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This thesis evaluated the potential clinical usefulness of assessing HDL function in the context 
of cardiovascular disease (CVD) using both cross-sectional and prospective approaches. CVD is 
the leading cause of death worldwide 1. CVD comprises diseases of the heart and blood vessels, 
including coronary heart disease (CHD), peripheral arterial disease and cerebrovascular disease 
2. Atherosclerosis is the main underlying pathology in CVD development and dyslipidemia is an 
important risk factor for atherosclerosis 3. Lipid abnormalities, including high levels of low-
density lipoprotein cholesterol (LDL-C) and low levels of high-density lipoprotein cholesterol 
(HDL-C), are associated with an increased risk of CV events. Interventions to reduce LDL-C have 
been successfully developed 4,5. However, these interventions often fail to reach the desired 
LDL-C concentrations, leading to a remaining risk for CVD 6-8. It is therefore essential to discover 
alternative approaches and to identify targets suitable for further CVD risk reduction. 
Increasing HDL-C concentrations was considered as such an alternative target to reduce CVD 
risk, as many prospective and epidemiological studies have confirmed that HDL-C is an 
independent predictor of incident cardiovascular events 9-11. However, trials which specifically 
targeted raising HDL-C levels failed to reduce CVD risk 12-14 .In addition, genetic studies 
demonstrate that life-long high or low HDL-C levels in the general population do not translate 
into the expected reduced or increased risk of CVD, respectively 15. Combined these data raised 
doubt in the whole concept of HDL as atheroprotective lipoprotein or, at least questioned, if 
HDL-C is the right biomarker to determine. Since HDL particles exert various atheroprotective 
properties independent of their cholesterol cargo, just measuring HDL-C might not accurately 
reflect the functional properties of HDL particles. Best known atheroprotective properties of 
HDL include cholesterol efflux capacity, anti-oxidative and anti-inflammatory functions 16-20. 
Therefore, targeting HDL functionality might be a preferable strategy for therapeutic 
intervention to reduce the CVD risk 21. However, before HDL function can be defined as novel 
therapeutic target, an improved understanding of the clinical value of different HDL 
functionalities is needed.  

The importance of laboratory measurement of HDL functionality 
HDL-C is a robust, consistent, and independent predictor for CVD 22 and, as such, has been 
included as a critical component in cardiovascular risk assessment tools both in Europe, e.g., in 
the PROCAM risk score, and in the US, reflected by the widely applied Framingham Risk Score 
4,23.  Several pharmacological therapies including niacin or cholesteryl ester transfer protein 
(CETP) inhibitors which aimed to elevate the cholesterol level of HDL, did not result in 
significant reduction in CVD events 12-14,24-26. This led to the conclusion that simply increasing 
HDL-C level may not be an effective strategy to reduce CVD risk 27. HDL functionality might be 
considered as a potential biomarker for CVD and consequently a novel therapeutic target. 21,28-

31 Patients with type 2 diabetes mellitus (T2DM) on maintenance hemodialysis are at a 
substantially increased risk of CVD 32-34. Dyslipidemia characterized by moderately elevated 
LDL-C, high triglycerides and low HDL-C level is common in this population. However, in this 
patient group, the relationship between classical risk factors and CVD is inconsistent. Thus, 
HDL-C level is not a good predictive biomarker of CVD, but it is possible that alterations in the 
functionality of HDL might contribute 35-37. Therefore, the study presented in chapter 2 
examined if cholesterol efflux as a key metric of HDL functionality is predictive for 
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cardiovascular risk and overall mortality in patients with T2DM on hemodialysis participating 
in the 4D (Die Deutsche Diabetes Dialyse) Study. In this study (chapter 2), it has been shown 
that in a large and sufficiently powered cohort of patients with diabetes and End Stage Renal 
Disease (ESRD) on hemodialysis, HDL efflux capacity is not associated with cardiovascular 
events or mortality.  These results extend previous observations that plasma HDL-C levels do 
not have a significant association with the risk of cardiovascular morbidity or mortality in ESRD 
38,39. However, our findings are in apparent contrast to the prevailing view in the cardiovascular 
field that, at least in cohorts with normal or only mildly impaired kidney function, the HDL 
cholesterol efflux capacity was associated with both subclinical atherosclerosis and obstructive 
coronary artery disease 28,29,40-42 For instance, in two larger prospective studies HDL cholesterol 
efflux capacity was inversely associated with cardiovascular events 28,29. Notably, this effect of 
a key metric of HDL function was independent of HDL-C and was, in addition, suggested to be 
an even stronger predictor for CVD events than HDL-C level 29,41,43. Although it should be noted 
that not all data on risk prediction by measuring cholesterol efflux are consistent with such a 
concept 44, specific characteristics of patients with ESRD may affect the outcome of the study. 
