
An Effective Retrieval Approach for Documents
related to Past Civil Engineering Projects

Christian Esposito
Department of Electrical Engineering and

Information Technology (DIETI)
University of Naples “Federico II”

Napoli, Italy
christian.esposito@unina.it

Oscar Tamburis
Department of Veterinary Medicine
and Animal Productions (DMVPA)
University of Naples “Federico II”

Napoli, Italy
oscar.tamburis@unina.it

Abstract—During the practice of a public administration or a
company, a large volume of documents are typically produced.
The recent dematerialization efforts have been pushing the way
for a digital form of these documents, so as to make their man-
agement more efficient. But, traditional document management
systems entail many non-value adding activities such as printing,
transport and archiving these documents, making the retrieval of
information extremely cumbersome, especially by users without a
computer science degree. The research community is putting a lot
of attention to realise effective and easy-to-use search capability.
This paper investigates such a problem within the context of a
document management system for past civil engineering projects,
and proposes a solution to offer advanced document retrieval
capabilities without demanding a strong background in computer
science.

Index Terms—Information Systems, Information Retrieval, Doc-
ument Management Systems, Inverted Index

I. INTRODUCTION

The dematerialization process undergone in the nineteens has
paved the way for the proliferation of informative systems
within every aspect of our life and society. Nowadays, this
is further boosted by the availability and pervasiveness of
Internet, strengthening the exchange of digital documents
and further promoting the adoption of ICT solutions within
several various application domains. The latest context where
such a digital revolution is taking place is the civil en-
gineering, where at the beginning we have witnessed the
proliferation of Computer-Aided Drafting (CAD) tools [1] able
to substitute manual drawing with electronic drafting when
designing building, maintenance system or interior design.
The next step has been represented by the arrival of the
Building Information Modeling, or BIM [2], which targets the
creation and management of digital representations of artefacts
and support the plan, design, construction, and maintenance
of diverse physical infrastructures. By its definition, such
a standard provides architects and civil engineers with a
shared knowledge resource for information about any kind of
facilities, thus forming a reliable basis for decisions during
its life-cycle. At the moment, another revolution in Europe,
but also similarly in the rest of the world, is undergoing with
the EU Directive 2014/24/EU on public procurement [3], and

the relative regulation issued by the State Members, as of the
adoption of digital representations in open formats, like BIM,
for the design of civil infrastructure and the submission of
responses to call-for-tenders by means of certified emails. This
is considerably boosting the dematerialization of all civil en-
gineering documents for public procurement and augmenting
the volume of digital data held by such a kind of companies.

Offering only storage capabilities of these digital documents
is meaningless if it is not coupled with a proper retrieval
functionality. In fact, such a large volume of documents can
represent an added-value for a company if knowledge can be
inferred out of it to support and improve the competitiveness
of the company. Specifically, when a call-for-tender is issued
by a public authority, the time left for writing a response is
extremely limited and can be properly spent if a draft can be
quickly obtained by using the past proposals and the lesson
learnt from participating to past call-for-tender. Specifically, it
should be possible to re-use past similar documents, according
to a similar approach put in place for the re-use within the
context of software engineering [4]. To this aim, it is extremely
important to find all those past documents within the company
knowledge base that are somehow related to the call-for-tender
of interest and can be exploited to write a first draft of a
proposal. However, currently this is not possible as many
storage approaches have not been designed for retrieval but
only for conservation and historical reasons. Moreover, such
documents are not kept at a main server of the company or
within the cloud, but at the terminal of each employee so that
their existence is not well known by the rest of the company
and their accessibility is not guaranteed. Furthermore, current
information systems require a solid background on computer
science in order to express effective query strings to look for
documents in a proficient manner. However, many potential
user of such solutions in the context of civil engineering, are
not well educated in computer science and not able to use
advanced and expressive document retrieval solutions.

