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 Introduction 1

 Oxidative stress 1.1

Utilization of molecular oxygen by aerobic organisms inevitably leads to the formation of reactive oxygen 

species (ROS) as a byproduct of oxygen metabolism. ROS are derived from both endogenous sources (i.e. 

mitochondria, peroxisomes, endoplasmic reticulum, phagocytic cells) and exogenous sources 

(i.e. pollution, alcohol, tobacco smoke, heavy metals, transition metals, industrial solvents, pesticides, 

certain drugs and ionizing radiation) [1]. Due to unpaired electrons in their valence shell, these free 

radicals are very reactive in cellular milieu attacking cell constituents. Antioxidant defense mechanisms 

have evolved in aerobic organisms including humans to counteract the potential harmful effects of ROS 

and maintain redox homeostasis. When present at moderate levels, ROS can exert beneficial effects and 

play a key role in various physiologic functions and signaling pathways [2]. However, at higher 

concentrations, ROS induce oxidative stress. The term “oxidative stress” refers to an imbalance between 

the production of ROS and the neutralization of these species by antioxidant systems, leading to a 

disruption of redox signaling [3]. This imbalance can be caused by either increased ROS formation or 

decreased activity of antioxidants, or both, as well as by insufficient repair of oxidative damage. Aberrant 

levels of ROS can affect many biological pathways as they readily react with proteins, lipids or DNA, 

ultimately resulting in pathological consequences. In humans, oxidative damage has been implicated in 

the pathogenesis of a variety of disorders, including neurodegenerative diseases, cancer or 

cardiovascular diseases [4-7]. 

 

Figure 1 - Oxidative stress is caused by an imbalance between antioxidants and ROS due to antioxidant depletion or excess 
ROS production and accumulation. Taken from webpage by Richard G. Godbee. 
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1.1.1 Reactive oxygen species – Sources and detoxification 

In cellular context, the most common reactive oxygen species are superoxide (•O2
-), hydrogen peroxide 

(H2O2) and hydroxyl radicals (•OH).  

1.1.1.1 Superoxide 

Superoxide can be generated when a single electron is removed from an electron donor (leading to an 

oxidized metabolite) and transferred to molecular oxygen (O2), leaving •O2
-
 with an unpaired electron in 

its outer shell. The production of superoxide occurs mostly within the mitochondria of a cell [8]. The 

mitochondrial electron transport chain is the main source of ATP in the mammalian cell and is thus 

essential for life. During oxidative phosphorylation, O2 is an ideal terminal electron acceptor; however, 

during times of cellular stress the electron transport chain may become dysregulated resulting in 

superoxide production. Moreover, superoxide can be generated by NADPH oxidases (NOX) in 

phagosomes as part of the immune defense against microorganisms [9]. NOX are a family of seven 

members, NOX1-5 and dual oxidase (Duox) 1-2, whose sole function is the production of ROS. Under 

normal circumstances, most NADPH oxidase isoforms are dormant in resting cells, but are rapidly 

activated by several stimuli, including bacterial products and cytokines, during respiratory burst [10]. For 

example, the NADPH oxidase 2 (gp91phox) complex, which is present in neutrophils, macrophages, 

microglia, but also at lower levels in vascular cells, produces large amounts of superoxide once it is 

activated [11, 12]. Specifically, NOX catalyze the transfer of an electron from cytosolic NADPH to 

molecular oxygen via their membrane-bound catalytic NOX or Duox subunit to generate superoxide [13].  

NADPH + 2 O2  →  NADP+ + 2 •O2
-
 + H+ 

NOX4 seems to be an exception since this isoform has an appreciable basal activity and directly 

generates H2O2 that confers important cellular functions [14]. 

Other enzymes that can produce superoxide include xanthine oxidase (XO), lipoxygenase (LOX), and 

cyclooxygenase (COX) [15-17]. NOX, XO, COX and LOX can be activated by acute or chronic inflammatory 

stimuli [18] or by hormones like angiotensin II in hypertension [19, 20]. 

Physiologically, •O2
-
 is rapidly detoxified by superoxide dismutases (SOD) in the mitochondria, the cytosol 

and the nucleus resulting in the formation of H2O2 [21, 22]. To date, three unique and highly 

compartmentalized isoforms of superoxide dismutases have been biochemically and molecularly 

characterized in mammals. The first isoform to be identified was the homodimer SOD1 (Cu,Zn-SOD), 

which contains copper and zinc in its catalytic center and is localized primarily to intracellular 
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cytoplasmic compartments, but also the nucleus and peroxisomes [23-25]. Another isoform, SOD2 

(Mn-SOD), exists as a homotetramer and uses manganese (Mn) as a cofactor [26, 27]. It is localized 

exclusively to mitochondria and is responsible for the neutralization of mitochondrial-generated ROS 

from the respiratory chain [27-29]. Extracellular SOD3 (EC-SOD) forms a tetramer and also binds copper 

and zinc in its active center. It is the most recently discovered and least characterized member of the 

SOD family. The enzyme contains a signal peptide that directs it to extracellular spaces, where it is 

anchored to the extracellular matrix (ECM) and cell surfaces through interaction with heparan sulfate 

proteoglycan and collagen. However, a proteolytically cleaved form of the protein does not interact with 

the ECM [22, 30]. The expression pattern of SOD3 is highly restricted to specific cell types and tissues 

where its activity can exceed that of SOD1 and SOD2 [31]. 

The disproportionation of superoxide catalyzed by different metal-coordinated forms of SOD (Mn+-SOD) 

is depicted in the following equations: 

M(n+1)+ -SOD + •O2
-
  →  Mn+-SOD + O2 

Mn+-SOD + •O2
-
 + 2H+  →  M(n+1)+ -SOD + H2O2 

2 •O2
-
 + 2H+  → O2 + H2O2 

1.1.1.2 Hydroxyl radical 

The hydroxyl radical (•OH), the neutral form of the hydroxide ion (OH-), is the most toxic free radical 

species found in biological systems as it is extremely reactive and rapidly oxidizes and damages all types 

of macromolecules. The main sources of this short-lived radical are the photolysis of ozone or of nitrous 

acid (HONO), or the decomposition of hydroperoxides (ROOH) [32]. Moreover, •OH is formed in a 

“Fenton reaction”, in which H2O2 reacts with metal ions (Fe2+ or Cu2+) [1, 3, 7]. Under stress conditions, 

an excess of superoxide releases iron from iron-containing molecules, such as ferritin, making free iron 

available to participate in the Fenton reaction, resulting in the generation of a hydroxyl radical and 

hydroxide [33, 34].  

Fenton reaction 

Fe2+ + H2O2  →  Fe3+ + •OH + OH− 

Similarly, •OH is also formed by the reaction between superoxide and H2O2 in a reaction called “Haber-

Weiss reaction”, which partly consists of the Fenton reaction [35]. In contrast to superoxide, which can 

be neutralized by SODs, the hydroxyl radical cannot be eliminated via an enzymatic reaction. 
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Haber-Weiss reaction 

Fe3+ + •O2
-
   →  Fe2+ + O2 

Fe2+ + H2O2  →  Fe3+ + •OH + OH−  

•O2
-
 + H2O2  →  •OH + OH−+ O2

 

1.1.1.3 Hydrogen peroxide (H2O2) 

Hydrogen peroxide (H2O2) is a non-radical type of ROS that is a weak and relatively stable oxidant. 

However, it can easily lead to free radical reactions in living organisms, as it can penetrate biological 

membranes through aquaporins and induce cellular damage by producing hydroxyl radicals (•OH) in the 

presence of transition metal ions via the Fenton reaction [1, 36]. Formation of H2O2 results from 

superoxide detoxification by SOD or is produced by a number of metabolic enzymes, like the peroxisomal 

Acyl-CoA oxidase, or through protein oxidation in the ER [37-39]. The major antioxidant enzymes that 

can detoxify H2O2 include catalase (CAT), glutathione peroxidase (GPx) and peroxiredoxins [40, 41]. 

Catalase exists as a tetramer composed of four identical monomers, which all contain a heme group at 

the active site that allow the enzyme to react with hydrogen peroxide [42]. CAT is typically located in the 

peroxisome, a membranous cell organelle involved in catabolism of specific biomolecules, such as fatty 

acids and amino acids [43]. Catabolic activity in peroxisomes is a major contributor to intracellular H2O2 

production, explaining the need for high CAT levels in this organelle.  

CAT catalyzed reaction 

2 H2O2      O2 + 2 H2O 

Glutathione peroxidases (GPx) are a family of tetrameric enzymes that contain the unique amino acid 

selenocysteine within their active sites and use the tripeptide glutathione (GSH) as an obligate 

cosubstrate/electron donor in the reduction of hydrogen peroxide to water [44]. GPx can also reduce 

lipid peroxides to their corresponding alcohols. There are four known GPx enzymes, GPx1-4, which are 

present in cytosol and mitochondria except for GPx3, which resides in the extracellular compartment 

[42]. The oxidized glutathione disulfide (GSSG) resulting from the GPx-mediated reaction is reduced back 

to GSH by the enzyme glutathione reductase (GR) which uses NADPH as the electron donor [7]. 

GPx-catalyzed reaction  

2 GSH + H2O2    GSSG + 2 H2O 
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Glutathione reduction by glutathione reductase 

GSSG + NADPH + H+  →  2 GSH + NADP+ 

More examples for ROS of the radical kind include the alkoxy radical (RO•) or the peroxyl radical (ROO•), 

while ROS of the non-radical kind include HOCl, HOBr, ozone (O3), singlet oxygen (1O2), organic peroxides 

(ROOH), and aldehydes (HCOR) [1]. 

 

Table 1 - List of ROS and RNS produced during metabolism including their half-lives. Modified from Phaniendra et al. 2015 [1]. 
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1.1.2 Reactive nitrogen species 

In addition to ROS, reactive nitrogen species (RNS) are also continuously produced as by-products of 

aerobic metabolism or in response to stress. ROS and RNS are often collectively referred to as RONS. 

Cellular stress and damage conferred by RNS is termed nitrosative or nitro-oxidative stress.  

1.1.2.1 Nitric oxide 

Nitric oxide (•NO) is a free radical with low reactivity generated in tissues by different isoforms of nitric 

oxide synthases (NOS) or by non-enzymatic pathways. It is an important signaling molecule for both 

intracellular and extracellular messaging. •NO is both aqueous and lipid soluble and therefore readily 

diffuses through cytoplasm and plasma membranes to its site of action; in biological systems, it has an 

estimated half-life of only 3-5 seconds [45]. •NO has been shown to act on a sizeable number of 

enzymatic targets, one of the most important being soluble guanylate cyclase. Many of nitric oxide’s 

physiological effects are a result of its binding to Fe2+ heme groups in the enzyme guanylate cyclase, 

stimulating enzyme activation and catalysis of cGMP production from GTP [45, 46]. Increased levels of 

cGMP induce a signaling cascade leading to a decrease in intracellular Ca2+ concentration and, ultimately, 

smooth muscle relaxation [47]. Due to •NOs implication in blood vessel relaxation, it was initially termed 

“endothelium-derived relaxing factor” (EDRF), before its true identity as well as the •NO/cGMP pathway 

were fully elucidated [47, 48]. Ever since that, the •NO/cGMP signal transduction pathway has been 

shown to play major roles in mediating smooth muscle relaxation and blood pressure regulation [49], 

platelet aggregation [50], and both peripheral and central neurotransmission [49, 51]. 

Endogenous •NO is derived largely from enzymatic pathways. There are three isoforms of nitric oxide 

synthases (NOS) that catalyze •NO formation: neuronal NOS (nNOS or NOS1), inducible NOS (iNOS or 

NOS2) and endothelial NOS (eNOS or NOS3). All three isoforms are homodimers comprising a C-terminal 

reductase domain and an N-terminal oxygenase domain in each monomer (Figure 2) [52]. The N- and 

C-terminal domains are linked by a short sequence that binds calmodulin, an allosteric effector that is 

essential for full NOS activity. NOS use L-arginine as substrate, as well as molecular oxygen and reduced 

nicotinamide adenine dinucleotide phosphate (NADPH) as cosubstrates. Furthermore, they all require 

flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and (6R-)5,6,7,8-tetrahydrobiopterin 

(BH4) as cofactors, as well as binding of heme and calmodulin for the reaction catalysis [52]. The complex 

reaction involves the transfer of electrons from NADPH via the flavins FAD and FMN in the C-terminal 

reductase domain of one monomer to the heme in the N-terminal oxygenase domain of the other 

https://www.sigmaaldrich.com/etc/controller/controller-page.html?TablePage=9552559
https://www.sigmaaldrich.com/technical-documents/articles/biology/rbi-handbook/intracellular-signaling-enzymes-receptors/nitric-oxide-synthases.html
https://www.sigmaaldrich.com/technical-documents/articles/biology/rbi-handbook/intracellular-signaling-enzymes-receptors/nitric-oxide-synthases.html
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monomer, where the substrate L-arginine is oxidized to L-citrulline and •NO (Figure 2A) [53]. The net 

reaction is: 

2 L-arginine + 3 NADPH + 3 H+ + 4 O2  → 2 L-citrulline + 2 •NO + 4 H2O + 3 NADP+ 

As an overview, the electron flow in this NOS catalysis reaction is as follows:   

NADPH → FAD → FMN → heme → O2 

The essential NOS cofactor tetrahydrobiopterin (BH4), found in the oxygenase domain, provides an 

additional electron during the catalytic cycle, which is replaced during turnover. BH4 is biosynthesized 

from GTP via the GTP-cyclohydrolase-1 (GCH-1) pathway [54].  

 

Figure 2 - Structure and mechanism of NOS enzymes in normal and “uncoupled” state. NOS enzymes act as homodimers, 
where each monomer contains a reductase and an oxygenase domain. Electrons are donated by reduced NADPH to the 
reductase domain of the first monomer and transferred through FAD, FMN to the Fe (iron in the heme group) of the oxygenase 
domain of the second monomer (the subunits are depicted in this fashion for clarity reasons; in their actual conformation, the 
heme groups (Fe) from the two subunits lie in close proximity). With the help of the cofactor BH4, L-arginine and O2 are 
converted into 

•
NO and L-citrulline. In the dysfunctional “uncoupled” state (e.g. due to absence of BH4) the electron flow from 

the reductase domain becomes uncoupled from L-arginine oxidation thereby generating superoxide (
•
O2

-
) instead of 

•
NO. Taken 

from Mas 2009 [55]. 

nNOS and eNOS are constitutive enzymes, whose catalytic activity is controlled by intracellular free Ca2+ 

levels. Elevated cytosolic Ca2+ ions bind to calmodulin (CaM) to form the Ca2+/CaM complex, which 

subsequently binds to nNOS or eNOS leading to enzyme activation [56]. In contrast, iNOS expression is 
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Ca2+-independent, as the Ca2+/CaM complex is so tight and stable that Ca2+ has no regulatory function for 

iNOS. In addition, iNOS is inducible at the expression level in response to (pro)inflammatory mediators in 

macrophages and other tissues [57, 58].  

During cellular stress, the NOS-mediated enzymatic reduction of oxygen can become uncoupled from 

other catalytic function in the oxygenase domain, leading to the formation of superoxide instead of nitric 

oxide (Figure 2B). This phenomenon is referred to as NOS uncoupling, since superoxide generation 

mainly occurs when NOS is not coupled with its substrate or cofactors. Whereas L-arginine depletion is 

the main reason for nNOS or iNOS uncoupling, the most prominent cause of eNOS uncoupling are 

insufficient levels of the critical cofactor BH4 due to its oxidation or due to decreased expression of the 

BH4 synthesizing enzyme GTP-cyclohydrolase-1 (GCH1) and BH4 recycling enzyme dihydrofolate 

reductase (DHFR) [59-62]. However, protein-protein interactions, phosphorylation, S-glutathionylation, 

and endogenous L-arginine methyl derivatives (e.g. ADMA) may also play key roles in regulating NOS 

uncoupling.  

Non-enzymatic nitric oxide generation involves reduction of inorganic nitrite, particularly under acidic 

conditions, which mainly occurs in tissues and not blood, as hemoglobin is a very effective •NO-

scavenger [63, 64]. 

NO2
- + e− + 2H+ → •NO + H2O 

In experimental settings, often •NO donors are applied, which are pharmacologically active substances 

that release a defined amount of •NO molecules in vivo or in vitro. The most commonly employed •NO 

donor drugs in clinical use are organic nitrates, which include nitroglycerin, isosorbide dinitrate and 

isosorbide mononitrate. Indications for these drugs include treatment and prevention of angina attacks, 

acute coronary syndromes, as well as hypertension and heart failure [65-67]. Another group of •NO 

donors are diazeniumdiolates (also known as ‘NONOates’), such as diethylamine NONOate (DEANO), 

diethylenetriamine NONOate (DETANO), and spermine NONOate (SPENO). Furthermore, S-nitrosothiols 

serve as •NO donors, including S-nitroso-glutathione (GSNO), S-nitroso-N-acetylpenicillamine (SNAP), and 

S-nitroso-N-valerylpenicillamine (SNVP). Other prevalent •NO donors comprise molsidomin (Sin-1), 

sodium nitroprusside (SNP) or NO hybrid drugs, such as NO aspirin [68]. 

Since reduced •NO levels have been implicated in the onset and progression of various disease states, 

especially cardiovascular diseases, pharmacologically active compounds that can release •NO within the 

body are being used as therapeutic agents; however, their efficacy is limited and further research for the 

refinement of these drugs is necessary [69]. 
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1.1.2.2 Peroxynitrite 

It is important to recognize that the primarily protective effects mediated by nitric oxide require 

extremely low •NO concentrations (picomolar to nanomolar range). At higher concentrations, properties 

and cellular targets of •NO are profoundly different, particularly under conditions of oxidative stress, 

where •NO rapidly reacts with superoxide to form peroxynitrite (ONOO-), a molecule that is itself not a 

free radical, but is a powerful oxidant [1]. Peroxynitrite is highly cytotoxic, a feature that is exploited by 

inflammatory cells in response to invading pathogens by expressing an inducible form of NOS (iNOS) in 

concert with activation of NADPH oxidase to cogenerate •NO and superoxide, forming the highly reactive 

and cytostatic ONOO-.  

•NO  +  •O2
-  → ONOO- 

Peroxynitrite can directly react with CO2 to form other highly reactive nitroso peroxocarboxylate 

molecules (ONOOCO2
-) or upon protonation peroxynitrous acid (ONOOH). ONOOH is less stable than the 

peroxynitrite anion and further undergoes homolysis to form both a hydroxyl radical (•OH) and nitrogen 

dioxide radical (•NO2), or rearranges and isomerizes to the stable endproduct nitrate (NO3
-) [70]. 

Peroxynitrite can cause oxidative damage of biomolecules including proteins, lipids, and DNA. 

Specifically, it induces lipid peroxidation, (sulf-)oxidation of methionine or cysteine residues and nitration 

of tyrosine residues in proteins, as well as oxidation of DNA to form 8-nitroguanine and 8-oxoguanine 

[71-73]. Protein 3-nitrotyrosine (3-NT) residues are considered as a marker of peroxynitrite-induced 

cellular damage (see 0, Figure 5). Also, lipid hydroperoxides are very unstable and easily decompose to 

secondary products, such as aldehydes (e.g. 4-hydroxy-2,3-nonenal, 4-HNE) and malondialdehyde 

(MDA), which are therefore also considered markers of ROS formation and lipid peroxidation (see 0, 

Figure 6). 

When NOS enzymes become uncoupled during cellular stress, they produce superoxide. Consequently, 

partial uncoupling of NOS activity will lead them to act like peroxynitrite synthases, synthesizing the two 

precursors of ONOO-, •NO and superoxide [74]. Since peroxynitrite oxidizes the important eNOS cofactor 

BH4, it can lead to further eNOS uncoupling, facilitating superoxide production from eNOS and 

peroxynitrite formation in a vicious cycle [75]. eNOS uncoupling is an emerging therapeutic target in 

cardiovascular diseases. 
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1.1.3 Antioxidants 

In addition to the previously mentioned major antioxidant enzymes - SOD, GPx and catalase - there are 

other enzymatic and non-enzymatic antioxidant defense mechanisms that are effective in blocking 

harmful effects of ROS. For instance, disposal of H2O2 is also associated with other redox proteins 

including thioredoxins (Trx), glutaredoxins (Grx), as well as peroxiredoxins (Prx) [42]. Thioredoxin and 

glutaredoxin are thiol-disulfide oxidoreductases that control the cellular redox environment. Trx donates 

electrons to Prx to remove H2O2 [41]. After reducing H2O2, oxidized thioredoxins are reduced by NADPH-

dependent thioredoxin reductases (TrxR), which are dimeric flavoproteins present in all living cells [76, 

77]. In contrast, glutaredoxins (Grx) are reduced by glutathione (GSH), the oxidized form of which is 

GSSG, which is reduced by GSH reductases (GR) [77, 78].  

 

 

Figure 3 - Interrelation between glutaredoxin, peroxiredoxin, thioredoxin, and glutathione containing antioxidant systems. 
H2O2 can be reduced by peroxiredoxins (Prx) or glutathione peroxidases (GPx), which couple H2O2 reduction with oxidation of 
glutathione (GSH) to glutathione disulfide (GSSG). Oxidized Prx can be reduced by thioredoxins (Trx). The oxidized Trx are then 
reduced by thioredoxin reductase (TrxR) in a NADPH-dependent manner. Similarly, oxidized glutathione disulfide (GSSG) is 
reduced by glutathione reductase (GR) in the presence of NADPH. Further, glutaredoxins (Grx) can reduce disulfide (S–S) bonds 
in proteins (Pr) using GSH. Glutathione S-transferase (GST) conjugates GSH to reactive electrophilic compounds (R), thus 
detoxifying them. Taken from Espinosa-Diez et al. 2015 [79]. 

Oxidative stress also induces the expression of the cytoprotective stress-response protein heme 

oxygenase-1 (HO-1). HO-1 catalyzes the oxidative degradation of heme to equimolar amounts of carbon 

monoxide, biliverdin (subsequently converted to bilirubin), and free ferrous iron [80, 81]. In response to 

oxidative stress some hemoproteins release cytotoxic free heme, which can produce even more free 
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radicals through Fenton chemistry [82]. Degradation by HO-1 avoids the pro-oxidant effects of free heme 

and also subsequent free iron by simultaneous upregulation of ferritin. By-products of the heme 

degradation (carbon monoxide, biliverdin/bilirubin) also mediate cytoprotective effects [81]. Moreover, 

HO-1 gets translocated to the nucleus under stress conditions, where it confers protection against 

oxidative stress and cytotoxicity by up-regulating antioxidant and anti-inflammatory genes [83-85]. 

Non-enzymatic antioxidants include low-molecular-weight compounds, such as vitamins (vitamins C and 

E), carotenoids (e.g. beta-carotene, lycopene), uric acid, bilirubin or the tripeptide glutathione (GSH) 

(Figure 4). The lipid soluble vitamin E (α-tocopherol) scavenges intermediate peroxyl radicals by donating 

an electron and, therefore, terminates the chain reaction of lipid peroxidation [86]. Similarly, the water 

soluble vitamin C (ascorbic acid) scavenges oxygen free radicals by electron donation and is also able to 

convert vitamin E free radicals (tocopheryl radicals) back to vitamin E. Although these antioxidants 

become new free radicals, they are less active, longer-lived and less dangerous than those radicals they 

have neutralized due to their aromatic nature, which enables them to delocalize the unpaired electron 

[87]. Carotenoids, pigments found in plants, primarily scavenge peroxyl radicals by reacting with them to 

form resonance stabilized carbon-centered radical adducts [86]. Uric acid in plasma is the most abundant 

aqueous antioxidant found in humans and is an exceptional scavenger of peroxynitrite in the 

extracellular fluid [88, 89]. GSH works as a cofactor for several detoxifying enzymes by donating an 

electron, and is indispensable for maintaining the intracellular reducing environment. Furthermore, 

bioflavonoids (e.g. quercetin, anthocynidine) and hydroxycinnamates (e.g. ferulic acid, caffeic acid) were 

found to possess strong antioxidant activities [86]. Synthetic antioxidants, based on natural antioxidant 

structures, are continuously being developed in an attempt to refine reliable targeting and increase the 

efficiency of the antioxidant defense, in order to diminish the effects of free-radical induced cell damage 

[90]. 
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Figure 4 - Examples of antioxidant compounds and their structure. 
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 Redox-based posttranslational modifications of proteins 1.2

Free amino acids and amino acid residues in proteins can easily become oxidized by reactive species, 

which may cause fragmentation of the peptide chain, alteration of electrical charge of proteins or cross-

linking of proteins, ultimately leading to increased susceptibility to proteolysis. Oxidative modifications 

of enzymes have frequently been shown to inhibit their catalytic activities. In broad terms, peptide 

oxidative modifications comprise hydroxylation of aromatic groups and aliphatic amino acid side chains, 

nitration of aromatic amino acid residues, nitrosylation or oxidation of sulfhydryl groups (sulfoxidation), 

chlorination of aromatic groups and primary amino groups, and the conversion of some amino acid 

residues to carbonyl derivatives (Figure 5) [91-93].  

Protein adduct formation is achieved by reaction of (nucleophilic) amino acid residues in proteins, 

including lysine, arginine, methionine, tyrosine and histidine, with highly reactive carbonyl groups 

(ketones, aldehydes) derived from lipid peroxidation products or glycoxidation reactions [93]. Examples 

of these “Michael additions” are based on lipid peroxidation products such as malondialdehyde (MDA) or 

4-hydroxynonenal (4-HNE). Glucose oxidation products, such as glyoxal or methylglyoxal, can react with 

amino acids to create compounds such as carboxymethyllysine and pentosidine (Figure 6), which are 

termed “advanced glycation end products” (AGEs) and are implicated in a number of diseases [93, 94]. 

Protein carbonylation is achieved by reaction of saturated hydrocarbon side chains of amino acids with 

hydroxyl radical leading to aldehyde or ketone formation (=introduction of a carbonyl group). 

Oxidation of aromatic amino acid residues involves the conversion of phenylalanine residues by hydroxyl 

radicals to ortho- and meta-tyrosine derivatives [92]. Tryptophan residues are oxidized to 

hydroxytryptophan derivatives, and also to N-formylkynurenine and kynurenine [95]. Oxidation of 

tyrosine leads to formation of 3,4-dihydroxyphenylalanine (DOPA), or to inter- or intra-molecular 

dityrosine cross-linking via the generation of tyrosyl radicals [96]. Tyrosine and tryptophan residues also 

become nitrated by peroxynitrite forming 3-nitrotyrosine and nitrotryptophan, respectively [72, 97, 98].  

Chlorination of amino acid residues, mediated by myeloperoxidase-derived HOCl, is another oxidative 

modification that can occur on proteins, altering their function. HOCl chlorinates tyrosine to form 

3-chlorotyrosine. It also forms chloramine derivatives of lysine amino groups, and oxidizes sulfhydryl 

groups to sulfenic acid derivatives [91, 92].  
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Figure 5 - Examples of oxidative posttranslational modifications on amino acids. Taken from Ryan et al. 2014 [93]. 
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Figure 6 - Examples of lipid and glucose oxidation products and the products formed by their reactions with amino acids. 
Structures of (a) lipid peroxidation products, MDA and 4-HNE (b) a product of lysine side-chain modification by MDA, (c) 
structures of the products of glucose oxidation, glyoxal and methylglyoxal, and (d) the AGEs carboxymethyllysine and 
pentosidine. Taken from Ryan et al. 2014 [93]. 

Surface-exposed cysteine and methionine residues in proteins are particularly sensitive to oxidation due 

to their free thiol (-SH) group. Under biological conditions, the major product of methionine oxidation is 

methionine sulfoxide, which can be further oxidized to methionine sulfone [99]. Cysteine may be 

oxidized to cysteine sulfenic, sulfinic and sulfonic acid derivatives. While sulfenic and sulfinic 

intermediates are easily reversible by reductases, the sulfonic acid product is quite stable [100, 101]. The 

free thiol may also be oxidized to form either an inter- or an intra-molecular disulfide bond with another 

free thiol (−S−S−) [93, 102]. For instance, a protein cysteine thiol group can form an inter-molecular 

disulfide bond with the thiol group of cysteine in reduced glutathione, a process termed protein 

S-glutathionylation. Formation of disulfide bonds often alters protein folding and function. Cysteine 

S-glutathionylation of eNOS, for example, has been shown to be involved in eNOS uncoupling [46]. 

Cysteine oxidation and disulfide formation in proteins constitutes an important role in the context of 

cellular signaling, protein-protein interactions, substrate and metal binding, and catalysis. 

Importantly, cysteine is also a target of S-nitros(yl)ation. S-nitros(yl)ation is a reversible covalent 

attachment of a nitroso (-NO) group to the thiol in cysteine residues, forming S-nitrosothiols (SNOs), via 

redox-mediated reactions. Here, it is differentiated between “nitrosylation”, which is the addition of •NO 

to cysteine thiyl radicals (or metal centers), or “nitrosation”, which is the reaction of a nitrosonium ion 

(NO+) with the nucleophilic thiolate [103]. Both mechanisms are combined in the term “nitros(yl)ation”. 

S-nitros(yl)ation is used by cells to modulate protein function and stability, regulate gene expression, and 

provide •NO donors. SNO generation, localization, activation, and catabolism are tightly regulated [104]. 

S-nitros(yl)ated proteins can be denitrosylated through the action of thioredoxin or by glutathione (GSH) 
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[105]. The hereby formed nitroso-glutathione (GSNO) is a stable and mobile molecule and can therefore 

serve as a reservoir of •NO bioactivity [104, 106]. Similarly, SNO groups in proteins can serve as 

intermediates in the cellular metabolism or bioactivity of •NO and their formation represents an 

important cellular regulatory mechanism [104]. S-nitros(yl)ation plays a key role in many processes 

ranging from signal transduction, DNA repair, host defense, and blood pressure control to ion channel 

regulation and neurotransmission [107, 108]. Substrates for S-nitros(yl)ation include protein kinases, 

phosphatases, ion channels, metabolic and regulatory enzymes, cytoskeletal and structural proteins, 

transcription factors, oxidoreductases, and respiratory proteins [108]. 

 ROS detection methods 1.3

There are multiple assays to detect specific ROS or cellular oxidative stress in general. There are 

generally two approaches, which include either ROS trapping and measurement of the levels of trapped 

molecules, or measuring the levels of the damage done by ROS.  

Since ROS often exist in very low concentrations and have a very short half-life, detection probes have to 

react very rapidly with ROS to compete with antioxidants and produce stable products that can be 

quantified. Such requirements are met by the spin trapping technique, in which spin trapping agents 

covalently bind free radicals, forming stable radical adducts that can be detected by electron 

paramagnetic resonance (EPR) (also known as electron-spin resonance, ESR) [109]. The most commonly 

used spin trapping molecules are 5,5-dimethyl-1-pyrroline N-oxide (DMPO), N-tert-butyl-α-phenylnitrone 

(PBN), 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) or 5-diethoxyphosphoryl-5-methyl-1-

pyrroline N-oxide (DEPMPO) [110, 111]. In addition to the very potent EPR technique, alternative 

approaches can be applied to detect spin trap adducts or their metabolites including high-performance 

liquid chromatography (HPLC), mass spectroscopy (MS), nuclear magnetic resonance (NMR) and 

antibody-immune-based detection [111]. An example for the latter is the detection of protein-DMPO 

adducts by an anti-DMPO antibody developed by Ronald Mason and colleagues in 2004 [112]. 

ROS can also be detected by chemiluminescent probes, such as lucigenin and luminol. These probes 

undergo a chemical reaction with ROS that releases energy in the form of light. Lucigenin- or luminol-

enhanced chemiluminescence measurement is mostly applied to detect ROS in activated phagocytes, but 

is also being used in other cell types. The luminol analogue L-012 has been reported to be even more 

sensitive than luminol or lucigenin for the detection of ROS, although lucigenin-enhanced 

chemiluminescence is most specific for superoxide detection [113].  
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Specific detection of superoxide can be done by dihydroethidium (DHE). Upon oxidation by •O2
-, DHE is 

converted to the fluorescent 2-hydroxyethidium (2-HE), that can be detected via HPLC or fluorescent 

microscopy at Ex. 480 nm/Em. 580 nm [114]. A second unspecific oxidation product, ethidium (E+), is also 

formed, but usually disregarded during quantification. A modified DHE analog that is targeted to 

mitochondria, referred to as mitoSOX, is commonly used for detection of mitochondrial •O2
-. Analogous 

to DHE, mitoSOX reacts with •O2
- to form 2-hydroxy-mito-ethidium (Mito-HE) [115]. 

Extracellular hydrogen peroxide can be detected by the reagent N-acetyl-3,7-dihydroxyphenoxazine 

(Amplex Red) [116]. Catalyzed by horseradish peroxidase (HRP), the colorless non-fluorescent Amplex 

Red reacts in a 1:1 stoichiometry with H2O2 to produce highly fluorescent resorufin [117]. Since Amplex 

Red is cell-impermeable, only extracellular H2O2 is measured [117, 118]. Resorufin emits light at 590 nm 

when excited at 570 nm, which can be measured by HPLC-mediated fluorescence detection, a 

fluorescence plate reader or other fluorescence detection systems.  

Detection of intracellular H2O2 can be achieved by the fluorescent sensor HyPer, which can be introduced 

into the cell genome via plasmids or adenoviruses [119]. The expressed HyPer protein is based on the 

properties of OxyR, a prokaryotic H2O2 sensing protein. HyPer has an extremely high affinity to H2O2 and 

can be targeted to different cell compartments for detection of fast changes of H2O2 concentrations 

under various physiological and pathological conditions [120].  

General cellular oxidative stress can be measured by analyzing ROS-induced damage. For instance, tissue 

and plasma concentrations of lipid peroxidation products, such as lipid hydroperoxides or unsaturated 

aldehydes, can be assessed by HPLC [111, 121]. Furthermore, proteins modified by lipid peroxidation-

derived aldehydes such as 4-HNE, MDA, and acrolein, are commonly detected by several immune-based 

assays with suitable antibodies. Generally, all oxidative posttranslational modifications of proteins, as 

described in 0, can be detected via immunological assays, if a corresponding antibody is available. For 

instance, 3-nitrotyrosine antibodies are used as a strong marker for RNS stress. 

The biological redox status of a cell or tissue is often reflected by the balance of GSH/GSSG, NAD+/NADH, 

and NADP+/NADPH. Several kits for fluorometric assessment of these redox couples are commercially 

available. 

There is a great variety of ROS detection methods with different specificities and limitations that are not 

covered here, but are elaborately reviewed elsewhere [110, 111, 122]. 
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Increasing evidence shows that ROS/RNS influence epigenetic pathways by affecting the function or 

expression of epigenetic modulators, such as histone and DNA modifying enzymes, as well as the 

regulation of miRNAs and chromatin remodeling complexes [123-127] (see 1.5). Adverse redox 

regulation of epigenetic processes may induce changes in gene expression and ultimately result in 

pathological consequences. Conversely, epigenetic alterations may affect redox signaling by influencing 

the expression of oxidative stress-associated enzymes [11, 125, 128]. In order to be able to understand 

the crosstalk between redox regulatory pathways and epigenetic processes, the major epigenetic 

mechanisms will be introduced in the following chapters. 

 Epigenetics 1.4

Epigenetics commonly refers to alterations in gene expression that are mitotically and/or meiotically 

heritable and that do not involve changes in the DNA sequence [129]. Epigenetic alterations generally 

involve DNA methylation, histone posttranslational modifications, ATP-dependent chromatin 

remodeling, and non-coding RNA transcripts (Figure 7). By altering DNA accessibility and chromatin 

structure, epigenetic processes regulate patterns of gene expression, which is crucial to normal 

development and differentiation of distinct cell lineages in an organism. Specifically, epigenetic 

modifications allow variable expression of the identical genetic information in each cell of an organism 

by activation or repression of gene transcription, thus resulting in specific expression patterns and 

therefore different cellular or physiological phenotypes [130]. These effects can be due to internal cues 

as part of the normal developmental program or occur in response to environmental factors, such as 

diet, smoking or drug abuse. It has been shown that epigenetic mechanisms or disturbance thereof (e.g. 

by mentioned exogenous influences) are involved in the pathogenesis of many diseases. 

 

Figure 7 - Epigenetic mechanisms for gene regulation involve DNA modification, histone posttranslational modification, non-
coding RNAs, and ATP-dependent chromatin remodeling. Taken from Kietzmann et al. 2017 [125]. 
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1.4.1 DNA methylation 

The main epigenetic DNA modification in mammals is methylation of cytosine, producing 

5-methylcytosine (5mC). Methylation occurs mostly on cytosines in CpG islands, which are sequences of 

repeating CpG dinucleotides (meaning each cytosine nucleotide is followed by a guanine nucleotide, 5'—

C—phosphate—G—3'). In mammals, about 70-80% of CpG cytosines are methylated [131]. 

Hypermethylation of CpG islands, often located near promoter sites, is associated with epigenetic gene 

silencing [132, 133]. CpG methylation can suppress transcription by several mechanisms. The presence of 

the methyl group can directly interfere with DNA recognition and binding of transcription factors. 

Similarly, specialized methyl-DNA binding proteins can be recruited and block DNA accessibility for 

transcription factors. In other cases, methylation of cytosine may induce gene silencing by attracting 

mediators of chromatin remodeling, such as histone modifying enzymes or other repressors of gene 

expression [128, 134].  

 

Figure 8 - DNA methylation of cytosine in a CpG dinucleotide catalyzed by DNA methyltransferase. DNA methyltransferase 
transfers a methyl group from S-adenosyl methionine (SAM-CH3) to the 5-carbon of cytosine yielding S-adenosyl homocysteine 
(SAH) and 5-methylcytosine. Taken from Ahmed 2010 [135]. 

The covalent attachment of a methyl group to the C5 position of cytosine residues is catalyzed by DNA 

methyltransferases (DNMTs). The ubiquitously expressed DNMT1 is responsible for maintaining cellular 

DNA methylation and occurs simultaneously with DNA replication, thereby passing on established 

methylation patterns to daughter cells [136]. DNMT3A and DNMT3B mediate de novo methylation 

during embryogenesis [137]. DNMT enzymes share a basic common mechanism using S-adenosyl 

methionine (SAM) as methyl donor. The methyl group is transferred to the 5’-carbon of cytosine yielding 

S-adenosyl homocysteine (SAH) and 5mC (Figure 8). DNA demethylation can occur via the action of ten 
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eleven translocation (TET) proteins, which are 2-oxoglutarate (2-OG) and Fe(II)-dependent dioxygenases 

that actively oxidize 5mC to 5-hydroxymethylcytosine (5hmC). Further, TET proteins can generate 

5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) from 5hmC [138]. These cytosine derivatives can 

then undergo thymine-DNA glycosylase (TDG)-mediated base excision and subsequent DNA base 

excision repair (BER) resulting in DNA demethylation (Figure 9) [139, 140]. 

 

Figure 9 - Pathways of DNA methylation by DNMTs and demethylation mediated by TET enzymes. A cytosine residue can be 
methylated by DNMTs forming 5mC, which can then successively be oxidized by TET enzymes to produce 5hmC, 5fC, and 5caC. 
Thymine-DNA glycosylase (TDG) then recognizes 5fC and 5caC, and the oxidized cytosine base is excised. This results in an abasic 
site that is repaired by BER leading to restoration of the unmodified cytosine state. Taken from Rasmussen & Helin 2016 [140]. 

Also, other DNA modifications may have an impact on DNA methylation. For instance, in presence of 

8-oxo-2’-deoxyguanosine (8-oxo-dG), the oxidation product of guanosine, adjacent cytosines cannot be 

methylated anymore, resulting in hypomethylation and, thus, transcriptional activation [125, 141]. 

1.4.2 Histone modifications 

Eukaryotic chromatin is highly organized and packaged in the nucleus. When chromatin is packed very 

tightly (“condensed”), it is referred to as heterochromatin. Since accessibility for transcription factors is 

difficult under these conditions, heterochromatin is associated with transcriptional repression. On the 

other hand, euchromatin is the term for unwound and accessible chromatin, which is associated with 
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active transcription. The key building blocks for chromatin packaging are nucleosomes, which consist of a 

histone protein octamer core that is wrapped by 147 bp of DNA in ~1.65 superhelical turns (Figure 10) 

[129, 142]. Specifically, the octamer is composed of the four canonical histones (H2A, H2B, H3 and H4), 

which are arranged in a H3-H4 histone tetramer surrounded by two H2A-H2B dimers [143]. Nucleosome 

cores are connected by linker DNA, which varies in length (~20-90 bp) and is usually bound to histone H1 

[144]. This architecture of nucleosome assembly on DNA is often referred to as beads on a string, which 

can be observed under the microscope. In heterochromatin multiple nucleosomes assemble into a 30 nm 

fiber and further supercoiling of these fibers results in a metaphase chromosome (Figure 11).  

 

Figure 10 - Nucleosome structure and organization. DNA wraps in ~1.65 turns around a histone octamer composed of a H3-H4 
histone tetramer and two H2A-H2B dimers. Protruding N-terminal histone tails are subjected to posttranslational modifications, 
mainly acetylation and methylation on lysine and arginine residues. Taken from Wikipedia (Nucleosome structure, Top) and 
adjusted from amsbio webpage (Bottom).   
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Figure 11 - Chromatin packaging. DNA is wrapped around a histone octamer to form a nucleosome. Nucleosomes are 
connected by stretches of linker DNA. This basic nucleosome structure is folded into a fiber-like structure of about 30 nm in 
diameter. These 30-nm fibers are further compacted into higher-order structures. Taken from Annunziato, A. (2008) DNA 
Packaging: Nucleosomes and Chromatin. Nature Education 1(1):26. 

Histones are relatively small (102-135 amino acids) and are among the most highly conserved eukaryotic 

proteins [145]. All core histones have a long N-terminal amino acid tail containing many basic lysine and 

arginine residues. These highly positively charged N-terminal tails extend out from the nucleosome core 

into the nuclear lumen and are subject to various posttranslational modifications (PTMs) that can affect 

chromatin conformation and DNA accessibility (Figure 10). Such modifications include methylation, 

acetylation, phosphorylation, ubiquitination, ADP-ribosylation, and SUMOylation primarily on specific 

lysine, arginine and serine residues [146, 147]. The correlation of specific histone modifications with 
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transcriptional regulation led to the “histone code hypothesis” that suggests that different combinations 

of histone marks may epigenetically regulate chromatin structure and transcriptional status [148, 149]. 

To date, the best characterized modifications are acetylation and methylation of lysine residues on 

histones H3 and H4. 

1.4.2.1 Histone acetylation/deacetylation 

Histone acetylation occurs at the ε-amino group of lysine residues in H3 and H4 tails and is most 

consistently associated with transcriptional activation. The addition of acetyl groups to the lysine 

residues neutralizes their positive charge, thereby reducing the electrostatic attraction between the 

histone and the negatively charged phosphate groups of the DNA backbone. This leads to decompaction 

of the nucleosomes and a relaxation of the chromatin structure [150]. Consequently, the DNA is more 

accessible for transcription factors and RNA polymerases, promoting gene transcription. Accordingly, 

acetylation is mostly found at transcription start sites and/or enhancers of active genes [151]. In 

principle, all histone lysine residues can be acetylated, but the major acetylation sites described are 

H3K9, H3K14, H3K18, H3K23, H3K27, H4K5, H4K8, H4K12, and H4K16 [129, 152]. Histone acetylation is a 

dynamic process that is mediated by the antagonistic actions of two large families of enzymes - the 

histone acetyltransferases (HATs) and the histone deacetylases (HDACs) (Figure 12). By regulating the 

balance between acetylation and deacetylation these enzymes play a central role in the epigenetic 

regulation of gene expression and therefore in numerous developmental processes and disease states. 

 

Figure 12 - Histone acetylation and deacetylation. Histone acetyltransferases (HATs) add acetyl groups to lysine residues of 
histones in nucleosomes. This results in chromatin unwinding and transcriptional activation. Histone deacetylases (HDACs) 
remove acetyl groups inducing a closed chromatin structure and transcription repression. Taken from Eslaminejad et al. 2013 
[153]. 

https://www.google.de/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjPyZT72IjgAhXB5KQKHToVB34QjRx6BAgBEAU&url=https://www.researchgate.net/figure/Histone-acetylation-and-deactylation-Histone-acetyltransferase-HATs-adds-acetyl-groups_fig2_236934361&psig=AOvVaw1jXrWive4hI0t0SAi2qEx9&ust=1548494847450074
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1.4.2.2 Histone acetyltransferases (HATs) 

Histone acetyltransferases (HATs) catalyze the transfer of an acetyl group from acetyl coenzyme A 

(acetyl-CoA) to lysine residues in histone tails. There are two different types of HATs: type A HATs are 

located in the nucleus and type B HATs in the cytoplasm. Type A HATs can be classified into five families 

GNAT1, MYST, SRC, p300/CBP, and a group of other acetyltransferases that cannot clearly be categorized 

based on defining features of the first four classes [154]. These nuclear HATs acetylate nucleosomal 

histones and other chromatin-associated proteins and are thus involved in the regulation of gene 

expression. Cytoplasmic type B HATs acetylate newly synthesized free histones, which is important for 

their deposition into chromatin but has no direct impact on transcription [155]. Acetyl-CoA is produced 

through glycolysis as well as other catabolic pathways and is used as a substrate for the citric acid cycle 

and as a precursor in synthesis of fatty acids. Since HATs are dependent on the availability of acetyl-CoA, 

the extent of histone acetylation is influenced by the cellular metabolic state [156]. 

 

Figure 13 - Reaction mechanism of protein lysine acetylation by histone acetyltransferases (HATs). HATs catalyze the transfer 
of an acetyl group from acetyl coenzyme A (acetyl-CoA) to a lysine residue yielding the acetylated protein and a CoA molecule. 
Taken from Rye et al. 2011 [157]. 

1.4.2.3 Histone deacetylases (HDACs) 

Histone lysine acetylation is highly reversible. The removal of acetyl groups from histone lysine residues 

is catalyzed by histone deacetylases (HDACs). There are four major classes of HDACs described in 

mammals, which are classified based on structure, catalytic mechanism, and sequence homology to the 

enzymes originally discovered in S. cerevisiae. Class I comprises HDAC1, -2, -4 and -8, which are 
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predominantly localized in the nucleus and ubiquitously expressed in most tissues and cell lines. Class II 

is subdivided into class IIA containing HDAC4, -5, -7, and -9, and class IIB, which includes HDAC6 and 

HDAC10. Class II HDACs are expressed in a tissue-specific manner and their nuclear or cytoplasmic 

localization is regulated by signal-dependent phosphorylation. The sole member of class IV is HDAC11. 

Class I, II and IV HDACs require Zn2+ ions as cofactors for their deacetylation mechanism. Class III HDACs 

are known as sirtuins and differ from the other HDAC classes in that they possess a highly conserved zinc 

tetra-thiolate motif within their catalytic pocket and require nicotinamide adenine dinucleotide (NAD+) 

as cofactor for their catalytic activity. While the mechanism of class I, II and IV HDACs yields the 

deacetylated substrate and free acetate, the sirtuin-mediated deacetylation reaction results in O-acetyl-

ADP-ribose, the deacetylated substrate and nicotinamide (Figure 14) [150, 158, 159]. 

