolutional Neural Network (CNN) model and 99.30% with the boosted LeNet4 

CNN model on MNIST numeral database [4]. Simard et al proposed elastic distortion 

algorithm to expand datasets and gained an error rate of 0.40% with simple CNN 

model [24]; Lauer et al introduced a novel TFE-SVM classifier which used LeNet5 

CNN model in trainable feature extracting and performed the recognition tasks with a 

SVM. It outperformed either of the single models. By adopting the training set 

expanding method used by Simard et al in 2003, it achieved error rates of 0.56% and 

0.54% with elastic and affine distortion respectively based on MNIST digit dataset 

[25].  

 Later, researchers shifted their focuses from single classifiers to Multiple 
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Classifier System (MCS) which consists of several different classifiers in order to 

improve the individuals’ performances. MCS is supposed to perform better than single 

ones for the reason that different classifiers are sensitive to different features or 

samples and the ensemble system can combine the decisions of several classifiers and 

make a final decision. Lam et al [26] implemented Bayesian combination algorithm 

and a weighted majority voting method to combine 7 different classifiers. The 

combination system was then evaluated on handwritten numerals and proven that 

combination of classifiers can improve the performance of single ones. Meanwhile, 

Suen et al [27] applied different combination methods to different types of outputs 

which produced higher recognition rates. Yet, the better results were accompanied 

with higher costs. Recently, some researchers have yielded state-of-the-art 

performances in handwritten numeral recognition based on differently designed 

MCSs. Recognition rates of 99.77% on the MNIST numeral dataset and 99.23% on 

NIST SD19 [7] digits dataset are achieved with an MCS consisting of 35 CNN 

classifiers by Ciresan et al [28]. They built the 35 committees by normalizing the 

width of all characters and randomly initializing CNN models. Wu et al obtained the 

same recognition rate of 99.77% on MNIST digits based on a cascade-based MCS 

with 5 CNNs trained on different training sets as well as different operations of spatial 

pooling [29]. Niu et al produced the best recognition rate so far: 99.81% on MNIST 

numeral dataset, with a hybrid classifier consisting of a CNN model for feature 

extracting and a SVM model for classification [30].  

 As the classifier’s reliability became increasingly important, this research area 
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attracted plenty of researchers who sought to produce reliable handwritten recognition 

systems for practical applications. As a result, some useful rejection criteria have been 

created. He and Suen [31] proposed a Linear Discriminant Analysis Measurement 

(LDAM) rejection criterion based on Linear Discriminant Function (LDF) method [10] 

and tested its performance on different handwriting numeral datasets. The results 

proved that it surpassed other classic rejection criteria including the First Rank 

Measurement [19] and First Two Rank Measurement FTRM [5] in performance. They 

also introduced another two rejection criteria including Differential Measurement 

(DM) and Probability Measurement (PM), and a hybrid system consisted of a SVM, a 

MQDF, a CNN and the combination of the three. The hybrid system achieved 

recognition rates ranging from 95.54% to 99.11% with a reliability of 99.54% to 

99.11% [32]. A cascade-based MCS was proposed and applied for the purpose of 

handwritten digits recognition and rejection by Zhang [33]. The results of 99.96% 

reliability with minimal rejection and 99.59% recognition rate without rejection 

indicated that this method could enhance the performances in both recognition rate 

and reliability. 

 Based on this literature review, we design two novel learning-based rejection 

criteria for single classifiers, as well as attempting to conduct rejection with multiple 

classifiers which will be discussed in the next section. 

1.5 Proposed Methods 

 In this thesis, our work is mostly focused on handwritten numerals. Considering 

that current recognition systems is unable to achieve 100% recognition rate and that 
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mistakes may cause extensive damage in the long run, a classifier’s reliability, defined 

in Eq.(1, 2, 3), is as important as its recognition accuracy. Again, some confusing 

patterns that are error-prone must be thrown out before making the final decision in 

order to prevent errors. Some helpful rejection criteria are therefore produced to 

determine and filter out the confusing samples. In the previous studies, the criteria are 

designed based on some heuristic ideas while the rejection processes are performed in 

or after the testing stage. The measurement-level outputs [32] are extracted to solve a 

two-class recognition problem, one of which stands for rejection and the other for 

non-rejection. These methods perform rejection by setting thresholds and comparing 

with the confidence values of a sample according to different criteria.  

 Considering a classifier learns to recognize specific types of samples from the 

training set, it is assumed that the quality of the training process affects the testing 

result in a large scale. In other words, the testing results are based on whether useful 

and recognition-sensitive information has been extracted from the training data; thus, 

the training phase is critical to the whole pattern recognition procedure. From this, it 

can be assumed that training data is as significant for pattern rejection as for 

recognition and we attempt to extend the rejection process from heuristic design to 

learning-based procedure. Compared to the traditional rejection criteria, the use of 

learning-based method on the training set to predict the rejection on testing samples is 

more straight-forward and can make use of much more information extracted from the 

data.      

 Based on the idea to extend rejection criteria designing into training process, two 
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novel rejection criteria are proposed, including Support Vector Machine based 

Measurement (SVMM) and Area Under the Curve Measurement (AUCM). SVMM 

uses the SVM classifier as a basic model and locates an optimal boundary between 

confusing and clear samples based on the training data. AUCM uses a model based on 

the ROC curve representing the relationship between the number of rejected samples 

and the reliability. It searches for the best combination of measurement-level outputs 

to maximize the area under the curve for rejection based on training set. Both of them 

are tested on the benchmark MNIST database with a CNN model to verify their 

effectiveness. 

 Besides these two learning-based rejection criteria for single classifier, a rejection 

method based on MCS has also been introduced. In the past several decades, MCS has 

contributed a lot to recognition and has achieved many outstanding results; however, 

it is seldom used in rejection. MCS is so effective in recognition that it is assumed to 

be useful in rejection as well. Therefore, we propose a weighted voting method to 

combine decisions from single classifiers in a MCS for rejection which will 

eventually be evaluated through MNIST, CENPARMI and USPS.  

1.6 Thesis Outline 

 The main content of this thesis can be summarized in two phases: (a) 

learning-based rejection criteria for single classifier; and (b) voting-based rejection 

method with multiple classifiers. From here, the rest of the thesis will be organized as 

the following: 

 Chapter 2 will introduce the basic rejection, recognition and distortion algorithms 
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as well as database information used for our research. To be more specific, some 

background knowledge and traditional pattern rejection methods will be presented. 

Then, theoretical background of CNN classifier will be explained along with its two 

structures that have achieved high recognition rates. We will also provide the basic 

information about the databases that are used. At last, we will briefly study the elastic 

distortion algorithm that is applied in the phase of dataset re-sampling within MCS 

construction. 

 Chapter 3 will introduce two novel learning-based rejection criteria: SVMM and 

AUCM. Main designing ideas and architectures of these two criteria will be provided 

while comparisons with other traditional criteria based on MNIST handwritten digits 

database will be presented afterwards. 

 Chapter 4 will discuss the architecture and algorithm of a new rejection method 

with MCS. It is implemented by using voting methods to combine decisions from 

various single classifiers. To construct the MCS committees, two simple ways 

including dataset re-sampling and structure modification have been chosen. The 

performance of this rejection method will be tested on MNIST, CENPARMI and 

USPS.  

 Chapter 5 is a continuation of Chapter 4. In order to further improve the MCS 

based rejection method's efficiency, we will add specialist information of single 

models in various categories into the combination process. A new confidence weight 

parameter will be introduced with the purpose of representing the specialist capability 

of single classifiers. On MNIST database, the new weight parameter will be adopted 
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into the process of combination to evaluate its effectiveness. 

 Chapter 6 will draw conclusions and will illustrate the main contributions of this 

thesis. Also, future research directions will be presented in a brief synopsis.  
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Chapter 2: Theoretical Background 

 The concepts behind basic algorithms and rejection criteria in pattern recognition 

will be introduced in this chapter. Section 2.1 will look at the background knowledge 

of pattern rejection along with three classic criteria including First Rank Measurement 

(FRM), First Two Rank Measurement (FTRM), and Linear Discriminant Analysis 

Measurement (LDAM) [31]. Then, CNN classifier and two structures of it which have 

achieved high recognition rates will be discussed in Section 2.2. Section 2.3 will look 

at the three databases that are used for evaluation: MNIST, CENPARMI and USPS 

handwritten digit databases. In addition, randomly selected samples and previous 

extraordinary results will be displayed respectively. Section 2.4 will look at an elastic 

deformation algorithm that forms the basis for MCS construction in later chapters.  

2.1 Rejection Criteria 

 Pattern rejection can be viewed as a two-class recognition problem, taking the 

output values of a classifier as features to recognize a pattern as a confusing one to 

reject or a clear one to accept. Generally, for a regular classifier, the output is always a 

vector consisting of confidence values or probabilities of possible classes. Given a 

pattern  , suppose the output vector of the classification is (  is the number of 

possible classes):  

                                                                    

Then, this pattern is classified according to                      . In case that the 

outputs are negative, normalization can be used to guarantee that all the values are 
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positive (e.g.                            ).  

 In the field of rejection, some traditional rejection criteria have been studied 

before and have produced high recognition rates as well as high reliabilities. In this 

section, some useful criteria are presented. The first rank confidence value (FR) and 

the second rank confidence value (SR) can be described as: 

                                                                      

They are the most meaningful ones among all the confidence values. FR is expected 

to be much larger than all the other output values for a clear sample. Besides, the gap 

between FR and SR is also viewed as a practical factor to reflect the sample’s quality. 

That is why First Rank Measurement (FRM) and First Two Rank Measurement 

(FTRM) have been proposed for rejection [31]. 

(1) FRM 

FRM is one of the most important criteria since it takes only FR of the 

output vector into account. It rejects samples by setting a threshold    to FR 

and accepts those satisfying      . 