Within the context of a research project called PROBIM, a
proper data management solution for the documents related to
a participation to a call-for-tender of interest has been designed
and implemented as a series of RESTful Web Services [5],

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio della ricerca - Università degli studi di Napoli Federico II

https://core.ac.uk/display/211054859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

so that the explicit use of the HTTP methods can be used
to implement the ”create, read, update, and delete” (CRUD)
operations for the digital documents for past civil engineering
projects or tender responses. We have found, as described in
Section II that the best strategy for the storage of such a kind of
data set is a Content Management System (CMS) as Alfresco.
However, Alfresco support a SQL-like query language, which
is not expressive for the document retrieval as it leverage on a
term-matching strategy, and is tedious and uneasy to be used
by a non computer science degree holder. The documents
of our application context of interest are written in natural
language, without a previous codification of the terminology,
so it is probable to have within the meta-data describing them
various synonymous. A term-matching as SQL may lose some
document if the term used in the query is singular, but the one
in the document description is in its plural form and so on. A
more advanced approach in order to have a semantic search
by overcoming the obstacles put in the way by the use of
singular/plural forms of a term or even their synonymous is
demanting, without further exacerbating the learning and use
of such an approach by non computer science skilled users.
Section II also describes our consideration of such an issue
and the proposed solution based on the index of Lucene and
the support offered by Solr. On top of Alfresco and Solr, we
have built our system, whose design and implementation is
detailed in Section III, while Section IV concludes our paper
with the sum up on our research conducted so far.

II. RELATED WORKS

A series of documents are generated while writing a response
to a call-for-tender, and the response itself is composed of
multiple documents, where the technical design of a building
or a maintenance system is the core document, but there
are other additional documents with the economic offer, the
work scheduling, the company description, and so on. All
of these documents have multiple formats and have been
created by different computer applications, spanning from files
produced in Microsoft Office (Word is used to write DOCX
documents for the administrative part, and Excel used for
datasheets containing the economic offer), to PDF or PNG
files (containing the administrative/financial documents being
printed, signed and scanned). The documents for the technical
part of the tender response are made of digital representations
of a given civil engineering design produced by a CAD tool,
which can have a binary encoding (each tool adopts a given
format), a structured format derived from XML and so on,
or given Image formats as PNG, JPG or even various vector
graphics formats.

Traditionally, such an heterogeneous set of files and digital
documents are stored in folders within the file systems of the
terminals and/or servers assigned to each employee, with a flat
organization where each folder contains all the documentation
for a given project/tender response, or a deep organization
where the folders have a hierarchical structure (for example

a first level divided in years, a second one in classes of
project/tender responses, and a third one distinguishing among
won and lost applications). This is a naive solution whose main
advantage is to be very simple to define, even by operators
within a computer science major. The main drawback, on the
other side, is related to the difficulties when a specific docu-
ment needs to be retrieved, as it demands to traverse the overall
structure, open each file and check if its content matches the
terms of interest. Moreover, all the data of interest for a given
project or tender response initiative are not only contained
in the produced documents, but also in a set of contextual
information and meta-data within the employees’ notes and
discussions. These meta-data cannot be stored by using such
a solution, but on the contrary they can be easily kept within a
relational database. Such a solution is associated with a well-
structured and expressing query language that helps to retrieve
the data of interest by using a precise query expression, which
requires operators having a solid background in computer
science. Within the tables and tuples, the meta-data can find
place, but relational database are not suitable when dealing
with files, unless each tuple contains a pointer (such as the
file absolute path within the file system) to the file related
to the meta-data contained in such a tuple. This requires the
user to be aware to keep such a pointer consistent in case
of file movements. A Content Management System, on the
contrary, represents a hybrid solution among the previous ones:
as the first approach, files are contained within hierarchy of
folders managed by the file system; while as the second one a
relational database with meta-data per each file is defined. The
CMS products keeps the two sides of the systems consistent
so that by querying the meta-data it becomes possible to
retrieve the files of interest. In our envisioned system, we
have used a CMS product named Alfresco [6], and on top
of it we have designed and implemented our solution. The
interaction between Alfresco and our software can occur
by means of Alfresco’s API, but we have preferred to use
the standard interface offered by the Content Management
Interoperability Services (CMIS) [7], which is a standard for
the interoperability with CMS, so that if we decide in the
future to substitute Alfresco with another similar product we
do not have to make any changes to our system. CMIS defines
in fact an abstraction layer for controlling diverse document
management systems and repositories using web protocols,
such as REST, AtomPub and so on, which any product like
Alfresco implements.

