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Intersection-based Piecewise Affine
Approximation of Nonlinear Systems

Amin Zavieh, and Luis Rodrigues

Abstract—This paper presents a new algorithm for PWA
approximation of nonlinear systems. Such an approximation is
very important to enable a reduction in the complexity of models
of nonlinear systems while keeping the global validity of the
models. The paper builds on previous work on piecewise affine
(PWA) approximation methods, in particular on the work done
by Casselman and Rodrigues, known as the Set of Lineariza-
tion Points (SLP) PWA approximation. The proposed extension
method can be used to approximate any continuous function of
one variable by a PWA function. The algorithm is based on the
points at which the linearization lines intersect with each other.
The method assumes that a desired approximation error and
one linearization point are given. The algorithm, then performs
several linearizations. It is shown that the new linearization points
are optimal in the sense of decreasing the error between the exact
function and the approximation. The main advantages of this
methodology compared to previous approaches are the reduction
of the number of pieces of the PWA function, the guarantee
that the approximation is continuous, and that the derivative of
the approximation and the derivative of the exact function are
equal at all linearization points. A detailed collection of examples
from different fields of study highlight the effectiveness and the
flexibility of the proposed method. It is shown that the proposed
method compares favorably with other methods.

Index Terms—Intersection-based, piecewise affine, continuous
functions approximation, functions of one variable

I. INTRODUCTION

Piecewise affine (PWA) systems have shown to be a power-
ful approach in analysis and synthesis of nonlinear systems
[1], [2], [3]. The key concept behind this idea is that the
nonlinearities appearing in a dynamical system can be reason-
ably approximated by PWA functions. This paper builds on
previous work on approximation of functions of one variable
using a piecewise affine method [4], emphasizing the elements
that increase the effectiveness of the approximation algorithm
in terms of elimination of the need to search for points of
maximum error and decreasing the error between the exact
function and the approximation.

Although the concept of PWA systems was initially re-
searched in the late 1940’s, the first optimal algorithm to
approximate nonlinearities with PWA functions appears, to the
best of our knowledge, in 1970’s by Cantoni [5] and Tomek
[6]. Many different attempts have been made to produce
suitable PWA models in references [7], [1], [8], [9], and [4].
Reference [7] addresses PWA approximation of continuous
functions using uniform simplicial partitions. Later in [1],
the idea of refinement of the partitions around the origin is
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introduced. The least squares technique as an optimization
over simplicial partitions is addressed in [8]. In references [7]
and [1], the domain of the nonlinearity was uniformly divided
into a number of simplices. A point in each simplicial region
was then selected for the linearization of the function.

The main disadvantage of these methods lies in the fact that
for a function of one variable the number of regions uniformly
grows as the domain of approximation is increased. In other
words, the behavior of the nonlinearity is not considered while
the domain of the function is partitioned into regions. This
drawback can be avoided if the curvature or the variation
of the nonlinear function is considered, as done recently in
[9] and [4]. Reference [9] addresses a novel methodology
in PWA approximation of functions that uses the concept of
Lebesgue integration partitioning. However, the resulting PWA
approximation is not guaranteed to be continuous. Uniform
grid approximation techniques have been extensively used in
the literature [10], [11], [12], [13], [14], [15], [16]. The authors
of [4] address the approximation problem by considering the
curvature of the function. Moreover the continuity problem has
been solved in their work, which, nevertheless, has never been
proved. Reference [4] provides the reader with an interesting
and heuristic idea of their work to find the PWA model of a
micro air vehicle. Although the proposed concept is shown to
be efficient compared to the work done in this area, the details
of the approximation and the supporting theory is missing,
which is a reason for motivating the work on the current paper.

The method proposed in this paper is used to find a PWA
model of four case studies, which are a unicycle vehicle
following a straight line, the nonlinear aeroelastic model of an
aircraft wing studied for the flutter phenomenon, a two-gene
regulatory network, and a mathematical example. The resulting
PWA models can later be used for the analysis and/or synthesis
problems that have been addressed in reference [3]. Moreover,
it is suggested in [9] that the resulting PWA model may be used
for piecewise affine identification with a clustering approach
[17], mixed logical dynamics (MLD) model based technique
[18], system verification of conflict maneuvers [19], automated
symbolic reachability analysis [20], and probabilistic control-
lability/observability analysis of discrete-time piecewise affine
systems [21], [22].

With the intersection-based Piecewise Affine (IPWA) mod-
els, the following properties can be achieved.
• Continuity of the vector fields,
• Optimality of the linearization of the nonlinear function

relative to the maximum approximation error,
• Increased reduction of the approximation error for a fixed

number of regions (as compared to the Lebesgue and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211514481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

uniform grid PWA models for all examples in Section
V),

• Consistency of the derivative of the nonlinear function
with the derivative of its approximation at the lineariza-
tion points.

