
Creating Task-Generic Features for Fake News Detection

Alex C. Olivieri
HES-SO Valais-Wallis,
University of Fribourg

alex.olivieri81@gmail.com

Shaban Shabani
HES-SO Valais-Wallis,

University of Basel
shaban.shabani@unibas.ch

Maria Sokhn
HES-SO Valais-Wallis
maria.sokhn@hevs.ch

Philippe Cudré-Mauroux
University of Fribourg

pcm@unifr.ch

Abstract

Information spreads at a pace never seen before on
online platforms, even when this information is fake.
Fake news can have substantial impact, for instance
when it concern politics and influences the results
of legislations or elections. Finding a methodology
to verify if some piece of news is true or false
is hence essential. In this work, we propose a
methodology to create task-generic features that are
paired with textual features in order to detect fake
news. Task-generic features are created by elaborating
on metadata attached to answers from Google’s search
engine, and by using crowdsourcing for missing values.
We experimentally validate our method on a dataset for
fake news detection based on the PolitiFact website. Our
results show an improvement in F1-Score of 3% over the
state of the art, which is significant for a 6-class task.

1. Introduction

The Internet provides many opportunities, but when
it comes to news publishing, it also creates many issues.
The number of communication channels increases over
time, and, after the Internet became a widespread
technology, new communication channels such as blogs
and social networks emerged in addition to mainstream
channels such as newspapers. If this change has positive
impact on one hand, because it makes it possible to have
access to points of view from different chroniclers, it
also increases the possibility that the published news
can be fake on the other hand, since the trustworthiness
of the information reported is not always evaluated by
editorial boards. Moreover, Vosoughi et all. [1] showed,
in a study on Twitter, that fake news spread faster and
reach 100 times more readers than legitimate news.

The fake news problem can create consequences that
are not negligible, and in some domains this can lead
to outcomes that impact millions of people. Allcott
et al. [2] demonstrated that U.S. citizens believe that
social media is currently the “most important” source

of information. They also showed that the last months
before the US election, fake news favoring Trump were
shared 4 times more than the ones favoring Clinton.
Even if there is no definitive evidence that this was the
main reason behind the result of the election, the last 6
months before the election no forecast was giving Trump
as the probable winner, and on average, Clinton had an
advantage of 40% points. This gives at least a hint that
fake news had at least some impact in the process1 2.

Automatic fake news detection has already been
studied for some years. In [3], Mihalcea and Strapparava
show that through Natural Language Processing (NLP),
it is possible to discriminate between false and true
information to some degree. While older studies were
primarily based on exploring lexico-syntactic patterns,
Fend and all [4] applied syntactic stylometry to text,
which made it possible to find statistical evidence or
syntactic patterns helpful to classify deceptive text. Text
analysis is the main resource for fake news detection
because of the well-established strategies to analyze text
[5] [6]. For some types of news publishing such as
social networks, text analysis can be combined with
the analysis of metadata attached to the news [7]. In
this work when we talk about metadata we refer to the
following: metadata is added information about one or
more aspects of the data, and it is used to summarize
basic information about data which can make easier to
track or to work with specific data. Machine Learning
is currently the main tool to create models based on
metadata that can be extracted from news, because of
its capability to extract and use effective features from
the metadata [8]. However, metadata is not always
available for news, and in this case the burden of fake
news deception stands on the capacity of analyzing text.

In this work, we explore a new way to obtain
metadata about news in order to improve the
performance of the news detection task. The first thing
users do when they want to verify information is to ask
Google. Google, when queried about a topic, provides a

1https://projects.fivethirtyeight.com/2016-election-forecast/
2https://www.270towin.com/2016-election-forecast-predictions/

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/59956
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 5196

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarSpace at University of Hawai'i at Manoa

https://core.ac.uk/display/211327709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

list of webpages as a result, where each item in the list
has the same set of metadata attached to it. Our idea is
to create a system that behaves like humans; It queries
Google-Custom-Search API and uses the metadata in
order to create additional features, which can then be
combined with features provided by conventional text
analytics methods. In order to have a standardized
baseline to evaluate our approach, we use a benchmark
dataset for fake news detection based on the PolitiFact
web site [9]. This dataset provides political news labeled
with 6 classes. Our methodology yields an improvement
of 3% in F1 score over the state of the art, which is
significant for a classification task on 6 classes.

The rest of this paper is organized as follows: we
dive into the state of the art for fake news detection
in Section 2; in Section 3, we describe a benchmark
dataset created expressly to be used as a baseline
for fake news detection in politics; in Section 4 we
describe our method for creating additional features
using Google-Custom-Search API; we describe the
features we obtain from text analytics in Section 5; we
introduce our experimental setting in Section 6 before
reporting on our experimental results in Section 7;
finally, we conclude and discuss future work in Section
8.