 

Figure 14 - Two catalytic mechanisms of Histone Deacetylases. Class I/II/IV HDACs require Zn ions as cofactors for catalysis and 
yield free acetate and the deacetylated substrate. Class III HDACs (sirtuins) use NAD

+
 as cofactor to which they transfer the 

acetyl group producing O-acetyl-ADP-ribose and nicotinamide, as well as the deacetylated substrate. Taken from Li et al. 2015 
[160]. 

Generally, HDACs have relatively low substrate specificity, as a single enzyme is mostly capable of 

deacetylating multiple sites within a histone. Due to their major role in transcription regulation, HDACs 

constitute a promising therapeutic target in many diseases including cancer, inflammation, and 

neurological diseases. Therefore, much effort is put into the development of effective HDAC inhibitors 

with minimal side effects. 

1.4.2.3.1 Sirt1 

The highly conserved sirtuin family consists of seven members, Sirt1-7, that differ in their localization, 

enzymatic activity, tissue specificity, and functions. Their name derives from their sequence similarity to 

https://www.google.de/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiKhpP-pc_gAhXBMewKHYyHDH8QjRx6BAgBEAU&url=https://www.sciencedirect.com/science/article/pii/S0006291X15306860&psig=AOvVaw2tcCG2h44c6dF7jXelEs6V&ust=1550923263783828
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the yeast progenitor sirtuin “silent information regulator 2” (Sir2), which is a transcriptional repressor 

[161, 162]. Sirtuins can be further discriminated by their subcellular localization. Sirt1, -6 and -7 are 

localized in the nucleus, whereas Sirt2 is mainly cytosolic but can shuttle to the nucleus during mitosis. 

Sirt3, -4 and -5 are generally found in the mitochondria [163, 164]. Sirtuins do not only act as 

transcriptional effectors by mediating histone deacetylation, but also serve as energy sensors due to 

their dependency on NAD+ [162, 165]. Sirtuins are widely expressed and have a broad range of biological 

functions including the regulation of cellular metabolism, stress response, genomic stability, and aging 

[166-169]. The nuclear deacetylase Sirt1 is the most evolutionarily conserved mammalian sirtuin with 

highest homology to Sir2. It deacetylates and regulates histones as well as a broad range of non-histone 

substrates, such as p53, stress response-associated forkhead (Fox) transcription factors, mitochondrial 

biogenesis regulator PGC1-α, and others. Through either direct modulation or by influencing gene 

expression, Sirt1 is implicated in a variety of cellular processes including cell cycle, response to DNA 

damage, metabolism, apoptosis and autophagy [29]. 

1.4.2.3.2 HDAC2 

The class I HDAC2 is ubiquitously expressed in all tissues and predominantly localized in the nuclear 

compartment of the cell. HDAC2 acts via the formation of a large multiprotein complex that interacts 

with transcription factors and is recruited to target genes to mediate repression. Complexes that include 

HDAC2 as a catalytic subunit are the Sin3, NuRD and CoREST complexes. In the late S-phase of DNA-

replication, HDAC2 is also found in a DNMT1-containing transcriptional repressor complex [29, 163, 170-

172]. HDAC2 has crucial roles in many cellular processes such as proliferation, cell cycle, differentiation 

and apoptosis. Physiologically, HDAC2 is a key regulator of the transcription of genes implicated in 

hematopoiesis, epithelial cell differentiation, heart development and neurogenesis [150, 173-177]. 

1.4.2.4 Histone methylation/demethylation 

Unlike histone acetylation, the effects of histone lysine methylation patterns on transcription are more 

complex, since some methylation sites are associated with active transcription (euchromatin), while 

some are repressive, promoting heterochromatin formation. Generally, the methylation of H3K9, H3K27 

and H4K20 are associated with gene silencing, whereas H3K4, H3K36 and H3K79 methylation states are 

transcriptionally permissive modifications [129]. Methylation marks lead to recruitment of effector 

proteins (“readers”) (e.g. heterochromatin protein 1 (HP1) or TATA-Box Binding Protein Associated 

Factor 3 (TAF3)), that bind to the methylated residue and initiate downstream effects altering chromatin 

structure or affecting transcription directly [178, 179]. In addition, the ε-amino group of lysine can be 
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mono-, di-, or tri-methylated, since each hydrogen of the NH3
+ group can be replaced by a methyl group. 

Those different extents of methylation may have different effects on transcription due to high sensitivity 

of reader proteins containing methyl-binding domains that recognize the methylation status [180]. For 

instance, while H3K4me3 modifications mark active promoters, H3K4me1 marks are found in enhancer 

regions [181]. Histone methylation also occurs on basic arginine residues, which can be 

monomethylated, symmetrically dimethylated or asymmetrically dimethylated on their guanidinyl group 

[180]. Sites of arginine (R) methylation include H3R2, H3R8, H3R17, H3R26 and H4R3. Histone arginine 

methylation also plays a, yet less described, role in transcription regulation, as it was shown to promote 

or prevent the docking of key transcriptional effector molecules [182]. 

Histone lysine methylation is catalyzed by S-adenosylmethionine (SAM)-dependent lysine 

methyltransferases (KMTs). However, methyl groups can be removed by flavin-dependent or JumonjiC 

(JmjC) domain-containing lysine demethylases (KDMs) [183]. A family of nine protein arginine 

methyltransferases (PRMT1-9) catalyzes the methylation of arginine, which can be reversed by a subset 

of JmjC demethylases [182, 184]. 

1.4.2.5 Histone lysine methyltransferases (HMTs) 

Histone lysine methyltransferases can be grouped into SET domain-containing enzymes and the non-SET 

domain-containing enzyme DOT1-like protein (DOT1L). DOT1L is responsible for mono-, di-, and 

trimethylation of the ε-amino group on H3K79 and is the only methyl-transferase with this target known 

so far [185]. H3K79 is an activating mark that, unlike most other histone marks, resides in the globular 

core and not the tail of the histone. The majority of histone lysine methyltransferases contain a 

conserved catalytic SET (suppressor of variegation, enhancer of zeste, trithorax) homology domain [180]. 

These methyltransferases can methylate histone lysine residues, but also non-histone substrates [186]. 

SET methyltransferases can again be grouped into four families based on the sequence similarity in their 

SET domain and in adjacent protein regions: SET1, SET2, SUV39, and RIZ [187]. Also, there are other 

additional SET domain-containing methyltransferases that have not been assigned to a certain group, 

like SET7 (SET7/9), SET8, SUV4-20H1, and SUV4-20H2. 

All HMTs use S-adenosylmethionine (SAM) as methyl donor. To date more than 50 human lysine 

methyltransferases (KMTs) have been reported [188].  All these enzymes are highly selective regarding 

their target lysine residue, as well as the degree of methylation they confer. 
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1.4.2.5.1 Set7 

Set7 (SET7) is a 41 kDa SET domain-containing histone lysine methyltransferase that is also known by the 

names SET7/9 or SETD7. Set7 specifically monomethylates lysine 4 of histone 3 (H3K4me1) and thereby 

plays a role in transcriptional activation of genes including insulin or collagenase [189-191]. Involvement 

of Set7 in di- or trimethylation of histones was disproved [192, 193]. Set7 is also able to catalyze 

methylation of non-histone proteins, such as p53, TAF10, SOX2, SIRT1, and DNMT1 [194]. It is suggested 

that Set7 plays an important role in development and skeletal muscle differentiation [189, 195]. 

1.4.2.5.2 SMYD1 

The SMYD family proteins belong to the SET2 class of SET domain-containing methyltransferases and 

comprise five proteins (SMYD1-5) [188, 196]. Their catalytic SET domain is split into two segments by a 

MYND domain, followed by a cysteine-rich post-SET domain, hence the name SET and MYND domain-

containing protein (SMYD). While the SET domain is responsible for the methylation of lysine residues, 

the zinc-finger motif-containing MYND domain facilitates protein-protein interactions that may underlie 

methylation specificity [197]. SMYD1, also known as BOP, is a nuclear and cytoplasmic protein that is 

expressed specifically in cardiac and skeletal muscle [198]. It was shown by Tan et al. that SMYD1 

catalyzes methylation of histone 3 on lysine 4 (H3K4), a mark of transcriptional activation [199]. 

However, further studies have shown that SMYD1 also methylates multiple non-histone proteins, such as 

the muscle-specific transcription factor skNAC [200, 201]. Interestingly, SMYD1 can also function as 

transcriptional repressor due to interaction with histone deacetylases. Specifically, the MYND domain 

recruits and directly binds to class I and class II HDACs, whose catalytic activity induces transcriptional 

silencing [198]. The highly dynamic function of SMYD1 plays a key role in cardiac and skeletal muscle 

development and related pathology [202]. 

1.4.2.6 Histone lysine demethylases (KDMs) 

It was long believed that histone methylation is irreversible, since the half-life of histone methylation 

marks was approximately the same as histone turnover [203]. However, in 2004 Shi et al. identified an 

amine oxidase, lysine-specific demethylase 1 (LSD1 or KDM1A), that specifically removes methyl groups 

from histone 3 lysine 4 (H3K4) in a FAD-dependent reaction limited to mono- and dimethylated 

substrates [204]. Not much later, the family of JumonjiC (JmjC) domain-containing histone demethylases 

(JHDMs) was discovered, which can be divided into seven subfamilies (KDM2-8) based on the JmjC 

domain homology [205, 206]. JmjC domain-containing histone demethylases are iron- and 
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2-oxoglutarate (2-OG)-dependent and are able to remove methyl groups from all three methyl lysine 

states. 

1.4.2.6.1 LSD1 

The histone lysine demethylase LSD1 (KDM1A) is a flavin adenine dinucleotide (FAD)-dependent amine 

oxidase that generally demethylates monomethylated and dimethylated lysine 4 of histone 3 

(H3K4me1/2). In the demethylation reaction an iminium cation intermediate is generated from the 

methylated amino group of lysine, which is further hydrolyzed to a carbinolamine that spontaneously 

dissociates yielding the demethylated amine and formaldehyde (Figure 15) [207]. During the reaction the 

cofactor FAD is reduced to FADH2, which is recycled through oxidation by molecular oxygen thereby 

forming hydrogen peroxide as a byproduct. The LSD1-mediated demethylation reaction is limited to di- 

and monomethylated lysines, as it requires a free electron pair on the lysine ε-nitrogen atom to initiate 

demethylation [188, 207].  

 

Figure 15 – Mechanism of action of LSD1. LSD1 uses FAD as cofactor to generate an iminium cation intermediate from 
dimethylated lysine. The intermediate is then hydrolyzed to a carbinolamine that spontaneously degrades to the demethylated 
amine, thereby releasing formaldehyde. This reaction is then repeated until the lysine residue is completely demethylated. 
Taken from Rotili et al. 2011 [207]. 

By demethylating H3K4 LSD1 acts as a transcriptional repressor; however, LSD1 is also associated with 

transcriptional activation due to its dual substrate specificity. When bound to androgen receptor (e.g in 
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prostate cancer cells), LSD1 changes its substrate target to H3K9me1/2. By demethylation of the 

repressive H3K9me1/2, LSD1 induces the activation of androgen receptor target genes [208]. 

Of note, generation of H2O2 during the catalytic activity of LSD1 is associated with DNA base oxidation, 

thereby triggering the recruitment of the base excision repair (BER) machinery to the gene promoter and 

regulatory response sites [209-211]. Effective coupling of BER to LSD1-mediated histone demethylation is 

critical for efficient transcriptional regulation. The toxic formaldehyde released during lysine 

demethylation is possibly scavenged by tetrahydrofolate (THF), as it was shown that LSD1 contains a THF 

binding site that binds THF with high affinity [212]. Bound THF was shown to accept the formaldehyde 

generated in the course of histone demethylation to form 5,10-methylene-THF [213, 214]. 

LSD1 plays a critical role in development, especially differentiation and maintenance of embryonic stem 

cells. It has also been shown to be involved in the control of hematopoiesis, the DNA damage response, 

the circadian cycle and the regulation of cellular energy metabolism [206, 215, 216]. 

1.4.2.6.2 KDM3A  

KDM3A (also JHDM2A, JMJD1A) belongs to the family of JumonjiC domain-containing histone lysine 

demethylases (JHDMs). These enzymes are mononuclear iron-dependent dioxygenases that use 

2-oxoglutarate (2-OG) and molecular oxygen (O2) as cosubstrates for oxidative demethylation of 

histones. All JHDMs share a common conserved structural motif, namely a 2-histidine-1-carboxylate 

facial triad, that coordinates a non-heme Fe(II) at the catalytic center (Figure 16) [207, 217]. The 

demethylation reaction involves an initial step of 2-OG and oxygen binding to the catalytic center, 

resulting in release of CO2 and formation of a highly reactive oxo-ferryl intermediate that reacts with the 

methylated lysine substrate. Subsequent hydroxylation produces succinate and an unstable hemiaminal 

intermediate that rapidly breaks down, leading to the release of formaldehyde and the demethylated 

lysine residue (Figure 16) [183, 207]. In general, JHDMs are able to remove methyl groups from all three 

methyl lysine states; however, KDM3A preferentially demethylates mono- and dimethylated H3K9, while 

it has weak or no activity on trimethylated H3K9 [218]. Despite producing toxic formaldehyde as a 

byproduct, the reason for the absence of damage to this class of histone demethylases is yet unknown. 
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Figure 16 - Mechanism of action of KDM3A. 2-oxoglutarate and oxygen bind to the 2-histidine-1-carboxylate facial triad in the 
catalytic center of KDM3A. The resulting oxo-ferryl (Fe(IV)-oxo) intermediate reacts with the methylated lysine substrate. This 
leads to hydroxylation of lysine to a hemiaminal intermediate and release of succinate. The hydroxylated lysine degrades into 
formaldehyde and a demethylated lysine residue. Taken from Rotili et al.2011 [207]. 

KDM3A was shown to play an important role in germ cell development, as it is highly expressed during 

spermatogenesis, while KDM3A-KO mice are infertile [206, 207, 219]. In addition, KDM3A has been 

implicated in the transcriptional control of metabolic genes in muscle and adipose tissues, as 

demonstrated by development of adult obesity phenotype in KO mice [220, 221].  

1.4.3 ATP-dependent chromatin remodeling 

In addition to DNA and histone modification, ATP-dependent chromatin remodeling complexes play an 

important role in epigenetic processes due to their ability to enable transcriptional access to DNA by 

altering the structure, composition or positioning of nucleosomes [222]. Those chromatin remodelers 

are large multi-subunit complexes that contain a highly conserved ATPase catalytic domain, as they 

require the energy from ATP hydrolysis for their remodeling functions. These functions include the 

dissociation of DNA-histone contacts in nucleosomes (looping), translocation of the nucleosome along 

the DNA (sliding) or even eviction of nucleosomes from the DNA, thereby increasing DNA accessibility 

(Figure 17). Furthermore, nucleosomal histone subunits including their specific posttranslational 

modifications can be exchanged by remodeling complexes [223].  

There are five known families of chromatin remodeling complexes in eukaryotes: SWItch/Sucrose Non-

Fermentable (SWI/SNF), Imitation SWItch (ISWI), NURD/Mi-2/CHD (a complex including a nucleosome 
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remodeling deacetylase and chromodomain-helicase-DNA-binding protein), as well as the complexes 

INO80 and SWR1 [222, 224]. The unique protein subunit composition of each complex (like presence of a 

helicase or bromodomain etc.) specify its function and biological role (e.g. in apoptosis, DNA repair etc.). 

For instance, ISWI-complexes are implicated in chromatin assembly after DNA replication, while 

remodelers of the families INO80 and SWI/SNF participate in DNA double-strand break (DSB) repair and 

nucleotide-excision repair (NER) [223]. The dynamic remodeling of the fundamental nucleosomal 

structure, organization and localization through remodeling complexes plays a key role in the epigenetic 

regulation of gene expression underlying many fundamental cellular processes. 

 

Figure 17 - Mechanisms of ATP-dependent chromatin remodeling. The energy from ATP hydrolysis is used for changes in 
nucleosomal assembly and structure. These changes include translocation of the nucleosome along DNA (sliding), nucleosome 
eviction, dissociation of DNA-histone contacts (unwrapping/looping), and exchange or ejection of nucleosomal subunits (dimer 
replacement). Taken from Chen et al. 2017 [225]. 

https://www.google.de/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjfqL6Y5ojgAhWMCuwKHbDxDfQQjRx6BAgBEAU&url=https://www.sciencedirect.com/science/article/pii/S1876162316300505&psig=AOvVaw1mcf4a565rOuHUYiwmDoSH&ust=1548501061058372
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1.4.4 Non-coding RNAs 

About 90% of the human genome is transcribed into RNA, but only 1-2% of the transcripts actually 

encode proteins [226]. The generated non-coding RNA (ncRNA) transcripts are functional RNA molecules 

that are either involved in “housekeeping” processes for translation (e.g. transfer RNAs or ribosomal 

RNAs) or can modulate gene expression and therefore play a role as epigenetic modifiers (Figure 18) 

[227]. Epigenetic-related ncRNAs can further be divided into two groups; short ncRNAs are less than 200 

nucleotides in length, while long ncRNAs (lncRNAs) include all larger transcripts [228].  

 

Figure 18 - Classification of different RNA types, divided into coding and non-coding RNA subscripts. Non-coding RNAs 
comprise translation-related RNAs and two groups of epigenetic-related RNAs, short ncRNA and long ncRNA. Taken from 
Santosh et al. 2015 [229]. 

Long non-coding RNAs comprise the majority of non-coding RNA transcripts and are highly diverse in 

structure and function. They can influence gene expression by serving as a scaffold for or complexing 

with chromatin-modifying proteins and recruiting their catalytic activity to specific sites in the genome 

[230]. For instance, the lncRNA HOTAIR (for HOX transcript antisense RNA) can silence Hox genes by 

recruiting polycomb-group proteins, which are chromatin remodeling complexes that induce formation 

of repressive heterochromatin [231]. In addition, lncRNAs can also suppress transcription by obstructing 

promoter association of transcription factors or by recruitment of RNA-binding proteins that interfere 

with histone deacetylation [230]. 
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Short non-coding RNAs can be further divided into three major classes: microRNAs (miRNAs), short 

interfering RNAs (siRNAs), and piwi-interacting RNAs (piRNAs). Micro-RNAs are about 17-25 nucleotides 

in length and regulate messenger RNA (mRNA) expression. Specifically, miRNAs target and bind 

complementary 2-7 nt long seed regions of mRNAs, ultimately resulting in mRNA cleavage and therefore 

suppression of translation in a process termed RNA interference [227, 228]. In some cases, miRNAs can 

even target the gene promoter on the DNA itself and thereby act as transcriptional repressor [232]. 

Another way, in which miRNAs may affect epigenetic pathways is the regulation of translation of 

epigenetic enzymes, such as DNMTs or histone modifiers [227]. The microRNA miR-34a, for instance, was 

shown to repress the expression of the histone deacetylase Sirt1 [233]. Short interfering RNAs (siRNAs) 

work in a similar way as miRNAs, inducing gene silencing by mRNA degradation [234]. However, in 

contrast to miRNAs, siRNAs are perfectly complementary to their mRNA sequence target and therefore 

highly specific for transcriptional suppression [235]. Synthetic siRNAs are widely used to achieve targeted 

and effective silencing of genes. The class of Piwi-interacting RNAs (piRNAs) interacts with piwi family 

proteins in order to mediate gene silencing. piRNAs are restricted to the germline and germline 

bordering somatic cells and their primary function involves chromatin regulation and suppression of 

transposon activity [229, 236]. 

 The interrelation of oxidative stress and epigenetics 1.5

Increasing evidence shows that ROS/RNS influence epigenetic pathways by affecting the function or 

expression of histone and DNA modifying enzymes [123-125]. Adverse redox regulation of epigenetic 

processes may ultimately result in pathological consequences.  

Overall, increased oxidative stress is associated with global DNA hypomethylation [125, 128]. ROS can 

induce changes in DNA methylation patterns by directly reacting with DNA bases. Hydroxyl radicals can 

oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which may interfere with the 

activity of the maintenance DNA methyltransferase DNMT1 or, upon further oxidation, be subjected to 

base excision repair (as described in 1.4.1, p.20), ultimately leading to demethylation [125, 139, 237]. 

Also, in conditions of oxidative stress the availability of DNMT cofactor S-adenosyl-methionine (SAM) is 

reduced, restricting DNMT activity and therefore leading to decreased DNA methylation [125, 128, 238].  

Oxidative stress is also associated with dysregulation of histone acetylation. Many studies have reported 

an increase in histone acetylation upon increased ROS; however, opposing results have also been 

described (Figure 19) [239-241]. Increased acetylation levels can be caused by reduced expression or 

activity of class I HDACs due to ROS-induced PTMs or by ROS-mediated nuclear export of oxidized class II 
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HDACs [239, 242-245]. In addition, ROS can decrease the activity of sirtuins by decreasing the availability 

of the cofactor NAD+ or by generating inhibitory PTMs, thereby contributing to increased histone 

acetylation [240, 246, 247]. Sirtuin expression upon oxidative stress, on the other hand, can either be 

increased, dependent on the redox-sensitive transcription factor HIF1α [248, 249], or decreased due to 

transcriptional or miRNA-mediated repression conditions [250].  

 

Figure 19 - ROS affect histone acetylation by modulating histone deacetylases. Taken from Kietzmann et al.2017 [125]. 

Histone methylation marks have also been reported to be modulated by ROS, mainly by ROS-induced 

alteration of the activity or expression of HMTs or KDMs (Figure 20). In order to catalyze histone 

methylation, HMTs, like DNMTs, depend on the cofactor SAM, which is reduced during oxidative stress, 

thus decreasing HMT activity [125]. Furthermore, it has been shown that ROS can inhibit JmjC KDM 

activity by oxidizing or binding the non-heme Fe(II) at the catalytic center [124, 125, 217]. Increased 

expression of several JmjC KDMs was also observed during oxidative stress in a HIF1α-dependent 

manner [251]. 

Additionally, various miRNAs have been shown to be regulated by ROS [126, 127] and there is increasing 

evidence that ROS can also affect ATP-dependent chromatin remodeling complexes [125, 252].  

On the other hand, it is also possible that epigenetic alterations affect redox signaling by directly or 

indirectly regulating the function or expression of ROS-producing enzymes or antioxidant enzymes. For 

instance, epigenetic silencing of NOX enzymes via promoter hypermethylation has been shown in 

diseases such as lung cancer or hepatocellular carcinoma [11, 253-255].  Furthermore, class I HDACs 

were shown to be involved in the transcriptional activation of NOXs in endothelial and smooth muscle 

cells [256-259]. Epigenetic silencing of SOD2 via histone modifications or DNA hypermethylation was 

found in in several disorders including cancer, diabetes and hypertension [260-263]. 
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Figure 20 - ROS affect histone methylation by modulating histone methyltransferases or histone demethylases. Taken from 

Kietzmann et al. 2017 [125]. Edited for accuracy. 

In summary, disruption of epigenetic regulation by ROS may induce changes in gene expression with 

potential pathological consequences. Or conversely, epigenetic alterations may affect the expression of 

energy expenditure, antioxidant or inflammatory genes leading to dysfunctional energy metabolism or 

inflammation, inducing oxidative stress. Oxidative stress-associated enzymes may therefore play a dual 

role serving as target and/or source of epigenetic remodeling. 

The effect of ROS on epigenetic regulation, including mechanisms and consequences, was reviewed in 

detail by Kietzmann et al. 2017 [125], Kreuz & Fischle 2016 [36], Mikhed et al. 2015 [211], and Cyr & 

Domann 2011 [128].  

 Implications of oxidative stress and epigenetics in cardiovascular diseases 1.6

Cardiovascular diseases (CVDs) are the leading cause of death worldwide and not only cause a public 

health issue but also account for trillions of dollars of global healthcare expenditure [264-266]. CVDs are 

multifactorial disorders of the heart or blood vessels and include stroke, heart failure, hypertension, 

coronary artery diseases, cardiomyopathy, atherosclerosis, arrhythmia, diabetic vascular disease, and 

more [264]. Multiple genetic and environmental risk factors are associated with the development of 

CVDs, e.g. genetic predisposition, aging, smoking, diet, pollution, circadian rhythm or socioeconomic 

status [264, 267, 268]. In order to develop more efficient and cost-effective therapy it is necessary to 

gain a thorough understanding of the interplay of these factors and the underlying molecular pathways 

that ultimately result in CVDs. Epigenetic gene regulation is increasingly recognized as playing a causative 

role in CVDs and is also emerging as a key target for therapeutic treatment [152, 227, 269-275]. In short, 
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some known epigenetic changes involved in CVD include DNA hypomethylation in proliferating vascular 

smooth muscle cells in atherosclerosis, changes in estrogen receptor-α/β promoter methylation in 

vascular disease, as well as changes in global histone H3K4 and H3K9 trimethylation in congestive heart 

failure [134, 276-280]. Furthermore, it is well established that increased ROS formation is involved in the 

pathogenesis of cardiovascular diseases [5, 75, 281-285]. There is now increasing data showing a link 

between epigenetic pathways and ROS signaling in CVDs. For instance, it was demonstrated that 

oxidative stress caused aberrant DNA methylation in atherosclerosis by altering the binding of DNMTs to 

chromatin [276, 286-288]. Furthermore, in pulmonary arterial hypertension epigenetic silencing of 

superoxide dismutase 2 (SOD2) by selective promoter hypermethylation impaired redox signaling and 

promoted vascular smooth muscle cell (SMC) proliferation [134, 263, 289, 290]. In addition, oxidation of 

HDAC4 mediated by NOX4 has been shown to induce cardiac hypertrophy [291]. Interestingly, in turn, it 

was demonstrated that HDACs play a key role in transcriptional regulation of NOX4 in human endothelial 

and smooth muscle cells and are therefore implicated in vascular pathophysiology [256, 258]. A global 

decrease in H3K9 acetylation and increased global H3K9 methylation across different cells has been 

observed in hypoxia due to HDAC and HMT upregulation, respectively [292, 293]. A key feature of CVDs 

is endothelial dysfunction, which can be caused by several factors including downregulation of eNOS 

expression and activity, eNOS uncoupling, or nitric oxide scavenging by free radicals [294, 295]. The 

restriction of eNOS expression to vascular endothelium was shown to be regulated by DNA methylation 

and histone modifications. In contrast to non-expressing cells, endothelial cells are demethylated at the 

eNOS promoter along with a local enrichment of acetylated H3 and H4 histones promoting 

transcriptional activation [152, 296]. Under hypoxic conditions eNOS expression is reduced due to a 

decrease in H3/H4 acetylation of eNOS proximal promoter histones, thus fostering endothelial 

dysfunction [297]. In line with that, it has been proposed that HDAC1 inhibition may represent a method 

to prevent endothelial dysfunction [298]. 

With the increasing evidence of involvement of epigenetic regulation in the development and 

progression of cardiovascular disorders, it is becoming more and more important to investigate the 

interplay of redox signaling and epigenetic regulation in this context. 
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1.6.1 The role of oxidative stress and epigenetics in diabetes 

Diabetes mellitus (DM) is a globally growing health problem with increased mortality due to its 

consequential complications. Diabetes is characterized by a relative or absolute lack of insulin, resulting 

in elevated blood glucose levels (hyperglycemia). Type 1 diabetes mellitus (T1DM), previously known as 

insulin-dependent DM, is caused by an autoimmune-mediated loss of insulin-producing beta-cells in the 

pancreas, resulting in insulin deficiency [299]. Type 2 diabetes mellitus (T2DM), previously known as non-

insulin-dependent or adult-onset DM, is the most common type of diabetes. It is characterized by insulin 

resistance meaning insulin receptors are desensitized and do not respond to insulin, ultimately 

decreasing glucose uptake into cells and elevation of blood glucose. This condition is often accompanied 

by obesity and dyslipidemia [284, 300]. Hyperglycemia in diabetes is a major risk factor for the 

development of cardiovascular diseases, as it is associated with inflammation and increased oxidative 

stress, leading to vascular dysfunction. Vascular diabetic complications include retinopathy, 

cardiomyopathy, and nephropathy [6, 301-304].  

It is well established that generation of ROS is highly increased in diabetes and that the onset of diabetes 

is closely associated with oxidative stress [305-307]. Hyperglycemia can induce oxidative stress via 

several mechanisms including glucose autoxidation, increased formation of advanced glycation end-

products (AGEs), and activation of the polyol pathway [284, 308].  

Glucose autoxidation leads to increased levels of NADH and FAD, resulting in disruption of the electron 

transport chain and production of superoxide [309-311].  

AGEs are formed by the non-enzymatic reaction of reducing sugars with proteins, lipids, and nucleic 

acids with subsequent structural rearrangement [94, 312, 313]. Binding of AGEs to their receptor RAGE 

(“receptor for advanced glycation end-products”) induces a broad proinflammatory response and 

production of ROS via NOXs [314-316]. Furthermore, by crosslinking with macromolecules AGEs can 

impair antioxidant systems [304]. In turn, increased oxidative stress promotes new formation of AGEs 

and RAGE upregulation, leading to a vicious cycle [312, 317, 318]. Thus, increased AGE accumulation may 

be both a cause and effect of diabetes.  

The polyol pathway is a two-step process that converts glucose to sorbitol and then to fructose. Under 

hyperglycemic conditions this pathway is excessively activated, thereby increasing intracellular and 

extracellular sorbitol concentrations, reducing NADPH availability, and decreasing levels of nitric oxide 

and GSH. This decreases the overall reducing capability of the cell, ultimately increasing free ROS levels 

[284, 309, 319]. Independent of glucose, additional sources of ROS in diabetes can be elevated 
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circulating factors such as free fatty acids or leptin [320-323]. This increase in ROS formation/levels 

induces the activation of several transcription factors and signaling pathways involved in the 

pathogenesis of chronic complications, including protein kinase C (PKC), c-Jun N-terminal kinase (JNK), 

p38 mitogen-activated protein kinase (MAPK), and nuclear factor kappa-B (NFkB) [6, 324]. Especially 

endothelial cells are major targets of oxidative damage causing endothelial dysfunction in the target 

organs. 

Increasing evidence demonstrates key roles of epigenetic pathways in the pathogenesis of diabetes [325-

329]. Alterations of histone modifications as well as changes in the function or expression of the relevant 

histone modifiers have been demonstrated in vascular cells under diabetic conditions and in 

experimental models of diabetes [262, 330-332]. Since these changes persisted in those models even 

after their removal from the diabetic milieu, epigenetic mechanisms were implicated in the “metabolic 

memory” (also called “glycemic memory”) phenomenon, which refers to the sustained proinflammatory 

states and increased risk for vascular complications observed in some diabetes patients even long time 

after intensive glycemic control is instituted [327, 328, 333, 334]. Epigenetic processes in diabetes have 

repeatedly been reported to appear in a vital crosstalk with oxidative stress [6, 304]. It has been found 

that the histone acetyltransferase p300 is overexpressed in models of diabetes via pathways that are 

activated in response to oxidative stress [335, 336].  In comparison, reduced protein levels of the histone 

deacetylase Sirt1 were observed in diabetic patients or experimental models along with increased global 

oxidation, reduced GSH levels and accumulation of lipid oxidation products [337, 338]. Therefore, the 

balance between histone acetylation and deacetylation is altered, increasing the expression of various 

vasoactive factors and ECM proteins involved in the development and progression of chronic diabetic 

complications, such as vascular endothelial growth factor (VEGF), endothelin 1 (ET-1), fibronectin (FN), 

collagen (COL), or transforming growth factor-β (TGF-β) [6, 335-342]. Histone hyperacetylation and 

transcriptional activation was also observed at inflammation-related gene promoters such as tumor 

necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX2) [326, 343-345]. Moreover, the repressive mark 

H3K9me3 was found to be decreased at promoters of inflammatory genes, promoting their expression in 

diabetic models [331, 346]. In addition, overexpression of growth factors and inflammatory mediators 

was also observed due to loss of transcription repression in response to downregulation of certain 

miRNAs in diabetes (e.g. miR-15a, miR-103, miR-107, miR-143, and miRNA-146a) [6, 347]. Decreased 

levels of miRNA-25 in diabetic nephropathy have been associated with increased NOX4 expression 

contributing to ROS formation [348]. Alternatively, some miRNAs are found overexpressed in diabetes, 

such as miR-377, which silences SOD2 and, thus, impairs the antioxidant defense [349]. The oxidative 
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stress-responsive microRNA miR-195 was shown to mediate Sirt1 downregulation [350]. DNA 

methylation is also affected by ROS, cytokines or other metabolites in diabetes [351-353] and, 

conversely, altered DNA methylation patterns can also lead to increased ROS formation. For instance, in 

diabetic retinopathy active promoter demethylation of the NOX2 subunit Rac1 leads to transcription 

activation and consequently NOX2-mediated elevation of cytosolic ROS levels [303]. 

Many more changes in epigenetic mechanisms have been described contributing to the pathogenesis of 

diabetes [304, 326, 334, 354-357]. Implication of ROS in these effects is very likely, however remains to 

be investigated in detail. 

1.6.1.1 The SGLT2 inhibitor empagliflozin as a potential treatment for type 2 diabetes 

Glucotoxicity resulting from hyperglycemia is a major risk factor for the development of cardiovascular 

diseases in diabetes. Therefore, controlling blood glucose is of paramount importance in the prevention 

of vascular complications. To date, the first-line therapy for T2DM management is the oral medication 

metformin, which decreases glucose production by the liver and improves insulin sensitivity of body 

tissues [358]. However, if metformin is contraindicated, poorly tolerated, or inadequately effective, 

many therapeutic alternatives are available, such as sulfonylureas, thiazolidinediones (TZDs), dipeptidyl-

peptidase-4 (DPP-4) inhibitors, or glucagon-like peptide-1 (GLP-1) analogs [359]. Despite the availability 

of a wide variety of medications, numerous patients with diabetes still fail to achieve acceptable 

glycemic control, underlining the necessity of more effective medications [360]. A new class of anti-

hyperglycemic medications, the gliflozins, have entered the market in 2013. Canagliflozin, dapagliflozin 

and empagliflozin were approved by the FDA for the treatment of T2DM in subsequent order [361-363]. 

Gliflozins are inhibitors of the sodium-glucose co-transporter 2 (SGLT2), which is a low-affinity, high-

capacity transporter found almost exclusively in the proximal tubules of nephronic components in the 

kidney (Figure 21) [364]. Under normal circumstances, the adult kidney filters ~180 g of glucose per day 

and SGLT2 is responsible for the renal reabsorption of >90% of glucose from primary urine into the blood 

[365, 366]. Inhibitors of SGLT2 (SGLT2i) block the reabsorption of filtered glucose leading to increased 

urinary glucose excretion (glucosuria). As a result plasma glucose levels are reduced preventing 

hyperglycemia and glucotoxicity in diabetic patients [367, 368]. Of the gliflozins, empagliflozin 

(Jardiance®) is the most selective for SGLT2 [369, 370]. In 2015, the EMPA-REG OUTCOME® trial 

demonstrated that empagliflozin could reduce major adverse cardiovascular events, cardiovascular 

mortality, hospitalization for heart failure, and overall mortality when given in addition to standard care 

in T2DM patients at high cardiovascular risk [371, 372]. Ever since, the potential mechanisms underlying 

cardiovascular benefits of empagliflozin have been subject to extensive research. 
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Figure 21 - Mechanism of SGLT2 inhibitors. The sodium-glucose co-transporter 2 (SGLT2) is located in the proximal tubules in 
the kidney, where it normally mediates reabsorption of ~90% of glucose into the blood (SGLT1 is responsible for reabsorption of 
the remaining 10%). SGLT2 inhibitors block SGLT2-mediated glucose reabsorption leading to increased urinary glucose excretion 
lowering blood glucose levels. Taken and modified from Sushruta Diabetes and Endocrinology Research Trust webpage.  

1.6.2 The role of oxidative stress and epigenetics in response to doxorubicin therapy 

The anthracycline doxorubicin (Dox) is a chemotherapeutic agent effective in the treatment of a variety 

of adult and pediatric cancers [373-376]. However, the benefit of doxorubicin in the clinic is 

compromised by the risk of development of severe cardiotoxicity. It has been reported repeatedly that 

patients treated with doxorubicin or its derivatives develop cardiac complications even up to 10-15 years 

after termination of chemotherapy [375-377]. The probability of developing cardiomyopathy is primarily 

related to the dosage and duration of treatment, but may also occur at low doses due to increased 

individual susceptibility (risk factors being age, gender or chronic conditions) [375, 378, 379]. 

Doxorubicin cardiotoxicity can be acute, occurring within 2-3 days after administration, or chronic, where 

it is usually evident within 30 days after the last dose, but may occur even 10-15 years after its 

administration [376]. The incidence of acute cardiotoxicity (manifested as arrhythmias, hypotension etc.) 

is approximately 11%, but is generally reversible and clinically manageable [376, 379, 380]. However, the 

incidence of chronic doxorubicin cardiotoxicity, leading to congestive heart failure (CHF), is highly dose-

dependent with a documented prevalence of CHF in 5%, 26%, and 48% in patients treated with a 

cumulative dose of 400, 550 and 700 mg/m2 doxorubicin, respectively [381]. The prognosis of patients 

who develop congestive heart failure is poor with a mortality rate of ~50% in 1 year [376, 382, 383].  
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While doxorubicin acts via a range of different mechanisms in order to combat cancer cells, it is well 

established that the primary cause of doxorubicin-induced cardiomyopathy is increased cardiac oxidative 

stress, as evidenced by ROS-induced damage such as lipid peroxidation, along with reduced levels of 

antioxidants and sulfhydryl groups in respective cell and animal models [375, 384-388]. Elevated ROS 

levels in response to doxorubicin treatment may result from different mechanisms, such as disruption of 

the mitochondrial electron transport chain (METC) by doxorubicin either directly through its quinone 

ring structure, which reacts with mitochondrial enzymes (e.g. NADH dehydrogenase) to undergo redox 

cycling between quinone and semiquinone states (Figure 22) [380, 389-391], or indirectly via 

compromising the mitochondrial genome and, thus, mitochondrial biogenesis [392, 393]. Additional to 

causing mitochondrial dysfunction through ROS formation, doxorubicin also interferes with the 

mitochondrial membrane phospholipid cardiolipin, further altering mitochondrial bioenergetics [394].   

 

Figure 22 - Doxorubicin redox cycling catalyzed by the cytochrome P450 system (CYP450) and mitochondrial electron 
transport chain (METC). Taken from Zhu et al. 2016  [389]. 

Cardiac oxidative stress can also be attributed to doxorubicin-mediated activation of ROS-generating 

enzymes, including NOX2 and its activating subunit Rac1. In animals with disrupted NOX2 activity and in 

cell models treated with inhibitors of NAD(P)H activity, superoxide generation and cardiotoxic effects in 

response to chronic doxorubicin treatment were shown to be decreased [395-399]. Another mechanism 

by which doxorubicin may cause elevated ROS levels is through dysregulation of antioxidant enzymes, 

https://www.google.de/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjtv_bMu-XdAhVP2qQKHetkDU4QjRx6BAgBEAU&url=https://www.aimsci.com/ros/html/?page_id%3D276&psig=AOvVaw26EQBUG_0f7poVSJmobdo3&ust=1538490957821263
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such as glutathione peroxidase-1 (GPx-1), an important hydrogen peroxide degrading enzyme. It has 

been reported that GPx-1 is readily inactivated upon exposure to doxorubicin in cardiac tissue [400, 401], 

while GPx-1 deficiency in mice was shown to increase the susceptibility to doxorubicin-induced 

cardiotoxicity [402]. In line with that, overexpression of GPx-1 was demonstrated to protect mice hearts 

against doxorubicin-induced cardiotoxicity and prevented impairment of mitochondrial respiration [403]. 

In addition, it has been demonstrated that up-regulation of the mitochondrial antioxidant enzyme SOD2 

counteracted cardiotoxic effects induced by doxorubicin exposure [404-406], whereas deficiency in 

mitochondrial aldehyde dehydrogenase 2 (ALDH-2), which removes toxic aldehydes resulting from lipid 

peroxidation, rendered mice more susceptible to doxorubicin-induced cardiac and vascular damage 

[407].  

While it is established that the generation of ROS plays a major role in doxorubicin-induced 

cardiotoxicity, less is known about the role of epigenetics in this field. Long-term persistence of 

doxorubicin toxicity suggests an involvement of epigenetic mechanisms that promote the development 

of cardiac complications even long after cessation of doxorubicin chemotherapy. As it causes 

mitochondrial dysfunction, it has been proposed that doxorubicin initially disturbs the mitochondrial-

dependent production of important cofactors of epigenetic modulators, such as the main acetyl and 

methyl donors (acetyl-CoA and SAM, respectively), thereby imprinting a long lasting toxic epigenetic 

memory that manifests itself through an aberrant metabolic transcriptome and metabolome [408]. 

Epigenetic changes associated to acute doxorubicin toxicity are usually attributable to doxorubicin-

induced ROS formation, affecting epigenetic pathways as described in 1.5.  
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 Aim 2

The aim of this thesis was to investigate the crosstalk between redox regulatory pathways and epigenetic 

processes. It was of interest to investigate ROS-induced epigenetic changes in oxidative stress-related 

cardiovascular complications. For this purpose suitable models with increased ROS formation had to be 

established and confirmed. The focus was on detecting changes in expression or activity of epigenetic 

modifiers, such as HMTs, HDMs, HATs or HDACs, or altered histone methylation and acetylation patterns 

in response to oxidative stress. Another objective was to establish assays to determine whether 

exposure to ROS causes redox modifications, such as nitros(yl)ation, nitration or sulfoxidation, within 

epigenetic enzymes with potential impact on enzyme activity. In addition, specific target genes affected 

by alterations in epigenetic regulation were supposed to be identified (i.e. by ChIP) and their role in 

pathological progression to be analyzed. 

The ultimate goal was to gain more thorough mechanistic insights into the interplay of oxidative stress 

and epigenetics in the context of cardiovascular diseases and complications. 
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 Materials 3

 Chemicals and Consumables 3.1

Product Company Catalog No. 
   
100 µm Meshfilter Greiner, EASYstrainer 542 000 
2-Mercaptoethanol (β-ME) Sigma M6250 
40% Acrylamide/Bis sol. 29:1 BioRad 1610146 
5,5-Dimethyl-1-Pyrroline N-Oxide (DMPO) Sigma D5766 
Accutase PromoCell C41310 
Acetonitrile Promochem SO-9128-B025 
Acrylamide bis solution 40% 29:1 BioRad 1610146 
Albumin Fraktion V (BSA) Roth 8076.3 
Aldehyde dehydrogenase (ALDH) Roche 10171832001 
Amersham Protran 0,45µm Nitrocellulose Blotting 
membrane 

GE Healthcare GE10600002 

Ammonium persulfate (APS) Sigma A9164 
AmplexRed Molecular Probes A12222 
BenchMark Unstained Protein Ladder Life technologies  
Bovine Serum Albumin Standard Ampules Thermo Scientific 23209 
Cell culture flasks Greiner Various 
Cell Culture Multiwell Plates for Adherent Cell Cultures Greiner Various 
Copper(II)-sulfate (CuSO4) Roth P023.1 
D(+)-Glucose Sigma G8270 
Dihydroethidium 95% (DHE) Sigma 37291 
Dimethyl pimelimidate (DMP) Sigma 21667 
Dimethylsulfoxide 99,5% Sigma 41639 
Dithiothreitol (DTT) Sigma D0632 
DNA LoBind Tubes 1,5ml Eppendorf 0030108051 
Doxorubicin hydrochloride Tocris 2252 
Dynabeads™ M-280 Sheep Anti-Mouse IgG Thermo Scientific 11201D 
Dynabeads™ M-280 Sheep Anti-Rabbit IgG Thermo Scientific 11203D 
Empagliflozin (SGLT2 inhibitor) Boehringer Ingelheim Pharma 

GmbH & Co KG 
Gift 

Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-
tetraacetic acid (EGTA) 

Sigma E4378 

Ethylenediaminetetraacetic acid (EDTA) Sigma E9884 
Fetal bovine serum (FBS) Gibco 10270-106 

Glutathione (GSH) Sigma G4251 
Glycerol Roth 3783.1 
Hemoglobin from bovine blood Sigma 08449 
Hydrochloric acid Merck 109057 
Interleukin-1β (IL-1β) Peprotech 200-01B 
Isocitrate dehydrogenase type I Sigma I1877 
Isopropanol Sigma 34959 
L-012 (8-amino-5-chloro-7-phenylpyrido[3,4-d] pyridazine-
1,4-(2H,3H)dione sodium salt) 

WAKO Chemicals 120-04891 

Lysozyme Sigma L6876 
Methanol 99,8% Sigma  322415  
Milk powder Roth T145.2 
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MNase (Micrococcal Nuclease) NEB M0247S 
Paraquat (dichloride hydrate) Riedel de Haen 36541 
PBS Dulbecco's Phosphate Buffered Saline Sigma  D8537 
Penicillin-Streptomycin (PenStrep) Sigma P0781 

PerfeCTa SYBR Green FastMix ROX Quanta 95073-012 
Phenylmethanesulfonyl fluoride (PMSF) Sigma P7626 
Phosphatase Inhibitor Cocktail Sigma P2850 
Pierce™ ECL Western Blotting Substrate Thermo Scientific 32106 
Ponceau S / Ponceau Red  Sigma P5288 
Potassium chloride Sigma P4504 
Potassium dihydrogenphosphate (KH2PO4) Roth P018.2 
Potassium hydrogencarbonate (KHCO3) Merck 104854 
Potassium hydrogenphosphate (K2HPO4) Roth P749.2 
Potassium nitrite (KNO2) Merck 1050670250 
Precision Plus Protein Standards BioRad 161-0374 
Protease Inhibitor Cocktail   Sigma P8340 
Protein G Magnetic Beads (PureProteome Protein G 
Magnetic Beads) 

Millipore LSKMAGG02 

Protein Kinase Inhibitor Sigma P0300 
QIAQuick PCR Purification Kit Qiagen 28104 

RAGE Antagonist, FPS-ZM1 Merck 553030 
Rat Negative Control Primer Set 1 Active motif 71024 
Roche Complete Mini Protease Inhibitor Cocktail Sigma 04693124001 
Roti®-Quant Roth K015.1 
Simple CHIP Rat GAPDH Promoter Primers Cell Signaling 7964 
SIN-1 chloride Cayman Chemical 82220 
S-Nitrosoglutathione (GSNO) Sigma N4148 
Sodium butyrate Sigma B5887 
Sodium chloride Roth 3957.1 
Sodium dodecyl sulfate Merck 822050 
Sodium hydrogenphosphate (Na2HPO4) AppliChem A1046 
Sodium hydroxide solution Merck 109137 
Sodium phosphate monobasic dihydrate Sigma 71505 
Spermine NONOate Cayman Chemical 82150 
Sucrose Sigma S9378 
SuperSignal™ West Femto Maximum Sensitivity Substrate Thermo Scientific 34095 
Triethanolamine Sigma T1502 
Tris(hydroxymethyl)-aminomethane (Tris-base) Sigma 252859 
Tris-hydrochlorid (Tris-HCl) Roth  9090.2 
TritonX -100 Sigma 93420 
Tween 20 Sigma P2287 
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 Antibodies 3.2

Product Dilution Washing 
buffer 

Blocking buffer Species Company Catalog No. 