By considering the retrieval of documents, Alfresco and CMIS
support a query language whose syntax and semantics is
compliant with SQL-92, so that documents are find by means
of a term-matching query. A concrete example of this kind
of retrieval approach is the following one, where the user
is interested to look for all the documents stored within the
repository managed by Alfresco with a title equal to “hello
world:

SELECT *
FROM cmis:document

WHERE cmis:name = ’hello world’

Unfortunately the document with title “hello my world or the
one with “hi world, and/or all the possible other variants are
not retirned as result of this query. To have a more expressive
query, a more complex syntax has to be used, but this is
particular cumbersome to non-skilled users or those who are
not aware of the meta-data modelling determined for the
Alfresco repository. It would be more desirable to allow the
user to get more results with queries, even with extremely
simple keywords. This means returning documents that have
slight linguistic variations or synonyms of search terms. In an
SQL query for a relational database, a tuple satisfies the query,
or not, and the result of a query contains only those tuples that
satisfy the search criteria, in an order given by the values in a
given column. It would be more desirable to have the results
of a search containing the documents that somehow satisfy the
search terms, sorted according to the degree of satisfaction.

A classic approach to semantic searches leverages on domain
ontologies in order to model the semantics of terms and
entities within a given domains by indicating their attributes
and relationships, so as to expand the meaning of a particular
concept provided as input for a given query. The use of domain
ontologies [8] is commonly used in enterprise tools in order to
obtain semantic capabilities, and within the context of the BIM
standard we can find a proper domain ontology representing
knowledge interactions (push/pull) between BIM players, their
deliverables and requirements, but ontologies exhibit also
drawbacks. Mainly, when a domain ontology is missing, it is
extremely difficult to turn specialised domain knowledge (con-
tained in textual document or domain experts) into ontologies,
as it demands abstract and effective concept representations. In
fact, domain knowledge is typically uneasy to be understood,
and contain a lot of contradictions or misinterpretations. More-
over, ontologies fails to perfectly represent synonymy, and the
existing tools for building ontologies exhibit a quite heavy
learning process making the process of building an ontology
quite a time-consuming and discouraging activity for users not
holding a computer science degree. Last, expressing semantic
queries by using an interrogation language for ontologies, such
as SPARQL [9], can be extremely complex.

PREFIX bim:<"http_ref">
SELECT ?Location
WHERE {

?document bim:Location ?location;
bim:Description ?y .

FILTER regex(?y, "YOUR_REGEX", "i") }

where http ref is the location of the OWL file with
the BIM ontology, which can be equal to http://ifcowl.
openbimstandards.org/IFC4\ ADD2\#, YOUR REGEX must
be an expression of the XQuery regular expression language,
and i is an optional flag, meaning that the match is case
insensitive. For these reasons we have not exploited ontologies
is our work, but they can be integrated in a future possible
extension of this study.

File System Database

Application Server

Alfresco.war

share.war

DocMan.war

Web Clients

Solr.war

Solr Cores
(Indexes)

JWT_Manager.war

Identities

Fig. 1: High-level architecture of the proposed system.

III. PROPOSED APPROACH

Figure 1 depicts the main modules and components of our
prototype for the proposed solution, where we have the file
system storing the documents of the company, the database
holding the relative meta-data for the SQL-like search of the
documents based on a set of defined properties, and the set of
indexes determined by Solr/Lucene from the document content
and properties.

