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There has been a proliferation in the development of Lagrangian analytical methods for detecting

coherent structures in fluid flow transport, yielding a variety of qualitatively different approaches.

We present a review of four approaches and demonstrate the utility of these methods via their

application to the same sample analytic model, the canonical double-gyre flow, highlighting the

pros and cons of each approach. Two of the methods, the geometric and probabilistic approaches,

are well established and require velocity field data over the time interval of interest to identify par-

ticularly important material lines and surfaces, and influential regions, respectively. The other two

approaches, implementing tools from cluster and braid theory, seek coherent structures based on

limited trajectory data, attempting to partition the flow transport into distinct regions. All four of

these approaches share the common trait that they are objective methods, meaning that their results

do not depend on the frame of reference used. For each method, we also present a number of exam-

ple applications ranging from blood flow and chemical reactions to ocean and atmospheric flows.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922968]

The transport of material by advection in fluid systems is

a process of vital and ubiquitous importance, underlying

scenarios as diverse as pollutant distribution and search-

and-rescue operations in the ocean to blood flow in the

human body. The rapidly advancing field of Lagrangian

based methods for studying flow transport has demon-

strated an effective ability to find robust and significant

transport features that underly the organization of flow

transport in complex, unsteady flow fields. In this review,

we present an overview of four of the leading Lagrangian

approaches, each with their own strengths and chal-

lenges. Details of each method are presented along with

an example application to the same model system, the

double-gyre flow. Furthermore, we highlight a number of

exciting applications and future directions to bring

Lagrangian based analysis closer to implementation in

real-time, real-world decision making strategies.

I. INTRODUCTION

Nature is replete with both inspiring and practically im-

portant examples of coherent structures in unsteady flow

transport. During the Deepwater Horizon disaster, a 200 km

long surface oil filament was dramatically ejected from the

main body of the spill over the course of a couple days with

the potential to enter the loop current and carry contamina-

tion along the east coast of America;58 despite the turbulent

dynamics in Jupiter’s atmosphere, the Great Red Spot

remains seemingly stable and ever-present;35 throughout the

oceans, vast garbage patches continue to grow in size posing

an increasingly significant environmental hazard;78 and

Agulhas rings transport large quantities of water from the

Indian Ocean hundreds-to-thousands of kilometers across

the Atlantic Ocean with little significant mixing.32,41,79

Examples such as these are a driving force behind the devel-

opment of novel Lagrangian mathematical methods that can

identify persistent coherent transport features within even

highly unsteady flows, and furthermore can assess the role

that such structures play in the overall flow transport. There

is the exciting potential that such methods may also yield

new predictive capabilities and enable new Lagrangian-

based control strategies.

Although there is a rich history of using Eulerian

(i.e., instantaneous and field-based) methods for identifying

coherent structures in fluid flows, a well known example

being the Okubo-Weiss criterion for vortex detection,56,80

such methods generically come up short when it comes to

understanding transport in unsteady flows, for two primary

reasons. First, a flow feature that is apparent via the instanta-

neous velocity field (e.g., in a streamline plot or a vorticity

contour plot) may persist for only a short period of time

compared to the unsteady timescale of the flow, and as such

will have little impact on the actual flow transport. Second,

Eulerian-based methods for detecting coherent structures are

not objective, i.e., their results depend on the frame of refer-

ence used to view the flow field. For example, the velocity

field of a flow that appears rotationally dominated in one

frame of reference may appear very different from a co-

rotating frame of reference.38 The organization of flow trans-

port, however, is frame independent; if a patch of dyed fluid

is released in a flow field, the shape that it assumes as it is

advected by the flow is the same irrespective of the frame of

reference from which it is viewed (presuming we do not

enter relativistic regimes!). As such, methods for detecting

coherent transport structures must also be objective.
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Given the limitations of, and potential for misdirection

by, Eulerian-based methods, there has been a rise in the de-

velopment of Lagrangian tools to identify coherent structures

that organize flow transport.81 Broadly speaking, there are

two categories of Lagrangian approaches that are being pur-

sued. The first category utilizes time-varying velocity field

data, which may come from a numerical simulation, labora-

tory experiment or high-frequency-radar ocean-monitoring

system, for example, to calculate the necessary trajectory in-

formation. We refer to these as “dense methods” because of

the relatively large number of trajectories needed for the cal-

culations. The second category, which we refer to as “sparse

methods,” considers the trajectories of only a limited number

of advected particles, with typical data sources being particle

tracking in laboratory experiments, ocean drifter data sets, or

a limited number of numerically calculated trajectories.

These approaches each have their own, often related, defini-

tions of what constitutes a coherent structure.

The types of coherent structure sought by the Lagrangian

approaches can also be roughly broken into two categories.

One type of coherent structure is a region of the fluid that

does not significantly mix with the rest of the domain. In this

case, one can envisage drawing a boundary around such a

region so that there is only modest deformation of the region,

as it is advected and all the fluid elements within the region

remain in close proximity; examples include the Great Red

Spot on Jupiter and the coherent Agulhas rings that travel

across the Atlantic Ocean. The second type of coherent struc-

ture is a region of the fluid that causes a significant amount of

local deformation as it is advected. Such regions attract and/or

repel large amounts of nearby fluid; the rapid filament devel-

oped during the Deepwater Horizon spill is evidence of the

presence of such a structure.

Here, we present an overview of four leading, objective

Lagrangian methods based on the aforementioned concepts.

First, two of the most prominent and well developed “dense”

approaches are summarized; the geometric perspective is

presented in Sec. II and the probabilistic approach in Sec.

III. Then we present an overview of two recently developed

“sparse” approaches in Sec. IV; the cluster and braid theory

approaches. For each approach, we demonstrate the corre-

sponding method via application to the double-gyre analytic

system69 and present a number of example applications. In

this review, we focus on 2D flows and discuss extensions to

3D flows. Finally, we conclude in Sec. V by considering out-

standing challenges and some important research directions.

II. GEOMETRIC COHERENT STRUCTURES

Geometric approaches seek to identify key material lines

in 2D flows (and, correspondingly, material surfaces in 3D

flows) that are distinguished by the dominant nature of flow

transport in their vicinity. These structures are referred to as

Lagrangian coherent structures (LCS).36,40–42 The properties

of the right Cauchy-Green (CG) strain tensor field are the ba-

sis for the definition of these structures. Geometric approaches

have recently been comprehensively reviewed,39,61 and here,

we give a sufficiently detailed synopsis for 2D flows to

provide the interested reader with an overview of the key con-

cepts, and provide references for details on 3D flows.

