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Abstract  
 
Accurate forecast of the demand for emergency 

medical services (EMS) can help in providing quick 
and efficient medical treatment and transportation of 
out-of-hospital patients. The aim of this research was 
to develop a forecasting model and investigate which 
factors are relevant to include in such model. The 
primary data used in this study was information about 
ambulance calls in three Swedish counties during the 
years 2013 and 2014. This information was processed, 
assigned to spatial grid zones and complemented with 
population and zone characteristics. A Zero-Inflated 
Poisson (ZIP) regression approach was then used to 
select significant factors and develop the forecasting 
model. The model was compared to the forecasting 
model that is currently incorporated in the EMS 
information system used by the ambulance dispatchers. 
The results show that the proposed model performs 
better than the existing one.  

 

1 Introduction  

Emergency Medical Services (EMS) are 
responsible for providing out-of-hospital medical care 
to people in need and also transporting them to a 
medical facility when needed. These services are time 
sensitive, i.e. the later the EMS arrive to the incident 
sites, the more severe the damage to the patients’ 
health can become, especially in cases such as trauma 
and cardiac arrest [22]. Therefore, it is essential to have 
a system capable of providing timely services. Yet, 
when considering issues that emergency managers 
face, such as resource shortages and cutbacks, and long 
distances between the EMS and sparsely populated 
areas [26], without proper management of the existing 
limited resources, quick and efficient service would not 
always be possible. For achieving an efficient resource 
management, access to appropriate information about 

the expected demand for service is necessary. With a 
reliable forecast of emergency events that can happen 
on a daily basis, it is possible to manage the resources 
efficiently, and proactively plan for an optimized 
management of the resources. This will help improving 
the emergency response system’s performance. 

The aim of this study was to develop a forecasting 
model for predicting the number of EMS calls per hour 
and geographical zone in an area.  

The goal was to contribute to: (1) better 
management of existing emergency resources, and (2) 
the determination of factors affecting number of calls, 
which can be used to plan preventive action.  

In collaboration with SOS Alarm, who 
operationally manages the major part of the ambulance 
resources in Sweden, different relevant factors that can 
be used in the forecasting model were identified. A 
forecasting model based on Zero-Inflated Poisson 
(ZIP) regression was constructed to determine where 
and when the emergency call(s) will occur. The results 
of the proposed model were compared to the current 
model used by SOS Alarm, which is an integrated part 
of their information system (IS), called CoordCom [5]. 
CoordCom is used for managing both calls for service 
and the resources required to provide the service. In 
particular, the current forecasting model is used as 
input to a set of ambulance dispatch support tools [3] 
in the geographical information system (GIS) part of 
CoordCom, called ResQMap [6].  

The rest of the paper is organized as follows. A 
review of previous studies dealing with EMS call 
forecasting as well as positioning of this work with 
respect to the literature is presented in Section 2. 
Section 3 describes the data and methods, followed by 
the results of the statistical modelling and analysis in 
Section 4. The results and methodological issues are 
discussed in Section 5. Finally, conclusions and future 
research directions are outlined in Section 6. 
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2 Related work 

The following is a brief review of previous works 
on emergency call forecasting, based on the methods 
used. 

2.1 Regression models 

In the literature considered in this study, eight 
papers use some form of regression modelling to make 
the required prediction. In the work of Aldrich et al. 
[2], based on ambulance trip data obtained from Los 
Angeles Central Receiving Hospital, a forecasting 
model was developed for which a least squares 
regression was adopted. In this model socioeconomic 
characteristics of the census tract, the type of public 
service, and the availability of alternative sources of 
care formed the independent variables. The result of 
their study indicated that aged people and single men 
generated more calls compared to the rest of the 
population. Using stepwise and multiple regression, 
and with the help of socioeconomic and geographic 
characteristics, Siler [20] constructed a model to 
predict the demand for ambulances in Los Angeles 
county. Unlike Aldrich et al. [2], who assumed a linear 
relationship between the dependent and the 
independent variables, Siler [20] adopted a nonlinear 
one. Similarly to [2] and [20], Kvålseth and Deems 
[14] considered socioeconomic and demographic 
characteristics to predict the ambulance demand, and 
used emergency medical calls and census tract data of 
the city of Atlanta to develop first-order and second-
order regression models. In 1982, Kamenetzky et al. 
[13] also used first-order and second-order regression 
models to predict ambulance demand, and in their 
model they considered four independent variables to be 
of importance for the forecast: population, 
employment, logarithm of the percentage of white and 
married population, and the square of employment to 
population ratio, and considered the total number of 
emergency calls by geographic unit as the dependent 
variable. Their study used data from Southwestern 
Pennsylvania. Svensson [21], adopted Poisson 
regression to make an ambulance demand prediction 
for Kentucky. Independent variables included location 
(both rural and urban), level of availability of 
prehospital care, access to a 24-hour emergency 
department in the county, availability of 911 service, 
poverty (per capita income, percentage of households 
with no wage earner, and percentage of residents below 
the poverty level), education (percentage of those with 
less than ninth grade education), and availability of a 
telephone in the household. It was shown that age and 
poverty are significantly correlated with the demand 
for emergency services. Wong and Lai [25] utilized 