(2) FTRM 

FTRM is another important factor for rejection. Unlike FRM, it emphasizes 

on the gap between FR and SR. FTRM sets a threshold    to the gap and 

accepts only the samples satisfying         .  

(3) LDAM 

He et al [31] propose a novel LDA measurement (LDAM), which relies on 

the principle of Fisher Linear Discriminant Function. The authors apply the 
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principle of LDA on outputs for the rejection option as a one dimensional 

application which shifts the Fisher criterion to: 

     
  

  
 

       

   
                                                      

where    and    are the centers of two classes and     is within-class scatter 

respectively. Then, they define two classes for rejecting and accepting 

samples:            and                 , in order to maximize the separation 

between FR and all the other confidence values. (Here     are confidence values 

in a descending order). Thus, in LDA,       can be defined by: 

     
           

 
    

 

         
                                                      

where        ,     
 

   
    

 
   ,     ,    

 

   
         

  
    and  

    
 

 
  . 

A threshold    is set and samples are accepted if they satisfy        . 

The criterion has been proven to produce a better performance than FRM and 

FTRM based on eight-direction gradient features with SVM classifier for 

handwritten character recognition [31]. 

These three above-mentioned rejection criteria have been proven to be 

useful in pattern rejection [19, 31, 32]; hence, they are used for comparison with 

our proposed criteria in order to verify the effectiveness of the new ones.  

2.2 Convolutional Neural Network (CNN) 

 The CNN classifier [4] is a special type of multi-layer neural network which 

adopts deep learning algorithm for parameter adjustment. It differs from the standard 
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neural network because of the function that allows automatic extraction of topological 

properties from the raw image. Therefore, it can work as both a feature extractor and a 

classifier. The feature extractor part retrieves topological features from raw images 

through multiple times of convolutional filtering calculation and down sampling. 

There are different numbers of feature maps which store the extracted features in the 

convolution layers. Each feature map has its own convolution coefficients and bias 

which are shared by all the units in this map. Each unit in the feature maps is 

calculated through the area at a specific spot of its previous layer, which is also 

known as receptive field, while performing a convolution operation with the 

coefficients plus the bias. Each convolution layer is followed by a sub-sampling layer 

including exactly the same number of feature maps to reduce their spatial resolution. 

The classifier part is just like traditional neural networks. 

 A widely used typical CNN classifier known as LeNet5 [4] is displayed in Figure 

1. It takes an image of 32 by 32 pixels as an input and contains three convolution 

layers (C1, C3 and C5), 2 sub-sampling layers (S2 and S4) and two fully connected 

layers (F6 and output). C1, C3 and C5 are composed of 6, 16 and 120 feature maps 

respectively which are used for storing features. The sizes of feature maps in these 

convolution layers are 28 by 28 for C1, 14 by 14 for C3, and 1 by 1 single neuron for 

C5. Considering all the local receptive fields have the size of 5 by 5 pixels, all the 

feature maps have the size of their inputs minus 4 in both horizontal and vertical 

directions (2 pixels loss at each border) after convolution calculation. Sub-sampling 

layers are used to reduce the spatial resolution of the feature maps in convolution 
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layers, so they are put just after each convolution layer. Each unit of a sub-sampling 

layer relates to a 2*2 receptive field of its previous convolution layer. It is computed 

by averaging these 4 input units. That is the reason why feature maps in sub-sampling 

layers have the sizes of half of their inputs, as presented in Figure 1: S2 14 by 14 and 

S4 5 by 5. C5 and the last two layers are fully connected just like the standard neural 

network. The last layer has ten units for the 10 classes (0-9) in digit recognition. The 

neuron with the maximum value in this layer generates the final decision. 

 

Figure 1. Structure of CNN model LeNet5 [4] 

 A simplified CNN architecture [30, 34] has achieved similar recognition results 

as LeNet5. In our research, we applied this simpler CNN model [30], which is 

presented in Figure 2, as a basic CNN model for our experiments. This CNN model 

compresses the architecture of LeNet5 to 5 layers including 1 input layer, 2 feature 

map layers, each conducting both convolutional filtering and down sampling tasks, 

and a hidden layer fully connected with the last output layer. The input is a 29 by 29 

matrix with the normalized pattern centered inside. Then, the two feature map layers, 
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containing 25 and 50 feature maps respectively, retrieve the features by performing 

convolution and down sampling calculation with the receptive fields in their previous 

layers. After that, a hidden layer with 100 single units to store features is fully 

connected to the output layer. In the output layer, the final recognition decision is 

provided. 

 

Figure 2. Structure of a simplified CNN model [30] 

2.3 Description of Databases 

 Three famous handwritten digit datasets, including MNIST, CENPARMI and 

USPS, have been used for the experiments and they will be described briefly in the 

following section. 

(1) MNIST database [4, 35]  

MNIST database is a subset of well-known NIST database [7]. The training 

set contains 60000 binary images of handwritten digits. 30000 of them are 

constructed from NIST’s Special Database 3 (SD-3) and the other 30000 are 
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from Special Database 1 (SD-1). The testing set contains 10000 patterns, 5000 

from SD-3 and 5000 from SD-1. All the patterns in the training set are developed 

by approximately 250 writers; and, the testing sets were developed by different 

writers. All the samples are normalized to fix-size (20 by 20 pixels) images and 

centered in 28 by 28 pixels planes. MNIST is a benchmark database for 

handwritten digit recognition and has been widely used to evaluate classifiers’ 

performances for over a decade [35]. Figure 3 displays some randomly selected 

images from the training set of MNIST, and some state-of-the-art recognition and 

rejection results on the MNIST isolated numerals database are listed in Table 1. 

                       

                       

                       

                        

                       

Figure 3. Image samples from MNIST handwritten digit database 

Table 1. Selected testing results on MNIST database 

Method Distortion Error (%) Reject (%) 

Boosted LeNet4 [20] Affine, scaling, squeezing 0.70 0.0 

KNN [36] Non-linear deformation 0.52 0.0 

TFE-SVM [25] Affine 0.54 0.0 

CNN [24] Elastic 0.40 0.0 

CNNs[37] Elastic 0.39 0.0 

MCDNN [28] Width normalization 0.23 0.0 

Cascaded CNNs [29] Elastic, scaling , rotating 0.23 0.0 

Hybrid CNN-SVM [30] Elastic, scaling, rotating 0.19 0.0 

Hybrid CNN-SVM [30] Elastic, scaling, rotating 0.00 5.6 
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(2) CENPARMI database [5] 

The CENPARMI handwritten digit database was assembled from U.S. ZIP 

code database of CENPARMI lab based at Concordia University. It contains 

approximately 17000 run-length coded binarized digits with an estimated 

number of 3400 writers. Samples are all unconstrained handwritten numeral 

images collected from dead letter envelopes, known as undeliverable mail, by the 

U.S. Postal Service which are then scanned in 166 PPI. In the CENPARMI 

database, there are 4000 images (equal number for each class of 0-9) used for 

training and 2000 (equal number for each class of 0-9) used for testing. All the 

images are of different sizes. Figure 4 displays some samples from the training 

set and Table 2 provides some sources of high accuracy on this database.  

                        

                        

                        

                        

                        

Figure 4. Image samples from CENPARMI handwritten digit database 

Table 2. Selected testing results on CENPARMI database 

Method Error (%) Reject (%) 

4-expert system[5] 0.0 6.95 

multiple- expert system [38] 1.15 0.0 

LQDF [8] 0.95 0.0 

SVC-rbf [8] 0.95 0.0 

8-direction, SVC-rbf [9] 0.85 0.0 

SVM, LDAM [31] 0.33 8.75 
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(3) USPS database [6, 39] 

USPS digits data was gathered as part of a project sponsored by the United 

States Postal Service. Digital images found in this database included 

approximately 500 city names, 5000 state names, 10000 ZIP Codes, and 50000 

alphanumeric characters. They were scanned from mails in a working post office 

at 300 PPI in 8-bit grayscale [6]. This database was traditionally used in a 

splitting of 7291 samples for training and 2007 samples for testing (Version 1, 

referred to as V1). However, these two sets were actually collected in slightly 

different ways and samples in the testing set were much harder to classify than 

the ones in the training set. Hence, it was not very suitable for demonstrating 

learning algorithms. From there, all the samples from both training and testing 

sets were gathered and reshuffled to divide anew into training and test sets, 

containing 4649 samples each (Version 2, referred to as V2). All the 9298 digits 

images of USPS handwritten digit data have a fixed size of 16 by 16 pixels. 

Randomly selected samples from this database are displayed in Figure 5 while 

Table 3 lists selected previous recognition results.  

                    

                      

                      

                      

                      

Figure 5. Image samples from USPS handwritten digit database 
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Table 3. Selected testing results on USPS database 

Method No. version Error (%) Reject (%) 

Tangent Distance, 1-NN [40]* 1 2.5 0.0 

Boosted Neural Network [41]* 1 2.6 0.0 

LeNet1[42] 1 4.2 0.0 

RVM [43] 1 5.1 0.0 

GMD, VTS, TD [44] 1 2.7 0.0 

KD, VTS, TD, Bagging [44] 1 2.2 0.0 

SVM-rbf, e-grc3 [45] 1 2.39 0.0 

SVM-rbf, e-grc3 [45] 2 1.33 0.0 

*: training set extended with 2400 machine-printed digits 

2.4 Distortion Methods 

 The CNN classifier is very powerful at classifying visual patterns, as it continues 

to yield state-of-the-art performances on visual analysis tasks. In order to further 

improve its recognition performance, especially in the cases where the numbers of 

training samples are small or the distributions have some transformation-invariant 

attributes, producing new samples to expand the datasets through transformation 

methods is feasible [24, 25]. Brief descriptions of two types of transformation 

methods are presented as follows: 

(1) Affine distortion [25] 

Affine distortion is a simple way to expand the dataset. It applies affine 

displacement fields to images in order to conduct the procedures of 

transformation including rotation, scaling and skewing. It is implemented by 

computing each pixel       displacement fields,         and        , to 

locate the target position. The general form of affine distortion is:  
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where A is a 2*2 matrix and B is a column vector, storing parameters for 

transformation. For instance,    
  
  

  and    
 
 
  are for scaling. 

