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ABSTRACT

The penetrability through double hump barriers
in nuclear fission processes is calculated in the J.W.K.B.
approximation, using Fréman's "F-Matrix" formalism. Parti-
cular attention is paid to coinciding classical turning
points where other methods break down. An attempt is made
to obtain a more realistic picture by introducing the
"Sharp Drop Approximation" to modify Cramer and Nix's method
of calculating penetrabilities; An expression for the
penetrability through two—peaked fission barriers is obtained
in terms of Weber parabolic cylinder functions. A quali-

tative discussion of results is also included.
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INTRODUCTION

PENETRABILITY THROUGH DOUBLE HUMP BARRIER
IN NUCLEAR FISSION PROCESS

The for£uitous experimental discovery of
nuclear fission by O.Hahn and F. Strasseman,[lj in 1939
presented a challenge to theoretical physicists. They
realized that fiésion, a many-body phenomenon, would be a
formidable problem to solve exactly with quantum
mechanics, both in its statical and dynamical aspects. This
prompted researchers to fit a model to the physical situa-
tion. On suggestions from L. Meitner and O.R. Frisch,Ez]
Bohr and Wheeler[?:I developed the Liquid Drop Model.
Unfortunately, this very simple model is only a rough
approximation of the fission mechanism. However, it provides
a reasonable qualitative picture of break up of the nucleus.
The Liquid Drop Model was soon superceded by Bohr and

[12] Unified or Collective Model. It was an

Mottelson's
advance in sophistication since it included single particle
degrees of freedom. Nevertheless, it has been extremely
difficu1£ to apply this model quantitatively to fission.

A. Bohr's [16]

channel theory was one of the few attempts,
which succeeded in explaining the importance of the saddle
point and gave a useful expression for the angular distri-
bution of fission fragments. It still remained to be seen

if shell effects would influence the fission phenomenon as

strongly as was hoped in the advent of the theory, since shells



seemed to disappear in highly deformed nuclei. Strutinsky[zo]

found a way to include shell effects consistently in nuclear
masses and deformation energies through the Shell Correction
Method. When Shell Correction is apblied to the variation of
nuclearvmasses with deformation, i.e. to fission, in the
limit, it yields an unusual result. The fission barrier

was then thought to include only one pOtential maximum
corresponding to the saddle point energy. Strutinsky [24]
however, obtained a fission barrier consisting of two energy

minima separated by an intermediate well. Thus the saddle

point was more intricate than expected.

Since the fission barrier is primarily used to
estimate fission half-lives, the penetrability of the barrier,
in terms of which the fission half-life is expressed, has
to be considered with the utmost care. The probability of
penetration through Strutinsky's fission barrier is
calculated in the J.W.K.B. approximation in Chapter 1IV. A
preliminary calculation is carried out with the J.W.K.B.

[38]

method as understood by Bohm and others. 1In this

Chapter, the author derives a result often quoted. However,

[39]

Froman proved that Bohm's view of the J.W.K.B. approxi-
mation is mathematically erroneous. In our opinion, the
expression for the penetrability mostly used lacks mathe-
matical rigor. The author gives a mathematically rigorous

derivation of the penetrability in the J.W.K.B. approxima-

tion using Froman's point of view of J.W.K.B. method.



xi

Furthermore, the problem of calculating the penetrability of
a fission barrier when the incident energy is close to the
top of the barrier has not yet been attempted for the

case of a double-hump asymmetric barrier. This author uses
Froman's "F-Matrix" formalism to obtain J.W.K.B. approximated
wave functions on both sides of the coinciding classical
turning points. It provides a very satisfactory expression
for the penetrability at an incident energy close to the

top of Strutinsky's barrier.

[45]

Recently; J:D: Cramer and J.R. Nix claimed

to have found an "exact" method of determining penetrabilities
through two-peaked fission barriers: The exactness of the
method is open to question in the light of various assump-
tions made by them for the sake of mathematical convenience,
thus introducing approximation in regard to the physical
situation. To make the physical picture more realistic, the
author uses a new approximation called by him "Sharp Drop
Approximation" and calculates the penetrability in Chapter

V by a method similar to Cramer and Nix's. A cumbersome

expression is obtained in terms of Weber parabolic cylinder

functions.

Discussion of the J.W.K.B. results is given in
Chapter VI. A justification of the "Sharp Drop Approxima-
tion" and a discussion of the results henceforth obtained
is undertaken in the same Chapter. The conclusions drawn
frdm the methods used z2nd the results obtained are also

reported in Chapter VI.
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NUCLEAR FISSION



CHAPTER I

NUCLEAR FISSION

1.1 THE FISSION PROCESS

0. Hahn and F. Strasseman [1] discovered that
alkaline earth metals are produced when Uranium is irradiat-

2]

ed with neutrons. L. Meitner and O.R. Frisch suggested
that by absorption of neutrons, a Uranium nucleus becomes
sufficiently excited to split into two fragments of approxi-
mately equal masses. This type of new reaction was called

(2]

"figssion" by Meitner and Frisch.

That such a process is energetically possible
can easily be seen from a study of atomic masses or binding
energies of Uranium nuclei. The average binding energy
per particle in the intermediate mass region (A~I20) is
8.5 Mev; in the Uranium region, however, it is only 7.6
Mev. If a heavy nucleus is split into two fragments, the
increased binding energy per particle will be released in
the form of kinetic energy of the fragments and through
various types of radiations. From the above considerations,
the total energy released in a fission process should be

approximately

LL0 (8-5'-—‘16) - 220 Mev (1.1)

Since heavier nuclei are richer in neutrons than inter-

mediate mass nuclei, two or three neutrons are released in
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every fission process at the expense of reaction energy,
and after allowing for this loss, it is found that about

200 Mev is released.

Whatever the nature of the target nucleus and
the mode of excitations, the particular physionomy of fission
reaction is the result of the following fundamental proper-

ties:
- energy release

The energy released in a fission reaction is
ten to a hundred times that produced by most of the exothermi.c

nuclear reactions.
- mass yield

The splitting of the nucleus into two fragments
of approximately equal masses is not unique. When bombarded
255

by thermal (slow) neutrons,\’ can be split in thirty
different ways, giving about sixty distinct fission products.
Each splitting has a certain probability of occurrence-

. . . 233 239
Fig. 1.1 gives the percentage yield of\f and BL  When
bombarded with thermal neutrons. The curves corresponding

) 235 $38 232

to other very heavy nuclei, such aslf ’ \f or Ik in
the case of fast neutrons, are very similar to Fig. 1l.1l.
The minima are less pronounced in case of fast neutron bom-
bardment but the number of species of fission products

(3]

obtained is the same.



- prompt neutron emission

Along with the two fragments, several‘prompt
neutrons are emitted. For Uranium and‘the neighbouring
elements the fission threshold energies are low enough so
that prompt neutrons have a higher kinetic energy than the
fission threshold energy: these neutrons are able to activate

new fission reactions,thus causing a chain reaction.

Furthermore, Fig. 1.1l shows that asymmetric
fission is more frequent than symmetric fission. This arises
1385
from a simple consideration of‘j , where the sum of the
ns ! . .
masses ( Cd +Cd.'5 ) is 2 Mev higher than the sum of the
100 136 )
masses (Ze + e ) corresponding to one of the most fre-
quent asymmetric fissions. 1In the same way the electro-
static repulsion between the two fragments is proportional to

the product of their charge, hence favouring asymmetric

fission.

San Tsiang et al (4] pﬁblished the first study
of ternary fission in 1947. At the same time, they suggested
the possibility of fission into four fragments. The usual
ternary fission phenomenon yields two heavy nuclei and a
high energy alpha particle of 10 to 40 Mev range. It was
verified that this alpha particle emerges from the target
nucieus and thus éonstitut‘s a third fragment. In the

WX LLE

case Of Wy , ternary on is 308 to 400 times 1less

fie

S

n

-
S

th

probable than usual binary fission. Splitting into four



fragments may occur at very high excitation energies.

Fission of an atomic nucleus can either be spon-
taneous or be induced by bombardment with a number of projectiles
at high, moderate or low energies. Thermal neutrons, as'well
as fast neutrons can induce fission of heavy nuclei. Fission
in elements above atomic number 90, has been produced by bom-
bardment with protons, deuterons and alpha particles. 1In
1940, Flerov and Petrzhak [5] discovered that natural Uranium
undergoes spontaneous fission. The first attempt to observe
the effect had been made in 1939 by Libby [6], but the
detection equipment used was not sensitive enough to uncover
it. Spontaneous fission and the alpha-decay process often
compete for the break-up of an atomic nucleus.

1.2 THE FISSION MECHANISM : THE LIQUID
DROP MODEL

Meitner and Frisch[zj suggested that medium mass
products might result from nuclear fission, in a process
analogous to the division of a charged liquid drop. Bohr

[71]

and Wheeler gave an extensive treatment of such a fission

process in 1939.

The forces operating between the neutrons and
the protons in the nucleus are short range, charge indepen-
dent, nucleon / nucleon forces and the Coulomb repulsive
forces of the protons. The shape assumed by the nucleus
represents a balance between the nucliear forces, idealized as

a surface tension and the Coulomb repulsive forces. The
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strength of the surface tension can be estimated from the
surface correction term in the semi-empirical mass equation
while the sirength of the Coulomb forces can be calculated
from the proton charge, the proton number, the assumed volume
distribution of protons within the nucleus and the dimensions
of the nucleus. When excitation energy is added to the
nucleus, oscillations are set up within the drop. This
increases the surface area of the drop and the resultant in-
crease in surface energy tends to return the drop to its
original shape. 1If the electrostatic forces become greater
than the surface tension, the deformation of the drop will
grow and essentially the drop may divide into two or more
fragments. Only the very heaviest elements have such a

large protonic charge that relatively slight deformations of
the nucleus can lead to fission. These qualitative consider-
ations are illustrated in Fig. 1.2. The quantitative con-

siderations are as given below.

1.2.1 The Liquid Drop Model : Statics

The statics of the Liguid Drop Model are best
illustrated by an elementary calculation of the spontaneous
fission limit and by potential energy surface mapping.