Given a velocity field data set, obtaining the CG tensor

field for a given spatial domain and time interval [t0, t]
requires three steps. The first step is to obtain the flow map

Ft
t0
ðx0Þ ¼ xðt; x0; t0Þ, which maps a fluid element from its

initial position x0 at time t0 to its final position x at time t.
For real-world flows, the flow map is not generally an ana-

lytically derivable function and has to be calculated numeri-

cally by solving

dx

dt
¼ u x; tð Þ

for a set of passive tracers that follow the flow field u(x, t),
which itself is usually provided as a spatiotemporally discre-

tized data set (e.g., from a numerical model). A standard

package for numerical integration is ode45 in Matlab,

which allows for the necessary interpolation from the veloc-

ity field data set; care should be taken to ensure that suffi-

ciently stringent tolerances are used for convergence of the

numerical integration.4

The second step is to calculate the flow map gradient

$Ft
t0
ðx0Þ ¼ @xi=@x0;j for i; j ¼ 1; 2;

which is the spatial derivative of the flow map with respect

to the initial tracer particle location (i.e., how much does the

final position of a tracer particle change with variation in its

initial position). This flow map gradient is a local lineariza-

tion of the flow transport and has the property that it maps an

infinitesimal vector � originating at the initial location x0 to

its final state (i.e., length and orientation) originating at the

final location Ft
t0
ðx0Þ. Again, care must be taken when

numerically calculating the flow map gradient, and the so-

called auxiliary grid method22 has proven to be an effective

way to achieve this.4

The third, and final, step is to calculate the CG tensor

field from the flow-map gradient field via

Ct
t0
ðx0Þ ¼ ½$Ft

t0
�>½$Ft

t0
�;

where > corresponds to the transpose operator. The eigen-

vectors, ni, and eigenvalues, ki, of the CG tensor provide the

fundamental information regarding stretching due to advec-

tion by the flow field. More specifically, if one considers an

infinitesimal circle released at location x0, the initial orienta-

tion of the principal axes of the resulting ellipse produced by

advection and the amount of stretching along these axes are

represented by the eigenvectors and eigenvalues, respec-

tively. The eigenvectors and eigenvalues of the CG tensor

field form the basis of all the following geometric

approaches for identifying key coherent structures. By con-

struction, the eigenvectors of the CG tensor are orthogonal,

and if the flow is incompressible then the product of the

eigenvalues is unity (i.e., k1k2¼ 1, k1� k2).

An important feature of this type of analysis is that it

can also be applied in reverse time (i.e., from the end of a

time interval t to the start of a time interval t0). This provides

a consistent method to identify repelling and attracting
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material structures based upon their influence in either for-

wards or backwards time for the same time interval (e.g., an

attracting material line in forwards time is a repelling mate-

rial line in backwards time, and vice versa).

A. Finite-time Lyapunov exponents

A basic implementation of the geometric approach is to

plot the finite-time Lyapunov Exponent (FTLE) field

FTLEt
t0

x0ð Þ ¼
1

2 t� t0ð Þ
log k2 x0ð Þ;

which is a rescaled version of the largest eigenvalue field

k2(x0) of Ct
t0

. By definition, this field identifies the regions of

greatest relative stretching of material elements. Figure 1

presents the FTLE field for the 2D double-gyre flow

advected for the four period time interval [2.5, 42.5] with pa-

rameters A¼ 0.1, �¼ 0.1, and x¼p/5. The standout features

of the figure are the FTLE ridges, which correspond to a heu-

ristic diagnostic for identifying hyperbolic LCSs.36,37 Since

the analysis was carried out for forwards time, it reveals the

location of repelling (i.e., stretching) ridges at time t0;

reverse time calculations would reveal the location at time t
of a similarly complex network of repelling ridges in back-

wards time, these being the final states of attracting ridges

for forwards-time advection over the time window being

considered. Material placed in the vicinity of a forwards-

time FTLE ridge will undergo substantial stretching and is

drawn on to attracting FTLE ridges; conversely, material

released in regions of low FTLE values will be advected

with little deformation. To locate these structures at any

instant throughout the given time interval, it is necessary to

advect the ridges with the flow map, as opposed to the histor-

ically oft-used approach of repeating analysis on a shifted

time interval.69 If a direct comparison of repelling and

attracting structures is desired, for example, the same time

interval must be used for calculation and advection of the

structures to the same time instant must be implemented

since the forwards-time calculations reveal the positions of

repelling structures at t0 and backwards-time calculations

reveal the positions of attracting structures at t.
While the FTLE calculation is an effective and simple

method for investigating flow transport, there are several

caveats. For example, it has proven challenging to effec-

tively pinpoint the material lines that run along the FTLE

ridges as these are, by definition, the most repelling features

in the entire flow transport field. Effort has been made to

identify the FTLE ridges,4,43,47,50,67,69 but small errors in the

initial location of a repelling ridge or the final location of an

attracting ridge, which are the basic results of FTLE analysis,

are greatly amplified by advection. Given this property, it is

challenging to determine the location of the repelling and

attracting ridges at intermediate times. It is also the case that

FTLE analysis does not reveal what type of stretching takes

place, so the impact of the ridges on the surrounding material

is unclear from looking at the FTLE field alone. Finally, due

to its potential for distortion while being advected, an FTLE

ridge does not necessarily, and most likely does not, repre-

sent a long lived transport barrier. Indeed, many FTLE ridges

simply represent a record of a collection of material elements

that flow past a significant, localized Lagrangian flow fea-

ture, such as a finite-time hyperbolic core.58

B. Hyperbolic, parabolic, and elliptic geometric
structures

In seeking a more rigorous definition of LCS, different

types of material lines and surfaces have been identified

based on their local23,40 and global properties.40,41 By

“local,” we mean that these material lines are defined in such

a way that for all points in the material line their tangent

space maximizes a particular type of local deformation. The

“global” perspective uses geodesics (i.e., shortest paths

under a particular metric) to identify unique material lines

that demonstrate particular types of deformation. While these

approaches take different perspectives, some common results

are reached, with the global approach providing additional

types of structures.