(2) Elastic distortion [24] 

Elastic distortion is another transformation method introduced by Simard et 

al [24]. Within this transformation method, random displacement fields are first 

generated as shown in Eq. (9): 

                                                                    (9) 

where             is a random number between    and   , generated by 

a uniform distribution. Then,    and    are convolved with a Gaussian 

standard deviation   which stands for the elastic coefficient. A small   means 

more elastic distortion while a large   makes deformation approach affine. 

After that, the field values are normalized and multiplied by a scaling factor  , 

controlling the intensity of deformation. Finally, the displacement fields are 

applied to each pixel of the image.  

 This elastic distortion method is adopted for dataset expansion for the process of 

MCS generation with dataset re-sampling method. Randomly selected samples from 

the training set are distorted with this method to generate new samples in order to 

form a new training set. 
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Chapter 3: Learning-based Rejection Criteria 

 Our main goal in this chapter is to improve the reliability of the single classifier 

by detecting error-prone samples and eliminating them from the testing process. To 

accomplish this, we have designed two novel rejection criteria, named SVM-based 

Measurement (SVMM) and Area Under the Curve Measurement (AUCM). The main 

difference between these two and other traditional rejection criteria is that they are 

learning-based criteria which extend the rejection process from heuristic design to 

learning procedure with training data. To evaluate the effectiveness of rejection, we 

can draw a Receiver Operating Characteristics (ROC) graph [46] in the coordinate 

system whose  -axis is the number of rejected samples and  -axis is reliability. A 

good rejection criterion can achieve a higher reliability with fewer samples rejected, 

so the curve is expected to be as close to the top left corner as possible. While the 

ROC curve will be introduced in Section 3.1, detailed designing ideas and 

architectures of SVMM and AUCM will be discussed in Sections 3.2 and 3.3 

respectively. Both of these two novel rejection criteria will be compared with their 

traditional counterparts such as FRM, FTRM and LDAM through experiments on the 

MNIST database with the chosen CNN model.  

3.1 Introduction of ROC analysis 

 A receiver operating characteristics (ROC) graph is used for visualizing, 

organizing and selecting classifiers based on their performance. It has a long history 

of usage in a variety of categories such as signal detection, visualizing and analyzing 
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diagnostic systems, medical decision making, etc. It is first adopted in the field of 

machine learning by Spackman in 1989 to evaluate and compare different algorithms 

[46]. 

 ROC graphs are two-dimensional, depicting relative tradeoffs between benefits 

and costs. In the case of pattern rejection, there is always a tradeoff between two 

factors: the number of rejected samples and the reliability of the system. That is 

because reliability increases whenever confusing samples are rejected at early stages. 

In previous research of pattern rejection, reliability is always considered individually 

to evaluate a criterion’s effectiveness. However, it is insufficient to evaluate rejection 

performance based on this factor exclusively since it cannot be determined which 

method is superior in rejection if their reliabilities are based on different numbers of 

rejected samples. A system with low reliability based on few rejected samples may 

achieve very high reliability once the rejection rate increases. As a result, these two 

factors are supposed to be considered simultaneously to evaluate the performances of 

rejection systems and that is why we introduce the ROC curve for pattern rejection. 

 The ROC space is a two-dimensional coordinate system whose  -axis and  -axis 

represent the number of rejected samples and reliability, respectively. For a rejection 

criterion, there is always an output value and by setting thresholds for this value, it is 

decided whether a sample should be rejected or accepted. If different thresholds are 

set and rejection procedures are conducted accordingly, we can obtain a pair 

consisting of the number of rejected samples and corresponding reliability for each 

threshold. These pairs can be presented in the created ROC space as single points and 
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a smooth curve joining all of them (referred to as a ROC curve) represents the 

performance of the rejection criterion. A good rejection criterion can achieve a higher 

reliability with fewer samples rejected. So, we expect a good ROC curve to be as 

close to the top left corner as possible. This ROC curve will be used as a tool to 

evaluate all the proposed rejection criteria throughout the thesis. 

3.2 SVM-based Measurement (SVMM) 

3.2.1 Architecture of SVMM 

 Pattern rejection can be viewed as a two-class recognition problem, taking the 

classifier’s output values as features in order to recognize a pattern for rejection or 

acceptance. The traditional rejection criteria discussed in Section 2.2 have been 

designed based on some heuristic ideas. In this section, we propose a novel SVMM to 

extend the rejection process into a learning-based method.     

 Specifically, rejection can be viewed as a two-class recognition problem, one 

stands for rejected samples and the other for accepted ones. In SVMM, the classifier 

selected is SVM and the input is the output vector (always confidence values for 

possible classes) of a certain classifier. For a classifier, the output of a sample is a 

vector of confidence values                            , as mentioned before. 

Then, these values are used as features and sorted into a descending order: 

                                                                                    

The correctly and incorrectly classified samples are labeled differently: correctly 

classified samples are labeled with "1" while incorrectly classified ones are labeled 
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with "-1". This information is then used to train an SVM classifier. Linear SVM is 

selected for training in order to locate the rejection boundary. Therefore, the decision 

boundary is a linear function combining all the components of the output vector, 

represented in Eq. (11), where        
   are the coefficients of SVM: 

      
 
                                                                        

The reason for choosing a linear kernel for SVM rather than a nonlinear one, 

such as RBF kernel, is based on the following reasons: 

(1) A linear kernel works very fast in training and testing, and an optimal linear 

separating boundary is a good way to avoid over-fitting. 

(2) A linear boundary is more meaningful physically and function Eq.(11) 

includes some special cases in it. For instance, FRM can be viewed as a 

linear boundary with      and               ; while 

FTRM can be viewed as:            and            

    .     

 Note that in the training process of SVMM, the number of samples in class "1" is 

always much larger than that of class "-1", because the baseline accuracy of the 

classifier is high. In this case, the problem is an unbalanced classification problem. To 

solve this problem, we use different weighting functions for different classes in the 

"libsvm" software [47]. In the testing process, the same features are extracted and 

sorted in descending order, and a sample is rejected if the calculated   in Eq. (11) for 

it is smaller than a pre-defined threshold. Figure 6 is a flow chart depicting the whole 

rejection process: 
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Figure 6. Flow chart of SVM-based Measurement (SVMM) 

 With this new criterion, the linear rejection boundary is found by training an 

SVM with the training set. The main difference between SVMM and other criteria, 

like FRM, FTRM and LDAM, is that SVMM extends the rejection process from 

heuristic design to a learning-based procedure. Using the learning-based method with 

training set to predict the rejection decision on testing samples is more 

straight-forward and allows researchers to use more information from the data. 

3.2.2 Experiment with SVMM 

 In the selected CNN model presented in Section 2.2 (referred to as "M0"), the 

output of each sample is a 10-dimensional vector consisting of confidence values for 

the 10 possible classes. FRM, FTRM and LDAM are used respectively as rejection 

criteria with this basic model. Thresholds are searched incrementally. As in CNN 

model, the outputs are confidence values instead of probabilities, the most appropriate 

starting point, step and ending point for thresholds searching vary according to 
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different rejection criteria. The search steps for them are all 0.1 at regular intervals 

and 0.01 at the sections where the number of rejected samples changes sharply.  

 

Figure 7. ROC curves of SVMM and other rejection criteria with classifier "M0" 

 For the newly proposed SVMM, "libsvm" tools are applied and the same CNN 

model "M0" is used as a feature extractor. Out of 60000, there are 216 samples 

labeled “-1” while the rest are labeled “1” for the training process. Since the training 

set is relatively unbalanced with the number of samples in class "1" at almost 300 

times that of class "-1", the weight parameter is set to "400" for class "-1". A linear 

kernel is selected in order to find a linear decision boundary in the feature space. 

Normalization is conducted on the decision value with SVM of each sample with the 

purpose of making the threshold-setting procedure more convenient. Then, different 

thresholds are set for rejection. Since the output is a normalized value, the starting and 

ending points for threshold searching are 0 and 1 respectively while the search steps 

are 0.1 at regular places and 0.01 at the sections where the number of rejected samples 

fluctuates sharply. All the results are shown by the ROC curves presenting the 
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relationship between the number of rejected samples and reliability in Figure 7.  

3.2.3 Comparison with other Rejection Criteria 

 Although LDAM is proven to have a better performance than FRM and FTRM in 

He et al’s research [31] based on eight-direction gradient features with an SVM 

classifier; the results demonstrate that LDAM is the least useful one in our 

experimentations with the CNN model. As for FRM and FTRM from He’s work, their 

performances varied and yet, they are very similar when applied to the CNN model 

“M0”. Therefore, it can be concluded that these pre-defined criteria vary in 

performance with different classifier models or types of features. In Figure 8, some 

randomly selected samples from the training set are displayed in a 2-dimensional 

coordinate system based on their first two rank confidence values (FR and SR).  

 

 

 

 

 

 

 

 

 

Figure 8. Samples in FR-SR feature space 

 We can see that FR and SR of correctly classified samples are extremely close to 
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1 and -1 respectively. As a result, a line with slope "1" standing for FTRM in the 

coordinate system is an optimal boundary to separate wrongly and correctly classified 

samples. That is why FTRM is an effective criterion in this model. Another effective 

criterion, FRM, can also be viewed as a way of finding a boundary parallel to 

the  -axis, which is less effective than FTRM through observations. However, it is 

noticed that although these two criteria can be useful, many correctly classified 

samples will also be rejected by them no matter where the boundary is. 