1.2.1.1 An Elementary Calculation of the

Spontaneous Fission Limit on the
Synthesis of Very Heavy Elements

A spherical nucleus is given a small symmetri-

cal distortion of the %'(ana)type. The radius cf the



slightly distorted sphere is given by

RE) = R [1+ =y B (coo e)] C(1.2)

where F,,(cm 6) is a legendre polynomial and ofy, a coefficient.

It can be shown that

Awogw. gy < E, s EJ (H‘% o +£ajw' powna %?‘n.)
- - 103
ML%:E¢= ES (I’-s'-:"(:-{» %PM%NL) ( )
where E: and E: refer to the undistorted sphere. Henée

the deformation energy is

AV= V-V = (EA - E‘°) -|—(E¢,- E::) (1.4)
-t o2 0 -0 )
=¥ Sy (-?:EA - Ec) + Mrowm'go(, (1.5)

For small distortions, higher powers of &, can be neglected

and AV written
AV = .5'. x> (L E) ..E,_‘) (1.6)

A spherical charged drop is then stable against small dis- -
tortions of the o, Eb(w’ 6) type if 2 E.g > E: and un-
stable if LE; < E: . If the charge is gradually
increased on a liquid drop, then at a certain critical value
of the charge corresponding to E: ;LE: (the saddle
point shape), the drop will become unstable and divide spon-
taneously. For the case of an idealized nucleus, this is
expressed differently in terms of a fissionability parameter

(7]

and defined 2as

x introduced by Bohr and Wheeler

follows:



EO
x = =% (1.7)
2Ef
From electrostatics
<
-}
Ee - 5 (Ze) (1.8)
5 R,
From an analysis of nuclear data,R° is found to be
'
R, =1.216 A3 (1.9)
so that
E:: 9.2’%.?.3 (1.10)
A3
From geometry
° 2
Er 24 R« SL (1.11)

where L is the surface tension constant and is obtained

[sl

from the semi-empirical mass formula. Substituting (1.9)

for R° and JSL by its value in Egn. (1.1ll) yields

E: = 17.80 H% (1.12)
Therefore
E®° ZVH
x = ° - (1.13)
2Ex 50 .13

. ES . . . . -
The ratio f-/;, g: is proportional to the combination ’/ﬂ

and

(1.14)

L

\:—-} = 50.i
H Zcriricas
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Egn. (1.13) suggests that all nucleii of Z 120 will be
characterized by the absence of a classical barrier towards

spontaneuvus fission.

1.2.1.2 Mapping of the Potential Energy
Surface

These simple considerations on the stability of a
spherical drop against small distortions of the o, Q(m O)
type must be replaced by much more complex calculations when
larger distortions are considered, particularly when X is

\substantially less than 1.0.

For distortions which are not too different
from a sphere or spheroid, it is convenient to express the
drop shape by the following radial equation:

R(6) = Rl 4= Kn P (con e)] (1.15)
A mnz)
where Ro is the radius of the undistorted sphere, F;z. is the
legendre polynomial of order N\ and Kk is a scale factor

required by the condition of constant volume.

The task then is to map V(x) orAV in the many
dimensional space of the &, . For example, V or AV méy
be shown as contour lines on an &, .o, plot, which is the
most important for small distortions of the symmetric type.

Fig. 1.3 is an example of such a mapping.

The potential energy valleys are separated f£rom one another

and from the hollow around the spherical configuration by
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saddle points A and B. The reason for the name "saddle
point" 1is that the potential energy surface has the appear-
ance of a saddle or mountain pass. Point A lying lowest is
the binary fission saddle point and point B, higher on the
diagram, is the ternary fission one. (9] The potential

energy surface maps are then important because they indicate

the Liquid Drop Model saddle points.

1.2.2 The Liquid Drop Model: Dynamics

Since an ensemble of fissionable nuclei will
actually exist in a great variety of initial conditions, a
comprehensive calculation of the dynamics of such an ensemble
would be a formidable task. Statistical mechanics can
however, provide some notion about the average result of a

large number of divisions.

The fission barrier depicted in Fig. 1.4 is the
basis for a quantum-statistical-mechanical formulation of
the fission mechanism in the Liquid Drop Model approximation.
The height of the barrier corresponds to the saddle point
energy. The tunneling through the barrier is responsible
for spontaneous fission. Bohr and Wheeler (8] obtained a
fission rate from such a barrier. Obviously the fission
rate decreases as the energy is lowered from its saddle
point value. On the other ﬁand, Hill and Wheeler [10]
calculated the penetrability of such a potential barrier and
from those calculations obtained the half-lives of the

corresponding nuclides. The height and shape of the barrier
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will vary from one nucleus to the next.

1.3 THE FISSION MECHANISM : THE COLLECTIVE
MODEL

Following the Liéuid Drop Model, the next major
advance in sophistication is the introduction of particle
degrees of freedom. 1In fact, the Ligquid Drop Model and the
Independent Particle Model grew up separately and in many
ways appear to be incompatible. The unified Models of
Rainwater,tll] Bohr and Mottelson,Elz] Hill and Wheeler [10]
incorporated features of both models by the simultaneous
introduction of collective and independent particle co-
ordinates.

1.3.1 The Collective Model in the Reglon
of Deformed Nuclel

The Collective Model description of deformed or
strongly deformed nuclei is of prime importance for the
fission process. At some considerable distance from closed
shells, the nucleus becomes stabilized in a non-spherical
shape under the influence of the coherent effects of many
particles in unfilled shells. The adiabatic approximation

holds and the wave function describing the nucleus as a whole

can be separated as follows:

Y” xrm ) /dm ) DMT (1.16)

v/

i describes the intrinsic motion of the nucleus express-
< “Panv =

ed in terms of the independent motion of the individual
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particles in the deformed field. Quantitatively xroar

[13] wave function.¢w‘ depicts the

is Nilsson's Model
vibrations of the nucleus around its equilibrium shape. D“"
identifies with the rotational motion of the system as a

whole.

[12]

The coupling scheme for deformed nuclei
is defined by Fig. 1.5. The three important constants of the
motion are T, K and M where I is the total angular
momentum of the nucleus, K is the projection of I on the axis
of symmetry and M the projection of 1 on a space fixed axis
Z . For the ground state and for low lying excited states
in which there is no collective rotation about 2' , the body
fixed axis, K is taken equal to ILIwhich is defined as the
projection of the total particle angular momentum on the
nuclear symmetry axis. The total angular momentum % J"u of the
particle system is not, in general, a constant of the motion.
K will be different from _()_lfor certain types of vibratica-
al excitations in which collective angular momentum is contri-
buted along the nucleus axis.

1.3.2 Nuclear Fission and the Collective
Model

1.3.2.1 Special Role of the Saddle Point

The saddle point configuration plays a special
[14]

roie in the fission process. Since the amount of energy

e e - e . o s s M a e
tied up in the deformation is greatest here; the coiieccive

motion is also slowest and the adiabatic approximation is



FIG.

1.5

16

The Cout)ling Scheme for Deformed Nuclei
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valid here. The saddle point is a bottleneck for the fission
process : the system must pass through (or near to) it with
minimum energy available for collective dynamics and intrinsic
excitations. It is at the saddle point that constants of the
motion are frozen into the system. It seems plausible that
along the dynamical path from the saddle point to scission
(the rupture into 2,3 or\, fragments), the deformation
maintains an axial symmetry which preserves .ﬂ.l as a constant
of the motion. The goodness ofiqfis well established for
strongly deformed ground state nuclei (Nuclear surface
energy and pairing correlation tend to favour éxial symmetry
just as they also favour s?herical symmetry).tls] Even if
the adiabatic approximation breaks down beyond the saddle

J .
point, the constancy of ML should be preserved.

1.3.2.2 Spontaneous Fission Lifetime

The Collective Model indicates that the potential
barrier for odd-A nuclei is greater than for even-even nuclei.
Spontaneous fission lifetimes will then be higher for even-
even nuclei, in agreement with experiment.

1.3.2.3 Angular Distribution of Fission
Fragments

The angular distribution of fission fragments is

completely determined by the relative "orbital® angular

momentum vector B of the fragments as defined in Fig.

L d

[
[4)}

To the extent that S, the projected angular momentum al

0
(¢}

ng

s . . . . .
the Z’ axis, is a constant of the motion at scission, the
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total angular momentum of the system is given by

I =R +.0n' O (1.17)

~

which is, of course, a rigorous constant of the motion.

l is determined by the condition of formation of the compound
system. For example, a neutron is incident upon an even-
even target. The classical angular momentum considerations,
neglecting neutron spin are depicted in Fig. 1.6. The angular
momentum vector of the neutron, and hence also of the compound
system, points normal to the incident direction. The vectors
f) and .Q.‘ precess about l and l must be averaged over all
directions normal to the incident direction. Thus the final
angular distribution of fragments is the distribution in the
direction of the symmetry axis §‘: .Q-' , as obtained by execut-
ing the above averages. The classical angular distributions

!
of fission fragments for unique values of I and f1, as first

given by Bohr, [16] are
1 % ot
Wd(e) « Ant0 - == (1.18)
I

They are also displayed in Fig. 1.6. The correct quantum
mechanical expression for unique I and 1, but with unpolar-
ized projectile momentum AN is

b/
Wi(e) <3 lj):.ti‘ (1.19)

Ms-A
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1.3.2.4 Mass Yield

Ever since the observations of M. Mayer [17]

that mass asymmetry was correlated with nuclear shell struc-
ture, there have been efforts to insert this information into
the fission mechanism . The problem is to know to what
extent shell effects do persist at moderate and large deforma-
tions where degeneracies could be effeétivqu removed. A hint
that shell effects do persist comes from the observed odd-
parity (17,37,5 ) excitations of even-even nuclei. It is
proposed that they are members of the ground state rotational
band, but correspond to the first octupole vibrational excita-
tions. 1Inglis [15] pointed out that the 136 neutrons of

Rc('?‘- which has the lowest 1 state - could be interpreted
as being grouped asymmetrically into stable structures of 50
and 82 neutrons, joined by a neck of four neutrons. Protons,

of course, are also present. A. Bohr [16]

proposed that
for fission resulting from slow neutron capture, the mass
yield should vary from resonance to resonance or from reson-
ance to off-resonance. Experimental investigations have re-
vealed resonance structure in the mass asymmetry; the effect

is not as drastic as the theory might imply. [19]

1.4 THE NEED FOR OTHER MODELS

The problem of nuclear masses and their dependence
on deformation has to be resolved if there is to be hope of a
consistent and widely applicable fission formalism. There

are several approaches to the problem, one of which is the
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Liquid Drop Model. This model however, ignores completely
nucleon shell effects. The importance of such quantum effects
is stressed however, in the Bohr-Mottelson nnified model,[lz-|
but the model still offers only a qualitative picture of the
consequence of these effects for the fission process. In more
microscopic models, an attempt is made to reduce the problem

of nuclear masses and deformation energies to residual nucleon

interactions.

