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ABSTRACT 
 

One important aspect of the complete physical characterization of novel viscoelastic materials is the assessment of their 

response on short timescales. Optical tweezers, equipped with a fast quadrant photodiode, aid in fulfilling this task by 

providing high-frequency viscoelastic information about the sample. In passive microrheology, this is normally achieved 

by extracting rheological information from the thermal motion of an optically trapped bead embedded in a test fluid. 

Here we present the calibration and use of optical tweezers to study the formation of thermally reversible DNA 

hydrogels. We complement our results with rheological data from dynamic light scattering, video microscopy and 

conventional bulk rheology. Merging experimental data from different techniques allows us to study the viscoelastic 

behavior of these DNA networks over a wide frequency-band and the scaling of the complex viscoelastic modulus at the 

two frequency extremes. By analyzing the high-frequency behavior of our transient network, we prove the semi-flexible 

polymer nature of DNA and provide an estimate of its persistence length. 
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1. INTRODUCTION  

 
Ever since the pioneering work of Ashkin et al.,1 optical tweezers (OT) have found wide use in studying the mechanics 

of biological systems. Confining micron-sized colloids inside a harmonic potential is a key feature of optical trapping. 

Block et al.2 used this characteristic of single-beam OT to show the intermittent movement of a kinesin protein along 

microtubules. In another biological assay, Wang and co-workers3 demonstrated the stretching of single-stranded (ss) 

DNA by optically manipulating a dielectric bead attached to one end of the molecule. Micromanipulation using light 

proved its effectiveness and hence became an indispensable tool for probing the internal structure of new materials. 

 

The term “microrheology” encompasses many techniques, all of which involve analyzing the trajectory of a particle in 

order to extract rheological information about its surrounding medium. Common ways of obtaining and analyzing this 

trajectory are video recording by a high-speed camera4 or back focal plane (BFP) interferometry using a quadrant 

photodiode (QPD).5 These two methods yield consistent data6 and represent a form of passive microrheology (MR), 

where the thermal motion of an embedded particle yields a time-fluctuating positional signal. Data conversion then 

produces the bead’s mean-squared displacement (MSD) and position-autocorrelation function (PACF). This conversion 

allows calculating the complex viscoelastic modulus in Laplace space via the generalized Stokes-Einstein relation 

(GSER):7 
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where kBT is the thermal energy, a stands for the radius of the probe-bead and the term in pointed brackets represents the 

Laplace transform of the MSD at a frequency s. Equation (1) is a direct consequence of the fluctuation-dissipation 

theorem, where the velocity-autocorrelation function of a bead obeys the overdamped Langevin equation. Directly 

calculating the Laplace transform of a positional signal presents difficulties as it tends to induce large artefacts when 

applied to a finite non-periodic signal. This prompted the search for an alternative approach to the data analysis. Evans et 

al.8 proposed an elegant method by converting the MSD directly from real to Fourier space. In computational terms, this 

method had the advantage of using optimized FFT routines, which circumvented the need for direct integration known to 

cause substantial truncation errors. These errors became more apparent in the elastic response of the measured system.
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DNA Sequences 

 

SS 1                   5’-ATC ACA GTT TTT GGA TCC GCA TGA TCC ATT CGC CGT AAG TA-3’   

SS 2                   5’-ATC ACA GTT TTT ACT TAC GGC GAA TGA CAC CGA ATC AGC CT-3’    

SS 3                   5’-ATC ACA GTT TTA GGC TGA TTC GGT GTG ATC ATG CGG ATC CA-3’  

  

SS 4                   5’-CTG TGA TTT TTT GGA TCC GCA TGA TCC ATT CGC CGT AAG TA-3’   

SS 5                   5’-CTG TGA TTT TTT ACT TAC GGC GAA TGA CAC CGA ATC AGC CT-3’    

SS 6                   5’-CTG TGA TTT TTA GGC TGA TTC GGT GTG ATC ATG CGG ATC CA-3’ 

 

 

Evans and co-workers proposed oversampling as a possible way of overcoming the limitations associated with a finite 

sampling rate, where the latter comprised artefacts originating from the interpolation scheme and the Nyquist limit. 

Therefore, we chose Evans’ method in the analysis section of this manuscript. 