The continuity of the vector field may play a crucial role in
controller synthesis for PWA systems [23]. By the optimality
of the linearization we mean that the nonlinear function is
linearized at the points of maximum approximation error. By
doing so, not only the number of approximation stages is
reduced, but also the number of regions is decreased. Note that
the smaller the number of regions we have in the PWA model,
the more the computation size of the controller synthesis
problem is reduced [3]. Finally, if the user is required to have
zero error at specific points as well as minimum amount of
error in the neighborhood of those points, the IPWA method
can serve as a good solution to such problems. The reason,
as will be shown in Section IV, is that the algorithm starts by
linearizing the function at a set of user-defined points. Since
the function is linearized at those points, the approximation
error is zero at them. Moreover, because the derivative of
the exact and the IPWA function are equal, the error in the
neighborhood of the user-defined points is small.

The paper is organized as follows. In Section II a list of all
variables with definitions are given. In addition to the main
results, Section III briefly explains PWA systems. Section IV
addresses the approximation algorithms. Finally, the proposed
approximation method is applied to the mentioned dynamical
system in Section V, followed by the conclusions.

II. NOMENCLATURE

Scripts and Operations

Ωo Interior of the set Ω

Ω Closure of the set Ω

x+ = x+ ε , where ε ∈ R+ is infinitesimally
small

x− = x− ε

S [ f (x)] = {(x,y) | y = f (x)}
S [ f (x)]∩ S [g(x)] = {(x,y) | y = g(x), y = f (x)}
∂Ω = Ω\Ωo

III. PWA SYSTEMS AND PWA APPROXIMATIONS

Consider the state space representation of a dynamical
system, as

ẋ = Ax+ fnl(x)+Bu (1)

where A ∈Rn×n, x ∈Rn is the state vector, B ∈Rn×m, u ∈Rm

is the control input, and fnl is a nonlinear continuous function
defined as fnl : Ω→Rn, where Ω⊂Rn. By computing a PWA
approximation for (1), Ω is partitioned into a finite number
of regions, in each of which an affine function serves as the
approximation of fnl . Furthermore, Ri denotes the ith PWA
region, i ∈ I = {1,2, ...,N} such that

⋃N
i=1 R i = Ω. In what

follows, the next concepts will be used.

Definition 1: The function f̄ : Ω→ Rn, where Ω ⊂ Rn, is
defined to be the PWA approximation of the nonlinear function
fnl , given by

f̄ (x) = Aix+bi, x ∈Ri (2)

where i ∈I = {1,2, ...,N} is the index indicating the region.
Note that by replacing fnl(x) in (1) by f̄ (x) one obtains the
PWA model of the nonlinear system (1), as

ẋ = (A+Ai)x+bi +Bu, x ∈Ri (3)

Moreover, the name Piecewise Affine (PWA) covers the general
concept of the systems modeled by (3) while the name
Intersection-based Piecewise Affine (IPWA) as a subset of PWA
systems, refers to the systems, the coefficients Ai and bi of
which is obtained by the proposed methodology.

To formalize the general notion we begin by giving the main
idea of the algorithm. The first stage of the IPWA approxima-
tion is performed by linearizing the nonlinear function around
specific points which are given by the user. If, for instance,
the task is to solve a PWA controller synthesis problem for
the obtained IPWA system, these points can be chosen to be
the equilibrium points of the nonlinear system. Therefore, the
selection of such points varies depending on the nature of the
problem. Each linearization will be called tangent hyperplanes.
The regions are created by projecting the intersection points
of the hyperplanes onto the domain of the nonlinearity. In
the next approximation stages, the function will be linearized
at the intersection points obtained in the previous stage. This
process is continued until the desired error is met.

As mentioned in equation (1), the nonlinear compo-
nent of a dynamical system is described by fnl(x) =
[ f1(x), f2(x), ..., fn(x)]T . If fnl(x) is a function of only one
variable, say x j with j being a fixed number in {1,2, ...,n},
satisfying the conditions given later in Theorem 1, the pro-
posed IPWA algorithm for continuous functions can be used
to construct the IPWA model. For this purpose f̄ (x) is first
obtained as in (2) for all fq(x j), where q = {1,2, ...,n}. This
approximation will later be added to the linear components,
as in equation (3). By doing so, the PWA regions produced
during any linearization stage will take the form of

Ri = {x ∈ R | di < x < di+1}, (4)

where

d = [x1, x(1)int , ...,x
(k)
int , x2], (5)

and x(k)int is the projection of the intersection of the hyperplanes
onto Ω with k referring to the number of intersections in
each epoch. This type of regions that can be defined with
only one variable are called slabs. PWA systems with slab
regions are thus called PWA slab systems. Accordingly, as
Rodrigues and Boyd [3] have shown, for PWA slab systems the
state feedback controller synthesis with a quadratic Lyapunov
function can be formalized as a convex optimization problem
subject to a specific set of LMIs. Although the solution to the
synthesis problem is not addressed in this paper, the resulting
approximation of the nonlinear systems introduced in the paper
can be used to design a PWA controller with the material given
in [3].
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Definition 2: Consider a nonlinear function f : Ω → R,
where Ω ⊂ Rn. A linearization hyperplane h(x) is defined to
be

h(x) = hi(x), x ∈Ri, (6)

where

hi(x) = f (xi
0)+∇ f (xi

0)(x− xi
0), (7)

and xi
0 ∈Ri is a nominal point.

