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Abstract

In recent years, both the volume and the availability of urban data related to various social

issues, such as real estate, crime and population are rapidly increasing. Analysing such urban

data can help the government make evidence-based decisions leading to better-informed policies;

the citizens can also benefit in many scenarios such as home-seeking. However, the analytic

design process can be challenging since (i) the urban data often has multiple attributes (e.g., the

distance to supermarket, the distance to work, schools zone in real estate data) that are highly

related to geography; and (ii) users might have various analysis/exploration tasks that are hard

to define (e.g., different home-buyers might have requirements for housing properties and many

of them might not know what they want before they understand the local real estate market).

In this thesis, we use visual analytics techniques to study such geo-related multidimensional

urban data and answer the following research questions.

In the first research question, we propose a visual analytics framework/system for geo-related

multidimensional data. Since visual analytics and visualization designs are highly domain-

specific, we use the real estate domain as an example to study the problem. Specifically, we

first propose a problem abstraction to satisfy the requirements from users (e.g., home buyers,

investors). Second, we collect, integrate and clean the last ten year’s real estate sold records

in Australia as well as their location-related education, facility and transportation profiles,

to generate a real multi-dimensional data repository. Third, we propose an interactive visual

analytic procedure to help less informed users gradually learn about the local real estate market,

upon which users exploit this learned knowledge to specify their personalized requirements in

property seeking. Fourth, we propose a series of designs to visualize properties/suburbs in

different dimensions and different granularity. Finally, we implement a system prototype for

public access (http://115.146.89.158), and present case studies based on real-world datasets

and real scenario to demonstrate the usefulness and effectiveness of our system.

Our second research question extends the first one and studies the scalability problem

http://115.146.89.158
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to support cluster-based visualization for large-scale geo-related multidimensional data. Par-

ticularly, we first propose a design space for cluster-based geographic visualization. To cal-

culate the geographic boundary of each cluster, we propose a concave hull algorithm which

can avoid complex shapes, large empty area inside the boundary and overlaps among dif-

ferent clusters. Supported by the concave hull algorithm, we design a cluster-based data

structure named ConcaveCubes to efficiently support interactive response to users’ visual ex-

ploration on large-scale geo-related multidimensional data. Finally, we build a demo system

(http://115.146.89.158/ConcaveCubes) to demonstrate the cluster-based geographic visualiza-

tion, and present extensive experiments using real-world datasets and compare ConcaveCubes

with state-of-the-art cube-based structures to verify the efficiency and effectiveness of Concave-

Cubes.

The last research question studies the problem related to visual analytics of urban areas of

interest (AOIs), where we visualize geographic points that satisfy the user query as a limited

number of regions (AOIs) instead of a large number of individual points (POIs). After proposing

a design space for AOI visualization, we design a parameter-free footprint method named AOI-

shapes to effectively capture the region of an AOI based on POIs that satisfy the user query and

those that do not. We also propose two incremental methods which generate the AOI-shapes by

reusing previous calculations as per users’ update of their AOI query. Finally, we implement an

online demo (http://www.aoishapes.com) and conduct extensive experiments to demonstrate

the efficiency and effectiveness of the proposed AOI-shapes.

http://115.146.89.158/ConcaveCubes
http://www.aoishapes.com
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Chapter 1

Introduction
“Great things are not done by impulse, but by a series of small things brought to-

gether.”

— Vincent Van Gogh

1.1 Background

With the rapid development of information technology and communication, a large amount

of geographic urban data is becoming more and more available. For example, the Australian

government has released a variety of open data1 related to various social issues, such as housing

estate, population, crime, transportation and education. Analysing those data can assist in the

development of evidence-based decisions leading to better-informed policies, research and social

outcomes: the government to make data-driven policies and manage the city [Department of

the Prime Minister and Cabinet of Australia, 2015], and the citizens can also benefit from the

data analytics and further understand the urban life in different areas.

Taking home seeking as an example, finding a suitable property to purchase or rent is

critical to people’s life. However, the process of it can be both complex and time-consuming.

According to a report from the National Association of Realtors [2017], 95% of home buyers

searched online during their home buying process, and they spent an average of more than two

months doing their research before buying a property. Unfortunately, with such time and efforts

spent, many real estate customers still suffer from post-purchase or post-rental regrets. The

study from Trulia [2017] shows that 44 per cent of real estate consumers regret their purchase

or rent decisions. Chen et al. [2011] also argue that 46 per cent of homebuyers regret their

choices.
1Australian Government Open Data Platform: https://data.gov.au/

1

https://data.gov.au/
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Why visual analytics? One of the most critical reasons behind those statistics (the

time-consuming process and the high number of purchase regret) is the lack of information and

analysis provided by existing commercial real estate systems, e.g., Real Estate2 and Domain3

in Australia. In those systems, users are often requested to pre-define their requirements (e.g.,

finding properties below one million dollars), and the real estate properties that satisfy the

user query will be displayed in the form of lists or on maps; however, home buyers might

not be familiar with the local real estate market and different lifestyles in different regions,

and they “often do not know what they want until they see it”. Those existing platforms fail

to provide effective tools to help users analyze the housing estate data and compare different

regions/houses so that they could make data-driven choices. In this thesis, we use the technique

of visual analytics to solve the problem, which supports exploratory data analysis (EDA) with

human participation, and allows users to gradually understand the local real estate markets and

local lifestyles in a visualized way and find an ideal home based on their individual requirements.

Why geo-related multidimensional data? Another reason of why home seeking is labo-

rious is that there are many factors for homebuyers to consider when they purchase a property,

such as budgets, facilities like supermarkets and nearby transportation, as well as public schools

associated with children’s education. This is a typical example of geo-related multidimensional

data, as (i) there are a considerable amount of attributes related to each property, and (ii)

most of the attributes (e.g., associated public school rating, distance to hospital and shopping

centres) are highly related to geography. The design challenge for visualizing such geo-related

multidimensional data is to provide space-efficient presentations that neither clutter visually

nor confuse cognitively [Lam et al., 2007]. It is a challenging task since position- and size-based

visual channels are already used by maps [Beecham et al., 2016]: existing geographic visualiza-

tion methods (based on maps) are limited to a very few dimensions, not to mention supporting

the visualization in large data scales.

The visual analytics problem of geo-related multidimensional data has attracted researchers

from different fields. First, the visualization community has focused on the visual design part,

where novel visualization idioms have been proposed to represent multiple attributes in the

geographic data. However, most existing works (e.g., [Guo et al., 2011, Turkay et al., 2014])

either focus on visualizing the multidimensional or the geographic features in the data, but

have not linked them together. Second, the database researchers have proposed various kinds

of solutions (e.g., approximate query processing [Jugel et al., 2014], visualization-based data
2http://www.realestate.com.au/
3http://www.domain.com.au/

http://www.realestate.com.au/
http://www.domain.com.au/
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cubes [Liu et al., 2013, Lins et al., 2013]) to address the scalability problem when visualizing

large-scale geographic data; but they only support a limited number of geographic visualization

designs such as heatmaps and binned plots, but not cluster maps which might have more

semantic meanings. Third, researchers from the GIS (Geographic Information System) field

have proposed different “footprint” methods [Zhong and Duckham, 2017, Asaeedi et al., 2017]

to compute the arbitrary shape of a group of geographic points and visualize them on maps;

however, both the efficiency and effectiveness could be a problem when using state-of-the-art

“footprint” algorithms to support an interactive visualization system.

To address the above drawbacks, this thesis studies visual analytics techniques for geo-

related multidimensional data and answers the following research questions. First, since vi-

sualization design is believed to be highly domain-specific that requires customization and

fine-tuning for any new applications [Parameswaran, 2018, Munzner, 2014], in our first research

question (RQ1), we use the real estate domain as an example, and propose a visual analytics

framework for the geo-related multidimensional data. Specifically, we collected and integrated

a comprehensive real estate dataset, designed and implemented a visual analytics system to

help users understand local real estate markets, compare regions/properties in detail and find

ideal homes. The second research question (RQ2) extends RQ1 to solve the scalability problem:

it addresses the perceptual and interactive scalability problem when visualizing individual data

points on maps; and we propose a data structure called ConcaveCubes which supports cluster-

based geographic visualization in large data scale. Our last research question (RQ3) studies

the problem of visualizing user-defined areas of interest (AOIs), where we visualize geographic

points that satisfy the user query as a limited number of regions instead of a large number of

points; we propose a parameter-free algorithm called AOI-shapes, which effectively generates

region boundaries based on a group of geographic points to avoid interactive latency.

1.2 Motivation and Research Questions

Figure 1.1 presents an overview of our three research questions and illustrates how they are

linked together. In this subsection, we discuss the motivation of each research question and

propose our research questions.
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Figure 1.1: An overview of the three research questions and how they are linked together.
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1.2.1 RQ1. Visual analytics of real estate data

Our first research question tries to propose a visual analytics system/framework of the geo-

related multidimensional data. However, the design of visualization systems is based on visu-

alization tasks and data [Ward et al., 2015], and visualization tasks are highly domain-specific

that require customization and fine-tuning for any new application [Munzner, 2014]. Therefore,

we use real estate data and the home-seeking task as an example to discuss the first research

problem. While finding an ideal home has been a crucial but laborious task, we illustrate the

drawbacks of existing real estate platforms (i.e., the motivation of our first research question),

based on a real-life scenario when a person, John, tried to find a housing property to live in

Melbourne.

Example 1.1. John used Real Estate Australia to search for properties. He first searched by the

suburb, South Yarra (including surrounding suburbs), and there were more than 2,000 results,

displayed in the form of lists or on maps. At the list view, there were 20 properties in each

page. He could sort the results by price or listing date but found it still hard to find his favoured

properties in the first several pages; also, he needed to click the links one by one to check the

details of each property. At the map view, John refined the search based on the price, the number

of bedrooms, etc. After that, about 500 properties were left on the map (Figure 1.2); however,

there was a lack of an efficient tool to compare the features of the housing properties in which

he was interested (e.g., which houses are cheaper, closer to train stations and supermarkets).

We summarize the problems when using existing commercial systems to search for real

estate properties. First, data in those systems are merely about properties, while a lot of useful

information that is critical to users’ choices is not captured. Second, users are requested to

pre-define their requirements, and then the corresponding housing properties are displayed in

the form of a list or map. However, neither SQL nor Top-K based search adopted by those

commercial systems manages to provide users with enough candidate properties based on their

individual requirements. Third, they only show the locations of properties on the map and

do not support presentation and comparison of properties in multiple aspects. Last, those

commercial systems fail to provide a way for users to learn about the real estate knowledge and

truly explore the real estate market data.

The first research question (RQ1) is “how do we design an effective visual analytics system

for geo-related multidimensional data?”. Since the design of visualization systems are highly do-
4https://www.realestate.com.au/buy/with-2-bedrooms-between-0-1500000-in-south+yarra,+vic+3141/

map-1?numParkingSpaces=1&numBaths=1 (accesed at 16 Feb 2019)

https://www.realestate.com.au/buy/with-2-bedrooms-between-0-1500000-in-south+yarra,+vic+3141/map-1?numParkingSpaces=1&numBaths=1
https://www.realestate.com.au/buy/with-2-bedrooms-between-0-1500000-in-south+yarra,+vic+3141/map-1?numParkingSpaces=1&numBaths=1
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Figure 1.2: An illustration of the map view in the Real Estate Australia website4.

main specific, we use real estate data as an example to study this research question. Specifically,

we try to answer the following questions:

RQ 1.1 How to design task/data abstraction for geo-related multidimensional data using the

real estate domain as an example?

RQ 1.2 What kind of a visual analytics process is effective to enable users to visually analyse

and explore geo-related multidimensional data?

RQ 1.3 What kinds of visualization and interaction idioms are effective to support the visual

analytics process?

1.2.2 RQ2. Supporting large-scale geographic visualization

After we propose a visual analytics framework for the geo-related multidimensional data, one

main problem is how do we handle the scalability problem. Particularly, we display each real

estate property on top of a geographic map, where users can explore the data and compare

properties in multiple dimensions. However, as the scale of data increases (e.g., over one million

data points), the existing information visualization methods, including directly visualizing each

data point on top of a map, suffer from the following drawbacks (as illustrated in Figure 1.3):

(i) data over-plotting, (ii) overwhelming users’ perceptual and cognitive capacities (perceptual
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Figure 1.3: Illustration of the motivation of the RQ2. (a) data over-plotting; (b) perceptual
scalability problem; (c) interactive scalability problem.

scalability problem [Liu et al., 2013]), and (iii) difficulties to support interactive exploration,

since users’ interaction with large-scale datasets would easily lead to high latency (interactive

scalability problem [Liu et al., 2013]). It motivates us to investigate this problem.

From our literature study, we find two major types of methods that have been proposed

to address the scalability issue of visualizing large-scale datasets: (1) visualization techniques,

e.g., progressive visualization [Turkay et al., 2017b], pixel-based visualization, spatial displace-

ment, predictive visual analytics, parallel data processing and rendering are proposed; (2) data

reduction methods [Liu et al., 2013], such as filtering, sampling, and binned aggregation are

widely adopted to solve the scalability problem.

However, visualization techniques still need to scan each data item, which makes them

difficult to scale. For data reduction methods, since filtering and sampling techniques fail to

provide an overview of a dataset [Godfrey et al., 2016], one recent research trend in big data

visualization is to intersect data management and visualization based on binned aggregation,

and several studies [Liu et al., 2013, Lins et al., 2013, Wang et al., 2017b, Pahins et al., 2017] have

applied the idea of data cubes into visualization. They pre-compute possible data aggregations

to support efficient visualization.

While these data cube structures are effective for solving the scalability problem, we ob-

serve that they only support heatmaps [Bojko, 2009] based on binned aggregation in terms of

visualizing geographical features. Although Liu et al. [2013] have shown that heatmaps have

advantages vis-à-vis sampled symbol maps (e.g., heatmaps can show the overall geographical

distribution while sampled symbol maps cannot), the information that heatmaps can provide

is often very limited (Details in Chapter 4).

To deal with the limitation of heatmaps, we will describe a design space for geographical

visualization based on the result of data clustering (rather than relational aggregation). Fol-
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lowing Tobler’s First Law of Geography - Everything is related to everything else, but near

things are more related than distant things [Tobler, 1970], we first cluster geographical data

points that are close in distance (assuming Euclidean distance in contrast to other distances

such as the Hausdorff distance [Nutanong et al., 2011]) and share similar features, and then

represent each cluster on top of the map (e.g., cluster maps). Cluster maps, which is hard to

support by existing data cubes (e.g., imMens [Liu et al., 2013], Nanocubes [Lins et al., 2013],

Hashedcubes [Pahins et al., 2017]), can provide additional information compared to heatmaps

or binned plots.

To conclude, our second research question (RQ2) of the thesis is: “How to use clustering

visualization to address perceptual and interactive scalability of the visual analytics model

for geo-related multidimensional data?”. Specifically, we try to solve the following research

questions:

RQ 2.1 What kinds of visualization and interaction idioms are effective to visualize cluster-

based visualization of geo-related multidimensional data?

RQ 2.2 How to present the locations of different clusters on top of the map?

RQ 2.3 What kind of data structure can support the visualization and interaction idioms in

an efficient and scalable manner?

1.2.3 RQ3. Interactive visualization of urban areas of interest

One of the most important issues related to geo-related multidimensional data is to understand

urban areas of interest (AOIs). An AOI refers to the area within an urban environment which

attracts people’s attention [Hu et al., 2015]. Understanding urban AOIs can assist various

urban data exploration tasks such as house seeking, and decision making for urban planning

such as facility deployment of petrol stations, supermarkets, and general practitioners. Still

taking house seeking as an example, location is a key factor, based on which various AOIs can

be defined by users to cater to their respective concerns/interest. A user may want to find a

region to live which is reachable from the nearest train station, supermarket and one of the

top-10 public/private schools by at most 15-minute walk. The region that satisfies such a user

need can be considered as a user-defined AOI.

AOIs could be represented as either polygon-based regions or individual points (e.g., real

estate properties). Previous studies have shown that the polygon-based representation performs

better from both cognitive and computational perspectives [Hu et al., 2015]. However, unlike
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Figure 1.4: An example of user-defined AOIs (properties within 15-min walk to the nearest
train station) presented as: (a) individual property points, (b) a polygon-based region generated
using χ-shapes [Duckham et al., 2008] (χ=0.05); (c) a polygon-based region generated using
χ-shapes (χ=0.2); (d) polygon-based regions generated using our proposed AOI-shapes.

most well-defined administrative districts (e.g., suburbs, cities), the region (shape) of an urban

AOI could be vague [Hu et al., 2015] and often depends on users’ preference.

One of the most popular methods to characterize the shape of an AOI is to generate the

region boundaries, which are called “footprints” [Duckham et al., 2008, Hu et al., 2015], based on

the POIs (points of interest) that satisfy the user query (e.g., in Example 5.1, the POIs are those

real estate properties (Figure 5.1(a)) that satisfy the user query). Different footprint algorithms

have been proposed, including concave hulls [Park and Oh, 2012a], χ-shapes [Duckham et al.,

2008, Zhong and Duckham, 2017], etc. However, footprints from a definite set of points are

usually not unique, i.e., the constructed footprints can be different in different algorithms and/or

different parameters; and there is no consensus on the effectiveness of the footprint algorithms.

Based on a comprehensive literature review of the existing footprint methods, we find that,

the state-of-the-art footprint algorithms suffer from at least one of the following drawbacks:

(1) additional parameter tuning is needed from the user; (2) multiple regions and/or outliers

cannot be recognized; (3) inner holes cannot be detected; and (4) incremental generation of the

footprint cannot be easily supported. The following example highlights the drawbacks of the

existing methods.

Example 1.2. We generate different footprints for the properties shown in Figure 5.1(a) using

χ-shapes [Zhong and Duckham, 2017]. The algorithm first constructs a convex hull, and then

executes a “digging” process (progressively replace an outer edge with two adjacent inner edges)

to get a concave hull (i.e., footprint). The only parameter is a length-related threshold which

decides whether each boundary edge is too “long” or not; and the algorithm will terminate if

all boundary edges are shorter than the threshold. We use two different parameters to generate
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the footprints and present both the results on Google Maps (Figure 5.1(b & c)). The results

illustrate the first three drawbacks of existing footprint algorithms: (i) a smaller threshold may

make the result too “concave” for users to recognize the region (Figure 5.1(b)), and a larger

threshold may cause the region too “big” to characterize the shape of the region (Figure 5.1(c));

unfortunately, it is hard to find an appropriate threshold (which does not have intuitive real-life

meanings) for an unknown set of data points. (ii) since the algorithm cannot recognize multiple

regions, those regions (as highlighted in red in Figure 5.1(b)) are unexpectedly connected; (iii)

there are regions in the middle of two train lines (as highlighted in Figure 5.1(d)) that do not

satisfy the user query; however, since the χ-shapes algorithm cannot detect holes, these holes

get covered in the resulted footprint.

Our last research question in this thesis is how to effectively visualize user-defined areas

of interest (AOIs) based on large-scale geo-related multidimensional data. Specifically, we will

answer the following research questions:

RQ 3.1 What kinds of visualization and interaction idioms are effective to visualize AOIs of

the geo-multi data?

RQ 3.2 How to calculate the shape of an area of interest based on a group of geographic data

points?

RQ 3.3 How to efficiently re-compute AOI boundaries in an incremental manner as per user’s

update of their AOI query?

1.3 Contributions

A guideline of visualization research. Figure 1.5 presents the four nested levels of design

at the visualization research, proposed by Munzner Munzner [2014]. There are two types of

visualization work: (i) Problem-driven work starts at the top domain situation level and the

way down through abstraction, idiom, and algorithm decisions; (ii) In technique-driven work,

we work at one of the bottom two levels, idiom or algorithm design, where the goal is to invent

new idioms that better support existing abstractions, or new algorithms that better support

existing idioms. The contributions of this thesis correspond to each of the three research

questions. Figure 1.6 illustrates how each research question contributes to the four levels of

visualization design [Munzner, 2014].
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Figure 1.5: Four nested levels of vis design and the related design problem at each level
(source: [Munzner, 2014]).

Figure 1.6: An overview of our three research questions mapped to four levels of visualization
design (defined in [Munzner, 2014]).
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1.3.1 HomeSeeker: a visual analytics system of real estate data

Our first research question is problem-driven and includes three levels of design contributions

(Figure 1.6). First, we propose a systematic problem abstraction that guides the visualiza-

tion design of real estate data for home buyers. Particularly, we collect data from different

channels and integrate them to get a comprehensive location-centred real estate dataset. Sec-

ond, we design an interactive visual analytic procedure to help zero-knowledge users gradually

understand the real estate market, and ultimately find appropriate properties based on their

individual preferences. Third, we propose a series of novel visualization designs with multiple

coordinated views to visualize real estate data, which can also be used to solve other geo-related

multidimensional analysis problems. Specifically, we propose a set of visualization designs (in

one interface) which are interconnected to each other to support multiple views of different

subsets of attributes as per different user’s preferences or interests.

Integrating the three-level visualization design, we build a visual analytics system named

HomeSeeker (http://115.146.89.158) for real estate users (including home buyers, real estate

investors and agents) to visually explore and analyze the geo-related multidimensional real

estate data. HomeSeeker augments existing commercial real estate systems and assists users

in understanding the local areas and local real estate market, exploring and finding candidate

properties based on their individual requirements, visually comparing properties/suburbs in

multiple aspects as given by the user, and finally finding candidate properties that suit for their

lifestyles and also possibly grow in value over time.

1.3.2 ConcaveCubes: a cluster-based data cube supporting large-scale

geographic data visualization

Our second research question (RQ2) starts from the abstraction level and deals with the scalabil-

ity problem (Figure 1.6). First, we propose and design a cluster-based visualization abstraction

of geographical data. Second, we propose an algorithm to efficiently generate concave hulls that

include geographical points in each cluster as compactly as possible. As a result, it is able to

avoid large empty areas inside the hull, complex shapes and overlaps among different clusters.

Third, we propose a cluster-based data cube (ConcaveCubes) to efficiently support interactive

response to users’ visualized exploration on large-scale geographic multidimensional data.

We build a demo system (available at http://115.146.89.158/ConcaveCubes) to demonstrate

the design of cluster-based geographic visualization. We conduct extensive experiments using

real-world datasets and compare ConcaveCubes with state-of-the-art cube-based data structures

http://115. 146.89.158
http://115. 146.89.158/ConcaveCubes
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to verify the efficiency and effectiveness of ConcaveCubes.

1.3.3 AOI-shapes: a parameter-free footprint method supporting

visualization of AOIs

Our last research question (RQ3) deals with the bottom two levels of visualization design (Figure

1.6). After a study of data and tasks related to AOI visualization, we propose visualization

idioms and illustrate why a novel footprint method is needed to support the visualization of

AOIs. Then we propose a footprint algorithm named AOI-shapes to calculate the geographic

shape of disconnected urban areas of interest based on a group of geographic data points.

AOI-shapes can be easily extended to incrementally compute the boundary of AOIs after user

interaction and avoid the interactive scalability problem.

We present extensive experiments to demonstrate both the efficiency and effectiveness of

our proposed AOI-shapes algorithm. An online demo system is available for public access at

http://www.aoishapes.com.

1.4 Research Outcomes

In this section, we first present the papers published by the candidate during this Ph.D. study;

then, we describe some additional outcomes, e.g., published dataset and several online systems.

1.4.1 Publications

The following papers that are published by the candidate are directly related to this Ph.D.

thesis. For each paper, we refer to the corresponding chapter in which the content of the paper

is included.

• Mingzhao Li, Zhifeng Bao, Timos Sellis, Shi Yan, & Rui Zhang. HomeSeeker: a visual

analytics system of real estate data. Journal of Visual Languages & Computing, vol. 45,

pp. 1–16, 2018. The content of this paper is included in Chapter 2 & 3.

• Mingzhao Li, Zhifeng Bao, Timos Sellis, & Shi Yan. Visualization-aided exploration of

the real estate data. Proceedings of Australasian Database Conference (ADC), pp. 435-

439, 2016. This work won the Best Demo Paper Award at ADC 2016. The content

of this paper is included in Chapter 3.

http://www.aoishapes.com
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• Mingzhao Li, Zhifeng Bao, Farhana Choudhury, & Timos Sellis. Supporting large-

scale geographical visualization in a multi-granularity way. Proceedings of the 11th ACM

International Conference on Web Search and Data Mining (WSDM), pp. 767–770, 2018.

The content of this paper is included in Chapter 4.

• Mingzhao Li, Farhana Choudhury, Zhifeng Bao, Hanan Samet, & Timos Sellis. Concave-

Cubes: supporting cluster-based geographical visualization in large data scale. Computer

Graphics Forum (Proceedings of EuroVis 2018), vol. 37, no. 3, pp. 217–228, 2018. The

content of this paper is included in Chapter 4.

• Mingzhao Li, Zhifeng Bao, Farhana Choudhury, & Timos Sellis. Interactive visualiza-

tion of urban areas of interest: a parameter-free and efficient footprint method. Pro-

ceedings of the 12th ACM International Conference on Web Search and Data Mining

(WSDM), pp. 782-785, 2019. The content of this paper is included in Chapter 5.

• Mingzhao Li, Zhifeng Bao, Farhana Choudhury, Hanan Samet, Matt Duckham, & Timos

Sellis. AOI-shapes: supporting interactive visualization of user-defined urban areas of

interest. Under review in IEEE Transactions on Visualization and Computer Graphics.