Unlike active MR, involving oscillatory driving of a probe-bead, passive MR merely tracks the path of the bead as it 

diffuses through the system of interest. While non-perturbing, this approach has its limitation since the signal-to-noise 

ratio is much lower in stiff samples. Nevertheless, due to its high sensitivity, passive MR can provide valuable 

rheological information about biological systems that exhibit non-linear frequency scaling at low strains.9 

In order to facilitate the characterization of complex fluids, we constructed a single-beam OT system, equipped with fast 

detection of the movement of a trapped bead. The absence of diffractive optics in this simplified setup does not allow the 

generation of multiple or time-shared traps. This is normally performed through the use of acousto-optic deflectors10 or 

spatial light modulators.11 Such advanced optical components enable generating an arbitrary laser beam profile, thus 

allowing spinning and sorting of particles as well as measuring cross-correlations in particle diffusion. However, 

standard OT, equipped with a temperature control and a fast position detector, make for a powerful rheological tool. That 

tool is capable of complementing existing experimental techniques, such as conventional bulk rheology (BR) and light-

scattering MR. While the latter can provide viscoelastic information over a broad frequency range, it only does so by 

estimating ensemble-averaged properties of the material. Therefore, any heterogeneities present in the sample remain 

untested explicitly. The small sample volume and the detection of a localized material response are among the strongest 

features of optical trapping using microscopic probes. 

In this paper, we first introduce the hydrogel formed by DNA nanostars and the different equipment and methods used in 

our measurements (Section 2). This is followed by information about the calibration of our newly constructed OT and 

data analysis (Section 3). Finally, we present our results obtained for the DNA hydrogel with four different techniques 

for extracting its viscoelastic properties and comment on our findings (Section 4). In particular, we show that the high- 

frequency MR data reveal characteristic relaxation times on nanoscale. 

 

2. EXPERIMENTAL DETAILS 

 
2.1 Materials 

We used two sample materials to demonstrate the suitability of four different experimental techniques for obtaining 

rheological parameters. Deionized water (purified by EMD Millipore Direct-Q, Fisher Scientific) was used in the 

calibration and testing of the newly constructed OT setup. The suitability of our setup was then tested by studying a 

DNA hydrogel sample consisting of two types of trivalent DNA nanostars (here referred to as Y- and Y’-shapes) with 

complementary ss DNA binding ends. Details of the full DNA single strands (SS 1-6), forming the Y- and Y’-shapes, are 

given in Table 1. The three SS 1-3 (or SS 4-6) were partially complementary, such that a core of the Y-shape (or Y’-

shape) formed three double-stranded (ds) DNA arms (shown in green). In addition, the 7-base-pair long ss “sticky ends” 

of the Y-shapes (blue) and Y’-shapes (red) were chosen to be complementary, such that when brought to below their 

melting temperature, they started to bind to each other forming a percolating, viscoelastic network. The flexibility of this 

network is provided by the four thymine bases (black) separating the core from the sticky end. A detailed discussion of 

the melting behavior of the cores can be found in the work of Xing et al.12  

 
Table 1. Single-stranded DNA base sequences to form Y- and Y’-shapes in each one of the DNA strands: sticky ends (Y: blue, Y’: 

red), rigid core (Y and Y’: green) and non-binding flexible linkers made of thymines (black). 

 

 

 

 

 

 

 

 



 

 

All ss DNA was purchased from Integrated DNA Technologies (IDT) and then hybridized into nanostars using Cary 300 

UV-Vis spectrophotometer (Agilent). The absorption at 260 nm was measured by ramping the temperature between 30-

80°C (nanostars) and 0-50°C (sticky ends). The concentration of each ss DNA used in the rheology experiments was 200 

µM in 1x Tris-EDTA (TE) buffer (Sigma-Aldrich) with pH 8, giving a final mass concentration of 2.5%w, 

corresponding to a concentration, at which a fully percolating gel can form.12 
 
2.2 Optical trapping 

Our homebuilt OT system is based on a Thorlabs model OTKB/M equipped with an infrared laser diode (975 nm 

wavelength and 140 mW maximum trapping power). The arrangement of the components and the trapping process are 

presented in Figure 1. 
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Figure 1. (a) Schematic representation of the OT trapping a silica probe-particle inside the DNA hydrogel sample, and its trajectory 

in time. (b) Photograph of the corresponding experimental setup and optical components used (enclosure not shown). 