multiple regression in two stages; in stage one, they 
investigated the relationship between ambulance data 
and weather variables, and in stage two, through 
forward variable selection, a series of regression 
models based on weather factors were created. The 
results showed that weather factors can be good 
predictors for ambulance demand for older people, 
patients with more severe conditions, hospital admitted 
cases, and comprehensive social security assistance 
recipients. Considering ambulance demand in Portland, 
Oregon Metro Area, Cramer et al. [9] used stepwise 
regression, which determined renters, businesses, jobs, 
people not in labor force, and college graduates as 
independent variables affecting ambulance call 
volume. A geographically weighted regression was 
used to investigate the effect of each identified variable 
on the number of ambulance calls. In 2011, Lowthian 
et al. [16] conducted a study to forecast the demand of 
ambulance calls in metropolitan Melbourne with linear 
regression. Demographic variables such as age and sex 
were used. The result of their study indicated that older 
people would make more ambulance calls compared to 
other age groups. 

2.2 Time series models 

Another type of forecasting method used to predict 
the ambulance calls is time series modelling. In 1986, 
Baker and Fitzpatrick [4] adopted Winters’ exponential 
smoothing model to forecast ambulance calls using 
data from four South Carolina counties. In their work, 
they utilized a multistep approach for determining the 
optimal parameters of the exponential smoothing 
model and considering that the model would depict 
both emergency and non-emergency calls; goal 
programming was used to combine forecast results for 
both call types. Channouf et al. [7] presented two time 
series approaches for forecasting the volume of daily 
emergency calls: (1) autoregressive models of data 
obtained after eliminating trend and (2) doubly-
seasonal autoregressive integrated moving average 
(ARIMA) models with special-day effects. For this 
purpose, they used the data from emergency calls in 
Calgary. They showed that the calls are affected by 
when people work, commute, sleep and celebrate. 
Matteson et al. [17] combined integer-valued time 
series models with a dynamic latent factor structure to 
predict ambulance calls, including all priority levels of 
emergency calls, at an hourly level in the city of 
Toronto. Based on data obtained from the Welsh 
Ambulance Service Trust, Vile et al. [23] explored a 
non-parametric technique for time series analysis 
known as Singular Spectrum Analysis and adopted it to 
predict demand at a daily level. As it has been shown 
that weather factors play a role as predictor in making 
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a forecast for ambulance calls in Hong Kong [25], 
Wong and Lai [24] employed ARIMA to predict daily 
ambulance demand using 7-day weather forecast data 
as predictor. Finally, to better manage the manpower in 
a call center responsible for answering and dispatching 
ambulances to emergency calls, Gijo and Balakrishna 
[10] developed a forecasting model based on seasonal 
ARIMA for call records obtained from one of India’s 
states. 