The content of this paper is included in Chapter 5.

Additional publications.

During the period of the Ph.D., the following papers have also been published, but not

included in this thesis, as they are not directly connected to the research topic.

• Mingzhao Li, Zhifeng Bao, Liangjun Song, & Henry Duh. Social-aware visualized explo-

ration of tourist behaviours. International Conference on Big Data and Smart Computing

(BigComp), pp. 289-292, 2016.

• Mingzhao Li, Zhifeng Bao, Shi Yan, & Timos Sellis. A visual analytics framework for

the housing estate data. IEEE PacificVis (Poster), 2016.

• Tao Guo, Mingzhao Li, Peishan Li, Zhifeng Bao, & Gao Cong. POIsam: a system for

efficient selection of large-scale geospatial data on maps. International Conference on

Management of Data (SIGMOD), pp. 1677-1680, 2018.

• Sheng Wang, Mingzhao Li, Yipeng Zhang, Zhifeng Bao, David Tedjopurnomo, & Xi-

aolin Qin. Trip planning by an integrated search paradigm. International Conference on

Management of Data (SIGMOD). 1673–1676, 2018.
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• Qiuhui Zhu, Min Zhu, Mingzhao Li, Min Fu, Zhibiao Huang, Qihong Gan, & Zhenghao

Zhou. Transportation modes behaviour analysis based on raw GPS dataset. International

Journal of Embedded Systems, vol. 10, no. 2, pp. 126-136, 2018.

• Binbin Lu, Min Zhu, Qinglai He, Mingzhao Li, & Ruoyu Jia. TMNVis: visual analysis

of evolution in temporal multivariate network at multiple granularities. Journal of Visual

Languages and Computing, vol. 43, pp. 30–41, 2017.

• Min Fu, Min Zhu, Yabo Su, Qiuhui Zhu, & Mingzhao Li. Modeling temporal behavior

to identify potential experts in question answering communities. International Conference

on Cooperative Design, Visualization and Engineering, pp. 51-58, 2016.

1.4.2 Data and systems

Apart from the published paper, the outcome of this thesis also includes the following data and

systems:

• A comprehensive real estate dataset which includes 1.5 million real estate properties sold

in Australia between 2006 to 2018, and 72 dimensions associated with each individual

property;

• A preliminary online real estate system (http://115.146.89.158) to help home buyers

understand the local real estate market and find their ideal home;

• A demonstration system of ConcaveCubes (http://115.146.89.158/ConcaveCubes); and

• An online demonstration system of AOI-shapes (http://aoishapes.com).

1.5 Thesis Structure

The rest of the thesis is organized as follows: Chapter 2 presents an overview of the fundamental

literature in visualization. Chapters 3-5 correspond to each of our three research questions

respectively. Finally, Chapter 6 summarizes the whole thesis and discusses possible extensions

of our work.

http://115. 146.89.158
http://115. 146.89.158/ConcaveCubes
http://aoishapes.com




Chapter 2

Literature Review
“A picture is worth a thousand words.”

— Tess Flanders, 1911

In this chapter, we first give an introduction of the visualization and visual analytics research,

and discuss when visual analytics is needed and how a visual analytics system can be designed.

Then, we review existing visualization methods for geo-related multidimensional data, includ-

ing multidimensional visualization methods, geographic visualization methods and composite

visualization strategies. Finally, we discuss two types of methods (i.e., visual reduction meth-

ods and data reduction methods) to support large-scale data visualization, and summarize this

chapter in the end.

2.1 Data Visualization and Visual Analytics

Visualization refers to any technique for creating images, diagrams, or animations to communi-

cate a message [Ward et al., 2015]. In most cases, communication via visualization can be more

efficient than text. On the one hand, pictures can be processed by humans much more quickly

compared to text which contains the same amount of information. This is because image inter-

pretation is performed in parallel within the human perceptual system, while the speed of text

understanding is limited by the sequential process of reading [Patterson et al., 2014]. On the

other hand, pictures can also be independent of local language, as a graph or a map may be

understood by a group of people with no common tongue. As a result, visualization has been

used to effectively record and present information and solve practical problems. For example,

John Snow’s map of the deaths [Tufte, 2001] helped him to find the origin and the transmission

way of cholera at London in 1854.

17
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While the use of visualization to convey information has a long history, computer-based

data visualization provides visual representations of datasets designed to help users carry out

tasks more effectively. The users of a visualization system can be data analysts (e.g., urban

computing researchers), domain experts (e.g., real estate agents) or general users of a specific

purpose (e.g., home buyers). There are at least two general aims for using data visualizations:

• Presentation and communication. As we explained before, visualization can present in-

formation in a more effective way for humans to understand, and it can be used as a

way of communication even among a group of people speaking different languages. While

humans (often visualization designers) can control how the visual elements are presented

to let humans perceive the information more effectively, computers can help to generate

the graphs more efficiently.

• Exploration and discovery. The central part of data analysis is to explore the data and

discover patterns and trends, both to confirm expected hypotheses and to discover unex-

pected insights. Visualization-based data exploration is complementary to computational

analysis and provides a more detailed and visual view of the data than just a few statistical

features. While a modern dataset is often too complex to be presented in a single picture,

one of the most popular and effective strategies is to involve human interactions to control

the granularity of the visualization. Following Shneiderman’s visual information-seeking

mantra: “overview first, zoom and filter, then details-on-demand” [Shneiderman, 1996],

interactions allow users to provide their understanding of the information (presented in

the current visualization) as an input to the next-step visualization, so that the visu-

alization system can combine both the advantages of human intelligence and machine

computational abilities. We refer to this kind of data analytics via interactive visual

interfaces as “visual analytics” [Ward et al., 2015].

Visual Analytics. Traditional visualizations can be divided into two major categories [Nagel,

2006]: (i) Scientific visualization (SciVis) which focuses on the visualization of physical (non-

abstract) data (e.g., the structure of human bodies, wind flow data); and (ii) Information

visualization (InfoVis) which focuses on the visualization of abstract, non-physically data (e.g.,

text data, multidimensional data, network data). Visual analytics is an outgrowth of the fields of

InfoVis and SciVis that focuses on analytical reasoning facilitated by interactive visual interfaces

[Ward et al., 2015]. It is suitable when there is a need to augment human capabilities rather than

replace people with computational decision-making methods. Compared to traditional InfoVis
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Figure 2.1: Knowledge generation model for visual analytics (source: [Sacha et al., 2014]).
The model consists of a computer part and a human part. The left-hand side illustrates a
visual analytics system, whereas the right-hand side illustrates the knowledge generation
process of the human.

and SciVis which focus more on the data representation process, visual analytics includes a

process of data exploration and knowledge generation, as shown in Figure 2.1. Users can explore

data supported by the visual analytic system with user interactions and observing the feedback.

The verification loop guides the exploration loop to confirm hypotheses or form new ones. If a

concrete analysis goal is missing, the exploration loop becomes a search for findings, which may

lead to new analytical goals. Even when the exploration loop is controlled by an analysis goal,

the resulting findings are not necessarily related to it but can lead to insights solving different

tasks or opening new analytical directions. In this thesis (esp. the first research question), we

explore the data exploration process (regarding geo-related multidimensional data) based on

a real-world scenario when home buyers try to find a real estate property to purchase. Some

users might have specific requirements such as finding a property within one million dollars

in the eastern suburbs. Most users do not know what kinds of property they want until they

understand more of the local real estate market and different lifestyles in different regions, and

then gradually form a more concrete analysis/search goal.

The design process of a visual analytics system. Many researchers have discussed the

design process of visualization and visual analytics systems. For example, Card et al. [1999]

describes the process of information visualization design from raw data processing to visual

mapping and view transformations, with user interactions existing in any of those processes.

The design process in this thesis is guided by one of the most visual analysis frameworks

proposed by Munzner [2014], which splits the complex problem of visual analytics design into

the following four cascading levels:
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• Domain situation, where the details of a particular application domain1 for visual

analytics is considered. This is important as the process of visual analytics design has

been believed to be extremely domain-specific, requiring customization and fine-tuning for

any new applications [Parameswaran, 2018, Munzner, 2014]. The outcome of the design

process is an understanding that the designer reaches about the needs of the user. The

methods typically used by designers to identify domain situation blocks include interviews,

observations, or careful research about target users within a specific domain. Our first

research question uses the real estate domain as an example to analyze the geo-related

multidimensional visualization problem.

• Data/task abstraction, i.e., a what-why abstraction level [Heer et al., 2012], where

we map those domain-specific problems and data into forms that are independent of the

domain. First, questions from very different domain situations can map to the same

abstract visualization tasks. Second, Selecting a data block is a creative design step

rather than simply an act of identification. In this thesis, both our first and second

research questions include data/task abstraction, with RQ1 transforming the real estate

domain situation into visualization data and tasks, and RQ2 focusing on data/task design

related to cluster-based geographic visualization.

• Visual encoding/interaction idiom, i.e., the design of idioms that specify the ap-

proach to visual encoding and interaction. Visual encoding is a creative process that

maps data with graphical elements called marks (e.g., points, lines, areas), and visual

channels (e.g., position, color, size, shape) to control their appearance [Maguire et al.,

2012]. While the visual encoding idiom controls exactly what users see, the interaction

idiom controls how users change what they see. All the three research questions in this

thesis have included this level of visualization design. We have presented novel visual en-

coding designs with careful design justification related to each of the research questions.

• Algorithms to instantiate the visualization idioms computationally. In this step, the

goal is to efficiently handle the visual encoding and interaction idioms that are chosen

in the previous level. Both our second and third research questions include such level of

contributions. RQ2 deals with the visualization scalability problems when visualizing a

large number of geographic points on maps. RQ3 proposes an algorithm to effectively

calculate the shape of a region (AOI).
1The term “domain” is frequently used in the visualization literature to mean a particular field of interest

of the target users of a visualization tool, for example microbiology or high-energy physics or e-commerce.
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Most visualization works can be divided into the following two types [Munzner, 2014]: (i)

problem-driven work, where we start at the top domain situation level and work your way

down through abstraction, idiom, and algorithm decisions (RQ1); and (ii) technique-driven

work, where we mainly work at one of the bottom two levels, idiom or algorithm design, and

our goal is to invent new idioms that better support existing abstractions (RQ1, RQ2, RQ3),

or new algorithms that better support existing idioms (RQ2, RQ3).

2.2 Visualization Methods for Geo-related Multidimensional

Data

In this section, we review existing visualization methods for geo-related multidimensional data.

Particularly, we first summarize multidimensional visualization and geographic visualization

separately, then we discuss some composite visualization design strategies.

2.2.1 Multidimensional visualization methods

Multidimensional visualization (or multivariate visualization2) helps users discover hidden pat-

terns and understand the complex relationships with respect to multiple dimensions. Based on

the differences of graph representations [Ware, 2012], we divide multidimensional visualization

methods into the following categories:

• point-based methods: scatterplots [Carr et al., 1987], RadViz [Hoffman et al., 1997], etc.

• line-based methods: parallel coordinates [Siirtola and Räihä, 2006], multivariate line

graphs [Hemminger, 1972], Andrew Curves [Andrews, 1972], star graphs [Rubio-Sanchez

et al., 2016], etc.

• region-based methods: multivariate bar charts [Ware, 2012], Heatmap [Wilkinson and

Friendly, 2012], etc.

• combined methods such as multivariate glyphs [Ward et al., 2010] and pixel-based methods

([Keim, 2000]).

2In this thesis, we will not distinguish between multidimensional visualization and multivariate visualization.
We use the term multidimensional visualization throughout the proposal to refer to the visualization of the
dataset that has more than about five variables. Some other works (e.g., Hoffman and Grinstein [2002]) make a
distinction between independent and dependent variables and refer to independent multiple variables with the
term multidimensional and to dependent multiple variables with the term multivariate.
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Table 2.1: A summary of multidimensional visualization methods.

Category Method Dimension
Reduction

No. of
Dimensions Advantages Disadvantages

Based on
points

Scatterplot
Matrix [Carr
et al., 1987]

No [2, 10] Relations between each pair of
dimensions are clear.

Overview of the whole dataset
is missing.

RadViz
[Hoffman
et al., 1997]

YES [3, ∼50] Clustering effect is good. Relations among the
dimensions are missing.

Based on
lines

Parallel
Coordinates
[Siirtola and
Räihä, 2006]

No [2, ∼20] The multiple characteristics
are clearly displayed.

Complex interactions are
needed.

Multivariate
Line Graphs
[Hemminger,
1972]

No [1, ∼20] Distribution of each dimension
is clear.

Relations among dimensions
are hard to discover.

Andrew
Curves
[Andrews,
1972]

Yes [1, +∞] Linear relations among
dimensions are clear.

It is complex to compute and
hard to understand for users.

Star Graphs
[Rubio-
Sanchez et al.,
2016]

No [3, ∼20] Space utility rate is high.
It is easy to confuse
cognitively, especially the
central part.

Based on
regions

Multivariate
Bar Chart
[Ware, 2012]

No [1, ∼5] Simple, and easy to
understand

It only applies to very limited
dimensions.

Heatmap
[Wilkinson and
Friendly, 2012]

No [1, ∼50] Colour mapping is intuitive. Good colour recognition
ability is needed from users.

Combined
methods

Multivariate
Glyphs [Chuah
and Eick,
1998, Ward
et al., 2010]

Yes [1, ∼10] The design is simple and
interesting.

Users need to memorize the
mapping patterns

Pixel Display
[Keim, 2000] No [1, ∼256] Data periodicity is displayed. Good colour recognition

ability is needed from users.

We summarize those four categories of multidimensional visualization methods in Table 2.1,

and analyze each method based on whether dimension reduction is applied and the number of

dimensions that it supports. In the last two columns of Table 2.1, we discuss the most notable

advantages and disadvantages of each method. We have the following observations based on

the comparison. First, each method has its own advantages and disadvantages of depicting

different features of multidimensional data. For example, parallel coordinates [Siirtola and

Räihä, 2006] perform well to display the multiple characteristics of the dataset, but complex
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interactions are needed; relations between each pair of dimensions are easily depicted with

scatterplot matrix [Carr et al., 1987], but an overview of the whole dataset is missing. Second,

Visualization methods with dimension reduction can handle more dimensions. Third, Line-

and point-based methods have better space utility rates than region-based methods. Finally,

Line-based methods have better presentations of the multiple attributes and relations among

the dimensions compared with other methods.

While each method might focus on visualizing some aspects of the multidimensional data,

many researchers have also integrated different multidimensional visualization methods to solve

practical problems. For example, Yuan et al. [2009] proposed SPPC which makes use of the ad-

vantages of both parallel coordinates and scatterplot to visualize the multidimensional dataset.

Viau et al. [2010] designed P-SPLOM, a hybrid approach that combines a scatterplot matrix

and parallel coordinates to visualize and select features within the network.

2.2.2 Geographic visualization methods

Geographical Visualization (geoViz) communicates geospatial information in ways that, when

combined with human understanding, allow for data exploration and decision-making processes

[Jiang and Li, 2005]. Researchers started to use scientific visualization methods to portray

geographical information from the early 1990s [Taylor, 1994]. MacEachren and Taylor [2013]

explored the way of a more scientific approach to visualizing the geographical phenomena.

The research at the time focused more on the application to provide users imagining spatial

relationships, and was applied to a number of visualization types, including animations, spatial

modeling, and collaboration, using GIS, mobile computing, virtual reality, etc.

In recent years, more information visualization methods have been applied to solve the

geographic visualization problem. The design of geoViz is not limited to mapping elements

based on their exact geo-location. One of the most notable examples is the design of modern

train maps [Vertesi, 2008], such as Beck’s London Underground Maps. The design challenge

behind is to reduce connection overlaps while places are still easy to find. Many existing

works have shown that places, even not mapped based on their original features, such as the

location [Vertesi, 2008] and the boundary shape [Ward et al., 2010], could be still or even better

recognizable. With urban data (e.g., the census data) becoming more and more available,

many online visualization tools have been developed in recent years to help citizens understand

the urban life [Foth, 2015]. For example, AURIN (Australian Urban Research Infrastructure

Network) [Pettit, 2015] provides the visualization for informing smarter city planning based
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Table 2.2: A summary of visualization methods for geographic point data.

Location Colour Shape Size Texture

Point-based Dot Map Yes Yes Yes Yes Yes

Heat Map Approximate pre-defined No No No

Region-based

Bubble Map Approximate Yes Yes Yes Yes

Choropleth Map Yes Yes Pre-defined Pre-defined Yes

Voronoi Diagram Pre-defined Yes Pre-defined No Yes

Binned Plot Approximate Yes No No Yes

Cluster-based Cluster Map Approximate Yes Yes Yes Yes

Boundary Map Yes Yes Pre-defined Pre-defined Yes
Yes/No: The visual channel is/is not supported; Approximate: The visual channel is approximately supported;

Pre-defined: the visual channel is used for other purposes.

on heterogeneous data resources from the definitive data across Australia. The CityX Lab3

also presents a variety of visualizations to help understand the ethnicity and age group in

Melbourne, the air travel in Australia, etc. Those tools use colour-based mapping on Maps to

depict a geographically related variable. However, this is only effective when there are only a

few attributes: since position- and size-based visual variables are already used by maps, retinal

variables to depict other attributes are limited.

Visualizing geographic point data. While geographic trajectory (network) data is out of

our scope, we mainly discuss the visualization of geographic point data4 in this thesis. Many

researchers have proposed various visualization methods for geographic point data, as shown

in Figure 2.2. We divided them into the following three main categories.

• Point-based methods, which represent each data point as an individual dot on the map.

• Region-based methods, which divide the data points into different groups based on regions.

Typically, data can be aggregated by the pre-defined regions such as suburbs and school

zones.

• Cluster-based methods, which normally aggregate the data based on data attributes, and

then represent each cluster on maps.
3https://www.cityxlab.com
4In Geographic information system (GIS), vector data is often split into three types: polygon, line (or arc)

and point data. “Line” is often associated with path/network, which is out of our scope. In this thesis, geographic
point data can be represented as individual “points” or a “polygon” that represent multiple points.

https://www.cityxlab.com
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(a) Dot map (b) Heat map

(c) Choropleth map (d) Voronoi diagram

(e) Bubble map (f) Binned plot

(g) Bubble-based cluster map (h) Boundary-based cluster map

Figure 2.2: Examples of existing visualization methods for geographic point data (All screens
are taken from our HomeSeeker website).

Different geographic visualization methods might depict different aspects of geographic pat-

terns. In this thesis, we choose different methods for different visualization tasks with careful

design justification. For example, we use bubble maps to visualize the real estate statistics at
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the suburb level, and we combine Choropleth maps and Voronoi diagrams to present public

school boundaries (details presented in Chapter 3).

2.2.3 Composite visualization design

It has been identified as a challenging work by many researchers to visualize the multiple

attributes in the geographic data [Singleton and Longley, 2009]. One of the most popular and

effective solutions is to use composite visualization views (CVVs). Javed and Elmqvist [2012]

discussed five strategies for CVVs, including

• Juxtaposition, i.e., placing visualizations side-by-side in one view;

• Superimposition, i.e., overlaying two visualizations in a single view, such as different layers

of information in Google Maps;

• Overloading, which uses the space of one visualization for another;

• Nesting, which nests the contents of one visualization inside another visualization; and

• Integration, which places visualizations in the same view with visual links.

Following those strategies, Guo et al. [2011] designed TripVista with multiple views to analyze

the traffic at a road intersection. Turkay et al. [2014] proposed attribute signatures to dynami-

cally generate summaries in another view after selecting elements on a map view. In this thesis,

we have used several of those CVV strategies. For example, all of our three research questions

use integration strategies with multiple coordinated views and the superimposition strategy

to place multiple layers on maps; and in the first research question, we propose a composite

visualization design (using the juxtaposition design) to visualize both multidimensional and

geographic attributes in a view, by integrating parallel coordinates with a geo-coded scatter

plot and a coloured Boolean table in a seamless way.

2.3 Supporting Large-scale Data Visualization

The increase of data size might result that an elegantly designed visualization system unusable.

The following three types of resource limitations [Munzner, 2014] need to be considered to

address such scalability problems.
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• Display capacity. Visualization designers often run out of pixels, i.e., the resolution of

the screen is not enough to show all the desired information simultaneously.

• Human perceptual and cognitive capacity. On the human side, people have limited

ability to recognize/rank different visual channels (e.g., color, textual information), and

humans’ memory and attention are finite resources as well.

• Computational capacity. Same as any applications in computer science, computer

time and memory are limited resources for visualization systems. In visual analytics,

the latency of interaction, i.e, how much time it takes for the system to respond to the

user action, matters immensely for interaction design. Existing research shows that users

might feel latency if the response time is larger than 0.1 seconds [Card et al., 1991].

In this section, we discuss some general solutions to address the scalability of visualization

systems. The techniques to handle large-scale data visualization can be broadly classified into

two categories: (i) visualization methods, and (ii) data reduction methods. It is worth noting

that many studies exploit techniques in both categories to achieve a scalable solution.

2.3.1 Visualization reduction methods

Different techniques are proposed to address the perceptual and interactive scalability problem

at the visualization end. In particular, the following three types of methods are proposed.

Visual reduction. Since the screen resolution is limited, retinal variables to represent different

attributes in a large dataset will easily clutter visually. To this end, researchers have proposed a

number of methods, such as pixel-oriented visualization methods [Keim, 1996], alpha blending

[Jerding and Stasko, 1998], spatial displacement methods [Trutschl et al., 2003], and dimension

re-ordering [Peng et al., 2004] for parallel coordinates. However, all of these techniques still

need to scan and draw each data item, which will cause interactive scalability problems.

Progressive methods. Progressive visual analytics [Stolper et al., 2014] presents visualiza-

tion results in a progressive way, so that the system will be responsive to users’ interactions

immediately. The method is also associated with approximate query processing techniques,

which provide query result estimations with bounded errors [Galakatos et al., 2017]. However,

experiments conducted by Turkay et al. [2017b] have shown that possible wrong judgments

are easily made before rendering is finished. Even with uncertainty in estimates [Fisher, 2011]

reported during the progressive rendering, the result remains unconvincing until the whole

progress is completed.
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Predictive methods. Predictive visual analytics [Lu et al., 2017] often use query pre-fetching

techniques, where the performance depends on the level of predictability of future queries. For

example, the Atlas system [Chan et al., 2008] stores large historical time-series data, allows

six directions of exploration (pan left/right, scroll up/down, and zoom in/out). The algorithm

is based on the observation that a sense of momentum is associated with the direction of

exploration. However, these techniques only work well in those domains where user interactions

are naturally limited.

2.3.2 Data reduction methods

We refer to data reduction methods as those techniques that aim to reduce the size of the

data before the data enters the visual rendering process. We consider three main directions in

reducing the scale of data for different scenarios or purposes.

Sampling & filtering methods. Traditional data reduction methods such as sampling

[Drosou and Pitoura, 2012] & filtering [Ahlberg and Shneiderman, 1994] are widely used to

select a smaller subset of data before applying standard visualization techniques. However, as

argued by Lins et al. [2013], sampling & filtering might elide interesting structures or outliers,

and usually cannot provide an overview of the data distribution.

Approximate query processing methods. Several approximate algorithms (M4 [Jugel

et al., 2014], VDDA [Jugel et al., 2016], etc.) are proposed by exploiting the fact that a display

has a limited number of pixels based on its resolution [Keim, 1996]. These algorithms return

approximate results that rasterize to the same image as the exact query result would. However,

they can only be applied to a very limited number of visualization methods, e.g., line charts

and scatter plots.

Data cube aggregation methods. Data cubes [Gray et al., 1997] have been intensively

studied in the area of data warehouses. In this technique, aggregation results of the raw data

are pre-computed on pre-defined dimensions to support data exploration. While a complete

data cube is often too large to fit in memory, data cubes are often constrained by the number

of pixels used in visualization [Keim, 1996]. Based on that principle, many researchers have

proposed visualization-constrained data cubes (e.g., imMens [Liu et al., 2013], Nanocubes [Lins

et al., 2013], and Hashedcubes [Pahins et al., 2017]) to minimize data memory usage and reduce

the query latency. In Chapter 4, we will use the data cube methods to support cluster-based

visualization of large-scale geographic data.
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2.4 Summary

In this section, we summarized different aspects of visualization research that are related to this

thesis. First, we introduced the research of visualization and visual analytics, and discussed the

design process of visual analytics systems. Then, we reviewed existing visualization methods

for multidimensional data and geographic data respectively and presented possible composite

visualization design strategies. At last, we discussed two kinds of methods (data reduction

methods and visual reduction methods) for supporting large-scale data visualization.





Chapter 3

A Visual Analytics System of

Real Estate Data
“Design is so simple. That’s why it’s so complicated.”

— Paul Rand

The very first research question of this thesis is “what kinds of visual analytics framework/design

are effective for geo-related multidimensional data?”. Since visualization design is believed to

be highly domain-specific [Parameswaran, 2018, Munzner, 2014], we use the real estate domain

as an example to explore our first research question.