We modified the base OTKB/M setup in the following way: the trajectory of the probe-bead was monitored both by a 

CMOS camera and via BFP interferometry using an InGaAs QPD (Hamamatsu, model G6849-01). The analog-to-digital 

signal conversion was carried out using a picoscope (Pico Technology, model 5443B). To facilitate temperature-

controlled measurements, we replaced the NanoMax stage from Thorlabs with a copper one. Furthermore, the hole in the 

center of the sample holder, which allows light to be transmitted, was covered by a sapphire window to minimize any 

heat loss. A Peltier unit, connected to a temperature controller, was fitted between the top of the copper stage and the 

cooling head of a fan (Corsair Components) that extracted any excess heat. We enclosed the setup, thus minimizing 

possible noise due to stray light or other electromagnetic signals, and placed the entire setup with enclosure on an optical 

table. Data acquisition was performed with different sampling rates resulting in rheological data for different frequency 

ranges. These were stitched together, thus providing us with a wide frequency response. Local heating of the probing 

bead due to absorption of the focused laser light was kept minimal by choosing a 975 nm laser and short acquisition 

times (several seconds). 

We used homebuilt flat sample chamber with 50 µL of sample and sealed it with epoxy glue to prevent evaporation. The 

target concentration of poly(L-lysine)-poly(ethylene glycol) (PLL(20kDa)-g(3.5)-PEG(2kDa)) coated silica colloids (1.5 

µm diameter, obtained from Microparticles GmbH, Germany) was typically 10-4%w. Note that the PLL-PEG surface 

coating prevented possible interactions between the probe and the DNA-network we studied.13 

2.3 Dynamic light scattering (DLS) 

DLS MR measurements were performed by a Malvern Zetasizer Nano ZSP (633 nm laser) with temperature control, 

using 200 nm azide-functionalized polystyrene particles (N3-PS; obtained from Cambridge Bespoke Colloids, UK) as 

tracer particles. In light-scattering MR, it is paramount that the tracer gives rise to single-scattering events. For this 



 

 

reason, the setup was operated in a 173°, non-invasive backscatter (NIBS) detection mode, and the probe concentration 

used was 0.01%w/v in all measurements. The scattering intensity of the tracers relative to that of the sample was in 

excess of 95% in the entire temperature range studied, thus ensuring that the probe scattering dominates the signal. 

Measurements were done with 40 μl disposable cuvettes (Malvern ZEN0040), and the measurement position and 

attenuator filters were automatically optimized for the best signal acquisition.  

The scattering-intensity autocorrelation g(2)(t) is related to the intermediate scattering function g(1)(t) via the Siegert 

relation:  

       
(2) (1) 2( ) 1 | ( ) |g t g t  ,                                                                (2) 

where β is the zero-time intercept, g(1)(t) is fitted to a multi-exponential decay function via a constrained regularization 

method (CONTIN)14 using a custom MATLAB code developed in-house. The fit minimized the noise in the 

experimental curves and smoothened them prior to conversion from real to Fourier space, ensuring high data quality. 

Furthermore, the generality of the choice of fitting ensured that the data were not pre-fitted to existing models, which 

could have induced artefacts when converting to Fourier space, as demonstrated elsewhere.15 The particle’s MSD is 

related to the intermediate scattering function by: 
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where q is the scattering vector. Finally, the MSD was converted into its Fourier space counterpart and the complex 

viscoelastic modulus was obtained from the GSER according to the method described before. 

2.4 Video particle tracking (VPT) 

Particle tracking was done on a custom-built setup16,17 based on a Nikon Eclipse Ti-E inverted microscope equipped with 

a 60x 1.2 NA Plan Apo VC objective and a CMOS Point Grey Grasshopper 3 (GS3-U3-23S6M-C, sensor Sony 

IMX174). We injected the sample into an identical flat chamber as for the OT experiments (preparation described 

above). Equal mixtures of 420 nm and 800 nm azide-functionalized polystyrene (N3-PS; Cambridge Bespoke Colloids, 

UK) particles were added to the sample to a final concentration of 10-4%w. Particle MSDs were obtained by averaging 

over 10 position-tracking acquisitions, each taken for 10 s with a frame rate of 1 kHz. Bright-field microscopy enabled 

recording cross-correlations in the intensity pattern of the particles’ Airy diffraction disks. From these we extracted the 

particles’ positions as a function of time. Matlab routines, developed in-house, were used to convert the generated bead 

displacements into MSDs that were then transformed into the elastic G’(ω) and viscous G’’(ω) moduli. 

2.5 Shearing by conventional bulk rheology (BR) 

Oscillatory shear-measurements were performed in a stress-controlled bulk rheometer (MCR 501, Anton-Paar, Physica) 

using a cone-and-plate geometry (CP25-2TG, 25 mm diameter base and 2° cone angle). Frequency sweeps were run for 

two different temperatures, 10°C and 20°C. A custom-made vapor trap was used to minimize evaporation effects. 