2.3 Spatial-temporal models  

Besides models that are based on time series and 
regression, there are spatial-temporal models and other 
models capable of depicting both time and location 
simultaneously. Setzler et al. [19] utilized artificial 
neural networks to predict the emergency demand 
volume during different times of the day for specific 
geographical areas based on data of the Charlotte 
Mecklenburg (North Carolina) emergency service 
organization. Their model not only considered time of 
the day for making the prediction, but also season, day 
of the week, and month. Zhou and Matteson [27] used 
spatial-temporal kernel density estimation to make 
spatial and temporal ambulance call predictions for 
Toronto. Also for Toronto, on a continuous spatial 
domain and discretized temporal domain, Zhou et al. 
[28] adopted a bivariate Gaussian mixture model. In 
their model the component distributions are fixed 
through time while the mixture weights change over 
time. Nicoletta et al. [18] proposed a Bayesian model 
for predicting emergency call volumes in the city of 
Montréal; for describing the calls, a generalized linear 
mixed model was used in which the parameters’ 
posterior densities were established by using Markov 
Chain Monte Carlo simulation. Their proposed model 
captured the time and location of future calls, and in 
their modeling, they had discretized time into 12 time 
slots, and location into several zones. 

2.4 Positioning of the current study 

In comparison to previous studies, the following 
points can be emphasized: 
 We use a regression model that can deal with 

both count data and large number of zeros in the 
outcome variable. As far as we know, this is the 
first attempt to use ZIP regression to forecast 
EMS calls.  

 In contrast to previous regression models, time 
(day of week, and hour) has been considered as 
independent factors in our model, in addition to 
other factors, such as socioeconomic and 
geographic. 

 Our proposed model can handle geographical 
zones without population and with a very low call 
frequency, which is difficult for other models.  
This is important as some zones, being vacation 
spots or having roads crossing them, might have 
no historical calls, but still a positive risk for 
getting future calls.  

3 Data and methods  

The historical ambulance call data used in this 
study was provided by SOS Alarm, while data for 
explanatory factors (independent variables) was 
extracted from Statistics Sweden databases, the 
Swedish national road database and OpenStreetMap.  

3.1 Ambulance call data acquisition and 
processing 

In this study, historical ambulance call data for 
2013 and 2014 for three counties in Sweden was used. 
Each call registered at the emergency call center is 
assigned a case number and the time of the call. 
Additional information that is recorded includes the 
case priority (1-4, where Priority 1 are urgent life 
threatening calls and 4 are planned patient 
transportations), type of emergency, geographical 
coordinates, and time stamps including the time the 
call was registered, the time an emergency resource 
(e.g. ambulance) is dispatched, the time the resource 
starts its travel towards the call site, the time the 
resource reaches the call site, the time the patient is 
loaded, the time it reaches the hospital, and the time it 
returns to its station. It should be noted that since the 
proposed forecasting model considers only priority 1 
and 2 cases, the primary data obtained from SOS 
Alarm did not contain priority 3 and 4 calls. 

The following preprocessing steps were taken to 
create a clean dataset for further analysis. First, 
cancelled ambulances, i.e. entries that were missing 
data on “time of arrival to the call site”, “time of 
loading a patient” and “time of reaching a hospital”, 
were removed from the data. This step reduced the 
volume of the dataset by 6.32%. 

Secondly, the difference between the time that the 
call was received and the time that the ambulance was 
dispatched to the site was calculated: 
 Priority 1 calls with a time difference of more 

than 10 minutes and priority 2 calls with more 
than 30 minutes were removed. The reason for 
this was that consulted experts (ambulance 
dispatchers) stated that dispatch delay times 
longer than that were unreasonable, and probably 
due to faulty data.  
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 Entries with missing data on the time that the 
ambulance had been dispatched was also omitted 
from the dataset as it created a negative time 
difference. 

As a result, an additional 7.9% of the data were 
removed.  

Thirdly, each row in the data set corresponds to one 
ambulance dispatch. Thus, cases to which multiple 
ambulances were dispatched have multiple rows. As 
the case numbers indicate this, it was possible to 
calculate the number of ambulances dispatched to each 
case, and the number was added to the dataset as a new 

column. Then for each case, the number of patients that 
was loaded and transferred to a hospital was calculated. 

Thus, the data was transformed from a dataset that 
contained information about the dispatched 
ambulances to a more compact dataset with only 
information about single events that resulted in a 
dispatch of one or more ambulances. The information 
for each remaining row of data after these steps, 
included the number of loaded patients and the number 
of dispatched ambulances, besides the primary 
information such as case priority and time stamps. 