In the setting of renal failure, smaller cross-sectional studies indicated that anti-inflammatory 
44,45, anti-oxidative 45, or endothelial health-promoting activities of HDL 46 are impaired to a 
similar degree. Furthermore, previous results using the same experimental set-up to determine 
cholesterol efflux indicated that cholesterol efflux capacity is not associated with 
cardiovascular or all-cause mortality in kidney transplant recipients that uniformly suffer from 
renal function impairment 47. Possible reasons for the dysfunctional HDL in case of kidney 
disease could be due to modifications of the HDL particles such as oxidation, which negatively 
affects its anti-atherogenic properties and reverse cholesterol transport 48,49 and this could be 
accelerated by the presence of diabetes 44.  In fact, HDL of patients with renal disease carries a 
unique proteome and lipid composition linked to chronic systemic inflammation and 
potentially associated with a reduced anti-atherogenic ability of HDL 44. In the same regard, it 
has been shown that HDL of patients with ESRD has lost its anti-inflammatory property due to 
direct consequence of enrichment with the acute–phase protein serum amyloid A (SAA) 50. 
Subsequently, in this chapter (chapter 2), it was shown that SAA levels were significantly lower 
in patients with better HDL cholesterol efflux capacity. However, after correction for SAA, there 
was no significant correlation between cholesterol efflux capacity and SAA. Another result of 
this chapter was a potential effect modification of statin treatment efficacy depending on the 
HDL cholesterol efflux capacity despite the fact that the 4D study was not specifically designed 
to address such a question. It was shown that in patients within the first tertile of cholesterol 
efflux, atorvastatin reduced the risk for all cardiac events. It has been shown that atorvastatin 
had no statistically significant effect on the composite primary endpoint of cardiovascular 
death, nonfatal myocardial infarction, and stroke in the 4D study 51. However, these data 
suggest that HDL cholesterol efflux capacity might be useful as a potential tool to identify 
subgroups of patients with ESRD that could benefit from statin treatment. Another possible 
explanation for the lack of a prospective association of cholesterol efflux with events in the 4D 
study could be that the pattern of CVD in ESRD patients differs from that in the general 
population with a lower percentage suffering “classical” myocardial infarctions due to 
atherosclerotic CVD 52,53. Furthermore, the possibility cannot be excluded that CVD in the 4D 
patients had already advanced too far at the time point of inclusion making it less likely that a 
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better or worse HDL efflux capacity can still impact the further course of atherosclerosis. 
