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Cell death is an important target for imaging the early response of tumors to treatment. 

We describe here validation of a phosphatidylserine-binding agent for detecting tumor 

cell death in vivo based on the C2A domain of Synaptotagmin-I. Methods: The 

capability of near infrared fluorophore-labeled and 99mTechnetium- and 111Indium-labeled 

derivatives of C2Am for imaging tumor cell death, using planar near infrared 

fluorescence (NIRF) imaging and single photon computed tomography (SPECT) 

respectively, was evaluated in implanted and genetically engineered mouse models of 

lymphoma and in a human colorectal xenograft. Results: The fluorophore labeled C2Am 

derivative showed predominantly renal clearance and high specificity and sensitivity for 

detecting low levels of tumor cell death (2-5%). There was a significant correlation 

(R>0.9, P<0.05) between fluorescently-labeled C2Am binding and histological markers 

of cell death, including cleaved caspase-3, whereas there was no such correlation with a 

site-directed mutant of C2Am (iC2Am) that does not bind phosphatidylserine. 99mTc-

C2Am and 111In-C2Am also showed favorable biodistribution profiles, with 

predominantly renal clearance and low non-specific retention in liver and spleen at 24 h 

after probe administration. 99mTc-C2Am and 111In-C2Am generated tumor-to-muscle 

ratios in drug-treated tumors of 4.3× and 2.2× respectively at two hours and 7.3× and 

4.1× respectively at twenty-four hours after administration. Conclusions: Given the 

favorable biodistribution profile of 99mTc- and 111In-labelled C2Am, and their ability to 

produce rapid and cell death-specific image contrast, these agents have potential for 

clinical translation. 



3

 

Detection of the early responses of tumors to therapy would allow rapid selection of the 

most effective treatment. Currently, clinical assessment of treatment response is based on 

Response Evaluation Criteria in Solid Tumors (RECIST), which define partial response 

as a reduction of at least 30% in the sum of the diameters of the target lesion (1). The 

problem for early detection of response is that these morphological changes may only 

occur weeks after the start of treatment and fail to detect response to cytostatic therapies 

(2).  

Cell death is an important target for imaging early treatment response (3), since most 

treatments induce tumor apoptosis and/or necrosis. However, there is as yet no reliable 

technique for routine imaging of cell death in the clinic (4). Phosphatidylserine, which is 

externalized on the outer leaflet of the plasma membrane bilayer in apoptosis, and is 

exposed through permeabilization of the plasma membrane in necrotic cells, can be 

detected using the 36-kDa phosphatidylserine–binding protein, Annexin-V (AnxV) (5). 
99mTc-labeled AnxV has been used to image drug-induced cell death in human tumors, 

including breast, lymphoma, lung (6) and head and neck squamous cell carcinoma (7). 

However, despite early promise, and the development of novel site-directed mutants of 

AnxV with improved biodistribution (8), problems with this agent persisted (9), including 

suboptimal pharmacokinetics and non-specific binding (10).  

We have developed a phosphatidylserine-targeted agent based on the C2A domain of 

Synaptotagmin-I. This was first used, in animal models, in the form of a dimeric 

glutathione S-transferase (GST)-tagged construct (84 kDa) for imaging tumor cell death 

using MRI (11,12) and, in 99mTc-labeled form, for imaging tumor cell death (13) and 

cardiac ischemia using SPECT (14), and, in 18F-labeled form, for imaging cell death in a 

rabbit lung cancer model using PET (15).  

More recently, we have used the isolated C2A domain, (16), which is  much smaller  

(16 kDa), giving better tissue access and clearance, in which we have introduced a site-

directed mutation (S78C; C2Am) that allows site-specific modification with an imaging 

label. Studies in vitro demonstrated that this probe showed a four-fold lower binding to 

viable cells and consequently improved specificity for detecting apoptosis and necrosis, 

when compared with AnxV (16).  Moreover, removal of the GST tag, which is likely to 

be immunogenic, should facilitate translation of this agent to the clinic. 
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We have evaluated here the speed of detection, specificity, sensitivity and 

biodistribution profiles of AlexaFluor™750- and 99mTc- and 111In-labeled C2Am, for 

NIRF and SPECT imaging, respectively, of cell death in implanted models of lymphoma 

(EL4) (11) and colorectal cancer (Colo-205) (17), and in a spontaneous Myc-driven 

model of Burkitt’s lymphoma (Eμ-myc) (18). We also describe a site-directed mutant of 

C2Am (iC2Am, D108N) that is inactive in phosphatidylserine binding, which we used to 

demonstrate that there were only low levels of non-specific probe retention. 

MATERIALS AND METHODS 

Probe expression and chemical labeling 

C2Am and iC2Am were expressed, purified and labeled using AlexaFluor™-750 C5-

maleimide, maleimide-HYNIC (for 99mTc) and maleimide-DOTA (for 111In) as described 

previously (16). Successful conjugation was confirmed using electrospray ionization 

mass spectrometry (ESI-MS) and radio HPLC (Supplemental Figs. 1-2). 

Phosphatidylserine binding activity of the conjugates was confirmed by surface plasmon 

resonance measurements (Supplemental Table 1). 

Cell culture 

EL4, murine lymphoma and Colo-205, human colorectal cells (ATCC) were cultured 

in RPMI medium (Life Technologies) containing 300 mg/L L-glutamine and 10% (v/v) 

fetal bovine serum (FBS, PAA Laboratories).  Cell death was induced in EL4 cells by 

treatment with 15 µM etoposide (Pharmachemie BV) for 24 h at 37 °C. An automated 

analyzer (Vi-Cell™, Beckman Coulter) was used to monitor cell number and viability. 