 

3. MICRORHEOMETER CALIBRATION AND DATA ANALYSIS 

 
3.1 QPD calibration 

Quadrant photodiodes are excellent in detecting the position of the trapped bead within microseconds; however, their 

continuous analog output requires digitization and calibration. Connecting the diode to an oscilloscope can easily tackle 

the first problem by digitizing the QPD’s analog signals and then forwarding them to the computer, where the analysis 

takes place. Calibration, on the other hand, is slightly more involved, but can be done in a variety of ways. Here we 

compare the following: a fully developed self-sustained method (power-spectral density roll-off), which yielded both 

trap stiffness and position sensitivity; a passive calibration method (equipartition), which provided measure of the trap 

stiffness; an active calibration method (stuck-bead), which provided measure of the position sensitivity. 

Berg-Sørensen and Flyvbjerg18 showed how the power-spectral density (PSD) of a trapped particle can be used to extract 

the trap stiffness and sensitivity of the OT system. Our results, based on their method, are presented in Figure 2. The 

https://aip.scitation.org/author/Berg-S%C3%B8rensen%2C+Kirstine
https://aip.scitation.org/author/Flyvbjerg%2C+Henrik


 

 

shape of the curves in Figure 2a originated from the fact that the trapped 1.5 µm large silica bead showed subdiffusive 

behavior in deionized water. Imposing a binning procedure that averages the raw data points stored within each bin, we 

easily fitted a Lorentzian assuming the central limit theorem. The resulting fit allowed converting the voltage and laser 

driving power (LDP) data into physically meaningful values for the bead displacements and trap stiffness. The higher the 

value of the crossover frequency (fc), the stiffer the trap and the less pronounced the diffusion of the bead. An important 

conceptual point is that the optical trap can be approximated by a parabolic potential for small particle displacements 

from the trap center, which was located near the focal point of the laser. This allowed drawing an analogy with a 

harmonic restoring force that pulled the bead back towards the beam waist. Our trap calibration data showed slight 

anisotropy in trap stiffness, but overall a reasonably good agreement between the PSD roll-off and equipartition method. 

The latter uses predetermined position sensitivity from the PSD roll-off, which is needed to convert the MSD into units 

of m2. The equipartition calibration is also based on the assumption that the thermal energy is distributed equally across 

all degrees of freedom of the bead. Equating this to the harmonic restoring force stored in a single degree of freedom 

(0.5kBT = 0.5κ<x2>, where <x2> is the MSD in 1D), we obtained the trap stiffness κ. The general trend of a linear 

increase of trap stiffness with LDP can be clearly seen in Figure 2b. 

As a further check, we compared the PSD roll-off results with our stuck-bead calibration data. The latter consisted of the 

laser scanning a bead stuck to one of the flat chamber surfaces and analyzing the resulting signal. The scaling ratio 

between voltage signal on the oscilloscope and real bead displacement data was extracted by translating the beam along 

the particle’s surface. Scanning the bead in such a fashion allowed relating the known translational velocity to the time-

varying positional signal on the oscilloscope. Piezo drives (precision of ±20 nm) allowed precise determination of the 

actual scanning speed, which was then related to the slope of the graph in Figure 3a. The obtained values from the stuck-

bead method were then compared with the ones from PSD roll-off measurements in Figure 3b. In spite of the evident 

anisotropy in sensitivity, again we concluded there was sufficiently good agreement between the calibration methods. 
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Figure 2. (a) PSD along each lateral displacement direction for a 1.5 µm silica bead in deionized water; LDP used was 0.20 mW. 

The corner frequency (fc) and the noise power intercept (Po) provided measures of the trap stiffness and the responsivity 

(sensitivity) respectively. (b) Comparison between the PSD roll-off and equipartition calibration methods. The former yields both 

the trap stiffness and responsivity, while equipartition only gives a measure of the trap stiffness. 
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Figure 3. (a) Stuck-bead calibration for using a 1.5 µm silica bead in deionized water; the actual scanning speed was 0.1 µm s-1 and 

was compared to the slope of the graph. The node of the sinusoid corresponded to scanning the bead center, where the QPD 

displacement signals cancelled. (b) Comparison between responsivity (sensitivity) results from stuck-bead (filled circles) and PSD 

roll-off (empty circles) calibration methods; data shown for scanning along the orthogonal transverse directions (x: blue; y: red). 