A. Document Management

The Alfresco solution is provided as a war file executed by the
web container represented by Apache Tomcat. Such a product
provides a management and user console represented by the
share.war, so that all the functionalities of the product can be
directly invoked by authorised administrators and users, while
we have the DocMan.war implementing all the operations of
our system (such as the CRUD operations for the kind of
documents managed by the system), exposing a RESTful web
services implemented within the .NET framework, using JSON
as data format, and providing a set of web pages as GUI for the
web clients. Figure 2a shows the realised web pages as GUI of
our implemented web services, and Figure 2b shows the form
for the insertion of a new document filled with some testing
text. Figure 2c shows that the new document is eventually
available within the repository managed by Alfresco.

(a) Implemented GUI for the implemented RESTful web ser-
vices.

(b) Example of the use of the prototype to insert a new
document.

(c) Check the presence of the new document in Alfresco.

Fig. 2: Prototype testing (local GUI in Italian).

B. Efficient Search

A better solution than ontologies or the SQL-like query
language of CMIS (and Alfresco) is to allow users to get a
query back as a set of documents, together with a set of tools
that allow them to refine their search. This search mode is
called faceted search [10], which is a technique that involves
improving traditional research techniques by applying multiple
filters based on the multi-faceted classification of the elements.
A particular power and widely known solution within such a
kind of search approach is the solution provided by Lucene,
a Java library to build and manage an inverted index [11]
by writing a proper application or using the RESTful web
services offered by Solr [10], as done in our work. Such an

Field Id
Sequence Id Term Document Frequency Posting List
0 a 1 1 : 1 : [1] : [0-1]
1 b 1 2 : 1 : [1] : [0-1]
2 c 1 0 : 1 : [1] : [0-1]

Field title
Sequence Id Term Document Frequency Posting List

0 building 2 0 : 1 : [1] : [0-7]
2 : 1 : [1] : [0-7]

1 technical 1 0 : 1 : [2] : [9-17]

2 design 2 0 : 1 : [3] : [19-24]
2 : 1 : [3] : [19-24]

3 maintenance 1 1 : 1 : [1] : [0-10]
4 system 1 1 : 1 : [2] : [12-17]
5 restoration 1 2 : 1 : [2] : [9-19]
6 plan 1 2 : 1 : [3] : [21-24]

TABLE I: Inverted Index Example

index resembles the index we can find at the end of a book
and consists into an index data structure (stored in the disk for
durability) holding a mapping from content, such as words or
numbers, to its locations in a database file, or in a document
or a set of documents. To have a better understanding of this
concept let us consider three simple documents, which can
be the instances of the meta-data associated to the digital
documents managed by Alfresco:

Doc0
{ id:c,

title:building technical design
},
Doc1

{ id:a,
title:maintenance system design

},
Doc2

{ id:b,
title:building restoration plan

},

The inverted indexes for these three documents are represented
in Table I, where the first column is a progressive sequencing
of the analysed terms, contained in the second column. The
third column contains the term frequency, while the second one
indicates where in each document the term is present (e.g., 0 :
1 : [1] : [0-7] means the term is present in the first document,
with a frequency equal to 1, and is the second term in the
selected field, starting as the first character and finishing with
the seventh one). The indexes are built by pre-processing the
terms in the documents by removing special characters, stop
word, punctuation and applying a given stemmer (in linguistic,
stemming consists in reducing inflected (or sometimes derived)
words to their word stem or base). Lucene has its own query
language (with possibility of term searching in a field of the
document or all of them, a set of boolean operators, or special
features such as jolly characters, fuzzy search, proximity
search and so on), and uses a combination of the Vector Space