Animals and tumor models 

EL4 or Colo-205 cells (>95% viability) were washed, re-suspended in chilled PBS, 

and implanted (5x106 cells) subcutaneously under isoflurane anesthesia, in the flank of 

C57BL/6 (BL6) or between the shoulder blades of BALB/c Nude (NU) mice (8-12 week 

old females, from Charles Rivers Laboratories) respectively. Tumors were allowed to 
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develop for between 8−13 days. Animals bearing EL4 tumors were treated with 67 mg/kg 

body weight etoposide (i.p.), or solvent vehicle, at 24 h prior to imaging. BALB/c Nude 

mice bearing Colo-205 tumors were treated with 250 mg/kg body weight 5-fluorouracil 

(Sigma-Aldrich, 5-FU; i.p.) or solvent vehicle, at 24 h prior to imaging. Eμ-myc animals 

(Jackson Laboratories) were monitored daily and enrolled into the study when palpable 

lymph node masses were detectable (18). The mice were treated with 200 mg/kg body 

weight cyclophosphamide (Sigma-Aldrich; i.p.) 24−48 h prior to imaging.  

Biodistribution and NIRF imaging studies  

C2Am-AF750, iC2Am-AF750 or AnxV-750 (Annexin-Vivo™, Perkin Elmer) were 

administered at 0.10 μmol/kg (10 mL/kg, i.v.) to tumor-bearing NU mice. Imaging in 

vivo and/or ex vivo was performed using Li-Cor Pearl-Impulse™ or Xenogen IVIS200™ 

(Perkin Elmer) small animal imaging systems. Li-Cor Imaging Studio software (version 

3.1.4) or Perkin Elmer Living Image (version 3.2) were used for image analysis.  

Biodistribution and SPECT studies 

Twenty-four hours after chemotherapy treatment, tumor-bearing mice received an 

injection (10 mL/kg, i.v.) of either 99mTc–C2Am (EL4 and Eμ-myc models) or 111In–

C2Am (Colo-205 model) at 7.5 nmol/kg (0.12 mg/kg, or ca. 1.5-2 MBq per mouse). 

SPECT studies were conducted in separate cohorts of mice 2 h after administration of 

radiolabelled C2Am at 75 nmol/kg, i.v., 1.2 mg/kg or ca. 15-20 MBq per mouse. Specific 

activities were 10-11.5 MBq/nmol for both 99mTc- and 111In-labeled C2Am. Injected 

doses were determined using a Dose Calibrator (ISO-MED 2000, MED Nuklear-

Medizintechnik GmbH) and corrected for decay.  

Study approval 

All animal experiments were performed in compliance with a project license issued 

under the Animals (Scientific Procedures) Act of 1986 and were designed with reference 

to the UK Co-ordinating Committee on Cancer Research guidelines for the welfare of  

animals in experimental neoplasia (19).  Protocols were approved by the Cancer Research 

UK, Cambridge Institute Animal Welfare and Ethical Review Body. 
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Additional information is available in Supplemental Materials and Methods. 

RESULTS 

Preparation and characterization of imaging probes 

iC2Am-AF750 was produced by site-directed mutagenesis (D108N) of C2Am.  This 

mutation abolishes binding to phosphatidylserine (20). C2Am and iC2Am were prepared 

and labeled with Alexa Fluor™-750 (C2Am-AF750, iC2Am-AF750), as described 

previously (16).  The proteins were fully modified, yielding a single molecular species on 

ESI-MS (Supplemental Fig. 1A-B). C2Am-AF750, C2Am-HYNIC and C2Am-DOTA 

bound phosphatidylserine with similar affinities (Kd~60-90 nM; Supplemental Table 1), 

as determined using surface plasmon resonance measurements (16). As expected, 

iC2Am-AF750 showed no binding.  C2Am was also modified stoichiometrically with 

maleimide-HYNIC or maleimide-DOTA, generating single species of MW 16426.5 Da, 

and 16749.8 Da, respectively, as determined by ESI-MS (Supplemental Fig. 1C-D). 

C2Am-HYNIC was loaded with 99mTc using methods described previously (21). C2Am-

DOTA was loaded with 111InCl3 as described in Supplemental Methods. The conjugates 

were analyzed by HPLC (Supplemental Fig. 2). Radiolabeling efficiency was >94%.  

Fluorescence imaging of tumor cell death in vivo  

There was increased retention of C2Am-AF750 in drug-treated as compared to 

untreated EL4 (Fig. 1A, 2A), Colo-205 (Fig. 1B, 2B) and Eμ-myc tumors (Fig. 1C, 2C) at 

24 h after probe injection. Anx-AF750 showed no increase in retention following drug 

treatment in any of the tumor models. Although Anx-AF750 fluorescence was greater 

than that of C2Am-AF750 in the EL4 tumor model this was not increased by drug 

treatment. The retention of iC2Am-AF750 in drug-treated tumors was less than of 

C2Am-AF750 in all of the tumor models and there was no significant difference in the 

retention of iC2Am-AF750 in untreated or treated Colo-205 (Fig. 2B) and Eμ-myc 

tumors (Fig. 2C).  In drug-treated EL4 tumors there was an increase in tumor 

. 
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fluorescence in animals injected with iC2Am-AF750 (Fig. 2A), however the levels were 

3× lower than with C2Am-AF750. This may be due to a treatment-induced increase in 

the enhanced permeability and retention (EPR) effect in this tumor model (22). The 

heterogeneous skin pigmentation of Eμ-myc mice prevented accurate optical imaging in 

vivo and therefore for this  tumor  model fluorescence was measured ex vivo (Fig. 2C),  

which may explain the better contrast observed. All three tumor models showed a 

correlation between whole tumor mean C2Am-AF750 fluorescence intensities and CC3 

staining of histological sections obtained post mortem (Fig. 2A-C, lower panels). This 

correlation was confirmed microscopically (Fig. 3). In Eμ-myc tumors C2Am-AF750 

fluorescence was detected from regions where CC3 staining occupied as little as 1-2% of 

the ~1 mm2 regions of interest (Fig. 3C).  Differences in the relationship between 

fluorescence intensity and the levels of cleaved caspase-3 in the different tumors (Fig. 3) 

may reflect differences in phosphatidylserine exposure. 