2. Related Work

Fake news detection is defined as the task of
classifying news by their veracity. With the advent
of online news publication, the context of veracity
analysis has evolved - what once could be demonstrated
by providing external evidence for the claimed
statements is not possible anymore. Fake news is
created intentionally and often contains alongside it
fake references that compromise previous detection
approaches. This issue raises even more the challenge
of fake news detection, on which we as humans are
always good at as explained in [10], where the authors
show with extensive studies that we just perform 4%
better than random guesses. Over time, more and more
automatic techniques for fake news detection have been
developed, and since news is sometimes made of text
and metadata that accompanies it, hybrid approaches
that analyze both have showed the most promising
results [7]. Shu et al. [11] provide a comprehensive
review of fake news detection on social media, focusing
on the characterization of fake news as well as detection
approaches.

The idea behind linguistic approaches for fake news
detection based on text is to find predictive deception
cues which can help to detect the fakeness of news [12].
Basic linguistic approaches consider only the syntax of

the sentences, such as “shallow syntax” for parts of
speech [13] or location-based analysis of words [14].
These basic approaches are too simplistic because they
rely on isolated n-grams; they are limited as they do not
consider the context of the news and the words senses
[15]. In [16] and [17] the authors showed that adding
semantics to the data analysis improves the capability
to properly classify information, but they also show that
this methodology is hardly generalizable as it requires a
deep knowledge of the domain of interest.

A more promising approach is to complement the
linguistic analysis of news with methodologies that use
metadata attached to the news. In the domain of social
network, a well-established use of metadata is to analyze
the social network of interactions such as the behavior
of the sources [18] and the patterns in the contents
and metadata [19]. Unfortunately, these analysis are
possible only in a social media context, where the flow
of information is clear and it is possible to have a
timeline of the news spreading. In news publishing, it
is challenging if not impossible to rebuild such flows
of information. In [20] the authors demonstrated that
source information is meaningful when trying to solve
data conflict, but in the news publishing field often the
data about the information flows are missing, which
in turn leaves this problem unsolved and makes it
impossible to use network analyses. In news publishing,
one should instead rely on the metadata already present
in the news and on other metadata obtainable using other
means.

In [9] the authors describe another major problem
when trying to create systems capable of detecting fake
news — i.e., it is impossible to compare approaches
because there are no readily available benchmark. In
their work, they created the first benchmark dataset
for fake news detection about politics. They also
made experiments on this dataset and, by using a
Convolutional Neural Network (CNN) model, achieved
a top accuracy of 27% that can be used as a baseline
for following experiments. More researchers used this
dataset and a recent work [21] reports an accuracy
of 41.5% using a Long-Short Term Memory (LSTM)
based model that incorporates features extracted from
information about the speakers’ profiles, which were
provided a priori from data annotators, i.e. journalists.
However, this kind of information is not normally
available within the benchmark dataset, and moreover,
the speaker’ profile data does not correspond statistically
to the dataset itself. In their work, they also state
that without considering this information, their model
does just 0.5% better than the baseline. To date,
no contribution made significant improvement on the
aforementioned baseline.

Page 5197

3. Dataset Description

When researches want to inspect unlabeled datasets,
crowdsourcing is usually a good choice to label the data
in order to obtain training, validation and test sets. The
same approach has been used for fake news detections
studies. Wang et al. however state that this approach,
even if useful, is often unsuitable in the context of fake
news because of the mismatch between the training and
test datasets, which are created on completely different
and simulated platforms [9].

Following this observation, Wang et al. contributed
a benchmark dataset called LIAR, which includes
12,836 statements about politics taken from political
debates, interviews, news releases, blogs, tweets, etc.
The source from the statements is the POLITIFACT
website3, winner of the Pulitzer prize, where experts
label the statements as belonging to one of six defined
classes. The classes, starting from the fakest one
to the truest one, are the following: PantsOnFire,
False, MostlyFalse, HalfTrue, MostlyTrue and True.
The classification results depend on the presence of
evidence to support the statements. An important
fact to emphasize is that statements are usually short,
on average consisting of 17 words, with the longest
statement consisting of 66 words and the shortest one
with only 2 words (e.g., speaker: ”Donald-Trump”,
statement: ”on immigration”), which makes fake news
detection based on text analysis very challenging. The
LIAR dataset contains 12,836 statements with metadata.
Table 1 shows the number of records for each set.

Source N records Percentage %
Training Set 10,269 80%
Validation Set 1,284 10%
Testing Set 1,283 10%

Table 1. LIAR dataset

The authors then performed some experiments using
machine learning classifiers in order to automatically
detect fake news. Table 2 shows the results they
obtained. The split datasets they created and the results
of the six classes are the starting point of our work.

4. Using Google-Custom-Search API to
obtain Task Generics Features

In this section, we describe how we used Google’s
Custom-Search API to create task-generic features that
are then used for fake news detection.