3.2 Selection of candidate explanatory 
factors  

To obtain information about factors that might 
explain the temporal and spatial variation of ambulance 

calls, a literature study (described in Section 2) was 
performed to discover which factors had been used in 
previous models. In addition, a set of interviews with 
ambulance dispatchers employed by SOS Alarm was 
held. These resulted in a list of factors presented in 
Table 1. While the columns Factor and Type are self-
explanatory, Expected impact describes expected 
influence of the factor on the number of ambulance 
calls. The value (low, medium, high) is set based on 
the results of interviews. Factors, the same or similar, 
which have been previously considered in the literature 
are referenced under Reference. Eventually, based on 

the expected impact and the availability of data for the 
factors, explanatory factors that were tested in the 
model were selected, and are presented in Table 2. 

3.3 Spatial grid zone characteristics 

The forecast currently used by SOS Alarm (further 
described in Section 3.4) is spatially structured in grid 
zones (squares) with varying side lengths in different 
counties in Sweden. For each zone, there exists one 
forecast for each hour of the week, e.g. expected 
number of calls per hour on a Tuesday between 8 and 9 
am. To be able to compare the new model to the 
currently used one, the data had to be structured in the 
same format.  

The factors in Table 2 were processed using the 
GIS software ArcMap, to fit the existing grid zones, 
used for the current forecast. Thus, for every grid zone, 

Table 1. List of factors that may influence the number of ambulance calls 
Factor Type Expected impact Reference 
Population (number of people) Socioeconomic High [13] 
Population characteristics:  
Age, sex, marital status, type of household, 
citizenship, land of birth, foreign background 

Socioeconomic Low - Medium [13, 14, 16, 20, 25] 

Income  Socioeconomic Medium [2, 13, 14, 21] 
Education  Socioeconomic Medium [13, 21] 
Employment (num. of pop employed) Socioeconomic Medium [2, 13, 14, 20, 21] 
Workplace (size, num. of employees) Socioeconomic High [2, 13, 18] 
Workplace (type of business) Socioeconomic Low [9] 
Housing type (house, apartment, etc) Socioeconomic Low [2, 14] 
Health (long time sick leave) Socioeconomic Medium Interview 
Temperature Weather Medium [24, 25] 
Extreme weather Weather High [24, 25] 
Time of day Time High [19, 27] 
Day of week Time High (for weekends) [7, 17, 19, 23] 
Month/Season Time Medium [7, 19] 
Holidays Time High [7, 23] 
Traffic flow Traffic High [14] 
Road type Traffic Medium [2] 
Special events Events Medium [7, 23] 
Distance from city center Place Low [9] 
Distance from ambulance station Place Low [21] 
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the number of people living there, the median income 
in the zone, the sum of all road lengths traversing the 
zone and the number of shops and restaurants were 
calculated.  

To get an estimate of the number of people in the 
zone during day time (Day population), the total 
population in the zone was subtracted by the number of 
people who can be expected to leave the zone during 
the day (estimated as the population above 16 years of 
age with a job). Then, the number of people who have 
a registered work place in the zone was added.  

The number of people in the zone during night time 
(Night population) was estimated to be the same as the 
total population, which is based on the national 
registration of people.   

3.4 Current forecasting system used by SOS 
Alarm 

The current forecasting model is based on moving 
average with seasonality weights (one season per week 
hour). As updates of the forecast are done only once 
per year, this practically translates to calculating 
averages for one year, and using these as forecasts for 
the next.  

First, a temporal forecast is made for the whole 
county, giving one value for each season, i.e. 7*24 = 
168 time slots. For each time slot, the average number 
of calls, based on the previous years’ data, is 
calculated, giving a temporal forecast for the expected 
number of calls per each hour of the week.  

In the next stage, to obtain a spatial distribution of 
the forecast, the weight for each geographical grid zone 
is calculated. The population in each zone is broken 
down into “day population” and “night population” to 
depict where people work and where they live. Day 
population is assumed to be in effect from 07:00 to 
17:59, and night population between 18:00 and 06:59. 
By dividing the zone population with the total 
population, fractions for each zone (both day and night 
population) are determined. Eventually, the population 
fraction for each zone is multiplied with the forecasted 
number of calls per week hour.  

Thus, the current model uses the following 
predictors for the forecast in each zone: day of the 
week, hour of the day, and day- or night population. 