In this chapter, we present an interactive visual analytics system for real estate data,

named HomeSeeker, to explore the visual analytics process of geo-related multidimensional

data. HomeSeeker augments existing commercial systems to help users discover hidden pat-

terns, link various location-centred data to the price, as well as explore, filter and compare

the properties, in order to easily find their preferred properties. In particular, we first present

a problem abstraction for designing visualizations that help home buyers analyse real estate

data. Second, we collect, integrate and clean last ten year’s real estate sold records in Australia

as well as their location-related education, facility and transportation profiles, to generate a

real multidimensional data repository (the dataset includes 1.42 million properties in Australia

and 72 dimensions). Third, we propose an interactive visual analytic procedure to help less

informed users gradually learn about the local real estate market, upon which users exploit this

learned knowledge to specify their individual requirements in property seeking. Fourth, we pro-

pose a series of designs to visualize properties/suburbs in different dimensions and in different

granularities. After implementing a system prototype for public access (http://115.146.89.158),
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we finally present case studies based on real-world datasets and real scenario to demonstrate

the usefulness and effectiveness of our system.

3.1 Introduction

We choose the real estate domain as an example to explore the visual analytics design process

for geo-related multidimensional data. The reason is two-fold. On the one hand, the process of

visual analytics design has been believed to be extremely domain-specific, requiring customiza-

tion and fine-tuning for any new applications [Parameswaran, 2018, Munzner, 2014]. On the

other hand, finding an ideal real estate property is critical to people’s life but the process can

be both complicated and time-consuming since users could have many factors to consider, such

as budgets, facilities like supermarkets and nearby transportation, as well as public schools

associated with children’s education; moreover, most home buyers (esp. first home buyers) also

prefer a property that will grow in value over time so they can take a step up the property

ladder in a few years [Jacqui, accessed March 2017, Thornhill].

There are several commercial systems, such as Real Estate Australia1 and Zillow2, which

provide access for people to browse or search for real estates. We have noticed three common

problems in using existing commercial systems.

Problem 1: data in those systems are only about the description of properties themselves

such as the number of bedrooms and bathrooms. However, a lot of useful geographically

related information which is critical to users’ choices is not captured, such as the regional,

educational and transportational profiles (see Section 3.3.1), not to mention presenting them

to users. Without such information, it is also very difficult to evaluate the robustness and

effectiveness of the current visualization design of those commercial systems in visualizing such

geo-related multidimensional information.

Problem 2: existing commercial systems fail to provide an efficient way for users to learn about

the local real estate market and get to know their own needs based on their understanding of

the market. Since “users do not know what they want until they see it” [Pressman, 2005], many

users, especially first home buyers, do not know much about the local real estate market; and

they might continually change their preferences while they browse properties. For example, a

user has a budget of one million dollars to buy a 3-bedroom house in Camberwell and he wants

the property within a 10-minute walk to the nearest train station. However, after studying the
1http://www.realestate.com.au/
2https://www.zillow.com/

http://www.realestate.com.au/
https://www.zillow.com/
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market, he understands that such kind of a house might be not easy to find in Camberwell, so

he will either find a property that is further to the station or in other suburbs.

Problem 3: although some of the systems (such as Real Estate Australia1) provide map-based

presentation, the design can only display the locations on the map, which is not sufficient to

support comparison of properties in multiple aspects.

In a nutshell, existing systems fail to provide location-aware services, not to mention offering

those services at different levels of details, due to the lack of a systematic approach to model

and collect a comprehensive location-centred real estate data. To address those problems, we

introduce HomeSeeker (http://115.146.89.158), an interactive real estate visualization system

to augment current commercial systems. In particular, HomeSeeker is able to assist users in

understanding the local areas and local real estate market, exploring and finding candidate

properties based on their individual requirements, and visually comparing properties/suburbs

in multiple aspects as given by the user. In particular, we make the following contributions

from the perspective of visualization design.

1. We present a systematic problem abstraction that guides the visualization design of real

estate data for home buyers. Particularly, we have collected data from different channels

and integrated a comprehensive location-centred real estate dataset (Section 3.3).

2. We propose an interactive visual analytic procedure to help zero-knowledge users gradually

understand the real estate market, and ultimately find appropriate properties based on their

individual preferences (Section 3.4).

3. We design and implement a system with existing visualization design choices and novel

visualization designs, and multiple coordinated views to visualize real estate data, which

can also be used to solve other geographically related multidimensional analysis problems

(Section 3.5).

The rest of this section is organized as follows. Section 3.2 discusses related works with

regard to the real estate domain and visualization. Section 3.3 presents the problem abstrac-

tion, followed by a system overview in Section 3.4. In Section 3.5, we present our visualization

design choices in detail together with design justifications. Section 3.6 discusses system imple-

mentation. We present experiments based on real-world datasets in Section 3.7, followed by a

summary in Section 3.8.

http://115.146.89.158
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3.2 Related Work

Visual exploration of real estate data has been considered as an interesting application and

attracted attention from both the academic and industry communities.

Many online platforms in different countries allow people to search for real estate properties,

such as Real Estate1 and Domain3 in Australia, Right Move4 in the UK, Zillow2 and Trulia5

in the USA, and Soufang6 in China. Most of those systems provide functions such as searching

among or filtering numerous properties available in the real estate market, and then display the

result in the form of a list or a map. Some systems such as Zillow also allow users to virtually

look into properties of interest using Matterport 3D view. Although these commercial systems

have provided users convenient access to available real estates, they still have some drawbacks.

First, the data that most of these commercial systems have used is mainly about the property

itself, while a lot of useful information that is critical to users’ choices is neither captured nor

presented. Although some systems have provided information about the neighbourhood, they

have not linked such information with individual properties. For example, Trulia5 has provided

school locations on top of the map, but it does not have the school zone information, and users

cannot link individual properties with schools. Second, the visual design of these platforms

cannot support presentation and comparison of properties in multiple aspects. In this chapter,

we try to augment existing commercial systems by providing a systematic data abstraction

related to real estate and a visual analytics procedure that help users understand the local real

state market and explore the properties by themselves. Table 3.1 represents the comparison

between our data profiles and existing systems. The detail will be illustrated in Section 3.3.

Many researchers from the data mining community have proposed methods and systems

[Fu et al., 2015b,a, Fu and Liu, 2016, Tan et al., 2017] related to real estate data. For example,

Fu and Xiong [2016] designed a discovery system for users to find high-value homes. Shahbazi

et al. [2016] estimated the investability of real estate properties through text analysis. Zhu et al.

[2016] proposed a prediction model to measure liquidity in real estate markets based on DOM

(Days on Markets). Different from those works, we use interactive visualization to help users

first understand the local real estate market, then find properties based on their own preferences.

Research on visualization of real estate data dates back to Williamson and Shneiderman’s classic

Home Finder project [Williamson and Shneiderman, 1992]. They used dynamic query interfaces
3http://www.domain.com.au/
4http://www.rightmove.co.uk/
5https://www.trulia.com/
6https://www.fang.com/

http://www.domain.com.au/
http://www.rightmove.co.uk/
https://www.trulia.com/
https://www.fang.com/
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to help users explore a real estate database and find houses that meet specific search criteria.

They also use sliders to allow limits to be placed on different dimensions such as house price

and time to reach one’s workplace; only those houses satisfying all criteria are represented by

red dots on a map. Later, Tweedie et al. [1994] proposed Attribute Explorer, which added

graphical feedback to the sliders themselves. Both works have focused on the efficient query

processing part but failed to provide a way for users to compare the result houses/homes. With

real estate data as examples, Spence [2014] presented different kinds of visualization, including

scatter plots, parallel coordinates and iconic representations to compare the attributes of houses

in the visualization textbook. Nevertheless, there is still a lack of framework/procedure of how

to combine those visualization designs and help users explore real estate data. Closest to our

work is a web-based system [Sun et al., 2013] to visually analyse Hangzhou real estate market

data. Comparing to it, our system is built upon a more comprehensive dataset that has more

location-based attributes which are critical to users’ purchasing decisions and we provide a way

for users to explore individual properties.

3.3 Problem Abstraction

In this section, we first describe the real estate domain situation, then present the design of our

task and data abstraction.

3.3.1 Domain situation

Our system is mainly targeted at home buyers who are interested in finding properties to live

in, as well as real estate agents who help them to do so.

We use Melbourne and Sydney, two of the largest cities in Australia, as examples to un-

derstand the domain situation and to collect the data. To understand the information (i) that

most home buyers are concerned about, and/or (ii) that they are suggested to pay attention to

from domain experts’ viewpoint, we first reviewed related articles (from related blogs7 such as

[Jacqui, accessed March 2017, Thornhill]) written by real estate domain experts, and got a list

of information which is critical to users’ property purchase choices; then we discussed with two

real estate agents to further refine the data list.

Table 3.1 presents our conclusion of the information that is critical to home buyers’ choices,

as well as whether our system has the data and support data index comparing to existing
7Source: http://www.realestate.com.au/advice/buying/, https://www.domain.com.au/advice/

http://www.realestate.com.au/advice/buying/
https://www.domain.com.au/advice/
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popular real estate websites. We have defined five profiles: (1) the basic profile describes

basic information of each property itself; (2) the transportational profile is associated with

distance and travel time to other places; (3) the facility profile defines nearby facilities, such

as supermarkets and shopping centers; (4) the educational profile contains the information

of schools; (5) the regional profile is related to the census data and describes the statistical

information of the neighbourhood. For environmental information: it is critical to users’ choice

as well, but the data is hard to obtain and verify. Therefore, in our system, we extract some of

the environmental information from the text description and include them in the basic profile,

such as whether the property has mountain views.

Table 3.1 also presents some example data in each profile. Although including everything in

our system seems impossible, we claim that the data that is critical to users’ choice of properties

should at least fit in one of our profiles. For example, nearby restaurants (which our system

does not include) should fit in facility profile. The safety of a region can be described by the

regional profile. Price per m2 is in the basic profile.

3.3.2 Data collection and integration

Figure 3.1 shows the process of how we collect data from different sources and integrate them

to form a location-centred real estate dataset.

Postal Codes

  Property

Attributes

description

price

address

......

images

  Property

  Features

Geo-informationRegional 

 Pro!le

 Basic 

Pro!le
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Figure 3.1: Illustration of the process of data collection and integration.
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We first crawl the basic information of sold properties from real estate websites1 (basic

profile). Based on the address, we get the geo-location (latitude and longitude) of each property

using Google Maps API8. Based on the geo-location, we describe the other four profiles for each

property in the following way:

• Transportational profile: we calculate (i) the walking time from each property to its

nearest train station using Google Maps API8, and (ii) the travel time between each pair

of train stations based on the GTFS (General Transit Feed Specification) data9. We are

then able to compute efficiently how long it takes from each property to a specific place

(such as the user’s workplace) at runtime.

• Regional Profile: we get Australian census data from the Australian Bureau of Statistics

website10 which describes the census information based on different levels of statistical

areas in Australia. We then map each property to an SA1 (Statistical Area Level 1, the

smallest unit for the processing and release of Australian census data [Australian Bureau

of Statistics, 2016a]), and then have the information such as median age and median

income of the SA1 to describe the region around each property.

• Educational profile: we find either the exact school zone11 that each property be-

longs to, or map the property with its nearest primary/secondary school. We get the

corresponding school rating12 which is also linked with individual properties.

• Facility profile: we first crawl the information (including geo-location) of different fa-

cilities such as supermarkets (e.g., Coles13, Woolworth14) and hospitals15. Then, for each

facility, we map each property to the nearest one and calculate the distance between them

using Google maps API8.

A summary of all data sources can be found in Table 3.1, and some data statistics are shown

in Table 3.2.
8https://developers.google.com/maps/
9https://www.data.vic.gov.au/data/dataset/

10http://www.abs.gov.au/
11http://melbourneschoolzones.com/
12http://bettereducation.com.au/
13https://www.coles.com.au/store-locator
14https://www.woolworths.com.au/Shop/StoreLocator
15https://healthengine.com.au/

https://developers.google.com/maps/
https://www.data.vic.gov.au/data/dataset/
http://www.abs.gov.au/
http://melbourneschoolzones.com/
http://bettereducation.com.au/
https://www.coles.com.au/store-locator
https://www.woolworths.com.au/Shop/StoreLocator
https://healthengine.com.au/
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Table 3.2: Statistics of the integrated real estate data.

Melbourne (VIC) Sydney (NSW)
# of properties 680,327 757,352
# of train stations 218 373
# of supermarkets 447 507
# of shopping centres 125 194
# of clinics 2,673 3,536
# of hospitals 469 622
# of public primary schools 1,149 1,607
# of public secondary schools 282 401
# of private primary schools 465 567
# of private secondary schools 167 200
# of regions 13,339 17,895
# of total dimensions 72

3.3.3 Data and task abstraction

In this subsection, we analyse the data attributes and transform the domain tasks into specific

visualization tasks.

3.3.3.1 Data characteristic analysis

Based on different characteristics, we divide all attributes associated with each property into

the following categories:

• Geographical Attributes, i.e., the geo-information;

• Numeric Attributes, such as price, number of bedrooms, the distance to the nearest

train station, related secondary school rankings;

• Categorical Attributes, such as property type;

• Boolean Attributes, i.e., 34 features generated from the text description, such as

whether a property has air conditioning.

• Other Types of Attributes, such as text and images.

3.3.3.2 Task abstraction

Based on the literature [Jacqui, accessed March 2017, Thornhill], and as confirmed by domain

experts, most home buyers want a property which suits their lifestyle and will grow in value

over time so they can take a step up the property ladder in a few years’ time.

There are two main challenges to define specific tasks. On the one hand, users have various

levels of knowledge on the local areas and the local real estate market. On the other hand,
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users have different individual requirements and their requirements could change during the

process of discovering and knowing better about the local real estate market.

Based on the above observation, we define four levels of basic tasks, as shown in Table 3.3.

Users with different backgrounds of the local real estate market and different requirements can

use different kinds of combinations of the four basic tasks to discover their preferred properties.

For example, a user who does not know much of the local real estate market and/or who is

not sure of his requirement might go through all the four tasks to find candidate properties;

while an advanced home buyer might skip some of the steps and find the properties based on

his requirements (Examples will be illustrated as case studies in Section 3.7.2, with a summary

of different cases in Table 3.4).

Each basic task includes several sub-tasks, as shown in Table 3.3. The table also presents

the corresponding data to support the tasks, as well as the process of how we analyse the tasks

and the corresponding data based on Munzner’s what-why-how model [Munzner, 2014].

3.4 System Overview

In this section, we first define some design maxims, then design system procedure.

3.4.1 Design maxims

Based on our problem abstraction and the characteristics of our targeted users, we define three

design maxims (DMs) to help us design the system and choose proper visualization idioms.

DM1 Incremental learning. Our targeted users are home-buyers, who might have very

limited knowledge of the local real estate market. This also greatly affects their ability

to describe their requirements. For example, since a person does not know what kind

of a property he can buy with one million dollars in Melbourne, he will also easily feel

confused in defining the properties that he prefers. Therefore, our system should allow

such less informed users to learn about the local real estate market step by step.

DM2 Intuitive and simple designs. Our users, as home-buyers, might not know much about

data analytics/visualization. While being informative, our visualization design choices

should be also intuitive and simple for end users to easily understand. We should be

careful with complex visualization designs; and if we do use them, we should provide

detailed guidelines.
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DM3 Consistent visualization designs. Since we may involve several different visualiza-

tion design choices, we should try to use a consistent set of visual encodings in order

not to confuse users. For example, colours should have the same meaning in different

visualization design choices.

3.4.2 System pipeline

Based on the task abstraction and the DMs, we design an interactive procedure (Figure 3.2) to

help different levels of home-buyers incrementally learn about the local real estate market and

find their preferred properties.

First, models in our system refer to different descriptive statistics. We have defined different

abstracted models based on our basic tasks, as shown in Figure 3.2. For example, we have

defined different granularities [Beecham et al., 2016] of summarized information at the suburb

level. At the high granularity, we calculate the median price of properties; at the medium

granularity, we compute the median price of, for example, 3-bedroom houses or 2-bedroom

units; at the low granularity, we summarize the detailed price distribution of all 2-bedroom

units, all 3-bedroom houses, etc.

T.1 T.2 T.3 & T.4

Figure 3.2: The system pipeline of HomeSeeker.

Second, we design three levels of visualization, as profile-based region visualization (T.1,

Section 3.5.1), suburb-based visualization (T.2, Section 3.5.2) and property-level visualization

(T.3 & T.4, Section 3.5.3) to answer the four basic domain tasks. All the visualization designs

are interconnected with each other. On the one hand, we use multiple coordinated views

to visualize different information in the same screen, and designs are coordinated with each
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other with interactions like mouseover/click+ highlighting. On the other hand, designs cross

different levels link with each other based on consistent visual encoding idioms and through

user interactions such as region selections. For example, a user can select some school zones in

profile-based region visualization, or select several suburbs in the suburb-based visualization,

and then move to property-level visualization to explore the properties in those school zones

and/or those suburbs; also, the user can search for all the properties in the same school zone

in the property-level visualization.

3.5 Visualization Design and Justification

In this section, we first introduce our visualization design choices based on our task and data

abstraction. Then, we describe how we have involved users in our iterative design process to

make the system fit for general users.

3.5.1 Profile-based region visualization (T.1)

To help home buyers understand different lifestyles in different areas (T.1), we present each of

our four profiles using choropleth maps or dot maps.

VIS Design 1: Choropleth map. We use the Choropleth map to visualize the educational

and regional profiles. For the educational profile, we visualize the school zone on Google Maps.

Schools with a better rating will be mapped with a darker colour (Figure 3.3(a)). Similarly,

regional exploration presents census information on top of the map. Users can select different

information such as median age, median income, the percentage of people coming from China,

India, etc.

VIS Design 2: Dot map 1. Since transportational profile does not contain shape infor-

mation, we draw circles on top of the map to represent the location, with colour illustrating

the travel time to the city or to users’ working place (Figure 3.3(b)). Similarly, we use different

colours to represent different types of facilities (supermarkets, or shopping centers) for facility

profile.

Justification. We choose the Choropleth map which is perhaps the most commonly used

and effective method for summarized information with geo-shapes; since the data value (e.g.,

school ranking) is numeric, we choose colour luminance to represent the value. We choose colour

luminance, instead of the area size of the circle to represent the travel time, because otherwise,

it might confuse users whether a larger size means a longer time or not. An alternative for
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Figure 3.3: Design of profile-based region visualization. (a) VIS design 1: Choropleth map of
Sydney’s educational profile - primary school exploration; (b) VIS design 2: dot map 1 based
on Melbourne’s transportaional profile - train time exploration.

visualizing different types of facilities is to use different shapes, but we choose colour hue

considering the effectiveness ranking of different visual channels [Munzner, 2014].

3.5.2 Suburb-level visualization (T.2)

At the suburb level, we have three main coordinated views: the Google Maps view, the historical

and the multidimensional view (Figure 3.4).

3.5.2.1 The Google maps view (T.2.1)

We design two levels of data abstractions to provide users with an overview of how property

prices in different suburbs vary across locations.

VIS Design 3: Dot map 2. To visualize the median price and number of properties in

each suburb, we draw circles on top of Google Maps (Figure 3.4 (b)). The position of each

circle corresponds to the centre location of a suburb in geography. The size and colour of the

circle represent the number of sold properties in this suburb, and the median price of those

properties, respectively.

VIS Design 4: Glyphs on map 1. Since prices could be easily affected by the number

of bedrooms (or building size in some countries), we further divide the properties in a suburb
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into different groups based on the number of bedrooms. Therefore, we depart the circle into

different sections to display one more dimension. As shown in Figure 3.5(a), different sections

represent different numbers of bedrooms, and the number of properties that have a particular

number of bedrooms is presented as the size of the section. The color is based on the median

price of the properties in each section. Figure 3.5(b) shows the result when we only select

3-bedroom properties.

Figure 3.5: Illustration of VIS Design 4: glyphs on maps 1. (a) Median house price per
different number of bedrooms; (b) only 3-bedroom properties are selected.

Justification. The two visualization designs are consistent by sharing the same visual

channels, i.e., “colour” and “size”. We design a color scheme to present the median price by

using different color saturation and two different colour hues (“blue” and “red”). Such colour

design is widely used in other applications such as altitude maps [Cohen and Small, 1998].

The color design considers the recommendation from [Brewer and Harrower, accessed March

2017]. Instead of using choropleth maps which show boundaries of suburbs, we choose circles

and glyphs on maps, so that we could use more retinal variables, i.e., “size” and “shape”.

3.5.2.2 The historical view (T.2.2)

This view presents how median prices (multiple line charts) and sold numbers (stream graphs)

of houses/units in each suburb change over time. Those suburbs can be selected by clicking on
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the circles (i.e. suburbs) in the Google Maps view (Section 3.5.2.1), or by filtering the attributes

in the multidimensional view (Section 3.5.2.3).

VIS Design 5: Multiple line graphs. As shown in Figure 3.4(c), the horizontal axis

represents time, i.e., from 2005 to 2015, and the vertical axis represents the median price. Each

line represents the price changes of one suburb.

VIS Design 6: Stream graphs. As shown in Figure 3.4(d), each suburb is represented

as a stream. The horizontal axis and colour have the same meaning as that in multiple line

graphs. The width of the stream indicates the number of sold house/unit in that particular

year.

Justification. Two of the design choices are consistent as they share the same meaning of

horizontal axis and colours. The colour, which means the median price, is consistent with all the

other designs in the system as well. We choose stream graphs to visualize the sold number, since

the sum of the sold number of a group of suburbs make sense, and this is somehow consistent

with the design in the Google Maps view (Section 3.5.2.1) since the width of a stream and the

area (which can be both considered as size-related visual channels) both mean the numbers.

On the other hand, if we use stream graphs to visualize the median price change, the height of

stream graphs will easily confuse people, since the sum of median prices does not make sense.

3.5.2.3 The multidimensional view (T.2.3)

The multidimensional view presents detailed statistical information of each suburb.

VIS Design 7: Parallel coordinates (PCs) 1) We use parallel coordinates (Figure 3.6)

to visualize suburb-based statistics, such as the median price of 2-bedroom houses, the median

age in this suburb. For users to easily compare the price differences of different property types

and bedroom numbers, we have all the maximal and minimal number of price-related axes

consistent, such as 1.5M and 0.2M. As shown in Figure 3.6, we connect the left of parallel

coordinates with a geo-coded scatter plot, to allow users to easily link each suburb represented

as lines in parallel coordinates with the one in the Google Maps view.

Figure 3.6: Illustration of VIS Design 7: PCs
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VIS Design 8: PCs + Histograms. We have a novel design of drawing histograms on top

of parallel coordinates to show the detailed statistics of a group of properties (e.g. 2-bedroom

houses in the suburb) besides the original median number (Figure 3.4(e)). For example, we

first show the median price of 2-bedroom houses for each suburb in parallel coordinates. When

a user selects one suburb to highlight (from any views), we draw a histogram on top of parallel

coordinates to show the detailed price distribution of all 2-bedroom houses in this suburb.

By highlighting each suburb one by one, users could easily get the differences of property

characteristics and the price distribution in each suburb.

Justification. One alternative method to visualize the multidimensional information in

limited screen size is to use Heatmap [Wilkinson and Friendly, 2012]. We choose parallel

coordinates since it is easy to have filtering on its own axes, and it is easy to be combined

with other methods, as what we have designed, with histograms. Such design of drawing

histograms on top of parallel coordinates is novel and effective to show the detailed information

of the selected suburb. It is different from Hansen’s work [Hansen, 2013] which also combines

parallel coordinates and histograms. In particular, Hansen has provided a histogram at each

parallel coordinate axis to indicate the instances of data associated with line values, i.e., the

histogram value is a summary of what you can see from the axis; while histogram in our design

is an expansion of the existing median price and shows more detailed distribution information

related to the axis.

3.5.3 Property-level visualization (T.3 & T.4)

Our property-level visualization (Figure 3.7) includes the Google Maps view, the multidimen-

sional view, the Image Card view and the Word Cloud view. By default, we only show the

Google Maps view. Users can select factors that they care about to visualize them in the

multidimensional view, which will also enable the other views.

3.5.3.1 The Google maps view (T.3.1)

The Google Maps view provides users how properties distribute geographically and how at-

tributes of properties vary across locations.

VIS Design 9: Glyphs on map 2. Each property is mapped as a regular polygon (Figure

3.7(b)). The color of the polygon is determined by the price of a property. The shape of a

polygon is defined by bedroom numbers, i.e., a triangle and a square represent a property that

has one bedroom and two bedrooms, respectively.
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We define a set of selection tools to allows users directly select regions that they are

interested in from the Google Maps view (Figure 3.7(b) - right top corner). First, we allow

users to draw polygons, circles and self-defined shapes (polygons) to select regions in the Google

maps view. Secondly, inspired by Adobe Photoshop CC16, we define four selection operators

as 1) new, 2) add to, 3) intersect with and 4) subtract from, so a user can select regions freely

from the Google Maps view.

Justification. In this map view, we try to provide a multi-scale visual encoding scheme

[Beecham et al., 2016] to visualize different levels of details with regard to different levels of

user interactions. We choose the colour to represent the most important information since it is

still recognizable even when the map is zoomed out. Using colour to represent price also makes

sure the design is consistent with the suburb level (Section 5.2). We choose polygons instead

of circles to represent each property, so we could present another dimension with the shape of

polygons; also, drawing polygons is more efficient than drawing circles. We use shapes rather

than the size of properties, since visual clutter is less likely to happen.

3.5.3.2 The multidimensional view (T.3.2)

The multidimensional view presents and compares all the numerical, categorical and boolean

data linked to each property.

VIS Design 10: Parallel coordinates 2. As shown in Figure 3.7(c), parallel coordinates

is used to display numeric and categorical attributes. It has two main functions in our system.