3http://www.politifact.com/

Models Valid. Test
Majority 0.204 0.208
SVMs 0.258 0.255
Logistic Regression 0.257 0.247
Bi-LSTMs 0.223 0.233
CNNs 0.260 0.270
Hybrid CNNs
Text + Subject 0.263 0.235
Text + Speaker 0.277 0.248
Text + Job 0.270 0.258
Text + State 0.246 0.256
Text + Party 0.259 0.248
Text + Context 0.251 0.243
Text + History 0.246 0.241
Text + All 0.247 0.274

Table 2. Experiments on LIAR dataset

4.1. Hypotheses on Google Queries

As humans, the first thing we often do when we want
to verify information is to query Google, and usually,
we find the answer we were looking for in the first links
it provides us. Following this intuition, we wondered:
could one use similar resources in order to improve the
accuracy of fake news detection?

Google’s search engine was originally based on
PageRank [22], which assess the number and quality of
links to a web page to determine a rough estimation of its
importance. However, this algorithm mainly measures
the popularity of the web page rather than the accuracy
of the information it contains. Google improves its
searching algorithms continuously 4 in order to increase
the relevance for different domains and thus the quality
of the results provided. With the rise of fake news,
Google engineers started to focus on how to improve the
existing algorithms in order to provide more trustworthy
results to queries. In [23] a team of Google researchers
describe a new algorithm called Knowledge-Based Trust
(KBT). KBT pulls facts from web pages to estimate the
correctness and accuracy of those facts; it scores the
relevance of web pages, and use this scores to determine
how trustworthy and reputable a given website is.

Despite its increasing effort in fighting fake news,
when querying a statement either fake or true, Google
provides as result web pages connected to the query
entered by the user. Even if some fake news is queried,
the search engine will return a number of facts from
further sources that it evaluates as relevant for the
query. Furthermore, since users tend to trust Google
results, that rank, position and relevance [24] of the
results they receive matter when they try to find further

4https://moz.com/google-algorithm-change

Page 5198

Figure 1. Querying Google’s Custom-Search API

evidence related to their queries. Taking these features
of Google’s results into account, our hypothesis is the
following: for legitimate news, the links that appear
at the top of the results are the most trustworthy, and
likewise, for fake news, the links that appear at the
top of the ranking are the less trustworthy. With this
hypothesis in mind, we started to work our way to
obtain meaningful features from the metadata provided
by Google’s Custom-Search API.

4.2. Metadata provided by Google’s Custom
Search API

Google’s Custom-Search API lets websites and
applications retrieve search results from Google
programmatically. We use a Python library 5 to
issue declarative queries in the same way as searching
Google’s search engine using a browser. The LIAR
dataset provides for each entry, among other data, the
full statement as well as its source (the name of the
speaker). For each of these entries, we generate a
compound query that contains both the statement itself
and its speaker. An example of the querying process for
one entry of the dataset is shown in Figure 1.

The result set, retrieved in JSON format, contains the
first n links provided by Google. Each link is associated
with the following metadata, which we will use to create
our features:

• Title: the title, as found in the HTML header, of
the link

• Snippet: the text snippet associated with the news
for the given link

• URL: the full URL of the link
• Rank: the rank (position) of the link in the answer

provided by Google. E.g. rank = 1 means top
result on the first page, while rank = 14 means
forth result on the second page.

Before focusing on feature creation, we analyzed
a number of results provided by Google. We verified

5https://developers.google.com/api-client-library/python/apis/
customsearch/v1

that the results were related to the title of the statement
given, thus are overall coherent with the query. Once
this correlation was confirmed, we performed more
experiments on the result set, which led to the decision
that collecting the first 20 results for each statement (the
first two pages) was the best strategy. In case 20 results
were not available, we collected all the available results.
To summarize, for each statement we run a Google
search and then collect the metadata associated to the
first 20 results (or less if 20 results are not available).
In the next subsection, we explain which features we
created using this metadata and how we created them.

4.3. Features Creation

After obtaining metadata on each statement, we
started to create the features that we thought were most
meaningful for our fake news detection task. These
features are: Statement Domain Score and Similarities
for Titles and Snippets. In this subsection, we describe
how we created these features.

4.3.1. Statement Domain Score As previously
stated, we think that the order in which the results appear
on Google is meaningful, hence we propose to use the
ranking in order to create a feature we call “statement
domains score”. First of all we normalized all URLs.
While URLs capture the full path to the contents,
we wanted to get information about the information
provider. For example, we shortened an URL such as
https://www.nytimes.com/interactive/somenews into its
base domain www.nytimes.com. Then, we applied a
simple process to get a score for each domain from
the training set. As we tackled a 6 classes problem,
we divided the score we assigned from 0 to 1 into 6
intervals. We then further divided each interval into
20 values (the maximum numbers of domains provided
as results from Google) that can be assigned to each
domain depending on its rank in the results. For the
3 positive classes, our algorithm assigned values from
the highest to the lowest depending on the position in
the ranking while, for the 3 negative classes, the values
were assigned in reversed order (from the lowest to
the highest). Table 3 shows how the intervals were
assigned for each label and the list of values the domains
get depending on the labels of the statements and their
ranking in the Google result set. For each class we took
the interval assigned to it (e.g. between 1 and 0.84 for
the True class) and we created, with a linspace function,
a linearly spaced vector of 20 items where the first item
has as value the variable a, while the last item has as
value the variable b.