3.5 Zero-inflated Poisson (ZIP) regression 

When developing models for forecasts of count 
data, commonly used regression models, such as 
multiple linear regression, are not able to perform well 
due to a skewed frequency distribution. Besides this, 
these methods can produce biased standard errors if the 
mean of outcome variable is low [8]. Hence other 
approaches, such as Poisson regression and negative 
binomial regression have to be utilized. However, if 
there are an excessive number of zeros among the 
count data, standard Poisson and negative binomial 
regression models will not perform well either. For this 
reason, zero-inflated Poisson (ZIP) and zero-inflated 
negative binomial (ZINB) regression models have been 

Table 2. Explanatory factors tested in the model 

Factor Original data format Source Data format, additional information 
Population in 
different age 
groups 

Number of people in squares 
with 250-1000 m sides 

Statistics Sweden Number of people in each of the following 
age groups: 0-6, 7-15, 16-19, 20-24, 25-44, 
45-64, 65- years 

Day population Number of people in squares 
with 250-1000 m sides 

Statistics Sweden Estimated number of people in the square 
during day time 

Night population Number of people in squares 
with 250-1000 m sides 

Statistics Sweden Estimated number of people in the square 
during night time  

Employment Number of people in squares 
with 250-1000 m sides 

Statistics Sweden Number of people in the square between 20-
64 that have a job 

Median income Swedish kronor for squares 
with 250-1000 m sides 

Statistics Sweden The median income per household in the 
square 

Place of birth Number of people in squares 
with 250-1000 m sides 

Statistics Sweden Number of people living in the square for 
each of the four place-of-birth categories: 
Sweden, the Nordic countries, EU, elsewhere 

Road length Polyline The Swedish national 
road database 

The total road length in km 

Shops Point OpenStreetMap Number of points of interest classified as 
typical day time attractions, e.g. shops, 
libraries, malls, banks 

Restaurants Point OpenStreetMap Number of points of interest classified as 
typical night time attractions, e.g. restaurants, 
bars, pubs  
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suggested [12]. One of the first comprehensive 
approaches to ZIP regression modelling was presented 
by Lambert [15]. 

Unlike ZINB, standard ZIP cannot model the data 
properly if the data is overdispersed, in the sense that 
estimates of standard errors and confidence limits will 
be too small, and the significance will be overestimated 
[8]. 

Since the data used in this study is count data (i.e. 
number of emergency calls), and not overdispersed, 
and due to its structure contains excessive zeros, ZIP 
regression is suitable. Even though the selected method 
suits the data and problem at hand very well, it also 
shares many of the same weaknesses as other 
regression modelling methods, such as potential 
multicollinearity or difficulty in selecting relevant 
predictors. 

A separate ZIP model was developed for each of 
the three counties, and parameters estimated using data 
for year 2013. Different model versions (in terms of 
included variables, their transformations and 
interactions) were compared using mean error (ME), 
mean absolute error (MAE), and root mean squared 
error (RMSE). The model performance was evaluated 
comparing the forecast to a validation dataset based on 
data for year 2014. Similarly, a forecast using the 
current model (described in Section 3.4) was 
developed using data from 2013 and then evaluated 
using data from 2014, thus enabling a comparison 
between the current and the new model. 

3.6 Accuracy measures: ME, MAE and 
RMSE 

There are several criteria in the literature used for 
measuring the accuracy of predictions, and a model’s 
goodness of fit. As Hyndman and Koehler [11] 
suggest, these can be categorized into (1) scale-
dependent measures, (2) measures based on percentage 
errors, (3) measures based on relative errors, and (4) 
relative measures. From these four categories, we 
employ three of the most commonly used scale-
dependent measures: ME, MAE and RMSE. These 
measures are useful when comparing the results of one 
model with another on the same dataset [11], which we 
do here. Furthermore, they are in the same scale as the 
dataset, making their interpretation and understanding 
easier.  

The forecast error eijk is calculated as: eijk = Yijk – 
Xijk, where (for a given county) Yijk is the observed 
number of calls in zone i, day of week j and hour k, and 
Xijk is the forecasted number of calls in zone i, day of 
week j and hour k. From this we can calculate ME, 
MAE and RMSE in a standard way. It should be noted 
that while RMSE has theoretical relevance in statistical 

modelling, it is more sensitive to outliers compared to 
MAE [11]. The main reasons for selecting RMSE 
rather than mean squared error (MSE) is that RMSE 
has the same scale as the main data and hence is easier 
to interpret. The other two accuracy measures 
complement the RMSE in that MAE will not be as 
sensitive to possible outliers and ME will allow 
detection of systematic overestimation or 
underestimation by the model. 