A completely quantitative microscopic description
of nuclear deformation and fission is hardly possible at the
moment. Modern theories of nuclear excitations wuse a re-
normalized Hamiltonian and assume that the properties of the
average field are known from empirical data. The problem of
nuclear masses and deformation energies is complicated by the
necessity of calculating the average field and the energy
related to it and some other quantities such as the surface
tension constant. In the surface region the nuclear density
decreases to zero in a very short distance of the order of
H-i Ro , i.e. a large density gradient is present. The
problem of surface tension arises for which features of
nuclear interactions such as saturation (velocity dependence)
are important. In fact,there are relatively simple ways to
account for these surface effects in classical phenomeno-
logical models. These can be taken from some known general
features of nuclei, in particular from average data on nuclear

masses. They are not influenced sensibly by shells.

-0
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A method of including shells and other quantum
effects in nuclear masses and deformation energies has been

devised recently : Strutinsky's Shell Correction Method.



CHAPTER II

THE DOUBLE HUMP FISSION BARRIER
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CHAPTER II

THE DOUBLE HUMP FISSION BARRIER

2.1 THE SHELL CORRECTION METHOD

2.1.1 Main Features of the Method

(20]

Strutinsky considers nucleon shells and

other quantum effects as a small deviation from a uniform
distribution and the corresponding correction to the Liquid
Drop Model energy is then determined. When the difference of
the two distributions becomes small; the energy difference
will be a linear combination of the difference between the two
nucleon distributions; Furtherm@re; the energy difference
(with an accuracy up to the residual interaction) may be

expressed simply as a difference of the single particle

energies
~S
'§'U'= 'U"‘U (2.1)

of the shell quantal distribution of nucleons

=2k n
with the sum over all occupied states and the uniform
distribution ~
- - []
U=2 | E s’(e)drl? (2.3)
-o<

A tilda above the letter indicates quantities for the
uniform distribution, and the same letter without a tilda

refers to the analogous quantity for the gquantal distribution
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of nucleons. In Egqn. (2.2), EV are nucleon levels in the

average potential and Ny the occupation numbers. In

Egn. (2.3), E(E) is a uniform distribution of nucleon states
~o

and the quantity A is the Fermi energy which is determined

from the conservation of the particle number.

It is assumed that the shell model average
potential well is a self-consistent potential for the uniform

distribution. A realistic distribution of nucleons could be

a Nilsson potential level scheme [13]

[21]

or a Woods-Saxon level
scheme. The residual interaction effects are also
influenced by shells and will be included in the total energy.
This total energy is written as a sum of the Liquid Drop

Model energy\/J, ,the residual interaction and the shell

correction
~/
W, = \,\/,-l-ﬁ (S'V-l-P) (2.4)

The sum is over protons and neutrons. Of the residual inter-

actions, the most important one is the nuclear pairing energy,

because of its strong exponential dependence on the density

of nucleon states. The pairing energy can be calculated in

the usual approximation of the B.C.S. Theory. The shell

correction 3 P to the pairing energy is the difference between
~

P and the pairing energy P calculated for the uniform

distribution of single particle states.

Strutinsky's development of the shell correction

method suggests that shells can.be considered more generally
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as non-uniformities in the energy distribution of nucleons

[20]

near the Fermi surfaces. In fact, when a nucleus is

deformed, a compression of the single particle nuéleon levels
near the Fermi energy alternates with a thinning out or a
shell and this leads to modulations in the Liquid Drop

Model (L.D.M.) energy of the nucleus.

2.1.2 Consequences of the Shell Correction
Method

Strutinsky [22] shows that, contrary to existing
opinion, the shell non-uniformities in the energy distribution
of the nucleons do not disappear in deformed and strongly

deformed nuclei.

He also points out that the shell correction
method ascribes equivalent effects to particle numbers and

deformations. [25]

With the former variable, the measured nuc-
leidic masses provide a rich basis for the study of deviations
from the average and for comparison with calculations based on
realistic single particle energy diagrams. This is illustrated
in Fig. 2.1. In Fig. 2.1, there is agreement in considerable
detail. The effect of the other variable, i.e. deformation,
gives rise to an unexpected behaviour of nuclear deformation
energies with respect to the prolate deformation coordinate

P . This forms the basis for Strutinsky's model of

fission.
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2.2 STRUTINSKY'S MODEL OF FISSION : THE
DOUBLE HUMP BARRIER

2.2.1 The Shell Correction Method and
Nuclear Fission

For very heavy nuclei the surface tension constant
in L.D.M. is very small or even negaﬁive.‘ However, the known
fission barriers and spontaneous fission lifetimes do not
decrease very fast and the experimental nuclear deformations do
not decrease in this region. This anomaly is explained by

[24]

Strutinsky on the basis of the shell corrections to

nuclear deformation energies.

Some results of the calculations for the heaviest
nuclei are shown in Fig. 2.2. The first minimum of the
potential energy corresponds to a ground state which turns
out to be a few Mev lower than the spherical energy in L.D.M.
This is an effect of the deformed state shell N~I150 , which is
essential for equilibrium deformations in this region. The
stiffness of the nuclear shape in the ground state is also
determined by this shell. The stiffness and equilibrium
deformations do not change much in this region, in spite of
a sharp decrease of the effective surface tension in L.D.M.
Energetically the shell effects are most pronounced:hlcp '
but their influence extends over a broad region of nuclei.
The N~ISO0 shell is very important for the stability of the
transuranic elements against fission. Strong shells appear

again in still heavier "magic number” nuclei for the
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spherical shape. As a result these nuclei are relatively
more stable against fission as was already suggested by

Swiatecki.[25]

The fission thresholds of deformed trans-
uranic nuclei turn out to be larger than the ones in L.D.M.
and they do not depend much on E/LH . It should be noticed,
however, that due to a second minimum of the shell correc-
tion, the saddle point is strongly deformed in these calcula-
tions and there are in fact; two or even three fission
barriers in Fig. 2.2, as a well prqnounced minimum appears
near the saddle point in nuclei from_m to Cf\ . This
minimum corresponds to deformation about twice that of the

ground state and is due to the crossing of the levels of the

shells next to one corresponding to the Fermi energy.

2.2.2 Strutinsky's Model of Fission

[24

Strutinsky ] set the basis of his model in
1968, after careful study of the above results. The L.D.M.
potential is retained and corrections to nuclear masses and
deformation energies as given by the IL..D.M. are calculated
by the Shell Correction Method. The single particle states
of the deformed potential are included in the model through
the Shell Correction Method. The distribution of nucleons

is taken as in the Nilsson potential level scheme [13] or

[21]

in a Woods-Saxon potential level scheme.

Strutinsky's model is therefore a collective
model. The adiabatic approximation is still valid as the

collective excitation period is much greater than the
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particle motion period. The model calculations yield a

[26]

double hump fission barrier. This two-peaked fission

[25] is a radically

barrier, although hinted at by Swiatecki,
new feature in the fission formalism. A schematic diagram
representing the barrier is given by Fig. 2.3. As said
before, in all nuclei where the double hump fission barrier
applies, the second minimum occurs at a deformation~ébout
twice that of the ground state. Only prolate deformations
have been considered in the calculations. This model best
applies for heavy nuclei with neutron numbers in the vicinity
of 146-148, i.e., in the Actinides region. It is to be
noted that the fission barrier of Fig. 2.3 is somewhat
dependent on the single particle model used. [26] The
existence of two minima separated by an internal energy
barrier means that the excitations of the nucleus can be
divided into two classes. The states of the first well are
denoted by Class I states and those of the second well as
Class II states. These Class I and Class II states are also
represented in Fig. 2.3. A wealth of new consequences
follows from the weak coupling between the degrees of freedom
associated with each of the two wells.

2.2.3 Theoretical Implication of Strutinsky's
Model

2.2.3.1 Two Intermediate States in a Hot
Compound Nucleus

in hot nuclei, a fast dissipation ©f the collec-

tive motion normally takes place and, as a result, the nucleus
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takes a shape corresponding to one or the other of the two
energy minima. In the collective, as well as in each of the
one particle degrees of freedom, a relatively small amount of
energy of the order of the nuclear temperature T is collected.
If T is smaller than the depth of the potential well, the
nucleus maintains its equilibrium shape for a relatively

long time. Thus, there are two intermediate states of the
compound nucleus, each with its own temperature, spectrum,

etc. For reactions produced by monochromatic neutrons one may
expect structures related to the states in the second potential
well; particularly in the distribution of fission resonances,
the fission width must be esbecially large, with capture reson-
ances which are clese in energy to these states. The fission
cross-section is modulated by this structure and the energy
width of these modulations correqund to the spreading width

of the quasi-equilibrium states in the second well. [27]

2.2.3.2 vVibration Mode Resonances

The resonances described in Section 2.2.3.1 corres-
pond to many-particle states of the compound nucleus. In
principle, there can be also a resonance structure related to
the vibrational states in the fission degree of freedom. A
new possibility ;rises in the two-well model. Here, some of
the vibrational states correspond to wave functions in the
second well. The nucleus is cold if the bottom of the second

well is several Mev above the first one. For the vibrational

states, the conditions for vibrational mode resonances can be
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fulfilled if a collective vibrational level at energy around

5 Mev is the first or second excited state, or perhaps even
the ground state level in the second potential well. Tbhe
width of such a low lying state will be determined by the
penetrability through the potential barrier and by the purity
of the collective states in the second well, i.e., the degree
of damping. In vibrational mode resonances, the penetrability
attains a maximum value at resonance energy)3),, as depicted
in Fig. 2.4.