 It is also shown in Figure 7 that SVMM works as effectively as FTRM in 

rejection and their performances are too close to determine which one is better. The 

same work has been completed with two other CNN models whose structures are 

similar to "M0". These CNN models produced only small changes in the number of 

maps in feature map layers. The results of these two models are displayed in Figure 9. 

It is apparent that SVMM and FTRM are always the relatively best ones among all of 

the rejection criteria. The reason behind the performances can be traced back to the 

training process of CNN model where the expected values in the decision layer are set 

to be "1" for the true class and "-1" for the other classes. Hence, FTRM is already a 

distinctively effective criterion to determine the quality of a sample as analyzed with 

Figure 8. When we use the SVMM, which uses all the values of the output vector, FR 

and SR contribute much more than the other eight confidence values since the others 

are slightly different from SR. Therefore, the rejection boundary of SVMM is very 

close to that of FTRM, explaining why these criteria display similar performances.  

In addition, despite the presence of a weight parameter for the class of rejection in 
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SVM training, the unbalanced data remains a critical factor affecting SVMM’s overall 

performance. 

 

Figure 9. ROC curves of different rejection criteria with other CNN models 

3.3 Area Under the Curve Measurement (AUCM) 

3.3.1 Algorithm of AUCM 

 AUC, the name given to the novel rejection criterion, is the abbreviation of the 

expression: “area under the curve”. It is mentioned previously in Section 3.1 that in 

order to evaluate the effectiveness of a rejection criterion, we can draw a ROC curve 

in the coordinate system whose  -axis represents the number of rejected samples 

whereas  -axis represents the reliability. A good rejection criterion can achieve a 

higher reliability with fewer samples rejected, hence we expect a good curve to be as 

close to the top left corner as possible. In other words, we expect a good rejection 

criterion to make the area under this ROC curve to be as large as possible. To 

accomplish this goal, we attempt to determine a linear combination of FR and SR as a 

rejection criterion based on all training samples, because FR and SR are the most 

meaningful ones among all these confidence values.  
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 Firstly, we create a linear combination of FR and SR, as followed in Eq. (12): 

                                                                          

where                                  ,                                   , 

and    and    are two parameters that will be derived from the training data to 

maximize the area under the ROC curve. Specifically, we simply fix the value of    

at “1” and search different values for   . For each   , there is a combination where 

  is the outcome. Pairs of number of rejected samples and reliability are calculated 

individually based on different thresholds of   and displayed as single points in the 

ROC space. Then, a ROC curve is formed by connecting all the single points 

smoothly.    

 In order to compute the area under this curve, we approximate it by the sum of 

hundreds of small trapezoids as shown in Figure 10. The segmentation of the small 

trapezoids is based on the thresholds. For each combination of  , rejection decision 

values of all the training samples can be calculated in order to find out the maximum 

value and the minimum value. Subsequently, the space between these two is divided 

equally into 200 parts, each of which is set as a threshold incrementally and used to 

generate a small trapezoid. The two parallel sides are the reliability values with the 

current threshold and its previous one. The height is the absolute difference between 

the number of rejected samples based on the current threshold and its previous one. 

Then, the area of the trapezoid for each threshold is calculated and the area under the 

curve can be computed accordingly by summing all of the small trapezoids. The areas 

under the curve of different  s are compared to find out the maximum one in order to 
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obtain the best   . 

 In the testing process, with the optimal   , the responding combination   is 

adopted as rejection criterion for the testing samples. A sample is rejected if its 

rejection value of   is smaller than a pre-defined threshold. 

 

 

 

 

 

 

 

 

 

Figure 10. The approximating trapezoids under the curve 

3.3.2 Experiment with AUCM 

 This AUCM rejection criterion is also evaluated with CNN model “M0” on 

MNIST database. As mentioned in Section 3.3.1,    is fixed at “1”. The    is 

searched from “-5.0” with an incremental step of “0.05” until “5.0”. For each pair, the 

area under the curve is calculated through the approximation of the sum of hundreds 

of small trapezoids under it, as discussed in Section 3.3.1. The optimal    searched 

out to maximize the area under the ROC curve is “-1.75” in our experiment. So, the 

rejection criterion   is determined to be: 
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A sample is rejected if its rejection decision value   in Eq. (13) is smaller than a 

threshold. 

 

Figure 11. ROC curves of AUCM and other rejection criteria 

with classifier "M0" 

 In the testing process, because the range of the output values varies according to 

the different combination Ts, the starting and ending points for threshold setting 

remain unstable. So, we first look for the maximum and minimum values for a 

specific   to determine the starting and ending points. In this experiment, the starting 

point is -0.4 and the ending point is 2.7. The search steps for the threshold are still 0.1 

at regular places and 0.01 at the sections where the number of rejected samples 

fluctuates sharply. The rejection result of AUCM is shown in Figure.11 with those of 

FRM and FTRM, as ROC curves illustrating the relationships between the number of 

rejected samples and reliability. 
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3.3.3 Comparison with other Rejection Criteria 

 It is clearly indicated from Figure 11 that the AUCM achieves a higher 

performance than the other two criteria, because its ROC curve is closer to the left-top 

corner and remains higher than those of FTRM and FRM in almost its entire path. It 

means that with AUCM, we can always obtain a higher system reliability when 

compared with FTRM and FRM based on the same number of patterns rejected. It 

proves the effectiveness of this new rejection criterion.  

 The advantage of AUCM can be explained from its designing idea of finding the 

optimal combination of FR and SR as a rejection criterion from the training data. This 

information is then interpreted as finding the best combination to maximize the area 

under the ROC curve, which is applied to evaluate the rejection criterion’s 

performance. In the parameters searching process, the coefficient of FR (  ) is fixed 

at "1" and that of SR (  ) varies between "-5" and "5", which includes the FRM and 

FTRM as special cases of the combinations (           for FRM and 

           for FTRM). Therefore, the combination with the optimal    and 

   pair works more effectively than FRM and FTRM based on the training set, since 

its area under the curve is the largest among all including those of FRM and FTRM. 

Generally, it is assumed that the training and testing sets are closely related; hence 

demonstrating that the optimal combination on the training set is supposed to achieve 

a better performance on testing set. Later, this assumption is proven by the 

experimental result that the optimal combination of FR and SR on the training set 

works more effectively than other criteria on the testing set as well. 
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Chapter 4: Rejection with MCS 

 In this chapter, the Multiple Classifier System (MCS) will be studied for the 

purpose of pattern rejection which is implemented by using voting methods to 

combine decisions from different single classifiers. The CNN classifier "M0" [30] will 

still be used as a basic model. To construct the committees of a MCS, two simple 

methods including dataset re-sampling (DR) and structure modification (SM) are 

chosen. The details on how the MCSs are constructed will be described in Section 4.1. 

Section 4.2 will provide the proposed voting-based combination methods’ algorithms. 

Both hard voting and soft voting will be considered. In Section 4.3, the new MCS 

based rejection method will be evaluated on three notable handwritten digit databases: 

MNIST, CENPARMI and USPS. All the experimental results and analyses will also 

be displayed in this section.  

4.1 Construction of MCS 

 Re-sampling the dataset (with Bagging [48], Boosting [49] and so forth) and 

changing the classifier (in structure or type [50]) are two main ways to produce 

committees of MCSs. Many researchers have used these methods to produce a group 

of classifiers and applied certain combination methods for recognition. On the other 

hand, CNN classifier, especially MCS based on CNN, works extremely effectively in 

handwritten character recognition [28, 29, 30]. Therefore, the CNN model "M0" is 

selected as the core classifier and both of the two methods, dataset re-sampling (DR) 
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and structure modification (SM), are adopted to build MCSs according to our strategy. 

 As seen in Chapter 2, our CNN model "M0" has 2 feature map layers and 1 

hidden layer with 25, 50 and 100 feature maps respectively to store the features after 

convolutional filtering and they are named as F1, F2 and F3. Two types of 

modifications have been explored: one is by adding or subtracting the numbers of 

feature maps in each of the three feature map layers; the other is using "Bagging" 

method, such as dataset re-sampling, to randomly select samples from the training sets 

to train the same CNN model numerous times. 

(1) MNIST 

For the MNIST database, SM method is initially applied to build 

committees. We alter the model's structure slightly by increasing and decreasing 

the number in each feature map layer. Specifically, there are six modified 

structures ("M1" to "M6"), as shown in Table 4 below. In order to diversify 

recognition results, we change the number of feature maps in one of these layers 

and keep the rest intact every time. In M1 and M2, we merely change F1, in M3 

and M4, we change F2, and in M5 and M6, F3. Then, all of the models are 

trained to the 500th epoch until the recognition rates of the training set remain 

stable. All the error rates, generated from the testing loops, are listed in Table 4. 

After that, the model structure is fixed at "M0" and DR is adopted to 

generate the committees. It is noted that 30000 samples, which represent half of 

the samples in the training set, are randomly extracted for each committee. The 

elastic distortion algorithm [24] is then implemented to produce 30000 new 
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samples with parameters      and    . Some samples as well as their 

distorted counterparts are presented in Figure 12. Afterwards, these two groups 

of samples are merged to form the new training set with 60000 samples. This 

procedure is repeated five times to create five distinct training datasets while the 

"M0" is trained on them respectively to build a MCS with five committees ("G1" 

to "G5"). The information of each re-sampled training set is listed in Table 5 

along with their recognition error rates based on the MNIST testing dataset at the 

300th epoch of training when the recognition rates achieve stability. 