For 2D flows, there are two types of lines that maximize

and minimize in-line stretching. Stretch lines are material

lines that follow the n2 field (i.e., the eigenvector field corre-

sponding to the largest eigenvalue) for the time interval con-

sidered and are the class of material lines that will undergo

the most tangential (i.e., in-line) stretching. By virtue of the

properties of the CG tensor, the n1 field is always perpendic-

ular to stretch lines, and so the direction normal to a stretch

line is a direction of minimal stretching (indeed, most likely,

compression, which is guaranteed for incompressible flows).

Shrink lines are material lines that follow the n1 field and are

material lines that will undergo the minimal in-line stretch-

ing. Both shrink lines and stretch lines are hyperbolic mate-

rial lines, and the kinematically most important such lines

are those that have the maximum normal repulsion (for

shrink lines) and maximum normal attraction (for stretch

lines). The location of shrink and stretch lines can be found

in both forwards and backwards time, in which case their

locations are determined at the start and end of the time

interval, respectively.23 Their locations at intermediate times

are found by advection, which can be unstable in the case of

shrink lines, which are strongly normally repelling. Select

shrink lines for the double-gyre system are presented in red

in Figure 2, closely aligning with the ridges of the FTLE

field in this case, although there is no formal requirement

that shrink lines and stretch lines need to align with or lie

perpendicular to FTLE ridges, respectively.
FIG. 1. The FTLE field calculated for the double-gyre system over the time

interval [2.5, 42.5] for the parameters A¼ 0.1, �¼ 0.1, and x¼p/5.
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In addition to normal repulsion and attraction, another

important class of material lines focuses on Lagrangian

shear, which is shear that occurs in the reference frame of

the trajectories. For the “local” based analysis, it is possible

to determine the tangent vector field that will maximize local

Lagrangian shear at all points in the domain, and material

lines tangent to this field are referred to as shear lines.40 In

some cases, these shear lines will form closed material lines

that act as elliptic barriers. While this is possible, the rigid

requirement that the line be Lagrangian shear maximizing is

relaxed in the “global” analysis.41 In this case, the closed

material lines are allowed to stretch uniformly and are

referred to as k-lines, which are tangent to the vector field

g6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 x0ð Þ � k2

k2 x0ð Þ � k1 x0ð Þ

s
n1 x0ð Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k1 x0ð Þ

k2 x0ð Þ � k2 x0ð Þ

s
n2 x0ð Þ:

It can be shown that this vector field corresponds to the shear

line vector field in the case where k¼ 1 and the system is

incompressible. Of particular interest are closed k-lines, in

which case the outermost of a series of closed orbits marks

the boundary of a Lagrangian vortex that traps the fluid

within it as it advects. The presence of closed orbits is linked

to the existence of singularities in the CG tensor field, which

is used as a means for identifying their location.44 By virtue

of their transport properties, these are also considered ellipti-

cal LCS. There are two elliptic barriers in the double-gyre

system, and they are presented as green lines in Figure 2.

Finally, parabolic LCS take the form of so-called jets

cores, composed of alternating sequences of shrink and

stretch lines. These structures are considered to be geometri-

cally robust, and if located they can serve as important trans-

port barriers. A clear example of the role of a shearless jet in

organizing flow transport is seen by studying the classical

Bickley-jet problem,24 but in the case of the double-gyre sys-

tem there are no parabolic LCS.

All of the aforementioned LCS discussion has focused

on structures in 2D flows. Efforts are well underway to

define and locate these structures in 3D flows, which is inher-

ently more computationally challenging. For example, the

current state-of-the-art calculates the CG tensor for the 3D

system, and then calculates the normally hyperbolic LCS

material surfaces on a family of 2D slices of the domain; the

results are merged to form 2D surfaces in the 3D domain.

Similarly, closed 2D elliptic surfaces within a 3D space are

identified by finding closed elliptic barriers in the family of

2D slices.11 In addition to this transition to 3D calculations,

a tool set to calculate many of these material lines has been

developed for Matlab.3,60

C. Applications of the geometric approach

There have been a large number of applications of the

geometric techniques to ocean surface flows; the following

are just a small sample, and more complete reviews of ocean

applications exist.39,65 Using the FTLE ridge approach, it

was determined that there was a persistent barrier off the

West Florida Coast that periodically insulated the region

from mixing. The long residence time of water near the coast

occasionally enabled the production of phytoplankton

blooms resulting in red tides.57,59 Another pair of studies in

the Gulf of Mexico focused on applying the shrink line

approach and identified hyperbolic cores that dominate the

local stretching in the field, shedding some insight into the

“tiger-tail” filament formed during the Deepwater horizon

spill.20,58 Finally, elliptic barriers were used to locate and

track Agulhas rings formed off the southern tip of Africa.

These rings were identified as Lagrangian vortices and the

structures themselves survived for much longer than the time

interval used for calculation.41,79

There have also been a number of applications of the

geometric methods to atmospheric flows. In a pair of stud-

ies analyzing LIDAR data of currents above Hong Kong

International Airport, FTLE ridges were identified and their

potential impact on aircraft was quantified.73,74 A prelimi-

nary attempt was made at classifying the types of local

deformation near these ridges, but no attempt was made at

identifying any of the other class of structures. Another

atmospheric application of FTLE ridges looked into the

impact of Lagrangian transport structures on airborne mi-

crobial populations.70 In conjunction with atmospheric

calculations, a remote control aircraft was flown through

different regions collecting samples of the microbial popu-

lations; the authors were able to identify significant shifts

in the population sizes either side of an FTLE surface.

Because atmospheric Lagrangian structures can play a sig-

nificant role in airborne transport, further studies were

made investigating the uncertainty of the FTLE calculation

and the contributions of unresolved turbulence and other

forecast uncertainties.13,14

The geometric techniques have been utilized to study

several different biological systems. One of the first studies

considered flows induced by a swimming jellyfish.62 By con-

sidering escape forces, it was possible to identify regions of

the flow where the jellyfish captured particular types of prey

based on their ability to escape. Another investigation looked

into the flows generated by biologically inspired geometries.