On the one hand, it provides the comparison of different properties in multiple dimensions;

by selecting and highlighting, users can also easily understand how one property is different

from the others. On the other hand, it provides an interactive way for users to do filtering

of properties of their own preferences based on the attributes that they are concerned about

(which can be selected from the navigation bar) .

VIS Design 11: Geo-coded scatterplot. We map each property as a point in a 2D

coordinate system based on its geographic location (Figure 3.7(c), left), similar to a dot map

[Mackay, 1949]. This geo-coded scatter plot connects the Google Maps view and the multi-

dimensional view. To avoid visual confusion, we set the first axis in parallel coordinates as

latitude, which greatly reduces the chance of intersection of connected lines.

VIS Design 12: Coloured boolean table. As shown in the right side of Figure 3.7(c), it

is a variation of Heatmap [Wilkinson and Friendly, 2012] to visualize boolean attributes (such
16http://www.adobe.com/

http://www.adobe.com/
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as whether the property has air conditioning or not). Each column represents a feature, and

each row is corresponding to a property. The feature of a property that has a value of yes

will be filled with the colour that is the same as that in parallel coordinates and the geo-coded

scatterplot. This design is directly connected with parallel coordinates’ right end.

Justification. We have directly linked three different designs to visualize multiple at-

tributes associated with each property. First, we choose parallel coordinates out of a bunch of

multidimensional visualization methods since it allows users to filter out properties based on

different attributes in a straightforward way, which also helps our filtering function outperform

existing commercial systems. Secondly, we use a geo-coded scatter plot directly connecting

parallel coordinates. We believe that it makes users more easily link the multidimensional view

with the Google Maps view. We have gained feedback from some users that, the geo-coded

scatter plot makes them easier to understand the meaning of a particular polyline in parallel co-

ordinate which represents different attributes of a property. Thirdly, with regard to visualizing

boolean data, one alternation is using parallel sets [Kosara et al., 2006]. We choose the boolean

table since users are more concerned with whether one property has one particular feature other

than the relations among the features; and for the information of how many properties share

the same features, we will show it in the word cloud view.

3.5.3.3 The image card view (T.3.3) & the word cloud view (T.3.4)

We provide the Image Card view and the Word Cloud view to display the additional image and

textual information.

VIS Design 13: Image card. HomeSeeker by default displays 200 pictures of 200 prop-

erties (Figure 3.7(d)). The actual number of pictures depends on the screen resolution. Also, a

vertical scroll bar is provided. After users select a property from the Image Card view or from

other views, we display more pictures of the property.

VIS Design 14: Word cloud. We visualize the most common features of the properties

with word cloud (Figure 3.7(e)) that the user has selected in the Google Maps view or in

the multidimensional view. When users click on one feature (in the Word Cloud view), the

properties that have the feature are highlighted on the map and in parallel coordinates, while

the corresponding column in the coloured Boolean table is also highlighted. The Word Cloud

view presents an overview of the general features of the properties that users are looking at, and

help them understand a group of properties in a particular region (selected from the Google

Maps view) or share the similar features (selected from the multidimensional view).
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Justification. We have two additional views to visualize additional image and text infor-

mation. For the images, we provide a basic function to display one image associated with each

property. We have not provided any sorting function since the main purpose of this view is

to provide users with some basic idea of how each property looks like. When the number of

properties decreases, the image can be enlarged to increase the space utilization rate. To keep

consistency with other views and avoid confusion, the colour of word cloud is set into the black.

3.5.3.4 The spider chart view (T.4)

The spider chart view provides users with a detailed comparison among a limited number of

candidate properties.

VIS Design 15: Spider chart. We use a spider chart [Friendly, 1991] (Figure 3.7(f))

to compare the properties in the user’s favourite list based on the attributes that the user is

concerned about. First, we have reversed the value in some axes so that the property that

is placed more outside always means it is better in the corresponding dimension. Secondly,

we have pre-defined the maximum and minimum value of each axis in the spider chart as the

maximum and minimum value of each dimension in the whole data table. Such a design allows

users to understand whether the differences between the two properties are huge or not.

Justification. The main purpose of the spider chart view is to compare the properties in

the user’s favourite list. The first controversial part of the design is the duplicate information

as presented in parallel coordinates. We argue that the spider chart augments the parallel

coordinates to show a more clear comparison of properties in the aspects selected by users.

Another problem of the spider chart is the limited number of properties it supports since we

display a very limited number of properties in the spider chart. If there are more properties in

the user’s favourite list, he/she can still compare those properties in parallel coordinates. The

third problem is the limited number of attributes that the spider chart supports. Normally,

the spider chart can display at most 12 to 16 properties, which is able to meet most users’

requirements.

3.6 System Implementation

We developed HomeSeeker17 in HTML5 and Javascript, with the library of d3.js and Google

Maps JavaScript API. The database that we used is MySQL 5.6.17, and we used PHP to
17The demo is available at http://115.146.89.158/.

http://115.146.89.158/.
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connect the database.

Particularly, in the Google Maps view, we sample properties if there are too many properties

(>5000), and our index system based on the address enables that the sampled properties are in

different areas. To guarantee efficiency, we use progressive rendering techniques [Turkay et al.,

2017a] in some visualization designs (e.g., parallel coordinates).

3.7 Experiments and Discussion

In this section we present four case studies subsequent to the description of the experimental

dataset. This is followed by domain expert interviews and a general discussion.

3.7.1 Dataset description

As discussed in Section 3.3, we have crawled the real estate data from different channels and

integrated them to form a comprehensive location-aware dataset. We use Melbourne dataset

to present case studies in this section.

3.7.2 Case studies

We present four typical cases of home buyers/investors can use HomeSeeker to find properties.

Table 3.4 describes the budgets and requirements from the four users, and summarizes how

users can use our basic tasks to finish different tasks and the involved visual designs.

3.7.2.1 Case I. From school zone to discover properties

User A had a budget of 0.8 million dollars to buy a 3-bedroom property in the Eastern Mel-

bourne suburbs where most of her friends live. As a parent, she preferred the property within

a good public secondary school and close to facilities like supermarkets, shopping centres and

clinics.

She first went to profile-based region visualization (T.1) and selected secondary public

school exploration. After discovering and comparing the school ratings, she selected those

schools having a good academic performance (within the top 20% in Melbourne), including

Mckinnon Secondary College, Balwyn High School, etc. (Figure 3.8(a)).
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She then clicked on property exploration (T.3) and found that there were too many available

properties. After selecting those attributes that she was interested, she enabled the multidi-

mensional view. She then filtered out the properties based on her original requirements (houses,

below 0.8 million, 3-bedroom, within 500m to the nearest supermarket, 2km to the near shop-

ping center and 1km to the nearest clinic (Figure 3.8(b)-[1-6]). After comparing the attributes

of the remaining properties, she realized that she also wanted to live in a region with more

local people (Figure 3.8(b)-7). Since her son might need to go to the city by train at weekends,

the desired property needed to be near the train station as well (Figure 3.8(b)-8). After the

filtering, there left ten properties all in the suburb of Blackburn. She picked two of the houses

in lower prices (Figure 3.8(b)-2) and with most of the facilities nearby (Figure 3.8(b)-9).

After saving the two properties into her favourites, she compared those two houses in detail

(T.4) (Figure 3.8(c)). She found that the two houses were very similar to each other (Figure

3.8(c)-1), except that House 1 had a slightly shorter walking time to the nearest train station

from. Then, she further discovered from the multidimensional view that House 1 was 6k more

expensive than House 2 (Figure 3.8(c)-2), but was closer to most of the facilities (Figure 3.8(c)-

3). At last, she decided to inspect those two houses in person and had House 1 (Figure 3.8(c)-4)

as a priority.

3.7.2.2 Case II. From understanding regions to discover properties

User B wanted to buy a house in a region where there were more Chinese residences so that

his Chinese parents would have an easy life in the region. Since he might live there only for 3

or 4 years, he also preferred a region where the house value could increase in value over years.

Figure 3.9: Illustration of Case II: from understanding regions to discover properties. (a)
regional exploration (regions with more Chinese residents are discovered); (b & c) detailed
information of two selected suburbs in Melbourne: Box Hill (b) and Glen Waverley (c).
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He first went to regional exploration (T.1) and selected Chinese_% (percentage of Chinese

residents) from the drop-down box (Figure 3.9(a)). He identified four regions where there were

more Chinese residences, as Melbourne CBD (1), Box Hill (2), Glen Waverley (3), and Clayton

(4). He then selected the median age at the regional exploration and found that Melbourne

CBD and Clayton had more young people living there. Therefore, considering his parents’ age,

he chose Box Hill and Glen Waverley as two candidate suburbs to buy a house.

Then he went to suburb-level exploration (T.2), and selected Box Hill and Glen Waverley

from the Google Maps view to add them to the historical view. By comparing price-related

information in the two suburbs (Figure 3.9(b & c)), he noticed that 1) house price in both the

two suburbs had an average capital growth of over 8% in the past ten years (Figure 3.9(b &

c)-1); 2) house price in Box Hill (Figure 3.9(b)-2) increased over 30% in the past year, while the

increasing rate for Glen Waverley (Figure 3.9(c)-2) was around 20%; 3) there were much more 3-

/4-bedroom houses within his budget (1 million) in Glen Waverley (Figure 3.9(b)-3) comparing

to Box Hill (Figure 3.9(c)-3). Considering the available properties and the possibility of price

bubbles in Box Hill at the moment, he decided to first consider properties in Glen Waverley.

He double clicked the suburb of Glen Waverley and enabled to explore the individual prop-

erties in Glen Waverley. Since he did not care about the suburb boundaries, he drew rectangles

with our region selection tools to add more candidate regions near Glen Waverley Community

centre, and then filtered the properties and compared the properties based on his own require-

ment, similar to how User A discovered the individual properties and compared them (T.3 &

T.4), User B found three candidate properties and had a ranking among them.

3.7.2.3 Case III. Investment on properties

User C had 0.6 million dollars and wanted to invest a property from which he could make the

most profits.

He went directly to suburb exploration (T.2), and selected those suburbs whose average

capital growth of houses was above 8% in the past ten years (Figure 3.10(a)-1). Considering

his budget, he further filtered the suburbs with limiting the average price below 0.7 million

(Figure 3.10(a)-2). There were only four suburbs left, as St Kilda, Braybrook, Glen Huntly

and Caufield East (Figure 3.10(a)-[3-6]). After comparing the detailed information of those

suburbs, he found that, there were more 3-/4-bedroom houses in Braybrook (Figure 3.10(a)-7)

that were below the average price of this suburb (0.49 million, also certainly within his budget),

which means that he could buy one of the properties, did some decoration if needed and then
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Figure 3.10: Illustration of Case III: investment on properties. (a) suburb exploration -
selecting suburbs with higher house price growth; (b) comparing 3 candidate houses at the
property-level exploration.

sold the property at a fair price. Therefore, he chose Braybrook as the target suburb, and

clicked into the suburb to explore the individual houses.

At the individual property level (T.3 & T.4), he chose the attributes that he thought

critical to resell the property. Then he filtered properties (Figure 3.10(b)) and had (3+)-

bedroom houses which were below the average price in Braybrook, had at least two bathrooms

and one packing, and within 40 minutes to the city by train. He had three houses left. After

comparing the properties in detail, he chose House 1 as his primary target and the other two

houses as candidates properties.

3.7.2.4 Case IV. Exploring the properties as beginners

User D was new to Melbourne, and wanted to explore the local real estate market, got to

know different lifestyles in different regions, so that he could have a basic idea of what kind of
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properties he would buy in the future.

Figure 3.11: Illustration of Case IV: exploring the properties as beginners. (a) visualizing
property price based on different number of bedrooms; (b) changes of houses price and sold
house property number over 10 years at different suburbs of Melbourne.

He first selected suburb exploration (T.2) (Figure 3.4), and found that, in general, the

prices of properties in the eastern suburbs and the southeastern suburbs were higher than that

in the northern suburbs, and the prices of that in the western suburbs were the lowest; also, the

price had a negative correlation with the distance from the Melbourne CBD (central business

district) area. He was surprised to find that property prices in the CBD were not high, since he

believed that renting a room in the CBD was quite expensive. He found the reason of this as

he moved to another level to see how the prices of properties were different based on different

numbers of bedrooms in different suburbs (Figure 3.11(a)). There were more 1-bedroom and

2-bedroom apartments in the CBD area (Figure 3.11(a)-1), which highly influenced the price;

however, the regions around the CBD, such as Albert Park (Figure 3.11(a)-2), Fitzroy (Figure

3.11(a)-3) and Fitzroy North (Figure 3.11(a)-4) had more 3-bedroom houses, which made the

price very high. The patterns showing how the prices of Melbourne properties were different

along with different directions and distances to the CBD were more clear to him when only the

3-bedroom properties were selected. He also explored the individual properties, and checked

the differences between the (individual) properties of the CBD and the surrounding areas.

He also noticed that median house prices were much higher than unit prices. From the

Google Maps view, he selected several suburbs which locate in the western, northern, eastern

and southeastern of Melbourne, and also had various distances to the CBD (Figure 3.11(b)).
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Overall, the house price in 2015 had at least doubled comparing to ten years ago; while the

unit price had increased too, but not significantly, especially in the latest five years. Further

looking into the changes of house prices, he noticed that the price had been increased from 2005

and peaked at 2010/2011, and then decreased a little bit in the following two years and then

increased at a much higher rate in the latest two years.

He then discovered the difference among regions in other aspects, such as people, public

schools and facilities. in the profile-based region exploration (T.1). At last, he clicked on

property-level exploration (Figure 3.7) and defined several kinds of filtering settings to see

what kinds of properties he could afford in different regions (T.3).

3.7.3 Domain expert feedback

To attract users, we demonstrated our demo system at the 27th Australian Database Confer-

ence18 (for half a day) and the 2017 conference of Beyond Research - Pathway to Impact19

(for two days). We also advertised our system on social media with an introduction video and

demo links. Besides general users and researchers from different fields, we particularly got the

attention from two real estate agents, two researchers in Business IT (related to real estate)

and a professor in urban science, which are all considered as domain experts.

One of the real estate agents commented on our system (based on an early version of imple-

mentation), saying that [The System is] Incredible, what a great translation of property buyer

needs. It’s refreshing to see it built from authenticity, instead of commercialism. The agent

contacted us from social media and met us in person. The same with how we discussed with

other domain experts, we introduced the system, asked them to try the system by themselves,

and then sought feedback from them.

Most of the domain experts are fascinated about how we collected the data from different

sources and integrated them together. One of the real estate agents commented that our tool

could be very useful for him to recommend properties to home buyers, and help them illustrate

why the property is worth to buy. He also suggested us to include the annual growth information

which investors might be more interested (for example, they might search for the suburbs that

have an annual growth larger than 10% in the last five years). Though our system mainly

focuses on home buyers, we have included such information in our later implementation to suit

for more user types.
18https://adc2016.cse.unsw.edu.au/
19http://beyondresearchconference.com.au/

https://adc2016.cse.unsw.edu.au/
http://beyondresearchconference.com.au/
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3.7.4 Discussion

Based on the case studies, we have demonstrated that our system can be beneficial to both

home buyers and investors; and users with different levels of knowledge (on the local real-

estate market) can jump into a certain level of tasks to explore the local properties. Although

users still need to inspect the properties before they make a final decision, our system provides

rich sources for them to find candidate properties and undertand the properties before the

inspection. We have augmented existing commercial systems in the following aspects. First,

based on a unique location-centred dataset that we provide, all the data (related to different

profiles) and services (exploration in the suburb level and individual property level) in our

system are interconnected. Secondly, we have provided a way to help users understand the

local real estate market, which also helps them further understand what kinds of properties

that they prefer and which they can afford. Thirdly, we allow users to explore the properties,

find properties based on their requirements in a more interesting and effective way, since our

system has provided instant feedback after they interact with the system. Last, we allow users

to visually compare suburbs and properties, which the current commercial systems fail to do.

One of the limitations is related to the scalability. We have sampled the properties on top

of the Google Maps view when there are too many (i.e., more than 5,000) properties at the

selected region; and we have also used progressive rendering on parallel coordinates. Users

have commented that the progressive rendering in a way makes them feel confused, and the

massive lines in the parallel coordinates fail to provide much information. In our second and

third research questions, we will discover more about the aggregation based on both the map

view and the multidimensional view.

Another consideration is whether our framework works well in other cities/countries besides

Melbourne/Australia. So far, we have also collected data from other major cities in Australia,

such as Sydney, Brisbane, Perth and Adelaide. Since the data profiles that we have defined

(Section 3.3.2) are general enough to cover all location information related to a real estate

market, and new information can always be treated as one instance of one type of the profiles.

Our framework works well with other cities, except that only some details in the process of data

collecting need to be modified. For example, in Melbourne, most commuters travel by train or

tram; while in Sydney, it could be by train or ferry. Certainly, there are different considerations

across countries, we believe that our framework can inspire researchers from other countries to

work on their real estate data.
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3.8 Summary

In this chapter, we explored visual analytics of geo-related multidimensional data using the

real estate domain as an example. We designed and developed HomeSeeker which augments

existing commercial systems to help users understand the local real estate market, find pre-

ferred properties based on their personal preferences, and compare properties from the aspects

that they are concerned about. We provided a location-centred real estate dataset, which is

exclusive in this chapter. We presented a systematic visualization design study following with

justifications. Case studies based on real-world datasets demonstrated the usefulness of our

system, and users with different levels of knowledge on the market and different requirements

(either general home buyers or investors) can benefit from our visual analytics system.





Chapter 4

ConcaveCubes: Supporting

Large-scale Geographic Visualization
“Maps encourage boldness. They’re like cryptic love letters. They make anything

seem possible.”

— Mark Jenkins

In this chapter, we study the problem of supporting effective visualization/visual analytics for

large-scale geo-related multidimensional data. From an extensive literature study, we find that

the existing solutions suffer from at least one of the drawbacks below: (i) loss of interesting

structures/outliers due to sampling; (ii) supporting heatmaps only, which provides limited in-

formation; and (iii) no notion of real-world geography semantics (e.g., country, state, city)

is captured in the visualization result as well as the underlying index. Therefore, we propose

ConcaveCubes, a cluster-based data cube to support interactive visualization of large-scale mul-

tidimensional urban data. Specifically, we devise an appropriate visualization abstraction and

visualization design based on clusters. We propose a novel concave hull construction method to

support boundary based cluster map visualization, where real-world geographical semantics are

well preserved. Instead of calculating the clusters on demand, ConcaveCubes (re)uses existing

calculation and visualization results to efficiently support different kinds of user interactions.

We conduct extensive experiments using real-world datasets and show the efficiency and effec-

tiveness of ConcaveCubes by comparing with the state-of-the-art cube-based solutions.

63
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4.1 Introduction

In the previous chapter, we have designed and developed a visualization system for Australia’s

real estate data. In the property-level visualization, we displayed each property on top of a geo-

graphic map, where users can explore the data and compare properties in multiple dimensions.

However, as the scale of data increases (e.g., over one million data points), existing information

visualization methods, including directly visualizing individual data points on a map, suffer

not only from large memory consumption, but also have perceptual and interactive scalability

problems [Liu et al., 2013]. In particular, users’ perceptual and cognitive capacities are over-

whelmed by data over-plotting, and users’ interaction with large-scale datasets can easily lead

to high latency.

A straightforward approach is to employ sampling methods [Drosou and Pitoura, 2012] to

reduce the data to be displayed. However, they possibly elide interesting structures or outliers,

thereby preventing users from querying the data to cater to their own preference in the data

exploration stage. Therefore, one recent research trend is to design data cubes and pre-compute

possible data aggregations to support efficient visualization, such as imMens [Liu et al., 2013],

Nanocubes [Lins et al., 2013], and Hashedcubes [Pahins et al., 2017]. As a result, they enable

fast query processing for interactive visualizations of large and multidimensional data.

While these data cube structures are effective for solving the scalability problem, we ob-

serve that they only support heatmaps [Bojko, 2009] based on binned aggregation in terms

of visualizing geographical features. Although Liu et al. [Liu et al., 2013] have shown that

heatmaps have advantages vis-à-vis sampled symbol maps (e.g., heatmaps can show the overall

geographical distribution while sampled symbol maps cannot), the information that heatmaps

can provide is often very limited (Example 4.1 in Section 4.3.4).

To deal with the limitation of heatmaps, we describe a design space for geographical visu-

alization based on the result of data clustering (rather than relational aggregation). Following

Tobler’s First Law of Geography - Everything is related to everything else, but near things are

more related than distant things [Tobler, 1970], we first cluster geographical data points that

are close in distance (assuming Euclidean distance in contrast to other distances such as the

Hausdorff distance [Nutanong et al., 2011]) and share similar features, and then represent each

cluster with a geographical bubble on top of the map. It is called bubble-based cluster maps

as shown in Figure 4.2(a). Cluster maps, which is hard to support by existing data cubes (e.g.,

imMens [Liu et al., 2013], Nanocubes [Lins et al., 2013], Hashedcubes [Pahins et al., 2017]), can

provide additional information compared to heatmaps or binned plots. We compare existing
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map designs and discuss why we chose cluster maps, rather than heatmaps or binned plots, etc.

in Section 4.3.4.

One problem of the existing cluster map design is that each cluster is often visualized

based on bubbles, with the size and the colour (sometimes the shape as well) of each bubble

representing different features of the data. Although bubble-based cluster maps can present

information that heatmaps and binned plots cannot, the locations of properties in each cluster

could not be precisely represented, i.e., properties actually inside of the circle might not belong

to the cluster (Example 4.2 in Section 4.3.4). To solve such a problem, we provide a new map

design to represent the geographical boundary of each cluster, i.e., boundary-based cluster maps

(similar but the same as choropleth maps [Brewer et al., 1997]).

A key question arising for the boundary-based cluster maps is “what is an appropriate choice

of the polygons used to present the boundary of clusters?”. To answer this question, we reviewed

existing methods (e.g., KNN-based method [Moreira and Santos, 2007], χ-shapes [Duckham

et al., 2008] and α-Concave Hull [Asaeedi et al., 2017]) that generate different polygons (hulls)

based on the included geographical points. However, all of these methods suffer from at least

one of the following problems: (i) large empty areas inside the hull, (ii) too complex shapes,

and (iii) overlaps among the polygons representing the different clusters (e.g., Figure 4.3(d)).

The problem is explained in greater detail in Section 4.4, with a summary of envisioned features

of an appropriate choice in Table 4.1.

We propose a new concave hull algorithm, which generates a polygon (hull) to present each

cluster based on the geographical locations of all data points in the cluster. In particular, our

algorithm is based on a global Delaunay triangulation [Samet, 2006], followed by a separation

of points based on the different clusters; thus it is able to avoid all of the three aforementioned

problems.

Following our proposed cluster-based visualization design, a subsequent challenge is: what

kind of a data structure is efficient to support such visualization design and user interactions

on large-scale data? Accordingly, we propose a tree-structured index called ConcaveCubes,

which organizes the pre-computed hierarchical clustering result in data cubes. Compared to

state-of-the-art visualization-driven cube structures, (i) ConcaveCubes supports cluster maps

which existing structures cannot; (ii) ConcaveCubes exploits real-world geographic semantics

(e.g., country, state, city) rather than using grid-based aggregations; (iii) instead of calculating

the clusters on demand, ConcaveCubes utilizes existing calculation and visualization results to

efficiently support different kinds of user interactions, such as zooming & panning, filtering,

and granularity control.
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To summarize, we make the following contributions in this chapter.

1. We present a cluster-based visualization abstraction of geographical data (Section 4.3).

2. We propose an algorithm to efficiently generate concave hulls that include geographical

points in each cluster as compactly as possible. As a result, it is able to avoid large empty

areas inside the hull, complex shapes and overlaps among different clusters (Section 4.4).

3. We propose a cluster-based data cube (ConcaveCubes) to efficiently support interactive

response to users’ visualized exploration on large-scale geographic multidimensional data

(Section 4.5).

4. We conduct extensive experiments using real-world datasets, and compare Concave-

Cubes with state-of-the-art cube-based data structures to verify the efficiency and ef-

fectiveness of ConcaveCubes (Section 4.7).

4.2 Related Work

There are two major types of methods to address the scalability issue of visualizing large-scale

datasets. On the one hand, visualization techniques address the perceptual and interactive

scalability problem at the visualization end, e.g., pixel-based visualization [Keim, 1996], alpha

blending [Jerding and Stasko, 1998], spatial displacement methods [Trutschl et al., 2003], and

dimension re-ordering [Peng et al., 2004] for parallel coordinates; however, they still need to

scan each data item, which makes them difficult to scale. On the other hand, researchers

have proposed various data reduction methods which reduce the size of the data before the

data enters the visual rendering process. For example, sampling [Drosou and Pitoura, 2012]

& filtering [Ahlberg and Shneiderman, 1994] are widely used to select a smaller subset of data

before applying standard visualization techniques; however, they fail to provide an overview of

the data distribution [Lins et al., 2013].