Definition 3: The distance function ∆ : Ω→R is defined as

∆(x) = ∆i(x), x ∈Ri, i ∈I (8)

where

∆i(x) =
{
‖hi(x)− f (x)‖ , hi(x)< f (x),
hi(x)− f (x) , hi(x)≥ f (x). (9)

Henceforth, the Greek letter Γ is used as the domain of a
function if n = 1 while Ω is used generally for n not being
specified.

Lemma 1: Consider a concave function f : Γ→ R, Γ⊂ R.
Suppose that f is class C 1 in a neighborhood of two distinct
points {x1,x2 | x1 < x2} ⊂ Γ◦. Then

f ′(x2)≤ f ′(x1), ∀x1 ≤ x2 (10)

Note that a lemma with a similar result to Lemma 1 is given
in [24] (Chapter 5, Section 5, Lemma 15).

Proof: Let xb ∈ Γ◦ be an arbitrary point. Note that f as a
concave function is absolutely continuous in ϒ = [xb−ε,xb +
ε]⊂Γ, for ε > 0 sufficiently small [24]. Using this property, by
the same reference f ′(x) almost exists for x ∈ ϒ. Therefore, if
f ′(xb) does not exist, one concludes f ′(xb−ε) and f ′(xb +ε)
exist, or simply ∃{ f ′(x−b ), f ′(x+b )}. As a result, for x−b < xb a
tangent hyperplane h̄(x) can be constructed as

h̄(x) = f (x−b )+ f ′(x−b )(x− x−b ) (11)

Remarking that

lim
ε→0

x−b = lim
ε→0

xb− ε = xb,

lim
ε→0

f (x−b ) = lim
ε→0

f (xb− ε) = f (xb),

we may rewrite equation (11), as

h̄(x)
∣∣
ε→0 = f (xb)+ f ′(x−b )(x− xb). (12)

Function f (x) can be approximated at x+b > xb using Taylor
series as

f (x)|x+b ≈ f (x+b )+ f ′(x+b )(x− x+b ) (13)

Since

lim
ε→0

x+b = lim
ε→0

xb + ε = xb,

lim
ε→0

f (x+b ) = lim
ε→0

f (xb + ε) = f (xb),

using (13), one may write

f (x)|x+b ≈ f (xb)+ f ′(x+b )(x− xb) (14)

Note that the function f is concave, and by the supporting
hyperplane theorem [25]

f (x)≤ h̄(x), ∀x ∈ Γ. (15)

Let x= xb+δ , where δ > 0 is an infinitesimally small number.
Accordingly, using (14) to approximate f (xb +δ ) and (12) to
evaluate h̄(xb +δ ), inequality (15) becomes

f (xb)+ f ′(x+b )(xb+δ − xb)≤
f (xb)+ f ′(x−b )(xb +δ − xb)

Simplifying the left and right hand side terms yields in

f ′(x+b )≤ f ′(x−b ) (16)

(16) in a sequence including f ′ implies that (10) is held, no
matter f is differentiable at xb or not.

Lemma 2: Considering the concave function f and {x1,x2}
as assumed in Lemma 1, let the function f be linearized around
x1 and x2 with lines h1(x) and h2(x) respectively. Assuming
h′1(x) 6= h′2(x), the intersection of h1(x) and h2(x) is a singleton,
i.e,

{xint}= {x | h1(x) = h2(x) } (17)

Furthermore, x1 ≤ xint ≤ x2.
Proof: From the assumption, since {x1,x2} ⊂ Γ◦ and the

fact that f is concave and locally of class C 1 around x1 and x2,
we have h′1(x)= f ′(x1) 6=∞ and h′2(x)= f ′(x2) 6=∞. Moreover,
h′1(x) 6= h′2(x) implying that h1 and h2 are not parallel, they
intersect with each other at some point equal to xint . To prove
that xint is the unique solution as the intersection of h1 and h2,
one is required to to show that h1(x) 6= h2(x) for x 6= xint . h1(x)
and h2(x) are determined by the linearization of f around x1
and x2, as

h1(x) = f (x1)+ f ′(x1)(x− x1), (18a)
h2(x) = f (x2)+ f ′(x2)(x− x2), (18b)

Using contradiction, let h1(x) = h2(x) for x 6= xint . This results
in

x =
[ f (x1)− f (x2)]+ [ f ′(x2)x2− f ′(x1)x1]

f ′(x2)− f ′(x1)
(19)

Since from the assumption of the lemma h′1(x) 6= h′2(x) and
thus f ′(x1) 6= f ′(x2) as well as x1 6= x2, it is concluded that
equation (19) provides a unique value for x being x = xint .
Consequently h1(x) = h2(x) only for x = xint or in other words
h1(x) 6= h2(x) for x 6= xint , which implies that xint is a singleton.