 

 

Having subjected the PSD roll-off to a test and verified its appropriate use, in the following analysis we solely relied on 

calibration data obtained from that method. In order to assert the credibility of any subsequent MR measurements, we re-

calibrated the setup every time we changed the alignment or the sample. Following initial calibration checks, the same 

values for the LDP and bead positions measured relative to the QPD were used. 

3.2 Microrheology analysis 

Once we acquired the bead’s trajectory via our QPD, the complex viscoelastic modulus of the material was calculated 

according to the GSER relation (Equation (1)). The latter required performing a Fourier transform of the MSD. It can be 

shown that in the case of a bound particle, the position-autocorrelation function (PACF) contains the same information as 

the MSD and could be used in its place.19 The raw PACF, however, becomes rather noisy at long lag times due to poor 

statistics. This severely affects the quality of the resulting numerical Fourier transform. Tassieri et al.19 offered a solution 

to this problem by suggesting a logarithmic binning procedure, which effectively reduces the sampling density at long 

lag times and significantly lowers the noise. Applying this method to the PACF of a 1.5 µm silica bead, trapped in 

deionized water, resulted in the graph shown in Figure 4a. The logarithmically binned PACF was then converted via 

Fourier transform into storage and loss moduli, based on the scheme outlined by Evans et al.8 (Figure 4b). Trapping the 

bead with the laser introduced an additional apparent elasticity (G’eff = G’true + κ/(6πa)). The actual viscoelastic modulus 

was then obtained by linearly subtracting the additional elastic trap contribution. This resulted in a negligible storage 

modulus for deionized water. Furthermore, the loss modulus showed a linear frequency dependence, as expected for a 

Newtonian liquid. 

(a)                                                          (b)       

 

 

 

 

 

 

 

 

 

Figure 4. (a) Normalized PACF of an optically trapped 1.5 µm silica bead in deionized water (0.5 mW LDP). The raw dataset was 

sampled logarithmically to yield a representative set of 100 points (blue squares), which was then Fourier transformed to obtain 

viscoelasticity of the medium in frequency space. (b) The storage (G’, filled circles) and loss (G’’, open circles) moduli plotted 

against angular frequency and rescaled by κ/(6πa). The apparent elasticity (plateau region) comes from the trap stiffness κ and 

depends linearly on the laser power. 

 

4. SAMPLE CHARACTERIZATION AND RHEOLOGY 

 
4.1 Sample characterization 

The DNA hydrogel samples were prepared by first combining equal concentrations of single strands SS 1-3 to form the 

Y-shapes, and separately SS 4-6 to form the Y’-shapes, and then cooling the samples slowly from 80°C to 30°C to 

ascertain equilibrium hybridization (binding). Once formed, the Y- and Y’-shaped nanostars were mixed at equal 

proportions in 1x TE buffer at pH 8, containing ~200 mM NaCl at room temperature. The thermodynamics of the 

equilibrium melting and hybridization behavior of ds DNA is well-known. The binding energy is determined by the 

number of hydrogen bonds that can form between the only possible pairing between the adenine and thymine bases (AT) 

and the guanine and cytosine bases (GC), where AT forms two and GC – three hydrogen bonds. These break at high 

temperatures and reform at lower T. Hence, the formation of the DNA nanostars is thermally reversible. In order to make 



 

 

sure that these Y-shaped DNA nanostars remained inert between 20°C and 30°C, we designed and tested their melting 

behavior using UV-vis. spectroscopy, making use of the fact that ds DNA absorbs the wavelength of 260 nm less strong 

than ss DNA. We present these melting curves for the formation of the Y- and Y’-shapes in Figure 5a. The typical S-

shaped curves show for both nanostars an almost identical melting temperature Tm ≈ 64-65°C, which is the temperature, 

at which half of all possible hydrogen bonds between the SS DNA strands have formed.12 We further see that all 

nanostars have fully formed below about 55°C. 

As we wanted to investigate the viscoelastic properties of our hydrogels as they formed through binding between the 

sticky ends of the nanostars, we chose the length and binding strength between the complementary sticky ends to 

correspond to a melting temperature of around 20°C. In Figure 5b, we show the UV-vis. melting curves obtained for the 

isolated sticky ends. The curves indeed reflect the theoretically predicted curves based on the SantaLucia model.12 They 

also confirm that when we melt the system to about 30°C, it is a completely fluid suspension of Y-shaped building 

blocks, but then starts to form a viscoelastic network as we cool the system down to 10°C. This gelation behavior is fully 

thermally reversible. 
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Figure 5. (a) Normalized UV-vis. melting curves of the two nanostars formed by single DNA strands SS 1-3 (blue sticky ends) and 

SS 4-6 (red sticky ends), revealing a similar melting temperature Tm ≈ 64-65°C. Here the circles indicate measurements taken for a 

cooling cycle, and the squares – for a heating cycle. (b) Normalized UV-vis. melting curves measured for the sticky ends only, not 

containing the ds core of the nanostars. 