Cell binding experiments with 99mTc-C2Am 

As we were unable to detect treatment response with AnxV-AF750, despite using the 

most recent agent and according to the manufacturer’s instructions, radionuclide imaging 

studies were performed solely with C2Am labeled with either 99mTc or 111In.  There was a 

significant increase in the radioactivity retained by washed cell pellets prepared from 

suspensions of EL4 lymphoma cells that had been treated with etoposide (15 μM, for 24 

h) and then incubated with 99mTc-C2Am in the concentration range of 1-100 nM (Fig. 

4A).  Cell viability decreased from 95% to 75% in these drug-treated cells, as assessed by 

trypan blue dye exclusion.

Biodistribution 

99mTc-C2Am and 111In-C2Am showed favorable biodistribution profiles with 

predominantly renal clearance  (Table 1). 99mTc-C2Am had blood half-lives in EL4 

tumor-bearing animals of 7.2±0.6 h and 9.7±0.1 h in etoposide-treated and untreated 

animals, respectively. 111In-C2Am showed similar half-lives in Colo-205 tumor-bearing 

animals of 11.4±1.2 h and 8.0±0.8 h in 5-FU-treated and untreated animals, respectively. 

Tumor-to-blood ratios increased progressively in chemotherapy-treated EL4 tumor-
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bearing animals, from 1.71±0.40 at 2 h to 6.96±1.08 at 24 h for 99mTc-C2Am and from 

1.38±0.65 at 2 h to 5.43±0.96 at 24 h for 111In-C2Am in Colo-205 tumor-bearing animals. 

There was significantly greater retention in tumors and spleens (Fig. 4B, P<0.05) from 

etoposide-treated EL4 tumor-bearing animals, from as early as 2 h following drug 

administration. The spleens showed significant increases in the levels of cell death 

following drug treatment (Supplemental Fig. 3).  

The biodistribution profiles of C2Am-AF750 and iC2Am-AF750 (Supplemental Table 

2) were similar to those of 99mTc-C2Am and 111In-C2Am (Table 1).  As with 99mTc-

C2Am and 111In-C2Am, C2Am-AF750 generated EL4 tumor-to-muscle contrast from as 

early as 2 h (2.2±0.49) and up to 24 h (3.63±0.4) post injection of the imaging agent 

(Supplemental Table 2).

SPECT imaging of tumor cell death in vivo using 99mTc-C2Am and 111In-C2Am 

Images were acquired from animals with implanted Colo-205 (Fig. 5A) tumors and  

from tumor-bearing Eμ-myc mice (Fig. 6A) prior to and 24 h after treatment with 5-FU 

or cyclophosphamide, respectively, and 2 h after injection of 111In-C2Am or 99mTc-C2Am, 

respectively. Corresponding studies with 99mTc-C2Am in etoposide-treated EL4 tumors 

are shown in Supplemental Fig. 4. Maximum activity was observed in the kidneys and 

bladder, consistent with a predominantly renal excretion route (Table 1). Renal retention 

was mostly cortical (see Supplemental Fig. 4A). In 5-FU-treated Colo-205 tumors (Fig. 

5) 111In-C2Am uptake was increased by ~1.6× (Fig. 5B, upper panel, P<0.05), reflecting 

a similar increase (1.65×) in the percentage of dead cells determined histologically in 

tumor sections (Fig. 5B, lower panel, P<0.05).  In Eμ-myc mice, 99mTc-C2Am detected 

baseline levels of cell death in cervical tumors (Fig. 6A, left panel) and there was a ~1.9× 

increase (P<0.0001) in tumor signal post treatment (Fig. 6B, upper panel). Both cervical 

(Fig. 6A, ①) and axillary (Fig. 6A, ②) node tumors were clearly visible (Fig. 6A, arrow 

heads) following treatment (see Supplemental video 1). Histological analysis of tumor 

sections showed a similar increase in tumor cell death post treatment (~3×; P<0.05) (Fig. 

6B, lower panel).  In EL4 tumors 99mTc-C2Am uptake increased post-treatment by ~1.3× 

(P<0.05), paralleling the modest increase and reflecting the wide variation in the levels of
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cell death in this tumor model (~1.6×; P<0.05). Treatment response was also observed in 

the spleen and salivary glands of these etoposide-treated animals (Supplemental Fig. 4 

and Supplemental video 1). 

DISCUSSION 

Phosphatidylserine exposed by dying cells constitutes a temporally stable and 

abundant biomarker for detection of cell death (23).  We have been developing the C2Am 

domain of Synaptotagmin-I, which binds phosphatidylserine with nanomolar affinity, as a 

cell death imaging agent (16). Previous work with mouse lymphoma (EL4) and human 

triple-negative breast cancer (MDA-MB-231) cells demonstrated that C2Am has a higher 

specificity for binding to dead and dying cells in vitro, when compared with AnxV (16). 

We have demonstrated here, in vivo, that 99mTc-C2Am and 111In-C2Am have favorable 

biodistribution profiles with predominantly renal clearance (Table 1, Supplemental Fig. 

4), and that C2Am was capable of detecting cell death in vivo with high sensitivity and 

specificity, in three mouse models, from as early as 2 h post administration.  