Table 4. Information about SM in MCS on MNIST database 

 
M0 M1 M2 M3 M4 M5 M6 

F1 25 25 25 25 25 10 40 

F2 50 50 50 30 80 50 50 

F3 100 80 120 100 100 100 100 

Training Error Rate (%) 0.36 0.34 0.31 0.34 0.26 0.34 0.29 

Testing Error Rate (%) 0.62 0.63 0.61 0.60 0.58 0.63 0.61 

Table 5. Information about DR in MCS on MNIST database 

 

G1 G2 G3 G4 G5 

0 2938 2936 2945 2940 3009 

1 3467 3412 3399 3339 3420 

2 3008 2936 3026 2953 2939 

3 2959 3083 3055 3105 3028 

4 2895 2866 2850 2996 2803 

5 2672 2745 2700 2676 2788 

6 2990 2982 2946 2996 3031 

7 3144 3076 3165 3060 3137 

8 2906 2965 2992 2987 2954 

9 3021 2999 2922 2948 2891 

Training Error Rate (%) 

of re-sampled dataset 0.79 1.10 1.11 1.43 1.10 

Training Error Rate (%) 

of original dataset 0.68 0.76 0.72 0.83 0.74 

Testing Error Rate (%) 0.60 0.73 0.75 0.79 0.71 
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Figure 12. Samples from MNIST database and their distorted counterparts 

(2) CENPARMI  

For the CENPARMI database, we start by increasing the numbers of feature 

maps in each feature map layer (F1, F2 and F2) of the "M0" while training all the 

models to the 150th epoch when the error rates remain stable, as shown in Table 

6, to construct the MCS.  

Table 6. Information about SM in MCS on CENPARMI database 

 
M0 (basis) M1 M2 M3 

F1 25 50 50 70 

F2 50 75 90 75 

F3 100 120 100 100 

Training Error Rate (%) 0.50 0.38 0.38 0.43 

Testing Error Rate (%) 2.45 2.45 2.25 2.45 

Table 7. Information about DR training sets on CENPARMI database 

 

G1 G2 G3 G4 

0 474 450 458 402 

1 462 408 482 440 

2 416 358 408 380 

3 350 404 340 390 

4 332 394 372 430 

5 394 382 410 426 

6 380 424 392 370 

7 370 424 426 412 

8 400 396 386 350 

9 422 360 326 400 

Training Error Rate (%) 

of re-sampled dataset 
1.65 1.52 1.27 1.77 

Training Error Rate (%) 

of original dataset 
1.42 1.78 1.9 1.4 

Testing Error Rate (%) 2.80 3.65 3.5 3.45 



40 
 

DR method is then used to build the MCS. During this phase, model 

structure is fixed as the basic one. Different training sets are formed by randomly 

selecting 2000 training samples and distorting them with elastic distortion 

algorithm [24] using the same parameters as in MNIST (     and    ). 

The process is repeated four times to obtain four different training sets (G1-G4) 

with 4000 samples each, as seen in Table 7 alongside with recognition results on 

the testing set after 150 epochs when the error rates get stable.  

(3) USPS 

For the USPS database, there are two versions including one with 7291 

training samples and 2007 testing samples (referred to as V1) and the other 

version with 4649 samples for each of the two sets (referred to as V2).  

Firstly, we increase the amount of feature maps in each feature map layer 

(F1, F2 and F3) of the "M0" to build “M1” to “M3”. All the models are trained 

for 300 epochs until the recognition rates on training set achieve stability. This 

work is completed for both of the two versions of USPS database and the results 

are shown in Table 8.  

Table 8. Information about SM in MCS on USPS database 

 
M0 M1 M2 M3 

F1 25 40 25 25 

F2 50 50 80 50 

F3 100 100 100 120 

Training Error Rate (%) on V1 2.15 2.13 2.08 2.07 

Testing Error Rate (%) on V1 3.84 4.04 3.89 3.99 

Training Error Rate (%) on V2 2.41 2.54 2.58 2.47 

Testing Error Rate (%) on V2 4.45 4.47 4.58 4.39 

 



41 
 

Table 9 (a). Information about DR training sets on USPS database (V1) 

 

G1 G2 G3 G4 

0 600 621 606 617 

1 487 460 505 494 

2 378 373 371 351 

3 324 299 327 332 

4 347 326 355 342 

5 276 295 267 269 

6 321 311 310 311 

7 311 311 303 321 

8 291 302 273 284 

9 310 347 328 324 

Training Error Rate of 
5.47 4.75 4.66 4.65 

re-sampled dataset on V1(%) 

Training Error Rate of 

re-sampled dataset onV1 (%) 
3.74 3.32 3.51 3.51 

Testing Error Rate on V1 (%) 4.63 4.93 4.83 4.98 

Table 9 (b). Information about DR training sets on USPS database (V2) 

 

G1 G2 G3 G4 

0 365 380 393 398 

1 301 295 275 290 

2 240 220 254 248 

3 194 231 219 195 

4 229 187 197 209 

5 193 164 164 175 

6 215 219 220 197 

7 183 207 212 192 

8 196 175 180 201 

9 209 247 211 220 

Training Error Rate of 
5.27 5.16 5.16 5.87 

re-sampled dataset on V2(%) 

Training Error Rate of 

re-sampled dataset onV2 (%) 
4.26 4.56 4.43 4.52 

Testing Error Rate on V2 (%) 5.7 5.61 5.96 6 

Secondly, DR method is adopted to build committees on USPS data. Also, 

the model structure is fixed at "M0". For V1, 3645 training samples, which 

consist of approximately half of the training set, are selected randomly and 
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distorted with the same elastic distortion algorithm and parameters. Then, all the 

selected samples and the distorted ones are mixed to form the new training set 

with 7290 samples. For V2, 2325 training samples, which contain about half of 

the training set, are selected and distorted to generate the new training set 

containing 4650 samples. The same job has been performed four times to obtain 

four different training sets for each of the two versions. The basic CNN model is 

trained for 300 epochs on specific datasets until training recognition rates 

become constant. All the information is provided in Tables 9 (a) and (b). 

4.2 Pattern Rejection with MCS based on Voting 

 Despite MCS’ effectiveness and contribution to the recognition field, it is seldom 

associated with pattern rejection, another important branch in pattern recognition. 

Therefore, there will be an attempt to adopt MCS for a rejection problem. Voting has 

always been seen as a good choice for the purpose of combining multiple classifiers 

due to its simplicity and efficiency. While hard voting is the simplest voting method 

which assigns equal weight to all votes, soft voting assigns a weight to each classifier 

according to the classifier's performance and will possibly produce more accurate and 

reliable results [26, 27]. 

4.2.1 Hard Voting for Rejection 

 In this section, hard voting is considered as a combination method for MCS 

rejection and the algorithm is followed in Section 4.2.1.1. 
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4.2.1.1 Algorithm of Hard Voting for MCS Rejection 

 Suppose there are   different classifiers in the MCS, denoted as           . For 

a pattern, each of them would give a prediction of the label, denoted as           . 

Once a class is predicted, it obtains one vote and the outcome would be a voting value 

              for each of the possible classes. Then, thresholds      are set for 

the top voting value                       and only the samples satisfying 

          are accepted while the others are rejected. The threshold      can be 

set to an integer satisfying             to make sure at least half of all 

classifiers vote for the same class. 

4.2.1.2 Experiment with Hard Voting for Rejection 

 The experimentation with hard voting combination method for rejection is 

conducted with the MCS constructed by SM method on MNIST dataset. Again, the 

information about MCS is available in Section 4.1, Table 4. 

 Seven classifiers are chosen for this MCS. Thresholds for rejection are set to 

several integers (7, 6, 5 and 4) to ensure that at least half of all models provide the 

same prediction to accept a sample. The recognition and rejection information with 

different thresholds is listed in Table 10.  

Table 10. MCS rejection based on hard voting method 

Threshold 
No. non-rejected 

samples 

No. rejected 

samples 

No. correct 

samples 

Rejection 

rate (%) 

Reliability 

(%) 

7 (All) 9882 118 9868 1.18 99.86 

6 9882 118 9868 1.18 99.86 

5 9928 72 9907 0.72 99.79 

4 9962 38 9930 0.38 99.68 
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 In hard voting, having a range limitation makes the rejection process inflexible 

since the thresholds can only be set to limited values. So, once the maximum value, 

which equals the number of classifiers in the MCS, is reached, the reliability cannot 

be improved any more. Also, this method cannot yield an ROC curve in the ROC 

space. The highest reliability is 99.86% with 118 samples rejected when the threshold 

is set to "7". In order to solve this problem, soft voting method will be used. 

4.2.2 Soft Voting for Rejection 

 The soft voting process is quite similar to hard voting, except unequal weights are 

considered for different classifiers. Compared to the simple majority voting method, a 

weighted soft voting can produce more accurate and reliable results [26]. 

4.2.2.1 Algorithm of Soft Voting for MCS Rejection 

 In order to improve the rejection performance of hard voting combination method 

in MCS, an attempt of soft voting method is performed. For the weights part, all the 

rejection criteria mentioned in Chapter 3 can be selected for the reason that they 

reflect the rejection performances of single classifiers. A certain type of rejection 

criterion is assigned to each model as weight in the voting procedure, and the class 

label with the highest voting value provides the final decision for each sample. 

 As mentioned in Section 4.2.1, suppose there are   different classifiers in the 

MCS, denoted as            . In this case, for a random pattern, each 

classifier                would provide a prediction of the label    as well as an 

output vector     
    

      
  . Then, for each classifier, the selected rejection 
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measurement (FRM, FTRM, SVMM and so forth) can be calculated based on the 

output vector, denoted as              . After that, soft voting is performed and a 

voting value               is calculated for each of the classes as Eq. (14). 