2.2.3.3 Angular Distribution of Fission
Fragments

Another consequence of a two-humped barrier is
its effect on the angular distribution of fission fragments.
The nucleus may forget its orientation because it stays in
the second well for a time long enough for Coriolis
forces to redistribute the angular momentum projection
with which the nucleus passed through the first barrier.

The second barrier gives rise to channel structure in aniso-
tropies in the angular distribution of fission fragments if
the second well is deep enough. Now, if the second barrier
lies lower than the first, many channels will be open and
a weak, statistical type, angular anisotropy will result
even in the near-barrier (i.e. near the barrier R ) fission.
This is important because in the usual picturé of channel
effects, the channel structure must invariably be present

near the barrier.
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2.2.3.4 Shape Isomerism

The spectrum of excited states in the. second
well gives rise to intermediate structure effects. The
ground state of the spectrum will manifest itself as an
isomer decaying either by barrier benetration or by beta

[28]

or alpha-decay. The double-humped potential makes
spontaneously fissioning isomers more likely. An isomer

decaying by barrier penetration is said to be a shape isomer.

2.3 SUCCESS OF THE MODEL

The existence of the double hump fission barrier
with a secondary minimum in between the ?eaks is strongly
supported by the discovery of fission isomers (also called
shape isomers). Experimentally these isomeric states are
found to decay by spontaneous fission rather than Xbemdssion.
The first fission isomer in.Hr:‘L , discovered by Polikanov
et al [29] and by Flerov et al,[30] has a fission half-life
of 14 ms. Since then a number of other cases have been
found with half-lives ranging from nanoseconds to milli-

[31]

242
seconds. The isotope of Awm seems to have an un-

usually long fission half-life.

Evidence in support of vibrational mode

resonances in the fission cross-section was collected by

321 ._ .. . , T1L39,
2. in the reaction { In + N j. The

Vorotnikov et al
experimental results are reproduced in Fig. 2.5. & pro-=

nounced maximum is found for energies below the barrier.
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Only vibrational mode resonance can explain a maximum in
this energy range. Very interesting results were obtained

by Kapitza et al [33]

in studies of photofission cross-
sections and angular distribution of fission fragments for
five even nuclides. Again, structures appear here which

cannot be explained in terms of a single barrier. These

structures tend to indicate vibrational type resonances.

Strutinsky's model relates angular anisotropies
of fragments in the heaviest nuclei with a distribution of
K values over the second barrier. In the reaction
( Hrn&“-bTL ), the observed anistroby is about 7% for 1.0 -
2.0 Mev excitation energy above the barrier and is in

reasonable agreement with theory.

furthermore, Androsenko and Smirenkin [34]

found that for fission of ljzss near the barrier, the distri-
bution of K (the projection of the angular momentum vector)
showed a lack of structure, thus supporting Strutinsky's
hypothesis that the second minimum makes the absence of

structure possible.

Theoretically, the presence of a second mini-
mum is rather a general feature in the sense that it is

obtained in all realistic models known at present, including

the finite depth Woods-Saxon Model. [35] It is also found
to be stable against )Q' deformations, [36] the non-axially
[371

symmetric }{ - deformations (oblate deformations}

the octupole deformations.
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CHAPTER III

THE J.W.K.B. APPROXIMATION

For Strutinsky's fission barrier it is best to

use the J.W.K.B. approximation to calculate penetrabilities.

3.1 BOHM'S CONNECTION FORMULAE [38]

3.1.1 Barrier to the Right

Supposing VD E to the right of a point X:=za@ ,

and putting

_____W - X (3.1)

. M = K (3.2)
i

far to ‘the right of x=zo. , Bohm's approximate solution is a

decaying exponential, namely:

Vo elee) e

Far to the left of Xz& , this solution approaches

‘lff:‘;'.;i' m(s:/gdc -Tz) (3.4)

Hence the connection formula
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Similarly it may be shown that the connection formula for
solutions which approach an increasing exponential to the

right of Xza is

V_'-TK' M(J:K(Iu-ﬂ/;) = -‘./.'_;_' uP(S:X oh) (3.6)

3.1.2 Barrier to the Left

It is convenient to write down the formulae in
the case where the classically forbidden region is to the
left of Xz . For the solution which decays exponentially

to the left, the connection formula is

JYX:‘ “F(‘ S:xata.) = V-% m(f:{a-vz) (3.7)

or, if the wave function increases exponentially to the left,

the formula becomes

—V%' (I:L&,-TZ) t;-JV-Y-' eaf(f:faL,) (3.8)

3.2 FROMAN'S "F~MATRIX®" FORMALISM [39]

3.2.1 Froman's J.W.K.B. Approximated Solution
to a General Schrodinger Equation

Froman considers the one-dimensional time

independent Schrddinger equation

— + N\ r=°c (3.9}
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. . L . . .
where ? is a complex variable and Q (’5’) is a function which
is analytic and single valued in a certain region of the
complex '?-plane. He introduces instead of ’2» and )V the

new variables W* and )0 which are defined by

v [405)%] ¢ (z)

(3.10)
w(): [Vq(7) 4F
The differential eqn. (3.9) then transforms to
‘Y
—. +(1+&) y=o0 (3.11)
where & is given by
ik -s dr
€. (cf ) (3.12)
q* dLur

The functions exp(iw) and espfiw)are exact solutions of the
differential eqn. (3.111) if £€=0 ,i.'e. if q(rs,) satisfies

the differential equation
J
IR ACI Iy

Knowing any solutions q(rﬂ of this differential equation,
one has the following two linearly independent, exact

solutions of the differential eqn. (3.9)
w= g% ri (’b’a Yd 1 (3.14)
= g7t mpiri ) q(F)e F )

Froman then cuts the complexW -plane in such a way that
the functions are all single valued and he expresses l?

in the form
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\f: a(w) wp (Lw) + e (w) ep (~i ur) (3.15)

where Q. (w) and Q.(w) are functions of WLr which are to be

determined in a convenient way. It follows that

g s Cw.(w) mf)(llur) -t oy (w) uf(-c'w') (3.16)

if the following condition is imposed upon @,(w) and Q,w)

i"—:‘ up(Cwr) 4+ ;1";_‘:-; wp(-Cw) =0 (3.17)

Thus the expression (3.16) is exactly the same as if the

quantities Q,(w) and Q,(w) were constants. It is evident

that
'-1'—"‘-él = lce {o..+a,,_ u.F(-.Zéur)}
dor 2 (3.18)
day .1 {a. 3 l‘ur}
io [ G wp (20 )
By introducing the column vector
o, (w)
a(w) = (3.19)
Oy, (W)
and the matrix
ediw
| e
M(w) - i" L (3.20)
L Liws
- & -

e

with the properties
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d&b g(ur).-.o

T t?@”?::O

Froman writes the system of differential egns.(3.18) in

(3.21)

matrix form as

e . M) o) (3.22)
dur ¥ ™

This differential equation can be replaced by the integral

equation
“(w)s g+ [Tdo Moy as)  (3.23)

the solution of which can be obtained by an iteration

procedure and is
aw): Flw, we) a(wr) (3.24)
Fréman points out that
%; Flw,w) = w) F (v, wi)
3— Ol-bl:F(Uf,W'o) = 0
dw ~

ok [ (ur,wi) =1 (3-23)
=}
Fuwe w): { F (we, w')}
Fréman then derives an expression for the

general solution of the original differential egn. (3.9).

It is convenient here to introduce the row vector



42

R (&('}) &,,('})) - G

where g,(ly) and &z(’w are the J.W.K.B. functions defined by

b3 = 4()° wpiv)]

(3.27)
hw = (0 [ ()]
The general solution and its derivatives are
¥l8)= ) §.3) +0m) uim)= f3) 2@ o
V= ) §i vy P - {y oy
where
2w = Fly.n) () (3.29)

3.2.2 Basic Estimates of the "F-Matrix"

A convenient path A. from I'?, to /3, (from wrh

to wr ) is chosen. This yields ‘
|fs (w, wr) - 1] \<£.::‘- [up(My.) - i_]
o ()| € o [op (Mp) - 4] [emp C 2ewn)]

|For(wiw)l € L [ (Mp) - 1] | enp (260) |
lFu (wr, wo) - 1)< % +Z'71 [:e«f;:(M») -1 -M,u.] lg,?){,z;(w_u,,)}‘

where M is a number that
i. !;-ucf»f-zc(ury,,-ur,,)}js’i‘? (3.31)

for any possible division of the path of integration and
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w

K= LJe(w-.)ld.wzl - (3.32)

M is chosen to be 1 if mf(iw') increases monotonically
from o to n along the path A . If Im (tw) is constant
along /A. , which occurs for instance, in a classically
forbidden region, we can choose M:%.

3.2.3 Estimates of the "F-Matrix" Connecting

Two Points on Opposite Sides of a Classi-
cal Turning Point

Froman estimates the elements of the matrix
f(:c., z.,) where the points X, and X, lie on the real axis
but on opposite sides of a classical turning point, which is
assumed to correspond to a simple zero of q‘ (x) r X,and x&
lie far enough from the classical turning point for the
J.W.K.B. approximation to be valid in the neighbourhood of
X, , as well as JCL . The situations depicted by Figs. 3.1

and 3.2 are considered. The basis estimates (3.25) yield

[Fu (mxe) -1l €+ highe povcn f (3.33)
IF"‘ (3-.,1-..)‘ RS ,u’a {uur(x.)}] [%*Z‘iﬂ‘f"‘“’“‘f}‘]

if M is small compared to i . rurthermore,

[ 4
F,L (~n‘£—» =% F;‘ (z,.,x.,,) ]
(3.3
Foud . = B 1
Far (203) 2 £o Ry (2, 2.) |

where the plus sign applies to Fig. 3.1 and the minus sign



44

2
() 2 - PLANE
y, N
. z _
Pigy! ‘ % Y2
e 19 /(«’\hm
l —+ > X 45— 4 >
X, x’ XZ X x/ x&
FIG. 3.1 Barrier to the Right
2
A A

~
x
435
)
I =
AN ':S'
>€“
V
, T?“
L
v ""\;'
R
F iy

FIG. 3.2 Barrier to the ILeft



45

to Fig. 3.2. 1In other words

fu ("Lu"—u)-":l ; (x.., )"*’L ~ (3.35)
whereas the elements f‘;& (x.,x,,). and F:.u (:., ) x,_) are undeter-
mined.