4 Results  

4.1 Call data  

The call data was first analyzed to discover any 
seasonal variations or trends.  

While we could not establish significant seasonality 
trends in call volumes over larger periods of time 
(month or year), there was a significant variation 
pattern present in call volumes per day of week and 
hour of day, similar for all three counties (Figure 1). 
The total number of calls per county in year 2013 are 
displayed in Table 3. 

 

 
Figure 1. Ambulance call volume per day of week and hour 

in county O, year 2013. 

4.2 Zone data 

The spatial grid zones are of different size and 
different population density in the three counties 
studied in this paper. All three counties contain both 
cities and rural areas, but overall population density 
varies substantially between the counties and many 
spatial grid zones contain little or no population at all 
(Table 3). 
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Table 3. Call and population data (year 2013) 
 County J County E County O 
Total  
number of calls 21123 37396 141536 
Number of zones 1768 1438 1950 
Zone size 6x6 km 3x3 km 4x4 km 
Nr. of zones (%),  
pop. = 0 

744 
(42%) 

222 
(15%) 

274  
(14%) 

Nr. of zones (%),  
pop. < 100 

1557 
(88%) 

1124 
(78%) 

890  
(46%) 

Median pop.  
per zone 5 27 118 
Mean pop.  
per zone 146.74 303.33 822.51 
Total population 259429 436195 1603889 

4.3 Forecasting model results 

The resulting dataset that was used for model 
development contained 297 024, 241 584 and 327 600 
rows for counties J, E, and O respectively. The 
percentage of rows with zero calls was 97%, 94% and 
87%, which confirms the need for a model capable of 
handling excess zeros. 

After testing different sets of variables, their 
transformations and interactions, the following 
variables were included in the final model based on 
their statistical significance and overall model 
performance. For the Poisson regression part of the ZIP 
model, a log of the population (number of people) in 
different age groups was included as the main group of 
parameters, complemented by median income and total 
length of roads in the spatial grid zone. The number of 
nightlife spots, modeled as the number of restaurants, 
was also added to the model. This variable was in 
effect only during the weekends. Finally, day of the 
week and hour of the day were included as categorical 
variables. For the logistic regression (zero inflation) 
part of the ZIP model, total population in the spatial 
grid zone was included along with the road length. The 
resulting coefficients after fitting the ZIP model for the 
three counties separately are shown in Table 4 and 5. 

The model parameters (regression coefficients) can 
be interpreted as follows for Poisson regression (Table 
4): for one unit increase in non-categorical independent 
variable (e.g. weekend nightlife spots) the predicted 
number of calls is multiplied by ecoeff (e0.0057 = 1.0057 
for county J) holding all other variables constant. The 
coefficients for categorical variables (day of week and 
hour) are interpreted relative to the reference 
(0=Sunday; hour 0 = 00:00 until 01:00). Thus during 
hour 1 (from 01:00 until 02:00) there will be e-0.052 = 
0.9496 (for county J) times calls compared to the 
number of calls during the reference hour. 

 

Table 4. Results, model parameters for Poisson regression 
Variables Model parameters 

County J County E County O 
Log of population    

age group 0-6 -0.138 -0.009 -0.096 
age group 7-15 -0.085 -0.061 -0.043 

age group 16-19 0.062 0.061 0.055 
age group 20-24 0.036 0.088 0.218 
age group 25-44 0.076 0.012 0.039 
age group 45-64 0.182 0.444 0.118 

age group 65-100 0.836 0.511 0.731 
Median income -9.87E-07 -3.07E-06 -4.27E-06 
Road length -3.40E-07 -1.24E-06 -4.65E-07 
Weekend nightlife 
spots 0.0057 0.0084 0.0005 
Day of week  
(0 = Sunday as reference)   

1 -0.017 0.068 0.035 
2 -0.022 0.049 0.037 
3 -0.003 0.012 -0.016 
4 -0.046 0.042 -0.003 
5 0.010 0.075 0.020 
6 0.033 0.013 0.017 