Using an experimental set up that pitched a panel at various

angles representing fish fins, FTLE fields were calculated to

investigate the resulting vortex shedding.34 Finally, a

sequence of studies investigating cardiac blood flow has

helped shed light on a number of important problems. An

initial study looked at the flow dynamics near an abdominal

FIG. 2. The stretch lines (red) and objective vortices (green) calculated for

the double-gyre system over the time interval [2.5, 42.5] for the parameters

A¼ 0.1, �¼ 0.1, and x¼p/5.
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aortic aneurysm.7 Another study utilized FTLE fields to

investigate the vortex that develops in the heart’s left ventri-

cle during pumping.21 There is a recent review of the appli-

cation of geometric techniques to hemodynamics.68

Finally, several studies have applied geometric methods

to turbulent experimental data. In a study of a quasi-two-

dimensional turbulent system, the overlapping of regions of

attracting and repelling structures were designated as hyper-

bolic cores, or regions of significant Lagrangian hyperbolic

deformation.50 A study of quasi-two-dimensional turbulence

investigated the relationship between the direction of scale-

to-scale energy transport and strainlines. It was found that

shrink lines delineate regions where energy moves up and

down the energy cascade.46

III. PROBABILISTIC COHERENT STRUCTURES

A second methodology for identifying coherent struc-

tures in flow transport relies on the transfer (or Perron-

Frobenius) operator, and we refer to this as the probabilistic

approach. For a given time interval, this approach identifies

regions of the flow domain for which there is a high proba-

bility of starting in one region and ending in another. The

structures identified are partitions of the fluid that are

advected through the system without significant mixing

occurring between material within and without the identified

partitions. The transfer operator was initially used to identify

stationary structures in autonomous systems,17 but its appli-

cation has been extended to time-dependent systems for

which the coherent set is not required to be stationary.25,31

The probabilistic approach has previously been presented in

full detail,29 and the following description outlines the

approach as well as presenting several application examples.

As the Cauchy-Green deformation tensor is to the geo-

metric approach, the transfer operator is the foundation for

the probabilistic methods. The transfer operator maps a den-

sity distribution forward from the initial to final time. In

order to numerically calculate this operator, the initial do-

main is partitioned into the set of connected boxes {B1,…,

Bn}, and the final domain into the set {C1,…, Cm}, where n
and m are the total number of boxes in the initial and final

domain, respectively. Using a modification of Ulam’s

method77 and this partition, a finite-dimensional representa-

tion of the transfer operator is

Pt
t0

� �
i;j
¼ l Bi \ Ft0

t Cjð Þ
� �

l Bið Þ
;

where l is the volume (Lebesgue) measure, and the ratio is

the fraction of the area of Bi covered by the preimage of Cj.

This is numerically achieved by seeding the boxes Bi with a

uniform grid of initial conditions and mapping them to their

final time positions. The transfer operator is then

ðPt
t0
Þi;j � #fr : xi;r 2 Bi;F

t
t0
ðxi;rÞ 2 Cjg=N;

where the numerator is the number of initial positions, xi,r,

r¼ 1,…, N, in Bi that are mapped into Cj. With the con-

verged calculation of this row stochastic matrix, it is possible

to create the finite-time coherent sets and estimate the

finite-time entropy (FTE), which is a probabilistic analogy of

the FTLE field.

A. Finite-time coherent sets

The primary use of the transfer operator for dynamical

systems is to find sets of coherent pairs, Ai and ~Ai, where tra-

jectories initially in Ai are mapped to ~Ai with high probabil-

ity. In addition to this condition, the coherent pairs must be

robust to imposed diffusion because the boundary length

remains small, and conserved quantities (e.g., mass) must be

the same in both sets.25 This prevents the arbitrary pair Ai

and ~Ai ¼ Ft
t0
ðAiÞ from satisfying the conditions with cer-

tainty, leaving only structures with boundaries that remain

small under advection. Finally, the partition must be a frac-

tion of the domain to prevent the coherent set being empty or

consisting of the entire domain. These criteria produce sets

that are geometrically regular, meaning that there may be

translation and deformation of the set boundary, but not a

significant difference of the perimeter between sets Ai and
~Ai.

25 The elliptic structures found in Sec. II form an approxi-

mate boundary on an example set Ai that would satisfy these

conditions, where the advected structure would be the ap-

proximate boundary of ~Ai. For elliptic barriers, a material

line is identified that guarantees retention of all trajectories

initially inside the structure. Coherent pairs simply identify

sets of boxes, however, and yield no bounding material line,

hence the potential for trajectories leaving or entering the

set.

The coherent pairs form partitions of the initial and final

domains. While some systems may have more than one

coherent pair, we first focus on the case where there is a sin-

gle coherent pair dividing the domain in two parts. In this

case, X and Y represent sets of boxes in the initial and final

states of the coherent pair. To identify the partition and opti-

mization problem such that the optimal coherent pair will

maximize the following measure

q X; Yð Þ ¼ l X \ Ft0
t Y

� �
l Xð Þ

þ l XC \ Ft0
t YC

� �
l XCð Þ ;

where q is a measure of the quality of the partition, the raised

C represents the complement operator, and l is generalized

to any conserved quantity (e.g., volume for incompressible

systems or mass for compressible systems). The first ratio

represents the fraction of the coherent pair X that is covered

by the preimage of Y, and the second is the analogous case

for the complement of the coherent pair.29 The optimal solu-

tion would be a partition where all trajectories in X map to Y,

and all trajectories in XC map to YC; that is to say, there is no

transfer from or to the coherent pairs. Retention of all trajec-

tories within the coherent pair will make the first ratio 1, and

if no trajectories move from outside the coherent pair into it,

then the second ratio is 1 making the maximum value of

q¼ 2. In a general system, particularly when diffusion

occurs, trajectories enter and leave the set, so the coherent

set is identified through the solution of an optimization prob-

lem that minimizes this transfer. While the initial definition

requires the coherent set to include approximately half the
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domain, it is necessary to relax this condition if multiple

coherent pairs are expected in a system.