3.2.4 Estimates of the "F-Matrix" Connecting

Two Points on Opposite Sides of an Over-
dense Potential Barrier.

3.2.4.1 Well Separated Classical Turning
Points

The situation is represented by Fig. 3.3.

f (x,”x,‘) is written as

1K )
-{t+opy] € L +0(w
F (z..t..) - (3.36)

[0 +ogu] €™ 1+ 0w
"
where K is S’T q(F)4F. Here W= }L(x,,x,,) is the ph=
integral for :he whole path A. from %,to X, . O()denotes a
guantity which is at the most of the order of magnitude of

W . even if p cannot tend to the limit zero.

3.2.4.2 Classical Turning Points Close
Together

The situation is illustrated by Fig. 3.4.

The approximate formula below is obtained for the "F-Matrix"
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- Q"K C‘:f{“e.u}i
Flznx)= R ER-)

¥ {l +e""‘} -

tel=
mn

where K S:H('f»i} .

3.2.5 Froman's Connection Formulae [39,40,41]

Using these estimates and equations, Froman

derives the connection formulae as expressed below

RGNS cop {c(hr I ED] + B[] E oep - (urtee )} -

?(3.38)

— (A+B) |§() o [Je()]}

Icl(x),.i e [‘“’(’”)’*’Y‘ E] -wirlf(l)]-i«flw‘(ﬁ[ (3.39)

where Y is a real constant which must not be close. to a

multiple of W .

|‘\(e.)|‘£.a?{_]w(,.)|l, - zl‘i(‘)l'é e [jo2)] - %] 3.40)

The above results are independent of the choice of the phase
of q(n,)-E . It is primordial tc note that these formulae

can only be used if the cl

Q
ID

cal turning points are well
separated in a barrier penetration probklem. The striking

feature of these formulae is that they only are valid in the

direction indicated by the arrow.
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CHAPTER IV

J.W.K.B. PENETRABILITY CALCULATIONS

The penetrability of Strutinsky's fission barrier
is a crucial quantity for the fission process, since it
provides a possibility of estimating fission half-lives and
isomeric lifetimes. It may be noted that the potential

barrier of Fig. 2.3 is an asymmetric potential barrier.

4.1 J.W.XK.B. CALCULATIONS WHEN THE CLASSICAL
TURNING PCINTS ARE WELL SEPARATED

The type of fission barrier considered is given
in the Fig. 4.1. p is the prolate deformation coordinate
in the fission direction. The points o, b , & and Cl in
Fig. 4.1 are the classical turning points which separate
the regions I,II,III,IV and V respectively. To avoid
complication, the classical turning points are well separat-
ed and the incident energy E 1lies in the range of
applicability of the J.W.K.B. approximation, i.e., between
the bottom of the second potential well and the top of

barrier B . We connect from right to left and at points

)5 =d the barrier is to the left
b = C to the right
B b to the left

and P s a is to the right
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FIG. 4.1 The Double Hump Fission Barrier and The
J.W.K.B. Approximation When the Classical
Turning Points are Well Separated
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4.1.1 Penetrability Calculations Ifitl]_
Bohm's Connection Formulae

To the right of the classical turning.point CL
i.e. in Region I, only a transmitted wave is present and in
the J.W.K.B. approximation it is written as

Y, = V_% u.f{b(jjgip-?)} (4.1)

where R is the amplitude of the transmitted wave; the
piiase factor ‘J}/‘_ is introduced for convenience in making

connections. fo can also be written as
[(m( JQJ«)B /) +um(j gxdlﬁ "7)] (4.2)

At p: J., the barrier is to the left and the connection formulae

(3.7) and (3.8) will yield Yy .

Ve _V__i [e ““F(S?C ot)B) o tap (.jjl al)s)] (4.3)

where

-K,

d
Ky = j X dB (4.4)

c

At the point psc, the barrier is to the right and the formulae

(3.3), (3.4) and (3.5) are used. -Y]—]I is then

Vo = [L'coz (Safip ) -_._'c,,,; _z;e‘m;}

-~{fp,2.ib ~\f C-K‘ s o Ki, 4] _, (4.5)
TR TR T T T i)
#= r"gdﬁ (4.6)
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The barrier is to the left of pointp.b and with the help of

formulae(3.7) and (3.8) we obtain

} < Ky, - K . K, . | 3
YE:_V_% [Z %_ eng -t e M¢} uf(jjﬂdB)o

X4.7)
Ky - K

Pl - g e c,.,;;m,,(_fx@)}

where .

b
K, = LX d.ﬁ (4.8)

Finally using the formulae(3.3), (3.4) and (3.5) again since

the barrier is to the left at point P:a.. ' ‘Yfr is obtained.

ny-' K EK.+K»]C”¢-C ek. kb/m.pf 6%‘1’)3 /)
(4.9)

Ky - K, 4k .
e b race™ ) o[ H p-77)

Expanding Am (S:& dp- %) and Cob (S:g d® -g) in terms of

complex exponentials, ‘(I/'Y can be transformed to

Ve 3oL e (Tp ke - 7))
few (o™ e g (0 &)

. (4.10)
-2 g f-c(fRdp 7))
‘ [Lm¢ (h e/&m—k.*' ;:_ Q-Emm.;.m y (QKL—K.;- K.-K,,)]
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The penetrability of the barrier at the incident energy E

is given by

& 2
|V7MN¢ U-g.rum l _ IYZ VZTAWS ‘

—— T 2
, u/uv:. R t”e l IMMf“ki YII (Y. (] I
We observe that VZ.“ = V&.,.M," ; therefore

(4.11)

PE) -

bR
| ¥z (4.12)
| heceat puk g |

P(E) =

The expression

-2 el i (JpRan-g) .

¢ . : (4.13)
. K¢ Ky oKy Ky, ]} . Kp -8, KieKa
.[Lcm;! (4& +ze )+m,;(e + e )]
represents the incident part of"l{l'z.
Further considerations yield
P(e) - 4 _—y
K, - K L - K,
sn g (62'[' 4 + e [ -H.) +
-2 [Ka“'Ka.J L[knf‘fs.] (4.14)
+ g ( e TN + A
16

Ignatiuk [42] suggests that P(E) » the total penetrability
of the fission barrier, can be expressed in terms of the
penetrabilities Py and fp of barriers f and B , respec-

tively.

A general expression for PH and Pg goes as follows
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-2
-K,
Pq s (CK‘ + L € )
4
(4.15)
-2
K
Pe =(€K" L Loe ")
‘ .
But if the J.W.K.B. approximation is to be valid [43], then
d - b
5 xdpDl ,J Xdp>1 (4.16)
c o
Hence '
-1K, | -4 K
fa - , Ppze © (4.17
and ’
_ 64 Pa Pe
PE) - — (4.18)
[lg (Fq + (’B)"] o g +Cot g [(Ps Ps + u)"]
Ignatiuk's [42] results can be obtained by approximating

eqn. (4.18) further. We know that 0 < Pa Fa < | and

PqPa can be neglected compared to 16 in the multiplicator

of the term ¢m“¢¥ . This gives

"
P(E) » ;‘ Pn Py [ini‘ﬁil Y s ceo",@'] (4.19)
|

Rlthough the results of th

guoted in several papers [24,44,45] no derivation for the
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penetrability in the J.W.K.B. approximation is published.
It is of great interest to obtain the derivation of the
penetrability of Strutinsky's potential barrier.

4.1.2 A Penetrability Calculation Using the

Connection Formulae in the Correct
Direction

To the right of point CL , only a transmitted

wave is present, we write

Ve T AREIE o [QAILF +1)] 20

Atp-_-d, , the barrier is to the left. The connection formula

used is

H(b)l-tl» Cm(j:’cl(?)ldff +y-ﬁ/;) — H(P)""'u'.y W(S:H(;)lfla(mzl)

If YY} is transformed to

COPLITOE [cm(jfm;)u F+7) 4 L'm@bh(f)]d; *m (4.22)

and if Y is put equal to T in egn. (4.21) ., after
4

connection

i o
I
N
W
~

- d‘ 11 »
wem Al Y e (g (FlE

or

i c d
Vox A (el “/*,"(5)917(?)[*?)“f(fclq(;);ai; (4.24)
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At.%,;c » the barrier is to the right and the connection

formula

J9E e (-l (B ) 257 (o o (BILF ) (.25

gives

Vo :’ ﬂl‘((B)l'é 2 w(gcd]?@)jdf) (J' lE| dF- )(4 .26)

or

Vi # AN eop (IH(EJF) o[oi 8 "‘(j‘wﬂ%)}
(4.27)

| - op (5 (FI4F -7)]
where ¢ is defined by S: h (‘f)ldf

At y.—.-b , the connection formula

4007 ol (FILF - ey) =

, (4.28)
— |§(®)] " wy f«f(S:li (7)< 7) }

with Y.~7.l’ : applies since at )3 = b , the barrier is to the
2

left. It can also be expressed as

ot ] [§(IF ) = tgpE e ” [3(2)f) ce.20

Hence,
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Yo ¥ 2 [0E e (J (714 7).