Anti-4-Hydroxynonenal antibody 1:3000 TBS-T 5% BSA/TBS-T rabbit Abcam ab46545 
Anti-acetyl-Histone H3 antibody 1:2500 TBS-T 5% BSA/TBS-T rabbit Millipore 06-599 
Anti-Actin antibody 1:2500 TBS-T 5% BSA/TBS-T rabbit Sigma A5060 
Anti-AGE antibody 1:500 PBS-T 5% BSA/PBS mouse Transgenic inc. KH001 
Anti-alpha-Actinin antibody 1:2500 TBS-T 5% BSA/TBS-T mouse Sigma A5044 
Anti-beta Tubulin antibody 
(BT7R) 

1:2000 TBS-T 5% BSA/TBS-T mouse Thermo Fisher MA5-16308 

Anti-Dityrosine antibody 1:1000 TBS-T 5% Milk/TBS-T mouse JaICA MDT-020P 
Anti-DMPO [N1664A] antibody 1:1000 TBS-T 5% Milk/TBS-T mouse Stress Marq 

Bioscience Inc. 
SMC-189-D 

Anti-GAPDH antibody 1:1000 TBS-T 5% BSA/TBS-T rabbit Cell Signaling 2118 
Anti-Glutathione Peroxidase 1 
antibody 

1:1000 PBS-T 5% BSA/PBS-T rabbit Abcam ab22604 

Anti-HDAC2 antibody [EPR5001]  1:10000 TBS-T 5% BSA/TBS-T rabbit Abcam ab124974 
Anti-Histone H3 (di methyl K9) 
antibody 

1:1000 TBS-T 5% Milk/TBS-T mouse Abcam ab1220 

Anti-Histone H3 (di methyl K9) 
antibody [Y49] 

1:1000 TBS-T 5% Milk/TBS-T rabbit Abcam ab32521 

Anti-Histone H3 (mono methyl 
K9) antibody 

1:1000 TBS-T 5% BSA/TBS-T rabbit Abcam ab9045 

Anti-Histone H3 (tri methyl K4) 
antibody 

1:1000 TBS-T 5% BSA/TBS-T rabbit Abcam ab8580 

Anti-Histone H3 (tri methyl K9) 
antibody 

1:1000 TBS-T 5% BSA/TBS-T rabbit Abcam ab8898 

Anti-Histone H3 antibody 1:1000 TBS-T 5% Milk/TBS-T mouse Active motif 39763 
Anti-Histone H3 antibody 1:2000 TBS-T 5% BSA/TBS-T rabbit Abcam ab1791 
Anti-Histone H4 antibody 1:1000 TBS-T 5% BSA/TBS-T mouse Abcam ab31830 
Anti-KDM1 / LSD1 antibody 
[EPR6825] 

1:10000 TBS-T 5% BSA/TBS-T rabbit Abcam ab129195 

Anti-KDM3A / JMJD1A antibody 1:5000 TBS-T 5% BSA/TBS-T rabbit Novus Biologicals NBP1-49601 
Anti-Malondialdehyde antibody 1:2000 PBS-T 5% Milk/PBS rabbit Abcam ab27642 
Anti-NFkB p65 (D14E12) antibody 1:1000 TBS-T 5% BSA/TBS-T rabbit Cell Signaling 8242 
Anti-Nitrotyrosine antibody 1:2000 PBS-T 1% Hemoglobin/ 

PBS-TT 
rabbit Millipore 06-284 

Anti-Nitrotyrosine antibody 1:1000 PBS-T 5% Milk/PBS mouse Millipore 05-233 
Anti-RAGE antibody 1:1000 PBS-T 5% BSA/PBS-T rabbit Cell Signaling 4679S 
Anti-SETD7 antibody [EPR5574] 1:5000 TBS-T 5% BSA/TBS-T rabbit Abcam ab124708 
Anti-SirT1 (1F3) antibody 1:1000 TBS-T 5% Milk/TBS-T mouse Cell Signaling 8469 
Anti-SMYD1 antibody 1:5000 TBS-T 5% BSA/TBS-T rabbit Thermo Fisher PA5-31482 
Anti-S-Nitrosocysteine 1:2000 TBS-T 5% Milk/TBS-T mouse A.G. Scientific N-1078 
Anti-S-nitrosocysteine 1:1000 TBS-T 5% Milk/TBS-T rabbit Abcam ab50185 
Anti-Trimethyl-Histone H3 (Lys4) 
antibody 

1:2000 TBS-T 5% BSA/TBS-T rabbit Millipore 17-614  

Anti-Trimethyl-Histone H3 (Lys4) 
antibody 

1:5000 TBS-T 5% BSA/TBS-T rabbit Millipore 07-473 

Anti-Caspase 3 antibody 1:1000 TBS-T 5% Milk/TBS-T rabbit Cell Signaling 9662S 
Anti-SOD2 (Mn-SOD) Antibody 1:1000 TBS-T 5% BSA/TBS-T rabbit Millipore 06-984 
Anti-Fractin antibody 1:1000 TBS-T 5% BSA/TBS-T rabbit Millipore ab3150 
Goat F(ab) Anti-Mouse IgG H&L 1:5000 Same conditions as primary 

antibody 
goat Abcam ab6823 

Peroxidase labeled anti mouse 
made in horse 

1:10000 Same conditions as primary 
antibody 

horse Vektor PI-2000 

Peroxidase labeled anti rabbit 
made in goat 

1:10000 Same conditions as primary 
antibody 

goat Vektor PI-1000 
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 Media 3.3

EA.hy926 culture medium 

DMEM (1x) + GlutaMAX™  Gibco 21885-025 
10 % FBS Gibco 10270-106 
0.5 % PenStrep Sigma P0781 
 

H9c2 culture medium 

DMEM High Glucose with L-Glutamine ATTC ATTC® 30-2002 
10 % FBS Gibco 10270-106 
0.5 % PenStrep Sigma P0781 

 Buffers 3.4

Potassium phosphate buffer  
K2HPO4 x 3 H2O 40 mM 
KH2PO4 10 mM 
pH 7.5  
 

Homogenization buffer 

Tris-HCl 20 mM 
Sucrose 250 mM 
EGTA 3 mM 
EDTA 20 mM 
Protease inhibitor cocktail 1% 
Phosphatase inhibitor cocktail 1% 
PMSF 0.5% 
TritonX-100 1% 
 

Laemmli buffer (3x) 

Tris-HCl (pH 6.8) 0,188 mol (157,6 g/mol) 
SDS 60 mmol (288,5 g/mol) 
Glycerol 30%  
Bromophenol blue 0,01% (669,96 g/mol) 
β-Mercaptoethanol 1,5%  
 

SDS-PAGE stacking gel buffer 

Tris-HCl 0.5 M 
pH 6.8  
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SDS-PAGE separation gel buffer 

Tris-HCl 1.5 M 
pH 8.8  
 

SDS-PAGE running buffer (10x) 

Tris base 250 mM 
Glycin 192 mM 
SDS 35 mM 
 

Western blot transfer buffer (10x) 

Tris base 250 mM 
Glycin 192 mM 
Methanol 25% 
 

ChIP cell lysis buffer 

Saccharose 500 mM 
Tris-HCl (pH 7.6) 15 mM 
KCl 60 mM 
EDTA 0.25 mM 
EGTA 0.125 mM 
DTT 1 mM 
TritonX-100 1% 
Protease inhibitor cocktail 1% 
 

ChIP nuclear lysis buffer 

Hepes (pH 7.6) 20 mM 
NaCl 150 mM 
EDTA 1 mM 
EGTA 0.5 mM 
TritonX-100 1% 
SDS 0.15% 
 

ChIP MNase buffer 

Tris-HCl (pH 7.6) 20 mM 
NaCl 70 mM 
KCl 20 mM 
MgCl2*6H2O 5 mM 
CaCl2*2H2O 3 mM 
 

  



  Materials 

 
50 

 

 Cell lines 3.5

EA.hy926 Gift from C.-J. S. Edgell (University of 
North Carolina, Chapel Hill, USA)  

Immortalized human umbilical vein 
endothelial cells 

 

H9c2(2-1) ATCC® CRL-1446™ Rat myoblasts 

 ChIP Primers 3.6

DHFR (promoter): forward GGCCTTCGCTATGACAAATAG, reverse CGCCGCGCATCCTATT; 

DHFR (promoter-5’-UTR): forward GGGCCTTCGCTATGACAA, reverse GCTGAGTACCACTAAGGCAGC; 

DHFR (intron1): forward AAAGCACCAACACCACCTCC, reverse TCATGTGTGTGCTCAGGCTC; 

eNOS: forward CTGGCCCACACTCTTCAAGT, reverse CCTAAGGAAAAGGCCAGGAC;  

HO-1: forward CAGAGTTTCCGCCTCCAAC, reverse GTAGTCGCTTGCCTGTCGAG; 

IFNγ (promoter): forward GCCCAAGGAGTCGAAAGGAA, reverse AGATAGGTGGCGGGAGCTTA; 

IFNγ (intron3): forward AATCGGGCTCTGAGGAGACT, reverse TGAGCTGCATAGCACGAGAG;  

NOS2 (promoter-5’-UTR): forward CTGTCAGGGCCACAGCTTTA, reverse TCACCAAGGTGGCTGAGAAG;  

NOS2 (intron 2.1): forward TGGGAGTGGTCTAGTGAAGCA, reverse TTTATGGCGGCAGAAGTTGG; 

NOS2 (intron 2.2): forward AGGTCGCCAGTCGCGT, reverse AAGTTCCTTGGTGCAGAATCC; 

RAGE (promoter): forward GCTGGACCATGCTGCCTAAT, reverse CATTTCCTTCAGCCCACCGA;  

RAGE (promoter-5’-UTR): forward TGGGACAAGATGGCAGTTGG, reverse CAGGCTCCTGGTTCTGTCTG. 

 

Control primers 

GAPDH:  Simple CHIP Rat GAPDH Promoter Primers  (Cell Signaling 7964) 

Gene desert:  Rat Negative Control Primer Set 1   (Active motif 71024) 
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 Technical Devices 3.7

Device Company 

ChemiLux Imager (CsX-1400 M) Intas 

HPLC-column C18-Nucleosil  Macherey & Nagel 

HPLC-System Jasco 

ECL plate reader Centro Berthold Technologies 

Magnetic rack (Magna GrIP Rack, 8well) Millipore 

MRX II microplate reader Dynex Technologies 

NanoDrop 2000 UV-Vis spectrophotometer Thermo Fisher Scientific 

NeoLab-Sunlab Rotator  NeoLab 

PCR-device StepOnePlus™ Thermo Fisher Scientific 

StepOnePlus Real-Time PCR Systems Thermo Fisher Scientific (Applied Biosystems) 

TissueLyser LT Qiagen 

Whatman Minifold I vacuum dot-blot system 
device 

Whatman, GE Healthcare 

 

 Software 3.8

Gel-Pro Analyzer, Media Cybernetics 

GraphPad Prism 5  

PyMol, Version EduPyMOL-v1.7.4.4, Schrödinger 

Revelation, Dynex Technologies 

StepOne Software v2.3, Applied Biosystems  
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 Methods 4

 Cell culture 4.1

4.1.1 Cell maintenance 

For general cell maintenance, culture medium was aspirated and cells washed with 0.9% NaCl + 

1% penicillin-streptomycin (Sigma P0781). Cells were detached by addition of accutase (PromoCell 

C41310) followed by a short incubation time at 37°C. Cells were then transferred to a falcon and 

centrifuged at 100 g for 5 min at RT. Subsequently, the supernatant was removed and the cell pellet 

resuspended in culture medium. An appropriate amount of cells was transferred to a new culture flask 

and placed at 37°C. 

For experiments, cells were counted manually using a Neubauer chamber and seeded at assay-

dependent densities in plates or flasks.  

4.1.2 EA.hy926 cell cultivation and induction of hyperglycemia 

The human endothelial cell line EA.hy926 was a kind gift from C.-J. S. Edgell (University of North Carolina 

at Chapel Hill, USA). EA.hy926 cells were grown at 37°C and 10% CO2 in Dulbecco's Modified Eagle's 

Medium (DMEM) + GlutaMAX (Gibco 21885-025) supplemented with 10% fetal bovine serum (FBS, Gibco 

10270-106) and 0.5% penicillin-streptomycin (Sigma P0781).  

For hyperglycemia experiments, EA.hy926 cells were seeded in 6-well plates (0.2x106 cells/well) or in 

96-well plates (0.1x105 cells/well) and grown until reaching complete adhesion and semi confluence. 

Semi-confluent EA.hy926 cells were then incubated with medium containing either 5 mM or 35 mM 

D-glucose (Sigma G8270) and grown for 5 days with daily renewal of medium. Similarly, to induce 

hyperglycemia and inflammation, semi-confluent EA.hy926 cells were incubated with either 5 mM 

D-glucose, 25 ng/ml IL-1β (Peprotech 200-01B) or a combination of IL-1β and 35 mM D-glucose for 48 h. 

Culture and hyperglycemia conditions were previously published by Karbach et al. [409], whereas the 

hyperglycemia/inflammation protocol was modified from a publication by Deshwal et al. [410]. 

4.1.3 HUVEC cultivation and induction of hyperglycemia 

Human umbilical vein endothelial cells (HUVECs) were obtained from Academic Teaching Hospital in 

Frankfurt am Main/Höchst and Katholisches Klinikum Mainz St. Vincenz- und Elisabeth-Hospital. Isolation 

of HUVECs was conducted by Angelica Karpi. HUVECs were isolated by collagenase digestion as described 

by Baudin et al. [411] and cultured in endothelial cell growth medium (ECGM, Promocell C22110) mixed 
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1:1 with M199 (Sigma M4530) containing 20% FBS (Gibco 10270-106), 0.5% penicillin-streptomycin 

(Sigma P0781) and 1% L-glutamine (Sigma G7513) at 37 °C and 5% CO2.  

For hyperglycemia experiments, the cells were seeded into 6-well plates (0.6x106 cells/well) and grown 

until confluency was reached. On “day 0” the experiment was started by changing the medium to M199 

only containing 10% FBS (Gibco 10270-106), 0.5% penicillin-streptomycin (Sigma P0781) and 1% 

L-glutamine (Sigma G7513). Cells in one plate were cultured under normoglycemic (NG) conditions 

(5 mM glucose) and cells in 6 other plates were grown under hyperglycemic (HG) conditions (30 mM 

glucose). On “day 3” of normo- and hyperglycemic conditions the treatment with the SGLT2i 

empagliflozin, the dipeptidyl peptidase-4 inhibitor sitagliptin or the RAGE inhibitor FPS-ZM1 was started 

at concentrations of 1 µM or 10 µM (each stock in DMSO prepared for 1:1000 dilution) for another 2 or 3 

days. The medium containing the different drugs or the solvent was changed daily. Cells were 

photographed each day until “day 6” and living cells were manually counted using the Cell B software 

(Olympus). 

In order to measure nitrite formation in hyperglycemic HUVEC cells, on “day 6” the cells were stimulated 

with 1 µM acetylcholine for 30 min at 37 °C and the supernatant was subjected to HPLC analysis of nitrite 

(see 4.10).  

4.1.4 H9c2 cell cultivation and doxorubicin treatment  

Rat myoblast H9c2 cells were acquired from ATCC (CRL-1446™). H9c2 cells were grown at 5% CO2 in 

ATTC High Glucose DMEM (ATTC 30-2002) supplemented with 10% fetal bovine serum (Gibco 10270-

106) and 0.5% penicillin-streptomycin (Sigma P0781), according to supplier’s (ATCC) instructions.  

Special care had to be taken when cultivating H9c2 cells, as they start differentiating from myoblasts to 

cardiomyocytes upon confluency and therefore stop dividing. To avoid loss of the myoblastic population, 

it was necessary to subculture the cells before they became confluent (at around 70-80% confluency). 

For doxorubicin treatment H9c2 cells were seeded in six T75 culture flasks (75 cm2 growth area) at 

0.75x106 cells per flask and grown for 7 days until a multinucleated, elongated phenotype was observed 

(differentiation into cardiomyocytes/myotubes). Medium was renewed twice during this time. On day 7 

medium was exchanged to either untreated medium or medium containing 1 µM or 5 µM doxorubicin 

(Tocris 2252). Cells were then incubated for 24 h and 48 h before being lysed and subjected to further 

investigation. Of note, also detached apoptotic cells from the medium supernatant (SN) were included in 

the analyses. Figure 23 shows the preparation of H9c2 cell pellets for the purpose of subsequent lysis 
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and protein extraction. Due to its red color, the amount of doxorubicin-uptake in the cells is clearly 

visible.  

 

Figure 23 - H9c2 cell pellets were prepared for subsequent lysis and protein extraction. After 24 h (left) or 48 h (right) of 
incubation with doxorubicin adherent cells were stripped from the flasks using accutase. Floating apoptotic cells were collected 
from the medium. All fractions were washed and pelleted by centrifugation. The red color visualizes the amount of doxorubicin-
uptake in the cells.  
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 In vivo treatment of ZDF T2DM animal model  4.2

Animal treatment was performed by Matthias Oelze and Sebastian Steven as published by Steven et al. 

[412]: All animals were treated in accordance with the Guide for the Care and Use of Laboratory Animals 

as adopted by the U.S. National Institutes of Health and approval was granted by the Ethics Committee 

of the University Hospital Mainz and the Landesuntersuchungsamt Rheinland-Pfalz (Koblenz, Germany; 

permit number: 23 177-07/G 12- 1-025). As a model of T2DM Zucker Diabetic Fatty (ZDF) rats were used. 

A total number of 35 diabetic ZDF rats (ZDF‐Leprfa/fa) and respective 16 lean controls (ZDF-Lepr+/+) were 

directly ordered from Charles River at an age of 16±1 weeks. Rats were fed with Purina 5008 chow and 

divided into 4 treatment groups: lean control rats (ZDF-Lepr+/+, Ctr), type 2 diabetic rats (ZDF‐Leprfa/fa, 

ZDF), type 2 diabetic rats on SGLT2i low dose (10 mg/kg/d p.o.) or SGLT2i high dose (30 mg/kg/d p.o.) 

treatment via drinking water. After 6 weeks of treatment duration, animals were killed under isoflurane 

anesthesia by transection of the diaphragm and removal of the heart and thoracic aorta. Hyperglycemia 

as a marker for type 2 diabetes was assessed by glucose levels and glycosylated hemoglobin (HbA1c) in 

whole blood using the ACCUCHEK Sensor system from Roche Diagnostics GmbH (Mannheim, Germany) 

and A1C Now+ system from Bayer HealthCare Diabetes Care (Basel, Switzerland), respectively. 

 Tissue homogenization/ Cell lysis 4.3

Frozen tissue from experimental animals was pulverized using a liquid nitrogen-cooled ceramic mortar 

and pestle and transferred to Eppendorf tubes kept on liquid nitrogen. Subsequently, an estimated equal 

volume of homogenization buffer was added to the amount of tissue powder present in each Eppendorf 

tube and vortexed vigorously. Similarly, cultivated cells were washed, detached by addition of accutase 

and pelleted by centrifugation. Pellets were then resuspended in cold homogenization buffer and 

vortexed vigorously. Resulting homogenates were incubated on ice for 1 h to allow cell swelling and 

membrane disruption. Afterwards, samples were centrifuged for 15 min at 10000 g at 4°C. The 

supernatants containing the protein were transferred into new Eppendorf tubes and stored at -20°C until 

further use. The obtained pellets made up of cell debris and DNA were kept for subsequent histone acid 

extraction in cases needed. 
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 Histone acid extraction 4.4

Remaining pellets from tissue/cell lysis were resuspended in 0.2 M HCl, using roughly half the volume 

that had been used previously for lysis. Samples were then rotated over night at 4°C for acidic extraction 

of histones. Thereupon, samples were centrifuged at 6500 g for 10 min at 4°C. The supernatant, which 

contained the histone fraction, was saved and transferred into a new Eppendorf tube. HCl was 

neutralized with 2 M NaOH at 1/10 of the volume of the supernatant. Samples were kept at -20°C until 

further analysis. This protocol was modified from the histone extraction protocol provided by Abcam. 

 Quantitative protein determination by Bradford assay 4.5

All protein concentration measurements were compared to a standard curve generated from dilutions of 

bovine serum albumin (BSA) at 0, 1, 5, 10, 20 and 30 µg/ml in H2O. Lysates were diluted in H2O (1:200 

dilution for cells, 1:600 dilution for tissue) and 80 µl of each sample was transferred to a 96-well plate in 

quadruplicates. Subsequently, 200 µl of the reagent Roti® Quant (Roth K015.1) were added to each well 

and thoroughly mixed, before absorption values of the plate were measured by a MRX II plate reader 

(Dynex Technologies) at 595 nm. The results were assessed using the associated application program 

Revelation (Dynex Technologies).  

This protocol is based on the method described by Bradford in 1976 [413]. 

 Western blot analysis 4.6

Protein expression or modification was assessed by Western blot analysis. Proteins were denatured by 

incubation with Laemmli buffer for 5 min at 95°C. Equal amounts of total protein were loaded onto 

polyacrylamide gels and electrophoresis was conducted in SDS-PAGE running buffer at 120 V until the 

desired separation of proteins was reached, as was observed using Western blot protein markers. 

Subsequently, proteins were transferred from each gel onto a Protran BA85 (0.45 mm) nitrocellulose 

membrane by tank-blotting in ice-cold transfer buffer for 135 min at 250 mA. Afterwards, loading and 

transfer were controlled by staining with Ponceau S dye. Washed membranes were then blocked with 

suitable blocking buffer for 90 min at RT before being incubated with primary antibodies at their 

appropriate dilution in blocking buffer over night at 4°C. The next day, following three washing steps 

(5 min each) with correspondent buffers, membranes were incubated with horseradish peroxidase 

(HRP)-conjugated secondary antibodies (diluted in the same blocking buffer as the primary antibody) for 

90 min at RT. Afterwards, membranes were again washed three times for 5 min with correspondent 

buffers. For visualization Pierce™ ECL Western Blotting Substrate was applied and antibody-specific 
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chemiluminescent bands on the membranes were captured with ChemiLux Imager (CsX-1400 M, Intas). 

Densitometric quantification was performed using Gel-Pro Analyzer software (Media Cybernetics). 

Western blot analysis was performed according to an established protocol previously published by Oelze 

et al. [414-416] with minor modifications. All antibodies, dilutions and buffers that were applied are 

listed in the Materials section (3.2, p.47).  

 

 

Figure 24 - Illustration of an apparatus used for SDS PAGE. (Left) Scheme of a SDS gel electrophoresis chamber composition 
and sample application. Image taken from Roy and Kumar 2012 [417]. (Right) Bio-Rad PowerPac Basic Mini Electrophoresis 
System. 

 Dot blot analysis 4.7

Analysis of total protein content was performed by dot blot. For this, equal amounts (usually ~20 µg) of 

protein homogenates were diluted in PBS and each sample was applied to a buffer-soaked nitrocellulose 

membrane using a Minifold I vacuum dot-blot system device (Whatman, GE Healthcare) with a 96-well 

top frame (see Figure 25). Vacuum was generated by connecting the dot blot device to a water pump jet. 

This allowed the aspiration to the membrane of samples in each well. Subsequently, the membrane was 

removed from the dot blot device and dried for 1 h at 60°C to immobilize proteins on the membrane 

surface. Equal loading of protein amounts per well/dot was then verified by staining the membrane with 

Ponceau S. Blots were then blocked with suitable blocking buffer for 90 min at RT before being incubated 

with primary antibodies at their appropriate dilution in blocking buffer over night at 4°C. The next day, 

following three washing steps (5 min each) with correspondent buffers, membranes were incubated with 

horseradish peroxidase (HRP)-conjugated secondary antibodies (diluted in the same blocking buffer as 

the primary antibody) for 90 min at RT. Afterwards, membranes were again washed three times for 

5 min with correspondent buffers. For visualization Pierce™ ECL Western Blotting Substrate was applied 
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and antibody-specific chemiluminescent dots on the membranes were captured with ChemiLux Imager 

(CsX-1400 M, Intas). Densitometric quantification was performed using Gel-Pro Analyzer software 

(Media Cybernetics). 

Dot blot analysis was performed according to an established protocol previously published by Oelze et al. 

[414-416] with minor modifications. All antibodies, dilutions and buffers that were applied are listed in 

the Materials section (3.2, p.47). 
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Figure 25 - Dot blot system set-up and procedure. (Top) Components of the Minifold I vacuum dot-blot system device and 
assembly. (1) Placement of prewet membrane and filter paper on the filter support plate on top of the vacuum plenum. (2) 
Tightening by placing the clamping plate on top of the sample well plate and clamping with adjustable stainless steel latches. (3) 
Application of samples into wells during vaccum generation (4) Removal of membrane and filter papers.  Images taken from the 
Minifold I System set-up protocol provided by GE Healthcare. 
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 Protein S-nitrosylation and DMPO-spin trapping 4.8

Aldehyde dehydrogenase or isocitrate dehydrogenase were diluted in potassium phosphate buffer 

(pH 7.5) and 1 mg protein loaded per Eppendorf tube. Nitrosylation agents were each added 1:100 from 

stock solutions resulting in final concentrations of 1 µM SPENO/1 µM Sin-1, 10 µM SPENO/10 µM Sin-1, 

100 µM SPENO/100 µM Sin-1, 1 mM SPENO and 20 mM KNO2 (in 0.2 M HCl). The high concentration of 

SPENO (1 mM), as well as 20 mM acidic KNO2 both served as positive controls. Samples were then 

incubated at 37°C for 90 min to enable the formation of S-nitroso groups on the reactive cysteines of the 

proteins. 

 

Figure 26 - (Top) Spin-trapping of protein thiyl radical by DMPO. Edited graph from Sengupta et al.2009 [418]. (Bottom) 
Photograph of Eppendorf tubes containing nitros(yl)ated protein being illuminated. 
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After incubation, each sample was treated with 20 mM DMPO and illuminated with visible light with a 

wavelength of >420 nm for 30 min. It has been shown that upon irradiation with visible light, protein-S-

nitrosothiols undergo photolytic homolysis to •NO and protein thiyl radicals, which can be spin trapped 

by DMPO forming a thioether and upon rearrangement a stable thionitrone product (Figure 26) [418]. 

The formation of protein-DMPO adducts is representative for S-nitros(yl)ation. To quantify protein 

S-nitros(yl)ation, samples were subjected to dot blot analysis using a DMPO-specific antibody. 

 HPLC analysis of ROS formation 4.9

Cellular ROS formation was measured by HPLC-based fluorescence detection of 2-hydroxyethidium 

(2-HE) or resorufin via HPLC. Fluorescent 2-HE is formed upon oxidation of non-fluorescent 

dihydroethidium (DHE) and is specific for the detection of superoxide, whereas resorufin is an indicator 

for hydrogen peroxide formation as it is formed from the reaction of Amplex Red with H2O2 in presence 

of horseradish peroxidase (Figure 27). Cells were treated either with 50 µM DHE or with 100 µM Amplex 

Red/0.1 µM HRP in PBS and incubated for 60 min at 37°C. To measure oxidation of Amplex Red by 

extracellular H2O2, 200 µl of cell supernatant were directly transferred to an HPLC vial and resorufin 

fluorescence was measured. For extraction of DHE oxidation products an equal volume of acetonitrile 

was added to the cells, inducing protein precipitation and therefore cell lysis. Cells were scraped from 

the culture wells, transferred to an Eppendorf tube and centrifuged at 20000 g for 15 min at 4°C. 200 µl 

of the supernatant were transferred to a vial and subjected to HPLC analysis. 

The HPLC system consisted of a control unit, two pumps, mixer, detectors, column oven, degasser, and 

an autosampler (AS-2057 plus) from Jasco and a C18-Nucleosil 100-3 (125×4) column from Macherey 

&Nagel. A high pressure gradient was applied with the organic solvent acetonitrile (90 vv% 

acetonitrile/10 vv% water) and 25 mM citrate buffer, pH 2.2, as mobile phases. 

2-hydroxyethidium and ethidium levels were measured using the following percentages of the organic 

solvent: 0min, 36%; 7 min, 40%; 8-12 min, 95%; 13min, 36%. The flow was 1 ml/min and DHE was 

detected by its absorption at 355 nm, whereas 2-HE and ethidium were detected by fluorescence 

(Ex. 480 nm/Em. 580 nm) (Figure 28 A). Typical retention time of 2-HE was 3.5 min. The signal was 

normalized to a 1.25 µM 2-HE standard.  
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Figure 27 - Reaction scheme of (A) DHE oxidation by superoxide resulting in the fluorescent products 2-hydroxyethidium 
(2-HE) and the unspecific oxidation product ethidium (E

+
), and (B) Amplex Red oxidation by H2O2 resulting in fluorescent 

resorufin. 

Resorufin levels were measured using the following percentages of the organic solvent: 0 min, 41%; 

7 min, 45%; 8-9 min, 100%; 10–12 min, 41%. The flow was 1 ml/min, compounds were detected by their 

absorption at 300 nm, and resorufin was also detected by fluorescence (Ex. 570 nm/Em. 590 nm) (Figure 

28 B). Typical retention time of resorufin was 2.8 min. The signal was normalized to a 5 µM resorufin 

standard.  

HPLC analysis of 2-HE and resorufin was performed according to a previously published method [419, 

420]. 

 



  Methods 

 
63 

 

 

Figure 28 - Representative chromatograms of HPLC-mediated fluorescence detection of (A) 2-hydroxyethidium (2-HE) and 
ethidium (E

+
) and (B) resorufin. Graphs are derived from data of EA.hy hyperglycemia experiments. 

 HPLC analysis of nitrite formation 4.10

Nitrite formation in response to stimulation with acetylcholine was determined in HUVECs. For this 

purpose, the cells were stimulated with 1 µM acetylcholine for 30 min at 37 °C. Subsequently, the 

supernatant medium containing the produced nitrite was mixed 1:1 with 1 M HCl containing 200 µM 

2,3-diaminonaphthalene and incubated for 10 min at 37 °C. Under acidic conditions nitrite will form a 

highly fluorescent triazol product with 2,3-diaminonaphthalene. 50 µl of the supernatant were subjected 

to HPLC analysis. 

The system consisted of a control unit, two pumps, a mixer, detectors, a column oven, a degasser, an 

autosampler (AS-2057 plus) from Jasco (Groß-Umstadt, Germany), and a C18-Nucleosil 100-3 (125 × 4) 

column from Macherey & Nagel (Düren, Germany). A high-pressure gradient was employed with solvent 

B (acetonitrile/water 90:10 v/v%) and solvent A (25 mM citrate buffer pH 2.2) as mobile phases with the 

following percentages of the organic solvent B: 0 min, 30%; 8 min, 65%; 8.5–9 min, 100%; and 9.5 min, 

30%. The flow was 1 ml/min, and the triazol product was detected by its fluorescence (Ex. 375 nm/Em. 

415 nm). Nitrite concentrations were quantified by external standards. The background nitrite signal of 

the culture medium was subtracted from the determined nitrite values. 

 L-012 measurement of cellular ROS formation 4.11

The dye L-012 (8-amino-5-chloro-7-phenyl-pyrido[3,4-d]pyridazine-1,4(2H,3H)dione), a luminol analogue, 

is a highly sensitive chemiluminescent probe, which detects a variety of intracellular or extracellular ROS 

or RNS (Figure 29). In order to measure cellular ROS formation, treated EA.hy cells grown in 96-well 

plates were washed with NaCl before addition of 100 µl NaCl per well. Subsequently, 100 µl of PBS buffer 
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containing 200 µM L-012 was added yielding a final concentration of 100 µM L-012. The 

chemiluminescence was monitored at intervals of 10min over 40 min with an ECL plate reader Centro 

(Berthold Technologies, Bad Wildbad, Germany), and the signal at 10 min was expressed as counts/s. 

L-012 measurement was modified from a previously published protocol by Daiber or Oelze et al. [113, 

414, 421] 

 

Figure 29 - Structure of L-012. Taken from Halliwell et al. 2004 [122]. 

 Immunoprecipitation with magnetic beads 4.12

Magnetic beads (anti-rabbit or anti-mouse, Thermo Scientific) in an Eppendorf tube were washed three 

times with PBS/0.1% BSA using a magnetic rack. In this procedure beads are first resuspended in buffer, 

then the magnetic force assembles the beads in one spot and the fluid can be removed without touching 

the beads (Figure 30, bottom). Subsequently, the relevant antibody was added to the beads in a volume 

recommended by the manufacturer. This suspension was then rotated over night at 4°C to allow 

antibody binding to the beads. On the next day, the antibody was crosslinked to the beads. For this the 

antibody-loaded beads were washed twice with triethanolamine (TEA, pH 8.2), thereby removing any 

unbound antibodies. Then the beads were resuspended in 20 mM dimethyl pimelimidate (DMP) diluted 

in TEA and rotated for 30 min at RT. Afterwards, beads were resuspended in 50 mM Tris (pH 7.5) and 

rotated for 15 min at RT, followed by three washing steps with PBS/0.1% BSA. Next, precipitation was 

induced by adding the protein homogenate in an assay-dependent concentration to the beads and 

incubating the mixture for 2 h at 4°C while rotating. Subsequently, beads were washed three times for 

5 min each with PBS/0.2% Triton-X and a final time with PBS for 5 min at RT under rotation in order to 

remove any unbound material. Finally, 1x concentrated Laemmli buffer containing β-mercaptoethanol 

was added to the beads, vortexed and incubated at 95°C for 5 min to denature the antibody-antigen link. 

To rid the precipitated protein completely from the antibody-crosslinked beads, the mix was transferred 
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to the magnetic rack and the supernatant containing the precipitate removed into a new tube. The 

remaining beads were then discarded.  

The protocol was modified from the immunoprecipitation protocol provided by the magnetic bead 

manufacturer (Thermo Scientific). 

 

Figure 30 - (Top) Scheme of immunoprecipitation procedure. (Bottom) Representative image of a magnetic rack, as well as 
sample purification by bead assembly at the magnet and removal of supernatant. Images taken and compiled from websites of 
Rockland Immunochemicals, Cell Signaling and Fisher Scientific. 
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 Native chromatin immunoprecipitation (ChIP) 4.13

Rat kidney samples were homogenized in liquid nitrogen and 50 mg of pulverized kidney was used per 

ChIP experiment. Samples were resuspended in PBS supplemented with protease inhibitors and further 

comminuted in a TissueLyser LT (Qiagen) for 3 min at 50 Hz. Single cells were obtained by filtering the 

suspension through a 100 µm mesh filter (Greiner). The cells were then pelleted by low-speed 

centrifugation (3000 g, 4 min) and lysed in ChIP cell lysis buffer containing protease inhibitors. DNA was 

fragmented using Micrococcal Nuclease (NEB, 2000 gel units) to an average DNA fragment size of 

300-400 bp. The nuclear membrane was broken using ChIP nuclear lysis buffer containing TritonX and 

SDS. Ten µg of DNA was used for each ChIP experiment and 1% (0.1 µg) DNA was retained as input 

control. Immunoprecipitations were performed by overnight incubation of the chromatin samples with 

protein G magnetic beads (Millipore) and 3 µg of the respective antibodies. Antibodies used were Anti-

Histone H3 (tri-methyl K9) antibody (abcam ab8898) and Anti-Histone H3 (trimethyl K4) antibody 

(Millipore 07-473). After removal of the beads, the eluate was purified with the QIAQuick PCR 

Purification Kit (Qiagen 28104). Immunoprecipitated DNA was subjected to qPCR analysis using 

specifically designed primers for HO-1, eNOS, DHFR, IFNγ, iNOS, and RAGE (HO-1 and eNOS primers were 

a kind gift from Prof. Li). Chip data were calculated relative to DNA input. Primer sequences for ChIP-

qPCR are listed in the Materials section (3.6).  

In order to test successful extraction of DNA containing the corresponding histone marks (H3K4me3 or 

H3K9me3), each ChIP precipitate was validated by qPCR-based quantification of the constitutively active 

gene GAPDH, as well as a genomic region that is devoid of protein-coding genes (“gene desert”). For this 

purpose commercial ChIP primers were applied: Simple CHIP Rat GAPDH Promoter Primers (Cell 

Signaling 7964) and Rat Negative Control Primer Set 1 (Active motif 71024). A ChIP was considered valid 

when high levels of GAPDH and low levels of gene desert were detected by qPCR in chromatin derived 

from H3K4me3-mediated ChIP, while H3K9me3-mediated ChIP resulted in low levels of GAPDH and high 

levels of gene desert, in relative terms. 

Of note: As histones are closely wrapped around DNA and are therefore naturally linked, it is not 

necessary to perform a cross-linking step between chromatin and protein. Native chromatin is applied in 

the assay, hence the term “native ChIP”. 
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Figure 31 - ChIP assay procedure. Taken from Collas & Dahl 2008 [422]. 
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 ChIP primer design 4.14

Since there is no ChIP primer repository/database available thus far, several steps were devised in order 

to develop optimal qPCR primers for the genes DHFR, eNOS (NOS3), HO-1 (HMOX1) (C), interferon-γ 

(IFNG), NOS2 and RAGE (AGER). At first, data about the respective gene was collected using UCSC 

genome browser (Figure 32). Here, data of genomic histone mark distribution of human H3K4me1/3 and 

H3K27Ac is available, however not for other histone modifications such as H3K9me3. In general, 

H3K4me3 is mostly enriched within promoter regions, but can also be found in regulatory regions 

promoting transcription enhancement [151, 423, 424]. The region around the transcription start site 

(TSS) is usually nucleosome-depleted, thus free from any histone modifications. Also, H3K4me3 marks 

often appear in proximity to CpG islands. Unfortunately, no such database is offered for mouse or rat 

yet. Therefore, genomic regions, where high accumulation of H3K4me3 signal was indicated in the 

human database, were zoomed in to base level in the UCSC browser table (Figure 33 A, B). Base 

sequences were visually monitored for short stretches that were conserved between human and rat. The 

complete rat genomic sequence of each gene, including 1000 bases upstream of the TSS, constituting the 

promoter region, as well as the 5’-untranslated region (5’-UTR) and the intron sequences were exported 

into a word file. The defined short conserved sequences were identified in the rat genomic sequence as 

reference point to where H3K4me3 was found enriched in the respective human gene. Genomic regions 

of around 200-500 bp containing at least one or more of these short conserved sequences were then 

checked for possible primers using NCBI Primer-BLAST (Figure 33 C). Furthermore, specificity of the 

suggested primers was surveyed using NCBI Nucleotide Blast, IDT OligoAnalyzer and the UCSC tools 

“BLAT” and “In-Silico PCR”. There are some important parameters to consider when designing ChIP 

primers. Amplification products should not be longer than 150 bp. Since MNase cuts at the linker DNA 

between nucleosomes during DNA digestion, the smallest generated fragment is 146 bp. Longer 

amplification products should therefore be avoided, as the amplification efficiency may be substantially 

lower. Furthermore, like for normal qPCR, primers should be 20 to 30 bases long with a melting 

temperature of 60°C ± 2°C. GC content should be 50% on average (35-65%) and runs of an identical 

nucleotide (such as 'CCCC'), especially 'G's, should be avoided. Formation of self- or hetero-dimers 

should be prevented (ΔG > -9 kcal/mol) and the melting temperature of hairpin structures should be 

around 30°C. Using UCSC “BLAT” it can be inquired if the amplified region is unique in the genome and 

with “In-Silico PCR” it is possible to visualize where the amplicon is in relation to the gene of interest 

(Figure 33 D). 
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Figure 32 - Representative genome browser assembly from the UCSC database (https://genome.ucsc.edu/) for the human 
genes DHFR (A), eNOS (NOS3) (B), HO-1 (HMOX1) (C), interferon-γ (IFNG) (D), NOS2 (E) and RAGE (AGER) (F). Gene reading 
direction is from right to left in A, D, E, F and from left to right in B and C. The browser is set to show at least 500 bp of the 
promoter region, as well as the 5’-UTR, exons and introns. CpG islands are indicated in green and genomic H3K4me3 distribution 
is displayed as a transparent overlay of available cell line data. DNA sequence conservation between human, mouse and rat is 
indicated by data from basewise conservation and multiple alignments.  

https://genome.ucsc.edu/


  Methods 

 
71 

 

 



  Methods 

 
72 

 

Figure 33 - Representative overview of ChIP primer design in rat. (A) Strong enrichment of H3K4me3 was found in intron 2 of 
human NOS2 in the UCSC database (see also Figure 32 E). (B) The H3K4me3-rich intron 2 region was zoomed in to base level and 
base sequences monitored for short human-rat conserved stretches. (C) Rat NOS2 intron 2 regions of around 200-500 bp 
containing at least one or more of short conserved sequences were checked for possible primers using NCBI Primer-BLAST. 
Several primer pairs were suggested and analyzed for specificity with other programs. (D) The selected primer pair’s uniqueness 
and position within the rat genome was assessed through UCSC In-silico PCR. 

Ten primers spanning promoter and intron regions of each selected gene were designed using this 

developed protocol, i.e. DHFR (Promoter), DHFR (Promoter-5’UTR), DHFR (Intron1), interferon-γ 

(Promoter), interferon-γ (Intron3), NOS2 (Promoter-5’UTR), NOS2 (Intron2.1), NOS2 (Intron2.2), RAGE 

(Promoter), and RAGE (Promoter-5’UTR). HO-1 and eNOS primers were a kind gift of Prof. Li. 

Ultimately, the devised primers were ordered and tested in a qPCR for their efficacy and specificity. 

MNase-digested genomic DNA was serially diluted in 1:10 steps and run in a qPCR with 200 nM primer. 

Ideally, the number of molecules of the target sequence should double during each replication cycle, 

therefore the Ct value should decrease by log2(10)=3.3219 every cycle, corresponding to a 100% 

amplification efficiency. To calculate primer specificity the obtained Ct values were plotted on a 

logarithmic scale along with corresponding concentrations. Then a linear regression curve through the 

data points was generated and the slope of the trend line was calculated (Figure 34, Figure 35). Finally, 

the primer efficiency was calculated using the equation: E = -1+10(-1/slope). Typically, desired 

amplification efficiencies range from 90% to 110%. 

In addition, the melting curves were examined to check that the primers are generating a specific PCR 

product and there is no non-specific amplification (Figure 34, Figure 35). Additional peaks may stem from 

nonspecific amplification, such as primer-dimers. 

In the end the primers DHFR (promoter) and DHFR (promoter-5’UTR) were excluded from further 

analysis due to indeterminate efficiency and lack of specificity (Figure 34, top left). All other primers 

displayed satisfactory results and were therefore applied in the ChIP assays. 
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Figure 34 - Analysis of primer efficacy and specificity. Self-designed primers were tested in a qPCR using genomic DNA serially 
diluted in 1:10 steps. A decrease by ΔCt =  log2(10)=3.3219 corresponds to a 100% amplification efficiency. Linear regression 
curves of DHFR and IFN-γ primers are shown along with their calculated efficiencies and melting curves. 
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Figure 35 - Analysis of primer efficacy and specificity. Self-designed primers were tested in a qPCR using genomic DNA serially 
diluted in 1:10 steps. A decrease by ΔCt =  log2(10)=3.3219 corresponds to a 100% amplification efficiency. Linear regression 
curves of NOS2 and RAGE primers are shown along with their calculated efficiencies and melting curves. 
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 Quantitative real-time PCR (qPCR) 4.15

Quantification of chromatin-immunoprecipitated DNA fragments was performed by qPCR analysis using 

the described primers. The 2x concentrated reaction cocktail “PerfeCTa SYBR Green FastMix ROX” 

(Quanta) was diluted to a 1x mix containing 200 nM primer (forward/reverse) and 2 µl of isolated 

genomic DNA fragments. The reaction mix was pipetted into a 96-well PCR plate, which was sealed, 

gently vortexed and then briefly centrifuged to collect components at the bottom of the plate. 

Templates were amplified using the thermal cycler “StepOnePlus Real-Time PCR Systems”. The initial 

denaturation phase was set to 2 min at 94°C, followed by 40 cycles of 15 sec denaturation at 94°C and 

1 min of primer annealing and nucleotide extension at 60°C. Amplification was recorded by the device by 

reading the fluorescence emission intensity of the dsDNA dye SYBR green (contained in the reaction mix) 

and subsequently evaluated using the StepOne software. The fluorophore ROX (carboxy-X-rhodamine) 

(contained in the reaction mix) was used as a passive reference dye. Resulting data were normalized to 

the amount of input chromatin. 

 Statistics 4.16

Results are expressed as means ± SEM. One-way ANOVA with Bonferroni’s or Tukey’s correction was 

used between different groups for comparisons of multiple means for RONS detection, protein 

expression and modification, as well as ChIP data. One-way ANOVA with Dunnett’s correction was used 

for comparisons against control group. Gaussian distribution of datasets was determined by SigmaStat 

for Windows (version 3.2, Systat Software Inc.). When normality test failed an equivalent non-parametric 

test (Kruskal-Wallis/ Dunn’s multiple comparison) was applied. P-values <0.05 were considered 

statistically significant. Software used for calculations were Microsoft Excel and GraphPad Prism (version 

5.02, GraphPad Software Inc).  
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 Results 5

In the course of this PhD thesis several projects were conducted that are briefly summarized here before 

detailed description of all results.  

First of all, a detection assay for the formation of S-nitrosocysteine was developed using the spin 

trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO). S-nitros(yl)ation of isolated protein was 

induced with various nitros(yl)ation agents and resulting S-nitroso-proteins were transformed into 

protein-DMPO adducts by light-induced homolysis and spin trapping. These adducts were quantitatively 

detectable by a DMPO-specific antibody. 

In order to investigate epigenetic changes induced by ROS, an attempt was made to establish a 

previously described model system of hyperglycemia-induced oxidative stress in the endothelial cell line 

EA.hy926. But ultimately, there was no substantial and reproducible effect on ROS formation under 

hyperglycemic conditions detected. Similarly, assay approaches using a combination of hyperglycemia 

and interleukin-1β, or treatment of EA.hy cells with redox cycling agents (paraquat, rotenone) were also 

not convincingly successful in generating increased oxidative stress. Concomitantly, there were also no 

changes in histone methylation and acetylation patterns observed in these cells. 

Samples from an animal model with already defined oxidative-stress related complications were then 

chosen for epigenetic investigation. Mice deficient in the antioxidant protein glutathione peroxidase-1 

(GPx-1) have already been shown to have enhanced ROS/RNS formation, which was further potentiated 

during the aging process [416]. Indications were found that led to the hypothesis of potential dityrosine 

cross-linking between histone 3 and histone 4 accompanied by enhanced histone 3 lysine 9 

dimethylation (H3K9me2) upon increased oxidative stress. However, upon further investigation this 

assumption was revealed to be false. 