Hour  
(0 as reference)   

1 -0.052 -0.086 -0.072 
2 -0.115 -0.189 -0.196 
3 -0.233 -0.266 -0.329 
4 -0.380 -0.446 -0.452 
5 -0.308 -0.351 -0.417 
6 -0.097 -0.281 -0.318 
7 0.191 0.013 -0.022 
8 0.569 0.531 0.441 
9 0.634 0.618 0.587 

10 0.624 0.703 0.626 
11 0.701 0.743 0.577 
12 0.592 0.603 0.487 
13 0.541 0.601 0.465 
14 0.479 0.626 0.503 
15 0.599 0.568 0.485 
16 0.517 0.580 0.424 
17 0.474 0.427 0.423 
18 0.529 0.447 0.413 
19 0.432 0.443 0.420 
20 0.476 0.343 0.409 
21 0.370 0.303 0.279 
22 0.236 0.260 0.206 
23 0.131 0.122 0.047 

constant -5.958 -5.698 -5.159 
 

Table 5. Results, model parameters for logistic regression 

Variables Model parameters 
County J County E County O 

Total population -0.0018 -0.0004 -0.0023 
Road length -1.3E-05 -3.5E-05 -1.4E-05 
constant 1.1661 0.4151 0.5004 
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The total number of calls predicted by the ZIP 
model is compared to the actual number of calls in 
2014 and to the forecast of the current model in Table 
6. 

Table 6. Total number of calls (2014), actual and forecasted  
 Number of calls 

County J County E County O 
Actual  21123 37396 141536 
ZIP model 20337 38565 133773 
Current model  20223 39055 136061 

 
The model performance was also evaluated by 

calculating the forecast errors for each spatial grid zone 
and time slot (day of week * hour) aggregated for the 
entire 2014 (Table 7).  

 

Table 7. Forecast errors 
 Number of calls 

County J County E County O 
ME    

ZIP model 0.0026 -0.0048 0.0237 
Current model  0.0030 -0.0069 0.0167 

MAE    
ZIP model 0.0542 0.1042 0.2600 

Current model  0.0565 0.1149 0.2789 
RMSE    

ZIP model 0.2875 0.4455 0.7869 
Current model  0.3438 0.5200 0.8950 

5 Discussion  

The resulting model parameters in Table 4 show 
some interesting features, e.g. looking at the age 
groups, the older population (65-100) seem to generate 
more ambulance calls, something that also was stated 
in the interviews with the ambulance dispatchers. That 
the population between 0 and 15 would be the group 
with the least need of ambulances is less intuitive. 
Possibly this might be explained by the fact that 
parents of small children often have access to a car and 
can drive to the hospital. While the median income 
having a small negative impact on the number of calls 
can be confirmed by previous studies (e.g. [1]), it 
seems counterintuitive that the road length also would 
have a negatively correlated relationship to the 
dependent variable.  

Some of the variables that are not used in the ZIP 
model, even though data exists, are day and night 
population, birth place and employment rate. When 
trying to use day population to estimate the number of 
people in a zone during day time, the forecast was 
worse than when just using the total population, which 
most likely is due to the unreliable data used for day 
population estimates. Birth place end employment rate 

did not improve the results either, and thus were 
removed.  

In Table 5, the parameters should be positive if a 
high variable value increases the likelihood of having 
zero calls. Thus, negative values for both population 
and road length are to be expected. Possibly, the use of 
road length in both the Poisson regression and the 
logistic regression, can explain the unexpected 
parameter values in the Poisson regression. As the 
variable already influences the forecast in the logistic 
regression, decreasing the probability of having zero 
calls where there is a lot of roads, this is compensated 
by reducing expected number of calls that can be 
explained by road length in Poisson regression part of 
the model.   

Looking at the total number of actual and 
forecasted calls for 2014 (Table 6), the ZIP model 
performs slightly better than the current model for two 
of the counties (J and E). Both forecasting models 
either underestimates (J and O) or overestimates (E) 
the number of calls. The underestimation is probably 
due to the models’ inability to capture a positive trend, 
as the number of calls increases from 2013 to 2014, 
while the overestimation is due to a negative trend in 
County E. 