Clinical data on the impact of HDL efflux capacity or RCT during different stages of 
athetrosclerotic CVD are thus far lacking. Support for such a reasoning could come from 
previous work in renal transplant recipients (RTR), where the HDL efflux function had a 
significant effect on chronic graft loss 47. Chronic graft loss is mainly due to transplant 
vasculopathy, which is largely caused by de novo atherosclerotic lesion formation in the kidney 
graft 54,55. Here at the time point of transplantation arteries without atherosclerosis are 
subjected to a proatherogenic environment and HDL cholesterol efflux function can still have a 
beneficial effect. On the other hand, although less likely, it cannot be excluded that specifics of 
the experimental efflux system used in the present study precluded the identification of 
significant effects. This would require an evaluation of the predictive power of the current assay 
system in general population cohorts or other researchers using their J774 cells-based efflux 
system in ESRD or RTR cohorts. As mentioned previously the progressive reduction in kidney 
function is known to associate with a significant increase in CVD risk 56. Cardiovascular 
morbidity and mortality is increased up to 30-fold in patients with ESRD 57. Kidney 
transplantation is increasingly used to treat ESRD patients. However, RTR still suffer a 4-6-fold 
higher age-adjusted CVD mortality 58. Also, dyslipidemia is highly prevalent in RTR and, similar 
to ESRD, does not explain the increase in CVD risk 54,59,60. Similar to ESRD this clinical setting 
indicates that functional alterations of HDL could play a role. In addition, the pathophysiological 
mechanisms of CVD and chronic atherosclerosis-mediated graft failure are not fully clear 
38,39,61,62. In chapter 3 the predictive value of the HDL anti-oxidative capacity was examined for 
relevant long-term clinical outcomes in a prospective cohort of renal transplant recipients 
(RTRs). Our findings showed that in this prospective study, the anti-oxidative functionality of 
HDL is not a valid biomarker for CVD risk or all-cause mortality prediction.  However, before 
extrapolating these results to the general population we need to consider that the nature of 
CVD in RTR may be different. Myocardial infarction due to occlusion of the coronary arteries is 
the most common type of CVD in the general population 63, whereas RTR experience a high 
incidence of sudden cardiac death and heart failure. Additionally, uremic cardiomyopathy due 
to a progressive decline in kidney function may contribute substantially to cardiovascular 
mortality in pre-transplant ESRD and subsequently in RTR 64. However, still more prospective 
population-based cohort studies are warranted to clarify the value of HDL functionality in the 
prediction of cardiovascular events. In addition to cardiovascular and all-cause mortality, the 
study presented in chapter 3 examined whether the HDL anti-oxidative capacity at baseline (i.e. 
in patients with a functioning graft for more than one year) would be associated with future 
risk of chronic graft failure, since there is evidence that intragraft atherosclerosis plays an 
important role in the pathogenesis of chronic renal transplant dysfunction 65. Our results 
showed that baseline anti-oxidative functionality predicts graft failure in RTR in crude and age-
adjusted models. Unexpectedly though, a better anti-oxidative HDL function was associated 
with a higher risk of graft failure. A potential explanation could be that under conditions of a 
high oxidative stress and inflammatory load the HDL anti-oxidative properties increase and are 
thus just a mere reflection of an adverse environment rather than a pathophysiologically 
meaningful defense mechanism. Such an interpretation is supported by smokers having a 
significant increase in oxidative stress defense systems 66. Additional support could be derived 
from the observation that this correlation was lost once corrected for potential confounders, 
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most importantly eGFR and C-reactive protein (CRP). Both, a decline in kidney function and an 
increased inflammatory load are conditions of increased in vivo oxidative stress 67-70. Taken 
together, the HDL anti-oxidative functionality does not have the potential to serve as an 
independent predictive biomarker for chronic graft failure. Therefore, more research, also 
including other functions of HDL, will be required to define the prospective value of HDL 
function for clinical outcomes in RTR. As mentioned previously individuals with T2DM have an 
increased prevalence of lipid abnormalities that contribute to higher rates of CVD, and typically 
have low HDL-C and an increased chronic inflammatory load 71. Indeed, recent studies indicate 
that the age-adjusted relative risk of death as a result of CVD events is three-fold higher in 
T2DM patients than in the general population 72-77. Activation of endothelial cells has been 
shown to initiate an inflammatory response characterized by the release of chemokines and 
adhesion molecules that direct monocytes to the affected region of the vessel wall 78,79. An 