In a published study by our group it was demonstrated that empagliflozin, a selective sodium-glucose 

co-transporter 2 inhibitor (SGLT2i), reduced glucotoxicity and thereby prevented the development of 

endothelial dysfunction, reduced oxidative stress and exhibited anti-inflammatory effects in ZDF rats, an 

animal model of type 2 diabetes mellitus (T2DM) [412]. Investigation of involved epigenetic mechanisms 

by ChIP analysis revealed an effect of empagliflozin on expression of glucotoxicity and inflammation 

markers in diabetic animals via altered histone methylation patterns. 

Furthermore, the interplay of increased ROS formation and epigenetic regulation was studied in the 

context of a doxorubicin-induced cardiotoxic phenotype in H9c2 cardiomyocytes. It was discovered that 
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doxorubicin treatment affected the expression of certain epigenetic modulators in correlation with 

increased oxidative stress markers. However, the exact interaction between redox signaling and 

epigenetic modulation or clear identification of specific ROS-producing enzymes as causative factors of 

epigenetic changes in this model remain to be analyzed. 

 Detection of protein S-nitros(yl)ation by immuno-spin trapping 5.1

In the first part of this project, a readout assay was established for the detection of protein 

S-nitros(yl)ation, which is the covalent attachment of a nitroso (“NO”) group to the thiol group in 

cysteine. For this purpose an in vitro approach was set up to identify S-nitros(yl)ation by immuno-spin 

trapping using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and subsequent Western blotting against 

DMPO-positive proteins. Upon irradiation with visible light, protein S-nitrosothiols undergo photolytic 

homolysis to •NO and protein thiyl radicals, which can be spin trapped by DMPO forming a thioether and 

upon rearrangement a stable thionitrone product (see Methods 4.8, p.60) [418]. These protein-DMPO 

adducts can then be analyzed by Western blot or dot blot using a DMPO-specific antibody. 

Experiments for the establishment of a detection assay for S-nitrosocysteine-positive proteins were first 

conducted in an in vitro fashion using the enzymes aldehyde dehydrogenase (ALDH) and isocitrate 

dehydrogenase (ICDH), since they contain reactive cysteine residues (with partial thiolate character, -S-) 

as potential targets for S-nitros(yl)ation (see Figure 70 in Discussion 6.1, p.125).  

S-nitros(yl)ation of aldehyde dehydrogenase or isocitrate dehydrogenase was induced by addition of 

increasing equimolar concentrations of the nitric oxide (•NO) donor spermine-NONOate (SPENO) and the 

peroxynitrite-generating compound 3-morpholinosydnonimine hydrochloride (Sin-1), resulting in the 

stoichiometric release of •NO and •O2
- in a ratio of 3:1. Prof Daiber and colleagues had previously shown 

in a study that this is the optimal ratio for nitros(yl)ation while mimicking low physiological fluxes [103]. 

Furthermore, high concentrations of SPENO, as well as acidic potassium nitrite solution (KNO2) served as 

positive controls. After incubation, samples were exposed to DMPO and illuminated using visible light 

with a wavelength >420 nm to form a stable DMPO-protein adduct, the latter being the spin trapping 

step. Nitros(yl)ation was then assessed by dot blot using an antibody against protein-DMPO adducts.  

In six independent experiments aldehyde dehydrogenase showed a significant increase in DMPO signals  

representing nitros(yl)ation upon treatment with 20 mM KNO2, as well as a substantial increase at 1 mM 

SPENO, indicating effective ALDH nitrosylation by these agents (Figure 36 A). ALDH treatment with the 

combination SPENO/Sin-1 resulted in a significant ~3-fold increase of DMPO-adduct detection compared 

to control only at 100 µM SPENO/Sin-1 but showed no major effects at concentrations below.  
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Likewise, for isocitrate dehydrogenase a significant intensification of DMPO staining was detected when 

treated with 20 mM KNO2, and was also considerably elevated at 1 mM SPENO treatment (Figure 36 B). 

Compared to untreated samples, there was also a concentration dependent increase in S-nitros(yl)ation 

upon incubation with the combination of SPENO/Sin-1, reaching significance upon treatment with 

100 µM SPENO/Sin-1. It is noteworthy, however, that there were inconsistencies between ICDH-

S-nitros(yl)ation experiments accounting for the high error bars. 

In both cases the specificity of DMPO-adduct formation as a result of •NO abstraction from a SNO group 

in response to irradiation with visible light was tested by incubating samples with DMPO with or without 

illumination. It was observed that indeed the absence of light resulted in no detectable DMPO staining 

signal. 

As a marginal note, also two different anti-S-nitrosocysteine antibodies (A.G. Scientific N-1078 and 

Abcam ab50185) were tested on nitros(yl)ated protein in several experiments but they turned out to be 

highly unspecific (data not shown).  

 

Figure 36 - Protein-S-nitros(yl)ation analysis by dot blot using DMPO-antibody upon light-induced homolysis and spin 
trapping of resulting thiyl radicals. Chemiluminescence of DMPO as a result of nitros(yl)ation of aldehyde dehydrogenase (A) or 
isocitrate dehydrogenase (B) was quantified using Gel Pro analyzer. Representative dot blots are shown below. Data are mean ± 
SEM of n=6 independent experiments. *, p<0.05 vs. control. 
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 Hyperglycemia and oxidative stress in the endothelial cell line EA.hy926 5.2

It has been shown previously that hyperglycemia induces the formation of reactive oxygen species (ROS) 

in endothelial cells. In a 2012 publication by Karbach et al. it was demonstrated that induction of 

hyperglycemia in the immortalized human endothelial cell line EA.hy926 by five-day exposure to 35 mM 

D-glucose increases ROS formation in these cells in comparison to control cells incubated under 

normoglycemic conditions with 5 mM D-glucose [409]. Besides data from our own group, also other 

groups reported that hyperglycemia increases intra- and extracellular superoxide and ROS formation in 

EA.hy926 cells [425, 426], total protein kinase C (PKC) activity and expression, as well as endothelin-1 

(ET-1) signaling [427, 428]. Based on these previous data, the use of this cellular model system seemed 

to be suitable to investigate epigenetic changes induced by ROS, with focus on alterations in histone 

methylation or acetylation patterns upon increased oxidative stress in these cells. 

Semi-confluent EA.hy926 cells were incubated with either 5 mM (low glucose, LG) or 35 mM D-glucose 

(high glucose, HG)-containing medium and grown for 5 days with daily renewal of medium. There were 

no evident differences in shape and viability between the two groups during the treatment. Cellular ROS 

formation was measured by fluorescence detection of 2-hydroxyethidium (2-HE) or resorufin via HPLC, 

as well as by L-012 chemiluminescence detection. In addition, cell protein content was analyzed by dot 

blot using specific antibodies to determine the presence of oxidative stress markers, such as 

3-nitrotyrosine (3-NT), 4-hydroxynonenal (4-HNE) or malondialdehyde (MDA).  

Unfortunately, the previous results by Karbach et al. could not be fully reproduced, as the observed 

increases in ROS formation under hyperglycemic conditions were significantly less pronounced. In seven 

independent experiments 2-HE or resorufin detection via HPLC only showed an average increase by 12% 

of intracellular superoxide formation and an increase by 21% of extracellular hydrogen peroxide (Figure 

37 A, B) (for comparison, in the original paper by Karbach et al. ROS formation was more than doubled 

[409]). Measurement of ROS formation by the L-012 chemiluminescence-based assay showed no effect 

on oxidative stress in hyperglycemic cells. There was also no increase in signal intensity of oxidative 

stress markers detected by dot blot (data not shown). 

Several adjustments to assay conditions were made trying to improve the model, such as application of 

different batches of D-glucose or FCS, or starving cells prior to or during the treatment. Also, a time 

course was conducted with ROS measurements after 2, 4, 5 and 6 days of incubation with high glucose, 

showing no considerable differences in ROS formation between the groups at any given time point.  
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Following a suggestion from Prof. Di Lisa´s lab, who use a combination of hyperglycemia and the pro-

inflammatory and pro-oxidant cytokine interleukin-1β (IL-1β) to induce oxidative stress in primary 

cardiomyocytes [410], these conditions were applied on EA.hy926 cells. Semi-confluent EA.hy926 cells 

were incubated with either 5 mM (LG), 25 ng/ml IL-1β or a combination of IL-1β and 35 mM D-Glucose 

for 48 h. ROS formation was measured by fluorescence detection of 2-HE or resorufin via HPLC. In four 

independent experiments an average increase by only 16% of intracellular superoxide formation and 9% 

of hydrogen peroxide formation was detected in response to hyperglycemia in presence of IL-1β (Figure 

37 C, D). Treatment with IL-1β alone did not result in any effect. 

 

Figure 37 - (A+B) Effects of hyperglycemia on ROS formation in EA.hy926 cells. Superoxide and hydrogen peroxide formation 
was determined by HPLC-based quantification of 2-HE and resorufin, respectively. The data are mean ± SEM of 7 independent 
experiments. (C+D) Effects of IL-1β and hyperglycemia on ROS formation in EA.hy926 cells. Superoxide and hydrogen peroxide 
formation was determined by HPLC-based quantification of 2-HE and resorufin. The data are mean ± SEM of 4 (C) and 2 (D) 
independent experiments. 

Also, it was attempted to increase ROS formation in EA.hy926 cells through treatment with the redox 

cycling agent paraquat. The herbicide paraquat induces superoxide formation upon its reduction by 
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complex 1 of the mitochondrial respiratory chain [429]. Several experiments were made using different 

concentrations of paraquat and incubation times of 1 h or 24 h, but not more than 15% increase in ROS 

formation was obtained compared to untreated cells. There was also no increase in signal intensity of 

oxidative stress markers detected by dot blot analysis (data not shown). 

In all of the previously described settings cellular histone methylation and acetylation patterns were 

analyzed alongside. Focus was on the marks H3K9me1/2/3, H3K4me3, H3K27me3, H3Ac (pan), which 

were detected via Western blot with the respective antibodies. There were no major epigenetic changes 

observed (data not shown).  

Since the goal to establish an oxidative stress model to investigate ROS-induced effects on epigenetic 

modulation could not be achieved, the utilization of EA.hy926 as cellular model was discontinued in 

favor of other oxidative stress models.  

 ROS formation and epigenetic investigation in the setting of glutathione 5.3

peroxidase-1 deficiency and aging 

In order to analyze ROS-induced epigenetic alterations in a model with clinical relevance, tissue samples 

from an animal model with already defined oxidative stress-related complications were used for further 

investigation. 

It was shown previously by Oelze et al. that ablation of the antioxidant protein glutathione peroxidase-1 

(GPx-1) potentiates age-dependent vascular dysfunction and ROS/RNS formation in mice [416]. The 

authors demonstrated that aging itself caused endothelial NO synthase (eNOS) dysfunction and 

uncoupling via adverse eNOS phosphorylation and S-glutathionylation, an effect that was further 

potentiated in aged GPx-1 deficient (GPx-1-/-) mice. 

Here, ROS formation and histone mark changes were analyzed in young (2 months) and aged (12 

months) mice with GPx-1 deficiency. For this purpose, stored frozen heart and kidney samples (kept 

at -80 °C) from above-mentioned study from 2013 were lysed and used for further investigations. The 

tissue had been isolated from GPx-1-/- mice on a C57 black 6 (C57BL/6) background and C57BL/6 control 

mice at 2 and 12 months of age (≥ 3 animals per group). GPx-1 knockout was confirmed by Western blot 

as depicted in Figure 38. 
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Figure 38 - Western blot confirming loss of glutathione peroxidase-1 expression in GPx-1-deficient mice. Blot is representative 
for n=1 independent experiments. 

Dot blot analysis of oxidative stress markers indicated increased levels of 3-nitrotyrosine (3-NT)-modified 

proteins in heart and kidney tissue lysates of aged mice, but even more profoundly in aged GPx-1-/- mice 

(Figure 39 A).  

 

Figure 39 - Representative dot blots analyzing kidney tissue lysates of control and GPx-1
-/-

 mice at 2 and 12 months of age 
with antibodies against (A) 3-NT, (B) global H3K9me2 and (C) dityrosine-modified proteins. Densitometric quantification 
combines data of ≥ 3 independent experiments with pooled tissues from at least 4 animals/group. IOD of each dot was 
normalized to IOD of Ponceau staining. *, p<0.05 vs. B6 (2 mo); #, p<0.05 vs. B6 (12 mo); $ p<0.05 vs. GPx-1

-/- 
(2 mo).  
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Furthermore, changes in histone marks were assessed via Western blot and dot blot using specific 

antibodies in whole protein lysates or in histone extracts that were specially prepared by acid extraction. 

While there were no changes observed for the histone modifications H3K9me1/3, H3K27me3 or H3Ac, 

analysis by dot blot revealed a gradual increase of global histone 3 K9 dimethylation (H3K9me2) in heart 

and kidney of the aged mice (Figure 39 B). The signal intensity correlated with 3-NT formation in the 

respective groups. Furthermore, during Western blot examination the H3K9me2 antibody recognized a 

non-reducible ~26-27 kDa band and a weaker band between 50-60 kDa (~53 kDa) in protein lysates, as 

well as in histone acidic extracts from the same lysates (Figure 40 + Figure 41 A). These bands were more 

pronounced in the aged groups. This was an interesting finding since the highly conserved histone 3 has 

a molecular weight of 15.404 kDa and typically runs at ~17 kDa in SDS-PAGE.  

 

Figure 40 - Western blots of kidney tissue lysates and their histone extracts from control and GPx-1
-/-

 mice at 2 and 12 months 
of age using a H3K9me2-antibody. The H3K9me2 antibody recognized a non-reducible ~27 kDa band and a weaker band at 
~53 kDa in lysates, as well as in histone extracts. Actual histone 3 monomer at 17 kDa was only detected in the histone extract. 
Blot is representative for n=8 independent experiments. 

Speculation that this increase in molecular weight was due to monoubiquitination (addition of an 8 kDa 

ubiquitin residue) of histone 3 was ruled out by testing samples with a ubiquitin-specific antibody (data 

not shown).  

The next hypothesis was that the additional bands may represent oligomerization of histones, 

specifically a H3-H4 dimer and (H3-H4)2 tetramer with the calculated sizes of ~26.7 kDa and ~53.4 kDa, 

respectively. Western blots using antibodies against H3 and H4 confirmed presence of bands of these 

sizes in the tissue lysates (Figure 41 B, C), therefore promoting the hypothesis of H3-H4 oligomers.  
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Figure 41 - Western blots of kidney tissue lysates from control and GPx-1
-/-

 mice at 2 and 12 months of age using a (A) 
H3K9me2-, (B) H3-, (C) H4-, and (D) dityrosine-antibody. A non-reducible ~27 kDa band and a weaker band at ~53 kDa were 
detected in aged animals by each antibody. Blots are representative for n=4-8 independent experiments. 

It is known that histone 3 contains two cysteines, which can get oxidized leading to H3 dimer formation 

through formation of disulfide bridges [430]. However, this effect is reversible by reducing agents like 

β-mercaptoethanol (β-ME) or dithiothreitol (DTT). Since there are no cysteine residues in histone 4 and, 

moreover, sample reduction did not abolish the presence of the bands, it was assumed that the potential 

oligomer formation was due to a more stable covalent linkage of the histone proteins.  
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It has previously been shown that exposure to peroxynitrite induces dityrosine formation in histone H2A, 

H2B and H3, leading to intramolecular (but not intermolecular) cross-linking [431-433]. Like cysteine, 

tyrosine is one of the amino acids that are most susceptible to oxidation. Various tyrosine derivatives 

such as nitrotyrosine, dityrosine and halogenated tyrosine can be formed upon exposure to free radicals. 

Dityrosine (DT) is a tyrosine dimer derived from tyrosyl radicals and can be formed by ROS, metal-

catalyzed oxidation, ultraviolet irradiation, and peroxidases [434, 435]. 

 

Figure 42 - Intermolecular cross-link between two proteins via dityrosine. Adapted from Correia et al. 2012 [436]. 

H3 contains three and H4 four tyrosine residues (see sequences in Appendix, p.192), therefore 

oligomerization may have been a result of intermolecular dityrosine cross-linking (Figure 42). Western 

blot detection using a dityrosine-specific antibody revealed DT-positive bands of the size predicted for 

H3-H4 dimers and (H3-H4)2 tetramers (Figure 41 D), with signal intensities correlating with the pattern 

seen before for H3K9me2, H3 and H4. Furthermore, dot blot also showed increased dityrosine levels in 

the aged groups, where DT signal intensity correlated nicely with observed levels of 3-NT and H3K9me2 

(Figure 39 C). 

In order to confirm the existence of an intermolecular H3-H4 dityrosine cross-link, samples were analyzed 

by mass spectrometry. For this purpose, dityrosine-modified proteins or histone 3 were precipitated from 

kidney lysates of young and old GPx-1-/- mice using the respective antibodies, and subsequently run on SDS-

PAGE. The alleged dimer and tetramer bands at 27 kDa and 53 kDa were cut out, trypsin-digested and 

subjected to mass spectrometry (MS) analysis (collaboration with AG Tenzer, MS platform laboratory). 

Unfortunately, no histone masses could be detected in these measurements (except for traces in the 27 kDa 

band of young GPx-1-/- mice) and no indication of a covalent dityrosine cross-link was found (Table 2 + 

Appendix p. 193). Instead, a big amount of contaminations was detected, especially mouse 

immunoglobulins. In another approach, not IP precipitates from whole protein lysates, but specifically 

histone extracts from these lysates were analyzed by MS. Here, histone masses were found at 17 kDa, 
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27 kDa and 53 kDa, but there were no indications found by MS that pointed to a dityrosine cross-link 

between H3 and H4 (Table 2 + Appendix p. 195). The histones found in the higher molecular weight bands 

may still account for histone dimers or tetramers, but their presence may not be due to a covalent link 

between single histones but rather due to insufficient denaturation and therefore remaining histone 

folding, as is present in nucleosome assembly. However, higher molecular weight of histones may also be 

due to posttranslational modifications. 

 

Mass spectrometry analysis   

H3-IP precipitates   

Sample Band size Observed histone type 

GPx-1
-/-

, 2 mo 27 kDa H2A, H2B, H4 

GPx-1
-/-

, 2 mo 53 kDa None 

 

GPx-1
-/-

, 12 mo 27 kDa none 

GPx-1
-/-

, 12 mo 53 kDa none 

   

Histone extracts   

Sample Band size Observed histone type 

GPx-1
-/-

, 2 mo 17 kDa H1, H2A, H2B, H3 

GPx-1
-/-

, 2 mo 27 kDa H1, H2A, H2B, H3, H4 

GPx-1
-/-

, 2 mo 53 kDa H1, H2A, H2B, H3, H4 

   

GPx-1
-/-

, 12 mo 17 kDa H1, H2A, H2B, H3 

GPx-1
-/-

, 12 mo 27 kDa H1, H2A, H2B 

GPx-1
-/-

, 12 mo 53 kDa H1, H2A, H2B, H3, H4 

Table 2 – Results of mass spectrometry analysis. Histone 3 was precipitated from kidney lysates of young and old GPx-1
-/-

 mice 
and 27 kDa and 53 kDa bands subjected to MS. Also, 17 kDa, 27 kDa and 53 kDa bands from histone extracts from kidney lysates 
were analyzed by MS. See appendix for details. 
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In an attempt to prove that the bands detected after immunoprecipitation were actual precipitates and 

not the light and heavy chain of the H3 mouse IgG antibody used for the IP (which have similar masses, 

approx. 25 kDa and 50 kDa), blots of IP precipitates and whole lysates were incubated only with anti-

mouse IgG secondary antibody (without primary antibody). Unfortunately, the same pattern of bands 

appeared as were also detected with H3K9me2 or dityrosine primary antibodies (Figure 43). This 

indicated that, in fact, the mouse IgG heavy and light chains were detected. Since the anti-mouse 

secondary antibody also detected mouse IgGs not only in the IP-precipitates but also in the whole 

protein lysate, it was concluded that the observed effect originated from endogenous mouse 

immunoglobulins. These immunoglobulins were increased in the aged groups due to increased 

inflammation and infiltration of immune cells in the examined mouse heart and kidney tissues. Also, in 

parallel, an IP with a new rabbit anti-H3 antibody was performed and, in accordance with the other 

findings, these precipitates did not show any bands for dityrosine, histone 4 or H3K9me2.  

All previous discoveries were therefore interpreted falsely due to the recognition of tissue-intrinsic 

mouse immunoglobulins by the anti-mouse secondary antibody that was used in conjunction with the 

primary mouse monoclonal H3-, H4-, H3K9me2- and dityrosine antibodies. 
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Figure 43 - Western blot analysis of kidney tissue lysates and their H3-IP precipitates from control and GPx-1
-/-

 mice at 2 and 
12 months of age using a (A) H3K9me2 or (B) dityrosine mouse primary antibody in conjunction with an anti-mouse IgG 
secondary antibody or (C) no primary antibody, only anti-mouse IgG secondary antibody. Blots are representative for n=2 
(A, B) and n=1 (C) independent experiments.  
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In another approach to investigate possible dityrosine cross-linking between histones, recombinant 

human histone 3 and histone 4 were directly treated with oxidizing agents to provoke formation of 

oxidative modifications. A mix of 2 µg histone 3 and 2 µg histone 4, or histone 3 and 4 each individually 

were either incubated with hydrogen peroxide catalyzed by copper or horse radish peroxidase (HRP), or 

with the peroxynitrite-generating compound Sin-1.  

Of note, in a previous experiment the specificity of the dityrosine antibody had been tested on isolated 

protein (hemoglobin, BSA, or lysozyme) that had been oxidized under the mentioned conditions and, at 

least, treatment with H2O2/Cu2+ resulted in extensive dityrosine formation (Figure 44).  

 

Figure 44 – Generation of positive controls for dityrosine formation by oxidation of isolated protein (hemoglobin, BSA, 
lysozyme) and detection via Western blot with a dityrosine antibody. 250 µg of the proteins hemoglobin, BSA and lysozyme 
were incubated over night at 37°C with the following oxidizing agents:  2) 5 mM H2O2 + 50 µM CuSO4, 3) 5 mM H2O2 + 50 µM 
FeSO4, or for 90 min at 37°C with 4) 5 mM H2O2 + 1 µM HRP or 5) 1 mM Sin-1. Formation of a dityrosine-modification on the 
respective protein was analyzed using a dityrosine antibody in WB. Blots are representative for n=1 independent experiments. 

There was no H3-H4 dimer formation observed by Western blot, but a strong band was detected 

between 30-40 kDa in the fractions containing histone 3 (Figure 45). This is because H3 contains two 

cysteines, which can get oxidized leading to H3 dimer formation by forming disulfide bridges, as 

mentioned previously. Dityrosine staining did not result in any signal, neither in the histone fraction nor 

in the lysozyme controls that had been oxidized simultaneously. Nevertheless, it is possible that 

oxidation affected the structure of these proteins in such a way that they did not enter the gel, since 

they appeared neither on the blot nor in the Ponceau red staining. 
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In summary, there was no solid confirmation found that histone 3 and 4 oligomerize by forming 

dityrosine cross-links under oxidative conditions. 

 

Figure 45 – Western blot analysis of histone 3/ histone 4 oxidation. Recombinant human histone 3 and histone 4 were 
incubated over night at 37°C with the following oxidizing agents:  1) 5 mM H2O2 + 50 µM CuSO4, 2) 5 mM H2O2 + 1 µM HRP, 
3) 1 mM Sin-1. Potential oligomerization of histones 3 and 4 or formation of dityrosine were detected by Western blotting using 
the respective antibodies. Protein loading and transfer was monitored by Ponceau Red staining. Blots are representative for n=1 
independent experiments.  
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 Epigenetic investigation of diabetic complications in ZDF rats and effect of the 5.4

SGLT2 inhibitor empagliflozin 

The sodium-glucose co-transporter 2 (SGLT2) is responsible for the renal reabsorption of >90% of glucose 

from primary urine [437]. Inhibitors of SGLT2 (SGLT2i) increase urinary excretion of glucose, thus 

preventing hyperglycemia as well as resulting glucotoxicity in diabetic animals and individuals.  

In our recently published paper “The SGLT2 inhibitor empagliflozin improves the primary diabetic 

complications in ZDF rats” [412] it was demonstrated that the drug empagliflozin reduces glucotoxicity 

and thereby prevents the development of endothelial dysfunction, reduces oxidative stress and exhibits 

anti-inflammatory effects in Zucker diabetic fatty (ZDF) rats, a model of type 2 diabetes (T2DM) (see 

Discussion 6.4, Figure 76, p.141).  

Male rats at the age of 16 ± 1 weeks were used in the study. In total, 35 diabetic ZDF‐Leprfa/fa and 16 

respective lean controls ZDF-Lepr+/+ were examined. Empagliflozin (SGLT2i: 10 and 30 mg/kg/d, 

considered as low and high dose, respectively) was administered via drinking water for 6 weeks. 

 

Figure 46 - Effects of SGLT2i treatment on vascular parameters in ZDF rats. Protein expression of DHFR, as well as 
phosphorylation of eNOS at Thr495 (in immunoprecipitated eNOS) as surrogate parameters for the integrity of vascular 
•
NO/cGMP signaling was determined by Western blot analysis. Data are the means ± SEM from at least 4 independent 

experiments with pooled tissues from at least 8 animals/group. *, p<0.05 vs. control and #, p<0.05 vs. ZDF group. Data was 
collected by co-authors. Graphs were taken from our publication Steven et al. 2017 [412].  

In the study it was shown that low and high doses of empagliflozin prevented endothelial dysfunction as 

measured by endothelium-dependent relaxation by the vasodilator acetylcholine (ACh) in aortic rings 

(see publication [412] and Figure 74 in the Discussion 6.4 for further detail). Furthermore, surrogate 

parameters for the functional state of endothelial nitric oxide synthase (eNOS) and integrity of the 

vascular •NO/cGMP signaling pathway were analyzed, which indicated that empagliflozin treatment 

rescued ZDF rats from endothelial dysfunction. For instance, the expression of dihydrofolate reductase 
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(DHFR), which is responsible for ensuring the availability of the eNOS cofactor tetrahydrobiopterin (BH4) 

by reducing oxidized BH2 back to BH4, and is therefore essential for eNOS function, was increased by 

SGLT2i treatment. In addition, the inhibitory phosphorylation of eNOS at Thr495, conferred by protein 

kinase C, was diminished by SGLT2i treatment (Figure 46).  

 

Figure 47 - Effects of SGLT2i treatment on ROS-induced protein modifications in serum, kidney, aortic and cardiac tissue of 
ZDF rats. 3-nitrotyrosine (3-NT)-positive and 4-hydroxynonenal (HNE)-positive proteins were measured by dot blot analysis in 
serum, as well as in kidney, aortic and cardiac tissue. IOD was evaluated and normalized to Ponceau S staining. Representative 
blots are shown below the densitometric quantification. Data are the means ± SEM from 4-8 animals/group. *, p<0.05 vs. 
control and #, p<0.05 vs. ZDF group. Graphs were published in modified form in Steven et al. 2017 [412]. 

Empagliflozin also reduced oxidative stress in ZDF rats, which was shown by chemiluminescent 

measurement of zymosan A-induced oxidative burst in whole blood, as well as HPLC measurement of 

2-hydroxyethidium (2-HE) of cardiac tissue and DHE fluorescence microtopography in aorta (see 

publication [412] and Figure 74 in the Discussion 6.4 for further detail). 

Additionally, oxidative stress was measured by dot blot analysis of 3-nitrotyrosine (3-NT)- and 

4-hydroxynonenal (4-HNE)-modified proteins, which represent surrogate parameters for ROS formation. 
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Levels of 3-NT and 4-HNE were found to be elevated in serum, kidney, aortic or cardiac tissue of ZDF rats 

and were decreased upon SGLT2i treatments (Figure 47).  

Western blot analysis of the NADPH oxidase isoform NOX2 and heme oxygenase 1 (HO-1) revealed 

increased expression of these proteins, which are involved in oxidative stress and antioxidant defense, in 

aorta of ZDF rats (Figure 48). This effect was not observed in ZDF rats treated with the SGLT2 inhibitor 

empagliflozin. Furthermore, SGLT2i treatment reduced levels of RAGE (receptor for advanced glycation 

end products), a protein associated with glucotoxicity, in ZDF rats. 

Additionally, it was found that aortic mRNA levels of the inflammatory markers interferon-γ (IFN- γ), 

cyclooxygenase-2 (COX2) and inducible nitric oxide synthase (NOS2), which were increased in diabetic 

ZDF rats, decreased upon SGLT2i treatment (Figure 49). 

 

 

Figure 48 - Effects of SGLT2i treatment on aortic protein expression involved in oxidative stress, antioxidant defense and 
glucotoxicity pathways in ZDF rats. Aortic protein expression of the NADPH oxidase isoform Nox2, the antioxidant stress-
response-enzyme heme oxygenase-1 (HO-1) and the receptor for advanced glycation end products (RAGE) was assessed by 
Western blot analysis using specific antibodies. Representative blots for all proteins are shown along with the densitometric 
quantification. Data are the means ± SEM from 4-6 animals/group. *, p<0.05 vs. control and #, p<0.05 vs. ZDF group. Data was 
collected by co-authors.Graphs were taken from our publication Steven et al. 2017 [412]. 
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Figure 49 - Effects of empagliflozin treatment on aortic mRNA expression of pro-inflammatory genes in ZDF rats. mRNA 
expression of inflammatory genes (A): interferon-γ (IFN-γ), (B): cyclooxygenase-2 (COX-2), (C): inducible NO synthase (NOS2) was 
assessed by quantitative RT-PCR. The data are expressed as % of control and are the means ± SEM from at least 3 
animals/group.*, p<0.05 vs. control and #, p<0.05 vs. ZDF group. Data was collected by co-authors.Graphs were taken from our 
publication Steven et al. 2017 [412]. 

Certain genes involved in oxidative stress, glycemic control or inflammation, which had been shown to 

be affected in ZDF rats by Western blot or mRNA expression (Figure 48, Figure 49), were selected to be 

analyzed by chromatin immunoprecipitation (ChIP), i.e. HO-1, RAGE, IFN-γ and NOS2, as well as eNOS 

and DHFR. The intention was to examine if changes in gene expression, as observed in ZDF rats, were 

caused by epigenetic regulation through histone modifications and if SGLT2i treatment could antagonize 

these effects. Native ChIP assays were performed analyzing the transcription-activating histone mark 

H3K4me3 (trimethylation of lysine 4 in histone 3) and the repressive mark H3K9me3 (trimethylation of 

lysine 9 in histone 3) in mentioned genes using rat kidney tissue.  

It has been shown previously that global differences in H3K4 trimethylation are associated with 

overweight and type 2 diabetes [438]. Furthermore, it has also been shown that H3K9 trimethylation is 

involved in metabolic memory and is decreased at the promoters of key inflammatory genes in type 2 

diabetic mice [331]. 

A reliable protocol for the ChIP assay was set up with the help of Prof. Wojnowski’s group. 50 mg of rat 

kidney tissue were used per ChIP. Chromatin was precipitated using either H3K4me3- or H3K9me3-

specific antibodies. Specific qPCR primers suitable for ChIP-obtained rat DNA were designed using data 

from the UCSC genome browser. Since there is no ChIP primer repository/database available thus far, a 

protocol was developed to design optimal qPCR primers, which is described in detail in the Methods 

section (4.14, p.68).The primers used for HO-1 and eNOS quantification were a kind gift of Prof. Li. 



  Results 

 
95 

 

 

Figure 50 – Validation of ChIP assay. Successful performance of each ChIP was confirmed by qPCR-based quantification of the 
constitutively active gene GAPDH and a gene desert, a genomic region devoid of protein-coding genes and therefore suppressed 
transcription. Data from 16 H3K4me3- and 10 H3K9me3-ChIP experiments were combined. Data are expressed as % of input and 
are the means ± SEM from 10 animals/group. 

To validate each ChIP experiment, DNA precipitates were subjected to qPCR-based quantification of the 

constitutively active gene GAPDH, as well as a genomic region that is devoid of protein-coding genes 

(“gene desert”). The GAPDH gene is actively transcribed in all cell types and its promoter is highly 

enriched in histone modifications associated with active transcription, such as histone H3K4 

trimethylation and general histone acetylation. This gene promoter shows very low levels of histone 

modifications associated with transcription repression, such as histone H3K9 or H3K27 trimethylation. 

On the other hand, a gene desert on rat chromosome 3 was targeted, because this region contains high 

levels of histone marks associated with heterochromatin, such as H3K9me3. As there is only non-coding 

DNA, no transcription-activating histone marks can be found. Thus, a ChIP was considered valid when 

high levels of GAPDH and low levels of gene desert were detected by qPCR in chromatin derived from 

H3K4me3-mediated ChIP, while H3K9me3-mediated ChIP resulted in low levels of GAPDH and high levels 

of gene desert, in relative terms. Figure 50 shows the results of GAPDH and gene desert quantification 

from all H3K4me3- and H3K9me3-ChIP experiments combined. Results were always calculated as 

percentage of input DNA. Transcription activating H3K4 trimethylation was found to be present at 

94-100% of GAPDH promoters, whereas in the gene desert only 3-4% was modified. In contrast, 

transcription suppressing H3K9me3 levels at GAPDH promoters ranged between 1-2% of input, but made 

up 9-12% in the gene desert.  

In general, H3K9me3-induced ChIP analysis of the selected genes yielded very low percentages of 

H3K9me3-modified genes, ranging from 1-7%, thus questioning the relevance of epigenetic regulation by 

H3K9me3 in the correspondent genes. Therefore, as an additional control, a subsidiary normalization 

method was applied, subtracting the background signals. The background was defined as levels of 
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repressive mark H3K9me3 at the active gene GAPDH and, on the other hand, activating mark H3K4me3 

at the transcriptionally repressed gene desert. 

No significant changes were detected between the groups for activating H3K4me3 marks in regulatory 

regions of heme oxygenase-1 (HO-1) and dihydrofolate reductase (DHFR) (Figure 51 A, Figure 52 A). 

However, H3K9me3 levels were slightly decreased in SGLT2i-treated rats, which could explain part of the 

upregulation of HO-1 and DHFR by SGLT2i therapy, although the physiological relevance of these 

changes in H3K9me3 levels may be limited by the generally low signal (Figure 51 B, Figure 52 B).  

 

 

Figure 51 - Effects of empagliflozin (SGLT2i) treatment on epigenetic regulation of HO-1. Levels of histone marks H3K4me3 (A) 
and H3K9me3 (B) were measured by ChIP analysis in regulatory regions of the gene HO-1. The data are expressed as % of input 
and are the means ± SEM from 10 (A) or 4 (B) animals/group. No significant differences were observed. 
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Figure 52 - Effects of empagliflozin (SGLT2i) treatment on epigenetic regulation of DHFR. Levels of histone marks H3K4me3 (A) 
and H3K9me3 (B) were measured by ChIP analysis in regulatory regions of the gene DHFR. The data are expressed as % of input 
and are the means ± SEM from 10 (A) or 4 (B) animals/group. No significant differences were observed. 

In the promoter region of eNOS the gene activating epigenetic mark H3K4me3 was found to be 

significantly decreased in all ZDF groups including the ones treated with SGLT2i (Figure 53 A). Since there 

was no effect on eNOS expression (also seen in mRNA qPCR), this indicates that the rescue of endothelial 

function that was observed in empagliflozin-treated rats is not due to eNOS upregulation but probably 

due to an improvement in the •NO/cGMP signaling pathway.  

The glucotoxicity marker RAGE exhibited slightly (but insignificantly) increased activating H3K4me3 

promoter marking in ZDF rats, whereas under empagliflozin therapy this trend was reversed (Figure 

53 B). H3K9 trimethylation of eNOS and RAGE could not be determined, as signals were not considerably 

deviating from background signals (not shown).  

ChIP analysis of the promoter region of the inflammatory marker interferon-γ (IFN-γ) indicated slightly 

(but insignificantly) increased H3K4me3 levels in diabetic rats, which were reduced by trend in SGLT2i-

treated animals (Figure 54 A). Transcription-repressing H3K9me3 levels at the IFN-γ gene were not 

changed between control and diabetic animals, but were also lowered upon empagliflozin therapy 

(Figure 54 B). However, it has to be taken into account that, in this case, both H3K4me3 and H3K9me3 

marks were measured at a very low percentage, so any significance for IFN-γ expression regulation 

remains to be determined.  
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Figure 53 - Effects of empagliflozin (SGLT2i) treatment on epigenetic regulation of eNOS (A) and RAGE (B). Levels of the 
histone mark H3K4me3 were measured by ChIP analysis in regulatory regions of the genes eNOS and RAGE. The data are 
expressed as % of input and are the means ± SEM from 10 animals/group. *, p<0.05 vs. control group.  

 

 

Figure 54 - Effects of empagliflozin (SGLT2i) treatment on epigenetic regulation of the inflammatory marker IFN-γ. Levels of 
histone marks H3K4me3 (A) and H3K9me3 (B) were measured by ChIP analysis in the promoter region of the gene IFN-γ. The 
data are expressed as % of input and are the means ± SEM from 10 (A) or 4 (B) animals/group. No significant differences.  



  Results 

 
99 

 

Furthermore, histone modifications on the gene for the cytokine-inducible nitric oxide synthase 

(iNOS/NOS2) were analyzed at the promoter site and at two different regulatory intron regions. In all 

three genomic regions, there was no significant difference in H3K4me3 modification between control 

and ZDF rats, but the empagliflozin-treated rats showed considerably decreased epigenetic regulation by 

H3K4 trimethylation in the promoter region of NOS2 (Figure 55 A), which may explain part of the 

normalized NOS2 mRNA signal in the high dose SGLT2i group. In the regulatory intron regions a stable 

trend for reduced H3K4me3 was observed in medicated rats compared to untreated rats (Figure 55 B, C). 

The overall yield (% of input) of H3K4me3-modified NOS2 was substantially higher than the background 

when targeting the intron regions instead of the promoter region. Repressive H3K9me3-modification 

was only detected above baseline in intron2.2 of NOS2, where ZDF and low-dose treated ZDF rats 

showed similarly decreased H3K9me3 signal compared to control rats (Figure 55 D). Yet, high-dose 

SGLT2i-treated ZDF rats displayed even ~30% less H3K9me3 NOS2 modification than untreated ZDF rats. 

These results indicate that treatment with empagliflozin is likely to confer epigenetic effects. Whether 

these effects are a consequence of glucose lowering or represent a specific property of empagliflozin 

(e.g. by off-target pleiotropic effects) remains to be investigated. 
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Figure 55 - Effects of empagliflozin (SGLT2i) treatment on epigenetic regulation of the immune defense enzyme NOS2. Levels 
of histone marks H3K4me3 (A-C) and H3K9me3 (D) were measured by ChIP analysis in the promoter region (A) and two 
different intron regulatory regions (B-C) of the gene NOS2. The data are expressed as % of input and are the means ± SEM from 
10 (A-C) or 4 (D) animals/group. *, p<0.05 vs. control group. 
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In order to analyze the protective and potentially pleiotropic effects of empagliflozin with regards to 

glucotoxicity, human umbilical vein endothelial cells (HUVECs) were cultured under hyperglycemic 

conditions (30 mM glucose) for up to 6 days (collaboration with A. Karpi). Empagliflozin (EMPA) was 

administered at concentrations of 1 µM or 10 μM on day 3 of hyperglycemia for another 2 or 3 days. In 

addition, the cells were also treated with the dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin (SITA) or 

the RAGE inhibitor FPS-ZM1 at the same concentrations and times to allow a head-to-head comparison 

of these antidiabetic drugs.  

Viability of hyperglycemic HUVECs was then assessed by qualitative and quantitative evaluation of living 

cells. It was observed that cell density decreased time-dependently, while cell shape changed to an 

elongated, activated state in the hyperglycemic groups (Figure 56 C) (see all images in Appendix p.197). 

In addition, increased detachment and accumulation of apoptotic cell bodies was detected upon 

hyperglycemia. On day 6, living cells were manually counted using the Cell B software (Olympus) and cell 

numbers were compared between normoglycemic and hyperglycemic groups, as well as hyperglycemic 

groups that had been treated with the compounds as indicated (Figure 56 A). Especially the higher 

(supra-pharmacological) concentrations of empagliflozin and the dipeptidyl peptidase-4 inhibitor 

sitagliptin conferred visible protection against glucotoxicity and normalized the cell density and shape 

almost completely, indicating potent (pleiotropic) protective effects on hyperglycemic endothelial cells (a 

glucose decrease in the medium can be excluded). The RAGE inhibitor FPS-ZM1 showed an intermediate 

effect on glucotoxicity, at least demonstrating the therapeutic potential of interruption of the AGE/RAGE 

signaling pathway. 

As a read-out of eNOS activity and to indicate the state of endothelial function upon hyperglycemia, 

nitrite formation in response to stimulation with acetylcholine was determined in HUVECs. For this 

purpose, the supernatant medium containing the produced nitrite was mixed with 

2,3-diaminonaphthalene under acidic conditions leading to the formation of a highly fluorescent triazol 

product, which was quantitatively measured by HPLC analysis. In accordance with the data on cell shape 

and density, the nitrite formation was substantially decreased in hyperglycemic HUVECs but was 

restored by all drugs in a concentration-dependent fashion (Figure 56 B). Although only minor 

differences between the effectiveness of the drugs were observed, empagliflozin (EMPA) was slightly 

more beneficial than SITA and the RAGE inhibitor FPS-ZM1.  

All in all, the cell experiments show that the protective effects of empagliflozin are not only due to 

urinary glucose removal from the kidney but also appear in cultured endothelial cells. Thus, the SGLT2 
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inhibitor empagliflozin may have pleiotropic effects that contribute to its ability to improve 

hyperglycemia-induced vascular complications. 

 

Figure 56 - Protective effects of empagliflozin (EMPA), the DPP-4 inhibitor sitagliptin (SITA) and the RAGE inhibitor FPS-ZM1 
on cultured hyperglycemic human umbilical vein endothelial cells (HUVECs). Viability of hyperglycemic HUVECs was assessed 
after 2 or 3 days (on d5 or d6) incubation with the respective compound by qualitative and quantitative evaluation of living cells 
(density and shape) (A, C). Nitrite formation in response to acetylcholine (1 μM) in the supernatant of cells was determined by 
HPLC-based quantification of the fluorescent triazol product resulting from acidic conversion of 2,3-diaminonaphthaleneby 
nitrosating species (B). Representative chromatograms are shown besides the quantitative data. The data are the means ± SEM 
from at least 5 independent experiments. *, p<0.05 vs. NG; #, p<0.05 vs. HG; $, p<0.05 vs. same 1 μM group; §, p<0.05 vs. 
EMPA10; &, p<0.05 vs. SITA10. Graphs were taken from our publication Steven et al. 2017 [412]. 

In summary, these data provide insight into the mode of action of empagliflozin, demonstrating that 

empagliflozin normalizes vascular function and oxidative stress in diabetic ZDF rats. Also, empagliflozin 

reduces glucotoxicity and inflammation and confers glycemic control, as well as epigenetic and 

pleiotropic effects. 

  



  Results 

 
103 

 

 Oxidative stress and epigenetic investigation in H9c2 cardiomyocytes 5.5

Since cell models are easier to manipulate and effects more reproducible, the cell line H9c2 was acquired 

in order to investigate ROS-induced epigenetic changes. These cells are rat cardiomyoblasts derived from 

embryonic BD1X rat heart tissue by B. Kimes and B. Brandt that exhibit many of the properties of skeletal 

muscle [439]. Upon confluency H9c2 cells start to differentiate into cardiomyocytes and further fuse to 

form multinucleated myotubes, getting an elongated shape and positioning in a parallel fashion. There 

are numerous publications about pathological implications induced by oxidative stress in these cells with 

relevance for the development of cardiovascular diseases [440-449]. Based on these premises, the 

interplay of redox signaling and epigenetic regulation and its resulting effects on gene expression, as well 

as pathology and viability of H9c2 cells was investigated.  

In a preliminary assessment, H9c2 myoblasts were grown for 3 days and then treated with exogenous 

oxidative stimuli, i.e. increasing concentrations of hydrogen peroxide for 4 h or 24 h. Subsequent analysis 

of expression of epigenetic regulators and histone modifications failed due to technical problems. As 

seen in Figure 57, H2O2 treatment resulted in high loss of cell material at concentrations of 100 µM H2O2 

and higher. As a consequence, measurement of protein content by Bradford assay yielded no reliable 

quantification, resulting in unequal loading of samples in Western and dot blot, mirrored by disparities in 

loading controls or Ponceau stainings. This circumstance made analyses very intricate and problematic 

because normalization is difficult and could falsify results due to extrapolation. In response to treatment 

with 10 µM and 50 µM H2O2 no major changes in expression of epigenetic regulators were observed. 
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Figure 57 - H9c2 rat cardiomyoblasts were treated with increasing concentrations of hydrogen peroxide for 4 hours or 
24 hours. Increased cell loss can clearly be observed upon treatment with H2O2 at concentrations of 100 µM and higher. Of 
note, the differentiation process can nicely be perceived when comparing cells at 4 h and 24 h post-treatment, as cells start to 
elongate and align in a parallel position. Images are representative for n=5 independent experiments. 
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5.5.1 Doxorubicin-induced cardiomyopathy in H9c2 cardiomyocytes 

In response to these problems, it was decided to establish a less harsh and more indirect approach for 

inducing ROS formation (also with higher clinical relevance), which would provide a sustainable effect on 

the cell nature without immediately causing too extensive cell loss. 

The anthracycline doxorubicin (Dox) is a potent chemotherapeutic agent used for the treatment of 

several adult and pediatric cancers, whose therapeutic efficacy is limited as it is known to induce severe 

cardiotoxicity [375, 376, 450]. Doxorubicin-induced cardiomyopathy is strongly linked to increased 

cardiac oxidative stress and mitochondrial dysfunction. Thus, H9c2 cardiomyocytes were exposed to 

doxorubicin in order to establish a model of doxorubicin-induced cardiotoxicity allowing the analysis of 

global histone mark changes, as well as changes in expression of histone modifiers and the association to 

doxorubicin-induced ROS generation. Since it was reported by Branco et al. that doxorubicin toxicity is 

higher in differentiated H9c2 cells, i.e. cardiomyotubes [451], the H9c2 myoblastic cells were grown for 

7 days until a multinucleated, elongated phenotype was reached. Cells were then incubated with 1 µM 

or 5 µM doxorubicin for 24 h or 48 h. As can be visually observed in Figure 58, doxorubicin treatment led 

to a time- and concentration-dependent increase of cell death. Afterwards, cells were lysed and 

subjected to further investigation. Of note, also detached apoptotic cells from the medium supernatant 

(SN) were included in the analysis. Due to its red color, the amount of doxorubicin-uptake in the cells can 

be clearly seen in the collected cell pellets. As shown in Figure 23 in the Methods part (4.1.4, p.53), the 

amount of adherent cells decreases, whereas the amount of detached cells gathered from the medium 

increases upon increasing doxorubicin concentrations compared to untreated cells. This effect was even 

more pronounced at 48 h of doxorubicin incubation. In the medium supernatant of untreated control 

cells no substantial amount of dead cells could be harvested and was therefore not included in further 

analysis.  
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Figure 58 - Effects of doxorubicin (Dox) treatment on differentiated H9c2 cardiomyocytes. H9c2 were grown for 7 days to 
instigate cell differentiation. On the day of treatment, H9c2 cells were aligned in parallel and had reached a multinucleated, 
elongated phenotype (top). After 24 h (left) and 48 h (right) after doxorubicin (Dox) addition, increasing amounts of apoptotic 
cell bodies are visible. Images are representative for n=4 independent experiments.  
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Cell lysates were then analyzed via Western blot to check for apoptotic markers. Caspase-3 cleavage and 

fractin formation as indicators for apoptotic cell death were highly enriched in the fractions of detached 

cells in the supernatant (SN), but were also elevated in surviving adherent doxorubicin-treated cells, 

indicating that these cells are in a “pre-apoptotic” state (Figure 59, Figure 60). It is noteworthy, though, 

that depending on the housekeeping protein that was used for normalization (actin or GAPDH), 

quantification differed in some cases. This occurrence was seen repeatedly in Western blot experiments, 

which is why both evaluation results are always shown. 