Page 5199

Labels Interval Values
a b

True 1 0.84 linspace(a,b,20)
MostlyTrue 0.83 0.67 linspace(a,b,20)
HalfTrue 0.66 0.50 linspace(a,b,20)
MostlyFalse 0.34 0.49 linspace(a,b,20)
False 0.17 0.33 linspace(a,b,20)
PantsOnFire 0.01 0.16 linspace(a,b,20)

Table 3. Six classes values split

Figure 2. Updating the domain scores

Having defined a range of values for each statement,
it is now possible to calculate a score for each domain.
Figure 2 shows how, for each statement, scores are
assigned for each domain. An algorithm iterates through
the result sets of all statements. For each result set,
the algorithm extracts the list of domains and assigns
to each domain the score corresponding to its ranking
in the result set depending on the class assigned to that
statement in the dataset (see table 3). Every time the
algorithm detects a new domain it creates two variables,
the

∑
Score and the |Scores|.

∑
Score is initialized

with the score of the first occurrence of this domain
while |Scores| acts as a counter and is initialized to 1.
Every time a same domain is returned, the

∑
Score is

updated by adding to its current score the new score as
given by our algorithm while |Scores| is incremented
by 1. Once the algorithm has iterated through all results,
it returns, for each domain, the final domain score by
taking the average as shown in equation 1.

domain score =

∑
Score

|Scores|
(1)

Once the domain scores for all domains have been
computed, we compute scores for each statement in the
training set by summing the scores of all their associated

domains as shown in equation 2.

statement domain score =

∑n
i=1 domain score(i)

n
(2)

We apply the same principle to compute domain
scores for the validation and test set. However, since we
obviously do not want to bias our model by looking into
validation and test sets when creating the features, when
a domain present in these two sets does not have a score
assigned from the training set, we simply assign to it the
mean score of the other domains for that statement. This
is a well-known strategy adopted to address missing
values in cases like ours, where the dataset is small and
we do not want to lose any example [25].

4.3.2. Similarities Another approach for fake news
detection that is getting more and more attention is the
so-called Stance Detection. “Stance Detection involves
estimating the relative perspective (or stance) of two
pieces of text relative to a topic, claim or issue.”
Evaluating the stance of news that report a statement is
an important task in checking its veracity [26]. There is
also a worldwide initiative entitled Fake News Challenge
6, which allows people to challenge others by providing
the best methodology for fake news detection. This
initiative sees Stance Detection as the first step towards
a solution for fake news detection.

In [6] Horne and Adali showed that the text of
the news, its title and their correlations play a role in
determining if a news is fake or not. By following this
study, for we used each statement the titles and snippets
to calculate the three following features based on stance
similarities:

• Similarities among all titles for each item in the
result set of the query about a statement

• Similarities among all snippets for each item in
the result set of the query about a statement

• Similarities between the title and snippet for
each item in the result set of the query about a
statement.

These features are created using TF-IDF [27] to
compute the weighted term frequency vectors, and then
to obtain a similarity score using the Cosine Similarity
in the Vector Space Model [28].

6http://www.fakenewschallenge.org/

Page 5200

5. Additional Features: Text Analysis and
Speakers Credit History

In this section, we describe how we created
additional features that we used to obtain the final
results. They are not novel contributions brought by
this work, but they allow us to start from the same point
as the experiments made by the previous contributions.
Moreover, since text analysis is the main methodology
applied in the context of fake news detection there is no
reason to skip it.

5.1. Word Frequency using TF-IDF

To create features based on text analysis, we used
TF-IDF (see above) as it is a well-established approach
that has proved to be efficient for text classification
[29] [30]. We computed term-frequency and inverse
document-frequency, with the following parameters (see
Section 6 for our full experimental setup):

• max features=2000
• stop words=’english’
• tokenizer=word tokenize
• n-grams=(1,5)
• analyzer=’word’.
We obtained vectors of dictionary-based features of

the same dimension for all statements. We also tried
a similar approach by using Doc2Vec, an extension of
Word2Vec [31] for working with documents rather than
words, but it proved to perform poorly compared to
TF-IDF.

5.2. Sentiment Analysis using LIWC

To create groups of features, we used the Linguistic
Inquiry and Word Count (LIWC) framework [32],
a well-known tool for automatic text analysis. It
elaborates on the way in which the statements are
written from an emotional and cognitive perspective.
LIWC counts, for a given text, the percentage of
words that reflect different emotions, thinking styles,
social concerns, and parts of speech, using a validated
dictionary. It provides a vector of 93 features
that include different categories of language such as
articles, prepositions, past-tense verbs, numbers, affect,
occupation etc., as well as a few other attributes such as
the total number of words used.