Data cube aggregation methods. As one of the data reduction methods, data cubes [Gray

et al., 1997] have been intensively studied in the area of data warehouses. In this technique,

aggregation results of the raw data are pre-computed on predefined dimensions to support data

exploration. However, a complete data cube is often too large to fit in memory and query in

real-time. One recent research direction is to design visualization-constrained data cubes that

are constrained by the number of pixels used in visualization [Keim, 1996]. Different methods

have been proposed to reduce the size of the data cubes for information visualization based on
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binned aggregation [Carr et al., 1987], which conveys both global patterns and local features

while enabling different levels of resolution by changing the bin size. Visualization researchers

[Liu et al., 2013, Lins et al., 2013] suggested a design principle that scalability should be limited

by the chosen resolution of the visualization data, not the number of records. Based on this

principle, Liu et al. [2013] proposed imMens, which decomposes the full cube into sub-cubes to

minimize data memory usage and thus reduce the query latency. However, imMens can only

support brushing and linking [Keim, 2002] scenarios with at most four dimensions. Nonocubes

[Lins et al., 2013], on the other hand, supports an arbitrary number of dimensions; but it might

suffer from query latency and has a high memory cost, since it uses a large amount of binned

aggregation. GaussianCubes [Wang et al., 2017b] and TopKube [Miranda et al., 2018] extend

the idea of Nanocubes by supporting more types of queries, but still suffer from the high query

latency as the number of dimensions increases. Hashedcubes [Pahins et al., 2017] sorts data in

advance based on judiciously selected pivots, thereby on-the-fly aggregation computation can

be supported and the storage cost is reduced significantly.

Our proposed ConcaveCubes is in line with the data cube methods. As compared to state-

of-the-art imMens [Liu et al., 2013], Nanocubes [Lins et al., 2013], and Hashedcubes [Pahins

et al., 2017], our ConcaveCubes distinguishes from them in three aspects. First, instead of

storing individual geographic points, ConcaveCubes first clusters those data items that are

close in distance and share similar features, and then builds indexes based on the clusters, i.e.,

cluster-based data cubes. Therefore, ConcaveCubes supports the visualization of clusters on

top of the map, while existing methods only support heatmaps. Second, ConcaveCubes exploits

real-world geographic semantics (e.g., country, state, city) rather than using grid-based aggre-

gations. Third, instead of calculating everything on demand, ConcaveCubes utilizes existing

calculation and visualization results to efficiently support different kinds of user interactions,

such as zooming, panning and filtering.

4.3 Cluster-based Visualization Abstraction

Figure 4.1 presents the structure of this section, and how it is linked with Section 4.4 and

Section 4.5.
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Cluster-based VIS Abstraction
(Section 4.3)

Task/Data Abstraction
(Section 4.3.1)

Baseline Clustering
(Section 4.3.2)

(Section 4.3.4)

Bubble-based 
cluster maps

Boundary-based
cluster maps

Cluster Maps

How to generate the boundary
for each cluster?

How to address the scalability 
problem at large data scale?

Visualization Design
(Section 4.3.3)

Proposed Concave Hull Algorithm
(Section 4.4)

Proposed ConcaveCubes
(Section 4.5)User Interactions

Figure 4.1: An overview of our solution in Sections 4.3, 4.4 & 4.5.

4.3.1 Data and task abstraction

For ease of explanation, we use the real estate dataset (from the last chapter) as an example

of geo-related multidimensional data to explain this section. Recall Section 3.3, the real estate

dataset include five profiles, i.e., basic profile, census profile, education profile, facility profile,

and transportation profile (detailed in the previous chapter (Chapter 3). Each property is

associated with its geo-spatial information (latitude and longitude), categorical dimensions

(e.g., property type), and numerical dimensions (e.g., price).

Following Shneiderman’s visual information-seeking mantra [Shneiderman, 1996] to define

our tasks, i.e., overview first, zoom and filter, then details-on-demand, we illustrate the abstrac-

tion of tasks based on a series of real-life questions: (1) What is the difference of the property

prices in different suburbs of Victoria (overview)? (2) What if the user only concerns about

3-bedroom houses (filtering)? (3) What is the difference between the houses in blocks of the

same suburb (zooming & granularity control)? (4) Based on the user-selected attributes, how

do the houses in a block differ from the rest of the houses in the same suburb, or the rest of the

houses in that entire state (details-on-demand, highlighting & linking)?

4.3.2 A baseline solution

Before describing our cluster-based visualization design, we introduce a baseline clustering

solution. Here, we first subdivide different dimensions into four main types based on (i) whether

they are directly linked to locations, and (ii) whether they directly affect the clustering result.

• Geo-dependent dimensions: including geographical locations represented by latitude
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and longitude, and geo-semantics such as state, suburb. These dimensions are directly

linked to geography, and will directly affect the clustering result.

• Additional geo-dependent measures: e.g., the distance to the nearest train station,

the median income of the region. These dimensions are directly related to geography.

However, once a group of real estate properties are close in distance, they share similar

values of the other dimensions. Therefore, it is not necessary to consider those dimensions

in the clustering process.

• Geo-independent dimensions: e.g., price, property type, bedroom number. They are

major factors in the clustering process which are not directly linked to the geo-location.

• Additional geo-independent measures: e.g., number of parking spots, whether con-

taining air conditioning. Users may want to check these factors for individual houses but

they are not important enough to be considered in the clustering process.

Now we present the steps of a straightforward method to cluster the properties that are

close in distance while also sharing similar features: (i) We group properties based on geo-

independent dimensions, e.g., group all 3-bedroom houses with price between 0.9-1million. (ii)

We further group the properties based on one level of geo-semantics (geo-dependent dimensions),

e.g., all 3-bedroom houses in the same suburb will be grouped together. (iii) For each group,

we apply DBScan [Ester et al., 1996] to divide the properties into different clusters based on

the geo-location, e.g., the properties within the same group after step 2 and close in distance

(e.g., <150m) will be in the same cluster.

4.3.3 Visualization design

To support the visualization tasks (Section 4.3.1), we design two map-based views and a linked

multidimensional view. In the map-based views, we visualize the clusters on top of the map.

When a cluster is highlighted in the map-based view, a linked multidimensional view presents

the detailed information of the cluster based on user-selected measures. Justification of using

cluster maps instead of other map designs (e.g., heatmaps that existing visualization-based data

cubes support) will be presented in Section 4.3.4.

Map-based view 1: bubble-based cluster maps. A straightforward visual encoding to

visualize clusters is to use bubble maps. Comparing to heatmaps that Nanocubes [Lins et al.,

2013] and Hashedcubes [Pahins et al., 2017] support, bubble maps have at least one more

retina variable (i.e., the size of the bubble) to encode an extra dimension (another variable is
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Figure 4.2: Illustration of our visualization design. (a) map view 1: bubble-based cluster
map; (b) map view 2: boundary-based cluster map, and the multidimensional view with a
cluster highlighted (properties in the selected cluster is compared to that of the entire state
based on 7 user-selected measures (sold price, personal income, rent price, household income,
distance to CBD, nearest hospital and nearest doctor.

the shape). An example is shown in Figure 4.2(a), where the colour of each bubble represents

the average price of properties in each cluster, and the size of the bubble represents the total

number of properties in the cluster. We also use alpha blending [Jerding and Stasko, 1998] to

reduce visual cluttering for intersecting bubbles.

Map-based view 2: boundary-based cluster maps. As boundaries are important mea-

surements of the geographic information, our second map-based view draws concave hull (a

polygon that covers a group of points) [Moreira and Santos, 2007] on top of the map to illus-

trate positions of the properties in each cluster (Figure 4.2(b)). How to generate a concave hull

based on a group of geographical points is presented in Section 4.4. The colour of the concave

hull is based on an aggregated value of user-defined dimensions for all the properties in each

cluster. This is done as follows: suppose that a user selects m dimensions, and there are n

clusters. Let x̃i,j be the median value of all properties in cluster cj (j ∈ [0, n− 1]) at dimension

i (i ∈ [0,m− 1]). The aggregated value of a cluster cj is computed as a weighted sum:

aggrcj =
m−1∑
i=0

wi · N(x̃i,j) /
m−1∑
i=0

wi (4.1)

where, N(x̃i) corresponds to the normalized value of x̃i,j between [0, 1] and computed as:
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N(x̃i,j) = (x̃i,j −minj x̃i,j)/(maxj x̃i,j −minj x̃i,j), where wi is the weight of the i-th dimension

and is defined by the user. Various strategies [Wang et al., 2017a] could be used to assign

the weight after the user gives the importance rank of all dimensions, including Fixed Weights

(FW), Randomly Assigned Weights (RAW), Uniformly Distributed Weights (UDW), etc. In

our implementation, we adopt one of the RAW methods named Random Weighted Genetic

Algorithm (RWGA) [Murata and Ishibuchi, 1995]. In particular, when the user selects only one

dimension (e.g., price), the colour is mapped based on the selected dimension.

Multidimensional view: line charts + histograms. We design a linked multidimensional

view to visualize the statistical information of a selected (highlighted) cluster and compare it

with others. For example, in Figure 4.2(b), after the user selects a cluster in Brighton, the

statistical information of this cluster based on seven user-defined dimensions is shown as seven

histograms in the multidimensional view; also, the information in the entire state (Victoria) on

those seven dimensions are shown as seven line charts for comparison.

Interaction design. Based on our task abstraction, we support the following user interactions:

• Zooming & panning: we support zooming & panning on maps.

• Filtering: we support filtering data values on each dimension. The cluster will be re-

calculated as a result of filtering. Filtering is performed using the selection panel shown

in the top right corner of Figure 4.2(b) that consists of sliders and drop-down menus.

• Granularity control. We support map-based visualization in multi-granularity scales.

In our implementation, after users zoom in/out on top of the map, the granularity level will

also be changed. However, users can also change to a finer or coarser level of granularity

by selecting from the selection panel while staying at the same zooming level.

• Other interactions, such as highlighting & linking (i.e., selecting and highlighting a

cluster on the map and linking the information in the multidimensional view).

4.3.4 Design justification: why cluster-based visualization?

There are various map designs to visualize geographical data, including symbol maps, heatmaps,

bubble maps, cluster maps, etc. We observe that, existing visualization-driven data cube struc-

tures (e.g., imMens [Liu et al., 2013], Nanocubes [Lins et al., 2013], Hashedcubes [Pahins et al.,

2017]) only support heatmaps or dot maps based on binned aggregation. Although Liu et al.

[Liu et al., 2013] have shown that heatmaps have advantages in comparison to sampled sym-

bol maps (e.g., heatmaps can show the overall geographical distribution while sampled symbol
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Figure 4.3: A comparison of four geographic visualizations based on the real estate data in
Melbourne. (a) Heatmaps and (b) binned plots, which imMens [Liu et al., 2013], Nanocubes
[Lins et al., 2013] and Hashedcubes [Pahins et al., 2017] support; (c) bubble-based cluster
maps and (d) boundary-based cluster maps that our proposed ConcaveCubes supports.

maps cannot), the information that heatmaps can provide is still very limited, as illustrated in

Example 4.1.

Example 4.1. Figures 4.3(a) and 4.3(b) show a visualization of Melbourne’s real estate data

using heatmap and binned plots (a variation of heatmaps), respectively. Heatmap, which is the

only form of visualization supported by existing cube structures, can only present the density

of real estates in different regions (by colour). Binned plots, which can be supported by the

existing methods by slight adjustments, can provide price distribution (by colour) (Figure 4.3(b));

however, the plots are not easy to interpret as each binned block does not have real-life semantic

meanings. For example, the real estates in a binned block may not be in the same suburb and/or

may have different key features (e.g., they may belong to different school zones).

On the other hand, cluster maps, which are difficult to support by existing data cubes,

provide more information (with semantic meanings) in comparison to heatmaps or binned

plots: Example 4.2.

Example 4.2. We visualize Melbourne’s real estate data using bubble-based cluster maps (Fig-

ure 4.3(c)). Each bubble represents a group of real estate properties which are clustered based

on both the geo-location and two other features (corresponding to suburbs & secondary school

zones). The colour and size of each bubble represent the median price and the total number of

properties in each cluster, respectively. Compared to heatmaps and binned plots, bubble-based

cluster maps (i) represent one more dimension, and (ii) have a real semantic meaning of the

visual mark - each bubble represents a group of houses that are in the same suburb and school

zone as well as close in distance.
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Although traditional bubble-based cluster maps can present information that heatmaps and

binned plots cannot, the locations of properties in each cluster are not precisely represented,

i.e., properties actually inside a circle might not belong to the cluster. Our proposed boundary-

based cluster maps aims to solve this problem, as shown in Example 4.3.

Example 4.3. We visualize the same data using boundary-based cluster maps (Figure 4.3(d)).

Each cluster is represented by a colour-encoded hull (boundary of the cluster). Compared to the

heatmaps or binned plots in Figure 4.3(a & b), boundary-based cluster maps present geographical

information with semantic meanings. Comparing to our baseline bubble-based cluster maps

which present one more measure using the size of each bubble, the boundary-based cluster maps

present more precise location information.

4.4 Algorithm for Generating Boundary-based Cluster Maps

In this section, with the clusters as the input, we present our algorithm to generate the bound-

ary of each cluster that best represents the group of geographical points that are physically

located in it. In particular, we first outline the desired features (from the perspective of visual

perception) of a boundary generation algorithm. Next, we show that the concave hull based

representation is the most suitable choice. Third, we propose a novel concave hull construction

algorithm that meets all of these desired features. Finally, we compare the visualization result

and the time complexity of our proposed algorithm with the existing methods.

4.4.1 An outline of desired features

We envision four features for an ideal cluster map: (1) no overlap between the visualization of

any two clusters, (2) complex shapes should be minimized to enhance user’s cognitive capability,

(3) empty areas of each hull [Galton and Duckham, 2006] (i.e., the area inside a hull that does

not contain any real estate properties) should be minimized, (4) parameter tuning for boundary

generation should be avoided.

Generating hulls (polygons) to represent the geographical boundary of each cluster is one

of the approaches to achieve these features. We first review existing hull generation algorithms.

Ebert et al. [2015] classify hulls into five different categories: (i) rectangular hull, (ii) orthogonal

convex hull, (iii) convex hull, (iv) concave hull, and (v) concave hull for several groups. Since

our target is to represent each cluster with a single polygon, concave hull for several groups

(representing one cluster) is not appropriate in our case. Among the other categories, the
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concave hull is recognized as presenting the most precise shape recognition of an area [Ebert

et al., 2015]. Therefore, we opt for a concave hull based representation for the positions of

properties in each cluster.

Table 4.1 shows a comprehensive list of limitations of seven major hull construction al-

gorithms. Although the convex hull algorithm does not generate complex shapes, it usually

results in large empty areas and will easily cause overlaps. While concave hulls generated by

χ-shapes [Duckham et al., 2008] and the KNN-based method [Moreira and Santos, 2007] can

reduce empty areas, they either have overlaps or complex shapes. The Voronoi-based [Alani

et al., 2001] and the triangulation-based [Arampatzis et al., 2006] concave hull method fully

partition the whole space, thus a huge empty area can be generated inside each hull.

Figure 4.4: The result of an existing concave hull algorithm [Park and Oh, 2012b]
(representing all the concave hull methods in Table 4.1) [Red - overlaps, black - complex
shapes] and the result of using our proposed algorithm: (a) using the method in [Park and Oh,
2012b] with a threshold of 100m; (b) using the method in [Park and Oh, 2012b] with a
threshold of 800m; (c) using our proposed concave hull construction approach.

Moreover, concave hulls are usually not unique, i.e., the constructed concave hulls can be

different in different algorithms and/or with different parameters. Although different algorithms

have been proposed to generate a concave hull, there is no standardization on the effectiveness

of the concave hull, i.e., determining which concave hull algorithm generates a region that best

represents a group of points is inconclusive [Galton and Duckham, 2006]. Even with the same

algorithm, determining the parameter settings is a difficult problem.

Figures 4.4(a & b) illustrate the common limitations of the existing Concave hull methods

with real-life data. We have implemented two existing methods [Park and Oh, 2012b, Moreira

and Santos, 2007] and applied them to our real estate dataset, where each cluster includes

properties in a postal area. The algorithm by Park and Oh [2012b] first constructs a convex
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Table 4.1: A comparison between our proposed algorithm and 7 existing hull construction
algorithms.

Overlaps Complex
Shape Empty Area Parameter

Needed Complexity

Convex Hull Graham Scan [Jarvis,
1973] Yes No Yes No O(nlogn)

Convave Hull

χ-shapes [Duckham et al.,
2008] Yes Yes No Yes O(nlogn)

KNN-based method
[Moreira and Santos, 2007] Yes Acceptable No Yes O(n3)

α-Concave Hull [Asaeedi
et al., 2017] Yes Yes No Yes O(nhlogn)

Park and Oh [2012b] Yes Yes No Yes O(nhlogn)

Others Alani et al. [2001] No No Yes No O(nlogn)

Arampatzis et al. [2006] No No Yes No O(nlogn)

Our proposed concave hull algorithm No No No No O(nlngn)

hull, and then execute a “digging” process (progressively replace an outer edge with two close

inner edges) to get a concave hull. The only parameter here is a threshold that controls when

to terminate. We visualize the results on Google Maps, and observe that: a larger threshold

as shown in Figure 4.4(a), may cause lots of overlaps in dense areas (e.g., CBD areas which

have more properties); while a smaller threshold will result in very complex shapes in the less

dense area and users may fail to recognize the shapes (Figure 4.4(b)). We also implemented the

KNN-based method [Moreira and Santos, 2007], which does not generate too complex shapes,

but cause significant overlaps similar to Figure 4.4(a).

4.4.2 Our concave hull construction approach

To address the limitation of existing concave hull generation methods, we propose a novel

algorithm to meet all the four envisioned features. The pseudocode of our proposed approach

is presented in Algorithm 4.1 and illustrated in Figure 4.5. The input of the algorithm is a set

of geographical points, P . Each point p ∈ P has three attributes, where latitude and longitude

jointly represent its geographical location, and cluster p.cluster indicates the cluster in which

the point belongs. The output of the algorithm is a set of concave hulls. Each concave hull

corresponds to a unique cluster ID, and its boundary should be a Jordan curve. The Jordan
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Algorithm 4.1: Concave_hull (P )
1 Input: A set P of geographical points, each p ∈ P has attributes {latitude, longitude, cluster}.
2 Output: A list of concave hull boundaries for each cluster.
3 Delauney_triangulation(P )
4 TE ← Set of resulting triangulation edges
5 for each edge e = 〈p1, p2〉 ∈ TE do
6 if p1.cluster 6= p2.cluster then
7 delete e from TE

8 Delete all inner edges from TE
9 while ∃p : degree(p) = 1 do

10 p1 ← the node that p connects;
11 if degree(p1) = 1 then
12 delete 〈p, p1〉 from TE;
13 while ∃p : ∃∠p′pp′′ where p′ and p′′ do not form a loop do
14 Ap ← All outer angles created at p;
15 ∠p′pp′′ ← The smallest angle in Ap;
16 if 〈p, p′〉 is not an exposed line then
17 delete 〈p, p′〉 from TE;
18 if 〈p, p′′〉 is not an exposed line then
19 delete 〈p, p′′〉 from TE;
20 add 〈p′, p′′〉 to TE;
21 c_edges← Boundary_edges_group_by_clusters(TE)
22 return c_edges

curve restriction is commonly used in all the methods in Table 4.1. The reason for adopting

this restriction in our cases is quite straightforward: the boundary for each cluster should be a

plane simple closed curve that divides the whole space into exactly two regions - the one inside

the cluster, and the one outside it.

At a high level, the steps of the algorithm are: (i) Generate a Delaunay triangulation for P .

(ii) To reduce overlaps, separate clusters by deleting edges that connect two nodes in different

clusters. (iii) Remove the inner edges to get the outer boundary of the cluster, which ensures

no additional empty area is included. (iv) If a non-Jordan curve is generated in this process,

then apply our proposed novel edge replacement technique to remove such complex shapes.

We now describe the details of our algorithm. The terms ‘point’ and ‘node’ are used inter-

changeably for the rest of the algorithm.

As shown in Line 3 of Algorithm 4.1, we first generate a Delaunay triangulation for all the

points in P . Next, we delete the edges that connect two nodes in different clusters to separate

the clusters (Lines 5 - 7). We further detect the outer edges by deleting all edges that appear

twice in the triangulation result (Line 8). As illustrated in Figure 4.5 (a), a concave hull would

be generated for each cluster in most cases. However, since the triangulation is generated based

on all points, after we separate the clusters, there could exist exposed lines (explained later),
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Figure 4.5: Illustration of the proposed Concave hull algorithm. (a) the process of separating
clusters after a global triangulation; (b-c), two examples of non-Jordan boundaries: how the
boundary is formed and how we eliminate it.

e.g., 〈p, p2〉 in Figure 4.5(b) or point connections [Galton and Duckham, 2006] (e.g., p in Figure

4.5(c)), which make the hull a non-Jordan boundary.

Eliminating non-Jordan boundaries. The degree of each node of a Jordan boundary must

be equal to 2 where the nodes form a closed loop. Therefore, if the resulting concave hull of a

cluster in the previous step is a non-Jordan boundary, that implies there must be at least two

nodes with a degree not equal to 2.

We denote an edge as an ‘exposed line’ if the edge is not part of any loop (e.g., 〈p, p2〉 in
Figure 4.5(b)). Let an angle ∠pippj created at node p be denoted as an ‘outer angle’ where the

other points pi and pj do not form a closed loop with each other (i.e., they are either involved

in two different loops - ∠p1pp2 or ∠p5pp6 in Figure 4.5(c), or at least one of them is connected

with an exposed line - ∠p1pp2 or ∠p2pp3 in Figure 4.5(b)). According to the properties of a

Jordan curve, where the nodes of a cluster should form a single loop, there must not be any such

outer angle. Thus we transform the problem of obtaining a Jordan curve from a non-Jordan
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one to the problem of eliminating any outer angles. We present the steps of our technique in

the following:

Let p be a node such that at least one outer angle is created at p. We find the set A of

all the outer angles created at p. We find the smallest angle from A (we will explain why we

deal with the smallest angle in Example 4.4). Let that angle be ∠p′pp′′ (Lines 14 - 15). As the

nodes p′ and p′′ of an outer angle do not form a closed loop with each other, we create an edge

by adding p′ and p′′ (Line 20). Then, if the edge 〈p′, p〉 was not an exposed line, we remove

〈p′, p〉 (as the degree of p′ was at least 2, and its degree got increased by 1 because of the new

edge). Similarly, if the edge 〈p, p′′〉 was not an exposed line, we remove 〈p, p′′〉 as well (Lines 16
- 19). We continue this process until there is no node left with any outer angle, i.e., the Jordan

curve is obtained. We present the steps of eliminating non-Jordan boundaries in Lines 9 - 20

in Algorithm 4.1. There is a special case where there are only two nodes in a cluster. In such

case, we disconnect them by removing the edge (Lines 9 - 12).

Example 4.4. Figures 4.5(b & c) present two examples of how the outer angles are formed

and how we eliminate them. In Figure 4.5(b), since the red points and the blue points belong

to different clusters, after we remove the grey edges to separate the two clusters (Lines 5 - 7),

〈p, p2〉 becomes an exposed line. There are two ways to eliminate the exposed line by dealing

with either of the two outer angles ∠p1pp2 or ∠p2pp3. We choose to deal with the smaller angle

∠p1pp2 (rather than ∠p2pp3) by replacing pp1 with p1p2, which will generate a smaller interior

angle (the interior angle ∠p2pp3 < ∠p1pp2 in the final hull). Based on the complexity function

defined in [Brinkhoff et al., 1995], a smaller interior angle will reduce the chance of notches,

which will also reduce the complexity of the concave hull. Similarly in Figure 4.5(c), dealing

with the smaller outer angle ∠p1pp2 will also generate a less complex hull.

Time complexity. The time complexity of the proposed algorithm is mainly affected by

the triangulation process, which is O(nlogn) [Duckham et al., 2008], where n is the number

of points in P . The process of separating clusters and deleting all inner edges (Lines 5 - 8)

depends on the number of edges in the triangulation result which is proved to be no larger

than 3n [Seidel, 1995]. The complexity of the core algorithm loop (Lines 9 - 20) is based on

the number of special cases - outer angles (s). In the real case, s � h � n, where h is the

number of points that lie on the final hull boundaries. Therefore, the overall complexity of the

algorithm is O(nlogn).

The result. Figure 4.4(c) presents the result of concave hulls using our proposed algorithm

(with the same real estate data as in Figure 4.4(a & b)). Our proposed algorithm, which does
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not need any parameters, is able to avoid all three problems: overlaps, complex shapes, and

empty areas.

4.5 ConcaveCubes: Cluster-based Data Cubes index

In this section, we propose ConcaveCubes to support the visualization design (Section 4.3.3)

on large-scale data from a data reduction perspective. We first give an overview of Concave-

Cubes followed by an example, and then describe how we construct ConcaveCubes. Finally, we

discuss how different user interactions are supported.

ConcaveCubes is a data cube structure that precomputes clusters to support visualization

and user interactions. ConcaveCubes addresses the scalability issue from the data reduction

perspective as: (i) the hierarchical structure supports accessing only the data points necessary

for the current view during visualization and user interactions (explained in Section 4.5.3); (ii)

the precomputed aggregations are used to reduce the on-the-fly computation without accessing

the actual data points.

4.5.1 An example of ConcaveCubes

ConcaveCubes has a hierarchical structure with multiple levels, and each level corresponds a

specific dimension type: recall the baseline clustering method defined in Section 4.3.2, we have

subdivided dimensions into four types based on whether they are directly linked to geo-location

and whether they are going to affect the clustering result. To generate ConcaveCubes, each

level of ConcaveCubes corresponds to one type of dimensions: as geo-independent dimensions,

geo-semantics and geo-location.