Effects of doxorubicin treatment on oxidative stress in H9c2 cells were determined by dot blot analysis of 

the ROS-induced protein modifications 3-nitrotyrosine (3-NT) and malondialdehyde (MDA) (Figure 61). 

Increased levels of 3-NT and MDA were detected in all groups compared to control. In surviving 

pre-apoptotic cells, treatment with 5 µM of doxorubicin (5 µM Dox) resulted in higher ROS formation 

than 1 µM doxorubicin (1 µM Dox) (Figure 61 A-D). Interestingly, higher levels of MDA were detected in 

apoptotic cells that had been treated with 1 µM doxorubicin (1 µM Dox-SN) than in 5 µM doxorubicin-

treated apoptotic (5 µM Dox-SN) cells at 24 h and at 48 h (Figure 61 C, D). The same was true for 3-NT 

levels at 48 h (Figure 61 B). 

As another indicator for oxidative stress, the expression of the antioxidant superoxide dismutase was 

assessed by Western blot (Figure 62). At 24 h of doxorubicin incubation, pre-apoptotic cells displayed a 

concentration-dependent increase of SOD2 expression, whereas in apoptotic cells expression was not 

significantly changed compared to control cells. Therefore, at least the pre-apoptotic cells showed a 

correlation between 3-NT or MDA formation and SOD2 expression at 24 h (Figure 62 A). After 48 h 

incubation with doxorubicin, pre-apoptotic cells that had been incubated with 5 µM doxorubicin showed 

a 2-3 fold increase in SOD2 expression, whereas there was no change at 1 µM doxorubicin (Figure 62 B). 

But interestingly, in the apoptotic fraction of 1 µM Dox-treated cells (1 µM Dox-SN) SOD2 expression was 

dramatically increased. In contrast, apoptotic 5 µM Dox-treated cells (5 µM Dox-SN) displayed only minor 

increase in SOD2 levels. This expression pattern resembled the pattern of MDA levels observed at 48 h 

and to a somewhat lesser extent also the levels of 3-NT at 48 h (Figure 61 B, D). 
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Figure 59 - Proteolytic cleavage of caspase 3, as marker of apoptosis, is increased in doxorubicin (Dox)-treated H9c2 cells. 
Levels of inactivated pro-caspase 3 at 32 kDa and the active cleaved caspase 3 at 17 kDa, as well as an additional caspase 3 
active subunit at 26 kDa, were assessed by Western blot analysis in attached control and doxorubicin (Dox)-treated cells, as well 
as detached cells collected from the supernatant (SN). Representative blots are shown along with the densitometric 
quantification, either normalized to actin (left) or GAPDH (right). Data are the means ± SEM from 2 experiments. *, p<0.05 vs. 
control; **, p<0.01 vs. control; ***, p<0.005 vs. control. 
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Figure 60 - Fractin, as marker of apoptosis, is enriched in doxorubicin (Dox)-treated H9c2 cells. Levels of the apoptosis-specific 
fragment fractin were assessed by Western blot analysis in attached control and doxorubicin (Dox)-treated cells, as well as 
detached cells collected from the supernatant (SN). Representative blots are shown along with the densitometric quantification, 
either normalized to actin (top) or GAPDH (bottom). Data are the means ± SEM from 2 experiments. *, p<0.05 vs. control; **, 
p<0.01 vs. control; ***, p<0.005 vs. control.  
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Figure 61 - Effects of doxorubicin (Dox) treatment on ROS-induced protein modifications in H9c2 cardiomyocytes. Levels of 
3-nitrotyrosine (3-NT)- and malondialdehyde (MDA)-modified proteins were measured by dot blot analysis in lysates of H9c2 
cells after 24 h or 48 h of doxorubicin (Dox) treatment. IOD was evaluated and normalized to Ponceau S staining. Representative 
blots are shown below the densitometric quantification. Data are the means ± SEM from 4 experiments. *, p<0.05 vs. control; 
**, p<0.01 vs. control; ***, p<0.005 vs. control.  
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Figure 62 – Effect of doxorubicin (Dox) treatment on SOD2 expression in H9c2 cells. Levels of SOD2 expression were assessed 
by Western blot analysis in attached control and doxorubicin (Dox)-treated cells, as well as detached cells collected from the 
supernatant (SN). Representative blots are shown along with the densitometric quantification, either normalized to actin (top) 
or GAPDH (bottom). Data are the means ± SEM from 2 experiments. *, p<0.05 vs. control; **, p<0.01 vs. control; ***, p<0.005 
vs. control. 
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In order to investigate effects of doxorubicin treatment and accompanying oxidative stress on epigenetic 

mechanisms in H9c2 cardiomyocytes, the expression of several epigenetic modulators, i.e. histone 

deacetylases or histone demethylases, was analyzed via Western blot.   

The NAD+-dependent protein deacetylase sirtuin1 (Sirt1) belongs to class III histone deacetylases and 

plays a vital role in the regulation of metabolism and stress responses. Its activity has been shown to be 

affected by redox regulation [452]. In a previous study doxorubicin induced a dose-dependent (0.1 µM - 

10 µM) decrease in the expression of Sirt1 and another sirtuin homolog, Sirt3, in H9c2 cardiomyocytes 

[440]. Here, Western blot analysis of Sirt1 expression in 1 µM and 5 µM Dox-exposed pre-apoptotic and 

apoptotic H9c2 cells resulted in the detection of three bands at ~110 kDa, at ~95 kDa and at ~85 kDa 

(Figure 63). The predicted molecular weight of Sirt1 is 82 kDa (correlating with the 85 kDa band), but it is 

often detected at 110 kDa due to post-translational glycosylation leading to differences in gel migration 

[453]. This glycosylated form of Sirt1 slightly increased in 1 µM Dox-treated pre-apoptotic cells and 

almost completely disappeared in the apoptotic cells. Levels of unglycosylated Sirt1 at 85 kDa 

concentration-dependently decreased upon Dox-treatment and were nearly vanished in the apoptotic 

fraction. While Sirt1 levels in 1 µM Dox-treated pre-apoptotic cells varied between 60-80% of control 

both at 24 h and 48 h, Sirt1 levels in 5 µM Dox-treated cells decreased from ~30% of control at 24 h to 5-

11% of control at 48 h. The 95 kDa band probably represents the SIRT1-ΔExon8 isoform resulting from 

alternative splicing, which has been shown to exhibit distinct stress sensitivity [454]. Levels of this 

isoform were substantially increased in the apoptotic cells, and a 1.5-2.5 fold increase compared to 

control was also observed in 5 µM Dox-treated pre-apoptotic cells both at 24 h and 48 h post-treatment. 

Next, another prominent histone deacetylase, HDAC2, was subjected to Western blot analysis with 

regards to changes in expression levels upon doxorubicin exposure. HDAC2 is a member of the class I 

mammalian histone deacetylases involved in regulating chromatin structure during transcription. Chronic 

doxorubicin treatment was shown to down-regulate HDAC2 expression in a murine model of 

doxorubicin-induced cardiomyopathy [455]. Furthermore, a link between oxidative stress and reduced 

HDAC2 levels/activity has repeatedly been reported in studies about COPD [456-458].  As can be seen in 

Figure 64, two bands were detected at ~60 kDa and ~50 kDa. HDAC2 is 55 kDa in size, but is known to 

migrate at 60 kDa in SDS-PAGE. At both time points apoptotic cells expressed significantly less HDAC2 

compared to control cells. Additionally, HDAC2 levels in pre-apoptotic 1 µM Dox-treated cells were also 

significantly decreased. Interestingly, there was no obvious effect on 5 µM Dox-treated cells at 48 h and 

even a slight increase in HDAC2 levels at 24 h. In general, HDAC2 expression was lower in both fractions 

of 1 µM-Dox treated cells than in the respective 5 µM Dox-treated groups. The identity of the 50 kDa 
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band is unknown, but could be assigned to an HDAC2 isoform. According to UniProt at least in humans 

an HDAC2 isoform 2 of ~52 kDa has been reported (UniProtKB Q92769-3), which is likely to also be 

present in rats. On the other hand, the 50 kDa band could be associated with the undesired antibody-

recognition of HDAC3 at 49 kDa due to sequence homology between HDAC2 and HDAC3. However, 

50 kDa HDAC2 levels were significantly increased in the apoptotic fractions at 24 h and 48 h. A trend of 

increased expression was also observed in 5 µM Dox-treated pre-apoptotic cells, which was more 

apparent at 48 h. 
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Figure 63 - Effect of doxorubicin (Dox) treatment on Sirt1 expression in H9c2 cells. Levels of Sirt1 expression were assessed by 
Western blot analysis. Bands were observed at ~110 kDa, at ~95 kDa and ~85 kDa. Representative blots are shown along with 
the densitometric quantification, either normalized to actin (left) or GAPDH (right). Data are the means ± SEM from 4 
experiments. *, p<0.05 vs. control; **, p<0.01 vs. control; ***, p<0.005 vs. control. 
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Figure 64 - Effect of doxorubicin (Dox) treatment on HDAC2 expression in H9c2 cells. Levels of HDAC2 expression were 
assessed by Western blot analysis. Bands were observed at ~50 kDa and ~60 kDa. Representative blots are shown along with the 
densitometric quantification, either normalized to actin (left) or GAPDH (right). Data are the means ± SEM from 4 experiments. 
*, p<0.05 vs. control; **, p<0.01 vs. control; ***, p<0.005 vs. control. 
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The Jumonji C domain-containing histone lysine demethylase KDM3A belongs to the family of 

mononuclear Fe(II)-dependent dioxygenases that use 2-oxoglutarate (2-OG) and oxygen as cosubstrates 

for oxidative demethylation. Enhanced levels of KDM4A, KDM4B and KDM3A expression have been 

found in patients with heart failure [459]. In line with that, KDM3A expression in Dox-treated 

cardiomyocytes concentration-dependently increased compared to control at both 24 h and 48 h of 

exposure (the band detected at ~140 kDa represents the enzyme) (Figure 65). In both apoptotic fractions 

KDM3A levels were considerably higher than in their respective pre-apoptotic counterpart. Of note, at 

24 h KDM3A levels of 1 µM Dox-treated apoptotic cells exceeded levels in 5 µM Dox-treated pre-

apoptotic cells, whereas at 48 h a similar amount of KDM3A was detected in these groups. Another band 

was observed migrating above the highest marker band at 220 kDa, which may possibly represent a 

KDM3A dimer. It has previously been reported that KDM3A forms a homodimer through its catalytic 

domain to enable the effective execution of two-step demethylation of dimethylated H3K9 into the null 

methylation state [460]. The amount of the alleged KDM3A dimer was reduced in 5 µM Dox-treated cells 

and completely abolished in apoptotic cells at both time points (Figure 65). 

Another histone lysine demethylase, LSD1, is associated with the regulation of cellular energy 

metabolism through coupling with cellular FAD biosynthesis [216]. LSD1 has been found to be implicated 

in cardiovascular diseases such as hypertension or diabetes [125, 461]. Therefore, effects on LSD1 

expression were also examined in H9c2 cardiomyocytes in response to doxorubicin-induced 

cardiotoxicity. No significant changes compared to the control group could be observed at 24 h of 

exposure due to deviations between the individual experiments (Figure 66). At 48 h LSD1 levels were 

reduced to 27-30% of control in 1 µM Dox-treated pre-apoptotic cells and to 11-23% in the respective 

apoptotic counterpart (1 µM Dox-SN). In 5 µM Dox-treated pre-apoptotic and apoptotic cells LSD1 

expression was also decreased compared to control, but the effect was less pronounced (38-61% of Ctrl 

for 5 µM Dox and 51-60% of Ctrl for 5 µM Dox-SN).   
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Figure 65 - Effect of doxorubicin (Dox) treatment on KDM3A expression in H9c2 cells. Levels of KDM3A expression were 
assessed by Western blot analysis. Bands were observed at >220 kDa and ~140 kDa. Representative blots are shown along with 
the densitometric quantification, either normalized to actin (left) or GAPDH (right). Data are the means ± SEM from 4 
experiments. *, p<0.05 vs. control; **, p<0.01 vs. control; ***, p<0.005 vs. control. 



  Results 

 
118 

 

 

Figure 66- Effect of doxorubicin (Dox) treatment on LSD1 expression in H9c2 cells. Levels of LSD1 expression were assessed by 
Western blot analysis. A band was observed at ~110 kDa. Representative blots are shown along with the densitometric 
quantification, either normalized to actin (top) or GAPDH (bottom). Data are the means ± SEM from 4 experiments. *, p<0.05 vs. 
control; **, p<0.01 vs. control; ***, p<0.005 vs. control.  
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In different models of diabetes, hyperglycemia and ROS have been shown to induce and/or activate the 

H3K4 methyltransferase Set7 [462, 463]. Furthermore, Set7 plays a role in the regulation of genes 

associated with inflammation or vascular (dys)function [194, 354]. Here, no significant differences were 

observed between control cells and 1 µM Dox-treated pre-apoptotic cells at both time points (Figure 67). 

Upon treatment with 5 µM Dox, however, Set7 levels in pre-apoptotic cells were increased by 75-90% at 

24 h and significantly increased by around 2.5-5 fold at 48 h. In the respective 5 µM Dox-treated 

apoptotic fraction (5 µM Dox-SN) no major expression changes occurred. Interestingly, in two of four 

experiments Set7 expression in 1 µM Dox-treated apoptotic cells (1 µM Dox-SN) was highly increased at 

24 h, whereas in the other two experiments the expression pattern was similar to 48 h exposure, where 

the expression levels in these cells were not essentially different compared to control cells. These 

findings are mirrored in the high standard error in the overall expression evaluation of those cells at 

24 h.  

SMYD1, a muscle-specific histone methyltransferase, plays an essential role in cardiac differentiation and 

morphogenesis [198, 464]. It has been demonstrated previously that cardiac-specific deletion of SMYD1 

in adult mice leads to hypertrophy and heart failure, whereas it is upregulated during disease to prevent 

pathological cell growth [465]. It has been proposed that SMYD1 plays an essential role in the regulation 

of mitochondrial metabolism in the adult heart [466]. At 24 h of 1 µM Dox-exposure SMYD1 levels were 

slightly decreased to 60-70% of control in pre-apoptotic cells (Figure 68). Expression in the 

correspondent apoptotic fraction (1 µM Dox-SN) seemed to be slightly increased compared to control, 

but this effect can be refuted due to deviations between experiments similar to the results seen for Set7 

expression. 5 µM Dox-exposure for 24 h did not alter SMYD1 levels in pre-apoptotic cells, but 

considerably decreased expression in apoptotic cells. 48 h treatment with 1 µM Dox decreased SMYD1 

amounts in pre-apoptotic cells substantially to ~20% of control, while there was no distinct effect seen in 

the apoptotic cells, as normalization to actin or GAPDH indicated a slight increase or decrease, 

respectively. Exposure to 5 µM Dox for 48 h caused SMYD1 expression to increase to 140-300% of 

control in pre-apoptotic cells, but was decreased to ~60% in apoptotic cells. 
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Figure 67 - Effect of doxorubicin (Dox) treatment on Set7 expression in H9c2 cells. Levels of Set7 expression were assessed by 
Western blot analysis. A band was observed at ~48 kDa. Representative blots are shown along with the densitometric 
quantification, either normalized to actin (left) or GAPDH (right). Data are the means ± SEM from 4 experiments. *, p<0.05 vs. 
control; **, p<0.01 vs. control; ***, p<0.005 vs. control. 
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Figure 68 - Effect of doxorubicin (Dox) treatment on SMYD1 expression in H9c2 cells. Levels of SMYD1 expression were 
assessed by Western blot analysis. A band was observed at ~56 kDa. Representative blots are shown along with the 
densitometric quantification, either normalized to actin (left) or GAPDH (right). Data are the means ± SEM from 4 experiments. 
*, p<0.05 vs. control; **, p<0.01 vs. control; ***, p<0.005 vs. control.  
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In light of all the differential effects on the expression of epigenetic modulators that were observed in 

response to doxorubicin-induced cardiotoxicity in H9c2 cells, differences in global histone modification 

patterns were investigated. Histones were isolated by acidic extraction from the DNA-containing pellets 

remaining from the corresponding H9c2 cell lysates. Histone fractions were subjected to Western blot 

analysis and individual histone modifications were visualized by applying the respective antibodies. 

Global changes in levels of different histone 3 methylation marks, i.e. H3K4me3, H3K9me1/2/3, could 

not reliably be determined in cardiomyocytes upon doxorubicin treatment, but more research may be 

necessary to confidently rule out any alterations of these modifications (data not shown). However, 

histone 3 acetylation concentration-dependently decreased in pre-apoptotic cells both at 24 h and 48 h 

of doxorubicin exposure at a comparable rate (39-46% of Ctrl at 1 µM Dox, 12-15% of Ctrl at 5 µM Dox) 

(Figure 69). H3Ac levels in the apoptotic cells were also significantly reduced compared to control cells 

(to ~10-20% of Ctrl), but it is noteworthy that in some cases the levels of overall histone 3, to which H3Ac 

is normalized, were also less in these cells than in control cells; therefore this data might be somewhat 

extrapolated. 

All in all, doxorubicin exposure did have evident effects on ROS formation, as well as on certain 

epigenetic modulators and histone acetylation in H9c2 cardiomyocytes. However, it remains to be 

analyzed if and how redox signaling and epigenetic modulation are interrelated in this model.  
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Figure 69 - Effect of doxorubicin (Dox) treatment on global histone 3 acetylation in H9c2 cells. Levels of acetylated histone 3 
(H3Ac) were assessed by Western blot analysis of histone extracts. Representative blots are shown along with the densitometric 
quantification. H3Ac modification was normalized to total histone 3 (H3) levels. Data are the means ± SEM from 4 experiments. 
*, p<0.05 vs. control; **, p<0.01 vs. control; ***, p<0.005 vs. control. 
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 Discussion 6

 Detection of protein S-nitros(yl)ation by immuno-spin trapping 6.1

Nitric oxide (•NO), a reactive free radical generated from arginine by nitric oxide synthases (NOS), is an 

important signaling molecule for both intracellular and extracellular messaging in diverse physiological 

processes. •NO was shown to affect cGMP signaling, neuronal transmission, and has anti-microbial, anti-

inflammatory, and anti-cytotoxic effects [45, 46]. Under oxidative stress conditions •NO can interact with 

superoxide to produce reactive nitrogen species (RNS) that can cause alterations in macromolecules and 

cause severe cell damage. However, under normal circumstances nitric oxide is indispensable for cell 

physiology and signaling. Covalent attachment of a nitroso (“NO”) group to the thiol in protein cysteine 

residues forms S-nitrosothiols (SNOs) via redox-mediated reactions. This reversible process is termed 

S-nitros(yl)ation and is used by cells to modulate protein function and stability, regulate gene expression, 

and provide NO donors for transnitrosation reactions with thiol-containing amino acids, peptides, and 

proteins [104]. Generally, isolated thiols form relatively stable S-nitrosothiols, while the nitros(yl)ation of 

adjacent thiols leads to intramolecular disulfide ring closure [467]. Practically all enzymes contain 

cysteine residues that can be subjected to S-nitros(yl)ation, whereby this process often acts as an activity 

switch. For instance, the functional regulation of the NMDA receptor, HIF1α, or NFkB have all been 

reported to involve S-nitros(yl)ation [468-470]. Nitros(yl)ation of biological thiols is mostly mediated by 

nitric oxide derivatives N2O3, metal-nitrosyl complexes, and peroxynitrite [471, 472]. The most prevalent 

method to detect protein S-nitrosothiols is the biotin switch assay (BTSA), which consists of three 

principal steps. First, the free cysteine thiol (-SH) groups are blocked; secondly nitros(yl)ated thiols 

(-SNO) are reduced by ascorbate. Finally, the newly formed thiol (-SH) groups are S-biotinylated. The 

degree of biotinylation and thus S-nitros(yl)ation is then determined by either anti-biotin 

immunoblotting or streptavidin pulldown followed by immunoblotting for the protein of interest [473, 

474]. However, increasing data questions the reliability of this assay and even reports that application of 

the BTSA may give false positive results [475-477]. Hence, other approaches are necessary to determine 

protein-SNO content. It is established that protein S-nitrosothiols undergo photolytic homolysis to •NO 

and protein thiyl radicals upon irradiation with visible light [478]. This effect has been used as the 

foundation of DMPO-mediated spin trapping as a measure of S-nitros(yl)ation. DMPO spin trapping is an 

established method for the detection of free radicals that is usually analyzed by EPR. In the case of SNO 

detection the initial step is creating thiyl radicals from nitros(yl)ated thiols by irradiation and subsequent 

reaction with DMPO to a nitrone free radical product. This can be analyzed by EPR or upon redox-based 

https://www.sigmaaldrich.com/etc/controller/controller-page.html?TablePage=9552559
https://www.sigmaaldrich.com/technical-documents/articles/biology/rbi-handbook/intracellular-signaling-enzymes-receptors/nitric-oxide-synthases.html
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stabilization to a non-radical nitrone-protein-adduct by immunological techniques. During the past 

decade, Mason and colleagues have developed antibodies that react with DMPO-protein adducts and 

have shown that they work well for Western blot analysis, immunostaining, and immunofluorescence 

[112, 479]. This method of DMPO immuno-spin trapping greatly expands the utility of EPR analysis and 

bears great potential for the precise detection of S-nitros(yl)ated proteins, but also other protein- and 

DNA-centered free radicals (e.g. in amino acid side chains or DNA bases).  

In the present study, DMPO immuno-spin trapping was established and validated in order to have a solid 

readout assay to measure the extent of S-nitros(yl)ation in proteins in response to oxidative stress. As 

initial reactant for S-nitros(yl)ation isolated NAD(P)+-dependent aldehyde dehydrogenase and isocitrate 

dehydrogenase (Figure 70) were employed, since they contain reactive cysteine residues and constitute 

biologically relevant targets of metabolic cycle and aldehyde detoxification, as both have been shown to 

be inhibited by S-nitros(yl)ation [480, 481].  

 

Figure 70 – Crystal structure of aldehyde dehydrogenase and isocitrate dehydrogenase with all cysteine residues labeled in 
purple. Structures were generated from protein database files and rendered using the program PyMol (Schrödinger, Version 
EduPyMOL-v1.7.4.4). 
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It has previously been shown by Daiber et al. that at physiologically low levels of •NO in the nanomolar 

range the optimal approach to induce nitros(yl)ation favors a mechanism via peroxynitrite interaction 

with •NO instead of the autoxidation of •NO [103]. The latter would comprise the formation of N2O3, 

which is a well-known nitros(yl)ating agent, but this reaction is very slow at low •NO concentrations and 

therefore not a suitable model for biological S-nitros(yl)ation [103, 482]. Instead, they showed that the 

optimal ratio for nitros(yl)ation while mimicking low physiological fluxes is the stoichiometric release of 

•NO and •O2
- in a ratio of 3:1. This was achieved by treatment with equimolar concentrations of the NO-

donor SPENO, which releases two molecules of •NO, and the peroxynitrite generating compound Sin-1, 

whose aerobic thermal decomposition releases •NO and •O2
- at equal rates. It was calculated that 

~1-10 µM Sin-1 form steady-state levels of •NO in the low nanomolar range, thereby closely mimicking 

physiological conditions in the cell. Accordingly, assay parameters in the present study were adapted to 

those suggested by Daiber et al. High fluxes of •NO provided by 1 mM SPENO or 20 mM acidic KNO2 were 

applied as positive controls, however, those high concentrations do not represent physiological 

conditions. Application of high Sin-1 concentrations is not reliable as positive control since this may 

result in overoxidation of thiols to sulfoxides or Sin-1 autoxidation may be prevented by shortage of 

oxygen. 

Here, rising fluxes of •NO resulted in increased S-nitros(yl)ation of ALDH and ICDH as indicated by 

stronger DMPO signals, thereby confirming the usefulness and validity of the DMPO immuno-spin 

trapping assay. Nevertheless, purified proteins only represent a simplified part of the complex biological 

situation. When performing this assay in cells that had been exposed to ROS or nitros(yl)ating agents, it 

failed to indicate any significant changes in S-nitros(yl)ation levels (DMPO intensity). However, 

complications may have been due to high background of free radicals (due to cell lysis or heating upon 

irradiation), which can form protein-DMPO-adducts, that may be detected as false positives. Further 

optimization may surely allow the use of DMPO immuno-spin trapping for the detection of 

S-nitros(yl)ation also in cell systems. The use of this assay for the detection of biological free radicals in 

general and not specific for PSNOs has already been demonstrated in vivo in organelles, cells, and tissue 

[483]. 

Despite the encountered difficulties, DMPO immuno-spin trapping is a promising method for the 

detection and quantification of protein S-nitros(yl)ation. In addition, tagging S-nitros(yl)ated proteins 

with DMPO also provides a foundation for the analysis of substrate identification and selectivity (e.g. via 

DMPO-mediated immunoprecipitation).  
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 Hyperglycemia and oxidative stress in the endothelial cell line EA.hy926 6.2

Hyperglycemia in diabetes is a major risk factor for the development of cardiovascular diseases, as it is 

associated with inflammation and increased oxidative stress, leading to vascular dysfunction [284, 307, 

308, 310, 313, 484-486]. Endothelial cell models are often used to study the underlying mechanisms of 

diabetic vascular complications and to investigate the adverse effects of high glucose levels on vascular 

function. It is well established that generation of ROS is highly increased in diabetes and this effect has 

also repeatedly been demonstrated in various endothelial cell lines, such as HAECs, BAECs, HCAEC, 

HMVEC, HGEC, EA.hy926 or HUVECs upon hyperglycemic conditions mimicking the diabetic milieu [409, 

425-428, 487-498]. Glucotoxicity-induced oxidative stress is associated with compromised eNOS 

function, impaired •NO/cGMP signaling and endothelial dysfunction [499-501]. As described in the 

introduction (1.6.1, p.38), hyperglycemia can induce oxidative stress via several mechanisms including 

glucose autoxidation, increased formation of advanced glycation end-products (AGEs), and activation of 

the polyol pathway. Increased ROS formation induces the activation of several transcription factors and 

signaling pathways involved in the pathogenesis of chronic complications, including protein kinase C 

(PKC), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and nuclear factor 

kappa-B (NFkB) [6, 324]. Activation of PKCs has frequently been reported in cultured vascular cells 

exposed to high glucose and vascular tissues isolated from animal models of diabetes mellitus [311, 426-

428, 497, 502-505]. PKCs are phospholipid-dependent serine/threonine kinases that are involved in a 

variety of pathways that regulate cell growth, death, and stress responsiveness. Excess superoxide in 

hyperglycemia can activate PKCs in two ways: the superoxide anion inhibits the key glycolytic enzyme 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), thereby disrupting the glycolysis pathway, 

resulting in an increased flux of dihydroxyacetone phosphate (DHAP) to diacylglycerol (DAG), which is a 

known physiological PKC activator [505-508]. ROS can also directly activate PKCs by modifying critical 

cysteine residues within their N-terminal zinc-finger regulatory (phorbol ester/DAG-binding) domain. 

Upon oxidation, the autoinhibitory function of the regulatory domain is compromised, resulting in 

stimulation of cellular PKC catalytic activity [508-512]. PKC isoforms are known to activate NADPH 

oxidases (mainly NOX2), as their kinase activity is required for the phosphorylation-dependent assembly 

of several cytosolic NOX subunits to become catalytically active [508, 513]. Therefore, glucotoxicity-

associated ROS formation induces PKC activation, which in turn activates NOX, thereby increasing ROS 

generation in a positive feedback loop (Figure 71). ROS overproduction via a PKC-dependent NOX 

activation has been implicated in a variety of pathophysiological conditions, including neurodegenerative 

disorders [514], cardiovascular diseases, such as atherosclerosis [502, 515-517], hypertension [518, 519], 
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diabetes [520-523], and cancer [524]. On another note, high glucose was shown to increase the 

expression of endothelin-converting enzyme (ECE-1) and, consequently, levels of the vasoconstrictor 

endothelin-1 (ET-1), dependent on PKC activation [427, 428, 525]. In addition, PKC contributes to 

endothelial dysfunction by impairing eNOS function and promoting eNOS uncoupling. There are many 

reports that PKC mediates eNOS phosphorylation at Thr495 in the calmodulin-binding domain, resulting 

in eNOS inactivation and decreased •NO production [526-532]. Along with PKC-dependent NOX-induced 

superoxide generation, eNOS eventually becomes uncoupled, preferentially forming superoxide at the 

expense of •NO synthesis [533]. In summary, hyperglycemia enhances free radical production, inducing 

signaling pathways such as PKC-dependent NOX-activation, ultimately resulting in endothelial 

dysfunction and oxidative damage. Therefore, clinical studies are investigating PKC inhibitors for 

treatment and prevention of diabetic vascular complications [534]. 

 

Figure 71 - Molecular pathways of hyperglycemia-induced ROS formation and effects on PKC activity and eNOS dysfunction. 
AGE, advanced glycation end products; DAG, diacylglycerol; ECE-1, endothelin converting enzyme-1; eNOS, endothelial nitric 
oxide synthase; eNOS-pT495, eNOS phosphorylated at threonine 495; ET-1, endothelin-1; NOX, NADPH oxidase; PKC, protein 
kinase C; RAGE, receptor for AGE; ROS, reactive oxygen species.  

All the described mechanisms that induce enhanced ROS formation and endothelial dysfunction in 

hyperglycemic conditions have been reported to occur in the endothelial EA.hy926 cell model treated 

with high glucose [425-428, 498]. Even our own group demonstrated in 2012 that high glucose 

concentrations significantly increased ROS generation in EA.hy926 as well as in HUVEC cells [409]. For 
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these reasons, the same experimental setup as previously described by Karbach et al. was used in order 

to have a reliable model of oxidative stress with physiological relevance. However, the reported major 

increase in ROS formation under hyperglycemic conditions could not be reproduced and only minor 

effects were observed. Even several assay adjustments, such as application of different batches of 

D-glucose or FCS, starving cells prior to or during the treatment, changing incubation times, and co-

incubation with pro-inflammatory IL-1β did not result in considerable differences in ROS formation 

between low and high glucose groups. Possibly, there was a systematic error that could not be identified. 

One hypothesis is that low glucose control cells already exhibited oxidative stress, which led to 

measurement on a high background, which could explain the low, but consistent increases in ROS 

formation.  

Consequently, this cell model was excluded as non-reliable oxidative stress model and was not used for 

further investigation of ROS-associated epigenetic changes. In the future, an alternative approach for 

inducing oxidative stress in endothelial cells could be used by incubating cells with synthetic AGEs, which 

are commercially available (e.g. BSA-AGE). 

 ROS formation and epigenetic investigation in the setting of glutathione 6.3

peroxidase-1 deficiency and aging 

In response to the difficulties encountered in searching for a suitable oxidative stress model, it was 

decided to investigate tissue samples from an animal model with already defined oxidative stress-related 

complications. Oelze et al. have shown previously that ablation of the antioxidant protein glutathione 

peroxidase-1 (GPx-1) potentiates age-dependent vascular dysfunction and ROS/RNS formation in mice 

[416]. The authors demonstrated that aging itself caused eNOS dysfunction and uncoupling via adverse 

eNOS phosphorylation and S-glutathionylation, along with inflammation and oxidative stress. These 

effects were further increased in aged GPx-1 deficient (GPx-1-/-) mice. Glutathione peroxidase is an 

intracellular antioxidant enzyme that enzymatically reduces hydrogen peroxide as the major substrate to 

water and therefore plays an important role in regulating the cellular redox state [44]. Aging is generally 

associated with increased free radical production along with reduced antioxidant defense, resulting in 

the accumulation of cellular damage over the course of a lifetime [535-537]. This makes aging a major 

risk factor for the onset and development of cardiovascular diseases [538]. 

On the basis of guaranteed presence of high ROS levels in the aged groups, this model was applied to 

analyze molecular effects of ROS on epigenetic processes. Of note, the intention was not to investigate 
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any changes associated with endothelial dysfunction or aging, but rather general epigenetic alterations 

and modifications in response to elevated ROS levels. The astonishing correlation in 3-nitrotyrosine 

(3-NT) and H3K9me2 patterns observed in dot blots led to the assumption that the increased oxidative 

stress in the aged groups affected global H3K9 dimethylation, even more so in the old GPx-/- mice. 

Increased H3K9me2 levels in response to hypoxia- or metal-induced oxidative stress have been reported 

previously [124, 293, 539-541]. Inhibition of oxygen-dependent Jumonji histone demethylases or 

increased enzymatic activity of G9a, a histone 3 lysine 9 methyltransferase, were found to be responsible 

for elevated global levels of this histone mark [293, 541]. However, here, histone 3 monomer bands from 

acidic histone extracts that were subsequently analyzed by Western blot did not show any changes in 

dimethylation. But higher molecular weight bands were observed that were positive for H3K9me2, H3 

and H4 and were highly increased in the aged animals, especially in aged GPx-/- mice. Since the detected 

weights matched the masses calculated for H3-H4 dimers and (H3-H4)2 tetramers, it was hypothesized 

that the additional bands may represent these nucleosomal building blocks. In the nucleosome, histones 

are assembled as an octamer consisting of two H2A-H2B heterodimers and a (H3-H4)2 tetramer that 

forms from dimerization of H3-H4 heterodimers [142]. Histone interaction occurs via their histone fold 

domain, which is a highly conserved structural motif constructed from three α-helices connected by two 

unstructured loops [542]. The two H3-H4 pairs form the tetramer through the interaction of the α2-helix 

and α3-helix of H3 and H3’, respectively, resulting in a 4-helix bundle. To produce the octamer each α3-

helix in the two H2A-H2B dimers interacts with the respective α3-helix of H4 in the tetramer forming two 

H2B-H4 associations. The H3-H3’ and H2B-H4 α-helix bundles exhibit several additional hydrophobic 

interactions and hydrogen bonds [142]. In general, the H3-H4 tetramer and H2A-H2B dimers are more 

stable than the fully assembled octamer in solutions at low salt concentrations, whereas in presence of 

DNA or high salt concentration the octamer is more stable [543]. However, in the present study, 

detection of histone oligomers was not expected due to sample denaturation and reduction prior to 

Western blotting. Thus, it was assumed that a covalent bond may have formed stabilizing H3-H4 dimers 

and tetramers. Of note, it is known that in oxidizing conditions a covalent disulfide bond is formed linking 

H3-cysteine110 to a histone 3 dimer, which is, however, easily reversible under fully reducing conditions 

[430]. Histone 4 does not contain any cysteine residues. Like cysteine, tyrosine is one of the amino acids 

that are most susceptible to oxidation. Various tyrosine derivatives such as nitrotyrosine, dityrosine and 

halogenated tyrosine can be formed upon exposure to free radicals. Dityrosine (DT) is a tyrosine dimer 

derived from tyrosyl radicals that can be induced by ROS, metal-catalyzed oxidation, ultraviolet 

irradiation, and peroxidases [434, 435]. ROS-induced dityrosine formation is generally mediated by 
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peroxynitrite, which is present in its protonated form peroxynitrous acid (ONOOH) under physiological 

pH conditions. Peroxynitrous acid readily dissociates into the highly reactive hydroxyl radical (•OH) and 

the nitrogen dioxide radical (•NO2). This induces the formation of an unstable tyrosyl radical, which is 

either nitrated by •NO2, generating 3-nitrotyrosine, or at higher substrate levels forms a covalent bond 

with another tyrosyl radical, generating o,o’-dityrosine (Figure 72) [544, 545]. 

 

Figure 72 - Mechanism of tyrosine nitration and dityrosine formation. Tyrosyl radicals can be generated by ROS, metal-
catalyzed oxidation, ultraviolet irradiation, and peroxidases. Here, the tyrosyl radical is formed in response to peroxynitrous acid 
homolysis into 

•
OH and 

•
NO2 (a). In the presence of the 

•
NO2 radical nitration via a radical based mechanism takes place, yielding 

3-nitrotyrosine (b). Alternatively, two tyrosyl radicals can dimerize by forming a covalent bond, yielding dityrosine (c). Taken 
from Pfeiffer et al. 2000 [545]. 

Inter- and intramolecular cross-linking between protein tyrosine residues can induce oligomerization and 

aggregation [96]. For instance, in Parkinson’s disease, which is accompanied by highly elevated oxidative 

and nitrative stress, formation of nitrated α-synuclein and dityrosine cross-linking is observed. This leads 

to the generation of an α-synuclein homodimer that serves as seed for further α-synuclein aggregation 

assembling into β-sheet rich fibrils, making up Lewy bodies, the hallmark of Parkinson’s disease [546-

548]. Furthermore, dityrosine cross-links have been found in atherosclerotic lesions, lipofuscin of 

pyramidal neurons of aged human brains or amyloid plaques from Alzheimer’s disease patients [549-
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551]. Khan et al. have reported that exposure to peroxynitrite induces dityrosine formation in histone 

H2A, H2B and H3 leading to intramolecular (but not intermolecular) cross-linking [431-433]. In addition, 

it was shown by Deeg et al. that tyrosyl radicals in H2B, generated by irradiation, not only formed 

intramolecular cross-links between tyrosines in close proximity, but also intermolecular bonds between 

isolated tyrosines [552]. As H3 contains three and H4 four tyrosine residues, oligomerization via 

intermolecular dityrosine cross-linking may also be possible. Although there is no data available about 

dityrosine bonds between H3 and H4, tyrosine nitration of these histones has been previously 

demonstrated in vitro and in vivo [433, 544, 553]. In the study by Haqqani et al., nitration was restricted 

to Tyr72 and Tyr98 in histone H4, and Tyr41 in histone H3. It was suggested that the reason why the 

other tyrosine residues were not nitrated is their proximity to a cysteine or methionine residue, which 

alternatively become oxidized under the oxidative/nitrative stress conditions [553]. On the basis of these 

findings, H3-H4 dityrosine cross-linking did not seem unlikely. Indeed, the alleged histone H3-H4 

oligomers were found to correlate with increased dityrosine formation in the aged groups detected via a 

respective DT-specific antibody. Yet, the existence of an intermolecular H3-H4 dityrosine cross-link in H3-

precipitates and histone extracts from kidney lysates of old GPx-/-mice was not confirmed by mass 

spectrometry. Even though in the MS analysis of histone extracts traces of histones were found in higher 

molecular weight bands than their monomer correspondents, their presence was probably not due to a 

covalent cross-link but possibly due to insufficient denaturation (despite application of denaturing and 

reducing conditions) and therefore remaining histone assembly in dimers and tetramers as is present in 

the nucleosome. Furthermore, MS analysis detected a big amount of immunoglobulins, which were first 

attributed to the mouse antibodies used for H3-immunoprecipitation, but were later found to be 

intrinsic mouse immunoglobulins, as they were detected by an anti-mouse antibody in the lysate itself. 

Therefore, the observed bands that were presumed to be histone oligomers actually originated from 

endogenous mouse immunoglobulin heavy and light chains, which were increased in the aged groups 

due to increased inflammation and infiltration of immune cells in the examined mouse heart and kidney 

tissues. A pro-inflammatory phenotype is a general feature in aging, and the analyzed samples have in 

fact been shown by Oelze et al. to exhibit increased inflammatory markers and infiltration of leukocytes 

in aged tissue, especially upon GPx ablation [416]. Also, GPx deficiency itself has previously been shown 

to promote a cytokine-induced proinflammatory state [554].  

In conclusion, all aforementioned discoveries on cross-linked histone oligomers containing dityrosine 

bridges were interpreted falsely due to the recognition of tissue-intrinsic mouse immunoglobulins by the 

anti-mouse secondary antibody used in conjunction with the primary mouse monoclonal H3-, H4-, 
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H3K9me2- and dityrosine antibodies. Of note, the same effect of detecting intrinsic immunoglobulins 

had also been observed in diabetic rats using the same mouse antibodies, which can be attributed to 

high homology between rat and mouse immunoglobulin constant regions and concurrent cross-reaction 

of antibodies [555]. 

In addition, oxidation experiments with purified recombinant histones also did not result in dityrosine 

cross-links between histones 3 and 4, although presumable H3 dimerization was observed, which can 

occur via formation of cysteine-disulfide bridges, as described previously. However, lack of protein 

presence on the blot under some oxidation conditions was observed by Ponceau staining and may 

suggest histone aggregation or modification that prevented them from entering the gel.  Nevertheless, 

there was no solid confirmation found that histone 3 and 4 oligomerize by forming dityrosine cross-links 

under oxidative conditions. 

 Epigenetic investigation of diabetic complications in ZDF rats and effect of the 6.4

SGLT2 inhibitor empagliflozin 

Type 2 diabetes mellitus is a growing health problem and a major risk factor for cardiovascular diseases. 

Hyperglycemia and glucotoxicity in diabetes are considered to substantially contribute to the adverse 

effects on vascular function, such as oxidative stress and inflammation. Therefore, glucose-lowering 

drugs are a promising strategy to prevent hyperglycemia-induced cardiovascular complications. The 

SGLT2 inhibitor empagliflozin has been shown to lower blood glucose by selectively blocking the sodium-

glucose co-transporter 2 in the kidney, thereby inhibiting glucose reabsorption and promoting increased 

urinary glucose excretion (see Introduction 1.6.1.1, Figure 21, p.41) In the EMPA-REG OUTCOME® trial of 

2015, empagliflozin has been demonstrated to reduce overall cardiovascular mortality of T2DM patients 

at high cardiovascular risk [371, 372]. The study by Steven et al., which involves part of this thesis, 

provided insight into the mode of action of empagliflozin, especially its effects on glucotoxicity, beta-cell 

function, inflammation, oxidative stress and endothelial dysfunction in Zucker diabetic fatty (ZDF) rats 

that were used as a model of T2DM [412]. It was demonstrated that chronic treatment of ZDF rats with 

empagliflozin prevented glucotoxicity, as well as associated AGE/RAGE signaling and inflammation. In 

addition, empagliflozin reduced oxidative stress and normalized vascular function. These beneficial 

effects are likely due to the prevention of hyperglycemia, suggesting that hyperglycemia and 

glucotoxicity are upstream of all other complications seen in diabetes (summarized in the proposed 

mechanistic scheme in Figure 76). Glucotoxicity comprises increased levels of glucose oxidation 

products, such as methylglyoxal, and formation of AGEs, as well as the subsequent increase in AGE/RAGE 
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interaction, which induces a broad proinflammatory response and production of ROS via NOXs [314-

316]. All these effects were shown to be improved by empagliflozin treatment. Implication of AGE/RAGE 

signaling in vascular complications has already been shown previously in diabetic rats, where it not only 

increased oxidative stress but also impaired •NO/cGMP signaling [556, 557]. Our data support these 

results, as it was found that several factors involved in the regulation of the integrity of the •NO/cGMP 

pathway, such as eNOS- and VASP-phosphorylation or DHFR expression, were dysregulated in diabetic 

animals, but were rescued upon glucose lowering by empagliflozin. The detailed mechanism of the 

•NO/cGMP pathway is depicted in Figure 73. Disruption of •NO/cGMP signaling by oxidative stressors has 

repeatedly been reported to cause vascular dysfunction [295, 558]. Consequently, endothelial 

dysfunction as measured by endothelium-dependent relaxation by the vasodilator acetylcholine (ACh) in 

aortic rings was observed in ZDF rats. Interestingly, Huang et al. demonstrated that in diabetic 

nephropathy AGE/RAGE signaling significantly suppressed •NO/cGMP signaling, which could be restored 

by application of NO-donors along with antioxidants [559]. Implication of AGE/RAGE interaction in 

diabetic vascular diseases was also corroborated by studies that demonstrated that inhibition of RAGE 

improved late-stage diabetic complications including hind limb ischemia and retinopathy in T1DM mice 

[560, 561], nephropathy in ZDF and T1DM rats [562, 563] and microvascular damage in T1DM rats and 

T2DM mice [564, 565]. 

 

Figure 73 - Scheme illustrating the 
•
NO/cGMP signaling pathway leading to vasodilation with the major sites for its oxidative 

inactivation. BH4, tetrahydrobiopterin; cGK-1, cGMP-dependent protein kinase 1; DHFR, dihydrofolate reductase; GCH-1, GTP-
cyclohydrolase-1; PDE, phosphodiesterase; PKC, protein kinase C; P-VASP, phosphorylated (Ser239) vasodilator stimulated 
phosphoprotein; ROS, reactive oxygen species. sGC, soluble guanylate cyclase. Taken from Steven et al. 2017 [412]. 
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The improvement of •NO/cGMP signaling by empagliflozin observed in our study is most likely attributed 

to prevention of oxidative damage of this pathway. It can be ruled out that upregulation of eNOS is 

accountable for the rescue, as neither an increase in mRNA nor in the activating histone mark H3K4me3 

in the eNOS promoter were observed in SGLT2i-treated rats. AGE/RAGE-associated inflammation and 

ROS formation in ZDF rats was confirmed in several tissues and blood by several assays including the 

detection of oxidative stress markers (3-NT, 4-HNE, MDA) and protein and mRNA expression data (NOX2, 

HO-1, IFN-γ, COX2, NOS2). Implication of hyperglycemia as causal effector of endothelial dysfunction, 

oxidative stress and inflammation was illustrated by linear regression analysis for correlations between 

fasting blood glucose or glycosylated hemoglobin (HbA1c) and endothelial function (ACh efficacy), 

zymosan A-induced whole blood oxidative burst  and serum levels of the inflammation marker C-reactive 

protein (CRP) (Figure 74). Increasing blood glucose levels or HbA1c values were inversely correlated with 

endothelial function of aortic ring segments, whereas positive correlation was observed for oxidative 

stress and inflammation, highlighting the importance of glycemic control to prevent glucotoxicity. All of 

these adverse effects in diabetic animals were normalized by empagliflozin treatment in accordance with 

previously reported data in a T1DM model and a model of atherosclerosis [566, 567].  