4.2 Rheology of DNA hydrogels 

This section aims at presenting the rheology results for the gelation process of DNA-nanostars obtained from different 

experimental techniques: passive MR using single-beam OT, DLS, VPT and BR. By choosing these four methods, we 

were able to compare and complement the extracted high-frequency viscoelasticity (OT and DLS) with the low-

frequency sample behavior (VPT and BR). The samples were prepared as outlined in Section 2 and the summarized 

results from the rheology are presented in Figures 6 and 7. 

In Figure 6a we show the normalized PACF obtained from OT measurements and the extracted viscoelastic moduli 

G’(ω) and G’’(ω). The temperature dependence of the decay in the PACF curves and the moduli clearly demonstrates 

that the system transforms from a fluid of Y-shapes into an increasingly more elastic gel as the sample is cooled from 

above the Tm of the sticky ends to below that temperature. At 15°C, the moduli ran almost parallel, showing 

approximately identical scaling of ω0.5. Such a scaling behavior was identified by Winter and Chambon20 as the point, at 

which an initially fluid polymer solution becomes a percolating, crosslinked network, and which is a synonym of the 

gelpoint of the system. We observed such a behavior as well in DNA hydrogels formed by similar Y-shaped DNA 

building blocks12 and could identify this gelpoint with the Tm of the system’s sticky ends. It is important to note that 

slightly above Tm, the system turns into a cluster fluid, while below Tm, the system becomes increasingly more elastic. 

However, once all possible bonds between the Y- and Y’-shapes have formed (below 10°C), the elasticity of the system 

did no longer increase. 

It is important to note that the viscoelasticity measurements with the OT are accompanied by significant limitations to 

the duration and power of the laser used in each individual acquisition. By varying the LDP, we found that at high 

trapping power the decay of the PACF reflected how quickly the bead was dragged back towards the focal point and 

contained very little information about the internal structure of the sample. Therefore, it was necessary to use sufficiently 



 

 

low LDP in order to observe a PACF decay that is truly governed by the stiffness of the gel. Additionally, long exposure 

of the sample to the laser is known to cause local heating that in some cases could lead to the melting of the DNA bonds 

in the gel. This posed a firm threshold both to the used LDP and the duration of an acquisition. Due to all of the above, 

the presented results reflect data acquired at 100 kHz for a period of 10 s at LDP of 0.10 mW. The low-frequency noise 

observed at 25°C was a consequence of the short measurement duration, where the dataset suffered from poor statistics. 

Below 15°C, trapping the bead with LDP of 0.10 mW became increasingly more challenging and the signal-to-noise 

ratio gradually decreased. 
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Figure 6. (a) OT measurements: normalized PACF and the corresponding storage (filled) and loss moduli (open circles) at 15oC, 

20°C and 25°C; experimental (green) and theoretical (dashed) curves for water. (b) DLS measurements: intensity-autocorrelation 

function g1 and MSD with the corresponding storage (filled) and loss moduli (open squares) at 11-29°C; water at 20°C (stars).  

An alternative dataset, provided by DLS measurements, is shown in Figure 6b. The intensity-autocorrelation function 

was found to behave similarly to the PACF in the trapping experiments, with the decay becoming longer at lower 

temperatures. The increasingly constrained phase space that the bead was allowed to explore on cooling was evident 



 

 

from the subdiffusive motion in the MSD curves at intermediate times. Following the trend in G’(ω) and G’’(ω) from 

30°C down to 11°C, one could directly compare the viscoelastic behavior of the gel with the one predicted by Grimm et  

al.21 for a Maxwell fluid with a single-relaxation time. 