                            
             
                   

  
                                       

Among    , a maximum voting value                  can be found and a 

threshold       is searched and determined. A pattern is rejected if       is smaller 

than a threshold. As the voting values are sums of all models, the thresholds       

can be any real number between 0 and  . The whole procedure of MCS based pattern 

rejection is shown in Figure 13. 

 

 

 

 

 

 

 

 

 

 

Figure 13. Flow chart of voting based combination of MCS for pattern rejection 

4.2.2.2 Experiment with Soft Voting for Rejection 

 The experimental procedures of applying soft voting combination to the MCSs 

for rejection will be described in this section. Experiments are conducted on the three 

handwritten databases mentioned in Chapter 2. The MCSs have been constructed in 

different ways on each database and trained sufficiently as displayed in Tables 4~9. 
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For MNIST, three rejection criteria, including FRM, FTRM and SVMM, are chosen 

as weight parameters for combination. For both CENPARMI and USPS databases, 

one pre-designed criterion: FTRM and one learning-based criterion: SVMM are 

selected as weight parameters. Details will be presented below:  

(1) MNIST 

The proposed soft voting based combination method has been applied to 

MCSs constructed by both of SM and DR on MNIST database, as described in 

Section 4.1 (Tables 4 and 5). Firstly, the experiment is conducted with MCS built 

by SM. Two pre-designed rejection criteria: FRM, FTRM and one learning-based 

criterion: SVM are adopted as weights for combination. Since these criteria have 

different value ranges, different starting points, searching steps and ending points 

are chosen specifically for them. For SVMM, the starting and ending points are 0 

and 1 respectively, because the decision values of SVMM are normalized. For 

FRM, the starting and ending points are -0.5 and 1 respectively, since the 

decision values of it is the first rank confidence value given by the CNN 

classifier, which can be a negative number; then for FTRM, the starting and 

ending points are 0 and 2. The searching steps for all of them are 0.1 at regular 

places and 0.01 at the segments where the number of rejected samples increases 

sharply based on different criteria. The results with different criteria are shown in 

Figures 14 (a~c) as ROC curves representing the relationship between the 

number of rejected samples and reliability.  
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Figure 14 (a) ROC curves of MCS (SM) and single models 

with SVMM on MNIST database 

 

 
Figure 14 (b) ROC curves of MCS (SM) and single models 

with FTRM on MNIST database 
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Figure 14 (c) ROC curves of MCS (SM) and single models 

with FRM on MNIST database 

Figures 14 (a~c) demonstrate that the rejection performances are 

consistently improved for all rejection criteria (FTM, FTRM and SVMM) with 

the combination of seven CNN models. In addition, by applying combination to 

the single classifiers, the recognition performance without rejection (0 point of 

x-axis) is also enhanced for all three criteria. The error rates are decreased for 

about 25%, from about 0.6% to 0.45%, for both FTRM and SVMM. 

The same experiment with MCS built by DR is performed. All of the results 

with different criteria are shown in Figures 15 (a~c).   
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Figure 15 (a) ROC curves of MCS (DR) and single models 

with SVMM on MNIST database 

 

 

Figure 15 (b) ROC curves of MCS (DR) and single models 

with FTRM on MNIST database 
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Figure 15 (c) ROC curves of MCS (DR) and single models 

with FRM on MNIST database 

Through the ROC curves, it is proven again that by adopting the 

combination method, higher rejection and recognition (0 point of x-axis) 

performances can be obtained by MCS. With five single models whose 

recognition rates are almost all below 99.30% (only one is 99.40%), the 

combination systems with FTRM and SVMM as weight parameters achieve 

99.46% and 99.45% recognition rates (0 point of x-axis) separately. With 

rejection rates of about 4.7%, both of them reach 100% reliabilities. On the other 

hand, although almost all the recognition rates of single models in MCSs built by 

DR are less than those by SM, the combination ROC curves (with different 

weight parameters) of DR method rise faster than those of SM method. In spite 

of lower starting points, MCSs built by DR achieve 100% reliability with fewer 

samples rejected than those by SM. For MCSs built by DR, the combination 
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systems with both FTRM and SVMM achieve 100% reliability when 4.7% of the 

samples have been rejected, while in MCSs built by SM, 100% reliability can 

only be reached with the rejection rate of at least 5.7% (in the case of SVMM), 

as shown in Table 11. It is demonstrated that the MCSs with construction method 

DR work more efficiently than those with SM. Analyses indicate that the reason 

for this is that building MCS with DR makes errors between different classifiers 

in the system much more diverse. As a result, combining the decisions of 

individual classifiers can make the clear samples distinct from confusing ones, 

since they are prone to gain consistent decisions from different classifiers, 

producing much larger combination output values. Therefore, it is easier to 

separate the confusing samples by setting relatively large thresholds on the 

output values. 

    Table 11. Combination results of different MCSs designed by different 

methods with different types of weight parameters on MNIST 

 SVMM-SM SVMM-DR FTRM-SM FTRM-DR 

Error rate 

of combination (%) 

0.46% 0.54% 0.43% 0.55% 

Rejection rate at 

100% reliability (%) 

5.70% 4.75% 5.95% 4.74% 

(2) CENPARMI 

In this experiment, we apply the soft voting combination method for MCS 

rejection on CENPARMI handwritten numeral database. The MCSs are also 

constructed by both SM and DR methods, as presented previously in Tables 6 

and 7 of Section 4.1. Both FTRM and SVMM are chosen as weight parameters 
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for soft voting combination, since they come from different criterion categories 

(heuristic- and learning-based respectively). Thresholds are searched from 0 with 

an incremental step of 0.05 until suitable reliability values are reached. The 

results are shown as ROC curves displaying the relationship between number of 

rejected samples and reliability, as presented in the following four figures.  

Figures 16 (a) and (b) display the result ROC curves of single models and 

MCSs built by both of SM and DR with FTRM selected as weight parameter.  

 

Figure 16 (a) ROC curves of MCS (SM) and single models 

with FTRM on CENPARMI database 
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Figure 16 (b) ROC curves of MCS (DR) and single models  

with FTRM on CENPARMI database 

 

 

Figure 17 (a) ROC curves of MCS (SM) and single models  

with SVMM on CENPARMI database 
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Figure 17 (b) ROC curves of MCS (DR) and single models 

with SVMM on CENPARMI database 

Figures 17 (a) and (b) present the result ROC curves of single models and 

MCSs built by both of SM and DR. But in this case, SVMM is chosen as weight 

parameter. 

From these figures, it is proven again that soft voting combination method 

with MCS can improve the rejection performance of the system no matter which 

method is adopted to construct the MCS or which criterion is selected as weight 

parameter.  

Furthermore, Figure 17 (a) shows that although MCS does not necessarily 

improve the recognition rate (0 point of x-axis), , it can still improve the rejection 

performance of the whole system through the proposed combination method. 

Table 12 below lists some information from these two figures along with He's 

research result [31], in which, it is claimed that by using LDAM, a reliability of 
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99.67% is achieved with 175 samples rejected. With our voting based 

combination methods, the MCS built by SM (Com-SM) obtains a higher 

reliability of 99.78% with 11 fewer samples rejected. The other MCS built by 

DR (Com-DR) achieves the same reliability 99.67% as LDAM with 6 fewer 

samples rejected and 99.73% with 179 samples rejected. MCSs constructed by 

both of the two methods obtain better rejection results than state-of-the-art 

rejection method on the same database. 

Comparing these two different construction methods of MCS (SM and DR), 

it is clear that the system with DR performs better than that with SM, since to 

reach the high reliability of 99.94%, DR should reject 257 samples while SM 

should reject 393 samples, even if the original recognition rate (0 point of x-axis) 

of DR is lower than that of SM (refer to Tables 6 and 7). This also demonstrates 

that MCS built by DR makes errors between different classifiers in the system 

much more diverse; thus, the rejection performance is enhanced by combining 

the classifiers’ decisions with the proposed voting based method.  

Table 12. Rejection performances of different rejection methods on CENPARMI 

Number of rejected samples Reliability Method 

175 99.67% [6] 

164 99.78% Com-SM 

180 99.89% Com-SM 

169 99.67% Com-DR 

179 99.73% Com-DR 

393 99.94% Com-SM 

257 99.94% Com-DR 

(3) USPS 

Similar experiments are performed on USPS database with both versions. 
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FTRM and SVMM are selected as weight parameters.  

For the first version (V1) with 7291 training samples and 2007 testing 

samples, the results of MCSs built by both SM and DR are presented in Figures 

18 (a) and (b) with FTRM as weight parameter. Figures 19 (a) and (b) show the 

MCSs built by the same methods with SVMM selected as weight parameter.  

Same work has been completed on the second version (V2) of USPS with 

equal amount of samples in both of training and testing sets. MCSs are created 

by both of DR and SM methods. Results are displayed as ROC curves in Figures 

20 (a) and (b) with FTRM as weight parameter while Figures 21 (a) and (b) use 

the SVMM. 

 

Figure 18 (a) ROC curves of MCS (SM) and single models  

with FTRM on USPS-V1 database 
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Figure 18 (b) ROC curves of MCS (DR) and single models  

with FTRM on USPS-V1 database 

 

 

Figure 19 (a) ROC curves of MCS (SM) and single models  

with SVMM on USPS -V1 database 
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Figure 19 (b) ROC curves of MCS (DR) and single models  

with SVMM on USPS-V1 database 

 

 
Figure 20 (a) ROC curves of MCS (SM) and single models  

with FTRM on USPS –V2 database 
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Figure 20 (b) ROC curves of MCS (DR) and single models  

with FTRM on USPS –V2 database 

 

 
Figure 21 (a) ROC curves of MCS (SM) and single models  

with SVMM on USPS –V2 database 
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Figure 21 (b) ROC curves of MCS (DR) and single models  

with SVMM on USPS –V2 database 

Although the gaps between the rejection performances of MCSs and single 

models are not so distinctive in Figures 18 and 19, they prove that the decisions 

given by various MCSs with the proposed combination method enhance the 

rejection performances. That is because their curves are above the single models’ 

curves along their entire paths in all the four cases. Figures 20 and 21 display the 

results of MCSs built by SM and DR with different criteria as weight parameters 

on USPS version 2. In all of the graphs, improvements in rejection performances 

remain consistent proving once again the effectiveness of proposed combinations. 