Binding of C2Am-AF750 was closely correlated with tumor cell death (Figs. 1−3), 

detecting cell death in regions with levels of CC3 staining as low as ~2% (Fig. 2B, lower 

panel; Figs. 3A & 3C, right panels). Although iC2Am-AF750 showed a small increase in 

uptake in EL4 tumors following treatment  (Fig. 2A, upper panel), this likely reflects an 

increased EPR effect following treatment (24). This effect was not observed in the other 

two tumor models, Eµ-myc and Colo-205 (Fig. 2B & 2C, upper panels), possibly due to 

lower levels of cell death in these models leading to better clearance of the probe from 

the tumor. 

111In-C2Am detected a treatment response in Colo-205 tumors within 2 h of probe  

administration, where the 60% increase in probe retention in treated tumors paralleled the 

increase in cell death determined histologically in tumor sections obtained post mortem, 

from 1.59±0.17% to 2.62±0.48% (Fig. 5B, P<0.05). In Eµ-myc tumors treatment resulted 

in a greater proportional increase in cell death (3×) and consequently a greater increase in 
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99mTc-C2Am retention (1.9×) (Fig. 6).  In EL4 tumors, despite high levels of pre-existing 

cell death and a modest increase post treatment (1.6×) (Supplemental Fig. 4B), 99mTc-

C2Am was nevertheless able to detect a significant treatment response (1.3× increase in 

probe retention, P<0.05, Supplemental Fig. 4B).  The capability of C2Am to detect small 

percentage increases in cell death suggests that C2Am should be capable of detecting 

treatment response in the clinic.  For example, levels of cell death can range from <2% 

prior to treatment to 5 15% post treatment (25).  These data also suggest that C2Am  

would be effective clinically in those tumors that show high levels of pre-existing cell 

death, such as non-Hodgkin lymphoma, where high levels of spontaneous cell death 

(necrosis) have been reported in 25% of patients, frequently correlating with advanced 

disease and poor prognosis (26). Increased uptake of 99mTc-C2Am was also observed in 

the spleen and salivary glands of etoposide-treated animals (Fig. 4B, Supplemental Fig. 

4A) and can be explained by etoposide-induced cell death in these tissues (27-28).  

Several imaging agents have been developed to detect tumor cell death, some of which 

have progressed to the clinic. Annexin-V (AnxV) binds phosphatidylserine with high 

affinity (5) and has been used widely as a preclinical tool for detecting cell death, both in 

vitro and in vivo. However, binding of AnxV to tumor tissue following therapy is thought 

not to be entirely phosphatidylserine-specific, possibly explaining the limited success of 

AnxV in the clinic, which has been hampered by high levels of non-specific binding to 

viable tissues, including the liver, gut and kidneys (29). Modifications to AnxV have 

shown limited improvements in biodistribution or contrast agent performance in vivo (8).  

Duramycin is a 19-amino acid peptide that binds with high affinity and specificity to the 

phosphatidylethanolamine externalized by dying cells (30). 99mTc-labeled duramycin has 

been used recently to detect response to chemotherapy in a mouse model of colorectal 

cancer, where accumulation of the agent was found to correlate with markers of cell 

death (31). However, the clinical utility of duramycin has yet to be demonstrated. 

Imaging agents that target cleaved and activated caspase-3 (CC3), an executioner caspase 

in the apoptosis pathway, have also been developed for detection of cell death in vivo 

(25) and a probe capable of detecting CC3 has progressed to clinical trials (32).  However,
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since CC3 is a transient biomarker of cell death, the choice of temporal imaging window 

following treatment is critical (33). Furthermore CC3-targeted imaging agents are unable 

to identify caspase-independent modes of cell death, such as necrosis (34), which is often 

present following chemo or radiotherapy. 18F-ML-10, which appears to bind to dead cells 

by an unknown mechanism, has shown favorable safety and biodistribution profiles in 

humans (35). In a clinical study in ten patients with brain metastasis, there was enhanced 

retention (up to 2-fold) of 18F-ML-10 post radiotherapy and a good correlation between 

probe uptake and tumor size reduction (36). However, there was no histological 

demonstration of increased cell death and the average reported decrease in tumor size 

post therapy was substantial (ca. 60% reduction). Therefore, the utility of 18F-ML-10 for 

detecting cell death in the most common clinical scenarios, in which therapy induces low 

levels of tumor cell death, has yet to be demonstrated.  

CONCLUSION  

We have demonstrated the capability of C2Am to detect tumor cell death in vivo as  

early as 2 h after administration. Radiolabelled C2Am derivatives showed favorable 

biodistribution profiles, with predominantly renal clearance and there was a close 

correlation between C2Am binding and histological markers of cell death. The capability 

of C2Am to detect relatively modest increases in cell death suggests that these agents will 

have sufficient sensitivity to detect tumor cell death in the clinic,  
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FIGURE 1. Near Infrared Fluorescence (NIRF) imaging of cell death. Imaging in vivo of 

untreated and treated EL4 (A), Colo-205 (B) and Eµ-myc (C) tumors.  Images are 

overlays of bright-field images and 800 nm-channel fluorescence signals, acquired 24 h 

after C2Am-AF750 administration.  
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FIGURE 2. NIRF imaging of cell death. Tumor mean fluorescence intensity (MFI) for 

untreated (open bars) and treated (filled bars) EL4 (A), Colo-205 (B) and Eµ-myc (C) 

tumors. Data for the Eµ-myc model was acquired ex vivo, due to skin pigmentation 

artifacts. Lower panels show correlation of C2Am whole tumor MFIs with corresponding 

cleaved caspase-3 (CC3) staining, measured in sections of excised EL4 (A), Colo-205 (B) 

and Eµ-myc (C) tumors. Drug-treated (open circles, 48 h post treatment) and untreated 

(filled circles). **P<0.01, ***P<0.001, n=3/group, values are mean ± SD. 
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FIGURE 3. Maps of CC3 staining (left column), C2Am-AF750 fluorescence (middle 

column), and correlation (right column) of fluorescence intensities of regions of interest 

(ROIs; grids indicated in the left column), with staining for CC3 in the same ROIs. 