5.3. Speaker Credit History

Work done by [21] uses the speakers history (credit
history), which does not correspond to the dataset itself
however, as the data was derived externally from the
Politifact API. We also make use of this feature, but, to

not bias the results, we do not use the metadata attached
to this information for any other feature.

In our approach, we analyzed the credit history
individually for each speaker, only considering data
from the training set. Credit history vectors contain
the counts of accurate and inaccurate statements over
the history for each class. For instance, the speaker
“Hillary-Clinton” has a credit history vector ch = [6, 27,
30, 51, 65, 60] meaning 6 times she made statements
that were labeled as pants-fire, 27 as false, 30 as
mostly-false, 51 as half-true, 30 as mostly-true, and 60
as true.

An analysis on the credit history of speakers showed
that there are on average 4 statements per speaker with
a high standard deviation. There are few speakers
with a “rich” credit history whereas many of the
statements come from speakers with “poor” history
(less than 4 statements). There are 1,850 speakers
with only 1 statement, while there is a speaker with
a maximum of 616 statements. Considering this
imbalanced distribution of statements per speaker, we
analyzed the speakers’ profile in the following way:
for each speaker we individually calculated the credit
history vector and adjusted it with respect to the global
mean credit history vector, which represents the average
score (total statements / number of speakers) for each of
the 6 classes. Finally, from the vector, we get a single
score between 0 and 1, where a score towards 0 indicates
the speaker is not trustworthy whereas a score towards 1
indicates he/she is trustworthy.

6. Experimental Setup

The task at hand is a multi-classes classification
problem. In this section, we describe the environment
used to perform our experiments and validate our model.

6.1. Environment

Our approach is based on the Python programming
language, and in order to implement and evaluate it,
we used the IPython framework [33], which is a tool
for interactive scientific computing. Within IPython
we used the Scikit-learn 7 toolkit, which provides the
necessary implementations for the machine learning
algorithms and for TF-IDF. We used the Gemsim
[34] open-source vector space modeling and topic
modeling toolkit to implement Doc2Vec. Moreover, we
additionally made use of the Pandas library 8 for data
processing, and of Numpy 9 for numerical analysis.

7http://scikit-learn.org/
8http://pandas.pydata.org/
9http://www.numpy.org/

Page 5201

6.2. Methodology

We introduced the features we use in section 4 and 5.
Table 4 summarizes them and introduces the acronyms
that will be used in the rest of the document:

Feature Acronym
Statements Domain Score SDS
Similarity among Titles ST
Similarity among Snippets SS
Similarity between Titles and Snippets STS
Sentiment Analysis using LIWC SA
Text Analysis using TF-IDF TA
Speakers Credit History SCH

Table 4. Features List

Before starting the experiments we pre-processed the
data. To begin with, since we had to train the models
with a high number of features, we performed features
scaling and mean-normalization in order to rescale all
data into a range between 0 and 1. Subsequently,
we chose appropriate machine learning algorithms for
our problem. Because of the type of data (textual
and numeric), the number of samples and the number
of features, we chose the following machine learning
classification algorithms: Multinomial Naive-Bayes
(MNB) with basics sklearn settings, Support Vector
Machine (SVM) with polynomial kernel, and Neural
Networks (NN) with 2 hidden layer of 25 neurons each
and adam as weight optimization solver [35], [36].

We tuned each feature by experimenting with
different parameters. For each new experiment, we
trained all algorithms and then tested them on the
validation and finally on the test (holdout) set. Based
on the tests, we fine-tuned our features until obtaining
optimal F1-Score values. In the following section,
we introduce the most important experiments and we
discuss their results.

7. Experimental Results

In this section, we describe the experiments that
led to our final model. Starting with the features
introduced in sections 4 and 5, we performed different
experiments by modifying the parameters, fine-tuning
the features and obtaining missing information using
crowdsourcing.

7.1. Results with all Original Features

Figure 3 shows the results of the first experiment
using all our features. The results (around 27% F1) are
not satisfying and even lower than the state of the art.
To understand the reasons of behind this, we performed

Figure 3. F1 scores using all features and

Multinomial Naive-Bayes (MNB), Neural Networks

(NN), and Support Vector Machine (SVM)

a round of validation using 10 cross-fold validation on
the training set and unexpectedly got F1 scores higher
than 55%. Since the only features of the training set
that had been created by considering the labels were the
statement domain score and the speakers’ credit history,
we decided to check more carefully these two features.

We studied the precision and recall of each
individual class showed in Table 5 and noticed that the
edge classes (1: true and 6: pants-on-fire) have high
precision and low recall, which means that the samples
are rarely labeled as belonging to these classes, but
when it happens the classification is usually correct. The
contrary happens with the central classes. By studying
this outcome we assumed that since around 7.3% (1,872
out of 25,404) of the domains in the validation set and
7.1% (1,829 out of 25,404) of the domains in the test
sets were missing, and since around 13.8% of speakers
were missing as well, our approach for handling missing
data (using mean scores from available data) produced
an accumulation of values towards the central classes,
which in turn led to poor results.

precision recall
true 0.35 0.20
mostly-true 0.24 0.25
half-true 0.27 0.32
mostly-false 0.23 0.17
false 0.28 0.41
pants-on-fire 0.38 0.22

Table 5. Best model with all features

7.2. Crowdsourcing Approach to Assign
Missing Values

To address the the limitation just mentioned, we
decided to use crowdsourcing to assign missing values.