In addition, the progresses generated in the cases of MCSs built by DR is always 

more recognizable than those by SM. The most obvious improvements are in the 

cases of MCSs built by DR with both SVMM and FTRM. All the results confirm 

that MCS rejection methods work more effectively than the criteria with single 
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classifiers; meanwhile, MCSs built by DR outperforms their SM counterparts in 

rejection. 

 

 

  



62 
 

Chapter 5: Combination with Class-specialist  

 In the previous chapter, outcomes provided by the MCS classifiers were 

combined with a soft-voting method for rejection where different rejection criteria, 

reflecting the single classifiers’ rejection performances, were selected as the weight 

parameters. The results showed that this combination method can consistently 

improve single classifiers’ rejection performances.  

 Considering single models in MCS have their specific strengths in the 

classification process, it is not advisable to treat all predicted results given by various 

classifiers at the same level. For example, if classifier A outperforms classifier B in 

recognizing samples from class “4”, the predicted label “4” given by classifier A 

should be treated with a higher confidence level than a predicted label “4” from 

classifier B. Thus, it is necessary to consider the specialist capability of single models 

as a new type of confidence value and incorporate it into the voting based 

combination process, in order to enhance the rejection system. In this chapter, 

class-specialist information will be integrated into the proposed combination method 

for MCS rejection. 

5.1 Method with Class-specialist Information 

 Confusion matrix is an effective tool in representing the specialist categories of 

various classifiers. It is calculated for each classifier based on the training set in order 

to identify the classifier with fewest errors and help determine the specialist for each 

possible category. Some specialist information can be extracted from these matrices 
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and used as part of the weight parameter in the combination process.        

 In order to represent the specialist information, a new type of confidence weight 

parameter is introduced as                                , which is derived 

from the confusion matrices on the training set. We created two different ways to 

compute this confidence weight: a simple one which reflects only the specialist 

classifier of each category and a complex one which reflects the specialist degree of 

different classifiers in each category. 

 In the first designing method (referred to as S1),        has only two values 

including 0 and 1. Suppose there are   different classifiers in the MCS, denoted 

by             and   possible classes, shown as            . For a specific 

category               , there is a specialist classifier               with fewest 

errors among all classifiers. For a pattern,    would provide a prediction of the 

label   , where        equals 1 if     is the specialist of the predicted category    or 

else, it gives 0, as seen in Eq. (15): 

         
              
                    

                                                      

It is noted that, for each classifier, there may be several specialist categories and the 

confidence values        are 1 for all of them. 

 In the second method (referred to as S2) of       , it reflects the specialist degree 

of single classifier in each category. It is mentioned above that for each 

category                , there is a specialist classifier with the fewest errors, 

denoted as     , while a classifier with the most errors is represented by    . In 
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addition, we analyze the number of mistakes made by each of the classifiers in this 

category    as                   .        is calculated in Eq. (16): 

           
    

    
                                                          

In this case, the classifier making more errors in a specific category will get a smaller 

confidence weight value        when compared to the one with fewer errors, since 

     is a fixed number. So,        reflects the specialist degree of a classifier in a 

specific category through the number of produced errors. 

 During the combination process, the same soft voting combination method is 

performed alongside with specialist information which is added as a new confidence 

weight parameter. Each model               would provide a prediction of the 

label    as well as an output vector    
    

      
   for a random pattern. Then, for each 

classifier, the selected rejection measurement (FRM, FTRM, SVMM and so forth) can 

be calculated based on the output vector, denoted as              . After that, soft 

voting is performed and a voting value               is calculated for each of the 

classes as seen in Eq. (17). 

                                      
             
                   

  
                       

Within   , the maximum voting value                 can be determined and 

then, thresholds       are searched and applied for       . If       is smaller than 

a threshold, the pattern will be rejected.  
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5.2 Experiment with Class-specialist Information 

 In Section 4.1, we construct MCS by SM method on the MNIST dataset. To 

evaluate the effectiveness of different classifiers in this system, confusion matrices are 

displayed in Tables 13(a~g), with specialist categories marked:  

Table 13(a). Confusion matrix of M0 

    predict 

true 

0 1 2 3 4 5 6 7 8 9 Sum 

0   1   1 2  2  6 

1        9 1 1 11 

2  2      5 6 2 15 

3  1 2   6  3 8 7 27 

4  2     3 1  16 22 

5  1 1 3 1  11  8 0 25 

6 5  1  3 3   7 1 20 

7  6 3  2     3 14 

8  1 1 4 7 5 2 1  9 30 

9 3 1  3 19 1  14 5  46 

Table 13(b). Confusion matrix of M1 

    predict 

true 

0 1 2 3 4 5 6 7 8 9 Sum 

0  1  1   4  2  8 

1        11   11 

2  2      6 3 3 14 

3   4   4  5 8 7 28 

4  2     4 1 1 16 24 

5  1 1 3   10  11 3 29 

6 2    3 1   6 1 13 

7  5 5 1 3     1 15 

8  1 1 2 3  2 1  9 19 

9 2   2 13 4  11 8  40 

 

  



66 
 

Table 13(c). Confusion matrix of M2 

    predict 

true 

0 1 2 3 4 5 6 7 8 9 Sum 

0  1 1    3  1  6 

1   5     10 1  16 

2 1 3  1    9 3 1 18 

3   3   2  4 6 5 20 

4  3     3 1 1 11 19 

5  1 1 5 1  8  7 4 27 

6 3    4 3   3  13 

7  5 1  1    1 2 10 

8  1 3 2 3 3 4   6 22 

9 3 1  1 14 2  8 4  33 

Table 13(d). Confusion matrix of M3 

    predict 

true 

0 1 2 3 4 5 6 7 8 9 Sum 

0  1    2   3  6 

1      1 1 10 1  13 

2 2 3      9 3 1 18 

3 1  6   3  4 6 8 28 

4  3     3 2  19 27 

5  1 1 5 1  8  6 2 24 

6 2  1 1 3 3   5  15 

7  4 5  1    1 3 14 

8 1 1 2 1 5 4 4 1  8 27 

9 1  1  14 3  10 4  33 

Table 13(e). Confusion matrix of M4 

    predict 

true 

0 1 2 3 4 5 6 7 8 9 Sum 

0  1    1 2  2  6 

1        9  1 10 

2  4      3 3  10 

3   2   4  5 6 5 22 

4  3     2 3  12 20 

5  1  3   7  4 1 16 

6 2    2    6  10 

7  4 3  2     1 10 

8 1 1   4 3 3 1  5 18 

9 2   1 13 5  8 6  35 
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Table 13(f). Confusion matrix of M5 

    predict 

true 

0 1 2 3 4 5 6 7 8 9 Sum 

0  1 1    1  3  6 

1       2 10  2 14 

2 1 4  2    6 3 2 18 

3   2   3  3 5 8 21 

4  2  1   3 2  14 22 

5 1 1  6 2  9  8 3 30 

6 3 1  1 3 2   4 1 15 

7  3 7       4 14 

8 1 1 1 3 3 3 7 1  9 29 

9 5   3 10 3  8 5  34 

Table 13(g). Confusion matrix of M6 

    predict 

true 

0 1 2 3 4 5 6 7 8 9 Sum 

0   1   1     2   3   7 

1               8     8 

2   3   1       7 3 1 15 

3     2     3   3 11 5 24 

4   2       1 2 1 1 13 20 

5 1 1   5 1   9   6 2 25 

6 2       3 3     6 1 15 

7   4 3   3       1 1 12 

8   1 1 2 4 2 4 1   7 22 

9 1   1   13 2   6 4   27 

Sum 4 12 7 9 24 11 17 26 35 30 175 

Table 14. Different models with least and most errors in each category 

   Class 

Model 

0 1 2 3 4 5 6 7 8 9 

Fewest 

errors 

(No. errors) 

M0,M2, 

M3,M4, 

M5 

(6) 

M6 

(8) 

M4 

(10) 

M2 

(20) 

M2 

(19) 

M4 

(16) 

M4 

(10) 

M4 

(10) 

M4 

(18) 

M6 

(27) 

Most errors 

(No. errors) 

M1 

(8) 

M2 

(16) 

M2 

(18) 

M3 

(28) 

M3 

(27) 

M5 

(30) 

M0 

(20) 

M1 

(15) 

M0 

(30) 

M0 

(46) 

 The information about the classifiers with fewest and most errors as well as the 
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number of errors in each category is extracted from the matrices and listed in Table 

14. 

 There are two ways (referred to as S1 and S2) to calculate the confidence weight 

parameter        , which can integrate the class specialist information into the 

combination process, as mentioned in Section 5.1. The experiments with both of these 

two methods are conducted respectively. Their results along with the original 

combination result without the specialist information are presented as ROC curves in 

Figures 22. In this case, MCS is built using method SM and FTRM is chosen as 

weight parameter for combination.  

 

Figure 22. ROC curves of original combination and combination with specialist 

information calculated by S1 and S2 in MCS(SM) 

 Figure 22 shows that the combination with specialist information can improve the 

rejection performance of the original method to a certain extent. At the stage where a 

small amount of samples are rejected, the original combination works more 
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effectively when compared to S1 and S2. But, as more samples are rejected, the 

methods with specialist information surpass their original counterpart and then, the 

three lines start to perform in a similar manner. The comparison of these two 

designing methods for confidence weight parameter demonstrates that it is very 

difficult to determine which one is better in this case. From the graph, it is observed 

that recognition rate of S2 is higher than S1 without any rejection; yet, their ROC 

curves intertwine as the number of rejections increases. Very similar result appears 

with SVMM used as weight parameter, which is not shown to avoid redundancy. 