Figure 4.6 presents an example of ConcaveCubes with Australia’s real estate data. The data

is first sorted in the first 4 levels. The nodes at the last geo-semantic level will be split if they

belong to different clusters at the next level. For example, the highlighted node (in orange) at

level 4 contains all 2-bedroom units in Melbourne, Victoria. It is split into two nodes (C1 &

C2) based on the clustering function at level 5, and C1 is further split into two nodes based

on a finer clustering function at level 6. For each node in level 5 & 6, we store the statistical

information of the properties in each cluster (shown as [i,j] in Figure 4.6, where i and j indicate

the start and end index of properties, respectively).
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Figure 4.6: An example of ConcaveCubes based on real estate data.

4.5.2 The construction of ConcaveCubes

As shown in Figure 4.7, ConcaveCubes is constructed in four main steps: (1) data pre-

processing, (2) a multi-criteria sorting on the categorical and geo-semantic dimensions, (3)

hierarchical clustering, and (4) cluster-based calculations.
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Figure 4.7: Illustration of the ConcaveCubes construction procedure.

Data pre-processing. Before generating ConcaveCubes, we pre-process the raw data as

follows: (i) for each geo-independent dimension and each geo-semantic level, we set an ordering

of the dimensions; (ii) we divide the value of geo-independent dimensions based on specific

values or ranges, which convert them into categorical values; (iii) we map each data point to its

corresponding geo-semantic region (e.g., a property might be mapped to Australia → Victoria
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→ Melbourne).

Multi-criteria sorting. Similar to Hashedcubes, our ConcaveCubes also needs a multi-

criteria sorting. Note that, our geographical level is different from that in state-of-the-art data

cubes. In Nanocubes and Hashedcubes, the geographical features are processed based on the

Quadtree, a grid-based hierarchical spatial data structure that recursively divides the space into

four regions based on either its interior [Samet and Tamminen, 1986] or its boundary [Samet

and Webber, 1984]. Such a structure is effective for querying on the geographical dimension,

but might not preserve the geographical semantics. For example, if we partition the data based

on the geo-location of properties using a Quadtree, in one of the middle levels, two properties

from two different states may belong to the same grid, while they have no semantic relationship.

Therefore, we design the geographical level of ConcaveCubes based on real-world geographical

hierarchy, such as country, state, city.

Hierarchical clustering. After the multi-criteria sorting, all properties having the same

values in geo-independent dimensions and in the same geo-semantic area will be grouped to-

gether. However, properties in the same group can still be quite different. For example, in

Figure 4.2(b), houses that are close to the beach are more expensive than others even when

they are in the same suburbs. Therefore, we apply hierarchical clustering [Murtagh, 1983] after

the multi-criteria sorting to further divide the data into different groups. In our implementa-

tion, we use a hierarchical DBScan [Campello et al., 2013] by decreasing the threshold of the

algorithm at a lower level. For example, at level 5 in Figure 4.6, we apply DBScan [Ester et al.,

1996] with a threshold of 400m to cluster the properties based on Euclidean distance. Then at

level 6, we re-apply DBScan with a smaller threshold (100m in our demonstration) to possibly

divide some of the original clusters into multiple smaller clusters.

Cluster-based concave hull calculation. We calculate a concave hull for each cluster in

ConcaveCubes based on the algorithm defined in Section 4.4 to support the boundary-based

cluster maps. Since our proposed concave hull method is based on a global triangulation, we

apply the proposed algorithm on a group of clusters that share a parent-node. Instead of storing

the locations for all data points, we store the concave hull boundaries. At last, for each cluster

that has a concave hull (clusters with less than three points will not have a hull), we calculate

the statistical information based on each geo-dependent and geo-independent measures (Section

4.3.2) and store them in the database. The statistical (aggregated) information is stored as

views in the database, so that when a cluster is highlighted, the information of the selected

dimension measures will be efficiently loaded to visualize.
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4.5.3 Index operations

In this subsection, we illustrate the operations that ConcaveCubes provides to support the

visualization design and user interactions defined in Section 4.3.3.

4.5.3.1 Initialization

The initialization of the visualization is a query on ConcaveCubes with four parameters, a de-

fault map window, geo-independent dimensions (e.g., 3-bedroom houses), a default clustering

granularity (e.g., a 400m DBScan), and a focused measure (e.g., price). Based on the default

settings, ConcaveCubes is traversed from the root and the following steps are executed: (i)

the nodes matching the geo-independent dimensions are scanned, (ii) the nodes in geographic

semantic levels within the map window are accessed, and (iii) the clusters at the default gran-

ularity level are obtained.

4.5.3.2 User interactions

The key idea for ConcaveCubes to support different user interactions is to reuse existing calcu-

lations and visualizations while updating for user interactions.

Interaction 1: zoom-in, zoom-out, panning. Zooming and panning directly influence

the map window (w). The change of w corresponds to the level of geographic semantics in

ConcaveCubes. Therefore, after users apply zooming in/out or panning, we calculate a set

subtraction between the current (w_c) and previous (w_p) map windows, and then refresh the

visualization based on the subtraction result. Since the boundary of a semantic geographical

node often contains many geo-points, we store a minimum bounding rectangle for each geo-

boundary. If the map window covers the entire rectangle, we include all the clusters in the

lower level; otherwise, the next geographic semantic level is accessed.

Interaction 2: filtering. Filtering, i.e., selections, would affect the level of categorical

dimensions. For example, if previously only 3-bedroom units in Melbourne are shown on the

map, and the user selects to include 3-bedroom houses as well, then the corresponding clusters

at level 5 will be added to the visualization result while the previous result remains. Note that,

having multiple selections might result in some intersecting concave hulls. For each concave

hull, we store a minimum bounding rectangle that covers it, so that we can effectively detect

intersections and compute the union of the intersected concave hulls at runtime.

Interaction 3: granularity control. For example, in Figure 4.6, if the user changes the

current granularity level from Level 5 to Level 6, the clusters that are not split will stay in the
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map window, but they will fall into multiple smaller clusters. For example, C1, C5 and C6 at

level 5 will be replaced by their child clusters at level 6.

4.6 A demonstration system

We have designed and implemented a demonstration system1 based on real estate data (Section

3.3). In this section, we illustrate how we use ConcaveCubes to support our visualization and

user interactions. Each method is followed by a demonstration example based on the real estate

dataset.

Figure 4.8: Demonstration examples: (a) map view 1: dot map (Sydney), with zooming &
panning illustrated; (b) map view 2: polygons on top of the map (Melbourne), with filtering
and granularity control illustrated; (c) the multidimensional view when a cluster is highlighted
(properties in the cluster are compared to that of the entire state based on 2 user-selected
measures (the price & the distance to supermarkets).

4.6.1 Initializing the visualization

The initialization of visualization requires four parameters, a default map window (i.e., max-

imum and minimum latitudes and longitudes), user-selected categorical dimensions (e.g., 3-

bedroom houses), a default clustering granularity (e.g., 400m), and a default focused measure

(e.g., price). Based on the initialization settings, the query starts from the root node of Con-

caveCubes and the following steps are executed: (i) the nodes in geographic semantic layers

that are within the map window are accessed, (ii) the categorical dimensions are scanned, and

(iii) the clusters are obtained when the right level of the clustering granularity is reached. In

Figure 4.6, only the highlighted clusters in level 5 will be visualized for the default initialization
1http://115.146.89.158/ConvexCubes/

http://115.146.89.158/ConvexCubes/
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parameter values. Then based on the stored convex hull and the default focused measure from

the database, a dot map or the corresponding polygons on the map are shown to the user.

Demonstration example 1: When the user opens the webpage, a map will be initialized

with a default map window and clustering granularity. After the user selects the categorical

dimension (Figure 4.8 (a)-1), either of the two map views will be shown to the user (Figure 4.8

(a) or (b)) based on the stored information. For example, in Figure 4.8 (b), the user can observe

how the prices of 3-bedroom houses are distributed in the geographical space.

4.6.2 Supporting user interactions

We illustrate how we use ConcaveCubes to efficiently support different types of user interac-

tions. The key idea is to reuse existing calculations and visualizations while updating for user

interactions.

4.6.2.1 Zooming and panning

These are the basic operations on top of a map, which directly influences the map window. The

change of the map window corresponds to the level of geographic semantics in ConcaveCubes.

Therefore, after the user applies zooming in/out or panning, we calculate a set subtraction

between the current and previous map window, and then refresh the visualization based on the

subtraction result. In contrast to a quadtree node, the boundary of a semantic geographical node

often contains a lot of geo-points. Therefore, we also store the minimum bounding rectangle for

each geo-boundary. If the map window covers the entire rectangle, we include all the clusters

in the lower level; otherwise, the next geographic semantic level is accessed.

Demonstration example 2: The user can zoom in or zoom out, or pan the map just as

they do on Google Maps. ConcaveCubes re-use existing visualization results and partially refresh

the interface. An example is shown in Figure 4.8(a).

4.6.2.2 Filtering

Filtering, i.e., selections, would affect the level of categorical dimensions. For example, if

previously, only 3-bedroom units in Melbourne are shown on the map, and the user selects to

include 3-bedroom houses as well, then the corresponding clusters in Level 5 will be added to

the visualization result while the previous result remains. Note that, having multiple selections

might result in some intersecting convex hulls. To effectively detect intersections at runtime, we
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store the minimum bounding rectangle for each cluster along with the convex hull information,

and we compute the union of the intersected convex hulls at runtime.

Demonstration example 3: The user can filter on top of the pre-selected dimensions and

see how properties/clusters change on top of the map. As shown in Figure 4.8(b)-3, we change

the filtering setting from 3-bedroom houses to 2-/3- bedroom units in Melbourne.

4.6.2.3 Granularity control

This will affect the level of numerical dimensions. For example, in Figure 4.6, if the user

changes the current granularity level from Level 5 to Level 6, clusters that are not split will

stay on the map, while clusters falling into multiple smaller clusters (i.e., the first and the sixth

node at Level 5) will be replaced by their children clusters. To make the interaction easier, we

separate zooming and granularity controls as two different operations. In our implementation,

user zooming in or out will trigger the function of granularity control; users can also change to

different granularities while staying at the same zooming level.

Demonstration example 4: The user can change the granularity level by zooming in or

zooming out, or they can directly select different levels from the selection panel (Figure 4.8(a)-

1). As shown in Figure 4.8(b)-2, the user can change to a finer granularity and see how the

clusters in 4.8(b)-1 split into multiple smaller clusters. For example, the user observing that

properties in Brighton (which is closer to the coastline) is more expensive than nearby suburbs,

might want to change it to a finer granularity and check whether property prices in different

blocks of Brighton are also affected by the distance to the coastline.

4.6.2.4 Other interactions

Highlighting & linking need to access the database. A row in the cluster table needs to be

accessed when the user selects a cluster to highlight; while highlighting an individual property

requires a row in the property table. For interactions such as changing focused measures,

a column in the cluster table will be accessed.

Demonstration example 5: The user can click to highlight a cluster, and a linked mul-

tidimensional view is generated for users to (i) check the detailed statistics of the cluster in

several user-defined measures and (ii) compare properties in the cluster with properties at a

higher geo-semantic level. As shown in Figure 4.8(c), the user highlights a cluster in Brighton,

Victoria; simultaneously, in the multidimensional view, two sets of bar charts + histograms

are highlighted to present a comparison of properties in the highlighted cluster and those in the
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Table 4.2: A summary of the relevant information for building ConcaveCubes.

Dataset Objects
(#)

Clusters
(#)

Memory
(MB) Time Geo-scope Geo-

semantics
Categorical
Dimensions

H-
clustering

measures
(#)

Real_estate
_VIC

667k 50k 23.4 4m:16s Victoria 3 levels pro_type,
bedroom 6 levels 36

Real_estate
_AU

1.41m 104k 49.9 9m:8s Australia 4 levels pro_type,
bedroom, year 6 levels 36

Brightkite 4.5m

489k 98.4 58s World 3 levels hour, day,
week1 - 1

570k 117.3 1m:27s World 3 levels month, hour,
day2 - 1

33k 4.2 25m World 6 levels - 3 levels 1

Gowalla 6.4m 37k 4.5 48m:3s World 6 levels - 3 levels 1

Census
_AU 23.4m 57k 7.9 35s Australia 4 levels - - 100

1 categorical dimensions used in Nanocubes and Hashedcubes; 2 categorical dimensions used in imMens and Hashedcubes.

entire Victoria based on two user-defined measures (the price and the distance to the nearest

supermarket).

4.7 Experiments

In this section, we present an extensive experimental evaluation of ConcaveCubes using several

real-life datasets. We first describe the datasets and schemas, and report the storage and

construction time of ConcaveCubes. We then present several visualization results, and compare

our result with the result generated based on existing visualization-based data cubes. Finally

we report the query time based on a set of real-world queries.

4.7.1 Datasets and schemas

We have collected five datasets that include two real estate datasets, a census dataset, and two

location-based social network datasets. We summarize all of the schema variations and datasets

in Table 4.2.

• Real estate dataset. We have crawled and cleaned the real estate data in Australia

using the data profiles defined in the previous chapter (Chapter 3). We include two
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schemas in our experiments as shown in Table 4.2. The geo-semantic levels are based

on ASGS (Australian Statistical Geography Standard [Australian Bureau of Statistics,

2016a]). Both the schemas include six levels of a hierarchical DBScan.

• Location-based social network datasets. Brightkite and Gowalla are two social

network datasets with users’ check-in locations [Cho et al., 2011]. For Brightkite, we

build ConcaveCubes using three different schemas: two of them share the same categorical

dimensions with imMens [Liu et al., 2013], Nanocubes [Lins et al., 2013], and Hashedcubes

[Pahins et al., 2017]. The geo-semantics are all mapped based on GADM (Database of

Global Administrative Areas [Areas, 2012]).

• Australian census dataset. It includes four levels of geo-semantics based on ASGS.

We simulated n data points which belong to each of the 57,523 SA1s (the smallest area

for the release of census data [Australian Bureau of Statistics, 2016a]), where n is the

population in each area. As a result, we generated 24.5 million data (the total number

of the Australian population at the 2016 census report [Australian Bureau of Statistics,

2016b]). Then, we select 100 features (including median age, income, etc.) from the 2016

census data of Australia.

We report the memory usage and construction time of ConcaveCubes in Table 4.2. Al-

though the construction time of ConcaveCubes is much higher than that of Nanocubes and

Hashedcubes, ConcaveCubes is much more memory efficient than the other two methods. On

the one hand, for the construction time, the bottleneck of our construction process includes

(i) geo-semantic mapping, (ii) hierarchical DBScan computation, and (iii) Concave hull calcu-

lation. The construction time of ConcaveCubes is proportional to the number of objects, and

the number of hierarchical clustering levels. However, with more categorical dimensions or geo-

semantics levels, the data entering the hierarchical DBScan process will be divided into more

sub-groups, which results that the construction time of ConcaveCubes could possibly decrease.

On the other hand, as examples of the memory efficiency of ConcaveCubes, it requires less than

30MB of memory for both the Brightkite and Gowalla datasets, where HashedCubes requires

more than 300MB [Pahins et al., 2017] and Nanocubes needs more than 1GB [Lins et al., 2013].

The reason behind this is that, we store the geo-semantic information for the geographic dimen-

sions which are different with Nanocubes and Hashecubes, which use Quad-trees; as a result,

much fewer data aggregations will be needed in the bottom layers of ConcaveCubes.
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4.7.2 Visualization results

In addition to the visualization of real estate data shown in the previous section (Figure 4.8 &

4.6) here we present visualization results based on the other datasets and compare them with

existing methods.

Location-based social network datasets. Based on the Brightkite dataset, Figure 4.9

compares the visualization results supported by ConcaveCubes with the visualization supported

by Nanocubes, Hashedcubes, and imMens. The two visualizations present both global patterns

(e.g., an overview of the check-ins across the United States) and local features (e.g., inter-state

highway travel). However, the boundary-based cluster maps, which ConcaveCubes supports,

present important geo-semantic information which are missed in Heatmaps. For example, each

polygon (cluster) in Figure 4.9(a) represents a group of data points within the same county and

close in distance.

Figure 4.9: Visualization of the Brightkite dataset. (a) cluster maps (with a cluster selected)
supported by our proposed ConcaveCubes: colour represents no. of check-ins; (b) heatmaps
supported by Nanocubes, Hashedcubes, and imMens (screenshot is taken from the online demo
of Nanocubes).

As shown in Figure 4.10(a), we generate a cluster map based on a group of simulated data

points at each geo-semantic level in the Australia census data. ConcaveCubes is able to

provide an efficient approximate solution of choropleth maps [Brewer et al., 1997] by simulating

geographic points in each region and calculating approximate boundaries based on the simulated

points: comparing to the original dataset which takes more than 200MB to store the geographic

boundaries, ConcaveCubes needs only 7.9MB of memory.
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Figure 4.10: Visualization of the Australian census data: ConcaveCubes is efficient to
support cluster maps (a), which could be an approximate solution of the traditional choropleth
maps (b).

4.7.3 Query time

We report the query time based on the real usage of the system. A total of 6,317 query requests

were collected on the public ConcaveCubes web site2, in which users performed different user

interactions based on the real estate data in Victoria. To evaluate the query efficiency in a

fixed environment, we recorded the query related to each user interaction and re-executed it

in Google chrome on a quad-core i7-5500U CPU (2.4GHz) with 8GB RAM. Figure 4.11 shows

the result based on six different types of user interactions.

Comparing to Hashedcubes which have only about 2% of the queries taking longer than

40ms (as stated in [Pahins et al., 2017]), most of the queries in ConcaveCubes are responded

within 25-50ms. The reason of why ConcaveCubes might take a slightly longer time is that: we

exploit geo-semantic information in ConcaveCubes and display the boundaries for each cluster,

while Hashedcubes do not need to deal with the boundaries. Nevertheless, all of our queries

(from the experiments) are returned within 0.1s, which satisfies the perceptual processing time

constant defined by Card et al. [Card et al., 1991]. Among all different types of user interactions,

highlighting & linking is the most efficient operation: it retrieves the aggregation information of
2http://115.146.89.158/ConvexCubes/

http://115.146.89.158/ConvexCubes/
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that cluster from ConcaveCubes directly and then displays them, so no additional calculation

is required; granularity control takes slightly longer time than the other operations, since users

might select a finer granularity in a high zoomed level, which means several levels of hierarchical

clustering levels might need to be accessed.

Figure 4.11: Query latency per type of user interactions based on the real estate dataset.

4.7.4 Discussion

Based on the experimental results, we have demonstrated that ConcaveCubes supports both

bubble-based and boundary-based cluster maps, which is not straightforward to be supported

by existing methods (e.g., imMens, Nanocubes, Hashedcubes). Compared to heatmaps and

binned plots, bubble-based cluster maps present additional information (with the color and

the size of each bubble), and our proposed boundary-based cluster maps present more precise

geographical information with semantic meanings.

Situations where cluster maps are most applicable. Our proposed boundary-based
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cluster maps can be regarded as a generalization of choropleth maps: the surface of each single

color element is not directly the representation of an explicit surface delimitation (district

limits for instance), but the result of the aggregation/clustering of data. Our methods are most

suitable to apply when geo-referencing is just point-based or when the query needs to go beyond

known space delimitations such as districts (real estate and social network examples). From the

example of Census data, we also demonstrate that, even when the boundary of geo-semantics is

given, ConcaveCubes can provide an approximate yet more efficient solution of the traditional

choropleth maps.

Limitation of cluster maps. While cluster maps that the proposed ConcaveCubes support

have advantages over other map designs, the method also has its limitations. For examples,

bubble-based cluster maps lack precise geographic information, and boundary-based ones might

not present density information. One future research direction is to conduct a proper user study

to compare different types of map designs (including the above-mentioned ones and some other

map designs such as dot maps and cartogram maps) based on different visualization tasks.

Limitation of dimensions supported by ConcaveCubes. Apart from the disadvan-

tages of the supported cluster maps, another main limitation of the proposed ConcaveCubes is

the number of dimensions that it supports, which is a common problem for cube-based data

structures. Similar to Nanocubes and Hashedcubes, ConcaveCubes can support at most 5-10

categorical dimensions. It is worth noting that, besides the geographic dimensions and cat-

egorical dimensions, ConcaveCubes is able to support temporal dimensions using the same

method defined in [Pahins et al., 2017] by converting the temporal dimensions into categorical

dimensions.

Supporting dynamic data. Although ConcaveCubes is pre-defined in all the experiments,

one possible extension of our work is to adapt the method with dynamic data. To insert, update

or delete a data item in ConcaveCubes after it has already been constructed, we only need to

change the affected nodes in the hierarchical structure. For example, to insert a new 2-bedroom

unit at Melbourne to the ConcaveCubes shown in Figure 4.6, we need to find the corresponding

nodes in Levels 1-4 that the new property belongs to (the highlighted nodes); then based on

whether the new property is within the concave hull boundary of any existing clusters (C1

or C2), we update the corresponding node, or add a new node (if the new property does not

belong to either of the clusters).
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4.8 Summary

In this chapter, we proposed ConcaveCubes, a data cube based scalable approach to support in-

teractive visualization of large-scale multidimensional data with geographic semantic captured.

In particular, we first presented a visualization abstraction for the geographical data based on

clusters and proposed a visualization design of two map-based views (bubble-based as a base-

line and boundary-based cluster maps as our desired map view) and a linked multidimensional

view. For an effective boundary-based cluster map view, we proposed a novel concave hull con-

struction algorithm, which addresses the limitation of existing methods by eliminating empty

areas, complex shapes, and overlaps among different clusters. The ConcaveCubes utilizes the

existing calculations based on the categorical and geo-semantic dimensions of the clusters and

visualization results to efficiently support various types of user interactions. We designed and

developed a demo system to illustrate how ConcaveCubes supports large-scale geo-related mul-

tidimensional data. Extensive experiments on real-world datasets verified the efficiency and

effectiveness of our proposed ConcaveCubes.



Chapter 5

AOI-shapes: Interactive Visualization

of

Urban Areas of Interest
“The trick of it...is to be courageous and bold and make a difference. Not change

the world exactly, just the bit around you...Change lives through art maybe. Write

beautifully. Cherish your friends, stay true to your principles, live passionately and

fully and well. Experience new things. Love and be loved if at all possible.”

— David Nicholls, One Day

In this chapter, we study the problem of efficient and effective visualization of user-defined

urban areas of interest. In Particular, we first describe a design space for visualizing urban

AOIs based on points of interest. After extensively reviewing existing “footprint” methods, we

propose a novel parameter-free footprint method, named AOI-shapes, to capture the boundary

information of a user-defined urban AOI. Next, to allow interactive query refinements by the

user, we propose two efficient and scalable algorithms that reuse existing visualization results

to incrementally generate urban AOIs. Finally, we conduct extensive experiments with both

synthetic and real-world datasets to demonstrate the effectiveness and efficiency of the proposed

methods.

5.1 Introduction

One of the most important issues related to geo-related multidimensional data is to understand

urban areas of interest (AOIs). An urban area of interest (AOI) refers to the area within an

93
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Figure 5.1: An example of user-defined AOIs (properties within a 15-min walk to the nearest
train station) presented as: (a) individual property points (method defined in Chapter 3), (b) a
polygon-based region generated using χ-shapes [Duckham et al., 2008] (χ=0.05); (c) a
polygon-based region generated using χ-shapes [Duckham et al., 2008] (χ=0.2); (d)
polygon-based regions generated using our proposed AOI-shapes.

urban environment which attracts people’s attention [Hu et al., 2015]. Taking house seeking as

an example, location is a key factor, based on which various AOIs can be defined by users to

cater for their respective concerns/interest. The following example motivates us to investigate

the AOI visualization problem.

Example 5.1. In Chapter 3, we propose a visual analytics system for Australia’s real estate data

to help users understand the local real estate market and find their preferred housing properties.

At the property level exploration, users can filter out properties based on their own requirements

over the multidimensional view. After that, all properties that satisfy the user query will be

shown on top of the map. As shown in Figure 5.1(a), the user prefers to live in a place within

a 15-minute walk to the nearest train station. Properties that satisfy such a query will result in

a user-defined urban AOI. Understanding such AOIs will assist home buyers in understanding

different lifestyles in different regions, and help the government make policies.

AOIs could be represented either as polygon-based regions or as a set of individual points

(e.g., real estate properties). Previous studies have shown that the polygon-based representa-

tion performs better from both cognitive and computational perspectives [Akdag et al., 2014].

However, unlike most well-defined administrative districts (e.g., suburbs, cities), there are nor-

mally no defined boundaries for AOIs. The region (shape) of an urban AOI could be vague [Hu

et al., 2015] and often depends on users’ preference.

One of the most popular methods to characterize the shape of an AOI is to generate the

region boundaries, which are called “footprints”, based on the points of interest (POIs) that

satisfy the user query. For example, Polisciuc et al. [2015] generate the footprints based on
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people’s visited places and visualize the footprints to help understand the land use for urban

planning and management. In Example 5.1, the AOIs shown in Figure 5.1(b-d) are generated

based on the POIs in Figure 5.1(a) (the housing properties satisfying the user query).

Different footprint algorithms have been proposed, including Convex hulls [Graham, 1972],

concave hulls [Park and Oh, 2012a], KNN-based concave hulls [Moreira and Santos, 2007], χ-

shapes [Duckham et al., 2008], etc. However, footprints from a definite set of points are usually

not unique [Ebert et al., 2015], i.e., the constructed footprints can be different in different

algorithms and/or different parameters (further illustrated in Example 5.2); and there is no

consensus on the effectiveness of the footprint algorithms.