 

Figure 74 - Linear regression analysis for correlations between fasting blood glucose (A-C) or HbA1c (D-F) and endothelial 
function (ACh efficacy, A and D), zymosan A-induced whole blood oxidative burst (B, E), serum CRP levels (C, F). p-values and 
correlation coefficients (R

2
) are provided in the graphs. Data was collected by co-authors. Graphs were taken from our 

publication Steven et al. 2017 [412].
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Interestingly, empagliflozin seemed to also confer pleiotropic effects, since it was demonstrated that it 

improved viability and •NO formation in HUVECs under hyperglycemic conditions. As it can be ruled out 

that these positive effects were due to glucosuria, and since the presence and function of SGLT2 in 

endothelial cells is not clear, beneficial outcomes may have resulted from other mechanisms induced by 

empagliflozin, possibly including epigenetic pathways. Considering the presented cell studies, it should 

be noted, that the employed empagliflozin concentrations were supra-pharmacological (1 and 10 μM) as 

compared to the circulating levels expected in the empagliflozin treated rats (approximately 100-

250 nM). This may represent a potential limitation of the in vitro experiments in cultured HUVECs. 

Remarkably, empagliflozin (at 500 nM) has also been shown to exert protective effects on cultured 

endothelial cells and even cardiomyocytes by increasing cell viability and ATP content in a diabetic milieu 

mimicked by co-incubation with AGEs [568]. 

Here, the DPP-4 inhibitor sitagliptin and the RAGE inhibitor FPS-ZM1, two other glucose-induced stress-

lowering drugs, were investigated in hyperglycemic HUVECs alongside. Sitagliptin showed very similar 

protective effects compared to empagliflozin in these in vitro settings. However, a recent multi-cohort 

meta-analysis review reported that the use of SGLT2 inhibitors was associated with better mortality 

outcomes than DPP-4 inhibitors in type 2 diabetic patients [569]. The also significant effect on 

glucotoxicity by the RAGE inhibitor FPS-ZM1 demonstrated the great therapeutic potential of 

interruption of the AGE/RAGE signaling pathway. RAGE inhibitors are increasingly being studied, not only 

as a promising treatment option for diabetic vascular complications but also for Alzheimer’s disease 

[563, 565, 570-575].  

Increasing evidence demonstrates major roles of epigenetic pathways in diabetes, some of them 

appearing in a vital crosstalk with oxidative stress [6, 304] (see Introduction 1.6.1, p.38). In the current 

study we intended to determine if expression changes in genes that are involved in oxidative stress, 

glycemic control or inflammation, as observed in diabetic ZDF rats, were caused by epigenetic regulation 

through histone modifications and if SGLT2i treatment could antagonize these effects. While there is an 

adequate amount of data concerning histone mark patterns in diabetes, no data has been reported 

about epigenetic effects of empagliflozin so far. It has been shown previously that global differences in 

H3K4 trimethylation are associated with overweight and type 2 diabetes [438]. Moreover, the repressive 

histone mark H3K9me3 has been found to be involved in metabolic memory and decreased at promoters 

of inflammatory genes, promoting their expression in diabetic models [331, 346]. Therefore it was 

decided to determine the presence of these histone marks on the presented genes via ChIP assay. Other 

histone marks, such as H3K27me3 or global histone acetylation, were supposed to be investigated as 
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well, but this could not be accomplished due to time limitation. In general, ChIP with H3K4me3 

antibodies was more successful than with H3K9me3 antibodies, meaning the genes of interest were 

found to be associated with H3K4me3 at a higher percentage as with H3K9me3. This may have several 

reasons. Downregulation of a gene does not necessarily mean that H3K9me3 is upregulated, many more 

mechanisms can be involved, including histone deacetylation or (de)methylation. Generally, active marks 

such as H3K4me2/3 and H3K36me2/3 display a higher turnover rate, whereas known repressive marks, 

such as H3K9me2/3 or H3K27me2/3, turn over more slowly [423]. The low signal achieved by H3K9me3 

ChIP may also be due to weak primer specificity, as there was no data available for primer design 

indicating which specific regions to target for enriched H3K9me3 marks. However, it is suggested that 

H3K9me3 marks are distributed relatively homogeneously within the promoter region and the gene body 

of suppressed genes (Figure 75 b) [151, 423].  

 

Figure 75 - Distribution of histone modifications on active and silenced genes. Active genes (a) are highly enriched in the 
modifications H3K4me1/2/3 (and also histone acetylation; not shown here) in the promoter region. At the transcriptional start 
site (TSS) there is a nucleosomedepleted region (NDR) within the promoter. Active modifications such as methylation of H3K79 
or H3K36 are present in the body of these genes, mainly at enhancer sites. In inactive genes (b) H3K27me3 is enriched at the 
promoter. The repressive marks H3K9me2/3 and H4K20me3 are broadly distributed on inactive regions. Taken from Kooistra 
and Helin 2012 [424]. 
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Since most primers that were designed targeted the promoter region, it would have been very 

interesting to also perform ChIP with H3K27me3 antibodies, since this mark is supposedly enriched at 

the promoter region in silenced genes and may have resulted in a better signal (Figure 75 b) [151, 423]. 

Additionally, for ChIP experiments, the quality of the antibody is an essential factor. Low yield of 

H3K9me3-associated genes may have also been due to low specificity of the H3K9me3 antibody. Only 

~10 % of the gene desert regions were found to be associated with H3K9me3, which could be due to 

insufficient recognition of the histone mark by the antibody; however, it is also possible that there was 

no 100% H3K9me3 signal in gene desert because its repression can also be due to presence of other 

repressive histone marks like H3K9me2 or H3K27me3. On the other hand, low levels of H3K9me3 were 

found at the active control gene GAPDH, therefore this was considered as background signals. Most 

genes analyzed here did not have H3K9me3 modifications above baseline and the ones that exceeded 

the baseline displayed such low signal that physiological relevance of any changes in H3K9me3 levels 

may be limited. 

The histone mark H3K4me3 is typically enriched in promoter regions, but can also be found in regulatory 

regions promoting transcription enhancement [66, 67]. The region around the transcription start site 

(TSS) is usually nucleosome-depleted, thus free from any histone modifications (Figure 75 a). Also, 

H3K4me3 marks often appear in proximity to CpG islands. Therefore, the primers designed for this study 

were targeted to either promoter or CpG-rich intron regions. Even though there were no differences in 

H3K4me3 levels observed in the DHFR gene in the current study, the overall high yield of H3K4me3 

associated to the DHFR gene implies that the designed primers target a site of rich H3K4 accumulation in 

the DHFR gene. Therefore, these primers can be recommended for future use for H3K4me3 analysis in 

DHFR via ChIP. The same was found true for the primers for HO-1 and both primers targeting the intron 2 

of NOS2. This is also an important result, as success in obtaining high-quality ChIP data critically depends 

on good primer design. Designing the DNA oligonucleotide primers needed for ChIP-qPCR is considerably 

more challenging and time-intensive than for other qPCR methods. First of all, ChIP primers must target 

very specific regions, such as certain binding sites or, like in this case, a genomic region that is enriched in 

a respective histone mark. Therefore, the options for primer design are limited. Furthermore, the quality 

of the DNA may be impaired due to sample processing during the ChIP assay. In addition, the quantity of 

available DNA gained from ChIP is often low. The ability to base a ChIP analysis on a primer that reliably 

targets a region that is rich in the investigated mark is of big advantage. 
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In the present study, a trend for H3K4me3-mediated gene activation was found for RAGE in diabetic ZDF 

rats, which was reversed upon SGLT2i treatment. Increased AGE formation and a consequential 

upregulation of RAGE are established occurrences in diabetes mellitus [312, 316, 318, 484, 576-578]. 

Epigenetic regulation of RAGE expression by histone modifications has previously been demonstrated in 

a mouse model of T2DM (db/db mice) [579]. It was shown that the transcriptional activation marks 

H3K9Ac, H3K14Ac, H3K4me36 and H3K4me1 were increased in the RAGE promoter of diabetic animals, 

while the repressive marks H3K9me2, H3K9me3, and H3K27me3 marks were decreased, promoting 

RAGE transcription in these diabetic animals. However, they did not observe any significant differences 

in the permissive marks H3K4me2 and H3K4me3 in this model. 

Here, H3K4me3 modification of eNOS was found to be decreased in all ZDF groups compared to control; 

however, this decrease was not mirrored in mRNA levels, which showed no differences in any of the 

groups. Interestingly, it has been reported that the expression of eNOS is controlled by a specific histone 

code described as H3K9ac and H3K12ac along with H3K4me2 and H3K4me3 [580]. So it is possible that 

the eNOS promoters of control rats were associated with more H3K4me3 modifications, but not in that 

specific pattern, leading to a higher yield in H3K4me3 ChIP, but not increased mRNA expression 

compared to ZDF rats. Of note, this histone code pattern was reported to be influenced by HDACs and 

H3K4 methylation inhibitors, resulting in decreased eNOS expression [462, 580, 581]. Therefore, 

modulation of epigenetic marks at the eNOS promoter could become a potential target for treating 

endothelial dysfunction.  

Diabetes is usually accompanied by a proinflammatory phenotype. Accordingly, ZDF rats exhibited 

significantly higher expression of the cytokine IFN-γ, which was prevented by empagliflozin treatment. 

Also, increased levels of H3K4me3 were observed at the IFN-γ promoter of ZDF rats, which were 

decreased in the SGLT2i groups, nicely correlating with the observed mRNA expression pattern. 

However, the measured levels were only slightly above background levels, questioning the biological 

relevance. Interestingly, the repressive mark H3K9me3 was also lowered in empagliflozin treated rats, 

but seemed to have no effect on mRNA expression. This may have to do with the technical difficulties 

observed for H3K9me3 ChIP discussed above. Of note, IFN-γ has repeatedly been shown to influence 

epigenetic pathways by regulating the expression or function of histone modifiers, such as Sirt1 or 

KDM6B [582-584].  

It is known that hyperglycemia and cytokines strongly induce NOS2 expression. During hyperglycemia, 

NFkB becomes activated by H3K4 methylation and, together with activated RAGE, mediates the 
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expression of the inflammatory mediators IL-6, TNF and NOS2 in macrophages [585, 586]. In agreement 

with this, it has been shown that the NFkB binding site on the IL1b, TNF-α, and NOS2 promoters 

exhibited increased H3K4me3 levels in macrophages of diet induced obesity (DIO) mice compared with 

controls [587]. In the ZDF diabetic animals no H3K4me3-mediated epigenetic upregulation of NOS2 could 

be determined, in contrast to the significant increase in mRNA levels compared to control. However, the 

activating H3K4me3 mark was clearly down-regulated at the NOS2 promoter in empagliflozin-treated 

rats.  

Interestingly, it was observed throughout all experiments that empagliflozin-treated diabetic rats 

generally exhibited decreased H3K4me3 and H3K9me3 levels (even if ZDF was not increased) compared 

to Ctrl and ZDF. This suggests that empagliflozin may possibly confer epigenetic effects by itself, for 

instance by affecting the functions of histone methyltransferases or demethylases. This could have an 

effect on other genes implicated in the pathology of T2DM, leading to an improvement of the 

pathological effect of T2DM in addition to glucose lowering. Nevertheless, this hypothesis is quite bold 

and will require a lot of further research.  

Another interesting observation was that the beneficial effects of empagliflozin were quite similar 

independently of the administered dose. Possibly, the therapeutic potential of empagliflozin is already 

exploited at the low dose. 

In summary, the presented study demonstrated that administration of the SGLT2 inhibitor empagliflozin 

antagonized the development of oxidative stress, AGE/RAGE signaling and inflammation in type 2 

diabetic ZDF rats, with beneficial effects on their vascular function (Figure 76). These results are in 

agreement with the EMPA-REG OUTCOME® trial that reported that empagliflozin reduces the 

cardiovascular and overall mortality in T2DM patients at high cardiovascular risk [371, 372]. 

Empagliflozin-mediated improvements are mainly being attributed to its glucose lowering capability, 

preventing glucotoxicity and all downstream consequences. However, other pleiotropic properties of the 

drug may play a role in its therapeutic outcomes as supported by the beneficial effects of empagliflozin 

in hyperglycemic endothelial cell cultures. Therefore, inhibition of SGLT2 presents an attractive anti-

diabetic therapy and warrants further exploration in combinational therapeutic approaches. 
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Figure 76 - Hypothetical scheme on empagliflozin-conferred protection in T2DM. The normalization of the glycemic condition 
and prevention of glucotoxicity are the major beneficial properties of empagliflozin and other SGLT2i but (direct) epigenetic and 
pleiotropic effects may also contribute. The secondary pathologies oxidative stress, AGE/RAGE signaling, inflammation with 
subsequent vascular dysfunction and increased cardiovascular risk are accordingly improved by the primary action of 
empagliflozin (the latter shown by the EMPA-REG OUTCOME® trial). Scheme taken from our publication Steven et al. 2017 [412]. 

6.4.1 Investigation of epigenetic drugs for diabetes and obesity 

Drugs with epigenetic properties are sparking increasing interest as potential therapeutic agents in the 

treatment of diabetes and obesity and there are several major classes of epigenetic modifiers in various 

stages of study [588]. HDAC inhibitors (HDACis) have been suggested as potent therapeutic agents in the 

treatment of T1DM and T2DM due to the role of HDACs in beta-cell function and proliferation, as well as 

improvement of insulin resistance and inhibition of adipogenesis [589-591]. Promising HDACis include 

valproic acid (VPA), sodium phenylbutyrate, Vorinostat and Givinostat. Clinical trials for the use of VPA 

and sodium phenylbutyrate in the treatment of diabetes and obesity are ongoing (Table 3) [588]. 

Furthermore, the HAT inhibitor curcumin was suggested to  be effective as an intervention drug to 

prevent the development of diabetes [592]. DNMT regulation was shown to have an important role in 
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the development of diabetes, therefore inhibition of DNMT by hydralazine, procainamide, MG98 or 

RG108 might have a beneficial effect on its treatment [588]. Also, HDM inhibitors are being investigated 

as drugs targeting T2DM. The HDM inhibitor tranylcypromine, for instance, was shown to inhibit lysine-

specific demethylases (LSD1 and LSD2), which are involved in gluconeogenesis and metabolic 

expenditure [593]. Of extremely prominent interest is the research on sirtuin-activating compounds, 

especially the natural polyphenolic compound resveratrol. In a meta-analysis of 11 clinical trials 

resveratrol was found to improve glycemic control and insulin sensitivity in T2DM patients [594]. Table 3 

lists current clinical trials of epigenetic drugs in the treatment of diabetes and obesity [588]. In summary, 

epigenetic processes have emerged as an area of interest for novel drug discovery, which could 

revolutionize the treatment of diabetes and obesity. 

 

Table 3 - Clinical trials of epigenetic drugs in the treatment of diabetes and obesity. Taken from Arguelles et al. 2016 [588]. 
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 Oxidative stress and epigenetic investigation in H9c2 cardiomyocytes 6.5

ROS generation in response to environmental changes is associated with increased cardiovascular risk. 

There are numerous publications about pathological implications induced by oxidative stress with 

relevance for the development of cardiovascular diseases [5, 283, 284, 449, 595-598]. Recent 

investigations using cardiac myocyte systems in culture show that ROS and oxidative stress can cause 

multiple changes in cell structure and function that are associated with the failing heart, and which 

appear to be related to the quantity and type of ROS [598-600]. For example, it has been reported that 

direct addition of ROS led to apoptosis in different kinds of cardiomyocyte cultures, while surviving cells 

underwent hypertrophy [600-603]. Here, the rat cardiomyoblastic cell line H9c2 was applied as a model 

system to analyze the development of cardiomyopathy in response to oxidative stress. H9c2 

cardiomyoblasts were derived from embryonic BD1X rat heart tissue by B. Kimes and B. Brandt and have 

the potential to differentiate into cardiomyocytes and further fuse to form multinucleated myotubes, 

ultimately exhibiting many of the properties of skeletal muscle [439]. The interplay of redox signaling and 

epigenetic regulation and its resulting effects on gene expression, as well as pathology and viability of 

H9c2 cells was investigated. At first, hydrogen peroxide was employed to induce oxidative stress. It has 

been demonstrated before that H2O2 induced hypertrophy and apoptosis in H9c2 cells via activation of 

stress-activated protein kinases and NFkB upregulation [598, 602, 604]. Here, considerable cell loss by 

cell detachment indicating apoptosis was observed at concentrations higher than 100 µM H2O2. 

Morphological changes of cells, like swelling or enlargement, were not clearly apparent; however, it is 

not necessarily expectable to already see hypertrophic characteristics in the surviving cells after only 4 or 

24 h treatment. The extensive cell loss raised technical difficulties for further analysis, since subsequent 

protein quantification was problematic as lysate content fell below detection limit in Bradford assay. This 

made comparisons between treatments complicated as they depended on normalization, a factor that 

may falsify results due to extrapolation.  

6.5.1 Doxorubicin-induced cardiotoxicity in H9c2 cardiomyocytes 

In light of these challenges, another model depicting the pathophysiology of myocardial failure with 

involvement of ROS formation was established, i.e. doxorubicin-induced cardiomyopathy in 

differentiated H9c2 cardiomyocytes. The anthracycline doxorubicin (Dox) is a potent chemotherapeutic 

agent used for the treatment of a broad range of cancers [373, 375, 376]. However, the clinical use of 

doxorubicin is limited by the risk of development of severe cardiotoxicity. Dependent on the dosage, 
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~5-50% of patients treated with doxorubicin or its derivatives develop chronic cardiac complications up 

to 10-15 years after the cessation of doxorubicin chemotherapy [375, 381]. 

In order to combat cancer cells, doxorubicin acts via different mechanisms to produce a range of 

cytotoxic effects. It is known that doxorubicin binds to DNA-associated enzymes and intercalates 

between DNA base pairs, thereby interfering with topoisomerase-II (Top2α)-mediated DNA uncoiling and 

thus disrupting DNA repair or transcription [374, 605]. Other doxorubicin actions include free radical 

generation via several mechanisms, such as disruption of the mitochondrial transport chain, activation of 

ROS-generating enzymes, or decreased expression of cellular antioxidant defenses, as described in the 

Introduction (1.6.2, p.41) [375, 380, 389]. Furthermore, doxorubicin has an influence on the regulation of 

the Bcl-2/Bax apoptosis pathway. Doxorubicin was shown to downregulate mRNA levels of the anti-

apoptotic factor Bcl-2, whilst the pro-apoptotic factor Bax was upregulated, thereby shifting the balance 

toward pro-apoptotic signaling [374, 375]. All these actions of doxorubicin ultimately induce 

programmed cell death. While these mechanisms are very effective in restricting cancer growth, 

doxorubicin also induces apoptosis and necrosis in healthy tissue causing toxicity in the brain, liver, 

kidney and heart [374]. Yet, the actions by which doxorubicin affects cancer cells are not entirely the 

same as those that affect cardiac cells. The reason for this is that cardiomyocytes are generally not 

replicative, and Top2α, the key target of doxorubicin, is not expressed in quiescent cells and 

undetectable in heart tissues [606]. Increased oxidative stress has been established as the primary cause 

of doxorubicin cardiotoxicity, as is evident from increased levels of ROS and lipid peroxidation, as well as 

decreased levels of antioxidants and sulfhydryl groups in respective cell and animal models [375, 384-

388]. Cardiomyocytes are particularly susceptible to free radical damage because of their high oxidative 

metabolism and relatively poor antioxidant defenses [607]. Additional to causing mitochondrial 

dysfunction through ROS formation, other proposed mechanisms of doxorubicin cardiotoxicity include 

inhibition of nucleic acid and protein synthesis [608], release of vasoactive amines [609], altered 

adrenergic function [610] and downregulation of cardiac-specific genes, leading to decreased expression 

of contractile proteins, such as α-actinin, myosin and troponin [380]. Furthermore, doxorubicin 

treatment has also been associated with iNOS and eNOS upregulation, as well as eNOS uncoupling, 

thereby enhancing superoxide (and ultimately peroxynitrite) formation and promoting vascular 

endothelial cell injury [380, 611-614]. Evidence suggests that doxorubicin causes apoptotic cell death not 

only in cardiomyocytes but also endothelial cells, therefore rendering the cardiovascular system 

particularly susceptible to doxorubicin toxicity [380].  
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In the present study, apoptotic cell death was observed in H9c2 cardiomyocytes at 1 µM and 5 µM 

doxorubicin exposure for 24 h and 48 h, as was depicted by caspase-3 cleavage and fractin formation. 

Visual observation revealed that the amount of apoptotic cells was time- and dose-dependently 

increased. In line with doxorubicin’s ability to induce peroxynitrite formation, 3-nitrotyrosine (3-NT) 

levels were found elevated upon doxorubicin exposure in apoptotic as well as in surviving cells. Another 

direct effect of doxorubicin-mediated ROS formation is lipid peroxidation, the end products of which are 

reactive aldehydes, such as malondialdehyde (MDA). Elevated MDA levels in response to doxorubicin 

treatment have repeatedly been reported in various cell and tissue models [615-617]. Here, MDA 

modification of proteins was also increased in all doxorubicin-treated H9c2 cells. As another marker of 

oxidative stress the expression of the mitochondrial antioxidant enzyme SOD2 was analyzed. It has been 

demonstrated before that induction of SOD2 up-regulation can counteract cardiotoxic effects induced by 

doxorubicin exposure [404-406], suggesting that in the present study H9c2 cells may initiate a coping-

mechanism by overexpressing SOD2 in response to doxorubicin treatment. In general, when combining 

SOD2 levels in surviving and apoptotic cells of each treatment, the expression was increased upon 

doxorubicin exposure. However, after 24 h treatment the SOD2 levels in the apoptotic cells were not 

elevated compared to control cells. Possibly, insufficient protection by SOD2 actually became the reason 

that cells underwent apoptosis, whereas cells with increased SOD2 protection survived. At 48 h, also 

apoptotic cells exhibited increased SOD2 levels, but concluding from the oxidative marks seen in dot 

blot, ROS formation exceeded SOD2-mediated ROS scavenging and even high SOD2-levels could not 

protect doxorubicin-exposed cells from oxidative stress and apoptosis. Additional to oxidative stress 

possibly other doxorubicin mechanisms may have played a role in inducing apoptosis. 

No effective treatment specific for established doxorubicin-induced cardiomyopathy is presently 

available. Typically, conventional therapies for congestive heart failure are utilized, including ACE 

inhibitors, beta-blockers and loop diuretics for volume management [618, 619]. However, extensive 

research is being done to discover preventative treatments. Most of the pharmacologic agents that have 

been tested to reduce or prevent doxorubicin cardiotoxicity have the potential to reduce oxidative 

stress. Accordingly, compounds with documented antioxidant properties, such as probucol, superoxide 

dismutase, vitamin C, resveratrol, and dexrazoxane have been reported to decrease doxorubicin 

cardiotoxicity [619-623]. The iron-chelating agent dexrazoxane has been approved by the FDA and is 

available for clinical use as combination therapy with anthracyclines; however, in practice it is used 

infrequently because it can induce myelosuppression [376]. While antioxidant therapy revealed 

favorable effects in vitro and in animal models, results of clinical studies have been inconsistent and 
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require further investigation [624]. Also, the focus on potential antioxidant cardioprotection is currently 

moving away to targeting the cellular mechanisms that cause apoptosis instead [375]. Anyway, it is 

important to fully unravel the molecular signaling pathway mediating doxorubicin-induced cardiotoxicity, 

including redox regulation and epigenetic processes, in order to develop novel approaches for the 

treatment or prevention of cardiomyopathy without affecting the antitumor activity. 

6.5.1.1 Effect of doxorubicin-induced cardiotoxicity on Sirt1 expression in H9c2 cells 

It is well-known that oxidative stress plays a vital role in the development of cardiovascular diseases. At 

the same time, epigenetic changes are implicated in the pathogenesis of CVDs and epigenetic regulators 

have been shown to be affected by increased ROS levels. The interplay between these factors was 

investigated in the doxorubicin-induced cardiomyopathy model in H9c2 cardiomyocytes by analyzing 

expression levels of certain epigenetic modulators. 

Sirtuins are a class of enzymes characterized by sequence similarity to the yeast progenitor sirtuin “silent 

information regulator 2” (Sir2). Seven sirtuins have been found in mammalian cells, which play key roles 

in the regulation of metabolism, stress responses, genome stability, and ageing [625]. Sirtuins possess 

protein deacetylase activity and were classified as class III histone deacetylases (HDAC); therefore they 

are implicated in gene silencing. Since their activity is dependent on the cofactor NAD+, these enzymes 

are quite sensitive to metabolic and redox changes. Sirt1 is the most evolutionarily conserved 

mammalian sirtuin and has been the most intensively investigated in the cardiovascular system [249]. 

Cardiac deficiency of Sirt1 was described to result in dilated cardiomyopathy and mitochondrial 

dysfunction [626, 627]. It has been shown that increased ROS formation exerts differential effects on 

Sirt1 activity and expression. For instance, oxidative stress is associated with intracellular NAD+ depletion 

and therefore impaired Sirt1 function [247, 628, 629]. Furthermore, oxidative stress decreased Sirt1 

levels or activity in models of doxorubicin-induced cardiotoxicity, oxidant stress-induced diabetic 

retinopathy, myocardial infarction, stroke or in a setting of metabolic syndrome [125, 630]. In contrast, 

Sirt1 expression was found to be increased in response to ROS, dependent on ROS-induced HIF1α 

up-regulation, in models of cardiac hypertrophy, heart failure and in aged hearts, probably as a 

compensatory reaction [249]. It seems that there is an essential crosstalk between oxidative stress and 

Sirt1 expression dependent on the levels of ROS, the cell type and the stimulatory context. In a context-

dependent manner, these factors can control reciprocally each other’s functional activities, directly or 

via an integrated signaling network [248]. Hence, disturbing the optimal signaling balance between the 

level of ROS production and Sirt1 activity ultimately leads to disease. 
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Here, Sirt1 expression was down-regulated in doxorubicin induced cardiomyocyte injury, accompanied 

by elevated oxidative stress and cell apoptosis. These results coincide with data by Ruan et al., who also 

reported reduced Sirt1 levels upon doxorubicin exposure in cultured primary neonatal rat ventricular 

myocytes [630]. Moreover, they showed that induction of Sirt1 overexpression protected 

cardiomyocytes from oxidative stress and apoptosis by disrupting the p38 MAPK apoptotic pathway, thus 

ameliorating doxorubicin-induced cardiotoxicity. 

A ~110 kDa band was observed additionally in the present study, which was proposed by several 

antibody providers to appear due to Sirt1 glycosylation. Han et al. demonstrated in 2017 that 

O-GlcNAcylation of Sirt1 enhances its deacetylase activity and promotes cytoprotection under stress, 

thereby preventing stress-induced apoptosis [453]. This could explain why only extremely low levels of 

glycosylated Sirt1 were observed in the apoptotic fraction of doxorubicin-treated H9c2 cells. In the 

surviving cells and control cells, glycosylation was clearly existent and was increased in the surviving 

1 µM doxorubicin-treated cells, most likely as protection from apoptosis. Nonetheless, it is unclear why it 

was not elevated in the cells treated with 5 µM doxorubicin as well. Furthermore, high levels of a 95 kDa 

Sirt1 band were detected in apoptotic cells, which probably represents a SIRT1-ΔExon8 isoform that has 

been reported by Lynch et al. [454]. They found that this isoform retains minimal deacetylase activity 

and exhibits distinct stress sensitivity, attributed to the stress sensor p53’s ability to influence Sirt1 splice 

variation. In turn, SIRT1-ΔExon8 can regulate p53 through acetylation creating an auto-regulatory loop. 

The existence of alternative Sirt1 isoforms with distinct characteristics provides insight into the complex 

role of Sirt1 and may provide an explanation for previously observed conflicting results. In fact, reported 

functions attributed to Sirt1 may be distributed between Sirt1 isoforms [454, 631]. 

Resveratrol, a natural polyphenolic compound mainly found in grapes, has been shown to significantly 

increase Sirt1 activity through an allosteric interaction, resulting in the increase of Sirt1 affinity for both 

NAD+ and the acetylated substrate [632]. It is known that resveratrol exhibits numerous protective 

features; amongst other effects it can reduce the risk of metabolic and cardiovascular diseases and 

protect cardiomyocytes from apoptosis [627, 633, 634]. In fact, it has specifically been reported that 

resveratrol protects cardiomyocytes against doxorubicin-induced apoptosis and therefore cardiac 

toxicity in vitro and in vivo [630, 634-638]. In accordance with the observation that Sirt1 expression was 

decreased following doxorubicin treatment accompanied by increased cardiomyocyte apoptosis, Sirt1 

activation by resveratrol prevented these adverse events and thereby protected cardiac cells against 

doxorubicin-induced injuries. A reason for this is that Sirt1 up-regulation results in increased p53 

deacetylation and therefore reduced p53-mediated cardiomyocyte apoptosis by transcription-dependent 
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and -independent mechanisms [638]. Moreover, Sirt1-mediated ER homeostasis was rescued by 

resveratrol, counteracting the doxorubicin-induced ER stress response [636]. Additionally, resveratrol’s 

beneficial effects are associated with mitochondrial stabilization through increased antioxidant defense 

and activation of PGC-1α, a regulator of mitochondrial biogenesis [627, 633, 635]. 

Collectively, the histone deacetylase Sirt1 may serve as a potential therapeutic target for doxorubicin-

induced cardiomyopathy, while the Sirt1 agonist resveratrol emerges as a promising candidate for early 

treatment to prevent cardiac injury by doxorubicin therapy.  

6.5.1.2 Effect of doxorubicin-induced cardiotoxicity on HDAC2 expression in H9c2 cells 

Another prominent histone deacetylase that was analyzed in the context of doxorubicin-induced 

cardiomyopathy was HDAC2, which belongs to class I of the mammalian HDAC family. Studies in mice 

and cultured cardiomyocytes have identified both class I and class II HDACs as key regulators of cardiac 

growth and disease [639]. While class II HDACs have been described to repress hypertrophy, class I 

HDAC2 was found to be a pro-hypertrophic mediator [174, 640, 641]. Kee et al. demonstrated that 

HDAC2 enzyme activity increased in response to hypertrophic stimuli [640]. Moreover, it was shown by 

Trivedi et al. that genetic disruption of HDAC2 resulted in resistance against hypertrophic stimuli, 

whereas gain-of-function of HDAC2 induced cardiac hypertrophy significantly [174]. In a murine model of 

doxorubicin-induced cardiomyopathy, chronic treatment with low-dose doxorubicin caused specific 

changes in the transcriptional profile of several histone deacetylases [455]. Specifically, doxorubicin 

treatment induced significant down-regulation of HDAC2 mRNA and protein levels, while HDAC4 and 

HDAC5, anti-hypertrophic class II HDACs, were up-regulated, probably as a coping mechanism 

counteracting cardiomyopathy. Concerning the relation between oxidative stress and HDAC2, it has been 

shown that ROS decrease HDAC2 activity and expression through generating post-translational 

modifications (PTMs), which impair enzymatic function and can result in proteasomal degradation [128, 

243]. While inhibition of HDAC2 enzyme activity through PTMs was reported to result in amplified 

inflammation [242, 243], other studies have demonstrated that class I-selective HDAC inhibitors can 

efficiently reduce cardiac hypertrophy under pathological conditions [641, 642]. Therefore, the role of 

HDAC2 function/inhibition in cardiomyopathy with regards to oxidative stress may be regarded as 

controversial. 

In the present study, HDAC2 expression was found to be decreased in cardiomyocytes upon low-dose 

(1 µM) doxorubicin treatment, in consistence with the previously mentioned observations in a murine 

model of doxorubicin-induced cardiomyopathy. Apoptotic cells also exhibited significantly reduced 
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HDAC2 levels. Surprisingly, a higher dose (5 µM) of doxorubicin did not show an effect on the expression 

of HDAC2 in surviving cells; however, the impact on HDAC2 activity, which could contribute to changes in 

expression levels, was not determined. An additional band observed at 50 kDa could be attributed to a 

potential ~52 kDa HDAC2 isoform (UniProt [29]), or to undesired antibody-recognition of HDAC3 at 

49 kDa due to sequence homology between HDAC2 and HDAC3 (both are class I HDACs) [158]. 

Nonetheless, the reason for the substantial increase of the 50 kDa band levels in apoptotic cells remains 

unclear, since the role of the HDAC2 isoform has not been described in detail yet, and HDAC3 is 

supposed to exert similar effects as HDAC2 upon cardiomyopathy or oxidative stress. The additional 

band could also represent a degradation product of HDAC2 due to increased proteolysis in apoptosis, 

though it is questionable if this would result in the detection of such a precisely sized band and not a 

degradation ladder. 

HDAC2 presents itself as an interesting therapeutic target in the prevention of cardiac disorders and 

heart failure, since studies in small animal models have shown that inhibitors of class I HDACs can blunt 

cardiac hypertrophy and preserve cardiac function [643]. Nevertheless, further research including larger 

animal studies and the use of more realistic models will be necessary before the efficacy of these 

compounds can be assessed in clinical trials. 

6.5.1.3 Effect of doxorubicin-induced cardiotoxicity on KDM3A expression in H9c2 cells 

In human and rodent failing hearts, differential histone methylation patterns have been observed in 

various gene clusters [270, 274, 280]. Maintaining histone methylation balance was shown to play a key 

role in heart development and the pathogenesis of congenital heart defects and adult cardiovascular 

diseases [644]. During the process of pathological hypertrophy, adult differentiated cardiomyocytes 

undergo epigenetic cardiac remodeling, where the expression of fetal genes, such as atrial natriuretic 

peptide (ANP) and brain natriuretic peptide (BNP), is reactivated [645]. This reprogramming of fetal 

genes has been proposed as a cardioprotective response, aimed at increasing cardiac efficiency under 

conditions of stress, and was found to be closely associated with increased H3K9 demethylation. 

Specifically, it has been demonstrated that H3K9me2/3 levels were decreased in promoter regions of 

disease-specific genes, including ANP and BNP, in human failing myocardium and in mouse 

cardiomyocytes in response to hypertrophic stresses. Elevated H3K9 demethylation correlated inversely 

with up-regulated global levels of Jumonji demethylases KDM3A, KDM4A and KDM4B [459, 646]. In 

agreement with the described findings, the data in the present study also show a clear increase of 

KDM3A expression in H9c2 cardiomyocytes upon doxorubicin-induced cardiomyopathy. Levels of KDM3A 

increased dependent on doxorubicin concentration and were considerably higher in their respective 
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apoptotic fraction. This may be caused by more elevated ROS levels in the apoptotic cells. The JmjC 

histone lysine demethylases are Fe(II)-dependent dioxygenases and use 2-oxoglutarate and oxygen as 

cosubstrates for oxidative demethylation. Therefore KDMs are fairly sensitive to redox metabolism. In 

fact, H2O2 or •NO have been shown to disrupt KDM activity [124, 217]. Moreover, ROS, •NO and hypoxia 

were shown to upregulate the expression of several KDMs [217, 251, 647]. Hence, quenched KDM 

activity in response to hypoxia or ROS might lead to a compensatory increase in KDM expression as a 

counteracting mechanism.  

In addition, possible KDM3A dimer formation was observed. It has previously been reported that KDM3A 

forms a homodimer through its catalytic domain to enable the effective execution of two-step 

demethylation of dimethylated H3K9 into the null methylation state [460]. Decrease of dimer detection 

and complete abolishment in apoptotic cells may be due to oxidative modifications at the catalytic site, 

which might hinder dimerization. Nevertheless, it should be mentioned that it is odd to detect these 

dimers under denaturing, reducing conditions, which were applied here, and therefore the bands may 

stem from a different source. 

To summarize, upregulation of JmjC KDMs may sustain H3K9 demethylation in the course of heart failure 

and further investigation of the underlying pathways may help to identify novel targets to improve the 

treatment of cardiovascular diseases, since impaired methylation balance has been described as an 

important factor inducing cardiac defects.  

6.5.1.4 Effect of doxorubicin-induced cardiotoxicity on LSD1 expression in H9c2 cells 

Adding to this subject, it has also been shown that appropriate H3K4me3 level is critical to maintain 

cellular homeostasis in differentiated cardiac cells [648]. While KDM3A specifically demethylates Lys-9 of 

histone H3, the FAD-dependent histone lysine demethylase LSD1 can remove both H3K4 and H3K9 lysine 

methyl residues, dependent on the biological context. LSD1 has been found to be implicated in 

cardiovascular diseases such as hypertension or diabetes [125, 346, 461]. For instance, it has been 

reported that in mice during high-salt diet, LSD1 deficiency led to enhanced vascular contraction, 

reduced expression of cardiac and vascular eNOS and guanylate cyclase, thereby disturbing the 

•NO/cGMP relaxation pathway, causing hypertension [649]. Furthermore, LSD1 is associated with the 

regulation of cellular energy metabolism through coupling with cellular FAD biosynthesis [43]. As 

aberrant cellular energy metabolism is associated with a wide range of metabolic diseases, including 

diabetes, cardiovascular diseases and cancer, the crosstalk between epigenetic regulators and metabolic 

state provides an interesting field for investigation. Here, global LSD1 levels were investigated upon 
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cardiotoxic incentive. However, no substantial changes in LSD1 expression were observed at 24 h of 

doxorubicin exposure. Interestingly, controversial results were obtained at 48 h post doxorubicin 

treatment, since LSD1 levels were significantly decreased compared to control in all groups, but were 

visibly more reduced in cells treated with the lower dose of doxorubicin. Possibly, the stark decrease of 

LSD1 expression may have caused a conversion to a compensatory increase in expression levels at a 

certain point in cells treated with the higher dose. Nevertheless, the exact role of LSD1 in 

cardiomyopathy remains to be investigated in order to elucidate which underlying pathways are affected 

and how histone methylation balance is disrupted due to altered LSD1 function and expression. 

6.5.1.5 Effect of doxorubicin-induced cardiotoxicity on Set7 expression in H9c2 cells 

The histone methylation status can also be modified through the action of histone methyltransferases, 

such as Set7 or SMYD1. Set7, which specifically monomethylates lysine 4 of histone H3, has been shown 

to play a key role in diabetic vascular complications [463, 650]. Specifically, Set7 has been proposed as a 

critical mediator of hyperglycemic memory, a phenomenon where epigenetic changes in vascular gene 

expression in response to hyperglycemia are sustained even after return to normoglycemia, which may 

ultimately cause vascular dysfunction [462, 651]. Furthermore, Set7 induces pro-inflammatory responses 

through NFκB transcription activation and subsequent upregulation of cytokine production, and 

regulates mitochondrial function and ROS signaling partly via repression of antioxidant genes, indicating 

that Set7 itself contributes to ROS formation [194, 354, 652]. In a recent study from 2018, Dang et al. 

showed that Set7 expression was significantly up-regulated in rat cardiomyocytes in response to 

hypoxia/reoxygenation (H/R) injury [653]. Moreover, they demonstrated that forced overexpression of 

Set7 markedly enhanced H/R-induced apoptosis and ROS production, whereas Set7 knockdown or 

inhibition decreased ROS generation via promotion of the Nrf2-mediated antioxidant response and 

protected cells from apoptosis. In contrast, knockdown of Set7 has been associated with increased 

sensitivity to DNA damage and genotoxic stress elicited by doxorubicin in cancer cells, thus rendering 

these cells more susceptible to apoptosis [654]. Set7 deficient cells displayed altered expression of a 

number of genes involved in DNA damage signaling and repair, cell cycle checkpoints, and apoptosis. 

Set7 may also be directly implicated in apoptosis regulation through methylation of the apoptosis 

inducing factor p53 [655]. Here, Set7 expression was clearly upregulated in response to 5 µM 

doxorubicin-induced cardiomyopathy, which constitutes an expectable result given Set7’s role in 

inflammation and ROS signaling. However, the Set7 expression patterns in the Dox-treated apoptotic 

cells are more difficult to comprehend. The diverse outcome of expression levels may be attributed to a 

highly dynamic response to pathological stimuli or the uncertain implication of Set7 in the complex 
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processes of apoptotic cell death. In addition, evidence points to Set7 being an effector of ROS formation 

itself; in turn however, under conditions of oxidative stress the cofactor for HMTs, S-adenosylmethionine 

(SAM), is reduced, restricting Set7 methylation activity as described in the Introduction (1.5, p.34). Thus, 

the role of Set7 in cardiac disease and associated oxidative stress and apoptosis will have to be further 

investigated.  

6.5.1.6 Effect of doxorubicin-induced cardiotoxicity on SMYD1 expression in H9c2 cells 

The muscle-specific histone methyltransferase SMYD1 plays an essential role in cardiac differentiation 

and morphogenesis [198, 464]. Defects or deletions in the gene encoding SMYD1 lead to retarded 

maturation of ventricular cardiomyocytes during cardiac development, causing fetal mortality [198]. In 

adult mice inducible cardiac-specific deletion of SMYD1 was shown to cause hypertrophy, organ 

remodeling and heart failure; thus it was proposed that SMYD1 expression or activation is responsible 

for restricting pathological cell growth in the adult heart and that constitutive SMYD1 activity is essential 

for normal heart function [465]. Correspondingly, upregulation of SMYD1 has been observed during 

disease in order to antagonize cardiac complications in a mouse model of pressure overload-induced 

hypertrophy and in diseased human heart [465, 466, 656]. It was suggested that an essential role of 

SMYD1 in the adult heart is to regulate mitochondrial metabolism. Loss of SMYD1 has been 

demonstrated to result in significant reduction in mitochondrial respiration capacity, in concordance 

with the down-regulation of OXPHOS proteins and PGC-1α [466]. In line with this, it was shown that the 

redox regulator and antioxidant protein Trx1 significantly promoted the expression of SMYD1, 2, 3 and 5 

[657]. In the present study, expression patterns of SMYD1 are quite inconsistent, also because of 

deviations between single experiments. The expected up-regulation of SMYD1 was only observed at 48 h 

in 5 µM doxorubicin-treated pre-apoptotic cells and, in some cases, in apoptotic cells treated with 1 µM 

doxorubicin at 24h. The reduction in SMYD1 levels in apoptotic 5 µM doxorubicin-treated cells is 

probably the cause for cell death due to adverse effects in response to SMYD1 loss. There seems to be a 

dynamic interplay between compensatory upregulation of SMYD1 granting cardiomyocyte protection, 

and cell death due to insufficient SMYD1 expression and disrupted mitochondrial regulation. 

SMYD1 can act as a transcriptional activator by performing mono-, di-, and trimethylation on lysine 4 of 

histone 3. In contrast, SMYD1 can recruit and interact with the histone deacetylases HDAC1, HDAC2 and 

HDAC3 and, through this interaction, functions as a histone deacetylase-dependent transcriptional 

repressor [198]. Interestingly, the pre-apoptotic doxorubicin-treated cells present a similar expression 

pattern of SMYD1 and HDAC2, where both enzymes are reduced at 1 µM doxorubicin, but unchanged or 
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even slightly increased at 5 µM doxorubicin. However, the relevance of this observation will have to be 

further elucidated. 

In general, it is also noteworthy that histone methyltransferases (HMTs) require S-adenosyl methionine 

(SAM) as a cofactor, the availability of which is affected by ROS production. Increased oxidative stress 

reduces SAM levels, thereby leading to decreased activity of HMTs [125]. Impaired function of HMTs may 

also be responsible for compensatory increases in HMT expression levels. Interestingly, it has been 

shown previously that co-administration of SAM decreased doxorubicin-induced cardiotoxicity in rats 

[658]. 

All in all, histone modifying enzymes have been shown to play all kinds of roles in cardiac pathologies 

and therefore provide interesting therapeutic targets opening new avenues to the treatment of cardiac 

diseases. 

6.5.1.7 ROS-induced modifications on histone modulators  

In addition to changes in expression patterns of epigenetic modulators in response to various signaling 

pathways, the concomitant increase in ROS formation during doxorubicin-induced cardiomyopathy may 

also have a crucial effect on expression and activity of epigenetic regulators due to the introduction of 

physical redox modifications by free radicals on these enzymes. For instance, sirtuins possess a highly 

conserved zinc tetra-thiolate motif within their catalytic pocket, which is required for their deacetylase 

activity along with the cofactor NAD+. There is broad evidence that ROS/RNS can inhibit Sirt1 deacetylase 

function through inducing cysteine S-nitros(yl)ation, S-glutathionylation or carbonylation at the active 

site [240, 246, 452, 659-661]. Similarly, Sirt3 has been shown to be carbonylated and inactivated by 

4-HNE [662]. Class I HDACs, on the other hand, use a different deacetylation mechanism requiring Zn2+ 

ions as cofactors, but have also been shown to be highly prone to ROS-induced post-translational 

modifications, with the prime target being their conserved, surface-exposed cysteine residues [243]. 

S-glutathionylation, S-nitros(yl)ation, tyrosine nitration, acetylation and phosphorylation of class I HDACs 

have all been reported in oxidative stress related diseases [128, 242-244, 641, 660, 663]. Generally, these 

modifications are associated with decreased HDAC activity or impaired target binding. In addition, it has 

been demonstrated that class I HDACs are alkylated and inhibited by several reactive aldehydes, as 

repeatedly observed in models of COPD [239, 243, 664]. In this respect, it was also suggested that 

inhibition of HDACs by ROS might be a physiological response in order to protect cells from oxidative 

stress-mediated dysregulation [36]. 
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Furthermore, JmjC demethylases can be inhibited by nitrosative stress. It has been shown that KDM3A 

activity is disrupted by NO through directly binding to Fe(II) forming a nitrosyl-iron complex in the 

catalytic pocket, ultimately leading to an increase of H3K9me2 [217]. 

Direct oxidative modification in response to ROS exposure was not yet reported for the histone 

demethylase LSD1 or the histone methyltransferases Set7 or SMYD1. However, it was shown very 

recently that SMYD2 is susceptible to S-glutathionylation in response to ROS, resulting in decreased 

myofibril integrity  [665]. 

In the present study, the addressed epigenetic modulators were investigated for the presence of redox 

modifications via immunoprecipitation with 3-NT, 4-HNE and MDA antibodies. Unfortunately, analyses 

failed due to technical difficulties and lack of time. 

6.5.1.8 Effects of doxorubicin-induced cardiotoxicity on histones/ histone marks  

Naturally, effects of doxorubicin-induced cardiomyopathy on expression or activity of chromatin 

modifiers affect histone modulation. Animal models of heart failure have revealed that cardiomyocytes 

of failing hearts showed changes in epigenetic profiles of H3K4 and H3K9 methylation marks that may be 

attributable to ROS-induced changes in histone demethylase activity [134, 270, 274, 646, 648]. This has 

also been observed in humans with heart failure [270, 274, 280, 666]. Of note, however, those 

differential methylation markings referred to global alterations of H3K4me3 and H3K9me3 levels at 

specific promoters of genes involved in cardiac function, but there were no global changes in the overall 

extent of histone methylation levels.  

Decreased overall global levels of H3Ac have been repeatedly reported in several types of cancers, 

highlighting the importance of further exploring HDAC inhibitors as potential therapeutic application 

[667-670]. There has, so far, been no report of overall genome-wide changes in H3Ac levels in 

cardiomyopathy; however there is lots of data concerning altered histone acetylation levels at certain 

gene promoters implicated in cardiac function and inflammation due to dysregulation of HATs and 

HDACs [671]. For instance, suppression of anti-hypertrophic regulator genes through decreased histone 

acetylation due to upregulation of class I HDACs may induce cardiac hypertrophy [640]. Here, a gradual 

decline in global H3Ac levels was observed depending on doxorubicin concentration and cell viability 

status. It is questionable, if the decrease in H3Ac levels can be attributed to the presently analyzed 

HDACs, Sirt1 and HDAC2, since there was no obvious increase in expression and there was no 

investigation of activity. The results may be based on the activity of other histone deacetylases or an 

unbalanced interplay of HATs and HDACs. It remains to be investigated if such effects on histone 
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acetylation may also be observed in vivo in models of doxorubicin-induced cardiomyopathy and to 

unravel the implications of these results for cardiac pathogenesis. 