By the supporting hyperplane theorem [25]

h1(x)≥ f (x) (20a)
h2(x)≥ f (x) (20b)

From this point, the proof of x1 ≤ xint ≤ x2 follows by
contradiction. First, let x2 < xint . Since h1 and h2 intersect
with each other, we have

h1(xint) = h2(xint)

Using (18), this implies that

f (x2)+ f ′(x2)(xint − x2) = f (x1)+ f ′(x1)(xint − x1)
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or alternatively, this in turn implies

f (x2)− f (x1)− f ′(x2)x2 + f ′(x1)x1 =−xint( f ′(x2)− f ′(x1))
(21)

On the other hand

h2(x)−h1(x) = f (x2)+ f ′(x2)(x− x2)− f (x1)− f ′(x1)(x− x1)

=
[

f (x2)− f (x1)− f ′(x2)x2 + f ′(x1)x1
]

+ x( f ′(x2)− f ′(x1)) (22)

Incorporating (21) within (22) yields

h2(x)−h1(x) =−xint( f ′(x2)− f ′(x1))+ x( f ′(x2)− f ′(x1))

= ( f ′(x2)− f ′(x1))(x− xint) (23)

Finally, using (10) as the result of Lemma 1, it is concluded
from (23) that

h2(x)≥ h1(x), ∀x < xint (24)

It was assumed that x2 < xint which, using (24), means that

h2(x2)≥ h1(x2), x2 < xint (25)

By substituting x2 into (18b) we have

h2(x2) = f (x2) (26)

Combining (25) and (26) results in the following condition

f (x2)≥ h1(x2), ∀x < xint

by which the supporting hyperplane theorem (20a) is violated,
implying that xint ≤ x2. Similarly, the same argument can be
used to show that xint ≥ x1, proving that x1 ≤ xint ≤ x2.

Lemma 3: Let f : Γ→ R, Γ ⊂ R be a class C 1 concave
function. Consider an arbitrary point x0 ∈ Γ. Assume that
the linearization of f around the point x0 is described by a
hyperplane h(x). Then for any direction pointing from x0, ∆(x)
is monotonically increasing, i. e.

∇∆(x) ·vx0(x)≥ 0, x ∈ Γ, (27)

where

vx0(x) =
x− x0

‖x− x0‖
, x ∈ Γ (28)

is a unit vector.
Proof: f is concave, therefore − f is convex. The function

h is also convex, because it is affine. Since the convexity
property is kept under addition of convex functions [25],
∆(x) = h(x)− f (x) is convex.

Since h is the linearization of f at x0 and f is concave, we
have h ≥ f , according to the supporting hyperplane theorem
[25]. This results in ∆(x) ≥ 0. In addition, because f (x0) =
h(x0) implies ∆(x0) = 0, we can conclude that

x0 = argmin
x∈Γ

∆(x)

as the point of global minimum of ∆(x). Using the first order
necessary condition for the points of minimum [25], we have

∇∆(x0) = 0. (29)

Furthermore, noting that −∆(x) is concave, Lemma 1 is used
to say that ∆′(x) is either increasing or remains stationary as

x is increased. This, in view of (29), leads to the conclusion
that

∇∆(x)≤0, ∀x < x0,

∇∆(x)≥0, ∀x > x0,

which, using the definition of vx0 in (28), can be rewritten in
a more compact form, as

∇∆(x) ·vx0(x)≥ 0, x ∈ Γ.

In Lemma 2 an intersection property of concave functions
was explained. As it can be inferred from the proof of Lemma
3, ∆(x) ≥ 0. Therefore, with the results of Lemma 3 and
Lemma 2, at this stage, Theorem 1 is given to find the points
of maximum error in Γ, defined as emax = supx∈Γ

∆(x).
Theorem 1: Consider a concave function f : Γ→R, Γ⊂R

of class C 1. Let the function be linearized around two points
x1,x2 ∈Γ with lines h1(x) and h2(x) respectively. Furthermore,
consider the point Pint =(xint ,yint)= {(x,y) | (x,y)∈ S [h1(x)]∩
S [h2(x)]}. Then, the solution to the following maximization
problem

sup
x∈Γ

∆(x) (30)

lies either on xint or at ∂Γ = {q1,q2}.
Proof: It can be recognized by Lemma 2 that x1 ≤ xint ≤

x2. Furthermore x1,x2 ∈ Γ, which implies that xint divides Γ

into two sub-domains, each of which contains one of {x1,x2}.
Let us denote the sub-domain containing x1 by Γx1 and the
other one by Γx2 . In order to prove this theorem, Γ will be
split into 4 different sub-domains, namely Γ2, Γ1, Γ3 and Γ4,
as

Γ2 = conv(x1,xint), Γ1 = Γx1 \Γ2
Γ3 = conv(x2,xint), Γ4 = Γx2 \Γ3

(31)

where conv(·) denotes the convex hull of the points in the
argument. Regarding the conditions of Lemma 3, the distance
function ∆(x), from equation (8), can be represented as

∆(x) =
{

∆1(x) = h1(x)− f (x) , x ∈ Γx1
∆2(x) = h2(x)− f (x) , x ∈ Γx2

(32)

In view of the fact that vx1 and vx2 are determined using

Fig. 1. The intersection of h1 and h2 at Pint .