Page 5202

We did it both for the speakers’ credit history and for
the domain score using the CrowdFlower10 platform. In
order to avoid low-quality answers from crowd workers,
we relied on redundancy [37], asking more workers to
perform the same task, and aggregating the answers.

For the speakers’ credit history, we found that 803
speakers have “poor” credit history with less than the
average number of 4 statements/speaker. For each
of 803 speakers we generated a HIT task and we
asked 5 workers to provide a score between 1 (totally
untrustworthy) and 10 (totally trustworthy) for these
speakers. The crowd workers were asked to provide
their judgment about the speaker based on their findings
from web searches. Then we assigned as value for the
feature the average of the 5 scores obtained by the online
workers, which is an appropriate tradeoff for the number
number of tasks to be assigned [38].

Similarly for the domain score, we generated a list
of 3,439 websites for which this score was missing (i.e.,
that do not appear in the training set). For each website
in this list, we generated a HIT task and we asked
5 workers to evaluate the reliability of the websites.
Workers had to click on the URL provided and to take a
deep inspection on the main page of the website in order
to judge the web page. Workers had to choose one of the
following options:

• broken: if the website was not reachable
• unrelated: if the website was not related to politics
• untrustworthy: if the website was related to

politics but seemed untrustworthy
• trustworthy: if the website was related to politics

but seemed trustworthy
We found out that there was little variance in the

users’ judgments; they expressed almost always similar
judgments on all domains. We then assigned the
following values to the judgments under this reasoning:
0 to untrustworthy since websites that create fake news
tend to offer statements on politics but misleading
information can be found on them11; 1 to broken because
we cannot trust volatile or unreachable web sources, 3
to unrelated since even if websites such as web radio
stations are not related to politics sometimes they can
share opinions and statements that can be trustworthy;
and 10 to trustworthy because they are related to politics,
look legitimate and crowd workers did not find any
misleading contents on them.

Table 6 shows the precision and recall for the best
F1 score of 0.284, which is obtained with SVM after
recalculating the features for SCH and SDS using the
crowdsourcing contribution. We notice that even if we

10www.crowdflower.com
11https://www.theguardian.com/technology/2017/aug/18/

experts-sound-alarm-over-news-websites-fake-news-twins

managed to diminish the variance in precision and recall
among the classes, the increase in F1-score brought by
crowdsourcing is limited.

precision recall
true 0.29 0.27
mostly-true 0.27 0.26
half-true 0.27 0.31
mostly-false 0.24 0.17
false 0.29 0.38
pants-on-fire 0.42 0.38

Table 6. Best model with all features using also

crowdsourcing contributions

To improve the contribution provided by the
SDS feature, having seen that it performs well in
cross-validation, we tried to rebalance the values
assigned to the crowdsourcing judgments in order to
make the distribution of the training set more similar to
the distribution of the validation set. The best fit came
when we assigned 1 to untrustworthy; 2 to broken; 5
to unrelated; 10 to trustworthy. Figure 4 shows the
distribution comparison in all classes for the training
set, the validation with the previously assigned values
and the validation with the newly assigned values, while
table 7 shows the values of F1-score with or without this
distribution adaptation.

Figure 4. Distribution of domain scores for the

Training and Validation sets

However, even if this approach to assign values to
the statement domain score works well for the validation
set, it obviously does not perform as well when applied
to other datasets (e.g. when using the test set).

7.3. Final combination of features

In order to obtain our best model, we decided
to experiment with various configurations for the
algorithms. The list below shows the combinations of
features we found to be the best after doing extensive

Page 5203

F1-score
Original Distribution Adapted Distribution
0.284 0.293

Table 7. F1-score comparison for different

distributions

experiments, which provide an F1-score of 0.308 –
about 3% higher than the state of the art.

• TF-IDF Word Frequency with gram range from 1
to 4 and document frequency higher than 0.02

• LIWC Sentiment Analysis
• Similarity Title-Snippet
• Speakers’ Credit History
Table 8 summarizes the results with various features

combinations and the comparison with the 2 previous
works based on this dataset.