To solve the optimization problem, it is necessary to

determine the proper partitioning of the initial and final do-

main. A box Bi (Cj) is therefore categorized as a member of

X (Y) if i 2 I (j 2 J), where I and J are the sets of indices for

the boxes forming the coherent pairs. Next, the membership

vectors x 2 Rn and y 2 Rm and the corresponding thresh-

olds b and c are defined such that for all i where xi> b the

corresponding boxes Bi make up the coherent pair X, and

similarly the set of boxes Cj where yj> c make up the coher-

ent pair Y. Alternatively, it is possible to create sets by set-

ting a maximum threshold and all boxes with a membership

value below the threshold make up the coherent pair. It has

been shown that these membership vectors are left and right

singular-vectors or the modified transfer operator, presented

next.31

The transfer operator as calculated even for incompres-

sible systems may not necessarily conserve trajectory den-

sities from the initial to final time across the domain. To

maintain the density conservation, a normalization has to be

applied. The probability pi is the ratio of the volume mea-

sure of Bi to the volume measure of the domain. In the case

where all boxes are the same size, then pi¼ 1/n. The map-

ping forward of this probability measure is q ¼ pPt
t0

, where

qj is the ratio of volume mapped into Cj relative to the total

volume. The two vectors p and q are diagonalized to form

the square matrices Pp and Pq, respectively; the modified

transfer operator is then Pp
1=2Pt

t0
Pq
�1=2.31 Because the

transfer operator is stochastic under this change of measure

transformation, the first singular value is 1, so the second

singular-vectors x̂ and ŷ form the coherent pair membership

vectors x ¼ x̂Pp
�1=2 and y ¼ ŷPq

�1=2, where the rescaling

has been undone.

Using the same parameters for the double-gyre system

as in Sec. II, we calculate the transfer operator. The domain

is partitioned into 200� 400 equally sized square boxes,

which is a tenth of the resolution of the FTLE calculations,

and to achieve converged results for the transfer operator it

is necessary to advect approximately four times as many tra-

jectories compared to the geometric method. Identifying the

coherent pairs simply requires the minor calculation of q and

the singular value decomposition of the first four singular

values of the modified transfer operator. There are two

coherent pairs detected in the second singular-vectors. The

optimum thresholds to maximize qðAi; ~AiÞ result in a positive

singular value structure with 99.7% retention and a negative

value structure with 99.6% retention. While the optimal

coherent pairs result from the second singular-vectors, it is

possible to use lower value singular-vectors for the member-

ship vectors. The fourth singular-vector also produces two

structures with 99.3% retention. Figure 3 presents the four

coherent structures in their initial states (a, c) and their final

states (b, d). While internal code was used for this calcula-

tion, GAIO,2,18 an openly available software, can be used to

partition a domain and calculate the transfer operator.

For finite-time coherent set detection, it is possible to

use a modified but equivalent definition that relies on solving

the isoperimetry problem using the newly developed

dynamic Laplacian operator and the dynamic Federer-

Fleming theorem.26 This approach defines the boundaries of

finite-time coherent sets as curves that maximize the volume

to boundary size ratio throughout advection, which elimi-

nates the possibility of boundary filamentation and ensures

minimal exchange of passive tracers across the partition

even in the presence of numerical diffusion. To identify

these curves rapidly and efficiently, radial basis functions

have been implemented.27 It should be noted that radial basis

functions can also be used for finding finite-time coherent

sets in the advection only scenario, which is important when

considering higher dimensional domains. Extending the

probabilistic methods from 2D to 3D does not require any

new mathematical machinery, but the increased computa-

tional demands for the additional number of trajectories per

box and the number of boxes in the domain can be signifi-

cant. Implementation of the radial basis functions results in

calculating far fewer trajectories and can alleviate some of

the computational demand, making the extension to higher

dimensions feasible.

B. Finite-time entropy

Where the FTLE field directly measures the maximum

rate of local stretching, the transfer operator can be used to

indirectly calculate stretching by determining the level of

FIG. 3. The second (a) right and (b)

left singular-vectors, representing the

initial and final membership vectors of

two coherent pairs for the double-gyre

flow, using the same parameters as for

the earlier FTLE studies. The fourth

(c) right and (d) left singular-vectors

representing the initial and final posi-

tions membership vectors of two fur-

ther coherent pairs. Thresholds in

black represent the optimal bounds of

the coherent pairs.
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uncertainty of the final position of a trajectory starting from

a random position within one of the boxes,28 Bi. If the trans-

fer matrix has been calculated for a domain partitioned by

equal size boxes, the FTE field is

FTEt
t0

Bið Þ ¼ �
1

t� t0

X
j

Pt
t0

� �
i;j

log Pt
t0

� �
i;j
:

In regions of the field where there is little deformation,

trajectories initiated within these boxes will move together

and map to a small number of nearby boxes resulting in a

low degree of uncertainty in the final position, and thus a

small FTE value. In the unique case that all trajectories map

to a single box, the FTE value is zero. If there is a large

amount of deformation, the particles initially within a given

box will be stretched apart and advect to a large number of

boxes throughout the domain, resulting in a large final posi-

tion uncertainty and FTE value. While not generally achieva-

ble, there is a theoretical upper bound for the FTE values

corresponding to the extreme case of each trajectory being

mapped to a different box, resulting in an FTE value of

logðnÞ=ðt� t0Þ.
With the double-gyre transfer operator calculated in

Sec. III A, the calculation of the FTE field is effectively a

“free” computation, because the transfer operator calculation

so dominates the computational demands. Comparing

the FTE field presented in Figure 4 to the FTLE field in

Figure 1, the fields are qualitatively similar. Despite advect-

ing more trajectories, the FTE field is coarser due to the aver-

aging over the boxes and the values are lower than the

corresponding FTLE values, but the FTE field does accu-

rately identify the regions of the domain where large defor-

mations occur. The FTE approach was not intended to be an

alternative to the FTLE calculation but meant to provide an

alternative method to determine stretching information for

systems where the diffusion of passive naturally arises and

needs to be accounted for.

C. Applications of the probabilistic approach

Transfer operator techniques have been applied to a

number of real world data sets in order to demonstrate their

usefulness for geophysical flows. A study of a two-

dimensional atmospheric system was performed to demon-

strate that the polar vortex could be identified as a coherent

pair.31 This result showed good agreement with potential

vorticity based measurements, and the corresponding FTE

field was also calculated revealing a complex swirl of high

FTE values at the edge of the coherent pair, with some mod-

erate FTE filaments extending through the polar vortex.28

The coherent pair analysis was extended to a three-

dimensional partition of the space, indicating that while there

is some elevation change of the coherent set there is limited

deformation radially outward.31 In the case of this atmos-

pheric example, the compressibility of the fluid forces con-

sideration of what conserved quantity should be used instead

of volume; in this case, the quantity was the air mass.