Tumors were excised 24 h after C2Am-AF750 administration and 48 h after drug 

treatment. The correlation coefficients (R) of the linear fits to the data (A-C, right 

column) are shown. Arrows in A (left column) indicate decellularized regions of tissue. 

Sections from EL4 (A), Colo-205 (B) and Eµ-myc (C) tumors. 
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FIGURE 4.  (A) Binding of 99mTc-C2Am to EL4 cells. Labeling of drug-treated and 

untreated cells is expressed as a percentage of the total 99mTc activity retained by the cell 

pellets. **P<0.01, ***P<0.001, n=3/group, values are mean ± SD. (B) Retention of 
99mTc-C2Am in tumors (top panel) and spleens (lower panel) from EL4 tumor-bearing 

mice, in untreated () and drug-treated () animals, at the indicated times after probe 

administration. Tissue retention is expressed as % of injected dose per gram of tissue 

(%ID/g of tissue). *P<0.05, n=3/group, 2-way analysis of variance, with Bonferroni post-

test correction, was used for group comparisons. Values are mean ± SD. 
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FIGURE 5. SPECT imaging of cell death in vivo in Colo-205 tumors. Imaging of 111In-

labeled C2Am was performed 2 h after probe administration, and 24 h after drug 

treatment. (A) SPECT-CT fusion images of a representative untreated Colo-205 tumor-

bearing mouse (A, left panel) and a 5-FU treated animal (A, right panel), 2 h post 

administration of 111In-C2Am (A). Tumor location is indicated by the arrowheads.  (B) 

Tumor retention (% ID/mL) (upper panel) and CC3 staining (lower panel) in untreated 

and 5-FU-treated tumors. *P<0.05, n=3−4 tumors/group (B).  
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FIGURE 6. SPECT imaging of cell death in vivo in Eµ-myc tumors. Imaging of 99mTc-

labeled C2Am was performed 2 h after probe administration, and 24 h after drug 

treatment. (A) SPECT-CT fusion images of representative Eµ-myc mice before (left) and 

after (right) cyclophosphamide treatment. Tumors in the neck, axillary region and chest 

cavity were visible (arrowheads, upper panel) and in axial sections across cervical (①, 

middle panel) and axillary (②, lower panel) planes. The red circles in (B) correspond to 

the %ID/mL retention values for tumors of the animals shown in (A). CC3 staining (B, 

lower panel) in untreated and drug-treated tumors. *P<0.05, ***P<0.0001, n=6−7 

tumors/group (A); n=6−13 tumors/group (B).  Abbreviations: BT, AT, before and after 

treatment, respectively. See Supplemental Data for statistical analysis. 3D rendering of 

the SPECT data are shown in Supplemental video 1. 
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Table 1 – Biodistribution of 99mTc-C2Am in tumor-bearing EL4 mice (A) and of 111In-
C2Am in tumor-bearing Colo-205 mice (B), 24 h after etoposide and 5-FU treatment 
respectively and at the indicated times after probe administration. n=3/group. 

Tissue 2 hours 24 hours 
(%ID/g) Mean SD Mean SD 

A
Muscle 0.39 0.05 0.19 0.02 

Blood 1.02 0.08 0.20 0.01 

Tumor 1.74 0.39 1.41 0.21 

Spleen 3.30 0.47 2.34 0.29 

Liver 6.17 0.98 5.14 0.90 

Kidney 194.2 45.9 157.4 57.0 

Tumor-to-blood 1.71 0.40 6.96 1.08 

Tumor-to-muscle 4.5 1.15 7.3 1.40 

B Mean SD Mean SD 

Muscle 0.32 0.07 0.18 0.02 

Blood 0.50 0.22 0.13 0.02 

Tumour 0.69 0.09 0.72 0.10 

Spleen 0.92 0.17 1.18 0.20 

Liver 2.01 0.34 2.17 0.53 

Kidney 310 12 275 22 

Tumour-to-blood 1.38 0.65 5.43 0.96 

Tumour-to-
muscle 

2.16 0.48 4.09 0.88 
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Supplemental Methods 

Probe expression and chemical labeling 

iC2Am (D108N) was produced using a QuickChange Site-Directed Mutagenesis kit (Stratagene). 

C2Am was labeled with hydrazinonicotinic acid (HYNIC) using methods similar to those used for 

fluorophore labeling. Briefly, an aliquot of the protein (1 mg/mL) was reduced in HEPES-buffered 

saline (HBS buffer: 20 mM HEPES, 150 mM NaCl, pH 7.4) containing 10 mM dithiothreitol (DTT) 

at room temperature for 30 min. The reduced protein was then washed with ice cold HBS in a 5-kDa 

Vivaspin™ (Sartorius) and concentrated to 1 mg/mL, prior to the addition of maleimide-HYNIC 

(Solulink) at a 5-fold molar excess in DMSO. Reaction was conducted at room temperature for 1 h 

with stirring (200 r.p.m) and quenched by addition of glycine (0.6M, pH 9.2) to 0.05 M. A similar 

method was used to conjugate C2Am to maleimide-DOTA (Macrocyclics B-272).  