(28), as unit direction vectors at x1 and x2 respectively, the
following 2 cases are investigated.
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1) x ∈ Γ2
⋃

Γ3
2) x ∈ Γ1

⋃
Γ4

CASE 1. First, we consider x ∈ Γ2. Let xΓ2(p) = x1 + ε p,
where p ∈ {p ∈ Z > 0 | p < pmax2} with pmax2 defined such
that xint = x1 + ε pmax2 . Using vx1 as a function of x, we
have ∇∆1(x) · vx1(xΓ2) ≥ 0 by Lemma 3. Therefore, for ε

sufficiently small, ∆1(x1) ≤ ∆1(x1 + ε), which is equivalent
to ∆1(xΓ2(0)) ≤ ∆1(xΓ2(1)). Similarly, we have ∆1(xΓ2(1)) ≤
∆1(xΓ2(2)), which using a sequence including 0 ≤ p ≤ pmax2

we reach the conclusion that ∆1(xΓ2(p))≤ ∆1(xΓ2(pmax2)). In
another word

∆1(x)≤ ∆1(xint), ∀x ∈ Γ1. (33)

Likewise, defining xΓ3(p) = x2 − ε p where p ∈ {p ∈ Z >
0 | p < pmax3} with pmax3 defined as xint = x2−ε pmax3 . Using
the same idea, one can conclude that

∆2(x)≤ ∆2(xint), ∀x ∈ Γ2. (34)

CASE 2. In the second case, let x ∈ Γ1. using Lemma 3
we have ∇∆1(x) ·vx1(xΓ1) ≤ 0. Considering xΓ1(p) = x1− ε p
where p∈ {p∈Z> 0 | p < pmax1} with pmax1 defined as q1 =
x1− ε pmax1 , we may write ∆1(xΓ1(0)) ≤ ∆1(xΓ1(1)). Using a
sequence, similar to the argument in Case 1, we have

∆1(x)≤ ∆1(q1), ∀x ∈ Γ3. (35)

Obviously, for x ∈ Γ4, one can easily check that

∆2(x)≤ ∆2(q2), ∀x ∈ Γ4. (36)

Equations (33), (34), (35) and (36) guarantee that an element
from the set {xint ,q1,q2} is indeed a solution to (30).

The objective at each stage is to linearize the function at the
points of maximum error occurring during the linearization.
Theorem 1 ensures that after the first stage of approximation,
the solution to (30) lies either on xint , or q1, or q2. If the
first linearization occurs very close to q1 and q2 such that
∆(q1)≤ edes and ∆(q2)≤ edes, the solution to (30) will be xint .
Therefore, xint is the next point at which f should be linearized
(see the upper plot in Figure 2). Denoting this linearization by
h3, the second approximation stage is started as the point xint
adopts a new notation x3 (see the lower plot in Figure 2).
Updating the distance function ∆(x) using (8), the problem of
approximating f is formalized with two parts, as to find

1) argmax
x1≤x≤x3

∆(x) (37)

2) argmax
x3≤x≤x2

∆(x), (38)

which are the points of maximum error. Since f is concave
within x1 ≤ x≤ x3 and x3 ≤ x≤ x2, Theorem 1 is then used to
find the solution for (37) and (38). This process is continued
as long as maxx∈Γ ∆(x)> edes.

With all of the theoretical background that has been pro-
vided in this section, the algorithm for the intersection-based
PWA approximation can be described in the next section.

IV. ALGORITHMS

In this section, the algorithms elaborating the intersection-
based PWA (IPWA) approximation for both concave/convex
and continuous functions are introduced.

Fig. 2. The upper plot shows the primary epoch of the approximation while
the lower plot provides the second epoch. Note that the superscripts reset at
each epoch.

A. Concave/Convex Functions

This algorithm is proposed for a concave function. If f is
convex, − f is then considered.

Problem 1: Consider a concave function f : Γ→ R, where
Γ⊂ R. Find f̄ over the domain of f .

1) The primary linearization points are determined. The
points are chosen at which the user needs zero error.
As mentioned above, the primary linearization points are
selected in accordance with the nature of the problem for
which the IPWA being obtained is considered to serve.

One can still add other initial points heuristically, like
the points of zero curvature. This idea was originally
suggested by Casselman and Rodrigues in reference
[26], as the essential idea of the SLP method. Although
the idea seems to improve the approximation, Example
4 shows a purely mathematical equation where setting
the zero curvature point as a primary linearization point
does not necessarily reduce the error.