After an extensive literature review (Section 5.2.2), we summarize the state-of-the-art foot-

print algorithms in Table 5.1. We find that, existing footprint algorithms suffer from at least

one of the following drawbacks: (1) additional parameter tuning is needed from the user; (2)

the method cannot recognize multiple regions and/or outliers; (3) the method cannot detect

inner holes; and (4) the method is not extendable to support incremental generation of the

footprint. The following example highlights the drawbacks of the existing methods.

Example 5.2. We generate different footprints for the properties shown in Figure 5.1(a) using

χ-shapes [Zhong and Duckham, 2017]. The algorithm first constructs a convex hull, and then

executes a “digging” process (progressively replace an outer edge with two adjacent inner edges)

to get a concave hull (i.e., footprint). The only parameter is a length-related threshold which

decides whether each boundary edge is too “long” or not; and the algorithm will terminate if

all boundary edges are shorter than the threshold. We use two different parameters to generate

the footprints and present both the results on Google Maps (Figure 5.1(b & c)). The results

illustrate the first three drawbacks of existing footprint algorithms: (i) a smaller threshold may

make the result too “concave” for users to recognize the region (Figure 5.1(b)), and a larger

threshold may cause the region to be too “big” to characterize the shape of the region (Figure

5.1(c)); unfortunately, it is hard to find an appropriate threshold (which does not have intuitive

real-life meanings) for an unknown set of data points. (ii) since the algorithm cannot recognize

multiple regions, those regions (as highlighted in red in Figure 5.1(d)) are unexpectedly connected

in Figure 5.1(b & c); (iii) there are regions in the middle of two train lines (as highlighted in

Figure 5.1(d)) that do not satisfy the user query; however, since χ-shapes algorithm might not

detect those holes (Figure 5.1(c)).

Different from other footprint-related applications, in our application, an AOI is generated

by a user query, and the user query will return two separate sets of points: those that satisfy
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Figure 5.2: Illustration of the proposed incremental AOI-shapes based on a global Delaunay
triangulation. (a) user query 1: 15-min walk to the nearest train station (blue points satisfying
the query, orange points not satisfying the query); (b) a subsequent user query 2: less than
15-min walk to the nearest train station, and 30-min train to the CBD (green points: those
satisfying query 1 but not satisfying query 2).

the user query and those do not. Based on the intuition that, “the points that do not satisfy

the user query should not be in the generated AOI ”, we propose a parameter-free footprint

method, named AOI-shapes, to describe the boundary of the user-defined urban AOI. The

proposed algorithm is based on a global Delaunay triangulation [Samet, 2006] (Figure 5.2(a)),

followed by a separation of points/regions considering whether the data points meet the user

query (inside the AOI, blue points in Figure 5.2(a)) or not (outside the AOI, orange points

in Figure 5.2(a)). As a result, AOI-shapes is able to overcome all four drawbacks of existing

methods. First, based on whether or not each point satisfies the user query, the region will be

naturally separated; we further define boundary edge conditions based on triangle properties

(details at Section 5) to make the AOI-shapes more concisely represent the region without

additional parameter tuning needed (1st drawback). Second, multiple regions, outliers and

holes are detected based on the points that do not satisfy the query (2nd and 3rd drawbacks).

Third, we extend AOI-shapes by exploiting the common result points between two consecutive

rounds of user queries, and propose two incremental AOI-shapes algorithms to support efficient

visualizations of AOIs (the last drawback).

Example 5.3. Suppose that, after visualizing the result for the properties within 15-min walking

distance, the user now wants to refine the query to visualize the properties within 15-min walk
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to the nearest train station and also within a total of 40-min travel time (by train+walk) to his

workplace in the CBD. Such a query will result in a new AOI (Figure 5.2(b)), which is a sub-

region of the previous AOI (Figure 5.2(a)). If an incremental update is not supported, the AOI

and the boundaries of the AOI need to be re-calculated from scratch for this visualization. As

many properties are shared between the examples in Figure 5.2(a) and Figure 5.2(b), a method

that updates the visualization by incrementally considering only the necessary changes is highly

important for efficiency and scalability, especially for a large-scale dataset.

To summarize, we make the following contributions in this chapter:

• We present a comprehensive literature review of the existing footprint methods (Section

5.2.2) and summarize them based on the construction process and the characteristics of

the result (Table 5.1).

• We propose a novel footprint method, named AOI-shapes, to effectively capture the region

of an urban AOI based on POIs that satisfy the user query and those that do not (Section

5.5).

• We propose two efficient and scalable solutions to incrementally generate the AOI-shapes by

using existing result after the query is refined by user interactions (Section 5.6).

• We conduct extensive experiments based on both synthetic and real-world datasets to

evaluate the effectiveness and efficiency of the proposed methods (Section 5.8).

5.2 Related Work

In this section, we review the closely related work on the visualization of AOIs and the footprint

methods for calculating the AOI.

5.2.1 Visualization of urban areas of interest (AOIs)

The concept of AOIs [Hu et al., 2015] is closely related to points of interest (POIs). While a

POI represents an individual location (e.g., a property, or a landmark), an AOI usually contains

multiple geographic points, such as the restaurants on a pedestrian street [Elias, 2003], nearby

landmarks [Raubal and Winter, 2002], or properties within a 15-min walk to the nearest train

station (Figure 5.1).
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In terms of geographic visualization, AOIs are often represented as polygon-based areas

[Celikten et al., 2017, Xing et al., 2017, Gao et al., 2017, Cao et al., 2013, Hu et al., 2015, Jung

et al., 2010, Packer et al., 2013] instead of as individual points. For example, Hu et al. [2015]

extracted the urban AOIs using geo-tagged photos and represented the AOI as a polygon,

which is generated based on the POIs using the χ-shape algorithm; Jung et al. [2010] also

used the χ-shape algorithm to generate the “footprint” based on a group of geo-referenced

photos (e.g., all the photos with a ‘park’ tag in Manhattan, New York), and then visualized

the “footprint” as polygons for its represented AOI on the map. Previous studies have shown

the advantages of using polygons to represent AOIs compared to using individual points. First,

from the cognitive perspective, polygons can provide simple and accessible representations

for areas compared with clustered points [Hu et al., 2015]. Second, from the computational

perspective, it is generally more efficient to perform operations on a polygon than on a set of

points [Akdag et al., 2014]. Third, polygons convey information about the shape of an area

and can be employed for shape-based analysis [Li et al., 2014]. In this chapter, we also adopt

such a polygon-based representation of the AOI.

5.2.2 Footprint methods: generating boundaries for AOIs

Unlike most well-defined administrative districts (e.g., suburbs, states), the boundaries of an

urban AOI are often vague [McKenzie et al., 2015, Hu et al., 2015]. To define its boundary,

several algorithms have been proposed to generate a polygonal “footprint” that characterizes

the distribution of a set of points P in the two-dimensional plane, i.e., P ⊂ R2. A trivial

approach is to use the minimum bounding rectangle [Leonard et al., 1992] to represent an AOI,

as shown in Figure 5.3(a). There have been some non-trivial footprint methods proposed, such

as convex hulls, simple concave hulls, and non-simple concave hulls (see Fig. 5.3(b), (c) and (d)

respectively).

5.2.2.1 Convex hull

A more sophisticated version of a rectangular box is the rectilinear convex hull, also known

as the orthogonal convex hull. A convex hull (CH) of a point set P is the smallest convex

set, which contains P . Different convex hull algorithms have been proposed to generate the

convex hull for a set of points. One well-known method is the Graham Scan [Graham, 1972],

which finds all vertices of the convex hull ordered along its boundary. Another method, called

Gift wrapping [Jarvis, 1973], finds the next point which will form the widest angle with the
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(a) (b) (c) (d)

Figure 5.3: Examples of different kinds of hulls: (a) rectangular box, (b) the convex hull, (c)
an example of simple concave hulls, and (d) concave hulls for multiple groups, an example of
non-simple concave hulls.

previous two points. Some other notable algorithms include the Divide and Conquer algorithm

[Preparata and Hong, 1977], Andrew’s Monotone chain algorithm [Andrew, 1979], Quickhull

[Eddy, 1977, Bykat, 1978], and Chan’s method [Chan, 1996]. Since the convex hull for a set

of points P is unique, all the aforementioned methods will generate the same result. Chadnov

and Skvortsov [2004] conducted experiments to compare the efficiency of some of the methods.

5.2.2.2 Simple concave hull

A simple concave hull is a generalization of the convex hull, which allows any angle between

two edges. Same as the convex hull, a simple concave hull is a Jordan-boundary hull that

covers all the input points [Galton and Duckham, 2006]. Any simple shape, which is between

the convex hull and the hull that completely minimizes the area, is regarded as a concave hull

[Rosén et al., 2014]. Unlike convex hull, concave hulls from a definite set of points are not

unique. Concave hulls can vary with different algorithms, and/or different parameters. More

than 30 concave hull methods have been proposed in the past decade. To our best knowledge,

there is no existing study that categorizes different concave hull methods. Here, we divide them

based on how the concave hull is generated.

(1) Convex hull + “digging”. This group of methods generate the convex hull for the

given data points and then progressively replace a “longer” outer edge with two inner edges

(an iterative “digging” process) until the concave hull meets the requirement. On the one

hand, some works focus on the “digging” process of convex hulls. For example, Park and Oh

[2012a] proposed a method, which identifies a convex hull first, and then “digs” the hull to

produce a concave hull with an appropriate depth, and the digging process is determined by

a threshold value N which corresponds to the edge length. Polisciuc et al. [2015] proposed
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a similar method which constructs a convex hull first but then pushes “long” edges inside to

generate new boundary edges. Rosén et al. [2014] proposed a parallelized algorithm to further

improve the performance. Simple-shape [Gheibi et al., 2011] starts reconstruction from the

convex hull and makes it concave step by step based on a new hybrid selection criterion which

is built on human beings’ visual perception. On the other hand, many researchers explored the

“digging” process subsequent to the convex hull generated based on Delaunay triangulation (DT)

[Samet, 2006]. One of the most popular and widely adopted methods is χ-shapes [Duckham

et al., 2008] which starts with the DT and iteratively removes the longest exterior edge of the

triangulation that does not cause “irregularity” (defined in [Duckham et al., 2008]). Also, a

parameter-free method called ec-shapes [Saalima and Shajahan, 2016] constructs the DT of a

given data set, and then successively remove exterior edges subject to the proposed “circle” and

regularity constraints to compute a resultant boundary.

(2) Boundary detection. Another set of methods try to directly detect the boundary.

Galton and Duckham [2006] proposed the swinging arm method , which generalises the gift

wrapping algorithm [Jarvis, 1973] for concave hull generation. While finding the next point

that will form the widest angle with the previous two points, it only finds the point within a

distance of r (a fixed parameter) of the current point, instead of finding it in the entire set of

points. The K-nearest neighbour (kNN) method [Moreira and Santos, 2007] also generalises

the gift wrapping algorithm [Jarvis, 1973]. At each iteration, the kNN-based algorithm finds

the next point from the kNN of the current point, instead of processing the entire point set

P used in the gift-wrapping algorithm. Chaudhuri et al. [1997] defined an s-shape of a point

set P similar to the process of pixelization, i.e., P is partitioned into a grid of square cells of

side-length s. Then, an r-shape of P is defined to smooth the s-shape. Based on the observation

that boundary points tend to have fewer reverse k-nearest neighbors (RkNNs, where the RkNN

of an object p is the set of points that have p as one of their k-nearest neighbors), Xia et al.

proposed the BORDER method [Xia et al., 2006] to detect boundary points in a point set.

However, it is beneficial only for data sets that are well-clustered.

(3) Exploiting auxiliary points. In addition to the original point set P , several methods

take a set of auxiliary points A to construct the concave hull. A-shapes [Melkemi, 1997, 2000]

first computes the Voronoi Diagram (VD) of P ∪A, then the A-shape of P is defined by joining

any pair of points pi, pj ∈ P whose Voronoi cells share at least a border with some other Voronoi

cells containing a point of A. Arampatzis et al. [2006] used a similar method to generate the

region boundaries based on DT instead of VD. Alani et al. [2001] introduced a Voronoi diagram

method for generating approximate regional extents from sets of centroids that are respectively
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inside and external to a region.

(4) Based on mathematical definitions. One of the most famous methods is called α-

shapes [Radke, 1983]: the α-hull of P is the intersection of all closed discs with radius 1/α that

contains all the points of P (α > 0). If α < 0, the α-hull of P is defined as the intersection of

all closed complements of discs (where these discs have radius - l/α) that contain all the points

of P . The α-shape of P is the straight line version of the α-hull. When α = 0, the α-shape

of P is its convex hull. Asaeedi et al. [2017] defined α-Concave Hull which is a generalization

of the convex hull. The parameter α determines the smoothness level of the constructed hull

on a set of points, where α + π is the largest inner angle of the calculated concave hull. After

proving that computing an α-Concave hull with a given area on a set of points is NP-complete

for any α ∈ (0, π), the authors present an approximation algorithm to compute an α-Concave

hull. ω-hull [Xu et al., 2010] is similar to α-Concave Hull, where ω refers to the smallest outer

angle of the hull. Based on the definition, a convex hull is a class ω-hull of ω ≥ π. The authors

proposed an algorithm to calculate ω-hull by extending the Grantham Scan algorithm [Graham,

1972] for computing the convex hull.

5.2.2.3 Non-simple concave hull

In this thesis, a non-simple concave hull refers to the concave hull that has non-Jordan bound-

aries, or allows multiple regions and outliers.

(1) Concave hull with hole detection. Several methods have been proposed which can

effectively detect holes inside a hull. One of the most famous examples is the α-shape of a

point set P (α < 0). Variants of α-shapes such as k-order α-hulls and LDA-α-shapes [Maillot

et al., 2010] effectively use the local density variation found in the point sets for detecting the

hollow regions. Kolingerová and Žalik [2006] also defined a method based on DT to detect

the domain boundaries of a given set P . It first constructs a DT for P and then removes

those “unsatisfactory shapes of triangles” which are defined as triangles with too “big” or too

“small” angles and triangles with too “long” or too “short” edges. As a result, the algorithm can

detect both outer boundaries and inner holes. Pohl and Feldmann [2016] presented two methods

based on the KNN-based Concave Hull Algorithm [Moreira and Santos, 2007] to create straight,

angular and non-convex outlines of 2D point sets and possibly contained holes. Peethambaran

and Muthuganapathy [2015] proposed a fully automatic Delaunay based sculpting algorithm

to approximate the shape of a finite set of points P . It uses a combination of a local measure

(circumcenter of Delaunay triangles) and a global measure (size of the Delaunay triangles
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Table 5.1: A summary of footprint methods
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Construction process Characteristics

Rectangular box [Leonard et al., 1992] 3 3

Rectilinear convex hull [Rawlins and Wood, 1987] 3 3

Convex hull [Graham, 1972] 3 3 3

Concaveman? [Park and Oh, 2012a] 3

Polisciuc et al. [2015] 3

Rosén et al. [2014] 3

Simple-shape [Gheibi et al., 2011] 3

χ-shapes? [Duckham et al., 2008] 3 3

ec-shapes [Methirumangalath et al., 2015] 3 3

Swinging arm [Galton and Duckham, 2006] 3

kNN-based method? [Moreira and Santos, 2007] 3

s-shape [Chaudhuri et al., 1997] 3

r-shape [Chaudhuri et al., 1997] 3

BORDER [Xia et al., 2006] 3

A-shapes [Melkemi, 1997, 2000] 3 3 3 3

Arampatzis et al. [2006] 3 3 3

Alani et al. [2001] 3 3 3

α-shapes? [Radke, 1983] 3 3

α-Concave Hull [Asaeedi et al., 2017] 3

ω-hull [Xu et al., 2010] 3 3

LDA-α-shapes [Maillot et al., 2010] 3

Kolingerová and Žalik [2006] 3 3

Pohl and Feldmann [2016] 3

Peethambaran and Muthuganapathy [2015] 3 3 3

Methirumangalath et al. [2015] 3 3

Zhu et al. [2017] 3

DBScan + χ-shapes [Zhong and Duckham, 2016] 3 3 3 3

χ-outlines? [Zhong and Duckham, 2016] 3 3 3 3

Incremental χ-shapes [Zhong and Duckham, 2017] 3 3 3

Our proposed AOI-shapes 3 3 3 3 3 3 3

? Methods in gray are used as alternatives in the experiment (Section 5.8)

quantified by the circumradius) for the filtration of the DT. As a result, the algorithm is able

to generate a simplicial complex, and effectively detect holes inside the shape. Zhu et al. [2017]

proposed an algorithm to detect cavities and holes from planar points based on density. The



5.3. PROBLEM ILLUSTRATION 103

algorithm conceptualizes cavity and hole as “a structure with a low-density region surrounded

by the high-density region”.

(2) Concave hulls for multiple groups. Different algorithms have been proposed to

characterize more complicated point distributions with disconnected shapes and outliers. One

straightforward approach is to pre-process a spatial clustering algorithm such as DBScan [Ester

et al., 1996], followed by any simple concave hull method (presented at Section 5.2.2.2). One

main disadvantage of such a two-step method is that, any pre-clustering algorithm necessarily

requires additional parameterization. Zhong and Duckham [2016] proposed χ-outlines, which

extends χ-shapes by dealing with situations of disconnected shapes and excluding outliers.

5.2.2.4 A summary of existing footprint methods

We summarize different footprint methods in Table 5.1, where Columns 2-5 refer to the main

construction process of the method. Since many methods are based on Delaunay Triangulation

(DT) or Voronoi Diagram (VD), we summarize such information in Columns 6-7. We highlight

the characteristics of the generated hull in Columns 8-11, as whether the boundary is a Jordan

curve (Column 8), whether holes are allowed (Column 9), whether outliers are allowed (Column

10), and whether multiple regions are allowed (Column 11). Column 12 indicates whether the

construction process is parameter-free, and the last column indicates whether an incremental

method has been proposed.

To summarize, existing footprint methods suffer from at least one of the following drawbacks

when we use them to generate user-defined urban AOIs based on the points that satisfy the

user query: (1) the method cannot recognize multiple regions and/or outliers; (2) the method

cannot detect holes; (3) the algorithm needs additional parameter tuning, and (4) the method

does not support incremental generation of the footprint.

5.3 Problem illustration

In this section, we illustrate our problem based on a real-world application related to user-

defined urban AOIs. In particular, we first define the visualization tasks using a real estate

dataset as an example. After describing the visualization idioms, we illustrate why a novel

footprint method is needed to support the visualization.
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5.3.1 Visualization tasks

For ease of explanation, we describe our work using Australia’s real estate data (details in

Chapter 3) as an example. The data lists 1.42 million properties sold between 2007 and 2016.

Each property is associated with 72 dimensions including its geo-spatial information (latitude

and longitude), categorical dimensions (e.g., property type), and numerical dimensions (e.g.,

price, distance to the nearest train station or supermarket).

Recall Example 5.1, each user query results in a user-defined urban AOI, and such AOI will

change when the user refines her individual requirements. Therefore, our main visualization

task is to visually present the user-defined urban AOI and allow users to gradually refine their

requirements, in which case the visualization will need to be updated without latency.

5.3.2 Visualization idioms

We use a straightforward composite visualization design to visualize the user-defined AOIs. As

shown in Figure 5.4, the design includes two coordinated views: a multidimensional view and

a Google maps view.

Multidimensional view. As shown in Figure 5.4(a-1), a multidimensional view allows users

to define the urban areas of their interest in an interactive way. Users can first select attributes

(i.e., dimensions) of interest from the selection box on top of the view. Suppose that a user

selects m attributes, then m coordinated histograms will be initialized to present the data

distribution on the m selected dimensions. Users can filter out the dataset by directly brushing

on top of each histogram. After the user conducts filtering (selection) on top of one dimension,

all histograms of the remaining dimensions will be refreshed accordingly.

Google maps view. As discussed in Section 5.2.1, we adopt the most straightforward polyg-

onal representation to visualize the urban AOI. As shown in Figure 5.4(a-2), the AOI can

include multiple regions, and each region is visualized as a polygon on the Google maps. It is

worth noting that, holes could also exist in real-life applications, and such region is visualized

as empty areas inside the polygon (Figure 5.4(a-2)).

5.3.3 Why a novel footprint method is needed?

After users filter out the data from the multidimensional view, the following steps are sequen-

tially executed: (i) the data (POIs) that satisfy user’s query are returned, (ii) the region (AOI)

is calculated using a footprint method based on the updated data, and (iii) the calculated region

is updated on the Google maps.
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Figure 5.4: The interface and some examples of the visualization of user-defined urban areas
of interest. (a) The interface, which includes (1) the multidimensional view, where users can
define their queries based on multiple attributes; and (2) the Google maps view, where the
user-defined AOI is shown on top of the map. Examples of the results: (a) the area in
Melbourne within a 15-minute walk to the nearest train station and a 25-minute train to the
CBD; (b) the Melbourne metropolitan area; (c) the Melbourne metropolitan area with house
prices less than 1 million dollars; (d) the Melbourne metropolitan area within a 15-minute
walk to the nearest train station; (e) the Melbourne metropolitan area with house prices less
than 1 million dollars and in a top-10% public secondary school zone.

While the first step can be effectively implemented using relational database management

system (RDBMS), and the last step should not be a problem if we only need to draw a limited

number of regions on Google maps, so the main bottleneck is at the second step, which is the

main technical contribution of our work.

Both the effectiveness and efficiency could be a problem when we use existing footprint

methods to calculate the urban AOIs. On the one hand, as we have summarized in Table 5.1,

existing methods suffer from at least one of the drawbacks related to detecting multiple regions,

outliers and holes, as well as parameter-tuning. On the other hand, although existing algorithms

(e.g., χ-shapes [Duckham et al., 2008]) can achieve the time complexity of O(nlogn), it will

take more than one second if the data size is larger than 200k (for more details, see Section

5.8 in the experiment part), which is considered as high latency for an interactive visualization

application [Card et al., 1991]. Therefore, a novel footprint method is needed to solve both the

effectiveness and efficiency problems of existing methods.
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5.4 A baseline method

In this section, we propose a baseline method to overcome the drawbacks of existing foot-

print methods (as summarized in Table 5.1). Specifically, the proposed baseline method is (i)

parameter-free: users do not need to tune any parameter for the AOI, (ii) separable: both the

data points that satisfy the user query and those that do not are considered to generate the

AOI, and (iii) multiple regions, outliers and holes can be recognized.

5.4.1 Preliminaries

Given a set of data points D, let P ⊆ D be the points satisfying the user query (i.e., the

points inside the user-defined AOI), and P = D\P be the points outside the AOI. Our aim

is to compute (i) the boundary of the regions that are formed by the points in P and (ii) the

outliers (i.e., isolated neglecting points Zhong and Duckham [2016] that are outside the region

boundaries).

5.4.1.1 Main idea of the proposed baseline method

The main idea of our proposed baseline method is to separate the regions that satisfy the user

query from those that do not (Figure 5.1(d)). The method consists of an offline preprocessing

step and a query time processing step. In the preprocessing part, we build a Delaunay triangu-

lation (DT) [Samet, 2006] based on the whole dataset (D). In the query processing part, once

the user issues a query, the set (P ) of points that satisfy the query will be obtained. Then, the

following steps will be executed to find the region boundary of P .

Step 1. Finding boundary edges based on the DT result.

Step 2. Recognizing different regions based on the boundary edges.

Step 3. Detecting holes.

5.4.1.2 Labels of vertices and edges

To better illustrate the algorithm, we first define the following labels of vertices (points) and

edges with the examples shown in Figure 5.5.

For points (i.e., vertices), we divide them into the following types based on whether they

are in P and whether they will form a boundary:
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Figure 5.5: Illustration of different types of points, edges and regions. (1) p1–p17 ∈ P : p1–p12
are boundary points, where p9–p12 form a hole boundary; p13 is an inner point; p14–p16 are
dangling points; p17 is an outlier point; (2) p18–p27 ∈ P (i.e., they are outside points).

• Outside/inside. p is an outside point if p ∈ P . p is an inside point if p ∈ P .

• Boundary. A boundary point p satisfies the user query and is on the final boundary of a

region (i.e., the resulting footprint). For example, p1–p4 are boundary points which form

a disclosed region as p1p2p3p4 in Figure 5.5.

• Inner. An inner point p satisfies the user query (i.e., p ∈ P ) but is inside the final

boundary of a region. E.g., p13 is an inner point.

• Outlier. A point p is an outlier if p ∈ P but p is not connected with any other points in

P . E.g., p17 is an outlier point.

• Dangling. A point p is a dangling point if (1) p ∈ P , and (2) p is not a inner, boundary,

or outlier point; i.e., p connects to at least one point p′, where p′ ∈ P but any third points

p′′ that form a triangle with p and p′ are outside points.

It is worth noting that, a point can either be an outside or an inside point. Inside points

will be further recognized as boundary, inner, outlier points or dangling points during the

algorithm process. Similar to the labels of vertices, edges are also divided into the following

labels:
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• Outside/Inner. pp′ is an outside (inner) edge if either p or p′ is an outside (inner)

point. E.g., p1p19, p23p24 and p12p18 are outside edges; p1p13 is an inner edge.