Active (C2Am) and inactive (iC2Am) forms of C2Am-AF750 were prepared using Alexa-

Fluor®750 C5-maleimide (AF750, Invitrogen™, λexc=750 nm, λem=775 nm), following the method 

described in (1). Briefly, the protein was reduced in HBS buffer containing 10 mM DTT, for ½ h at 

room temperature. The protein was then washed in a 5-kDa Vivaspin concentrator in HNE buffer (20 

mM, HEPES, 100 mM NaCl, 5 mM EDTA, pH 7.4). The protein was used at a concentration in the 

range 50-100 μM, and an approximately 10-fold molar excess of the fluorescent maleimide dye was 

added to the reaction mixture. The reaction was allowed to proceed at 4 °C for 16 h. The modified 

protein was separated from unreacted dye by gel filtration using a Hi-Load Superdex 75 26/60 

preparation grade column (GE Healthcare, Amersham, UK).  

Probe radiolabeling with 99mTc 

C2Am-HYNIC was labeled with 99m-Tc pertechnetate (99mTc-C2Am), eluted from an Ultra-

Technekow™ DTE (Covidien) and supplied at 1.5-2.0 GBq/mL by the Department of Nuclear 

Medicine (Cambridge University Hospitals), as described previously (2). To 50 µL of C2Am-HYNIC 

(715 nmol in 115 mM tricine buffer, pH 6±1), 200 µL of 0.9% degassed saline were added, followed 

by 20 µL of pertechnetate (ca. 40 MBq) and 20 µL of degassed stannous tricine solution (0.17 mg/mL 

SnCl2, 6.7 mg/mL tricine and 0.9% NaCl) and the reaction allowed to proceed at room temperature 

for 10 min. 
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Probe radiolabeling with 111In 
C2Am-DOTA (60 μg; 20 μL) was labeled by adding 20 μL of acetate buffer 0.2 M pH 5.5, 8 μL 1 

M pH 5.5 and 40-50 μL (30–40 MBq) of high purity 111InCl3 (supplied at 0.8-1 GBq/mL by the 

Department of Nuclear Medicine, Cambridge University Hospitals) at 37 °C for 30 min, with orbital 

shaking (600 r.p.m.). Free 111In was removed using a 5-kDa cut-off spin Amicon-ultra filter 

(Millipore).  

All C2Am conjugates were washed and concentrated using Vivapsin concentrators and analyzed 

by Electrospray Ionization Mass Spectrometry (ESI-MS) (1) (Supplemental Figure 1). 

Cell binding assays using 99mTc-C2Am 

Etoposide-treated (15 µM, 24 h) or untreated EL4 cells were washed in ice-cold HBS+ buffer (HBS 

with 2 mM CaCl2), pelleted (600g, 4°C, 4min), and re-suspended in the same buffer at 1x107 

cells/mL, incubated with 99mTc-C2Am (1-100 nM), at 37 °C for 30 min in an orbital shaker (250 

r.p.m.).  The cells were then washed in cold HBS+ buffer 3 times, prior to measurement of

radioactivity in the cell pellets (ISOMED 2100 well counter, MED Nuklear-Medisintechnik GmbH).

SPECT studies 

A NanoSPECT system (Bioscan Inc.) with 4 detector heads (230×215 mm; sodium iodide crystals) 

with multiple pinholes (36×2.0mm) was used. A minimum of 50,000 counts/projection were collected 

and the data reconstructed to give an isotropic resolution of 300 μm. CT images were acquired by 

helical acquisition using a microtomography system (NanoPET/CT, Mediso) and reconstructed using 

a modified cone beam filtered back projection method using a Butterworth filter to give an isotropic 

resolution of 212 μm. SPECT and CT images were fused and radioactivity quantified using 

VivoQuant TM 1.22 (InviCRO), and rendered in 3D for detailed visualization. 

Immunohistochemistry and ex vivo imaging of tissue fluorescence 

Excised tissues were weighed, radioactivity measured as described above and approximately half 

of each specimen was placed in 10% neutral buffered formalin (NBF, 10%, Acquascience). Unstained 

tissue sections were de-waxed and rehydrated and slides mounted using Prolong Gold™ antifade 

reagent (Life Technologies), cured for 24 h at room temperature, prior to microscopic NIRF imaging 
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at a resolution of 21 μm, using a Odyssey™ (Li-Cor) flat-bed scanner. Tissues fixed for 24 h in NBF 

were transferred into 70% ethanol and sections (3-μm) cut using a rotary microtome. Hematoxylin 

and eosin (H&E) staining was performed on a Leica ST5020/CV5030 workstation (Leica Biosystems). 

For cleaved-caspase-3 (CC3) staining, a rabbit monoclonal anti-CC3 antibody (Cell Signaling 

Technology™ Inc., used at a 1:100 dilution) and a donkey anti-rabbit secondary biotinylated antibody 

(Jackson ImmunoResearch Laboratories Inc., diluted 1:250 in BondTM diluent) were used with a

Leica Microsystems BondTM-Max (Leica Biosystems) system using a LM BondTM Intense-R 

Detection Kit, which is based on streptavidin-horse-radish-peroxidase for detection of the secondary 

antibody. An avidin-biotin blocking kit was used (Vector Laboratories Inc). A hematoxylin nuclei 

counterstain was used. A Zeiss Mirax™ Scan 150 (Carl Zeiss) with a 20× objective was used to 

digitize tissue images (at 0.369 μm/pixel), which were stored using a SpectrumTM digital pathology 

information database (Aperio™). Aperio’s ImageScope™ software was used for image analysis. 