Model (VSM) of Information Retrieval and the Boolean model
to determine how relevant a given Document is to a User’s
query. In general, the idea behind the VSM is based on a
variant of the Term Frequency-Inverse Document Frequency
(TF-IDF) named as Classic Lucene Relevancy Algorithm to
check the similarity of a document to a given query, which
is basically equal to the more times a query term appears in
a document relative to the number of times the term appears
in all the documents in the collection, the more relevant that
document is to the query. It uses the Boolean model to first
narrow down the documents that need to be scored based on
the use of boolean logic in the Query specification. Such an
approach is extremely simple and do not require a specific
background on computer science. As a concrete example, if
we want to search for a document with ’building’ in its title
we just have to write title:building, if we want the document
with a title containing ’building’ but not having ’plan’ we have
to write title:building -title:plan, or to find document whose
title contains ’building’ and ’plan’ within 4 words among them
(example of proximity search) we have to write title:“building
plan”˜4. It is possible to notice that it is very intuitive to write
these queries.

DocMan.war in Figure 1 offers also query capabilities, where
the interrogation string can be formalised according to the
SQL-like query language provided by Alfresco and supported
by the CMIS standard, and the custom query syntax of
Lucene, with is not included in CMIS, for querying its indexes
managed by Solr. The consistency between the documents
in Alfresco and the indexes in Solr is kept by a continu-
ous interaction among them, with occurs without any user
intervention. When DocMan.war received an SQL-like query,
this is directly passed to Alfresco.war thanks to the CMIS
endpoint, while a Solr query can be passed to a specific search
service of Alfresco.war, which is not compliant to the CMIS
standard and interacts the Solr implementation and returns the
obtained outcome, or directly to Solr (as we have preferred
to do). The interaction with Solr returns a series of DBID,
which represent the internal identifiers that each document
has in Alfresco. Subsequently, Alfresco is interrogated in
order to obtain the cmis:objectID values, corresponding to the
various DBIDs returned by Solr. Given these cmis:objecID, a
CMIS query is formulated by DocMan.war to have back the
identifications inserted by the users for the calls or documents
within Alfresco. Such an interaction for the execution of the
Solr query is depicted in Figure 3.

Our prototype has a set of coded queries for which the user
has to specify the values to assign to the various parameters
of the queries, but also gives the freedom to directly insert
the query expression according to the CMIS or Solr syntax,
as shown in Figure 4. By running similar queries (looking
for documents by their title, types or content and so on) over
a similar computing equipment, we noticed that Solr/Lucene
handles these queries at least 5 times faster than the SQL-like
query capabilities of Alfresco.

Fig. 3: Solr query implementation.

Fig. 4: Query inserting with the GUI.

C. Security Aspects

The interactions of the user with the RESTful web services
of our solution needs to be protected from possible misuses
and abuses. Implement an authentication and authorization
mechanism is the first possible means to guarantee an adequate
protection level, so that only legitimate users can invoke the
provided operations. Within the context of the web services,
the WS-Security standard [12] indicates the mechanisms to
be used in such a case by having the Security Assertion
Markup Language (SAML) for expressing the identity and
security claims to be exchanged within the SOAP header of
messages between parties (e.g., requester and web service),
the eXtensible Access Control Markup Language (XACML)
for modelling the authorisation policies and an architecture
of the authorization solution, or WS-Trust for disciplining the
trust relationships between participants in a secure message
exchange (just to name some of widely known standards).
In our solution, we have preferred to use JSON Web Token
(JWT) [13] given its simplicity and stateless nature. The users
provide its credential as username and password to the server
(but more complex claims are possible), which checks if they
are present in its identity storage and returns a token in
case of success. The adopted model is, therefore, the Access
Control List (ACL) [14], where we can find which users are
granted access to objects/functionalities of the system (but
more advamces access control models are still possible by
integrating solutions such as XACML or similar ones). Later
on, when requesting a HTTP method, the token is inserted

Fig. 5: Client-Server interactions with JWT.

in the SOAP header of the request, and the server grants the
access to the incoming requests with valid tokens. Figure 5
shows such interaction. To this aim, the architecture in Figure 1
contains an additional war, named JWT Manager.war, offering
the functionalities of managing the identities, requesting token
by giving a valid couple of username and password, checking
the validity of a given token, revoke the grant for a given user.
It is evident that all our services strongly interact with such
an additional set of RESTful web services so as to decide to
grant or deny a received request.