Another study identified the three-dimensional structure

of an Agulhas Ring.32 Using the coherent pair approach, a

six month interval for which the Agulhas ring identified as a

coherent pair travels approximately 750 km was investigated.

In this study, the fourth singular-vectors were the ones that

identified the ring boundary, not the second or third, demon-

strating that even higher singular-vectors may be of interest

and should be investigated. The coherent pair identified had

a coherence ratio of 76.3%, demonstrating that this fraction

of water remains in a compact space as the ring travels

slowly towards South America from the southern tip of

Africa.

Finally, a pair of studies investigated global ocean phe-

nomena using the transfer operator. In the first investigation,

an average annual transfer operator for ocean surface advec-

tion was calculated, and this was used to advect a distribu-

tion of debris to show the development of concentrations of

debris that correspond to garbage patches observed on the

ocean surface.78 While no coherent pairs were identified, this

study demonstrated how quickly the transfer operator can be

applied for periodic systems and how the transfer operator

can be used to identify asymptotically stable regions of the

domain. A related study used the transfer operator to divide

the ocean into distinct regions, in an attempt to quantify the

connectivity of different parts of the ocean.33 To better repre-

sent the ocean surface dynamics, this study allowed for the

loss of trajectories by considering an open domain, which

accounted for the beaching of trajectories and advection to

the poles. By considering by the Perron-Frobenius operator

and its dual, the Koopman operator, the study was extended

to both forwards and backwards time, which allowed identi-

fication of regions of upwelling and downwelling in the

ocean. This modified approach also measured the transfer of

material between different regions of the ocean.

IV. SPARSE TRAJECTORY SET METHODS

For the “dense” geometric and probabilistic approaches,

it is necessary to have a well resolved (in time and space) ve-

locity field data set for the time interval of interest, in order to

calculate the large number of trajectories necessary for analy-

sis. In real world applications, accurate velocity field informa-

tion is not always available, but analysis of ocean drifter data

or particle tracking experiments, for example, does provide

sparse trajectory information. We present two approaches that

attempt to glean coherent structure information directly from

sparse trajectory information. In both cases, the coherent
FIG. 4. The finite-time entropy values calculated for the double-gyre system

over the interval [2.5, 42.5].
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structures identified are sets of trajectories that remain in close

proximity to each other throughout the time interval.

A. Cluster based analysis

One sparse method attempts to cluster trajectories based

on a distance metric between them in a higher dimensional

space.30 If a set of trajectories is defined on a two-

dimensional surface and their position is known at T distinct

times, the entire trajectory can be represented by a single

point in R2T (i.e., the trajectory (x(t), y(t)) corresponds to

Xi¼ (x(t1), y(t1), x(t2), y(t2),…, x(tT), y(tT))). If two trajecto-

ries have a small Euclidean distance between the representa-

tive points in this higher dimensional space, the distance

between the two trajectories must remain small throughout

the time interval. The reduction of trajectory information to

a set of points also allows for the use of well developed tools

from the clustering community.

The particular type of clustering scheme selected is the

fuzzy C-means (FCM) algorithm,9,10 which divides the sys-

tem into K clusters based on the distance between a given

trajectory point and the cluster’s center. The approach

assigns a membership probability

uk;i ¼
XK

j¼1

jjXi � Ckjj
jjXi � Cjjj

 !2= m�1ð Þ
2
4

3
5
�1

representing the probability that the ith trajectory Xi is a

member of the kth cluster using the “fuzziness parameter” m
that influences the sharpness of the partition. The member-

ship probability is based on the distance to cluster centers,

where the cluster center Ck is the weighted average of the

trajectory positions

Ck ¼

Pn
i¼1

uk;ið ÞmXi

Pn
i¼1

uk;ið Þm
:

The algorithm iteratively updates the membership probabil-

ity, u, and the cluster centers, Ck, eventually converging on a

partition of the trajectories. From a usage perspective, this

approach is ready-made in the sense that FCM algorithms

are already programmed and optimized (e.g., the function

fcm in Matlab), and the user only needs to set the number

of expected clusters and a “fuzziness” parameter, m> 1.

For the double-gyre application, using the same parame-

ters and time interval as the previous example applications,

we apply this method to two different sets of trajectories.

Because the FCM method is so efficient, it can handle large

numbers of trajectories well, so we first test a grid of trajec-

tories with an even spacing of dx¼ 0.01; these 20 000 trajec-

tories are a small fraction of the tens of millions of

trajectories used in the previous methods. Forty-one time sli-

ces of the trajectories are taken, creating a trajectory repre-

sentation in R.80 Expecting four clusters and setting m¼ 1.5

produces the four membership probabilities presented in

Figure 5. Selecting a threshold for membership of 70% pro-

duces four closed material lines with similarities to the four

coherent sets produced by the transfer operator approach pre-

sented in Figure 3, and higher thresholding may yield better

results. We note that the FCM approach does generalize to

systems with a continuum of initial conditions with continu-

ously sampled trajectories.

The quick FCM analysis produces a reasonable first esti-

mation of the coherent sets for the case where a dense set of

trajectories is known, but sparse trajectories are another pos-

sible application. We uniformly distribute 300 trajectories

using the Poisson-disk sampling of the domain and apply the

FCM algorithm to this sparse trajectory data; the results are

presented in Figure 6. These results are similar to the results

from the dense set of trajectories, but there are some points

that fall within the 70% level sets that are not assigned by

the scatter result. This is likely due to slight differences in

the cluster center location due to the differing levels of infor-

mation. Because the sparse data approach does not calculate

the cluster center as accurately, inclusion and exclusion of

points near the cut off level set is prone to discrepancies. As

is expected, the more data that is known, the more accurate

the coherent set identification becomes.

In addition to a number of analytic examples, the FCM

method has been applied to the Global Ocean Drifter

Program.30 One major strength of the approach is that the

trajectory data does not need to span the entire time interval.

FIG. 5. Membership probabilities for

each of the four clusters resulting from

an analysis of the double-gyre system.