2) Using Taylor series, the function f is linearized around
all the points obtained in step 1. The produced lineariza-
tion hyperplanes are denoted by hi(x), where i ∈ I =
{1,2, ...,Nu} and Nu is the number of linearization points
at the uth loop.

3) Each two neighboring hyperplanes hi(x) will intersect
with each other, resulting in a point. These points are
designated by P(k)

int (x), where k ∈K = {1,2, ...,N2
u} and
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N2
u is the number of the intersections in the uth loop.

4) The projection of the all intersection points P(k)
int on Γ is

denoted by x(k)int .
5) Using Theorem 1 the points at which the local maximum

errors occur are determined. According to this theorem,
these points belong to the set M = {x1,x

(1)
int , ...,x

(k)
int ,x2}.

The global maximum is then obtained by updating ∆(x)
using (8), and then evaluating ∆(x) for all the elements
of M. Comparing the results, the value at which the
global maximum error occurs and the error itself are
found, as emax is set as

xemax = argmax
x∈M

∆(x)

emax = max
x∈M

∆(x)

6) The stopping criterion is defined as

emax ≤ edes (39)

where edes is called desired error and is defined to
be the maximum allowable error determined by the
user. Then edes is compared with the value of emax,
obtained in step 5. If the stopping criterion is met,
the IPWA approximation is produced. Otherwise, the
point of maximum error is given to step 2 for the
next linearization stage. This loop is continued until the
stopping criterion is satisfied.

B. Continuous Functions

In this section, the function f is considered with only the
continuity property. Despite the fact that such a function,
that may not be concave nor convex, is rather difficult to
tackle, many applications, including Examples 1 and 3, are
neither concave nor convex. For this purpose, the IPWA
algorithm for approximating continuous functions is given in
this section. In this algorithm, the inflection points of f (x)
are found first. The curvature of f at these points attains zero
and the convexity of f changes. The set of inflection points
are denoted by K = {x1

κ ,x
2
κ , · · · ,x

q
κ}. Therefore, function f

can be split into q+ 1 functions, as f1(x), f2(x), · · · , fq+1(x),
each being either convex or concave. For this aim, the initial
linearization points are chosen to be the members of K .
The initial linearization hyperplanes h1

κ ,h
2
κ , · · · ,h

q
κ are then

constructed using the Taylor series. Since each fi(x) possesses
either the concavity/convexity property, the IPWA algorithm
for concave/convex functions is, therefore, used to compute
the IPWA approximation for each fi(x).

The details of this method are summarized in the following
algorithm.

Problem 2: Consider a continuous function f : Γ → R,
where Γ⊂ R. Find f̄ .

1) In the initial linearization stage, select the points from
both categories:

a) members of set K , and
b) the reference point (if the approximation purpose

is to solve a control synthesis problem).
2) Repeat steps 2 to 6 from section IV-A for f .

The regions produced by both of the proposed algorithms
are convex and have been defined in equation (4) in section
III.

V. APPLICATIONS

In this section the IPWA approximation algorithm is applied
to four examples. The obtained IPWA models of Examples 1
to 3 are compared with the Lebesgue and the uniform grid
PWA approximation techniques while Example 4 is compared
with the SLP algorithm proposed by [26]. The normalized
approximation error ēmax that is used for the comparison
purpose is computed by

ēmax =
emax

maxx∈Γ f (x)−minx∈Γ f (x)
, (40)

where f (x) is the exact function, and Γ is the domain of f .
Example 1: A wheeled mobile robot (WMR) with a rigid

structure is considered for a path following problem. The idea
is to have the rover followed the y axis with zero heading.
The WMR moves with a constant velocity V0 and is rotated
by torque T exerted by an actuator, as shown in Figure 3.

Fig. 3. Free body diagram of the WMR, where ψ is the heading, and V0 is
the velocity of CG.

For simplification, we have assumed that the center of
gravity is located in the mid point of the vehicle axle. This
assumption is quite reasonable since the driver motors, which
make the major contribution to the vehicle wight, are usually
mounted on the top of the axle position. Denoting x1 = y,
x2 = ψ , x3 = ψ̇ , the equations of motion for this problem can
be written as

ẋ1 =V0 sinx2 (41a)
ẋ2 =x3 (41b)
ẋ3 =IzT, (41c)

where Iz is the WMR moment of inertia in the z axis. It is
recognized that fnl(x) = [ f1(x2),0,0]T , comparing (41) with
(1). Therefore the IPWA algorithm can be used to obtain
the IPWA approximation for f1(x2) =V0 sin(x2). The function
f1(x2) with its IPWA approximation is plotted in Figure 4.
The upper plot is associated with the 2nd iteration while
the lower plot indicates the 3rd iteration of the proposed
algorithm. Due to the symmetry of the sine function, points
x(1)int = −2.136, x(2)int = −1.0, x(3)int = 1.0 and x(2)int = 2.136 have
the same value for the approximation error. Therefore, the
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TABLE I
THE SUMMARY OF PIECEWISE AFFINE APPROXIMATION FOR

f1(x2) = sinx2 .