early step in this inflammatory process is the adhesion of monocytes to endothelial cells that 
have been injured or stimulated in the presence of oxidized or otherwise modified LDL to 
express several adhesion proteins, including vascular cell adhesion molecule-1 (VCAM-1), 
intercellular adhesion molecule-1 (ICAM-1), and E-selectin 80,81. The anti-inflammatory effects 
of HDL are thought to contribute to the protection from cardiovascular events 48. One study 
showed e.g. that glycation of HDL adversely affects the anti-inflammatory properties of HDL in 
vivo in a preclinical model 82.  In chapter 4 we aimed to investigate whether T2DM impairs the 
HDL endothelium protective function (HDL anti-inflammatory capacity) and to delineate 
potential factors that impact on this metric of HDL functionality. Interestingly, the anti-
inflammatory capacity of HDL was strongly impaired in the T2DM patients compared with 
controls. This occurred apparently early in the course of T2DM, since the patients had generally 
a good metabolic control. Consistent with the concept that glycation impacts HDL function, an 
impaired HDL anti-inflammatory capacity was related independently with plasma glucose levels 
82. Thus, it is possible that the impaired anti-inflammatory functionality of HDL contributes to 
the increase in the risk of atherosclerotic CVD associated with T2DM 48,83-85. The finding of one 
previous study demonstrated that judged by a so-called HDL inflammatory index, HDL in 
patients with diabetes not only has lost its anti-inflammatory activity but it exerts even a pro-
inflammatory activity 86. SAA is a sensitive marker of inflammatory states and released in 
response to inflammation or infection 87-89. Production of SAA is stimulated by pro-
inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) 89,90. In plasma, circulating SAA 
is almost exclusively found within the HDL fraction 91,92. With respect to SAA, one study showed 
that patients with T2DM have a chronic inflammatory condition that is characterized not only 
by increased levels of SAA but also with the loss of the anti-inflammatory and antioxidant 
function of their HDL. Moreover, this work found a significant correlation between HDL 
inflammatory index values and SAA concentrations 93. Thus, the enrichment of HDL with SAA 
was suggested to explain decreased anti-inflammatory properties of HDL. However, in this 
chapter no significant association of SAA with the impaired HDL anti-inflammatory function was 
found. The absence of an independent association of the HDL anti-inflammatory function as 
observed in this study could have been due to the preferential inclusion of patients with good 
metabolic control of T2DM and relatively little systemic inflammation as compared to other 
cohorts. It has been suggested that CRP may contribute to the inflammatory process. Human 
recombinant CRP has been reported to increase induced VCAM-1, ICAM-1, and E-selectin in 
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some in vitro studies 70,94. However, all of this work has been called into question by the 
preparation procedures of the recombinant CRP used in these respective studies; when using 
native human CRP isolated from plasma of donors, none of these effects could be replicated 95. 
Alterations in HDL function could be related to various changes in HDL composition induced by 
inflammation 96. The results in chapter 4 demonstrated that there was an association of 
impaired HDL anti-inflammatory capacity with the low-grade inflammatory marker hs-CRP 
(high-sensitivity C-reactive protein). The impaired anti-inflammatory activity of HDL might be 
the result of chronic hyperglycemic exposure. It was shown that this function of HDL was 
associated with fasting plasma glucose as well as glycated hemoglobin (HbA1c) 97,98. Previously, 
our group showed in a limited number of patients that an impaired anti-inflammatory function 
of HDL predicts recurrent CVD events in myocardial infarction patients 99, but still large 
prospective studies would be required to explore the impact of this metric of HDL function on 
the future development of CVD in T2DM. In conclusion, the results of chapter 4 were consistent 
with the concept that T2DM exerts a substantial negative impact on the anti-inflammatory 
function of HDL, and this important metric of HDL function was already decreased even in mild 
hyperglycemia conditions.  Only few studies so far have investigated more than one HDL 
function in a clinical setting at a time, however, it is still unknown whether measurement of 
one particular atheroprotective property of HDL is sufficient or more than one function of HDL 
should be evaluated. Therefore, in chapter 5 three main HDL functions (cholesterol efflux, anti-
oxidative and anti-inflammatory properties) were assessed in patients with high estimated risk 
for coronary events participating in the PROCAM-CT study. However, no significant relation 
between HDL functionalities with PROCAM risk score, intima-media thickness (IMT), or 
Agatston score was found. It has been shown that coronary artery calcification (CAC) and IMT 
associated with future risk of cardiovascular diseases and they could be used as a predictor for 