(a) u1, (b) u2, (c) u3, and (d) u4 all rep-

resent the probability of membership

in that cluster as a function of position,

with the off color line corresponding to

the level set of 70% membership.
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This is vital when analyzing drifter data as drifters have a

tendency to run out of battery power, beach, or otherwise

break, and relying on only those floats that survived the

entire duration of a time interval severely limits analysis. To

account for the missing data, a natural modification of the

FCM algorithm is necessary and has been derived.30 Using

the global drifter data set, the FCM method was able to iden-

tify global ocean partitioning results similar to those found

using transfer operator methods.33

While the FCM method is quite robust for sparse and

intermittent data, there are some limitations. The approach

limits the consideration of relative movement between tra-

jectories to just the prescribed distance metric. In an exam-

ple with periodic islands in a chaotic sea, it is possible for

nearby islands to be clustered together because they do stay

nearby throughout time despite the fact that there is chaotic

mixing occurring in the space between them. Increasing the

number of clusters, however, may solve this problem.

Another shortcoming is that there is not always an obvious

way to bound a cluster with a material line or an approxi-

mate material line. As seen in Figure 6, there are a couple

of isolated points that are members of the black cluster and

it is not obvious how to connect these points with the rest

of the domain. One possible remedy is to determine the

boundary based on a later time instance for which the points

may be more obviously connected. Finally, it is left to the

user to select the number of clusters, which is not always

trivial. Fortunately, trial and error will reveal robust struc-

tures as the cluster number is varied. In spite of these minor

drawbacks, the FCM approach is easily applied and gives

excellent first order results revealing where further coherent

structure study is justified. A final strength of this approach

is that extension into higher dimensions simply requires the

trajectory representation to account for the extra dimen-

sional information.

B. Braid based analysis

Another sparse technique that can analyze scattered

data utilizes tools from the topological field of braid

theory. By reducing the physical space to a topological

space, it is possible to deform trajectories and material

lines in such a way that lends itself to the rapid analysis of

the system dynamics. Braid theory was initially applied to

fluid systems to rapidly study the amount of stirring12 but

was extended to find coherent structures defined as approx-

imate material lines that do not significantly change length

during the time interval.5 Because deformations of the

space have been used, this method can only provide ap-

proximate positions for material lines that remain geomet-

rically regular. In addition to the coherent structure

detection, recent developments allow for the calculation of

a finite-time mixing measure referred to as the finite-time

braiding exponent (FTBE).16

The first step in this analysis is to represent the trajec-

tory information as a braid. Because of the monotonic nature

of time, it is possible to extend trajectories from the two-

dimensional physical space into three dimensions where the

physical space forms a base and time is the vertical coordi-

nate. In this space, the trajectories form strands that weave

around each other but do not turn back on themselves or

intersect each other. When projected onto one of the physical

axes, the trajectories appear to cross in front of or behind

other trajectories as the set of strands rearrange themselves

over time. By deforming the trajectories, it is possible to iso-

late individual crossings and define the crossing by the

strands involved and the orientation of the cross (clockwise

or counterclockwise when viewed from above). These indi-

vidual crossing events form the building block of the braid,

the generator. A trajectory set is converted into a sequence

of generators that represents the trajectory information as a

list of signed integers.

The other tool of braid theory used is the loop. Where a

generator sequence is used to represent the deformed trajec-

tory set, loops are used to represent deformed closed material

lines. In a similar manner, there is a coordinate representa-

tion of the loops (the Dynnikov coordinates19) that lends

itself to the simple representation and bijection between

coordinates and loops. Because the only rules for deforming

a loop are that it cannot be deformed through itself or any of

the trajectories, topological loops only change shape when a

trajectory forces it to deform during a generator crossing. As

such, there are rules for how generators modify the loop

coordinates, and this enables the rapid advection of approxi-

mate closed material lines as loops under the action of the

braid.75

A simple measure that can be made with the braid repre-

sentation and a particular loop, the fundamental-loop, is the

FTBE.16 The FTBE is a measure of the braid complexity

during the finite-time interval and is related to the topologi-

cal entropy of braids. For a given braid b representing the dy-

namics over the time interval [t0, t], the FTBE is

FTBEt
t0

bð Þ ¼ 1

t� t0

log
jblej
jlej

;

where le represents the fundamental-loop that will capture all

possible mixing of the system, and the length functions in

the ratio represent the length of the loop. This measure is a

time average rate of exponential growth of the length of the

fundamental loop under the action of the braid. By taking

into account the dynamics of the entire system as opposed to

the local repulsion of individual trajectories, the FTBE

FIG. 6. Initial position of 300 uniformly distributed points advected by the

double-gyre system. Membership to the red, blue, green, and black clusters

is based on the 70% threshold.
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measurement differs from the FTLE or FTE calculation in

that it is a global measure of complexity.

The braid based approach is also capable of finding

coherent structures and defines a structure as the loop sur-

rounding a set of trajectories that does not grow or shrink

significantly under the action of the braid. In order to find

these structures, it is necessary to analyze how loops con-

necting pairs of trajectories grow under the action of the

braid. Based on loop entanglement, it is possible to group

trajectories together such that there will be a loop bounding

them that will not grow during the time interval. This is a

direct result of trajectories within the cluster not mixing with

trajectories outside of the cluster. The final step of the

approach is to construct the corresponding Dynnikov coordi-

nate that represents the bounding loop and confirm that it

does not grow under the action of the braid.

Using the same three hundred trajectories used in the

FCM approach, a braid is generated consisting of over

140 000 generators. Applying this braid to the fundamental-

loop produces an FTBE value of 0.1265 which is slightly

smaller than the average FTLE and FTE values, though no

claims are made on how exactly these values are related. The

application of the coherent structure algorithm produces four

large loops that do not grow significantly over time, pre-

sented in Figure 7. Compared to the cluster approach, there

are more trajectories included in the structures, but their

shapes are qualitatively similar to the results presented in

Figure 5. While the analysis technique is more complicated

than the FCM approach, the benefit of knowing the approxi-

mate shape of the closed material lines is significant when

trying to understand, locate, and track potentially complex

coherent structures.

In addition to the double-gyre flow, the tools of braid

theory have been applied to a pair of physical systems.