The Maxwell model represents the viscous and elastic behavior of a sample by modelling the mechanical response of a 

viscous dashpot and an elastic spring connected in series. We found that the measured G’(ω) and G’’(ω) display similar 

scaling laws as those of a Maxwell fluid, with a characteristic dip in G’’(ω) at intermediate frequencies. This behavior 

was caused by the presence of the background solvent. At low angular frequencies, the linear scaling of the loss modulus 

provided a measure of the zero-shear viscosity of the sample. The storage modulus, on the other hand, increased 

quadratically with frequency, in agreement with the model and described in detail elsewhere.22 In the intermediate 

frequency range, there was a predominantly elastic response. The first crossing point of the two moduli provided 

information about the longest relaxation time of the hydrogel (~50 ms), and was found to be comparable to other 

trivalent DNA systems we have investigated earlier.12  

At frequencies above 100 rad s-1, the storage modulus reached a plateau at around 250 Pa, which was expected to grow 

in magnitude and extend over a larger range for lower temperatures. This plateau value could be used in conjunction with 

the thermal energy to provide an estimate of the average mesh size ξ ~ (kBT/G’)1/3 ≈ 25 nm present in the network formed 

at 11°C. This corresponds to approximately the average distance between the centers of two bonded Y-shapes. For 

tetravalent DNA systems it was predicted that the constant low-temperature limiting value of G’(ω) is approximately 600 

Pa.23 If we assume each arm of the nanostar to contribute 150 Pa, then we expect a G’(ω) terminal value of 450 Pa for 

our system as the temperature is decreased even further. At very high frequencies (≥ 104 rad s-1), the G’’(ω) scaled as 

ω3/4, which is known from theory to correspond to semi-flexible polymer networks. We believe this to be a general 

feature of crosslinked DNA gels, which remains yet to be confirmed through investigating other systems. 

In an attempt to further explore the resemblance of the DNA high-frequency behavior to that of a semi-flexible polymer, 

we followed the theoretical analysis of David Morse.24 We were particularly interested in estimating (based on our 

rheological data) the DNA persistence length, i.e. roughly the distance, over which the DNA chain could be considered 

rigid. Using the high-frequency slope of the loss modulus (G’’(ω) ≈ 20.75ρ(kBT)0.25 ξ 0.75L1.25ω0.75 / 15 with ρ being 

concentration of contour length per unit volume and L is the persistence length), we calculated a persistence length of 45 

nm at 11°C for the mesh size determined previously. This compares favorably with other results reported in literature,25 

where the slightly lower value could be attributed to the presence of a flexible thymine linker. 

In order to confirm the measured low-frequency viscoelasticity of the DNA hydrogel, we also conducted MR by VPT 

and conventional BR. Video recordings via bright-field microscopy allowed tracking the trajectory of a freely diffusing 

bead through the same DNA hydrogel and thus provided a measure of the bead’s MSD (Figure 7a). Due to the fact that 

we used beads of two different sizes, we rescaled the MSD by the bead diameter in each case. At high temperatures (20-

26°C), we followed the motion of 800 nm N3-PS particles. At 17°C, we made an equal number of acquisitions with 800 

nm and 420 nm N3-PS particles and hence we scaled the MSDs by the appropriate factors to reflect the change in 

diffusivity. At 11-14°C, we followed the motion of 420 nm N3-PS particles. The overall trend was again as expected and 

in complete agreement with our previous measurements. In spite of the presence of some low-frequency noise, we 

concluded that as the temperature increased, the crossover between G’(ω) and G’’(ω) occurred at higher values of ω. 

This suggests that the stiffening of the DNA hydrogel corresponds to a longer relaxation time of the percolating network. 

BR measurements, summarized in Figure 7b, did not provide any conclusive evidence for a particular trend. On the 

contrary, we suspected possible artefacts appearing at high frequency due to the inertia of the instrument and insufficient 

time allowed for collecting the data. Whereas small geometries, such as the 25 mm cone-and-plate are often used with 

costly samples, such as DNA hydrogels, they are much more susceptible to failure due to edge effects and evaporation. 

In spite of our efforts to minimize these errors by careful sample loading and the use of a vapor trap, we could not 

completely overrule any possible deviation arising from those unwanted side effects. 

Finally, we conclude by providing a comparison between the results shown above. Reporting broadband viscoelasticity 

is not uncommon, with some good examples in the literature of how this is best done through MR.26,27,28 Here, we aimed 

at comparing different techniques, emphasizing the suitability of using optical trapping with the setup shown in Section 

2. OT have some clear advantages over other setups in that they provide local information about small volumes of 

expensive or scarce samples in a non-invasive fashion. However, as already discussed, in MR laser tweezers have to be 

used with care by considering the details of how to conduct a measurement in a way that avoids artefacts. This includes 

testing different laser powers, sampling rates, acquisition durations and particle-probes. Combining acquisitions of 



 

 

different length and sampling rate could in principle yield viscoelastic data in the range 101-106 Hz. Moreover, stitching 

these signals to data from BR or VPT could extend the range over 10 orders of magnitude in frequency. Due to the 

complicated nature of DNA hydrogels, we expected to obtain viscoelasticity over a more limited range. The merging of 

different sets of viscoelastic data is demonstrated in Figure 8. 