(4.30)

(| (ANLF) wnd wapflo 1o (R4 )

The connection formula used at the pointp:a. '

where the barrier is to the right, is

§ (ﬁ)l"{ ep (- f:lq (f)ldf)-»

— g (ml f—oo(5;17(€)/d?-’z) (4.31)
- &,H()s)['£ m(}:ﬂ}’)df +g)
Vo = 8 (B ep(JOR(EAF) -
(4.32)

M«P(S:lq(:)ldf) & ¢ m(th(f)ld? * %

The penetrability is expressed as follows

P(E):‘ VER e |L |Wraaws] - | ¥z I*

, | (4.33)
lv{"”" , H/wcl" loncwb.c/‘/add' %’YJ‘E""
since!’\ :f in the J.W.K.B. zpproximation. The incident

TRAYS  WT

part of W, is obtained by expanding £o3 (g) 'F fd 3 * ﬂ'\
o v

in terms of complex exponentials and reads
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28 9091 e (A e (Lio(e07) -

. (4.34)
- [ar{d(f., 0 4F +1)be wr{-<(1] 1047 %ﬂ
Pn and fa are exactly equal to
ae e (05l (RI4F)
(4.35)
Po « wp (-4 5, 1(7) 47)
Thus,
Y i e sy 1)
b g
(4.36)
(e = Pa Pe
b w* g

4.2 J.W.K.B. CALCULATION OF THE PENETRABILITY
WHEN THE CLASSICAL TURNING POINTS ¢ ANDG,
ARE CLOSE TOGETHER

The fission barrier considered is depicted in
Fig. 4.2. Let us pay special attention to barrier B and the
wave function on both sides of the second maximum. The
classical turning points C and.d.are close together. FrSman'é

[39]

"F-Matrix" formalism is applied here. The situation at

barrier B is illustrated in Fig. 4.3.
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We have the following expression for \V(m on the real )5 axis

W(B = o(B) fiB) + an(®) fu(p)
& &

~

£ (8) F(B+=) a(om
2(s) £(poem) (247)

Gs(+e)
Far to the left of the barrier ($> d_) ’ ;:“3) represents a

(4.37)

L

wave travelling from left to right and f_t()g,)represents a
wave travelling from right to left. Far to the right of the
barrier(p(c)the opposite is true. Far to the right of the

barrier, there shall be only an outgoing wave and therefore

¢, ("“’) s 0

Hence

C‘\(P)-? Fia (\’544"") @, (+o)
(4.38)
By (B) = Fo (B,40) ca(+)

We choose the lower limit in w‘(g) to be the left classical
B

turning point C . For B<c¢ , the function w’(p):j 7(%)0{,5,
c

is real and for p;d., the same wave function has a constant

imaginary part -(K, where K, is given by

q (f)ld, 7 (4.39)

K, - 5;
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We now can write SV@.) as

VP = au(ee) ol [Fu (prem) (2 o)
+ Ry ()%,1-0') 2xp -'é'jckf(’i/) dﬁ’)]

If)g, lies to the right of the barrier, we have according to

eqn. (3.23)
1+ 0(y

Ly i

fib (p: + ")

(4.41)

F;L (B/‘{'”)

Therefore

V(p): by (+e) lq(ﬁ)l"’é e (i 5;17(?)104?)@0041(4.42) |

or neglecting terms of order W

v [8)= ¢ Ly (w)m(p)l'i e“‘*-%? (L- Jfl? (;)ILL;) | (4.43)

valid for })d. . Note the phase of 7()3) is taken directly
from Fig. 4.3. On the other hand, if P lies to the left
of the potential barrier and as the turning points are close

together
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Fru(p +e) = 1+ 0
Cp » _’1: (4.44)
F‘z()a/.o-oo) = € [1«# e’ A'] [1 "'0(}9]

The classical turning points € and d being close together,
the phase ('0 is equal tog l.:39] This reasoning yields the

following expression for \//(p), valid if B{c.

DI e [ o (47K
AK) 3 Qt'f’ ”?(Ciff(f)'df)ﬂm@]]

(4.45)
[l+0W] +(1+e

or neglecting terms of’ order )L and replacing }&y‘{.f' '
]

VIR [ (B auem) [F
- onp (“fh(f)ld?) s el ('*Vm)i- (4.46)
<o O ReR)]

We normalize vj(y.) conveniently by putting

K-cT
Qo (+00) = € ‘ (4.47)

Thisg y'; alds

- S



Y (g) = [q(ﬁ)l'i m{g{c(ih (3)|¢ 7 +T};/)} (4.48)

vaiid for P) aL

And

i
2

[ L -t \P
YR lg@) e B "‘f’(“'(‘cl‘i(@la"f*%’)}'

(4.49)

Pi=-

+
. (l+e'w'")

wp (eI A1 +7)]
valid for B<e .

The connection formulae so far used fail in cases where the
turning points are close together. We got around the
difficulty by using Fréman's "peMatrix" formalism.[39]

The results of this procedure yield the following expressions fo

the wave functions in Regions I and IIIX

Vexlg(pl uf{i(fjlq(?)lci? 3 "4;)} (4.48) (a)

(4.49) (a)
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Let us write TfrUI as below

Ym‘ = |4(®)l ie * [—-i QCpuy;{-i(&)%)?(f)]df-rg)}-b (4.50)
+(+ e’m)f -vf { (j l?(; Nt 7 + W)}]

where S H( !d,f (4.50a)

We will now use Frdman's one-directional connection formulae
to connect the wave function in Region III, as given by
eqn. (4.9) to the wave function in Region IV. The same
connection formulae will also be used to connect ¥K571x>1¥}r.

At }5=.b » the barrier is to the left and the connection
formula

LR (0 Y T
(5 TR (ORF 42 = @ooRr e (hiEMD
(4.51)

is used. This yields the following expression for

Vg = I9(8)] " e,nk(.‘.ecyfmw-u.re ﬁ_c,,):

b }(4.52)

%(p(fklc, (7) ) ‘ '
or ' , et
AT T T G AP TS PR A
A O A CLA A (L

(4.52a)
e (3 4 ) I
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where

K‘--1 j:lﬁ('f)l i 7 (4.53)

The barrier is to the right of the classical turning point

B-a and
(1% eep (- LTg(I4F) —
— 25 (14T -7)
= L ([ (FEF +7)

(4.54)

Finally,

Yy 2 +l§(P k [e"‘" (-cec?

}(4.55)
pLiee ] g7 7) ek'] m(g”(?)’df * Z)

The penetrability is given by

& % " :
PE) - Vel ol A il (4.56)
S
“Rwa I IHVMIG l" l‘f"”f-lb

since V& V £ oo and where

1‘& avg
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vz o e ((R(4F R} @
] Ky, cf
\Vlnflli()b)l'“ [C (-Le« +
+[‘+C,LK~}*£ 0" L#) &K,]‘ }(4.57)

o {154 )]

Theﬁ,
|
P(E): ‘ .
5 o
lck'”‘" (-c P +[1+ et C’”‘) |
e"‘['k'“‘J !(4.58)

PE - : ]

“am}é ¥ g (Hc‘“‘)”'] -

: 2
i fwd (e L g ]l

After some algebra, we obtain
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_h (K4 Ky)
P(E) - ‘ (4.59)
Lare™™) v a(1re™™)* ond g
Again we will express P(€) in terms of Pe ana Pa . Py is
as usual
P € (4.60)

K,
since the classical

.2
but Py is radically different fromé&

turning points are close together.

FB is expressed as

ey v 2
PB = ‘ A Taavs oL B | \%kom af’B'
\Eppr " wie o6 |" (4.61)

l‘?}\z.'

| Wine st8]”

is given by the expression

“

n

ALS .
ive at 6

|74

(|+a‘g”>

rye—-

)
Lana YN

—.
—_——

Fem

o . K.,
e

el

out of eqn.

L

(4.50)
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Hence,
\ |
Po = = (4.63)
e ™ (14e” ) I+ e
or
-2 - 4K
e P v e o " (4.64)
’
| - Pg 1=Pes
These specifications yield
>
PE) = "a_Fe (4.65)

(R-Ps) + & Cogon s (l-f’e)i

An interesting result is obtained if we go to the limit

where ¢ and cl coincide, in this case K, z0and

) .
lG:.:
¥

Therefore,

v

f

(4.66)

(4.67)

P(E) s

142 en g
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A GENERALIZATION OF CRAMER AND NIX METHOD
OF CALCULATING PENETRABILITY THROUGH TWO-
PEAKED FISSION BARRIERS
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CHAPTER V

A GENERALIZATION OF CRAMER AND NIX METHOD OF
CALCULATING PENETRABILITY THROUGH TWO-PEAKED
FISSION BARRIERS

5.1 CRAMER AND NIX [45]METHOﬁ

5.1.1 The Method

Cramer and Nix [45] claim to have found an
exact method of calculating penetrabilities through the two-

peaked fission barrier, shown in Fig. 5.1.

The barrier is parametrized by portions of three
smoothly joined parabolas. The connecting points @ and b
define three regions of the potential energy. This

potential energy is then written

V)= By £ L p @) (ﬁ-b,;)b (5.1)
where P denotes the nuclear-deformation coordinate in the
fission degree of freedom. The three regions L=z1,%,3%

are separated by the connecting points @ and b of the three
parabolic curves shown in Fig. 5.1. The minus sign in

eqn. (5.1) refers to the two peak regions (Regions I and III)
and the plus sign refers to the region of the intermediate
well (Region II). The energies EL are the maximum OF mini-
mum values of the potential at the deformations 5&. , the

"frequencies" W determine the widths of the individual
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portions of the barrier. The inertial parameter M repre-
sents the effective mass of the system with respect to
distortions in the ﬁ direction. Hence \/(p) is explicitly

written as

V)= E -t pw! (3-»)  Pga
Ey+t mowy (B- 2) wspsb .2
<
Ey. L powy (B-B) bs®

The smooth joining of the parabolas is secured by requiring

that V(ﬁ) and its first derivatives with respect to B be
continuous at points & and b . Cramer and Nix choose six
basic parameters in function of which all other quantities are
expressed. They are [, , E, and E'5 » and W, , w, and W,. These
parameters are fixed semiempirically. Since M is assumed

to be constant, an exact solution of the Schrddinger equation

of the system is possible. The Schrddinger equation is

'y, v e [6-6, = tp wi (3-2) [Yr-065.9)
cL)%,, ¢
where the plus sign applies when t, refers to Region I and III
and the minus sign when L refers to Region III. It is
important to note that Cramer and Nix assume an incident wave
of unit amplitude and take the reflection coefficient R

to be zero in Region III. Egn. (5.3) yields solutions.of

the form



71

VY.
Yz =C3, +DJ, esBsb (5.4)
Yp= T ¥ bsp

T Y, +B e P Sa

The arrows indicate the direction of the phase velocity.