Interestingly, it has also been reported that histones are increasingly evicted from chromatin in response 

to doxorubicin treatment, deregulating the DNA damage response, the epigenome and transcriptome 

[672]. It may be possible that oxidative stress implied in doxorubicin toxicity may exert direct effects on 

histones (without involvement of histone modifying enzymes), resulting in histone glutathionylation, 

carbonylation, nitration or even dityrosine cross-linking (as discussed in 6.3). 

Further studies will be necessary to provide a reliable basis for the evaluation of histone modification 

patterns in patients with cardiovascular related diseases in order to prove clinical benefits of the use of 

epigenetic drugs. Targeting specific chromatin remodeling factors and histone modifiers may represent a 

promising strategy for the prevention or treatment of some cardiac complications. Aside from that, it 

seems obvious to develop antioxidant drugs to counteract the consequences of high ROS levels in 

disease; however, antioxidants have already been widely tested as a treatment for neurodegenerative 

diseases, CVDs and cancer, yielding contradictory results, ranging from improvement of the disease to 

accelerated progression [673-677]. In the case of anti-cancer therapy antioxidants may also have the 

undesired side-effect to suppress the anti-tumorigenic properties of drugs such as doxorubicin. 

Furthermore, one has to take into consideration that ROS have both protective and damaging effects on 

cells, hence it may be essential to only target distinct parts of the ROS-dependent response. A 

comprehensive understanding of the interplay of ROS and epigenetic mechanisms in cardiovascular 

related diseases may lead to the development of novel and targeted treatment options, generating the 

potential to improve the quality of life of millions of CVD patients worldwide. 

 Confidence and accuracy of Western blot analyses 6.6

Western blotting (WB) is one of the most commonly used laboratory techniques for identifying and 

characterizing proteins even in a crude mixture. The ability of immunoblots to detect a “needle in a 

haystack” has been considered a critical tool in many areas of biological research, being applied in 

protein expression studies, antibody screening or clinical immunodiagnostics. Initially, the Western blot 

technique was only regarded as a tool for qualitative, not quantitative, analyses of proteins due to the 

high possibility of disparities in execution between investigators; nonetheless, with increasingly refined 

WB methodology and equipment at hand, WB is nowadays widely used to quantitate protein abundance 

[678]. Still, the confidence and accuracy of quantitative Western blot analyses are more and more being 

questioned. The key strategies to ensure precise and reproducible WB results include proper sample 
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integrity and preparation, confirming antibody specificity, validating the linear range of the detection 

system, preventing signal saturation, and selecting the best normalization method implementing 

acceptable loading controls [679, 680]. Normalization to the total quantity of loaded protein is a crucial 

element in accurately quantifying protein expression. Currently, housekeeping proteins (HKPs) like actin, 

tubulin or GAPDH are commonly used to check for equal loading or to compensate potential loading 

differences. However, these proteins are usually of high abundance creating the problem that they are 

rarely in the same linear detection range as the target protein of interest [681, 682]. Furthermore, it has 

been demonstrated that HKP levels can actually vary under certain experimental conditions [683, 684]. 

Moreover, HKPs may often be post-translationally modified, which can also potentially affect 

quantification [679]. 

Taking these findings into account, protein expression measured by WB analyses was normalized to two 

different HKPs where possible in this study. Similarly, dot blot results were always normalized to total 

protein loading as displayed via Ponceau staining of the blot. In this context, it is being argued lately that 

also in Western blot total protein staining generally represents a superior loading control due to minor 

technical and biological variation compared to HKP expression [685, 686]. There are now increasing 

numbers of kits marketed for the purpose of staining gels or blots to check loading [680]. 

To be completely safe, it may be of advantage to always expand WB analyses by additionally performing 

quantitative PCR assays in order to get clearer results. These methods nicely complement each other. 

Whereas qPCR measurement of mRNA levels is highly specific, it cannot assess alternate appearance of 

proteins, such as in response to alternative splicing, degradation or post-translational modifications. WB 

analysis, in turn, may be able to display such changes depending on the antibody epitope. 

Unfortunately, in the present study it was not possible to perform PCR analyses for the detection of 

expression levels in the model of doxorubicin-induced cardiotoxicity in H9c2 cells due to lack of time and 

financial reasons.  
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 Summary 7

Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and 

the neutralization of these species by antioxidant systems, leading to a disruption of redox signaling, 

oxidative damage and potential pathological consequences, including cardiovascular complications. 

There is a growing body of evidence that ROS influence epigenetic pathways by affecting the function or 

levels of epigenetic modulators, such as histone modifying enzymes. Since epigenetic modifications are 

increasingly recognized as major players in cardiovascular disease development and progression, 

investigation of the interplay between redox signaling and epigenetic regulation is of particular interest 

in this context.  

A readout assay for the detection of protein S-nitros(yl)ation, a redox modification, was established using 

an approach consisting of light-induced homolysis of nitros(yl)ated proteins and subsequent  immuno-

spin trapping of generated protein radicals via 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and a respective 

antibody.  

In order to investigate ROS-induced epigenetic changes, a suitable model system with elevated ROS 

formation had to be established. Culturing endothelial cells under hyperglycemic conditions is known to 

generate increased oxidative stress. However, no substantial effects on ROS formation and histone 

methylation and acetylation patterns could be observed in the endothelial cell line EA.hy926 upon 

hyperglycemia, possibly due to a systematical technical error that, however, could not be identified 

despite multiple methodological variations.  

In mice deficient in the antioxidant protein glutathione peroxidase-1 (GPx-1) endothelial dysfunction and 

enhanced ROS levels have been reported previously, an effect that was further potentiated by aging. 

Epigenetic analysis of this model led to the hypothesis of potential dityrosine cross-linking between 

histone 3 and histone 4 accompanied by enhanced histone 3 lysine 9 dimethylation upon increased 

oxidative stress. However, upon further investigation by mass spectrometry and exclusion of antibody 

cross-reactivity to IgGs in the animal samples this assumption was revealed to be false.  

In a published study by our group it was demonstrated that empagliflozin, a selective sodium-glucose 

co-transporter 2 inhibitor (SGLT2i), reduced glucotoxicity and thereby prevented the development of 

endothelial dysfunction, reduced oxidative stress and exhibited anti-inflammatory effects in ZDF rats, an 

animal model for type 2 diabetes mellitus (T2DM). Investigation of involved epigenetic mechanisms by 

chromatin immunoprecipitation (ChIP) analysis revealed an effect of empagliflozin treatment on 
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expression of glucotoxicity- and inflammation-markers in diabetic animals via altered histone 

methylation patterns. 

Finally, the interplay of increased ROS formation and epigenetic alterations was studied in H9c2 

cardiomyocytes with a doxorubicin-induced cardiotoxic phenotype. It was discovered that doxorubicin 

treatment affected the expression of certain epigenetic modulators in correlation with increased 

oxidative stress markers. Given that epigenetic changes are reversible, they represent potential 

intervention targets as well as biomarkers that can be addressed for drug discovery. Thus, establishing a 

comprehensive understanding of the interplay of ROS and epigenetic mechanisms in cardiovascular 

related diseases may lead to the development of novel and precisely targeted treatment options. 

 Zusammenfassung 8

Der Ausdruck „oxidativer Stress“ bezeichnet ein Ungleichgewicht zwischen der Entstehung freier 

reaktiver Sauerstoffradikale (ROS) und deren Neutralisierung durch anti-oxidative Mechanismen. 

Oxidativer Stress führt zur Beeinträchtigung der zellulären Redox-Regulation, Entstehung oxidativer 

Schädigungen und letztendlich zu möglichen pathologischen Konsequenzen, wie z.B. kardiovaskulären 

Erkrankungen. Immer mehr Forschungsresultate deuten darauf hin, dass ROS epigenetische Prozesse 

beeinflussen, indem sie die Funktion oder Konzentration epigenetischer Modulatoren, wie z.B. Histon-

Modifikatoren, verändern. Da epigenetische Modifikationen zunehmend mit der Entwicklung und dem 

Fortschreiten kardiovaskulärer Erkrankungen in Verbindung gebracht werden, ist es von großem 

Interesse das Zusammenspiel von Redox-Signalwegen und epigenetischer Regulierung vor diesem 

Hintergrund zu untersuchen.  

In dieser Arbeit wurde zunächst ein Testverfahren zur Detektion von Protein S-Nitros(yl)ierung, einer 

Redox-Modifikation, erstellt. Dieses beinhaltete die Licht-induzierte Homolyse der nitros(yl)ierten 

Proteine, Immuno-Spin Trapping der entstehenden Radikale mithilfe von 5,5-Dimethyl-1-pyrroline N-oxid 

(DMPO) und Detektion durch einen entsprechenden Antikörper. 

Um ROS-induzierte epigenetische Veränderungen zu untersuchen, musste ein geeignetes Modellsystem 

etabliert werden, welches erhöhten oxidativen Stress aufweist. Es ist bekannt, dass Endothelzellen bei 

Kultivierung mit erhöhter Glukose-Konzentration vermehrt ROS bilden. Dennoch konnten gegenwärtig in 

diesem Modell keine erheblichen Effekte auf die ROS-Bildung und Histon-Modifikationen festgestellt 

werden, was möglicherweise auf ein systematisches methodologisches Problem zurückzuführen ist, das 

trotz intensiver Variation der Versuchsbedingungen nicht identifiziert werden konnte.  



  Zusammenfassung 

 
159 

 

In einer vorherigen Studie wurde in Mäusen mit Knock-out des anti-oxidativen Enzyms 

Glutathionperoxidase-1 (GPx-1) eine endotheliale Dysfunktion und erhöhter oxidativer Stress 

verzeichnet, wobei dieser Effekt bei höherem Alter verstärkt war. Epigenetische Analysen dieses Modells 

führten zu der Hypothese, dass bei hohem oxidativen Stress Dityrosin-Brücken (=kovalente Bindungen) 

zwischen Histon 3 und Histon 4 gebildet werden, zusammen mit verstärkter Dimethylierung von Lysin 9 

an Histon 3 (H3K9me2). Allerdings stellte sich bei weiteren Untersuchungen mittels 

Massenspektrometrie und Verwendung von Sekundärantikörpern mit garantierter Abwesenheit von 

Kreuzreaktivitäten gegenüber den IgGs der Tierproben heraus, dass diese Annahme falsch war.  

In einer von uns publizierten Studie wurde gezeigt, dass Empagliflozin, ein selektiver Inhibitor des 

Natrium-Glukose Cotransporters 2, die Glukotoxizität in ZDF Ratten, einem Modell für Typ 2 Diabetes 

Mellitus, verminderte und dadurch sowohl die Entwicklung einer endothelialen Dysfunktion verhinderte, 

als auch oxidativen Stress verringerte und anti-entzündlich wirkte. Die Charakterisierung involvierter 

epigenetischer Mechanismen mittels Chromatin-Immunopräzipitation (ChIP)-basierter Analyse zeigte 

einen Effekt von Empagliflozin auf die Expression bestimmter Glukotoxizitäts- und Entzündungsmarker in 

diabetischen Tieren durch veränderte Histon-Methylierungsmuster. 

Abschließend wurde das Zusammenspiel von ROS-Entstehung und epigenetischen Veränderungen in 

H9c2 Kardiomyozyten unter Bedingungen von Doxorubicin-induziertem Kardiotoxizitätsphänotyp 

analysiert. Dabei wurde festgestellt, dass die Doxorubicin-Behandlung in Korrelation mit erhöhtem 

oxidativen Stress die Expression bestimmter epigenetischer Modulatoren beeinflusste. Da epigenetische 

Veränderungen reversibel sind, stellen sie potenzielle Angriffspunkte zur therapeutischen Intervention 

dar und könnten auch als Biomarker pathologischer Prozesse fungieren. Daher ist ein umfassendes 

Verständnis des Zusammenwirkens von ROS und epigenetischer Mechanismen in kardiovaskulären 

Erkrankungen von großem Wert für die Entwicklung neuer und gezielter Behandlungsmöglichkeiten.  
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 Appendix 10

Abbreviations 

•NO Nitric oxide 
•O2

- Superoxide anion radical 
2-HE 2-hydroxyethidium 
2-OG 2-oxoglutarate (α-ketoglutarate) 
3-NT 3-nitrotyrosine 
4-HNE 4-hydroxynonenal 
5’-UTR 5’-untranslated region 
5caC 5-carboxylcytosine  
5fC 5-formylcytosine  
5hmC 5-hydroxymethylcytosine  
5mC 5-methylcytosine 
8-oxodG 8-oxo-2’-deoxyguanosine 
ACE Angiotensin-converting enzyme 
Acetyl-CoA Acetyl-Coenzyme A 
ADMA Asymmetric dimethylarginine 
AGE Advanced glycation end products 
ALDH Aldehyde dehydrogenase 
ANP Atrial natriuretic peptide 
APS Ammonium persulfate 
ATP Adenosine triphosphate 
Bcl-2 B-cell lymphoma 2 
BER Base excision repair 
BH4 (6R-)5,6,7,8-tetrahydrobiopterin 
BNP Brain natriuretic peptide 
bp Base pair 
BSA Bovine serum albumin 
CaM Calmodulin 
CAT Catalase 
cGMP Cyclic guanosine monophosphate 
CHF Congestive heart failure 
ChIP Chromatin immunoprecipitation 
COX Cyclooxygenase 
CpG Cytosine-guanosine dinucleotide (5'-C-phosphate-G-3') 
CRP C-reactive protein 
Ct Cycle threshold 
Ctrl Control 
Cu Copper 
CuSO4 Copper sulfate 
CVD Cardiovascular disease 
CYP450 Cytochrome P450 
DAG Diacylglycerol 
DEANO Diethylamine NONOate 
DETANO Diethylenetriamine NONOate 
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DHAP Dihydroxyacetone phosphate 
DHE Dihydroethidium 
DHFR Dihydrofolate reductase 
DM Diabetes mellitus 
DMEM Dulbecco's modified Eagle's medium  
DMP Dimethyl pimelimidate 
DMPO 5,5-Dimethyl-1-Pyrroline N-Oxide 
DNA Deoxyribonucleic acid 
DNMT DNA methyltransferase 
DOPA 3,4-dihydroxyphenylalanine 
DOT1-L Disruptor of telomeric silencing 1-like 
Dox Doxorubicin 
DPP-4 Dipeptidyl peptidase-4 
DSB DNA double-strand break 
dsDNA Double strand DNA 
DT Dityrosine 
DTT Dithiothreitol 
Duox Dual oxidase 
E+ Ethidium 
EC Extracellular 
ECE-1 Endothelin-converting enzyme 
ECL Enhanced chemiluminescence 
ECM Extracellular matrix 
EDRF Endothelium-derived relaxing factor 
EDTA Ethylene diamine tetraacetic acid 
EGTA Ethylene glycol tetraacetic acid 
EMPA Empagliflozin 
eNOS Endothelial nitric oxide synthase (type 3) 
EPR Electron paramagnetic resonance 
ER Endoplasmatic reticulum 
ESR Electron-spin resonance 
ET-1 Endothelin-1 
Ex./Em. Excitation/Emission 
FAD Flavin adenine dinucleotide 
FBS Fetal bovine serum 
FCS Fetal calf serum 
FDA US Food and Drug Administration 
FeSO4 Iron sulfate 
FMN Flavin mononucleotide 
FOXO Forkhead box O 
GAPDH Glyceraldehyde 3-phosphate dehydrogenase 
GCH-1 GTP-cyclohydrolase-1 
GLP-1 Glucagon-like peptide-1 
GPx Glutathione peroxidase 
GR Glutathione reductase 
GSH Glutathione  
GSNO S-nitroso-glutathione 
GSSG Glutathione disulfide 
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GST Glutathione S-transferase 
GTP Guanosine triphosphate 
h Hour 
H/R Hypoxia/reoxygenation 
H2O2 Hydrogen peroxide 
H3/ H4 Histone 3/ Histone 4 
H3Kxmey Histone 3 methylated y-times at lysine x 
HAEC Human aortic endothelial cell 
HAT Histone acetyltransferase 
HCAEC Human coronary artery endothelial cells 
HCl Hydrogen chloride 
HDAC Histone deacetylase 
HG High glucose/ Hyperglycemia 
HGEC Human glomerular endothelial cells 
HKP Housekeeping protein 
HMT Histone methyltransferase 
HMVEC Human dermal microvasculature endothelial cell 
HO-1 Heme oxygenase-1 
HPLC High performance liquid chromatography 
HRP Horse radish peroxidase 
HUVEC Human umbilical vein endothelial cells 
ICDH Isocitrate dehydrogenase 
IFN-γ Interferon-γ 
IgG Immunoglobulin G 
IL-1β Interleukin-1beta 
iNOS (NOS2) Inducible nitric oxide synthase 
IOD Integrated optical density 
IP Immunoprecipitation 
JmjC Jumonji C containing 
JNK c-Jun N-terminal kinase 
kDa Kilodalton 
KDM Lysine (K)-specific histone demethylase 
KMT Lysine (K) methyltransferase 
KNO2 Potassium nitrite 
KO Knock-out 
LG Low glucose 
lncRNA Long non-coding ribonucleic acid 
LOX Lipoxygenase 
LPS Lipopolysaccharide 
LSD Lysine-specific demethylase 
MAPK p38 mitogen-activated protein kinase 
MDA Malondialdehyde 
METC Mitochondrial electron transport chain 
min Minute 
miRNA Micro ribonucleic acid 
Mito-HE 2-hydroxy-mito-ethidium 
Mn Manganese 
mRNA Messenger ribonucleic acid 
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MS Mass spectrometry 
NADH Nicotinamide adenine dinucleotide 
NADPH Nicotinamide adenine dinucleotide phosphate 
NaOH Sodium hydroxide 
ncRNA Non-coding ribonucleic acid 
NER Nucleotide excision repair 
NFkB Nuclear factor kappa-light-chain-enhancer of activated B cells 
NG Normoglycemia 
NMDA N-methyl-D-aspartate 
NMR Nuclear magnetic resonance 
nNOS (NOS1) Neuronal nitric oxide synthase (type 1) 
NO (•NO) Nitric oxide 
NOS1 (nNOS) Neuronal nitric oxide synthase (type 1) 
NOS2 (iNOS) Inducible nitric oxide synthase 
NOS3 (eNOS) Endothelial nitric oxide synthase (type 3) 
NOX NADPH oxidase  
Nrf2 Nuclear factor (erythroid-derived 2)-like 2 
nt nucleotide 
O-GlcNAc O-linked N-acetyl glucosamine 
ONOO- Peroxynitrite 
p.o. Per os (oral administration) 
p38 MAPK p38 mitogen-activated protein kinases 
PAGE Polyacrylamide gel electrophoresis 
PBS Phosphate buffered saline 
PBS-T Phosphate-buffered saline with 0.1% Tween 20 
PCR Polymerase chain reaction 
PenStrep Penicillin-Streptomycin  
PGC-1α Peroxisome proliferator-activated receptor gamma coactivator 1α 
piRNA Piwi-interacting ribonucleic acid 
PKC Protein kinase C 
PON Peroxynitrite 
PRMT Protein arginine methyltransferase 
Prx Peroxiredoxin 
PSNO Protein-S-nitrosothiol 
pThr495 Phosphorylated threonine 495 
PTM Posttranslational modification 
qPCR Quantitative polymerase chain reaction 
RAGE Receptor for advanced glycation end products 
Rel. IOD Relative integrated optical density 
RNA Ribonucleic acid 
RONS Reactive oxygen and nitrogen species 
ROS Reactive oxygen species 
RT Room temperature 
SAH S-adenosyl homocysteine 
SAM S-adenosyl methionine 
SDS Sodium dodecyl sulfate 
SDS-PAGE Sodium dodecyl sulfate – polyacrylamide gel electrophoresis 
SEM Standard error of the mean 
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SET  Suppressor of variegation, enhancer of zeste, trithorax 
Set7 SET Domain-Containing Protein 7 
SGLT2i Sodium-glucose co-transporter 2 inhibitor 
Sin-1 3-Morpholino-sydnonimine 
siRNA Short interfering ribonucleic acid 
Sirt1 Sirtuin 1 
SITA Sitagliptin 
skNAC Skeletal nascent polypeptide-associated complex 
SMC Smooth muscle cell 
SMYD1 SET and MYND domain-containing protein 1 
SN Supernatant 
SNAP S-nitroso-N-acetylpenicillamine 
SNP Sodium nitroprusside 
SNVP S-nitroso-N-valerylpenicillamine 
SOD Superoxide dismutase 
SPENO Spermine-NONOate 
S-S Disulfide bond 
STZ Streptozotocin 
T2DM Type 2 diabetes mellitus 
TBS Tris-buffered saline 
TBS-T Tris-buffered saline with 0.1% Tween 20 
TDG Thymine-DNA glycosylase  
TEA Triethanolamine 
TET Ten eleven translocation  
THF Tetrahydrofolate 
Thr Threonine 
Top2α DNA topoisomerase 2-alpha 
Trx Thioredoxin 
TrxR Thioredoxin reductase 
TSS Transcription start site 
Tyr Tyrosine 
TZD Thiazolidinedione 
VASP Vasodilator stimulated phosphoprotein 
VPA Valproic acid 
WB Western blot 
XO Xanthine oxidase 
ZDF Zucker diabetic fatty 
Zn Zinc 
β-ME β-mercaptoethanol 
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Histone 3 sequence (human, mouse, rat) 

H3.1 (HIST1H3A)* 

Mass: 15,404 kDa 

                   10                20               30        40              50 
(M)ARTKQTARK  STGGKAPRKQ  LATKAARKSA  PATGGVKKPH RYRPGTVALR  
            60              70               80                90              100 
EIRRYQKSTE  LLIRKLPFQR  LVREIAQDFK  TDLRFQSSAV  MALQEACEAY  
             110       120         130  
LVGLFEDTNL  CAIHAKRVTI  MPKDIQLARR  IRGERA    

 

Histone 4 sequence (human, mouse, rat) 

H4 (HIST1H4A)* 

Mass: 11,367 kDa 

                    10         20        30       40        50  
(M)SGRGKGGKG LGKGGAKRHR KVLRDNIQGI TKPAIRRLAR RGGVKRISGL  
                   60               70                80                90               100 
IYEETRGVLK VFLENVIRDA VTYTEHAKRK TVTAMDVVYA LKRQGRTLYG  FGG   

 

* Source: UniProt Consortium, T., UniProt: the universal protein knowledgebase. Nucleic Acids Research, 2018.  
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Mass spectrometry analysis 

H3-IP from kidney lysate, GPx-1-/- young and old, 27 kDa band & 53 kDa band 

1) GPx-1-/-, 2mo, 27 kDa 

 

2) GPx-1-/-, 12mo, 27 kDa 

 

Protein Group Protein ID Accession -10lgP Coverage (%) #Peptides #Unique PTM Avg. Mass Description

30 190 P60710|ACTB_MOUSE 81.63 10 3 3 Oxidation (M); Hydroxylation 41737 Actin  cytoplasmic 1 OS=Mus musculus GN=Actb PE=1 SV=1

30 189 P63260|ACTG_MOUSE 81.63 10 3 3 Oxidation (M); Hydroxylation 41793 Actin  cytoplasmic 2 OS=Mus musculus GN=Actg1 PE=1 SV=1

147 1817 Q91VR2|ATPG_MOUSE 46.58 4 1 1 32886 ATP synthase subunit gamma  mitochondrial OS=Mus musculus GN=Atp5c1 PE=1 SV=1

76 1858 Q69Z23|DYH17_MOUSE 21.51 0 1 1 Deamidation (N) 511609 Dynein heavy chain 17  axonemal OS=Mus musculus GN=Dnah17 PE=1 SV=2

2 1764 P00924|ENO1_YEAST 235.99 59 33 9

Oxidation (M); Deamidation (N); 

Deamidation (NQ); Formylation; 

Formylation (Protein N-term); 2 

more 46802 Enolase 1 OS=Saccharomyces cerevisiae GN=ENO1 PE=1 SV=2

3 1765 P00925|ENO2_YEAST 228.28 51 29 5

Oxidation (M); Deamidation (N); 

Deamidation (NQ); Formylation; 

Formylation (Protein N-term); 2 

more 46914 Enolase 2 OS=Saccharomyces cerevisiae GN=ENO2 PE=1 SV=2

97 1825 P22752|H2A1_MOUSE 38.97 7 1 1 14135 Histone H2A type 1 OS=Mus musculus GN=Hist1h2ab PE=1 SV=3

97 1829 Q8CGP5|H2A1F_MOUSE 38.97 7 1 1 14162 Histone H2A type 1-F OS=Mus musculus GN=Hist1h2af PE=1 SV=3

97 1820 Q8CGP6|H2A1H_MOUSE 38.97 7 1 1 13950 Histone H2A type 1-H OS=Mus musculus GN=Hist1h2ah PE=1 SV=3

97 1826 Q8CGP7|H2A1K_MOUSE 38.97 7 1 1 14150 Histone H2A type 1-K OS=Mus musculus GN=Hist1h2ak PE=1 SV=3

97 1827 Q6GSS7|H2A2A_MOUSE 38.97 7 1 1 14095 Histone H2A type 2-A OS=Mus musculus GN=Hist2h2aa1 PE=1 SV=3

97 1828 Q64522|H2A2B_MOUSE 38.97 7 1 1 14013 Histone H2A type 2-B OS=Mus musculus GN=Hist2h2ab PE=1 SV=3

97 1823 Q64523|H2A2C_MOUSE 38.97 7 1 1 13988 Histone H2A type 2-C OS=Mus musculus GN=Hist2h2ac PE=1 SV=3

97 1830 Q8BFU2|H2A3_MOUSE 38.97 7 1 1 14121 Histone H2A type 3 OS=Mus musculus GN=Hist3h2a PE=1 SV=3

97 1824 Q8R1M2|H2AJ_MOUSE 38.97 7 1 1 14045 Histone H2A.J OS=Mus musculus GN=H2afj PE=1 SV=1

97 1821 Q3THW5|H2AV_MOUSE 38.97 7 1 1 13509 Histone H2A.V OS=Mus musculus GN=H2afv PE=1 SV=3

97 1822 P0C0S6|H2AZ_MOUSE 38.97 7 1 1 13553 Histone H2A.Z OS=Mus musculus GN=H2afz PE=1 SV=2

97 1831 P27661|H2AX_MOUSE 38.97 6 1 1 15143 Histone H2AX OS=Mus musculus GN=H2afx PE=1 SV=2

63 1799 Q64475|H2B1B_MOUSE 43.15 15 2 2 13952 Histone H2B type 1-B OS=Mus musculus GN=Hist1h2bb PE=1 SV=3

63 1792 Q6ZWY9|H2B1C_MOUSE 43.15 15 2 2 13906 Histone H2B type 1-C/E/G OS=Mus musculus GN=Hist1h2bc PE=1 SV=3

63 1797 P10853|H2B1F_MOUSE 43.15 15 2 2 13936 Histone H2B type 1-F/J/L OS=Mus musculus GN=Hist1h2bf PE=1 SV=2

63 1796 Q64478|H2B1H_MOUSE 43.15 15 2 2 13920 Histone H2B type 1-H OS=Mus musculus GN=Hist1h2bh PE=1 SV=3

63 1794 Q8CGP1|H2B1K_MOUSE 43.15 15 2 2 13920 Histone H2B type 1-K OS=Mus musculus GN=Hist1h2bk PE=1 SV=3

63 1793 P10854|H2B1M_MOUSE 43.15 15 2 2 13936 Histone H2B type 1-M OS=Mus musculus GN=Hist1h2bm PE=1 SV=2

63 1798 Q8CGP2|H2B1P_MOUSE 43.15 15 2 2 13992 Histone H2B type 1-P OS=Mus musculus GN=Hist1h2bp PE=1 SV=3

63 1795 Q64525|H2B2B_MOUSE 43.15 15 2 2 13920 Histone H2B type 2-B OS=Mus musculus GN=Hist2h2bb PE=1 SV=3

56 1791 P62806|H4_MOUSE 58.13 17 2 2 11367 Histone H4 OS=Mus musculus GN=Hist1h4a PE=1 SV=2

98 218 P01869|IGH1M_MOUSE 32.54 3 1 1 43387 Ig gamma-1 chain C region  membrane-bound form OS=Mus musculus GN=Ighg1 PE=1 SV=2

98 217 P01868|IGHG1_MOUSE 32.54 4 1 1 35705 Ig gamma-1 chain C region secreted form OS=Mus musculus GN=Ighg1 PE=1 SV=1

5 569 P01837|IGKC_MOUSE 100.82 50 6 6

Carbamidomethylation; 

Oxidation (M); Dehydration; 

Mutation 11778 Ig kappa chain C region OS=Mus musculus PE=1 SV=1

31 1774 P01631|KV2A7_MOUSE 90.61 30 4 2 Hydroxylation 12273 Ig kappa chain V-II region 26-10 OS=Mus musculus PE=1 SV=1

11 1804 P01658|KV3A6_MOUSE 119.91 19 5 2

Acetylation (Protein N-term); 

Deamidation (NQ); 

Carbamidomethylation (DHKE  

X@N-term); Deoxy; 

Trifluoroleucine; 2 more 14523 Ig kappa chain V-III region MOPC 321 OS=Mus musculus PE=1 SV=1

15 1814 P01657|KV3A5_MOUSE 102.08 24 4 2

Deamidation (NQ); Methyl ester; 

Trifluoroleucine; Mutation 11949 Ig kappa chain V-III region PC 2413 OS=Mus musculus PE=1 SV=1

28 1770 P01646|KV5AD_MOUSE 66.35 26 6 2 Deoxy; Mutation 11989 Ig kappa chain V-V region HP 123E6 OS=Mus musculus PE=1 SV=1

28 1769 P01647|KV5AE_MOUSE 66.35 26 6 2 Deoxy; Mutation 11965 Ig kappa chain V-V region HP 124E1 OS=Mus musculus PE=1 SV=1

28 1773 P01648|KV5AF_MOUSE 66.35 26 6 2 Deoxy; Mutation 11961 Ig kappa chain V-V region HP 91A3 OS=Mus musculus PE=1 SV=1

28 1772 P01645|KV5AC_MOUSE 66.35 26 6 2 Deoxy; Mutation 11954 Ig kappa chain V-V region HP 93G7 OS=Mus musculus PE=1 SV=1

28 1771 P01644|KV5AB_MOUSE 66.35 26 6 2 Deoxy; Mutation 11910 Ig kappa chain V-V region HP R16.7 OS=Mus musculus PE=1 SV=1

47 1780 P01635|KV5A3_MOUSE 77.74 20 2 2 12581 Ig kappa chain V-V region K2 (Fragment) OS=Mus musculus PE=1 SV=1

72 1790 P01642|KV5A9_MOUSE 70.53 26 2 2 12615 Ig kappa chain V-V region L7 (Fragment) OS=Mus musculus GN=Gm10881 PE=1 SV=1

74 1803 P01636|KV5A4_MOUSE 59.99 17 2 1 12030 Ig kappa chain V-V region MOPC 149 OS=Mus musculus PE=1 SV=1

71 1775 P01639|KV5A7_MOUSE 69.64 20 3 1 14311 Ig kappa chain V-V region MOPC 41 OS=Mus musculus GN=Gm5571 PE=1 SV=1

64 1859 P20764|IGLL1_MOUSE 20.47 4 1 1 22772 Immunoglobulin lambda-like polypeptide 1 OS=Mus musculus GN=Igll1 PE=2 SV=3

6 177 P13645|K1C10_HUMAN 173.83 22 14 8 Oxidation (M) 59511 Keratin  type I cytoskeletal 10 (Cytokeratin-10) (CK-10) (Keratin-10) (K10)

7 191 P35527|K1C9_HUMAN 151.89 22 10 10 Oxidation (M); Hydroxylation 62129 Keratin  type I cytoskeletal 9 (Cytokeratin-9) (CK-9) (Keratin-9) (K9)

42 233 Q9Z2T6|KRT85_MOUSE 53.94 6 2 1 Deamidation (NQ) 55759 Keratin  type II cuticular Hb5 OS=Mus musculus GN=Krt85 PE=1 SV=2

4 176 P04264|K2C1_HUMAN 206.43 27 18 10

Oxidation (M); Pyro-glu from Q; 

Replacement of proton by 

lithium 66018 Keratin  type II cytoskeletal 1 (Cytokeratin-1) (CK-1) (Keratin-1) (K1) (67 kDa cytokeratin) (Hair alpha protein)

12 179 P35908|K22E_HUMAN 172.22 16 8 4 65865 Keratin  type II cytoskeletal 2 epidermal (Cytokeratin-2e) (K2e) (CK 2e) (keratin-2)

40 202 Q3UV17|K22O_MOUSE 48.99 2 1 1 62845 Keratin  type II cytoskeletal 2 oral OS=Mus musculus GN=Krt76 PE=1 SV=1

8 178 P02769|ALBU_BOVIN 173.25 22 13 12

Carbamidomethylation; 

Oxidation (M); Dehydration 69294 Serum albumin OS=Bos taurus GN=ALB PE=1 SV=4

17 2 Q80VP2|SPAT7_MOUSE 21.14 1 1 1 65655 Spermatogenesis-associated protein 7 homolog OS=Mus musculus GN=Spata7 PE=1 SV=1

87 1855 Q8R4U0|STAB2_MOUSE 22.5 0 1 1 277531 Stabilin-2 OS=Mus musculus GN=Stab2 PE=1 SV=1

1 1 P00761|TRYP_PIG 163.88 41 12 12

Carbamidomethylation; 

Oxidation (M); Deamidation (N); 

Deamidation (NQ); Dehydration; 

6 more 24409 Trypsin OS=Sus scrofa PE=1 SV=1

Protein Group Protein ID Accession -10lgP Coverage (%) #Peptides #Unique PTM Avg. Mass Description

2 1764 P00924|ENO1_YEAST 216.98 57 31 7

Oxidation (M); Deamidation (N); Deamidation (NQ); Formylation; 

Formylation (Protein N-term); 2 more 46802 Enolase 1 OS=Saccharomyces cerevisiae GN=ENO1 PE=1 SV=2

3 1765 P00925|ENO2_YEAST 207.17 57 31 7

Oxidation (M); Deamidation (N); Deamidation (NQ); Formylation; 

Formylation (Protein N-term); 2 more 46914 Enolase 2 OS=Saccharomyces cerevisiae GN=ENO2 PE=1 SV=2

1 1 P00761|TRYP_PIG 157 50 20 19

Carbamidomethylation; Oxidation (M); Deamidation (N); Dehydration; 

Formylation; 7 more 24409 Trypsin OS=Sus scrofa PE=1 SV=1

4 1768 P01664|KV3AC_MOUSE 142.5 46 8 3

Carbamidomethylation; Acetylation (Protein N-term); Deamidation 

(NQ); Dehydration; Formylation (Protein N-term); 4 more 11964 Ig kappa chain V-III region CBPC 101 OS=Mus musculus PE=1 SV=1

6 1804 P01658|KV3A6_MOUSE 108.45 15 7 3

Acetylation (Protein N-term); Deamidation (NQ); Formylation; 

Carbamidomethylation (DHKE  X@N-term); Deoxy; 2 more 14523 Ig kappa chain V-III region MOPC 321 OS=Mus musculus PE=1 SV=1

11 1788 P01662|KV3AA_MOUSE 102.52 26 3 1 Formylation (Protein N-term); Tri nitro benzene 12041 Ig kappa chain V-III region ABPC 22/PC 9245 OS=Mus musculus PE=1 SV=1

11 1789 P01661|KV3A9_MOUSE 102.52 22 3 1 Formylation; Tri nitro benzene 14291 Ig kappa chain V-III region MOPC 63 OS=Mus musculus PE=1 SV=1

14 191 P35527|K1C9_HUMAN 97.81 11 5 5 Oxidation (M); 2 5-dimethypyrrole 62129 Keratin  type I cytoskeletal 9 (Cytokeratin-9) (CK-9) (Keratin-9) (K9)

7 1814 P01657|KV3A5_MOUSE 93.99 24 5 1

Acetylation (Protein N-term); Deamidation (NQ); Dehydration; 

Formylation (Protein N-term); Mutation 11949 Ig kappa chain V-III region PC 2413 OS=Mus musculus PE=1 SV=1

18 178 P02769|ALBU_BOVIN 90.4 6 3 3 69294 Serum albumin OS=Bos taurus GN=ALB PE=1 SV=4

17 176 P04264|K2C1_HUMAN 81.45 9 5 5 Deamidation (NQ); Methyl ester; Phosphorylation (STY) 66018 Keratin  type II cytoskeletal 1 (Cytokeratin-1) (CK-1) (Keratin-1) (K1) (67 kDa cytokeratin) (Hair alpha protein)

10 1769 P01647|KV5AE_MOUSE 64.88 40 3 2 Carbamidomethylation; Oxidation (M) 11965 Ig kappa chain V-V region HP 124E1 OS=Mus musculus PE=1 SV=1

10 1772 P01645|KV5AC_MOUSE 64.88 40 3 2 Carbamidomethylation; Oxidation (M) 11954 Ig kappa chain V-V region HP 93G7 OS=Mus musculus PE=1 SV=1

10 1771 P01644|KV5AB_MOUSE 64.88 40 3 2 Carbamidomethylation; Oxidation (M) 11910 Ig kappa chain V-V region HP R16.7 OS=Mus musculus PE=1 SV=1

21 177 P13645|K1C10_HUMAN 61.41 6 2 2 59511 Keratin  type I cytoskeletal 10 (Cytokeratin-10) (CK-10) (Keratin-10) (K10)

15 1775 P01639|KV5A7_MOUSE 59.81 36 3 2 Carbamidomethylation; Amidation 14311 Ig kappa chain V-V region MOPC 41 OS=Mus musculus GN=Gm5571 PE=1 SV=1

5 569 P01837|IGKC_MOUSE 48.77 14 3 3 Carbamidomethylation; Deamidation (N) 11778 Ig kappa chain C region OS=Mus musculus PE=1 SV=1

19 4849 P01592|IGJ_MOUSE 37.88 9 1 1 18014 Immunoglobulin J chain OS=Mus musculus GN=Jchain PE=1 SV=4

44 1790 P01642|KV5A9_MOUSE 37.12 16 1 1 12615 Ig kappa chain V-V region L7 (Fragment) OS=Mus musculus GN=Gm10881 PE=1 SV=1
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Protein GroupProtein ID Accession -10lgP Coverage (%)#Peptides #Unique PTM Avg. Mass Description

9 190 P60710|ACTB_MOUSE 215.12 58 20 13

Carbamidomethylation; Oxidation (M); Deamidation (N); 

Acetylation (Protein N-term); Deamidation (NQ); Dethiomethyl 41737 Actin  cytoplasmic 1 OS=Mus musculus GN=Actb PE=1 SV=1

54 1840 P17182|ENOA_MOUSE 45.65 3 2 1 47141 Alpha-enolase OS=Mus musculus GN=Eno1 PE=1 SV=3

51 192 P16460|ASSY_MOUSE 134.85 18 7 7 Carbamidomethylation; Oxidation (M); Pyro-glu from Q 46585 Argininosuccinate synthase OS=Mus musculus GN=Ass1 PE=1 SV=1

23 3361 Q03265|ATPA_MOUSE 188.17 25 11 11 59753 ATP synthase subunit alpha  mitochondrial OS=Mus musculus GN=Atp5a1 PE=1 SV=1

18 226 P56480|ATPB_MOUSE 171.35 22 9 9 Oxidation (M); Formylation; Methyl ester; Sulphone 56301 ATP synthase subunit beta  mitochondrial OS=Mus musculus GN=Atp5b PE=1 SV=2

86 3373 Q8BIQ5|CSTF2_MOUSE 40.25 2 2 1 61341 Cleavage stimulation factor subunit 2 OS=Mus musculus GN=Cstf2 PE=1 SV=2

81 238 P10126|EF1A1_MOUSE 43.06 2 1 1 50114 Elongation factor 1-alpha 1 OS=Mus musculus GN=Eef1a1 PE=1 SV=3

81 239 P62631|EF1A2_MOUSE 43.06 2 1 1 50454 Elongation factor 1-alpha 2 OS=Mus musculus GN=Eef1a2 PE=1 SV=1

85 228 Q8BFR5|EFTU_MOUSE 67.08 6 2 2 49508 Elongation factor Tu  mitochondrial OS=Mus musculus GN=Tufm PE=1 SV=1

2 1764 P00924|ENO1_YEAST 265.31 68 41 11

Oxidation (M); Deamidation (N); Deamidation (NQ); 

Dehydration; Formylation; 2 more 46802 Enolase 1 OS=Saccharomyces cerevisiae GN=ENO1 PE=1 SV=2

4 1765 P00925|ENO2_YEAST 253.92 60 37 7

Oxidation (M); Deamidation (N); Deamidation (NQ); 

Dehydration; Formylation; Ethylation 46914 Enolase 2 OS=Saccharomyces cerevisiae GN=ENO2 PE=1 SV=2

43 218 P01869|IGH1M_MOUSE 127.58 14 4 4 Oxidation (M); Deamidation (N) 43387 Ig gamma-1 chain C region  membrane-bound form OS=Mus musculus GN=Ighg1 PE=1 SV=2

43 217 P01868|IGHG1_MOUSE 127.58 17 4 4 Oxidation (M); Deamidation (N) 35705 Ig gamma-1 chain C region secreted form OS=Mus musculus GN=Ighg1 PE=1 SV=1

31 235 P01863|GCAA_MOUSE 105.47 17 5 3 Carbamidomethylation; Oxidation (M); Ethylation 36389 Ig gamma-2A chain C region  A allele OS=Mus musculus GN=Ighg PE=1 SV=1

31 236 P01865|GCAM_MOUSE 105.47 14 5 3 Carbamidomethylation; Oxidation (M); Ethylation 43949 Ig gamma-2A chain C region  membrane-bound form OS=Mus musculus GN=Igh-1a PE=1 SV=3

121 3381 P01864|GCAB_MOUSE 46.41 5 1 1 Oxidation (M) 36596 Ig gamma-2A chain C region secreted form OS=Mus musculus PE=1 SV=1

47 237 P01867|IGG2B_MOUSE 80.7 13 5 4 Carbamidomethylation; Methyl ester; Ethylation 44259 Ig gamma-2B chain C region OS=Mus musculus GN=Igh-3 PE=1 SV=3

123 247 P03987|IGHG3_MOUSE 32.64 3 1 1 Oxidation (M) 43929 Ig gamma-3 chain C region OS=Mus musculus PE=1 SV=2

96 3374 P18527|HVM56_MOUSE 28.17 11 1 1 Oxidation (M); Deamidation (N) 10661 Ig heavy chain V region 914 OS=Mus musculus PE=1 SV=1

52 3366 P06330|HVM51_MOUSE 100.11 36 3 3 Carbamidomethylation; Oxidation (M) 12934 Ig heavy chain V region AC38 205.12 OS=Mus musculus PE=1 SV=1

75 569 P01837|IGKC_MOUSE 46.72 22 3 3 Carbamidomethylation 11778 Ig kappa chain C region OS=Mus musculus PE=1 SV=1

5 177 P13645|K1C10_HUMAN 272.43 56 33 26

Carbamidomethylation; Oxidation (M); Deamidation (N); Pyro-

glu from Q; Sulphone; 2 more 59511 Keratin  type I cytoskeletal 10 (Cytokeratin-10) (CK-10) (Keratin-10) (K10)

10 188 P02533|K1C14_HUMAN 179.38 42 19 4

Carbamidomethylation; Oxidation (M); Pyro-glu from Q; 

Sulphone 51622 Keratin  type I cytoskeletal 14 (Cytokeratin-14) (CK-14) (Keratin-14) (K14)

11 187 P08779|K1C16_HUMAN 163.41 32 16 4 Carbamidomethylation; Oxidation (M); Sulphone 51268 Keratin  type I cytoskeletal 16 (Cytokeratin-16) (CK-16) (Keratin-16) (K16)

6 191 P35527|K1C9_HUMAN 251.91 49 24 23

Oxidation (M); Deamidation (N); Dehydration; Sulphone; 

Carbamidomethylation (DHKE  X@N-term); Dihydroxy 62129 Keratin  type I cytoskeletal 9 (Cytokeratin-9) (CK-9) (Keratin-9) (K9)

3 176 P04264|K2C1_HUMAN 286.72 51 44 30

Carbamidomethylation; Oxidation (M); Deamidation (N); Pyro-

glu from Q; Sulphone; 4 more 66018 Keratin  type II cytoskeletal 1 (Cytokeratin-1) (CK-1) (Keratin-1) (K1) (67 kDa cytokeratin) (Hair alpha protein)

13 224 P04104|K2C1_MOUSE 129.65 8 6 1 65606 Keratin  type II cytoskeletal 1 OS=Mus musculus GN=Krt1 PE=1 SV=4

26 227 Q6IFZ6|K2C1B_MOUSE 115.02 8 5 1 Deamidation (N) 61359 Keratin  type II cytoskeletal 1b OS=Mus musculus GN=Krt77 PE=1 SV=1

12 179 P35908|K22E_HUMAN 206.32 37 20 11 Carbamidomethylation 65865 Keratin  type II cytoskeletal 2 epidermal (Cytokeratin-2e) (K2e) (CK 2e) (keratin-2)

46 202 Q3UV17|K22O_MOUSE 103.8 8 6 1 Carbamidomethylation; Deamidation (NQ); Dehydration 62845 Keratin  type II cytoskeletal 2 oral OS=Mus musculus GN=Krt76 PE=1 SV=1

22 180 P13647|K2C5_HUMAN 152.48 22 15 2 Carbamidomethylation; Dehydration 62378 Keratin  type II cytoskeletal 5 (Cytokeratin-5) (CK-5) (Keratin-5) (K5) (58 kDa cytokeratin)

19 184 P02538|K2C6A_HUMAN 164.19 28 17 3 Carbamidomethylation; Dehydration 60045 Keratin  type II cytoskeletal 6A (Cytokeratin-6A) (CK 6A) (K6a keratin)

58 3368 P11679|K2C8_MOUSE 75.82 6 5 1 54565 Keratin  type II cytoskeletal 8 OS=Mus musculus GN=Krt8 PE=1 SV=4

7 185 P53395|ODB2_MOUSE 220.82 54 29 29 Carbamidomethylation; Oxidation (M); Dethiomethyl 53247 Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex  mitochondrial OS=Mus musculus GN=Dbt PE=1 SV=2

8 178 P02769|ALBU_BOVIN 223.7 32 21 20 Carbamidomethylation; Oxidation (M); Dehydration 69294 Serum albumin OS=Bos taurus GN=ALB PE=1 SV=4