Figure 8a shows an attempt to match the high-frequency viscoelasticity measured by OT to the low-frequency BR data. 

Continuous QPD signals were sampled by the oscilloscope with two different rates – 1 MHz and 100 kHz. We observed 

the appearance of noise near the terminal points in each dataset; hence the significance of stitching results together to 

produce one coherent graph with few artefacts becomes apparent. For instance, instrumental inertia effects are known to 

exacerbate the data quality in BR measurements as the frequency is increased (50-100 rad s-1). Taken as an individual 

result, it might be interpreted as suggesting a change in the scaling behavior of the storage and loss moduli. To verify the 

collected BR data, we successfully match the results to viscoelasticity obtained with OT at 20°C. 
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Figure 7. (a) VPT measurements: MSD scaled by the bead diameter and the corresponding storage (filled diamonds) and loss 

moduli (open diamonds) for 11-17°C. (b) BR measurements: storage (filled hexagons) and loss moduli (open hexagons) obtained 

from frequency sweeps at 10°C and 20°C; the geometry used in the oscillatory measurements was 25 mm diameter cone-and-

plate. 

A comparison between data extracted from OT, DLS and VPT at 25°C provided yet another sanity check (Figure 8b). In 

spite of the general good agreement, we want to emphasize the large scatter of data points at low frequency using optical 

trapping. As previously mentioned, the analysis we used here required subtracting the elastic contribution from the 

focused laser light trapping the bead. After removing this additional contribution, we were left with elasticity, which was 

rather low at temperatures above melting. Due to averaging over insufficient number of points separated by a long 

enough time, the estimated errors were too large on the scale of the absolute magnitude of the moduli. In addition, as 

reported by Gardel et al.,29 the appearance of compressional modes is known to prevent obtaining reliable low-frequency 

data using MR since their decoupling is highly non-trivial. These problems were nearly absent in DLS, though it is the 

ensemble-averaged response that was obtained. Artefacts appeared also in the VPT data, where we experienced problems 

with mechanical and electrical noise. 



 

 

The inverse temperature dependence of the infinite-time viscosity is evident from Figure 8d. This behavior is common 

for many pure liquids, and is also a property of our system here. The theoretical curve, corresponding to the steady-state 

viscosity of water at 20°C, is also shown as a reference (black star symbols). All curves, displayed in Figure 8d, showed 

the sample in its liquid form, where the additional viscosity originated from the individual DNA clusters formed in the 

bulk. Figure 8c presents the gel state of the sample at 11°C, where the elastic modulus dominated over the viscous 

modulus. Again, at the gel point, the real and imaginary parts of the complex viscoelastic modulus were expected to run 

approximately parallel to one another, in agreement with the findings of Winter and Chambon.20 Comparing these results 

with those presented in Figure 6, we conclude that the melting transition of the DNA hydrogel is bound to occur at 

around 14°C. 
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Figure 8. Comparison between rheology results obtained from different experimental techniques: (a) OT measurements (sampling 

rates of 1 MHz in blue and 100 kHz in green) and BR measurements (red) at 20°C; (b) OT measurements (1 MHz in dark blue and 

100 kHz in light blue), DLS measurements in red, and VPT measurements in green (T = 25°C); (c) OT measurements: gelling of 

the hydrogel found at 11°C (100 kHz sampling rate); (d) OT measurements: DNA hydrogel infinite-time viscosity at different 

temperatures (1 MHz sampling rate) – black stars denote water viscosity at 20°C. Filled symbols represent storage moduli and 

empty symbols represent loss moduli in (a)-(c). 

5. CONCLUSIONS 

 
Passive MR allows investigating the mechanical properties of complex fluids on different timescales. After careful 

calibration and testing, an OT system could be used to complement other experimental techniques, such as DLS, VPT 

and conventional BR. Investigating the scaling of the storage and loss moduli can provide information about the melting 

temperature and mesh size of a DNA hydrogel. While the viscoelasticity of our nanostars followed the single-relaxation 

Maxwell fluid model at low and intermediate frequencies, at high frequencies we observed the signature of a semi-

flexible polymer network. This insight allowed us to calculate the mechanical properties of DNA, such as its persistence 

length, which was found to agree with accepted values. 
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