Normalized Approximation Error (ēmax) of f1(x2)
NUMBER OF IPWA LEBESGUE PWA UG PWA
REGIONS n APPROX. APPROX. APPROX.

3 0.2854 0.3536 0.2182
4 NA 0.1036 0.0668
5 0.0793 NA 0.0909
7 NA 0.0849 0.0479
8 NA 0.0581 0.0244
9 0.0229 NA 0.0292
11 NA 0.0504 0.0140
12 NA 0.0398 0.0124
13 0.0191 NA 0.0144
15 NA 0.0359 0.0108
16 NA 0.0302 0.0074
17 0.0067 NA 0.0084
19 NA 0.0279 0.0065
20 NA 0.0244 0.0040
21 0.0054 NA 0.0056

function is linearized around all of the intersection points in the
next loop of the algorithm. The summary of the approximation
is found in Table I, where the proposed algorithm is compared
to the uniform grid and the Lebesgue PWA approximation
methods. As it can be seen, the approximation iteration is done
until ēmax = 0.0054 with 21 regions. As mentioned earlier with
the numerical values, the symmetry of the sine function for
the IPWA algorithm may cause several points with the same
value of error in each linearization stage, hence the number of
regions may increase by more than 1 region per iteration. This
is the reason we marked ‘NA’ in the second column of Table
I. A similar phenomenon was encountered with the Lebesgue
approximation applied to the sine function. Consequently, the
comparison of each methodology can be accomplished using
the numerical values obtained with the uniform grid technique.
It can be seen that the ēmax of the uniform grid PWA model is
less than the same parameter for the Lebesgue model in each
epoch. On the other hand, smaller values for ēmax are obtained
with the IPWA model compared to the uniform grid model.

Example 2: Consider a rigid airfoil that has two degrees
of freedom: plunging along the h direction, and pitching
in α . The authors of reference [27] have summarized the
dynamics of the wing fluctuation using a linear and an angular
springs, which are shown in Figure 5. By doing so, the
nonlinear aeroelastic behavior of the wing can be modeled
by a polynomial function of the pitch angle.

Denoting [h,α, ḣ, α̇]T = [x1,x2,x3,x4]
T as the system states,

the governing equations are written as

ẋ = AF x+ fF(x)+BF u, (42)

where

AF =


0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

−293.27 −100.59 −5.9027 −0.40542
1885.9 743.79 34.728 2.4687

 ,

−π −π/2 0 π/2 π

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

x2

f 1
(x

2
)

−π −π/2 0 π/2 π

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

x2

f 1
(x

2
)

Fig. 4. IPWA approximation of the f1(x2) = sin(x2). The upper plot is the
approximation with 5 regions. The approximation has been refined in the lower
figure by linearizing the intersection points, which are plotted with squares.

Fig. 5. Simplified aeroelastic model of the aircraft wing.

BF =


0.0 0.0
0.0 0.0

−7606.8 −7642.6
14250 9021.9

 ,
and

fF(x) =


0
0

K̄α(x2)
K̄α(x2)

 ,
with

K̄α(x2) =2.82x2−62.322x2
2 +3709.71x3

2

−24195.6x4
2 +48756.954x5

2

that are taken from [27]. K̄α(x2) is a function of only one
variable x2, which allows us to use the IPWA algorithm to
compute its PWA approximation. The summary of the IPWA
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algorithm applied to the continuous function K̄α(x2) for x2 ∈
(−π/6,π/6) is given in Table II. The normalized error ēmax is
computed according to (40). Figure 6 shows two consecutive
iterations of the IPWA algorithm. Point x(3)int =−0.3434 has the
maximum error of approximation in the 3rd iteration (upper
plot). This point is thus chosen to linearize the function
K̄α(x2), resulting in a finer PWA approximation (lower plot).
Looking at Table II, one can concludes that the Lebesgue
model has the least error for 3 regions while for more than 3
regions the IPWA is shown to produce better results.

TABLE II
THE SUMMARY OF PIECEWISE AFFINE APPROXIMATION FOR K̄α (x2)

Normalized Approximation Error (ēmax) of K̄α (x2)
NUMBER OF IPWA LEBESGUE PWA UG PWA
REGIONS n APPROX. APPROX. APPROX.

3 0.3337 0.2492 0.3867
4 0.1113 0.1658 0.3010
5 0.0731 0.1242 0.2285
6 0.0483 0.0992 0.1684
7 0.0371 0.0825 0.1187
9 0.0195 0.0710 0.0423

−π/6 −π/12 0 π/12 π/6

0

500

1000

1500

2000

x2

K̄
α
(x

2
)

−π/6 −π/12 0 π/12 π/6

0

500

1000

1500

2000

x2

K̄
α
(x

2
)

Fig. 6. IPWA approximation of the K̄α (x2). The upper plot is the approx-
imation at the 3rd iteration while the lower plot is associated with the 4th

iteration of the algorithm.