IV. LESSON LEARNT

This paper described the work to manage and search doc-
uments produced during the practice in a civil engineering
company when participating to a project and/or responding to
a call-for-tender issues by a public administration, but can be
easily used in a similar application context, from the healthcare
to the manufacturing industry, where unstructured documents
must be stored and queried. By exploiting the most effective
technologies of Alfresco as the document management system
and Lucene/Solr as effective and efficient query system, we
have designed and implemented a series of RESTful service
in .NET supporting the CRUD and query functions to deal with
the life cycle of these documents. As a future work, we aim at
extending our solution with with semantic services in addition
to the capabilities offered by Lucene/Solr. Our driving idea is
to exploit Apache Stanbol [15] to extract features from passed
content, integrating an ontology-based reasoner and modelling
the knowledge contained in the managed documents.

ACKNOWLEDGMENT

The described work has been partially supported by the
PROBIM research project, funded by the Italian Ministry of
Economic Development within the context of Horizon 2020 -
PON I&C 2014-20.

REFERENCES

[1] W. J. Luzadder, “Introduction to engineering drawing: The foundations
of engineering design and computer aided drafting,” in Prentice Hall
PTR, 1992.

[2] C. Eastman, P. Teicholz, R. Sacks, and K. Liston, “Bim handbook - a
guide to building information modeling for owners, managers, designers,
engineers and contractors,” in John Wiley & Sons Inc, 3rd edition, 2018.

[3] EUR-Lex, “Directive 2014/24/eu of the european parliament and of
the council of 26 february 2014 on public procurement and repeal-
ing directive 2004/18/ec text with eea relevance,” in D. Available
on line at https://eur-lex.europa.eu/ legal-content/EN/TXT/?uri=celex\
%3A32014L0024, 2014.

[4] R. Land, D. Sundmark, F. Lüders, I. Krasteva, and A. Causevic, “Reuse
with software components-a survey of industrial state of practice,” in
International Conference on Software Reuse, 150-159, 2009.

[5] L. Richardson and S. Ruby, “Restful web services,” in O’Reilly Media,
2007.

[6] M. Shariff, A. Bhandari, and P. M. V. Choudhary, “Alfresco 3 enterprise
content management implementation,” in Packt Publishing, 2009.

[7] OASIS, “Content management interoperability services (cmis) - ver-
sion 1.1,” in Available at http://docs.oasis-open.org/cmis/CMIS/v1.1/
CMIS-v1.1.html, 2015.

[8] I. Durán-Muñoz and M. R. Bautista-Zambrana, “Applying ontologies
to terminology: Advantages and disadvantages,” in Hermes-Journal of
Language and Communication in Business, vol. 51, 2013, pp. 65–77.

[9] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of
sparql,” ACM Transactions on Database Systems (TODS), vol. 34, no. 3,
p. 16, 2009.

[10] T. Grainger and T. Potter, Solr in action. Manning Publications Co.,
2014.

[11] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in action:
covers Apache Lucene 3.0. Manning Publications Co., 2010.

[12] Atkinson, B. et al., “Web services security (ws-security). specification,”
in Available at https://www.it.iitb.ac.in/∼madhumita/research topics/
authentication/WS\%20Security.pdf , 2002.

[13] M. Jones, J. Bradley, and N. Sakimura, “Json web token (jwt). no. rfc
7519,” in Available at https:// jwt.io/ , 2015.

[14] J. Barkley, “Comparing simple role based access control models and
access control lists,” in Proceedings of the second ACM workshop on
Role-based access control, 1997.

[15] R. Bachmann-Gmur, Instant Apache Stanbol. Packt Publishing Ltd,
2013.