Algorithm Features F1-Score
NN All 0.273
SVM TA/SA/DS/SCH 0.284
SVM TA/SA/STS/SS/ST/SCH 0.289
NN TA/SA/ST/SS/SCH 0.287
SVM TA/SA/STS/ST/SCH 0.296
SVM TA/SA/STS/SS/SCH 0.292
SVM TA/SA/STS/SCH 0.308
Hybrid CNN Baseline LIAR 0.274
LSTM Long [21] 0.288

Table 8. Test Set results and comparison with the

State of the Art

8. Conclusions and Future Work

In this work, we applied a strategy for obtaining
task-generic features in order to tackle the fake news
detection task. These features are paired to features
obtained from text analysis. The foundation of our
strategy is to query Google with news statements in
order to obtain information provided in form of metadata
that can be transformed into features. This approach
is domain independent, which means that there is no
need to create domain-specific approaches for using the
metadata.

A possible limitation of our approach is the
dependence on Google’s Custom-Search API. IF the
API changes the metadata it provides, or the format
and schema it uses to provide them, we would have
to adapt our approach. In case the change is on the
schema, we just need to slightly change our pipeline
to adapt it to the new format. Instead if the change is
on the metadata provided, two outcomes are possible.
If more metadata are provided, this would allow us to
improve our approach, potentially. If some metadata get

removed, this would most probably negatively affect our
method.

Our approach improves on the current state of the art
by about 3%. Considering that the work is based on a
six classes benchmark dataset, we could assume an even
greater impact on a two-class dataset, which is a more
common scenario when end-users want to know if they
can trust a news story or not. Unfortunately, there is
no such dataset readily available on which we could test
our system. However, since some work on two-class
fake news scenarios using text analysis showed results
slightly higher than 80% in terms of F1-score, we
believe that our approach could be leveraged to create
systems that provide high-accuracy results, and thus
could contribute in the battle against the spread of fake
news. Moreover, we want to point out that we took a
number of new statements from the Politifact website
and tried to apply our approach to them, yielding similar
results as the ones we got on the Liar benchmark dataset.
Therefore, this shows that our approach works for both
older and newer statements.

One idea to improve our approach, besides
increasing the size of the dataset to train a better models,
would be to create open repositories of trustworthiness
scores for web domains. With this idea in mind, we plan
as future work to start working on an initiative to allow
trusted users to rate web domains in order to create a
repository which could subsequently be used by fake
news detection approaches.

Acknowledgement

This paper was supported by the Hasler Foundation
in the context of the City-Stories project.

References

[1] S. Vosoughi, D. Roy, and S. Aral, “The spread of true
and false news online,” Science, vol. 359, no. 6380,
pp. 1146–1151, 2018.

[2] H. Allcott and M. Gentzkow, “Social media and fake
news in the 2016 election,” Journal of Economic
Perspectives, vol. 31, no. 2, pp. 211–36, 2017.

[3] R. Mihalcea and C. Strapparava, “The lie detector:
Explorations in the automatic recognition of deceptive
language,” in Proceedings of the ACL-IJCNLP 2009
Conference Short Papers, pp. 309–312, Association for
Computational Linguistics, 2009.

[4] S. Feng, R. Banerjee, and Y. Choi, “Syntactic stylometry
for deception detection,” in Proceedings of the 50th
Annual Meeting of the Association for Computational
Linguistics: Short Papers-Volume 2, pp. 171–175,
Association for Computational Linguistics, 2012.

[5] B. Pang, L. Lee, et al., “Opinion mining and sentiment
analysis,” Foundations and Trends® in Information
Retrieval, vol. 2, no. 1–2, pp. 1–135, 2008.

Page 5204

[6] B. D. Horne and S. Adali, “This just in: fake news packs
a lot in title, uses simpler, repetitive content in text body,
more similar to satire than real news,” arXiv preprint
arXiv:1703.09398, 2017.

[7] N. J. Conroy, V. L. Rubin, and Y. Chen, “Automatic
deception detection: Methods for finding fake news,”
Proceedings of the Association for Information Science
and Technology, vol. 52, no. 1, pp. 1–4, 2015.

[8] S. Gilda, “Evaluating machine learning algorithms for
fake news detection,” in Research and Development
(SCOReD), 2017 IEEE 15th Student Conference on,
pp. 110–115, IEEE, 2017.

[9] W. Y. Wang, “Liar, liar pants on fire”: A new
benchmark dataset for fake news detection,” arXiv
preprint arXiv:1705.00648, 2017.

[10] C. F. Bond Jr and B. M. DePaulo, “Accuracy of deception
judgments,” Personality and social psychology Review,
vol. 10, no. 3, pp. 214–234, 2006.

[11] K. Shu et al., “Fake news detection on social media:
A data mining perspective,” SIGKDD Explor. Newsl.,
vol. 19, pp. 22–36, Sept. 2017.

[12] V. Rubin et al., “Fake news or truth? using satirical cues
to detect potentially misleading news,” in Proceedings of
the Second Workshop on Computational Approaches to
Deception Detection, pp. 7–17, 2016.

[13] D. M. Markowitz and J. T. Hancock, “Linguistic traces
of a scientific fraud: The case of diederik stapel,” PloS
one, vol. 9, no. 8, p. e105937, 2014.