65 2 Q80VP2|SPAT7_MOUSE 22.52 1 1 1 65655 Spermatogenesis-associated protein 7 homolog OS=Mus musculus GN=Spata7 PE=1 SV=1

122 3382 Q9R112|SQRD_MOUSE 47.18 2 1 1 50282 Sulfide:quinone oxidoreductase  mitochondrial OS=Mus musculus GN=Sqrdl PE=1 SV=3

1 1 P00761|TRYP_PIG 183.22 50 18 18

Carbamidomethylation; Oxidation (M); Deamidation (N); 

Deamidation (NQ); Dehydration; 10 more 24409 Trypsin OS=Sus scrofa PE=1 SV=1

40 3362 P05213|TBA1B_MOUSE 128.1 20 6 2 Carbamidomethylation 50152 Tubulin alpha-1B chain OS=Mus musculus GN=Tuba1b PE=1 SV=2

61 3364 P68368|TBA4A_MOUSE 110.53 15 5 1 Carbamidomethylation 49924 Tubulin alpha-4A chain OS=Mus musculus GN=Tuba4a PE=1 SV=1

27 220 P68372|TBB4B_MOUSE 147.24 23 8 2 Oxidation (M) 49831 Tubulin beta-4B chain OS=Mus musculus GN=Tubb4b PE=1 SV=1

36 240 P99024|TBB5_MOUSE 136.75 17 6 1 Oxidation (M) 49671 Tubulin beta-5 chain OS=Mus musculus GN=Tubb5 PE=1 SV=1

44 243 Q922F4|TBB6_MOUSE 116.29 15 5 1 Oxidation (M) 50090 Tubulin beta-6 chain OS=Mus musculus GN=Tubb6 PE=1 SV=1

74 1882 P20152|VIME_MOUSE 72.04 8 3 2 53688 Vimentin OS=Mus musculus GN=Vim PE=1 SV=3

Protein Group Protein ID Accession -10lgP Coverage (%) #Peptides #Unique PTM Avg. Mass Description

8 190 P60710|ACTB_MOUSE 166.65 37 14 1

Carbamidomethylation; Oxidation (M); Acetylation (Protein N-term); 

Deamidation (NQ); Carbamidomethylation (DHKE  X@N-term); 

Dethiomethyl 41737 Actin  cytoplasmic 1 OS=Mus musculus GN=Actb PE=1 SV=1

10 189 P63260|ACTG_MOUSE 166.05 37 14 1

Carbamidomethylation; Oxidation (M); Acetylation (Protein N-term); 

Dethiomethyl 41793 Actin  cytoplasmic 2 OS=Mus musculus GN=Actg1 PE=1 SV=1

81 3361 Q03265|ATPA_MOUSE 68.66 6 2 2 59753 ATP synthase subunit alpha  mitochondrial OS=Mus musculus GN=Atp5a1 PE=1 SV=1

26 226 P56480|ATPB_MOUSE 102.4 14 7 7 Oxidation (M); Formylation; Methyl ester; Mutation 56301 ATP synthase subunit beta  mitochondrial OS=Mus musculus GN=Atp5b PE=1 SV=2

39 5378 Q9QWK4|CD5L_MOUSE 106.58 12 4 4 Carbamidomethylation; Oxidation (M) 38863 CD5 antigen-like OS=Mus musculus GN=Cd5l PE=1 SV=3

126 238 P10126|EF1A1_MOUSE 22.43 2 1 1 50114 Elongation factor 1-alpha 1 OS=Mus musculus GN=Eef1a1 PE=1 SV=3

2 1764 P00924|ENO1_YEAST 232.35 68 39 11 Oxidation (M); Deamidation (N); Deamidation (NQ); Formylation 46802 Enolase 1 OS=Saccharomyces cerevisiae GN=ENO1 PE=1 SV=2

3 1765 P00925|ENO2_YEAST 227.89 63 36 8 Oxidation (M); Deamidation (N); Deamidation (NQ); Formylation 46914 Enolase 2 OS=Saccharomyces cerevisiae GN=ENO2 PE=1 SV=2

14 218 P01869|IGH1M_MOUSE 123 16 6 6

Carbamidomethylation; Oxidation (M); Deamidation (N); 

Deamidation (NQ); Dehydration; 2 more 43387 Ig gamma-1 chain C region  membrane-bound form OS=Mus musculus GN=Ighg1 PE=1 SV=2

14 217 P01868|IGHG1_MOUSE 123 20 6 6

Carbamidomethylation; Oxidation (M); Deamidation (N); 

Deamidation (NQ); Dehydration; 2 more 35705 Ig gamma-1 chain C region secreted form OS=Mus musculus GN=Ighg1 PE=1 SV=1

35 235 P01863|GCAA_MOUSE 68.76 10 3 2 Carbamidomethylation; Oxidation (M); Ethylation 36389 Ig gamma-2A chain C region  A allele OS=Mus musculus GN=Ighg PE=1 SV=1

35 236 P01865|GCAM_MOUSE 68.76 8 3 2 Carbamidomethylation; Oxidation (M); Ethylation 43949 Ig gamma-2A chain C region  membrane-bound form OS=Mus musculus GN=Igh-1a PE=1 SV=3

20 3381 P01864|GCAB_MOUSE 94.36 17 5 3 Carbamidomethylation; Oxidation (M); Ethylation 36596 Ig gamma-2A chain C region secreted form OS=Mus musculus PE=1 SV=1

7 237 P01867|IGG2B_MOUSE 133.91 25 14 12

Carbamidomethylation; Deamidation (NQ); Dehydration; Methyl 

ester; Carbamidomethylation (DHKE  X@N-term); 3 more 44259 Ig gamma-2B chain C region OS=Mus musculus GN=Igh-3 PE=1 SV=3

61 247 P03987|IGHG3_MOUSE 48.09 4 2 2 Oxidation (M) 43929 Ig gamma-3 chain C region OS=Mus musculus PE=1 SV=2

53 3376 P01749|HVM05_MOUSE 71.83 25 2 1 Carbamidomethylation; Mutation 13016 Ig heavy chain V region 3 OS=Mus musculus GN=Ighv1-61 PE=1 SV=1

52 5379 P01747|HVM03_MOUSE 52.96 12 1 1 Carbamidomethylation 13307 Ig heavy chain V region 36-65 OS=Mus musculus PE=1 SV=1

52 5380 P01746|HVM02_MOUSE 52.96 10 1 1 Carbamidomethylation 15514 Ig heavy chain V region 93G7 OS=Mus musculus PE=2 SV=1

19 3366 P06330|HVM51_MOUSE 115.83 55 5 4 Carbamidomethylation; Oxidation (M); Mutation 12934 Ig heavy chain V region AC38 205.12 OS=Mus musculus PE=1 SV=1

82 569 P01837|IGKC_MOUSE 43.53 14 2 2 Carbamidomethylation 11778 Ig kappa chain C region OS=Mus musculus PE=1 SV=1

64 1785 P03977|KV3A4_MOUSE 62.58 16 1 1 12042 Ig kappa chain V-III region 50S10.1 OS=Mus musculus PE=1 SV=1

64 1782 P01656|KV3A3_MOUSE 62.58 16 1 1 11904 Ig kappa chain V-III region MOPC 70 OS=Mus musculus PE=1 SV=1

64 1786 P01654|KV3A1_MOUSE 62.58 16 1 1 11980 Ig kappa chain V-III region PC 2880/PC 1229 OS=Mus musculus PE=1 SV=1

64 1787 P01655|KV3A2_MOUSE 62.58 16 1 1 12054 Ig kappa chain V-III region PC 7132 OS=Mus musculus PE=1 SV=1

18 727 P01872|IGHM_MOUSE 131.89 20 8 8 Carbamidomethylation 49972 Ig mu chain C region OS=Mus musculus GN=Ighm PE=1 SV=2

6 177 P13645|K1C10_HUMAN 202.63 41 22 17

Carbamidomethylation; Oxidation (M); Deamidation (N); 

Carbamidomethylation (DHKE  X@N-term) 59511 Keratin  type I cytoskeletal 10 (Cytokeratin-10) (CK-10) (Keratin-10) (K10)

17 188 P02533|K1C14_HUMAN 112.05 15 9 3 Carbamidomethylation; Oxidation (M) 51622 Keratin  type I cytoskeletal 14 (Cytokeratin-14) (CK-14) (Keratin-14) (K14)

9 191 P35527|K1C9_HUMAN 180.26 32 11 11 Oxidation (M); Carbamidomethylation (DHKE  X@N-term) 62129 Keratin  type I cytoskeletal 9 (Cytokeratin-9) (CK-9) (Keratin-9) (K9)

84 2360 Q99M73|KRT84_MOUSE 34.73 3 2 1 Deamidation (N) 64983 Keratin  type II cuticular Hb4 OS=Mus musculus GN=Krt84 PE=2 SV=2

5 176 P04264|K2C1_HUMAN 222.42 40 26 19

Carbamidomethylation; Oxidation (M); Deamidation (N); 

Deamidation (NQ); Dehydration; 3 more 66018 Keratin  type II cytoskeletal 1 (Cytokeratin-1) (CK-1) (Keratin-1) (K1) (67 kDa cytokeratin) (Hair alpha protein)

13 224 P04104|K2C1_MOUSE 117.53 7 6 1 65606 Keratin  type II cytoskeletal 1 OS=Mus musculus GN=Krt1 PE=1 SV=4

34 227 Q6IFZ6|K2C1B_MOUSE 86.14 5 3 1 Deamidation (N) 61359 Keratin  type II cytoskeletal 1b OS=Mus musculus GN=Krt77 PE=1 SV=1

11 179 P35908|K22E_HUMAN 157.48 24 11 7 Carbamidomethylation 65865 Keratin  type II cytoskeletal 2 epidermal (Cytokeratin-2e) (K2e) (CK 2e) (keratin-2)

50 202 Q3UV17|K22O_MOUSE 87.92 6 5 1 Formylation 62845 Keratin  type II cytoskeletal 2 oral OS=Mus musculus GN=Krt76 PE=1 SV=1

23 180 P13647|K2C5_HUMAN 101.5 11 7 1 62378 Keratin  type II cytoskeletal 5 (Cytokeratin-5) (CK-5) (Keratin-5) (K5) (58 kDa cytokeratin)

15 184 P02538|K2C6A_HUMAN 113.06 13 8 1 60045 Keratin  type II cytoskeletal 6A (Cytokeratin-6A) (CK 6A) (K6a keratin)

22 198 P50446|K2C6A_MOUSE 102 11 7 1 Carbamidomethylation (DHKE  X@N-term); Mutation 59335 Keratin  type II cytoskeletal 6A OS=Mus musculus GN=Krt6a PE=1 SV=3

49 234 Q8VED5|K2C79_MOUSE 64.92 7 4 1 57552 Keratin  type II cytoskeletal 79 OS=Mus musculus GN=Krt79 PE=1 SV=2

51 232 P05787|K2C8_HUMAN 61.7 6 3 1 Dehydration; Methyl ester 53704 Keratin  type II cytoskeletal 8 (Cytokeratin-8) (CK-8) (Keratin-8) (K8)

84 2261 Q9NSB2|KRT84_HUMAN 34.73 3 2 1 Deamidation (N) 64895 Keratin type II cuticular Hb4 (Type II hair keratin Hb4) (Keratin-84) (K84)

21 185 P53395|ODB2_MOUSE 114.72 16 7 7 Oxidation (M) 53247 Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex  mitochondrial OS=Mus musculus GN=Dbt PE=1 SV=2

124 5381 O08638|MYH11_MOUSE 31.18 1 1 1 227026 Myosin-11 OS=Mus musculus GN=Myh11 PE=1 SV=1

124 5382 Q6URW6|MYH14_MOUSE 31.18 1 1 1 228584 Myosin-14 OS=Mus musculus GN=Myh14 PE=1 SV=1

124 2321 Q8VDD5|MYH9_MOUSE 31.18 1 1 1 226370 Myosin-9 OS=Mus musculus GN=Myh9 PE=1 SV=4

4 178 P02769|ALBU_BOVIN 210.39 36 26 25

Carbamidomethylation; Oxidation (M); Dehydration; Sulphone; 

Mutation 69294 Serum albumin OS=Bos taurus GN=ALB PE=1 SV=4

12 2 Q80VP2|SPAT7_MOUSE 21.01 1 1 1 65655 Spermatogenesis-associated protein 7 homolog OS=Mus musculus GN=Spata7 PE=1 SV=1

1 1 P00761|TRYP_PIG 169.16 54 20 20

Carbamidomethylation; Oxidation (M); Deamidation (N); 

Dehydration; Formylation; 9 more 24409 Trypsin OS=Sus scrofa PE=1 SV=1

43 3362 P05213|TBA1B_MOUSE 86.48 13 5 5 Carbamidomethylation 50152 Tubulin alpha-1B chain OS=Mus musculus GN=Tuba1b PE=1 SV=2

27 241 Q7TMM9|TBB2A_MOUSE 93.01 12 5 1 Oxidation (M); Acetylation (K); Phosphorylation (STY) 49907 Tubulin beta-2A chain OS=Mus musculus GN=Tubb2a PE=1 SV=1

27 242 Q9CWF2|TBB2B_MOUSE 93.01 12 5 1 Oxidation (M); Acetylation (K); Phosphorylation (STY) 49953 Tubulin beta-2B chain OS=Mus musculus GN=Tubb2b PE=1 SV=1

16 220 P68372|TBB4B_MOUSE 120.28 16 7 3 Oxidation (M); Acetylation (K); Phosphorylation (STY) 49831 Tubulin beta-4B chain OS=Mus musculus GN=Tubb4b PE=1 SV=1

83 1882 P20152|VIME_MOUSE 52.32 5 2 1 53688 Vimentin OS=Mus musculus GN=Vim PE=1 SV=3
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Histone extracts from kidney lysates, GPx-1-/- young and old, 27 kDa band & 53 kDa band 

*Only excerpts containing histones are shown! 

1) GPx-1-/-, 2mo, 17 kDa 

 

2) GPx-1-/-, 12mo, 17 kDa 

 

3) GPx-1-/-, 2mo, 27 kDa 

 

Protein Group Protein ID Accession -10lgP Coverage (%) #Peptides #Unique PTM Avg. Mass Description

73 6877 P16858|G3P_MOUSE 25.89 5 1 1 Deamidation (N) 35810

Glyceraldehyde-3-phosphate dehydrogenase OS=Mus musculus GN=Gapdh 

PE=1 SV=2

37 6847 Q9DCY0|KEG1_MOUSE 64.25 8 3 3 Oxidation (M) 33723

Glycine N-acyltransferase-like protein Keg1 OS=Mus musculus GN=Keg1 PE=1 

SV=1

40 6839 P01942|HBA_MOUSE 73.9 25 4 4 Oxidation (M) 15085 Hemoglobin subunit alpha OS=Mus musculus GN=Hba PE=1 SV=2

53 6836 P02088|HBB1_MOUSE 86.47 25 3 1 Oxidation (M) 15840 Hemoglobin subunit beta-1 OS=Mus musculus GN=Hbb-b1 PE=1 SV=2

54 6850 P02089|HBB2_MOUSE 68.65 21 3 1 Mutation 15878 Hemoglobin subunit beta-2 OS=Mus musculus GN=Hbb-b2 PE=1 SV=2

25 6827 P15864|H12_MOUSE 130 33 8 1 Acetylation (Protein N-term) 21267 Histone H1.2 OS=Mus musculus GN=Hist1h1c PE=1 SV=2

23 6826 P43274|H14_MOUSE 134.53 36 10 3 Acetylation (Protein N-term) 21977 Histone H1.4 OS=Mus musculus GN=Hist1h1e PE=1 SV=2

32 6828 P43276|H15_MOUSE 104.66 21 6 3 22576 Histone H1.5 OS=Mus musculus GN=Hist1h1b PE=1 SV=2

22 1827 Q6GSS7|H2A2A_MOUSE 113.42 39 9 1

Deamidation (N); Deamidation (NQ); 

Carbamidomethylation (DHKE  X@N-term) 14095 Histone H2A type 2-A OS=Mus musculus GN=Hist2h2aa1 PE=1 SV=3

22 1823 Q64523|H2A2C_MOUSE 113.42 40 9 1

Deamidation (N); Deamidation (NQ); 

Carbamidomethylation (DHKE  X@N-term) 13988 Histone H2A type 2-C OS=Mus musculus GN=Hist2h2ac PE=1 SV=3

22 1824 Q8R1M2|H2AJ_MOUSE 113.42 40 9 1

Deamidation (N); Deamidation (NQ); 

Carbamidomethylation (DHKE  X@N-term) 14045 Histone H2A.J OS=Mus musculus GN=H2afj PE=1 SV=1

19 1831 P27661|H2AX_MOUSE 131.4 48 12 4

Deamidation (N); Deamidation (NQ); 

Carbamidomethylation (DHKE  X@N-term) 15143 Histone H2AX OS=Mus musculus GN=H2afx PE=1 SV=2

3 1799 Q64475|H2B1B_MOUSE 215.08 83 40 1

Oxidation (M); Deamidation (N); Carbamylation; 

Deamidation (NQ); Dehydration; 12 more 13952 Histone H2B type 1-B OS=Mus musculus GN=Hist1h2bb PE=1 SV=3

5 1793 P10854|H2B1M_MOUSE 213.8 83 39 1

Oxidation (M); Deamidation (N); Carbamylation; 

Deamidation (NQ); Dehydration; 12 more 13936 Histone H2B type 1-M OS=Mus musculus GN=Hist1h2bm PE=1 SV=2

4 1795 Q64525|H2B2B_MOUSE 213.95 83 39 1

Oxidation (M); Deamidation (N); Acetylation 

(Protein N-term); Carbamylation; Deamidation 

(NQ); 13 more 13920 Histone H2B type 2-B OS=Mus musculus GN=Hist2h2bb PE=1 SV=3

12 6818 P68433|H31_MOUSE 153.78 68 26 1

Carbamidomethylation; Oxidation (M); Acetylation 

(K); Acetylation (Protein N-term); Deamidation 

(NQ); 10 more 15404 Histone H3.1 OS=Mus musculus GN=Hist1h3a PE=1 SV=2

12 6820 P84228|H32_MOUSE 153.78 68 26 1

Carbamidomethylation; Oxidation (M); Acetylation 

(K); Acetylation (Protein N-term); Deamidation 

(NQ); 10 more 15388 Histone H3.2 OS=Mus musculus GN=Hist1h3b PE=1 SV=2

14 6821 P02301|H3C_MOUSE 148.7 68 25 1

Carbamidomethylation; Oxidation (M); Acetylation 

(K); Acetylation (Protein N-term); Deamidation 

(NQ); 9 more 15315 Histone H3.3C OS=Mus musculus GN=H3f3c PE=3 SV=3

61 177 P13645|K1C10_HUMAN 68.46 6 2 2 59511 Keratin  type I cytoskeletal 10 (Cytokeratin-10) (CK-10) (Keratin-10) (K10)

94 191 P35527|K1C9_HUMAN 37.82 2 1 1 62129 Keratin  type I cytoskeletal 9 (Cytokeratin-9) (CK-9) (Keratin-9) (K9)

46 176 P04264|K2C1_HUMAN 99.61 8 4 3

Deamidation (NQ); Methyl ester; Phosphorylation 

(STY) 66018

Keratin  type II cytoskeletal 1 (Cytokeratin-1) (CK-1) (Keratin-1) (K1) (67 kDa 

cytokeratin) (Hair alpha protein)

22 6825 P43277|H13_MOUSE 126.86 23 6 2 22100 Histone H1.3 OS=Mus musculus GN=Hist1h1d PE=1 SV=2

24 6826 P43274|H14_MOUSE 120.73 23 6 2 21977 Histone H1.4 OS=Mus musculus GN=Hist1h1e PE=1 SV=2

16 1831 P27661|H2AX_MOUSE 132.87 42 12 12

Deamidation (N); Deamidation (NQ); Hydroxylation; 

Carbamidomethylation (DHKE  X@N-term); Mutation 15143 Histone H2AX OS=Mus musculus GN=H2afx PE=1 SV=2

4 1799 Q64475|H2B1B_MOUSE 208.76 78 29 1

Oxidation (M); Deamidation (N); Acetylation (K); Biotinylation; 

Carbamylation; 14 more 13952 Histone H2B type 1-B OS=Mus musculus GN=Hist1h2bb PE=1 SV=3

2 1795 Q64525|H2B2B_MOUSE 209.56 83 30 1

Oxidation (M); Deamidation (N); Acetylation (K); Biotinylation; 

Carbamylation; 14 more 13920 Histone H2B type 2-B OS=Mus musculus GN=Hist2h2bb PE=1 SV=3

6 1836 Q8CGP0|H2B3B_MOUSE 183.98 71 20 1

Oxidation (M); Deamidation (N); Acetylation (K); Biotinylation; 

Carbamylation; 13 more 13908 Histone H2B type 3-B OS=Mus musculus GN=Hist3h2bb PE=1 SV=3

10 6818 P68433|H31_MOUSE 141.23 57 20 1

Oxidation (M); Acetylation (K); Acetylation (Protein N-term); 

Deamidation (NQ); Dehydration; 9 more 15404 Histone H3.1 OS=Mus musculus GN=Hist1h3a PE=1 SV=2

10 6820 P84228|H32_MOUSE 141.23 57 20 1

Oxidation (M); Acetylation (K); Acetylation (Protein N-term); 

Deamidation (NQ); Dehydration; 9 more 15388 Histone H3.2 OS=Mus musculus GN=Hist1h3b PE=1 SV=2

12 6821 P02301|H3C_MOUSE 134.68 57 19 1

Oxidation (M); Acetylation (K); Acetylation (Protein N-term); 

Deamidation (NQ); Dehydration; 6 more 15315 Histone H3.3C OS=Mus musculus GN=H3f3c PE=3 SV=3

25 177 P13645|K1C10_HUMAN 125.24 13 6 6 59511 Keratin  type I cytoskeletal 10 (Cytokeratin-10) (CK-10) (Keratin-10) (K10)

69 203 Q04695|K1C17_HUMAN 41.85 2 1 1 48106 Keratin  type I cytoskeletal 17 (Cytokeratin-17) (CK-17) (Keratin-17) (K17) (39.1)

69 211 P19001|K1C19_MOUSE 41.85 2 1 1 44542 Keratin  type I cytoskeletal 19 OS=Mus musculus GN=Krt19 PE=1 SV=1

26 191 P35527|K1C9_HUMAN 106.79 14 6 6 Oxidation (M) 62129 Keratin  type I cytoskeletal 9 (Cytokeratin-9) (CK-9) (Keratin-9) (K9)

20 176 P04264|K2C1_HUMAN 148.92 14 9 8 Carbamidomethylation 66018 Keratin  type II cytoskeletal 1 (Cytokeratin-1) (CK-1) (Keratin-1) (K1) (67 kDa cytokeratin) (Hair alpha protein)

23 179 P35908|K22E_HUMAN 132.24 17 8 6 Carbamidomethylation 65865 Keratin  type II cytoskeletal 2 epidermal (Cytokeratin-2e) (K2e) (CK 2e) (keratin-2)

79 202 Q3UV17|K22O_MOUSE 35.99 2 1 1 62845 Keratin  type II cytoskeletal 2 oral OS=Mus musculus GN=Krt76 PE=1 SV=1

57 180 P13647|K2C5_HUMAN 61.17 4 2 1 62378 Keratin  type II cytoskeletal 5 (Cytokeratin-5) (CK-5) (Keratin-5) (K5) (58 kDa cytokeratin)

Protein Group Protein ID Accession -10lgP Coverage (%) #Peptides #Unique PTM Avg. Mass Description

245 8129 P63158|HMGB1_MOUSE 21.77 4 1 1 24894 High mobility group protein B1 OS=Mus musculus GN=Hmgb1 PE=1 SV=2

94 7965 P10922|H10_MOUSE 103.54 16 3 3 Oxidation (M) 20861 Histone H1.0 OS=Mus musculus GN=H1f0 PE=2 SV=4

15 6827 P15864|H12_MOUSE 161.93 31 13 1 21267 Histone H1.2 OS=Mus musculus GN=Hist1h1c PE=1 SV=2

13 6826 P43274|H14_MOUSE 155.75 31 14 2 21977 Histone H1.4 OS=Mus musculus GN=Hist1h1e PE=1 SV=2

33 6828 P43276|H15_MOUSE 120.85 24 10 3 22576 Histone H1.5 OS=Mus musculus GN=Hist1h1b PE=1 SV=2

63 1827 Q6GSS7|H2A2A_MOUSE 93.85 27 3 3 Deamidation (N) 14095 Histone H2A type 2-A OS=Mus musculus GN=Hist2h2aa1 PE=1 SV=3

63 1828 Q64522|H2A2B_MOUSE 93.85 27 3 3 Deamidation (N) 14013 Histone H2A type 2-B OS=Mus musculus GN=Hist2h2ab PE=1 SV=3

63 1823 Q64523|H2A2C_MOUSE 93.85 27 3 3 Deamidation (N) 13988 Histone H2A type 2-C OS=Mus musculus GN=Hist2h2ac PE=1 SV=3

63 1824 Q8R1M2|H2AJ_MOUSE 93.85 27 3 3 Deamidation (N) 14045 Histone H2A.J OS=Mus musculus GN=H2afj PE=1 SV=1

39 1799 Q64475|H2B1B_MOUSE 131.79 48 7 7 Oxidation (M) 13952 Histone H2B type 1-B OS=Mus musculus GN=Hist1h2bb PE=1 SV=3

39 1792 Q6ZWY9|H2B1C_MOUSE 131.79 48 7 7 Oxidation (M) 13906 Histone H2B type 1-C/E/G OS=Mus musculus GN=Hist1h2bc PE=1 SV=3

39 1797 P10853|H2B1F_MOUSE 131.79 48 7 7 Oxidation (M) 13936 Histone H2B type 1-F/J/L OS=Mus musculus GN=Hist1h2bf PE=1 SV=2

39 1796 Q64478|H2B1H_MOUSE 131.79 48 7 7 Oxidation (M) 13920 Histone H2B type 1-H OS=Mus musculus GN=Hist1h2bh PE=1 SV=3

39 1793 P10854|H2B1M_MOUSE 131.79 48 7 7 Oxidation (M) 13936 Histone H2B type 1-M OS=Mus musculus GN=Hist1h2bm PE=1 SV=2

39 1798 Q8CGP2|H2B1P_MOUSE 131.79 48 7 7 Oxidation (M) 13992 Histone H2B type 1-P OS=Mus musculus GN=Hist1h2bp PE=1 SV=3

39 1795 Q64525|H2B2B_MOUSE 131.79 48 7 7 Oxidation (M) 13920 Histone H2B type 2-B OS=Mus musculus GN=Hist2h2bb PE=1 SV=3

93 6818 P68433|H31_MOUSE 43.54 21 4 4 Oxidation (M) 15404 Histone H3.1 OS=Mus musculus GN=Hist1h3a PE=1 SV=2

93 6820 P84228|H32_MOUSE 43.54 21 4 4 Oxidation (M) 15388 Histone H3.2 OS=Mus musculus GN=Hist1h3b PE=1 SV=2

93 6819 P84244|H33_MOUSE 43.54 21 4 4 Oxidation (M) 15328 Histone H3.3 OS=Mus musculus GN=H3f3a PE=1 SV=2

93 6821 P02301|H3C_MOUSE 43.54 21 4 4 Oxidation (M) 15315 Histone H3.3C OS=Mus musculus GN=H3f3c PE=3 SV=3

213 1791 P62806|H4_MOUSE 36.83 10 1 1 11367 Histone H4 OS=Mus musculus GN=Hist1h4a PE=1 SV=2

88 7957 Q61425|HCDH_MOUSE 83.77 12 4 4 Carbamidomethylation 34464 Hydroxyacyl-coenzyme A dehydrogenase  mitochondrial OS=Mus musculus GN=Hadh PE=1 SV=2

199 8074 Q99KB8|GLO2_MOUSE 42.15 4 1 1 34084 Hydroxyacylglutathione hydrolase  mitochondrial OS=Mus musculus GN=Hagh PE=1 SV=2

117 7991 P40936|INMT_MOUSE 73.98 11 3 3 Carbamidomethylation 29460 Indolethylamine N-methyltransferase OS=Mus musculus GN=Inmt PE=1 SV=1

108 7994 Q9DB29|IAH1_MOUSE 81.99 10 3 3 Carbamidomethylation 27974 Isoamyl acetate-hydrolyzing esterase 1 homolog OS=Mus musculus GN=Iah1 PE=1 SV=1
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4) GPx-1-/-, 12mo, 27 kDa 

 

5) GPx-1-/-, 2mo, 53 kDa 

 

6) GPx-1-/-, 12mo, 53 kDa 

 

Protein Group Protein ID Accession -10lgP Coverage (%) #Peptides #Unique PTM Avg. Mass Description

29 7923 Q8BH95|ECHM_MOUSE 31.44 4 1 1 31474 Enoyl-CoA hydratase  mitochondrial OS=Mus musculus GN=Echs1 PE=1 SV=1

32 7927 P10649|GSTM1_MOUSE 31.43 4 1 1 25970 Glutathione S-transferase Mu 1 OS=Mus musculus GN=Gstm1 PE=1 SV=2

31 6839 P01942|HBA_MOUSE 31.7 6 1 1 Oxidation (M) 15085 Hemoglobin subunit alpha OS=Mus musculus GN=Hba PE=1 SV=2

28 6827 P15864|H12_MOUSE 31.95 6 1 1 21267 Histone H1.2 OS=Mus musculus GN=Hist1h1c PE=1 SV=2

28 6825 P43277|H13_MOUSE 31.95 5 1 1 22100 Histone H1.3 OS=Mus musculus GN=Hist1h1d PE=1 SV=2

38 6826 P43274|H14_MOUSE 24.98 5 1 1 21977 Histone H1.4 OS=Mus musculus GN=Hist1h1e PE=1 SV=2

27 1825 P22752|H2A1_MOUSE 34.56 7 1 1 14135 Histone H2A type 1 OS=Mus musculus GN=Hist1h2ab PE=1 SV=3

27 1829 Q8CGP5|H2A1F_MOUSE 34.56 7 1 1 14162 Histone H2A type 1-F OS=Mus musculus GN=Hist1h2af PE=1 SV=3

27 1820 Q8CGP6|H2A1H_MOUSE 34.56 7 1 1 13950 Histone H2A type 1-H OS=Mus musculus GN=Hist1h2ah PE=1 SV=3

27 1826 Q8CGP7|H2A1K_MOUSE 34.56 7 1 1 14150 Histone H2A type 1-K OS=Mus musculus GN=Hist1h2ak PE=1 SV=3

27 1827 Q6GSS7|H2A2A_MOUSE 34.56 7 1 1 14095 Histone H2A type 2-A OS=Mus musculus GN=Hist2h2aa1 PE=1 SV=3

27 1828 Q64522|H2A2B_MOUSE 34.56 7 1 1 14013 Histone H2A type 2-B OS=Mus musculus GN=Hist2h2ab PE=1 SV=3

27 1823 Q64523|H2A2C_MOUSE 34.56 7 1 1 13988 Histone H2A type 2-C OS=Mus musculus GN=Hist2h2ac PE=1 SV=3

27 1830 Q8BFU2|H2A3_MOUSE 34.56 7 1 1 14121 Histone H2A type 3 OS=Mus musculus GN=Hist3h2a PE=1 SV=3

27 1824 Q8R1M2|H2AJ_MOUSE 34.56 7 1 1 14045 Histone H2A.J OS=Mus musculus GN=H2afj PE=1 SV=1

27 1821 Q3THW5|H2AV_MOUSE 34.56 7 1 1 13509 Histone H2A.V OS=Mus musculus GN=H2afv PE=1 SV=3

27 1822 P0C0S6|H2AZ_MOUSE 34.56 7 1 1 13553 Histone H2A.Z OS=Mus musculus GN=H2afz PE=1 SV=2

27 1831 P27661|H2AX_MOUSE 34.56 6 1 1 15143 Histone H2AX OS=Mus musculus GN=H2afx PE=1 SV=2

15 1839 P70696|H2B1A_MOUSE 42.1 14 2 2 14237 Histone H2B type 1-A OS=Mus musculus GN=Hist1h2ba PE=1 SV=3

15 1799 Q64475|H2B1B_MOUSE 42.1 14 2 2 13952 Histone H2B type 1-B OS=Mus musculus GN=Hist1h2bb PE=1 SV=3

15 1792 Q6ZWY9|H2B1C_MOUSE 42.1 14 2 2 13906 Histone H2B type 1-C/E/G OS=Mus musculus GN=Hist1h2bc PE=1 SV=3

15 1797 P10853|H2B1F_MOUSE 42.1 14 2 2 13936 Histone H2B type 1-F/J/L OS=Mus musculus GN=Hist1h2bf PE=1 SV=2

15 1796 Q64478|H2B1H_MOUSE 42.1 14 2 2 13920 Histone H2B type 1-H OS=Mus musculus GN=Hist1h2bh PE=1 SV=3

15 1793 P10854|H2B1M_MOUSE 42.1 14 2 2 13936 Histone H2B type 1-M OS=Mus musculus GN=Hist1h2bm PE=1 SV=2

15 1798 Q8CGP2|H2B1P_MOUSE 42.1 14 2 2 13992 Histone H2B type 1-P OS=Mus musculus GN=Hist1h2bp PE=1 SV=3

15 1795 Q64525|H2B2B_MOUSE 42.1 14 2 2 13920 Histone H2B type 2-B OS=Mus musculus GN=Hist2h2bb PE=1 SV=3

15 1835 Q9D2U9|H2B3A_MOUSE 42.1 14 2 2 13994 Histone H2B type 3-A OS=Mus musculus GN=Hist3h2ba PE=1 SV=3

15 1836 Q8CGP0|H2B3B_MOUSE 42.1 14 2 2 13908 Histone H2B type 3-B OS=Mus musculus GN=Hist3h2bb PE=1 SV=3

13 569 P01837|IGKC_MOUSE 42.35 14 2 2 Carbamidomethylation 11778 Ig kappa chain C region OS=Mus musculus PE=1 SV=1

14 177 P13645|K1C10_HUMAN 43.95 6 2 2 59511 Keratin  type I cytoskeletal 10 (Cytokeratin-10) (CK-10) (Keratin-10) (K10)

11 191 P35527|K1C9_HUMAN 67.5 5 2 2 62129 Keratin  type I cytoskeletal 9 (Cytokeratin-9) (CK-9) (Keratin-9) (K9)

Protein Group Protein ID Accession -10lgP Coverage (%) #Peptides #Unique PTM Avg. Mass Description

81 8023 P61979|HNRPK_MOUSE 171.84 36 15 15

Carbamidomethylation; 

Dethiomethyl 50976 Heterogeneous nuclear ribonucleoprotein K OS=Mus musculus GN=Hnrnpk PE=1 SV=1

243 8928 Q8R081|HNRPL_MOUSE 95.82 10 5 5

Carbamidomethylation; 

Deamidation (N) 63964 Heterogeneous nuclear ribonucleoprotein L OS=Mus musculus GN=Hnrnpl PE=1 SV=2

322 8963 Q8VEK3|HNRPU_MOUSE 79.95 5 3 3 87918 Heterogeneous nuclear ribonucleoprotein U OS=Mus musculus GN=Hnrnpu PE=1 SV=1

175 6827 P15864|H12_MOUSE 109.08 20 5 2 21267 Histone H1.2 OS=Mus musculus GN=Hist1h1c PE=1 SV=2

175 6825 P43277|H13_MOUSE 109.08 19 5 2 22100 Histone H1.3 OS=Mus musculus GN=Hist1h1d PE=1 SV=2

166 6826 P43274|H14_MOUSE 123.74 27 6 3 Acetylation (Protein N-term) 21977 Histone H1.4 OS=Mus musculus GN=Hist1h1e PE=1 SV=2

340 6828 P43276|H15_MOUSE 65.59 9 2 1 22576 Histone H1.5 OS=Mus musculus GN=Hist1h1b PE=1 SV=2

251 1825 P22752|H2A1_MOUSE 85.59 27 3 3 14135 Histone H2A type 1 OS=Mus musculus GN=Hist1h2ab PE=1 SV=3

251 1829 Q8CGP5|H2A1F_MOUSE 85.59 27 3 3 14162 Histone H2A type 1-F OS=Mus musculus GN=Hist1h2af PE=1 SV=3

251 1820 Q8CGP6|H2A1H_MOUSE 85.59 27 3 3 13950 Histone H2A type 1-H OS=Mus musculus GN=Hist1h2ah PE=1 SV=3

251 1826 Q8CGP7|H2A1K_MOUSE 85.59 27 3 3 14150 Histone H2A type 1-K OS=Mus musculus GN=Hist1h2ak PE=1 SV=3

251 1827 Q6GSS7|H2A2A_MOUSE 85.59 27 3 3 14095 Histone H2A type 2-A OS=Mus musculus GN=Hist2h2aa1 PE=1 SV=3

251 1823 Q64523|H2A2C_MOUSE 85.59 27 3 3 13988 Histone H2A type 2-C OS=Mus musculus GN=Hist2h2ac PE=1 SV=3

251 1830 Q8BFU2|H2A3_MOUSE 85.59 27 3 3 14121 Histone H2A type 3 OS=Mus musculus GN=Hist3h2a PE=1 SV=3

251 1824 Q8R1M2|H2AJ_MOUSE 85.59 27 3 3 14045 Histone H2A.J OS=Mus musculus GN=H2afj PE=1 SV=1

251 1831 P27661|H2AX_MOUSE 85.59 24 3 3 15143 Histone H2AX OS=Mus musculus GN=H2afx PE=1 SV=2

233 1799 Q64475|H2B1B_MOUSE 112.1 36 5 5 Oxidation (M) 13952 Histone H2B type 1-B OS=Mus musculus GN=Hist1h2bb PE=1 SV=3

167 6818 P68433|H31_MOUSE 61.95 20 3 3 Pyro-glu from E 15404 Histone H3.1 OS=Mus musculus GN=Hist1h3a PE=1 SV=2

167 6820 P84228|H32_MOUSE 61.95 20 3 3 Pyro-glu from E 15388 Histone H3.2 OS=Mus musculus GN=Hist1h3b PE=1 SV=2

167 6819 P84244|H33_MOUSE 61.95 20 3 3 Pyro-glu from E 15328 Histone H3.3 OS=Mus musculus GN=H3f3a PE=1 SV=2

167 6821 P02301|H3C_MOUSE 61.95 20 3 3 Pyro-glu from E 15315 Histone H3.3C OS=Mus musculus GN=H3f3c PE=3 SV=3

246 1791 P62806|H4_MOUSE 86.52 39 4 4 11367 Histone H4 OS=Mus musculus GN=Hist1h4a PE=1 SV=2

339 7957 Q61425|HCDH_MOUSE 52.99 9 3 3 Carbamidomethylation 34464 Hydroxyacyl-coenzyme A dehydrogenase  mitochondrial OS=Mus musculus GN=Hadh PE=1 SV=2

321 8962 Q8JZK9|HMCS1_MOUSE 63.98 10 3 3 Carbamidomethylation 57569 Hydroxymethylglutaryl-CoA synthase  cytoplasmic OS=Mus musculus GN=Hmgcs1 PE=1 SV=1

538 9047 Q2TPA8|HSDL2_MOUSE 43.49 3 1 1 Carbamidomethylation 54208 Hydroxysteroid dehydrogenase-like protein 2 OS=Mus musculus GN=Hsdl2 PE=1 SV=1

Protein Group Protein ID Accession -10lgP Coverage (%) #Peptides #Unique PTM Avg. Mass Description

384 15046 Q7TMK9|HNRPQ_MOUSE 83.2 6 3 3 69633 Heterogeneous nuclear ribonucleoprotein Q OS=Mus musculus GN=Syncrip PE=1 SV=2

284 8963 Q8VEK3|HNRPU_MOUSE 104.33 9 6 6 Carbamidomethylation 87918 Heterogeneous nuclear ribonucleoprotein U OS=Mus musculus GN=Hnrnpu PE=1 SV=1

286 15032 P17710|HXK1_MOUSE 100.23 7 6 6 Carbamidomethylation; Pyro-glu from Q 108303 Hexokinase-1 OS=Mus musculus GN=Hk1 PE=1 SV=3

220 7965 P10922|H10_MOUSE 119.81 31 7 6

Oxidation (M); Deamidation (N); Acetylation 

(Protein N-term); Deamidation (NQ) 20861 Histone H1.0 OS=Mus musculus GN=H1f0 PE=2 SV=4

61 6827 P15864|H12_MOUSE 159.14 38 12 2

Deamidation (N); Acetylation (Protein N-term); 

Methyl ester; Carbamidomethylation (DHKE  X@N-

term) 21267 Histone H1.2 OS=Mus musculus GN=Hist1h1c PE=1 SV=2

65 6825 P43277|H13_MOUSE 157.53 38 13 1

Deamidation (N); Acetylation (Protein N-term); 

Methyl ester; Carbamidomethylation (DHKE  X@N-

term) 22100 Histone H1.3 OS=Mus musculus GN=Hist1h1d PE=1 SV=2

50 6826 P43274|H14_MOUSE 169.26 42 15 3

Deamidation (N); Acetylation (Protein N-term); 

Methyl ester; Carbamidomethylation (DHKE  X@N-

term) 21977 Histone H1.4 OS=Mus musculus GN=Hist1h1e PE=1 SV=2

394 1825 P22752|H2A1_MOUSE 78.22 27 3 3 14135 Histone H2A type 1 OS=Mus musculus GN=Hist1h2ab PE=1 SV=3

394 1829 Q8CGP5|H2A1F_MOUSE 78.22 27 3 3 14162 Histone H2A type 1-F OS=Mus musculus GN=Hist1h2af PE=1 SV=3

394 1820 Q8CGP6|H2A1H_MOUSE 78.22 27 3 3 13950 Histone H2A type 1-H OS=Mus musculus GN=Hist1h2ah PE=1 SV=3

394 1826 Q8CGP7|H2A1K_MOUSE 78.22 27 3 3 14150 Histone H2A type 1-K OS=Mus musculus GN=Hist1h2ak PE=1 SV=3

394 1827 Q6GSS7|H2A2A_MOUSE 78.22 27 3 3 14095 Histone H2A type 2-A OS=Mus musculus GN=Hist2h2aa1 PE=1 SV=3

394 1823 Q64523|H2A2C_MOUSE 78.22 27 3 3 13988 Histone H2A type 2-C OS=Mus musculus GN=Hist2h2ac PE=1 SV=3

394 1830 Q8BFU2|H2A3_MOUSE 78.22 27 3 3 14121 Histone H2A type 3 OS=Mus musculus GN=Hist3h2a PE=1 SV=3

394 1824 Q8R1M2|H2AJ_MOUSE 78.22 27 3 3 14045 Histone H2A.J OS=Mus musculus GN=H2afj PE=1 SV=1

394 1831 P27661|H2AX_MOUSE 78.22 24 3 3 15143 Histone H2AX OS=Mus musculus GN=H2afx PE=1 SV=2

298 1799 Q64475|H2B1B_MOUSE 126.04 33 5 5 Oxidation (M) 13952 Histone H2B type 1-B OS=Mus musculus GN=Hist1h2bb PE=1 SV=3

298 1792 Q6ZWY9|H2B1C_MOUSE 126.04 33 5 5 Oxidation (M) 13906 Histone H2B type 1-C/E/G OS=Mus musculus GN=Hist1h2bc PE=1 SV=3

298 1797 P10853|H2B1F_MOUSE 126.04 33 5 5 Oxidation (M) 13936 Histone H2B type 1-F/J/L OS=Mus musculus GN=Hist1h2bf PE=1 SV=2

298 1796 Q64478|H2B1H_MOUSE 126.04 33 5 5 Oxidation (M) 13920 Histone H2B type 1-H OS=Mus musculus GN=Hist1h2bh PE=1 SV=3

298 1794 Q8CGP1|H2B1K_MOUSE 126.04 33 5 5 Oxidation (M) 13920 Histone H2B type 1-K OS=Mus musculus GN=Hist1h2bk PE=1 SV=3

298 1793 P10854|H2B1M_MOUSE 126.04 33 5 5 Oxidation (M) 13936 Histone H2B type 1-M OS=Mus musculus GN=Hist1h2bm PE=1 SV=2

298 1798 Q8CGP2|H2B1P_MOUSE 126.04 33 5 5 Oxidation (M) 13992 Histone H2B type 1-P OS=Mus musculus GN=Hist1h2bp PE=1 SV=3

298 1795 Q64525|H2B2B_MOUSE 126.04 33 5 5 Oxidation (M) 13920 Histone H2B type 2-B OS=Mus musculus GN=Hist2h2bb PE=1 SV=3

190 6818 P68433|H31_MOUSE 74.98 29 6 6 Oxidation (M); Pyro-glu from E 15404 Histone H3.1 OS=Mus musculus GN=Hist1h3a PE=1 SV=2

190 6820 P84228|H32_MOUSE 74.98 29 6 6 Oxidation (M); Pyro-glu from E 15388 Histone H3.2 OS=Mus musculus GN=Hist1h3b PE=1 SV=2

190 6819 P84244|H33_MOUSE 74.98 29 6 6 Oxidation (M); Pyro-glu from E 15328 Histone H3.3 OS=Mus musculus GN=H3f3a PE=1 SV=2

190 6821 P02301|H3C_MOUSE 74.98 29 6 6 Oxidation (M); Pyro-glu from E 15315 Histone H3.3C OS=Mus musculus GN=H3f3c PE=3 SV=3

237 1791 P62806|H4_MOUSE 108.38 55 6 6 Oxidation (M) 11367 Histone H4 OS=Mus musculus GN=Hist1h4a PE=1 SV=2

566 15084 Q9NYQ2|HAOX2_MOUSE 33.9 4 1 1 38700 Hydroxyacid oxidase 2 OS=Mus musculus GN=Hao2 PE=1 SV=1

283 7957 Q61425|HCDH_MOUSE 85.11 12 4 4 Carbamidomethylation 34464 Hydroxyacyl-coenzyme A dehydrogenase  mitochondrial OS=Mus musculus GN=Hadh PE=1 SV=2

562 15078 P01878|IGHA_MOUSE 34.73 8 2 2 36876 Ig alpha chain C region OS=Mus musculus PE=1 SV=1

397 237 P01867|IGG2B_MOUSE 49.5 6 2 2 Carbamidomethylation 44259 Ig gamma-2B chain C region OS=Mus musculus GN=Igh-3 PE=1 SV=3

278 247 P03987|IGHG3_MOUSE 96.55 13 5 4 Carbamidomethylation; Oxidation (M); Mutation 43929 Ig gamma-3 chain C region OS=Mus musculus PE=1 SV=2

137 727 P01872|IGHM_MOUSE 196.86 30 12 12 Carbamidomethylation 49972 Ig mu chain C region OS=Mus musculus GN=Ighm PE=1 SV=2
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Protective effects of empagliflozin (EMPA), the DPP-4 inhibitor sitagliptin (SITA) and 
the RAGE inhibitor FPS-ZM1 on cultured hyperglycemic human umbilical vein 
endothelial cells (HUVECs) 
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