Statistics 

Data are expressed as mean ± SD, unless stated otherwise. Two-tailed Student T-test, with Tukey’s 

post-hoc non-parametric correction, was used for pairwise comparisons. Two-way ANOVA with 

Bonferroni post-test correction was used for multi-parametric analysis (GraphPad Prism version 5, 

Sigma Software). P<0.05 was considered statistically significant. Statistical analysis of SPECT 

imaging data was performed by the Bioinformatics Core of the CRUK Cambridge Institute (see 

Supplemental Materials and Methods). 

Statistical Analysis of SPECT data (Figure 6). 

Some animals could only be imaged either before or after treatment. For this reason, a mixed 

statistical model was fitted to the data in Figures 6, the structure of which is shown below. There were 

6 mice in total, one of which had only pre-dose data and one of which had only post-dose data. 
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LA, RA: left, right axillary tumors, respectively; CN, LN, RN: central, left, right cervical nodal 
tumors, respectively.   

Fixed effects for dose, protein and the dose*protein interaction were considered. Random effects were 

fitted for dose nested within tumor nested within mouse. During the model building process, random 

effects were compared using restricted maximum likelihood (REML) and fixed effects were 

compared using maximum likelihood (ML). The final model was fitted using REML. The analysis 

was conducted in R software vs. 2.14.1, using the nlme package (version 3.1.102). The R output for 

the final model is given below.  

In a mixed effect model, usually only the parameter estimates for the fixed effects are interpreted. The 

results of the fixed effects part of the model are given in Table A. 

Table A Fixed effects 

Parameter Reference level Estimate Standard error 95% 
confidence 
interval 

P-value

Intercept - 0.218 0.065 0.09 to 0.35 0.0028 
Protein C2Am 0.127 0.098 -0.06 to 0.32 0.2628 
Dose Post-dose 0.034 0.043 -0.05 to 0.12 0.4398 
Protein*Dose C2Am, Post-dose 0.284 0.079 0.13 to 0.44 0.0022 

The results in Table A can be interpreted as follows: 

• The difference between the pre- and post-treatment stages is 0.318 (0.034+0.284) SUV units

for C2Am.

Mouse 

Tumour: LA Tumour: RA Tumour: CN Tumour: LN Tumour: RN 

Pre- Post-
 

Pre- Post-
 

Pre- Post-
 

Pre- Post-
 

Pre- Post-
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Residual plots were used to check for normality of the model residuals and these were satisfactory. 

Post-hoc tests were performed to compare pre- and post-treatment measurements for each protein 

separately. This part of the analysis was conducted in R 2.14.1, using the multcomp package (version 

1.2.17). The results are given in Table B. The P-values were adjusted for multiple testing using a 

Bonferroni correction. 
Table B Post-hoc comparisons 

Comparison Estimated 
difference 

Standard error 95% confidence 
interval 

Adjusted 
P-value

Pre- v post-treatment for C2Am 0.318 0.067 0.19 to 0.45 <0.0001 

The difference between the pre- and post-treatment measurements was significant for C2Am. 

R output for final model: 
> #Final model
>
> m.final <- lme(Response ~ Protein + relevel(Dose,ref="Pre") + Protein*relevel(Dose,ref="Pre"),
random=~1|ID/Tumour/Dose, data=mydata, method="REML", na.action=na.omit) 
> summary(m.final)
Linear mixed-effects model fit by REML
Data: mydata

AIC      BIC   logLik 
  12.60281 27.23194 1.698597 

Random effects: 
 Formula: ~1 | ID 

(Intercept) 
StdDev: 2.22047e-05 

 Formula: ~1 | Tumour %in% ID 
(Intercept) 

StdDev:   0.2247239 

 Formula: ~1 | Dose %in% Tumour %in% ID 
(Intercept)    Residual 

StdDev:   0.1165061 0.006787696 

Fixed effects: Response ~ Protein + relevel(Dose, ref = "Pre") + Protein * relevel(Dose, ref = 
"Pre")  

Value  Std.Error DF  t-value p-value 
(Intercept)     0.21783215 0.06538123 24 3.331723  0.0028 
ProteinC2A 0.12696367 0.09751878  4 1.301941  0.2628 
relevel(Dose, ref = "Pre")Post 0.03366731 0.04261415 18 0.790050  0.4398 
ProteinC2A:relevel(Dose, ref = "Pre")Post 0.28407845 0.07943183 18 3.576380  0.0022 
 Correlation: 

(Intr) PrtC2A r(Dr=" 
ProteinC2A                                -0.670
relevel(Dose, ref = "Pre")Post            -0.326  0.218   
ProteinC2A:relevel(Dose, ref = "Pre")Post  0.175 -0.407 -0.536 

Standardized Within-Group Residuals: 
Min           Q1 Med     Q3 Max 

-0.116832335 -0.011816817 -0.002297878  0.009583274  0.196308461

Number of Observations: 50 
Number of Groups:  

ID Tumour %in% ID Dose %in% Tumour %in% ID 
6   30                       50 
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> anova(m.final)
numDF denDF  F-value p-value 

(Intercept)    1    24 66.98628  <.0001 
Protein 1     4  9.12222  0.0392 
relevel(Dose, ref = "Pre") 1    18 10.30247  0.0049 
Protein:relevel(Dose, ref = "Pre")     1    18 12.79050  0.0022 

Supplemental Figure 1.  

Analysis of imaging probes using electron spray ionization mass spectrometry (ESI-MS). 

(A) ESI spectrum of active C2Am-AF750 showed a single peak at 17271.0 Da, corresponding to the

addition of one molecule of Alexa Fluor™ 750 (+1048.4 Da) to C2Am (16222.5 Da).

(B) ESI spectrum of inactive-C2Am-AF750 (iC2Am-AF750) showed a single peak at 17269.5 Da,

corresponding to the addition of one molecule of Alexa Fluor™ 750 to iC2Am (16221.6 Da).