From a practical perspective, it is interesting to 
discuss whether under- or overestimations are more 
serious than the other. Should the forecast be used for 
planning the number of necessary resources, it could be 
argued that it is important not to underestimate the 
number of calls and risk resource shortages. In our 
case, however, the forecast is used to make operational 
decisions, and thus trade-offs between different time 
periods and geographical areas. Therefore, it does not 
matter very much if the forecast is under- or 
overestimating the aggregated number of calls. If 
however, systematic under- or overestimations for 
specific zones or time periods are discovered, these 
should be corrected as soon as possible.  

The forecast errors in Table 7 confirm that the ZIP 
model performs better than the current model. The ME 
for County O is the only measure where the current 
model has a better value. Still, the current model is not 
much worse compared to the more advanced ZIP 
model. The reason may be that the population, which is 
used as an independent variable in both models, is so 
dominant compared to the other (spatial) factors 
included in the ZIP model. Concerning temporal 
factors, both models handle these in a similar way, and 
can consequently be expected to give similar results.  

Even if the new model gives better results, it is a 
relevant question whether it is worth the effort to 
switch to a new, more complex model. The current 
model has the advantage that it is easy to calculate and 
update and takes into account population changes 
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between the years. Advantages for the ZIP model, 
apart from the improved forecasts, is that it can give 
some information about which factors actually 
influence the number of ambulance calls, which can be 
used in preventive work, trying to lower the number of 
calls. This information can also be used in comparative 
studies between the counties. If the same parameter 
values are used, the ZIP model can be easily updated 
when new input data is available. If new parameter 
values are desired, the model has to be calibrated using 
adequate software, something that probably is more 
complicated than updating the current model.  

It may be noted that the forecast accuracy depends 
on the spatial and temporal resolution; it is easier to 
accurately forecast the number of calls for a large area 
than for a small one. However, the difference in zone 
size between the three countries does not affect the 
results in a conclusive way. While the errors in general 
are smallest for the county with the largest zones 
(County J with 6x6 km zones), County O, which has 
larger zones than County E, has much larger errors 
than County E. Evidently, other aspects in the county, 
such as the population distribution and the number of 
zones with zero historical calls, affect the errors.  

6 Conclusions and future work 

The forecasting model developed using a zero-
inflated Poisson regression approach and described in 
this paper has shown to be more accurate than the 
current model implemented in the EMS information 
system used by ambulance dispatchers in Sweden. The 
model development has also helped to identify the 
factors contributing to temporal and spatial variations 
in the demand for EMS. During the modelling work, 
several directions for future work and model 
improvement were outlined. 

Some temporal component estimating the trend 
could be added to the model. Even if the ZIP model 
can take into account changes in the explanatory 
variables, such as the population, this data is often 
already old when made available. When trying to 
estimate the number of calls for next year, there will 
not exist data on the number of people in each zone 
next year, possibly only for the last year, which then 
will be two years inaccurate. Also, the information 
about the population numbers in each zone is very 
static and does not fully capture where people actually 
are at any given time. That is why both the current and 
the new model will miss the increased number of calls 
generated in a zone due to temporary gathering of 
people (e.g. large sports and entertainment events). 

A remedy for this would be to acquire real time 
data on the estimated number of people in a zone (e.g. 
through mobile phone tracking), and make a real time 

forecast of the expected number of ambulance calls 
based on the current situation. 

Another issue with the described forecasting 
models is that for several factors, pointed out as 
important in the interviews with the ambulance 
dispatchers, it was not possible to find data 
retrospectively in the required spatial-temporal 
resolution. This includes traffic flow and weather data 
where the former should have a natural correlation 
with number of ambulance calls, especially for calls to 
traffic accidents (accounting for approximately 2% of 
calls in the dataset) but also indicating where people 
are, rather than where they supposedly live. Weather 
has been previously proven to affect the number of 
calls [25], and while it may be possible to use real time 
weather data, such as the temperature, it is probably 
easier to use weather forecasts as input variables, as in 
[24].  

On the other hand, a likely future development will 
be to complement a forecast based on historical data 
with real time data, which is currently becoming more 
and more accessible, e.g. for traffic flow, weather, 
location of the population or special events. This could 
then be used as input to the EMS information system, 
and automatically updated based on the forecast 
accuracy.  
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