 The same experiment is conducted to the MCS built by DR. All the result ROC 

curves of S1, S2 and original method with FTRM and SVMM used as weight 

parameters are displayed in Figures 23 and 24 respectively. From these figures, it is 

observed that the curves of the original combination along with those with specialist 

information are too much overlapped to compare their performances. However, the 

combinations with specialist information can actually reduce the number of rejected 

samples to achieve 100% reliabilities. By comparing the performances of MCS 

rejections integrated with specialist information, S1 outperforms S2 when two types 

of weight parameters  (FTRM and SVMM) are applied. With FTRM as a weight 

parameter, the combination with S1 reaches the 100% reliability point at the expense 

of 4.09% rejection rate, while the one with SVMM reaches the 100% reliability point 

at the expense of 4.10% rejection rate, as marked with blue circles in these two 

figures. The best rejection performance on MNIST, which rejects 409 samples to 

reach 100% reliability, comes out in the combination system of S1 with FTRM 
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selected as weight parameter. Similar result, which rejects 410 samples to achieve 100% 

reliability, appears in the combination system of S1 with SVMM. 

 

Figure 23 ROC curves of original combination and combinations with specialist 

information with FRTM as weight parameter in MCS(DR) 

 

 

Figure 24 ROC curves of original combination and combinations with specialist 

information with SVMM as weight parameter in MCS(DR) 
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 In the analysis, we can see that, in method S1, the predict label provided by the 

specialist classifier in a category contributes much more than other predictions to the 

process of combination; meanwhile, in method S2, the predictions of all the classifiers 

contribute to the combination process to a certain extend according to their specialist 

degrees. At last, the rejection of fewer samples to obtain 100% reliability in both S1 

and S2 when compared to the original combination method demonstrates that 

combination with specialist information can achieve a better performance after 

decreasing the need of non-specialist classifier’s information which may interfere 

with the final results. In addition, the emphasis on the specialist information allows S1 

to outperform S2, in which case, some non-specialist information is still taken into 

account.  
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Chapter 6: Conclusion 

 By focusing on the rejection process of offline handwritten numeral recognition, 

we hope to enhance existing recognition systems in order to decrease processing 

errors for handwritten documents, such as cheques. Having a highly reliable 

recognition system can potentially reduce losses at financial institutions while 

improving employees’ productivity, since the machines can complete time consuming 

tasks with greater accuracy.   

 In order to increase recognition systems’ reliabilities, we looked at two novel 

learning-based rejection criteria for single classifier and rejection methods with MCS 

based on soft voting combination. The newly proposed rejection criteria with single 

models are then compared with several traditional criteria on the benchmark MNIST 

handwritten digit database. The voting based rejection methods with MCS are 

evaluated on three handwritten digit databases including MNIST, CENPARMI and 

USPS based on MCSs constructed by Structure Modification (SM) and Dataset 

Re-sampling (DR). Experimental results are quite encouraging and will be presented 

in Section 6.1. Also, it is seen that the work with rejection can be further improved, as 

summarized in Section 6.2 under Future Work. 

6.1 Contribution 

 This research contributes to the field through rejection criteria designing which 

aims to improve the reliability of recognition systems, by looking at two novel 

rejection criteria for single classifiers including SVM-based measurement (SVMM) 
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and Area Under the Curve measurement (AUCM). Also, voting based combination 

methods of multiple classifier system (MCS) are proposed for pattern rejection. The 

main contributions of this thesis are summarized in the following paragraphs. 

 Firstly, in order to evaluate the rejection performance of a criterion or a system, 

two factors have to be considered simultaneously: the number of rejected samples and 

the reliability. Since there is always a tradeoff between these two factors, it is 

insufficient to verify rejection performance based on one of them exclusively. 

Therefore, we introduce a ROC space consisting of these two factors and curves in it 

represent the performances of different rejection processes. A good rejection criterion 

can achieve a higher reliability with fewer samples rejected. As a result, we expect a 

good ROC curve to be as close to the top left corner as possible and this is applied to 

evaluate all the rejection criteria proposed through the whole thesis. 

 Secondly, we propose two novel rejection criteria for single classifiers: SVMM 

and AUCM. Both of them are learning-based rejection criteria, meaning that they are 

obtained based on the training data. Unlike the traditional criteria based on heuristic 

ideas, these two extend the rejection process into the training procedure. SVMM 

locates a linear optimal rejection boundary between confusing samples and clear 

samples by learning from the training data in order to predict the rejections on testing 

samples. AUCM determines a linear combination of FR and SR, seen as the most 

meaningful ones among all these confidence values, for rejection based on all training 

samples. The optimal combination is the one that maximizes the area under the ROC 

curve used for representing the performance of the rejection system. Both of them are 
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more straight-forward than the heuristic criteria and can retrieve more information 

from the data, especially the training data. With a CNN classifier based on the MNIST 

database, these two rejection criteria are compared with three traditional rejection 

criteria that have been proven to be very effective. The results demonstrate that 

SVMM always works better than FRM and LDAM, as the ROC curves for it are 

always above those of the other two (refer back to Figures 7 and 9). Although 

performances of SVMM and FTRM are too close to determine which one is better, 

SVMM is still proven to be a good rejection criteria since FTRM has distinguished 

itself in this model. Moreover, The ROC curve of AUCM is much closer to the 

left-top corner than those of FTRM and FRM, and the reliability values of AUCM 

remain higher than those of FTRM and FRM in almost their entire paths (refer back to 

Figure 11). It means that with the same number of patterns rejected, AUCM always 

achieves higher system reliability than FTRM and FRM. All the results show that the 

newly proposed learning-based rejection criteria reach higher performance than the 

heuristic designed ones, demonstrating the effectiveness of the learning-based 

rejection idea.  

 Thirdly, voting based combination methods for MCS rejection are presented. It is 

a preliminary attempt to adopt MCS for the purpose of rejection. MCSs are 

constructed in two different ways including DR and SM. Both hard voting and soft 

voting are considered for combination. In the hard voting process, experiment is 

performed with MCS built by SM on the MNIST database. A range limitation 

problem makes the rejection process inflexible since the thresholds can only be set to 
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limited values. As a result, once the maximum value is reached, the reliability cannot 

be improved anymore. It cannot yield a ROC curve either. To solve the problem, the 

soft voting method is introduced and different rejection criteria (FRM, FTRM and 

SVMM) are used as weight parameters for different models since they can reflect the 

rejection effectiveness. Experiments are conducted on MNIST, CENPARMI and 

USPS. Different MCSs are constructed with SM and DR. The results show that no 

matter what building method is chosen or what criterion is selected as weight 

parameter in soft voting, rejection based on MCS can improve the rejection 

performance of the system consistently (refer back to Figures 14~20). They also 

demonstrate that MCSs built by DR work better than those by SM in rejection (refer 

back to Figures 16~21). In order to further improve the performance of MCS for 

rejection, the class-specialist information is integrated into the soft voting process by 

introducing a new confidence weight parameter. With two different designing ways of 

this new parameter, the soft voting process is slightly changed, leading to 

improvements of the rejection performance (refer back to Figures 22~24). The best 

result appears in the case of MCS built by DR with specialist information integrated 

by S1. Expenses of 4.09% and 4.10% rejection rates to reach a reliability of 100% are 

accomplished with FTRM and SVMM selected as weight parameters respectively.   

6.2 Future Work 

 Until it is possible to eliminate recognition errors, there will always be research 

on rejection in handwritten recognition. The following are proposed methods which 

can push the way forward: 
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 The SVMM is designed based on the well-known classifier, SVM, which has 

achieved extraordinary recognition rates. However, for the rejection problem, SVM 

does not work as effectively as in the regular recognition field. The main reason is 

that in regular recognition, there are nearly the same amount of samples from each 

possible category, making the boundary locating process much easier and more 

accurate. However, in this case, a serious unbalancing problem appears because the 

baseline accuracy of the classifier is high. We believe that if we can figure out a way 

to solve the unbalancing problem, SVMM can achieve a superior performance. 

    The other learning-based rejection criterion is AUCM which attempts to find an 

optimal combination of FR and SR for rejection. In our model, we interpret the 

optimal combination to be the one which maximizes the area under the ROC curve 

representing the criterion’s performance on training data. It can be interpreted in other 

ways as well. Also, the combination can be derived from the five top ranks or all the 

rank values rather than just the first two ranks, allowing it to be much more 

representative. The third way to improve AUCM is in the part of determining the 

optimal parameters. We use a simple method of setting one fixed and conducting 

exhaustive search in the range of (-5.0, 5.0) for the other one, since we only have two 

parameters to determine. With more parameters, back-propagation algorithm can be 

applied which we believe will produce better results. 

    Furthermore, the rejection method with MCS is a task worth more exploring. In 

our research, the MCSs are constructed in two simple ways including SM and DR. 

Although the results demonstrate that combining several classifiers with the proposed 
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soft voting method can improve the rejection performances of single classifiers 

consistently, the final result still depends on the single classifiers. If the rejection 

performances of the committees that compose the MCS are better, the result after 

combination will improve accordingly. On the other hand, if we enlarge the variety of 

the errors between different classifiers in the system, the combination result can also 

be enhanced. That is why MCSs built by DR always achieve better results than those 

by SM. Therefore, MCSs with committees consisting of different classifier models 

can achieve much higher performances, because they recognize patterns based on 

different types of features using different algorithms, making the errors more diverse. 
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