Equation (5.3) represents a general class of

second order differential equations which in standard form

are
d* -
L W - =
Jd. 4 +(2 Jy=o Bsa
d -(-'-U"z'-i-w)‘*‘o askgh (5.5)
dvv & )
d* L owrd - o b «
The solutions of these equations are Weber parabolic
cylinder functions.“sj * To reduce the Schrodinger

egn. (5.3) to this form, a suitable change of variable is
made; y,v, 4 and o are expressed in terms of the basic
parameters and the two variables p and £ . The following

expressions are then obtained for '\i[/'I ’ '\ﬁ'[ and ‘\F‘m.

* See Appendix Al
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W, : AE (x,-u) +8 E (-4

Yo

qu.:TE(Q’;IW)

C v (O(L,v') + 0 v(ﬂ’s, lr) (5.6)

5.1.2 Results of the Calculations Performed
by Cramer and Nix

The penetrability is conveniently expressed as

P(E) = (:‘:’T’)i IT//qr (5.7)

The wave amplitude ratio is determined by requiring that the

wave functions and their first derivatives with respect to

E: be continuous at & and b . The four linear equations
obtained are then solved using Cramer's rule [47] and
yield
;oW W[EN -, B, )] W[V (mr), V(o]

" |

Ee ("(1, -w) -Vo (06-; ) -V, (ou,,U') o .
(5.8)
(~w) (@) (v)
-Lb,Eg.. (a(,/.u) -U"V&(r' (q/’-,lf) -U'I.U;,(°(J-,(f) (0]
o W)  Uilaw) - By (3,0

v) (

A (v, \ S, (W),
o A {ole, v V'Gé(q1ﬂ9 -w gy («Lwﬁ
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The primes on the variables V , U and w indicate
differentiation with respect to the deformation parameter
)5 , the symbolwwr denotes the Wronskians of the-indicated
functions. The subscripts @ and b on the parabolic
cylinde; functions indicate the points where the functions
ére evaluated. First order differentiation with respect
to the argument V , V' or w" is indicated by a superscript
inside parentheses.

5.2 OUR GENERALIZATION OF CRAMER AND NIX[45]
METHOD

5.2.1 The Sharp Drop Approximation

[45] method

We generalize the Cramer and Nix

by removing any restriction on the reflection coefficient

R in Region III of the potential barrier. We take R
different from zero. Hence, we have a fourth region, in
addition to the regions considered by Cramer and Nix.[45]
This introduces two more wave functions into the formalism,
one more in Region III, a reflected wave and another one
in the fourth region, representing the wave transmitted
through the barrier. The transmitted wave far from the
barrier is a positive complex exponential. We now face the
problem of matching the transmitted wave to the solutions
of the Schrodinger equation in Region III. We readily
notice that Cramer and Nix [45] havé matched the wave
funcfions at points oo and b , completely defined in terms

of the six basic parameters. This matching is independent of
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the two variables ﬁ; and E . Hence, the matching is valid at
any energy and any deformation contrary to the J.W.K.B.
connections performed at a specific incident energy. To
ensure the homogeneity of the formalism, a way has to be

found to match the wave functions in Region III and IV

independent of ﬁ and £ .

The top of barrier B  defined by the coordinates

paznui Esis most likely to satisfy our needs; indeed FB is
completely defined in terms of the six basic parameters.
matching at the point (ﬁ“)E;)would ensure homogeneity. But
the potential does not go to zero after the top of barrier

B , and the transmitted wave in the form of a complex
exponential would be a bad aéproximation to the central
wavefunction. Therefore; we use apbroximation by letting the
potential drop sharply to zero as indicated in Fig. 5.2
This approximation, which will be called the "Sharp Drop
Approximation" for obvious reasons, ensures that the matching
of functions at ()?>3,l:",’)is valid for any energy E. and any
deformation ﬁ, . Due to the Sharp Drop Approximation, the
complex exponential ig now a good solution. Smooth matching
is secured if the wave functions and their first derivatives
are continuous at the point(’pBIEs)_

5.2.2 Potential Energy and Solutions to
Schrodinger Equation

The parametrization of the fission barrier under

the Sharp-Drop Approximation is defined by Fig. (5.2).
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\/(;) is written as

V(p)- E,-i;‘.w,‘ (3-B)"  ospsa

1]

(@)
<
N4
A

and V(p):0at B=0.

The quantities M , E; and W; are defined in Section 5.1.
We choose to connect the three parabolas smoothly by
requiring that\/(p) and its first derivative be continuous at
points &L and b . This reduces the number of parameters
required to completely specify the potential enerqgy of
deformation from nine to seven. In addition, the potential
is translationally invariént,[45] and this is used to reduce
further the number of parameters to six. Hence the
parameters are as before the three energies E‘; and the three

frequencies QJ; - This parameterization yields

-1
w73
' Het (I i T"tb) (5.10)
L ] 0
[]
% (€, - E3) T, w:,">’z
= a’ & i —
ﬁj‘ ¥ /}wa'] k M L,

Rl
ot
TN
+
‘f?
o
[ ]
PR

&
(S
£
u‘h

vl
[ V)
"
o
+
t.
™
(')
N
o_&
LA
el .
-y
+
EJS
l. W
Qo
N N”
o1




76

As in Section 5.1, )& is assumed to be constant
and exact solutions to Schrddinger equation are found.

Schrédinger equation is written

B&\y,af WlE-E 41 pol ( (-8)'] §zz0 ogPga
4 b [e- an (0o ] Fieo b

d.ﬁ"Ym*'% f!: l=3+—)-twb"(p Pg ] !i/m, o b<><y (5.11)

QYN"‘% Yﬂ':o pZﬁs

Again we choose the case for initial momentum transfer from
left to right and 1lift the degeneracy associated with the one-

dimensional Schrddinger equations. These equations yield the

solutions

Vi AYE™ +6 ¢ o P
Yy C By +D 7, e $Psb
Yo:=FYs +64¢, b (PR
Vg =T ¥ By Bs

It should be noted that G is different from zero, i.e., the

(5.12)

reflection coefficient in Region III is different from zero,
and the wave incident on the barrier has unit amplitude.
Furthermore, the arrows indicate the direction of the phase
velocity. The direction is only needed for ¥, , Y, » and g,
since-only the amplitudes related to these functions will

come in explicitly in the penetrability formula.
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The wave function ‘\I/I'?is readily expressed as

Yy = was(ug\)a) C (5.13)

where &:(—"—%f)&and T is the transmission coefficient. We
must now look more closely into the solutions of Schrodinger
equation in Region I, II and III. In.these regions, it
represents a general class of second-order differential

equations in the form

"_L.t.Y+(.‘. w‘-x)'}:o OSPla

d ur

é’:} -(-‘.u"'.wx)%:o °—$¥Sb

dot & (5.14)

o* .
&—ﬁ;.(.(z w”-«)%:o b <B¢R,

To express eqns. (5.11) in the above form the following

substitutions are needed

E."E.

£w,

) 0 <

i
s (L;w:.)'i ()5_)3&) &, . Ex-£ (5.15)

-
v

(o N
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The solutions of eqgns. (5.14) are Weber parabolic cylinder

[46]

functions. It is essential to select the proper linear

combinations of parabolic cylinder functions for the wave
functions l{l.(-o)and kP.(é-) to clearly identify the direction of
the phase velocity. The asymptotic behaviour of the functions

at large values of ﬁ» indicates the proper linear cor-ina-

tion of functions.[48]

The wave functions in Region I are

Y= = EY («,-u)

(5.16)
= £ («,,-u)

where

E («,x) = '£,‘£ W(q’,x) +U g,i W(a(,-x,) (5.17)

of the fundamental parabolic cylinder function W(o(,z) and

'£, is
[}
ﬁ, = (l + em’w);, - € red (5.18)

In Region II, the solutions to eqn. (5.11) can be written in
the form of the standard parabolic-cylinder functions U and

V of the differential eqn. (5.14), namely

Bz V(xev) ; %, :V(x,v) (5.19)
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In Region III, the solutions to eqn. (5.11) can be written
in the form of the standard parabolic cylinder functlons

Wo(, w’) and \A/(O(, w') of egn. (5. 14), namely

Y= W, w) j Yy = W, -ur) (5.20)

The wave functions are conveniently evaluated in practice by

the use of their own series expansion.

5.2.3 Penetrability Calculations

The probability current being conserved, we

have

- ) .
pi. il [
'J we I ,(f/ Ine ’

(5.21)

PQE) - ,Jnuws, I I
jm’c]

We now find expressions for jwmand}m6 . The probability

current is generally defined by the equation

(}‘ - -2:%2 [c% ty')t,/ _(f% ti/)y/*] (5.22)

Hence



. 24 (5.23)

Ll |lde
(5.24)
. A g du
Al d B
i .
. & (w)d
= X 2

Substituting eqn. (5.23) forjmmand eqn. (5.24) for }\uc

we obtain

* !
lM [ E_\*4 (5.25)
'j IH(., &w.

This ratio is dimensionless since /ﬂ:w has the dimensions of
energy. To evaluate T/H , we use the fact that the wave
unctions and their first derivatives must be continuous at

the points @, and b . This vields the set of eguations(in

Ih1]

the notation of Section 5.1)

80
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AEL («,-w) +8 E, (a,-w) = €U (m,0)+0 Vi (#i0)
Ao B #8 [ E S ] = C o' Ul
+ Dv! Vf)(«,..w)
€Uy (n,v) + D Vo (m,r) = FWy(tu) + GWi(m,w)
C [v'Ub(H(n, u—)] +D [V’Vscv)(va, er)] = F [w' V‘/wa)(ﬂa,«rjlr
+ 6 [ Wiw(””""ﬂ (5.26)

F Wy, (9,) + 6 Wy (,-) T wp (0 A B,)
F L W) (o e 6 [ WE ", )] 5

Tk wf{cﬁ)ab}]

The ratio% is readily obtained by applying Cramer's Rule[47]

to this system of equations. T/Fl can be expressed as

-1
“37 - (__D_'_) (5.27)
A A :

where A and D. ; are defined below,
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(62°S)
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A reduces to a product of Wronskians namely

A - U"(A:'W'{W[E.(m,—w)/ E(Q’.,-w)] .
' (5.30)

W), V()] W [Wie, ), w(s, w))}
w o, v' and ur'are known and the values of the Wronskians

*
are all constants.