(C) Complete modification of C2Am with maleimido-HYNIC ligand to form C2Am-HYNIC (A). A

heavier peak (B) is seen at 15 Da above (A) but is much smaller. Peak (D) represents myoglobin

(16951.5 Da) added for calibration purposes. Note also the small heavier peak (C) (40 Da
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heavier than A), likely representing the K+ bound form of C2Am-HYNIC. 

(D) Complete modification of C2Am with maleimido-DOTA to form C2Am-DOTA (16749.8 Da).

 



Neves, AA, et al. 
(Supplemental Data) 

10 

Supplemental Figure 2.   

Analysis of 99mTc- and 111In- labeling of C2Am using gel filtration radio-HPLC. 

(A) 99mTc-C2Am-HYNIC, the dominant peak at 8.30 min in the radioactivity channel, was 99mTc-

labeled C2Am, corresponding to 8.114 min in the UV channel. Another minor peak visible at

10.48 min in the radioactivity channel is likely to be reduced pertechnetate. Tricine was visible

in the UV channel at 11.14 min. Labeling efficiency of 99mTc-labeled C2Am was 94%.

(B) 111In-C2Am-DOTA, the main species at 9.183 min in the radioactivity channel, was 111In-

labeled C2Am, corresponding to 8.594 min in the UV channel. The minor peak visible at

12.233 min in the radioactivity channel is 111InCl3. Labeling efficiency of 111In -labeled C2Am

was 97%.
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Supplemental Figure 3. Splenic response to etoposide treatment. 

(i) H&E stained spleen sections in treated and untreated BalbC/NU animals.

(ii) Analysis of CC3 staining.

(iii) Spleen cellularity decreases with treatment.

Spleen sections (ii,iii) from untreated (n=20) or treated (n=10) mice were analyzed in each group. 

*P<0.05, **P<0.005, ***P<0.001, differences between groups (i, ii) were significant t-test.
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Supplemental Figure 4.  

SPECT imaging of cell death in vivo in EL4 tumors. 

Imaging of 99mTc-labeled C2Am was performed 2 h after probe administration, and 26 h after drug 

treatment. (A) SPECT-CT fusion images of representative EL4 tumor-bearing mice before (A, left) 

and after (A, right) etoposide treatment and 2 h post administration of 99mTc-C2Am. Tumor location 

is indicated by the horizontal white line. The insets  (top left) represent kidney signal on a larger 

vertical scale. 99mTc-C2Am accumulation in the salivary glands and spleen is indicated by the thin 

arrows and arrowheads. Arrowheads (A, lower) delineate tumor edges defined on CT. The red circles 

in (B) correspond to the %ID/mL values for the tumors of the animals shown in (A). (B, lower panel) 

CC3 staining in untreated and drug-treated tumors. *P<0.05, n=3 tumors/group (A), n=8-10 

tumors/group (B).  Abbreviations: BT, AT, before and after treatment, respectively. 3D rendering of 

SPECT data are shown in Supplemental video 1. 
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Supplemental Table 1.  Surface Plasmon Resonance (SPR) analysis of imaging probes. 

kd (1/s) ka (1/Ms) KD 
(nM) Rmax 

iC2Am-AF750 N/D N/D N/D N/D 

C2Am-AF750 3.89×10-2 
±2×10-4 

7.11×105 
±4.5×103 

54.7 
±0.4 

421.7 
±0.54 

C2Am-HYNIC 9.46×10-2 
±1.3×10-3 

1.392×106 
±2×104 

68.0 
±1.4 

505.9 
±1.2 

C2Am-DOTA 1.16×10-2 
±1.1×10-4 

1.299×105 

±1.4×103 
89.3 
±0.2 

469.8 
±9.3 

Kinetic data analysis using Biacore T100 Evaluation 1.1.1 software. Concentration ranges 0-150 nM. 

Materials, methods and analysis were described previously (1). KD: thermal equilibrium dissociation 

constant (nM), ka, kd: kinetic association (1/Ms) and dissociation (1/s) constants, Rmax: maximum 

analyte binding capacity of the surface in response units (RU); values quoted are means ± standard 

deviation obtained from the fit to a 1:1 kinetic binding model. N/D-No detectable binding. 
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Supplemental Table 2 – Biodistribution of NIR-labelled imaging agents, in tumor-bearing EL4 mice, 

24 h after etoposide treatment and at the indicated times after probe injection. 

Tissue (TFI/mg) 2 hours 24 hours 
AnxV-AF750 Mean SD Mean SD 
Muscle 4.3 0.6 0.95 0.03 
Spleen 7.7 0.8 2.68 0.25 
Tumor 4.8 0.6 2.53 0.47 
Liver 13.4 0.9 4.1 0.7 
Kidney 88.9 5.6 60.0 5.0 
Tumor-to-muscle 1.12 0.21 2.66 0.50 
C2Am-AF750 Mean SD Mean SD 
Muscle 4.5 0.9 0.47 0.04 
Spleen 3.6 0.4 0.63 0.02 
Tumor 10.0 1.0 1.71 0.12 
Liver 9.8 0.8 0.63 0.03 
Kidney 161 6 38.6 1.1 
Tumor-to-muscle 2.2 0.49 3.63 0.40 
iC2Am-AF750 Mean SD Mean SD 
Muscle 6.1 1.8 0.32 0.02 
Spleen 1.6 0.3 0.32 0.03 
Tumor 4.9 0.3 0.35 0.02 
Liver 4.1 0.2 0.3 0.03 
Kidney 183 10 19.1 0.8 
Tumor-to-muscle 0.80 0.24 1.1 0.1 

TFI- total fluorescence intensity;  data reported as TFI per mg of 
wet tissue mass, collected post mortem.  
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