[14] J. T. Hancock, M. T. Woodworth, and S. Porter, “Hungry
like the wolf: A word-pattern analysis of the language
of psychopaths,” Legal and criminological psychology,
vol. 18, no. 1, pp. 102–114, 2013.

[15] D. F. Larcker and A. A. Zakolyukina, “Detecting
deceptive discussions in conference calls,” Journal of
Accounting Research, vol. 50, no. 2, pp. 495–540, 2012.

[16] A. C. Olivieri et al., “Assessing data veracity through
domain specific knowledge base inspection,” in
Advanced Computer Science and Information
Systems (ICACSIS), 2017 International Conference
on, pp. 291–296, IEEE, 2017.

[17] V. W. Feng and G. Hirst, “Detecting deceptive opinions
with profile compatibility,” in Proceedings of the Sixth
International Joint Conference on Natural Language
Processing, pp. 338–346, 2013.

[18] D. M. Cook et al., “Twitter deception and influence:
Issues of identity, slacktivism, and puppetry,” Journal of
Information Warfare, vol. 13, no. 1, pp. 58–IV, 2014.

[19] Z. Papacharissi and M. de Fatima Oliveira, “Affective
news and networked publics: The rhythms of news
storytelling on egypt,” Journal of Communication,
vol. 62, no. 2, pp. 266–282, 2012.

[20] X. L. Dong et al., “Integrating conflicting data: the
role of source dependence,” Proceedings of the VLDB
Endowment, vol. 2, no. 1, pp. 550–561, 2009.

[21] Y. Long et al., “Fake news detection through
multi-perspective speaker profiles,” in Proceedings of
the Eighth International Joint Conference on Natural
Language Processing, vol. 2, pp. 252–256, 2017.

[22] L. Page et al., “The pagerank citation ranking: Bringing
order to the web.,” Technical Report 1999-66, Stanford
InfoLab, November 1999.

[23] X. L. Dong et al., “Knowledge-based trust:
Estimating the trustworthiness of web sources,”
CoRR, vol. abs/1502.03519, 2015.

[24] B. Pan, H. Hembrooke, T. Joachims, L. Lorigo, G. Gay,
and L. Granka, “In google we trust: Users’ decisions on
rank, position, and relevance,” vol. 12, pp. 801 – 823, 06
2007.

[25] M. Saar-Tsechansky and F. Provost, “Handling missing
values when applying classification models,” Journal
of machine learning research, vol. 8, no. Jul,
pp. 1623–1657, 2007.

[26] B. Riedel et al., “A simple but tough-to-beat baseline
for the fake news challenge stance detection task,” arXiv
preprint arXiv:1707.03264, 2017.

[27] J. Ramos et al., “Using tf-idf to determine word
relevance in document queries,” in Proceedings of
the first instructional conference on machine learning,
vol. 242, pp. 133–142, 2003.

[28] K. Erk and S. Padó, “A structured vector space model
for word meaning in context,” in Proceedings of the
Conference on Empirical Methods in Natural Language
Processing, pp. 897–906, Association for Computational
Linguistics, 2008.

[29] W. Zhang et al., “A comparative study of tf* idf, lsi and
multi-words for text classification,” Expert Systems with
Applications, vol. 38, no. 3, pp. 2758–2765, 2011.

[30] J. Ramos et al., “Using tf-idf to determine word
relevance in document queries,” in Proceedings of
the first instructional conference on machine learning,
vol. 242, pp. 133–142, 2003.

[31] Y. Goldberg and O. Levy, “word2vec explained:
Deriving mikolov et al.’s negative-sampling
word-embedding method,” 2014.

[32] J. W. Pennebaker, R. L. Boyd, K. Jordan, and
K. Blackburn, “The development and psychometric
properties of liwc2015,” tech. rep., 2015.

[33] F. Pérez and B. E. Granger, “Ipython: a system for
interactive scientific computing,” Computing in Science
& Engineering, vol. 9, no. 3, 2007.

[34] R. Řehůřek and P. Sojka, “Software Framework for
Topic Modelling with Large Corpora,” in Proceedings of
the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pp. 45–50, ELRA, May 2010.

[35] A. Khan, B. Baharudin, L. H. Lee, and K. Khan,
“A review of machine learning algorithms for
text-documents classification,” Journal of advances
in information technology, vol. 1, no. 1, pp. 4–20, 2010.

[36] S. B. Kotsiantis et al., “Supervised machine learning: A
review of classification techniques,” Emerging artificial
intelligence applications in computer engineering,
vol. 160, pp. 3–24, 2007.

[37] P. G. Ipeirotis et al., “Quality management on amazon
mechanical turk,” in Proceedings of the ACM SIGKDD
Workshop on Human Computation, HCOMP ’10, (New
York, NY, USA), pp. 64–67, ACM, 2010.

[38] H. Li and Q. Liu, “Cheaper and better: Selecting good
workers for crowdsourcing,” in Third AAAI Conference
on Human Computation and Crowdsourcing, 2015.

Page 5205