.W[gr(.(,,.u,),E(er.,-_w)J : 20 (5.31)
U % = ﬁ o
WV («,0), V (« )] - = (5.32)

W [W (o, w), W (or,,-ur)J = 1 (5.33)

} (5.34)
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CHAPTER VI

DISCUSSION AND CONCLUSION

6.1 DISCUSSION

6.1.1 The J.W.K.B. Calculations of the
Penetrability

Three expressions have been derived for the
penetrability in the J.W.K.B. approximation in Chapter IV.
Egn. (4.18) is obtained using Bohm's connection formulaeg38]
It is generally accepted as numerically correct. Analytically,
the expression lacks rigor and is therefore short of being
correct. Indeed, the bi-directional use of the connection
formilae introduces insignificant terms in the coefficients
of the J.W.K.B. approximated wave functions in the various
pétential regions. However, the error is cumulative from
one connection point to the next. Furthermore, through the
use of the connection formulae indiscriminately, some new
significant terms appear which would be absent if the uni-
directional connection formulae were used. Indeed, neglecting
all the negative exponential terms Q’K' and &—Kzin the

denominator of egn. (4.14) as in eqn. (4.15), we obtain

P(e) - L Pq Pa
2FaPa + PaPs conigf + 16 contss

(6.1)

Comparison with eqn. (4.36) yields the extra terms



87

2P Ps 4(Pa+hs) crt g (6.2)

in the denominator.

These terms are significant terms tﬁough mathe-
matically theyoare superfluous. Egn. (4.36) has been deriv-
ed rigorously using a correct and consistent formalism. It
stands as the valid J.W.K.B. penetrability expression for a
double-hump fission barrier. Froman's "F-Matrix" form-

[39]

alism yields egn. (4.65) when the energy is close to

the value at the top of the second peak. This expression is
very important, since in the case of most of the spontaneous or
induced fissions, the incident energy is close to the top

of barrier B in Fig. (4.2).023] Eqns. (4.18) and (4.36) do
not apply in this case as they are not valid when the

classical turning points are close together. Even if the
incident energy corresponds exactly to the top of barrier B ,
Eqn. (4.65) is the right one to use and it provides a
straightforward and satisfactory result for the penetrability..
Moreover, resonance energy is usually close to the top of
barrier B [24]; hence near or at resonance Egn. (4.65),'derived

when the classical turning peints lie close together, should

be applied.

Let us study more closely the behaviour of the
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three expressions for the penetrability through two-peaked
fission barriers near or at resonance. At resdnance we

have

Cofeo ; aingd. 1 (6.3)

Egn. (4.18) then becomes

4 Pa Pa ,
(?ni» f’e)‘t

PE) - (6.4)
This is a maximum in the penetrability and if Pa-FPs

then

P = 1 (6.5)

or the barrier is completely transparent.

At resonance Egn. (4.36) becomes undetermined
since the denominator 4 ¢co*d goes to zero. It is remarkable
that the correct analytical expression fails at resonance.
However, the product f,fgis very small since the quantities

2K, or & K, are large. Hence, near or at resonance,
there is a sharp rise of the penetrability to its maximum
value of 1 as the incident energy is varied. The full width
at half maximum of the resonance peaks is very narrow.

We gather that the penetrability near or at resonance in this
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case would be best expressed as a delta function. Eqn. (4.65),

at resonance, becomes

Pq Pg
P(E) = (6.6)
-
or if Fa 9 é. (i.e., if the incident energy coincides with
the top of barrier B '
P(E) = fa (6.7)
)

Hence, even if barrier H 1is totally transparent, Eqn. (6.7)

only yields

P - L (6.8)
3

This would explain the fact that unusually long experimental
half-lives could not be accounted for theoretically by

Egn. (4.18).[45] Fission probably occurs at an energy close
to the top of the second maximum and in this case, Egn. (4.65)
should be used.

6.1.2 Our Ceneralization of Cramer and
Nix Method

A few theoretical considerations should be
sufficient to assert the validity of the method. First of

all, the method is an improvement cn the Cramer and Nix
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method. Cramer and Nix diverge from a realistic physical
situation by considering the reflection coefficient to be
zero in Region III of ba;rier B illustrated by Fig. (5.1).
We discard this assumption but the fact that the reflection
coefficient is no longer zero reéuires the use of the Sharp
Drop Approximation to calculate the pehetrability. The
steep fall of the potential energy after the top of barrier

B is evident from Fig. (6.1). This would indicate that
very little er;or is introduced by the Sharp Drop Approxi-
mation. Anyhow, it conforms to the'éhysical situation. It
is important at this point, to investigate whether the
insertion of two new wave functions and the matching at
points ( By ,E,) introduces any discontinuities in the form-
alism. The numerator of Egqn. (5.36) is always a constant
since the Wronskians of the Weber functions used are either
iméginary or real constants. Furthermore, the denominator
of Egqn. (5.36) can never have a row or a column of Zzeros
since the Weber functions used never go to zero even if

o<, oty rand oy + W,V and uwr are zero, as is the

case for &, and W if matching is done at the point (B, ,Es ).

In addition, it does not matter if'yg is real,
imaginary or a combination of both, since it is l}%‘bthat
enters in the penetrability expression, Egn. (5.36), and
not 12’47 as such. We note that F(E,)&) is left a completely

general expression, since the "Sharp Drop Approximation®

does not impose any constraints on £ or 5 .
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6.2 CONCLUSIONS

It was seen in Section 6.1; that the correct
expression in eqn. (4.36) for the penetrability calculatéd
with the J.W.K.B. method fails near or at resonance. It
is unfortunate, however, that for the sake of numerical
agreement of results, researchers did not tackle the problem
in depth and sacrificed mathematical rigor. It would be
interesting, for instance, to ap?ly Fréman's "F-Matrix"
formalism to Strutinsky's barrier parametrized by three or
more smoothly joined parabolas, in this case, the expression
for‘5<x”x&)is given by eqn. (3.32). It is hoped that fhis would
lift, as it did in the case of energy close to the top of
“jarrier B , the discontinuity in the J.W.K.B. expression for
the penetrability in eqn. (4;18) without any loss of mathe-
matical rigor. Frdman's "F-Matrix" formalism would also be
of help in calculating the penetrability when the incident
energy is that corresponding to the bottom of the intermediate

well.

Our extension of the Cramer and Nix method to
Region IV of the potential energy curve of Fig. (5.6) is
only one of the modifications that could be fitted to the
method. In the same way, one could also include the first

potential minimum of Strutinsky's fission barrier in the

Moreover, through computation the validity of the
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"Sharp Drop Approximation" could be tested against Cramer
and Nix method. The various expressions obtained for the
penetrability in the J.W.K.B. approximation may also be
compared to Cramer and Nix method in their respective range
of validity and to our generalization of their method.
Finally, it would be interesting to test Eqn. (4.18) and
Eqn. (4.36) against each other away from resonances. This
would involve Fhe use of the computer and the writing of
long , extensive and tedious programs and this we would
prefer to leave for future research. Nevertheless, after
having computed penetrabilities; it would be a must to
calculate half-lives and test the theoretical results against

experimental ones and assess the validity of our conclusions.
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APPENDIX A.1l

WEBER PARABOLIC CYLINDER FUNCTIONS

Al.l1 SECTION 1

ty
)

The equation

J;.:.j’ —(i. x."+a.) Y :b (Al.1)

dx*

Al.l.1 Power Series

Even and odd solutions are given by

o 2? :
- b ]
b2 €0 (et B ) () 2
e_i""" L(AI.Z)

(@D st @)y emt
i O e ) H ey () By

L (A1.3)

4 xt
ze* {Z,-f-(ﬁ.-a{) i.&; +Ho--%) (c“'i%) ?{4."-}

[ -

These series are convergent for all values of % .

It is convenient to have a notation for the functions
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Al.l.2 Standard Solutions

The fundamental solutions of (Al.l) are taken

to bela<)and V%) defined by

V(e « co (1 +i4—)"/. -~ (L sda). Y, (A1.6)
V(vx) 2 o [amr(Le2).y, 4 1 .2), (A1.7)
(vn) 2 o (St vie wr(ieg)- 2

Al.l1.3 Wronskians

V(ex) & V(e V(a,x) i V(e = (21.8)

]

d
d
V (%) i Vi) - Tfael u%, V(a,2) = M(3-a) (a1.9)

e

V(ﬁ:’*) - V(&.,"—) a%.. V(e.,z—) = $ _r‘_}_‘__-j (A1.10)
z_o.

e

V(a.,z-) doe

V() £ V(a-2) - Via-2) & V(e,nz LT~ (@al.11)
4

where U and V are obtained from V and \V4 , the standard

solutions.
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Al.2 SECTION 2

The equation

o (Al.12)

L
s
2
*‘
\
*
[}
(.\
S—
QL
(1]

Al.2.1 Power Serles

Even and odd solutions of the equations are

given by
wdt
oz 7" f'*(‘“,,) +(¢+-c)(a.+5')x"+....} (A1.13)
s R
1& e’ {x+(a.+ 4) +(G.+ )_ ...} (Al.14)

the series being convergent for all values of ¢ .

Al.2.2 Standard Solutions

The fundamental solutions of (Al.11) are taken

to be W(ax) and W (a, -x) defined by

I}
W(a, tx : M(G,%, t G, g,,) (21.15)
2 Y
-l/—-—- . P \
= 3 ‘9(’\.\_’}_-_ Y, :\ifff. 4.2&‘, (al.16)
\iG ¢ e S



where

Y

G,;lf‘(i,,i.ga)l , Gy = IP(::4-(a)" (AL.

It is convenient to introduce the complex solutions

E(ax) - g.zW(a,,z,) ¢ i RE (e -x) (Al

E (a,m) = v).':“"(% “,'a.)]‘ E(a.,n) (Al.

when

Liro. ma o
’g: Vl*'& - € , ! l+e"“‘ +Cr (Al.

Al.2.3 Wronskians

W (a,x) i w(a,-ﬁ - w(a,-=) j.; w(yr) = 1 (al.

E{a.z) %,_ E*(m'f) - E*(_a/*-) 5(; E(a,z.) = -4 (a1

— — —. PR 1
E (ax) & E"(on) - ET(am) G B (4 :'V;E%. (al.
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