future CVD risk 100,101. Another study indicated that the CAC score is a strong predictor of CVD 
incidence, and might provide predictive information beyond the traditional risk factors in 
different ethnic groups 102. In another study by Uthoff et al., sonographic measurement of the 
IMT in the common carotid artery was carried out and PROCAM risk scores were calculated; no 
correlation was found between PROCAM risk score and baseline IMT 103. Thereby, it leaves the 
question if IMT is a good prediction factor in relation to the PROCAM risk score. Larger 
comparative studies would help to address this question. In this study (chapter 5) a positive 
relationship between HDL cholesterol efflux with total cholesterol, HDL-C, and apoA-I was 
observed, however, anti-oxidative and anti-inflammatory of HDL did not have any relationship 
with these measurements. Based on literature, the correlation of efflux with HDL-C and apoA-
I is to be expected 29,40,47.  Furthermore, in this chapter, none of the three HDL functionalities 
determined was associated with PROCAM risk score in this high-risk study population. In 
principle, these results indicate that independent clinical information can be derived from 
measuring HDL function as compared to the PROCAM risk score. If determining HDL 
functionality discriminates actual risk for individual subjects better or worse than the PROCAM 
score can, however, not be decided based on the cross/sectional set/up of the current study. 
Future prospective studies would be required to specifically investigate this clinically relevant 
question. The basis for an observed lack of correlation between HDL function and PROCAM risk 
score might also be due to a relatively uniform impairment of HDL functions in this specific 
patient group, although a substantial spread in the experimental data was noted. Some 
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previous studies showed that significant differences in the functional properties of HDL may 
exist between patients and healthy control subjects 104,105. For instance, it has been shown that 
HDL from acute coronary syndrome patients is defective and was not able to suppress TNF-α-
induces VCAM-1 expression in endothelial cells 106.  Thus far, only with respect to cholesterol 
efflux capacity prospective data in the general population 28 and secondary prevention settings 
107 have been generated. Of note, all available literature was generated with the use of one 
assay system. Still, not every study could confirm a prospective inverse association of efflux 
capacity with CVD risk, since even an inverse relationship was reported 108. Overall, despite 
considerable evidence for functional impairments of HDL in clinically relevant settings of CVD, 
further large prospective studies are still warranted to shed light on the complex relationship 
among HDL functionality, HDL-C mass, and their clinical significance in risk-prediction or risk-
modification in patients at high baseline risk for cardiovascular diseases. Such studies should 
ideally also include the determination of different HDL functionalities within one cohort as 
exemplified in the current chapter. 

Potential clinical applications of HDL function assays 
Measurement of HDL biological activities might help to define patients at increased risk of CVD. 
Cholesterol efflux capacity is viewed as a reflection of the efficiency with which HDL accepts 
cholesterol from peripheral tissues, most directly relevant for atherosclerosis from lipid-laden 
macrophage foam cells in the artery wall. This process represents the initial step of reverse 
cholesterol transport. In brief, cholesterol is removed in an interaction between HDL and the 
ABCA1, ABCG1 and SR-B1 transporters 109. Therefore, a better understanding of this pathway 
may lead to new therapeutic targets in the prevention or cure of atherosclerosis. Chapter 2 and 
5 of this thesis described research carried out on this specific metric of HDL in our aim to 
provide improved insights. Furthermore, anti-oxidative capacity of HDL can be impaired in 
several metabolic and inflammatory diseases 110. HDL is associated with several anti-oxidant 
enzymes, such as paraoxonase 1 (PON1) and lipoprotein associated phospholipase A2 (Lp-
PLA2) 111,112. Thus, HDL plays a significant role in the prevention of lipid oxidation in LDL, a key 
consequence of oxidative stress and inflammation which leads to the formation and 
progression of atherosclerosis. Chapter 3 and 5 focused on measuring this function of HDL in 
patients with different diseases. Chronic kidney disease (CKD), including ESRD, patients are at 
high risk of CVD, which remains the major cause of morbidity and mortality in these patients’ 
populations. Several factors are involved in the pathogenesis of atherosclerosis and CVD in 
these patients. These include oxidative stress, inflammation, endothelial dysfunction, vascular 
calcification and dyslipidemia 113. Understanding the mechanisms responsible for HDL 
dysfunction are critical steps in inventing new effective therapies aimed at improving HDL 
function. Therefore, in Chapter 3 we aimed to evaluate the anti-oxidative function of HDL in 
renal transplant patients.  