Example 3: A set of cell DNAs that interact through their
RNA and their protein products is called a gene regulatory
network. Based on the interactive regulation of genes, a
genetic network is produced, which describes the behavior of
organisms, according to [28]. The two-gene regulation network
is schematically shown in Figure 7.

Denoting x1 and x3 as the concentration of messenger
RNAs (mRNAs), as well as x2 and x4 as the protein products

Fig. 7. Two-gene regulatory network. x1 and x2 represent mRNAs concen-
tration while x3 and x4 stand for the protein product concentration of genes
A and B, respectively. This figure is adapted from [9].

concentration of all genes A and B, respectively, the governing
state space equations of the two-gene regulatory network is
described by

ẋ1 =α1σn(x4)−β1x1 (43a)
ẋ2 =α2x1−β2x2 (43b)
ẋ3 =α3σp(x2)−β3x3 (43c)
ẋ4 =α4x3−β4x4 (43d)

where σn and σp are the transcriptional regulation functions
depending on the concentrations of the protein products,
according to [28] and [9]. These functions for a two-gene
network problem may take the form of

σn(x4) =
θ κ

n

θ κ
n + xκ

4
(44)

σp(x2) =
xκ

2
θ κ

p + xκ
2
, (45)

with θn = 0.20, θp = 0.19 and κ = 4. All the constants are
taken from [9], as

α1
α2
α3
α4

=


0.95
1.23
0.86
1.43

 ,


β1
β2
β3
β4

=


0.90
1.31
0.83
2.60

 .
Using the IPWA algorithm, functions σn(x4) and σp(x2)

are approximated for several desired errors. The Lebesgue
approximation and the uniform grid techniques are also used
to find the PWA model of these functions. The approximation
error of all of the mentioned techniques are presented in Tables
III and IV. For as low number of regions as three, the Lebesgue
algorithm is shown to be most accurate. As the number of the
regions is increased, the IPWA provides higher accuracy with
respect to the other techniques.

Example 4: The last example for modeling of nonlinear
systems with IPWA method consists of the mathematical
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TABLE III
THE SUMMARY OF PIECEWISE AFFINE APPROXIMATION FOR σn(x4)

Normalized Approximation Error (ēmax) of σn(x4)
NUMBER OF IPWA LEBESGUE PWA UG PWA
REGIONS n APPROX. APPROX. APPROX.

3 0.1738 0.1575 0.2083
4 0.0721 0.1167 0.2283
5 0.0667 0.0922 0.1912
6 0.0405 0.0760 0.1364
7 0.0259 0.0644 0.0907
8 0.0217 0.0558 0.0598
9 0.0196 0.0492 0.0439
10 0.0135 0.0439 0.0419
11 0.0109 0.0396 0.0464

TABLE IV
THE SUMMARY OF PIECEWISE AFFINE APPROXIMATION FOR σp(x2)

Normalized Approximation Error (ēmax) of σp(x2)
NUMBER OF IPWA LEBESGUE PWA UG PWA
REGIONS n APPROX. APPROX. APPROX.

3 0.1745 0.1589 0.2001
4 0.0721 0.1178 0.2289
5 0.0672 0.0933 0.2043
6 0.0406 0.0771 0.1529
7 0.0262 0.0655 0.1052
8 0.0217 0.0568 0.0705
9 0.0196 0.0556 0.0479
10 0.0136 0.0447 0.0436
11 0.0109 0.0403 0.0447

function

f (x) =
(

x+4−1/3
)4
− x−4−4/3, ∀x ∈ Γ, (46)

where Γ = (−2, 1). The specific feature of this function is
that it has a zero curvature point at xzc = 4−1/3, which is
not an inflection point. Therefore, the SLP algorithm picks
xzc as a member of the set of linearization points (SLP). The
IPWA algorithm in contrast, does not linearize the function
f at such point. Table V gives the normalized approximation
error of PWA approximation of f by both the SLP and the
IPWA algorithms. Although the error for both models with
2,4 and 8 regions is the same, the IPWA model has smaller
values of error with 3 and 5 regions.

TABLE V
THE SUMMARY OF PIECEWISE AFFINE APPROXIMATION FOR f (x)

Normalized Approximation Error (ēmax) of
f (x) Given in Equation (46)

NUMBER OF IPWA SLP PWA
REGIONS n APPROX. APPROX.

2 1.0000 1.0000
3 0.3401 0.5970
4 0.3037 0.3037
5 0.1469 0.1888
6 0.0896 0.0896

VI. CONCLUSION

In this paper, the intersection-based algorithm for approx-
imation of functions of one variable was developed. Using
the algorithms provided in section IV, PWA models can be
constructed for a wide range of nonlinear functions, where
the nonlinearity is a function of only one state. Finally
the method was successfully applied to the path following

unicycle, the aeroelastic model of the aircraft wing, and the
two-gene regulatory network. The approximation error of the
intersection-based PWA model of the examples was compared
with the Lebesgue [9], uniform grid [7], and the SLP [26]
PWA models. Future work may involve study of the PWA
approximation of functions of two or more variables.
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