Analyzing a set of trajectory data, estimates of ocean mixing

were made using topological entropy, which is similar to the

FTBE.75 The calculation highlighted the challenges of work-

ing with ocean drifters from a topological perspective as

only the mixing of drifters was captured by the braid.

Intermittent trajectories could not be used, and once the tra-

jectories separated no new information was added to the

braid. The other application was to a closed viscous system

periodically stirred by a rod.5 A velocity field for this system

was analytically known and trajectories were calculated for

application to the coherent structure approach. While the

method successfully identified a number of structures when

compared to the system’s Poincare map, the application

demonstrated the limitations of working with sparse data;

namely, the need to have multiple trajectories within a given

structure to enable detection.

There are a number of strengths and weaknesses of the

braid based approach. It is able to analyze sparse trajectory

data sets but is somewhat limited by the requirements that

trajectory information is known for the entire interval and

significant mixing must occur. While the method does pro-

duce closed material lines that do not grow during advection,

these are only approximate representations. Compared to the

FCM approach, the braiding method does account for how

trajectories interact with each other, but because of the defor-

mations the method neglects the spatial proximity of trajec-

tories when grouping them together. While the analysis is

still relatively fast compared to the probabilistic and geomet-

ric approaches, the complexity of the braid based coherent

structure approach is significant. There is a Matlab toolbox

available for dealing with braids and loops.1,76 We note that

due to its topological foundations, there is no current scope

for extension of the braid theory approach to 3D flows.

V. CONCLUSION

We have presented an overview of four of the leading

objective approaches for identifying the coherent structures

that underly the organization of material transport in

unsteady fluid flows. Each of the methods has its strengths

and weaknesses, and this needs to be appreciated when

selecting the approach to be used for a particular application.

The geometric and probabilistic techniques have been rigor-

ously developed for situations where full velocity field infor-

mation and significant computational resources are available.

If the goal is to identify key material lines, the geometric

approach enables unambiguous determination of those that

guide deformations in specific ways; and although simple,

basic FTLE analysis remains a practical tool for initial inves-

tigations. For systems where the goal is to identify regions

that remain unmixed with the rest of the system, the geomet-

ric approach is again useful in finding regions where the

boundary is uniformly stretched; for more general regions

that remain predominantly unmixed during advection the

probabilistic approach is practical. In the case where rapid

analysis is required and/or there is only sparse trajectory in-

formation available, the clustering and braid based

approaches are good options. For an efficient first search for

regions that remain unmixed, the clustering approach is a

useful diagnostic, whereas the braid based approach can pro-

vide a bit more insight into the trajectory mixing and approx-

imate shape of boundaries at the cost of added complexity

and stricter data demands.

While the aforementioned approaches provide a cross

section of Lagrangian based techniques, there are a number

of other approaches that are also receiving much attention.

Meso-elliptic and meso-hypberbolic measures54 provide

analysis based on time-averaged quantities along trajectories,

classifying regions where on average the behavior is more

FIG. 7. Initial position of 300 uniformly distributed points advected by the

double-gyre system. The red, blue, green, and black points are bound by

loops (magenta) that do not grow under the action of the braid.
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eddy like, more strain like, or a mixture of the two. While

not an instantaneous method, this approach is frame depend-

ent, and, as described in the introduction of this review, this

is a concern because the results and accompanying interpre-

tation of coherent features can be altered by changing the

frame of reference, and generically there is no predetermined

frame of reference from which an unsteady fluid flow should

be observed. Another approach utilizes the Koopman opera-

tor and observable functions along trajectories to partition

the state space into different ergodic regions.15,52,53 Using

trajectory based measures, this approach attempts to cluster

trajectories together based on trajectory averaged properties.

A recent review covers this approach in more detail.51 The

Complexity Method (CM), which identifies clusters of tra-

jectories with similar Lagrangian properties as a means to

determine coherent water masses,64 has been successfully

applied to study near-surface transport and water mass

exchange processes around the Philippine Archipelago,63

and is easy to generalize to 3D flows. Finally, a pair of

approaches attempts to quantify the amount of folding that

occurs for finite-size passive tracer patches. This measure

complements the stretching measures (e.g., FTLE and FTE)

and is based on the nonlinearity of the deformed patch45 or

the amount of curvature created in finite length line

segments.48

There are a number of exciting avenues of research and

areas of application beyond those already mentioned. One

that is practically important is the detection of coherent

structures that organize the transport of inertial particles in

unsteady flows, since floating and immersed objects, such as

debris and sediment, do not simply act as passive tracers.

Examples of work on this topic include a study of coherent

structures from the inertial equations of motion as applied to

a hurricane66 and jellyfish predation,62 and investigations of

inertial particle transport near elliptic structures motivated

by the behavior of drifters near large scale eddies.8 Another

active research area is the application of coherent structure

detection to diffusion-advection-reaction systems. By calcu-

lating the FTLE field for an ensemble of runs and comparing

the results to the asymptotic states of chemical reactions, it

has been shown that there is a strong correlation between

regions of high FTLE and dynamically different reaction

fates.71,72 Studies of chemical reaction systems have also

been focusing on the identification of burning invariant

manifolds, which are one-way barriers in the advection reac-

tion systems that inhibit a chemical reaction.49,55

Moving forward, there are several major avenues to be

explored. One important question is what, if anything, can

identification of these structures contribute in a predictive

sense. All of the analysis tools presented consider a given

time interval of dynamics and makes statements about the

key contributions of the structures for that interval. While in

some cases particular structures may continue to have influ-

ence after the interval of study,58 more results on the longev-

ity of structures outside the given time interval would be

significant. And while there are now more results for three-

dimensional analytic flows,11 there is a need to exploit GPUs

and other numerical techniques6 to aid in efficient calcula-

tion and visualization of this highly parallelizable problem.

Finally, it needs to be recognized that despite being around

for almost a decade, to date, studies have been primarily con-

fined to the academic literature and coherent-structure-based

tools have yet to significantly impact any real-world deci-

sions making systems. There needs to be a thorough and hon-

est assessment of what aspects of the different approaches

are sufficiently robust, insightful, and practically useful to

really make a difference in important scenarios such as

search-and-rescue operations and oil spill response strat-

egies. When the next major disaster at sea occurs, will this

suite of Lagrangian analysis tools for coherent structure

detection be ready to play any real-time role?
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