HDL has the ability to inhibit endothelial cell adhesion molecules such as VCAM-1 which 
facilitate the binding of mononuclear cells to the vessel wall and promote lesion development. 
HDL inhibits expression of cytokines such as TNF-α which mediate upregulation of endothelial 
adhesion molecules. The anti-inflammatory ability of HDL to inhibit adhesion molecule 
expression might be mediated by ApoAI and sphingosine-1- phosphate 28,29,47,107,108,114,115. 
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Therefore, there is a clear need for large prospective cohort studies to definitively prove a 
causal relationship between distinct aspects of HDL dysfunction and the risk of future 
cardiovascular events. To contribute to this important point, the association of HDL anti-
oxidative capacity at baseline with future cardiovascular mortality, all-cause mortality, and 
graft failure was prospectively assessed in a cohort study of 495 RTRs (chapter 3). In addition, 
in chapter 2 the baseline HDL cholesterol efflux capacity was assessed in 1147 ESRD patients 
with diabetes (4D Study), a prospective study originally designed to explore the efficacy of 
atorvastatin treatment in patients with T2DM on hemodialysis.  

Conclusion and future directions 
Despite a number of studies addressing functional aspects of HDL, the importance of HDL 
functionality for cardiovascular risk is still largely unknown. The research described in this 
dissertation helps to better understand how HDL functionalities can be measured in order to 
gain further insight into the relationship between HDL functions and the risk of CVD. However, 
there are many areas that warrant further research. 
Cholesterol efflux capacity might be useful as a potential risk assessment to identify subgroups 
of patients with ESRD that could benefit from statin treatment (chapter 2). Otherwise, 
cholesterol efflux does not appear useful to predict CVD mortality in settings of impaired kidney 
function. Also, the anti-oxidative capacity of HDL was not helpful in predicting future 
cardiovascular or all-cause mortality in patients with decreased kidney function, namely RTRs. 
It also proved to have only a very limited value to predict graft failure in this group of patients 
(chapter 3). Still studies exploring if the anti-oxidative capacity of HDL is a predictor of CVD in 
the general population need to be conducted. T2DM relatively early in the course of the disease 
exerts a substantial negative impact on a critical atheroprotective function of HDL. Here, 
prospective studies are urgently needed, since the anti-inflammatory function appears to be a 
very sensitive metric. In addition, the independent association of the anti-inflammatory 
capacity of HDL with hyperglycemia stresses the importance of tight metabolic control in T2DM 
(chapter 4). Overall, these findings indicate that important information can be derived from 
measurements of HDL functionality with respect to different forms of CVD. However, there is 
still a lack of uniformity of procedures for the determination of HDL functionality across 
laboratories. As HDL functionality is an emerging topic of interest for both clinicians and 
researchers, there is an increased need to improve standardization of assays for HDL 
functionality. For instance, standardized HDL isolation and characterization methods need to 
be developed. Also, different assay conditions for the same HDL function need to be compared 
with respect to their clinical relevance.  Ultimately, the question whether HDL functionality can 
predict future cardiovascular events in the general population remains unanswered. Therefore, 
future large prospective cohort studies are required to conclusively test a potential causal 
relationship between HDL functionality and disease. 
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