• Boundary. pp′ is a boundary edge if both p and p′ are boundary points. E.g., p1p4 and

p9p10 are boundary edges. It is worth noting that, a boundary edge always connects two

different regions: an outside and an inside region.

• Dangling. Suppose that pm forms a triangle with pp′, and pn forms another triangle

with pp′. pp′ is a dangling edge if and only if p ∈ P , p′ ∈ P , and pm ∈ P , pn ∈ P . E.g.,

p3p8, p5p14 and p15p16 are dangling edges.

5.4.2 The proposed baseline algorithm

Algorithm 5.1 presents the whole process of the baseline method. At the pre-processing step,

we build a Delaunay triangulation based on the whole dataset (D) (Lines 3 - 4), and then

initialize the labels of all triangulation edges as outside (Lines 5 - 6). At the query processing

step, the set of points P is obtained based on the user query. We initialize the lists of boundary

edges, dangling edges, and outlier points (Line 7); and for each point (p) satisfying the user

query (p ∈ P ), we label it as inside. Then the following steps are executed.

Baseline step 1: finding boundary edges. We traverse all the triangles in the DT result

to find the boundary edges (Lines 10 - 30). On the one hand, an edge of a triangle will be

labelled as a boundary edge (Line 23) if two of the three points of the triangle are in P , and the

third point in P . It is worth noting that, if the edge to be labelled has already been labelled as

a boundary, then it becomes a dangling edge (Lines 19 - 21). On the other hand, a point (p)

will be labelled as outlier if p is the only point in a triangle that is in P and p is not a boundary

point (Lines 28 - 30). Figure 5.6 illustrates how we recognize boundary edges, dangling edges,

and outlier points from the triangulation result.

Baseline step 2: recognizing multiple regions. For dangling and outlier points, they

are all treated as outliers (individual points) in the final visualization (Line 46). For boundary

edges, they will form multiple disclosed regions.

Lemma 5.1. Let G be the (undirected) graph formed by all the boundary edges. Then, every

vertex of G has even degree.

Proof 5.1. For any vertex v in G, if Degree(v)=1, as shown in Figure 5.7(a), then vv′

becomes a dangling edge; so, Degree(v) ≥ 2. Now, suppose that the degree of v was an odd
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Algorithm 5.1: Baseline (D,P )
1 Input: A set D of geographical points, and a set P which are within the user-defined urban AOI (i.e., satisfy the

user query). Each d ∈ D has attributes {latitude, longitude, label}, and d.label = outside.
2 Output: A list of regions (Regions) and a list of outliers (Outliers)
3 Delauney_triangulation(D) ; . Start of pre-processing
4 ST ← Triangle set of the DT result;
5 for each edge e ∈ ST do
6 e.label← outside;
7 BE,DE,OP ← ∅ ; . Start of query processing
8 for each point p ∈ P do
9 p.label← inside;

10 for each triangle t in ST do
11 tpin ← ∅; // triangle points in P
12 for each point p in t do
13 if p.label 6= outside then
14 Add p to tpin;
15 if p.label = outlier then
16 Remove p from OP ;
17 if tpin.length = 2 then
18 e← Edge(tpin[0], tpin[1]);
19 if e.label = boundary then
20 Delete e from BE;
21 Add e to DE;
22 else
23 Add e to BE;
24 e.hole_check_point← the incenter of t;
25 e.label← boundary;
26 tpin[0].label← boundary;
27 tpin[1].label← boundary;
28 else if tpin.length = 1 & tpin[0].label 6= boundary then
29 tpin[0].label← outlier;
30 Add tpin[0] to OP ;
31 Regions, edges← ∅;
32 while BE 6= ∅ do
33 e← BE[0];
34 while e 6= null do
35 Add e to edges;
36 Remove e from BE;
37 e← Adjacent(e, BE);
38 position← Intersect(e, edges);
39 if position 6= -1 then
40 loop← edges{position, edges.length-1};
41 edges← edges - loop;
42 Add loop to Regions;
43 for each r in Regions do
44 if Point_in_Polygon(r[0].hole_check_point, r) = True then
45 r.label← hole;
46 Outliers→ Get_Outliers(OP , DE);
47 return Regions,Outliers;

number, as shown in Figure 5.7(b), there would be at least one edge in G becoming a dangling

edge, which contradicts the assumption. Therefore, all vertices of G have even degree.

Lemma 5.2. All the boundary edges will form multiple edge-disjoint cycles.

Proof 5.2. Based on the properties of Eulerian circuit, that “an undirected graph can be
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Figure 5.6: Illustration of finding boundary edges using the baseline method. (a) p1 is
labelled as an outlier point since it is not connected with any inside point; (b) p1p2 is labelled
as a boundary edge since p3 is an outside point; (c) the label of p1p2 is changed from
boundary to dangling when p4 is detected as an outside point.
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Figure 5.7: Illustration of Proof 5.1: (a) the edge vv′ will become a dangling edge if the
degree of v is 1, or (b) the degree is any odd number greater than 1.

decomposed into edge-disjoint cycles if and only if all of its vertices have even degree” [West,

2001], Lemma 5.2 is proved.

Definition 1. e′ is an adjacent edge of e if both e′ and e are boundary edges which intersect

at p.

Based on Lemma 2, we can recognize multiple regions by sequentially connected boundary

edges via the intersection points. As shown in Lines 32 - 42, we traverse all the boundary edges

stored in BE. We first get an edge (e) from BE, and add it to edges (Lines 35 - 36). We then

find an adjacent edge of e in BE, and store it as the new e (Line 37). We use the function

Intersect (Line 38) to determine whether the new e intersects with any other edges in BE
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Figure 5.8: Illustration of detecting holes: (a) the baseline method which uses the
hole_check_point; (b) the AOI-shapes algorithm which is based on the direction of the
boundary darts.

(except the last edge). If there is an intersection, then there is a loop. We will remove such

loop from the edge list, and add the loop to the final region list (Lines 39 - 42).

Baseline step 3: detecting holes. Until now, we have recognized multiple regions, each

of which is presented as a single loop formed by boundary edges. For example, Figure 5.6

will be recognized as three loops (regions) (p1p2p3p4, p5p6p7p8 and p9p10p11p12). It is worth

noting that, the loop might also form a negative region. For example, the loop p9p10p11p12 in

Figure 5.6 is a hole. To recognize such hole regions, when we traverse each triangle (t) in DT

to recognize boundary edges, we store the incenter (i.e., the point forming the origin of a circle

inscribed inside the triangle t, which is always inside the triangle t) of t as a hole_check_point

(Line 23), as shown in Figure 5.6(b). Finally, to detect whether a region is a hole, we only need

to check if the hole_check_point of one boundary edge of the region is inside the region or

not. If it is inside, then we label the region as a hole (Lines 43 - 45). For example, in Figure

5.8, when we recognize p7p8 as a boundary point based on triangle p7p8p9 (p7, p8 ∈ P but p9 in

P ), we store the incenter of p7p8p9 (c5) as the hole_check_point of boundary edge p7p8 which

is part of the region p6p7p8. Since c5 is inside the region p6p7p8, so the region is a hole region.
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5.4.3 Time complexity of the baseline method

Suppose that the number of points inD and P are N and n, respectively. For the pre-processing

part, the Delauney triangulation costs O(N logN); since the number of edges in the triangulation

result, which is proved to be no larger than 3N [Seidel, 1995], the initialization of the labels

of points and edges will cost O(N). Therefore, the pre-processing part is O(N logN). For the

query processing part (Algorithm 5.1), finding boundary edges (step 1) needs to traverse all

triangles, which is O(2N); recognizing multiple regions need to traverse all boundary edges (and

finding an adjacent edge for each boundary edge): it costs O(slogs), where s is the number

of boundary edges, and s � n; detecting holes (step 2) takes a linear O(m), where m is the

total number of regions, and m� s. Therefore, the complexity of the query processing part is

O(N).

5.5 The proposed AOI-shapes

In this section, we propose our AOI-shapes method to improve the efficiency of the baseline

method by using a modified DCEL structure to store the triangulation result. In this subsection,

we first give a brief description of the DCEL data structure, and then explain how DCEL could

possibly improve the efficiency of the baseline method. Finally, we describe the proposed AOI-

shapes algorithm and analyse the complexity in the end.

5.5.1 The DCEL data structure

Our proposed AOI-shapes algorithm is based on the Doubly Connected Edge List (DCEL) data

structure [Preparata and Shamos, 2012], which is widely adopted in computational geometry

and solid modelling. DCEL links three sets of records, i.e., vertices (points), darts (edges),

and faces (triangles): each point is a vertex, the line connecting two points in the Delaunay

triangulation is an edge, and a triangle is a face which consists of three darts. Each edge is

represented as two ‘darts’ (half edges) with a counter-clockwise direction.

The following terms will be helpful in explaining our algorithm.

• Twin dart. Since an edge is represented by two darts, each one of the two darts will

have a twin dart in DCEL. As shown in Fig. 5.9, the twin dart of 〈p1, p5〉 in face f1,5,6 is

〈p5, p1〉 in face f1,2,5.
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Algorithm 5.2: AOI-shapes(D,P )
1 Input & Output: Same as Algorithm 5.1.
2 Lines 3 - 6 in Algorithm 5.1 ; . Start of pre-processing
3 Build the DCEL structure based on ST ;
4 Same as Lines 9 - 11 in Algorithm 5.1. ; . Start of query processing
5 for each point p ∈ P do
6 Dartsp ← Darts_Start_With(p);
7 outlier_flag ← True;
8 for each dart dt ∈ Dartsp do
9 if End_Vertex(dt).label = inside then

10 outlier_flag = False;
11 dt′ ← Twin_Dart(dt);
12 if Opposite_Vertex(dt).label = inside then
13 if Opposite_Vertex(dt′).label = inside then
14 dt.label=inner;
15 else
16 dt.label=in_boundary;
17 Add dt to BE;
18 else
19 if Opposite_Vertex(dt′).label = inside then
20 dt.label=out_boundary;
21 else
22 dt.label=dangling;
23 Add dt to DE;
24 if outlier_flag = True then
25 Add p to OP ;
26 for each edge e ∈ BE do
27 if e.obtuse = True then
28 BE ← Digging(e, BE);
29 Same as Lines 33 - 38 in Algorithm 5.1;
30 e← Adjacent_DCEL(e, BE);
31 Same as Lines 40 - 44 in Algorithm 5.1;
32 for each r in Regions do
33 if Direction(r) = clockwise then
34 r.label← hole;
35 return Regions,Outliers;

• Opposite vertex. The opposite vertex of a dart is the other vertex that is within the

same face with it. The opposite vertex of 〈p5, p1〉 is p2 (Fig. 5.9). They share face f1,2,5.

• Start/end vertex. A dart is a half-edge from a start vertex to an end vertex. As shown

in Fig. 5.9, the start vertex of 〈p5, p1〉 is p5, and its end vertex is p1.

The following functions can be effectively implemented using the basic DCEL data structure.

• Twin_Dart(d), which returns the twin dart of dart d.

• Opposite_Vertex(d), which returns the opposite vertex of a given dart d.
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Figure 5.9: Illustration of the DCEL structure, where there are 5 faces, 20 darts (half edges),
and 6 vertices.

• Start_Vertex(d), which returns the start vertex of d.

• End_Vertex(d), which returns the end vertex of d.

We also implement the following functions based on DCEL for efficiency purposes (details

will be explained in later sections).

• Darts_Start_With(v), which returns all the darts starting from a given vertex v.

• Obtuse(d), which returns True if the opposite angle of d is obtuse.

5.5.2 Why DCEL structure?

We adopt the DCEL structure to store the DT result in our proposed AOI-shapes because

DCEL can link all three sets of records, i.e., edges, vertices, and faces. DCEL could possibly

improve the efficiency of the baseline method (i.e., Algorithm 5.1) from the following aspects:

• For step 1 of Algorithm 5.1, where we find the boundary edges by traversing all the

triangles (Lines 10 - 30): since DCEL links vertices and triangles (faces), for a give P , we

only need to access those triangles that are connected with p (p ∈ P ). Also, since DCEL

links edges (darts) and faces, we can directly determine whether a candidate boundary

edge is a dangling edge or not (Section 5.5.3.1).
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• Since DCEL links vertices and edges (darts), the Intersect function (Line 38) can be

implemented in a more efficient way (Section 5.5.3.2).

• Since darts (edges) have direction information in DCEL, a hole can be more easily detected

without storing hole_check_point (Section 5.5.3.3).

• With DCEL, a Digging function (which makes the final shape more “fit”) would be

efficient to implement (more details, see Section 5.5.3.4).

5.5.3 Constructing the AOI-shapes

Algorithm 5.2 presents the complete process of the proposed AOI-shapes method. Its input and

output are the same as the baseline, and it also includes two steps: an offline pre-processing

part and an online query processing part. The pre-processing part is the same as the baseline

except that we build the DCEL structure after calculating the DT (Line 3). At the query

processing step, besides those three steps in the baseline method, the AOI-shapes method has

an extra step: a “digging” process which makes the final boundary more “fit” to the region.

Next, we illustrate how we implement each step of the AOI-shapes method using DCEL.

5.5.3.1 Step 1: finding boundary edges

In this first step, we try to find all the boundaries, i.e., boundary edges, dangling edges and

outliers. In our baseline method (Algorithm 5.1), we traverse all the triangles in the resulting

DT to find such boundaries. It is worth noting that, all the boundary edges and dangling

edges connect two vertices within the user query (P ), and the outliers are also within (P ).

Since DCEL could connect the vertex set and the edge (dart) set, we could possibly obtain all

the boundary edges, dangling edges, and outliers, by traversing only those triangles that are

connected with p (p ∈ P ), instead of all the triangles in DT.

As shown in Algorithm 5.2, we traverse all the points that satisfy the user query (P ) (Line

5). For each point (p), we first find all the darts (Dartsp) which have p as the origin point (Line

6). For each dart dt (dt ∈ Dartsp), we check whether its end point is in P (to find candidate

boundary edges and dangling edges). On the one hand, if there is no such dart (i.e., the end

point of all darts in Dartsp is in P ), then p is an outlier point (Lines 7, 10, 24 - 25). On the

other hand, for dt whose end point is also in P , suppose that the twin dart of dt is dt′. We

then determine whether d is a boundary, dangling or inner dart based on the opposite points

of both dt and dt′. As shown in Figure 5.10, there are a total of four situations:
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Figure 5.10: Illustration of step 1 (finding boundary edges) of the AOI-shapes algorithm.

• If both the opposite points of dt and dt′ are in P , then dt is an inner dart (Lines 12 -14,

Figure 5.10(a)).

• If only one of the the opposite points of dt and dt′ is in Pand the other one is in P , then

dt is a boudary dart (Lines 15 - 20, Figure 5.10(b, c)).

• If the opposite points of both dt and dt′ are in P , then dt is a dangling dart (Lines 21 -

23, Figure 5.10(d)).

It is worth noting that the twin dart of an inner-boundary dart is an outer-boundary dart,

and vice versa. For storage efficiency purposes, we only need to store one of them. In our

algorithm, we store the inner-boundary darts (Line 17); all boundary darts refer to inner-

boundary darts in the rest of the chapter, unless specified otherwise.

5.5.3.2 Step 2: recognizing multiple regions

The second step is to recognize multiple regions from the boundary darts. The whole process is

similar to the baseline method: we connect those boundary darts via the intersection vertices.

Our AOI-shapes method improves the efficiency of the baseline in the following aspect. In

the baseline method (Line 39, Algorithm 5.1), we find one of the adjacent edges as the next

connected edge using the function Adjacent(), which traverses all the edges in BE to find an

adjacent edge. In the AOI-shapes method (Line 30), with DCEL, we first find the end vertex

(v1) of the current edge (dart) e, and then use the function Darts_Start_With() to find

all the darts (darts) starting from v1. Then, for each dart (dt) in darts, if it is in BE, we will

use it as the next edge e.
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Figure 5.11: Illustration of the problem of the shapes generated from the baseline method.
(1) The AOI of properties within a 15-min walk to train stations and a 30-min train ride to
the city; (2) the AOI of all properties within the Melbourne Metropolitan area.

5.5.3.3 Step 3: detecting inner holes

In the baseline method, we detect whether or not a region is a hole based on the hole_check_point.

In the AOI-shapes method, since darts in DCEL have directions, each region formed by the

boundary darts will be either clockwise or counter-clockwise. As mentioned in Section 5.5.3.1,

all the boundary darts stored from step 1 are inner-boundary darts. Therefore, all the non-hole

regions should have the same direction as the DCEL face (counter-clockwise). Apparently, hole

regions will have an opposite direction (clockwise), as shown in Figure 5.8(b). Lines 32 - 34 in

Algorithm 5.2 demonstrate how we recognize the regions as hole regions based on the direction

of the region (which is formed by boundary darts).

5.5.3.4 A “digging” process

Until now, the proposed AOI-shapes will return the same results as the baseline method. One

problem of the resulting shape is: the region boundaries are formed at the process where we

separate those points in P , so if the set of P is very “small”, or at the worst case, P is ∅, then

the resulting shape from the baseline method could be too “big” to characterize the boundary

of the region. Example 5.4 illustrates such a problem.

Example 5.4. We present two examples in Figure 5.11 using the baseline method. In Figure

5.11(a), we can see that, since there are no data points in P in the water area, the region between
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Figure 5.12: Illustration of the “digging” process to construct the AOI-shapes. (a) The
original boundary darts p1p2, p2p3, p3p4, p4p1, and an inner point p5. (b) Since ∠p2p5p3 is
an obtuse angle, the “digging” process replaces the boundary dart p2p3 with p2p5 and p5p3, and
p2p3 becomes a dangling dart. (c) Since ∠p5p4p3 is obtuse, the boundary dart p5p3 will be
replaced by p5p4 and p4p3; however, since p4p3 was originally an outer-boundary dart, both
p5p3 and p4p3 will become dangling darts and p3 becomes an outlier point.

Altona and Williamstown, and the region between Williamstown and Brighton are unexpectedly

connected. In Figure 5.11(b), where P is ∅, the resulting shape is the convex hull of D (P ).

Existing work solves the above problem from two aspects. On the one hand, χ-shapes [Duck-

ham et al., 2008] and Park and Oh [2012a] use a “digging” process which progressively replaces

a “long” boundary edge with two “shorter” inner edges (as we have introduced in Example 5.2);

however, this needs a parameter (which is hard to define) to determine whether a boundary

edge is “short” enough to terminate the “digging” process. On the other hand, Peethambaran

and Muthuganapathy [2015] introduce a parameter-free method which defines complex regular-

ity and circle constraints to construct the “footprint” shape; however, the process will introduce

an extra O(N logN) time complexity.

Here, we combine the advantages of those two kinds of methods, and introduce a simple

“digging” process. We consider a boundary dart is too “long” if the opposite angle of the dart is

obtuse; then we will replace the dart with another two darts (Lines 26 - 28). Fig. 5.12 illustrates

the “digging” processing. Example 5.5 presents the results of the AOI-shapes method compared

to the baseline.

Example 5.5. Figure 5.4(a) presents the AOI-shapes result using the same user input as that

in Figure 5.11(a) (baseline). We can see that those unexpected connections are removed in the
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“digging” process. Figure 5.4(b) presents the AOI-shapes result with the same empty P as that

in Figure 5.11(b), we can see that, the AOI-shapes is more accurate.

5.5.4 Time complexity of the AOI-shapes method

Compared to the baseline, the AOI-shapes method has an extra process to build the DCEL

structure in the pre-processing part. Since the time of building the DCEL index depends on

the number of edges in the triangulation result (O(3N)), the time complexity of the whole

pre-processing part is still O(N logN), where N is the number of points in D. For the query

processing part in Algorithm 5.2, we only need to traverse the points in P , whose complexity

depends on the darts being visited: since each edge corresponds to two darts, finding boundary

edges (step 1) has a complexity of O(6n), where n is the number of points in P . In the worst

case, if P = ∅, n = N , the cost of step 1 is O(6N). Similar to the baseline, the second and third

steps cost O(slogs) and O(m), respectively. The digging process needs to traverse all boundary

darts, and in average it has a time complexity of O(s); in the worst case, if all inner darts are

changed to boundary darts, it will cost O(6n). Therefore, the average time complexity of the

query processing part is O(n), and in the worst case, the complexity is O(N).

5.6 The incremental AOI-shapes

AOI-shapes improves the efficiency of existing footprint methods by building a global DT at the

pre-processing part. In this section, we propose two incremental methods to further improve

the efficiency of the AOI-shapes by reusing the calculations at the query process part of the

previous user query. The first incremental method reuses the labels of boundary edges (result of

Step 1, Section 5.5.3.1), and the second method reuses the final region results from the previous

AOI-shapes.

5.6.1 Incremental method I

Algorithm 5.3 presents the pseudocode for the first incremental method. We first calculate a

difference set, and store the points set as Pdelete and Pnew. We then update the labels of all

points in Pdelete as outside and all points in Pnew as inside (Line 8). Then, for each point in

Pdelete and Pnew (Lines 9 - 12), we store all the following darts whose labels will be possibly

changed: (1) all the darts connected with p (whose end point is also an inside point), and (2)

each dart (dt) whose opposite point is p, and its twin dart (dt′).
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Algorithm 5.3: Incre_AOI-shapes_1 (Pnew, Ppre)
1 Input: the new point set Pnew, the point set Ppre from the previous user query.
2 Output: A list of footprint regions Regions.
3 Pdelete ← Ppre − Pnew;
4 Padd ← Pnew − Ppre;
5 if Pnew.size ≤ Pdelete.size + Padd.size then
6 Return AOI-shapes(D,Pnew);
7 Dt← ∅;
8 Update the label of points in Pdelete and Padd;
9 for each point p ∈ Pdelete ∪ Padd do

10 for each dart dt ∈ (Opposite_Darts(p) ∪ Start_Vertex(p)) do
11 dt′ ← Twin_Dart(dt);
12 Add dt and dt′ to Dt;
13 for each dart dt ∈ Dt do
14 Lines 12 - 23 in Algorithm 5.2;
15 Check_Outliers();
16 Lines 26 - 34 in Algorithm 5.2;
17 return Regions,Outliers;

For each dart in Darts, we use the same condition check (shown in Figure 5.10) to label

them as dangling, boundary, inner or outside (Lines 13 - 14). Specifically, (1) if a dart d

is changing from dangling to outside, we check whether one of the points connected with d

becomes an outlier; (2) if a new point does not connect with any darts whose end point is also

in Pnew, then the new point becomes an outlier point (Line 15).

After finding the new boundary edges, the incremental algorithm uses the same steps to dig

the boundary edges, recognize multiple regions and detect inner holes as the AOI-shapes algo-

rithm (Line 16), and finally gets the region and outlier lists (Line 17).

It is worth noting that, If the number of points in the new point set (n) is greater than

the summation of the number of points to be added and the number of points to be deleted,

then we will directly consider the new point set to generate a new footprint using the AOI-

shapes method (Lines 5-6).

5.6.2 Incremental method II

Here, we reuse the final boundary and outlier information from the previous user query, and

update each individual point one by one. Algorithm 5.4 presents the whole process. Same as

Algorithm 5.3, we first calculate a difference set, and store the point set as Pdelete and Pnew

(Line 2). Adding a new point might result in multiple existing separated regions connected,

and deleting a point might result in a region splitting into multiple regions. To avoid a newly

merged region being split in the removal process (Lines 3 - 10), we remove points first before
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Algorithm 5.4: Incre_AOI-shapes_2 (Pnew, Ppre)
1 Input & output: Same as algorithm 5.3.
2 Same as Lines 3 - 6 in algorithm 5.3.
3 while Pdelete 6= ∅ do
4 while ∃p : p ∈ Pdelete&p.label = boundary do
5 Remove_boundary_point(p);
6 while ∃p : p ∈ Pdelete&p.label = dangling do
7 Remove_line_point(p);
8 while ∃p : p ∈ Pdelete&p.label = outlier do
9 Remove_outlier(p);

10 Remove_inside_point(p);
11 while Padd 6= ∅ do
12 while ∃p : p ∈ Padd&p.label = transition do
13 while ∃p : TRANSITION(p).label = outlier do
14 Add_outlier(p);
15 while ∃p : TRANSITION(p).label = dangling do
16 Add_dangling_point(p);
17 while ∃p : TRANSITION(p).label = boundary do
18 Add_boundary_point(p);
19 return Regions,Outliers;

we add new points (Lines 11 - 18).

5.6.2.1 Removing existing points

Removing an outlier point (e.g., p15 in Figure 5.13) does not need further operations. Removing

a dangling point (e.g., p13 in Figure 5.13) might result in the other connected dangling point

(p14) becoming an outlier point.

To remove a boundary point p, we only need to find the connected vertices of p, and

consider the following: (1) if no connected vertices are inside points, and there are more than

three points in the hull boundary, then we only need to remove p, and connect the other two

vertices as a new boundary edge (e.g., removing p2 from Figure 5.13(a)); (2) if p connects with

an inside point, then the inside point is labelled as boundary, and will be connected with the

other two vertices to make two new boundary edges (e.g., removing p7 from Figure 5.13(a));

(3) if there are only two boundary vertices left for the affected hull after p is removed, the two

boundary vertices will become dangling points (e.g., removing p10 from Figure 5.13(a)).

It is worth noting that, removing a boundary point (p) may split a hull into multiple

disconnected components. In such a case, we re-label all the affected darts (those darts connect

p and those darts that have p as opposite points), then we connect those boundary edges

(related to p) and get the region boundary.

Removing an inner point p will result in either holes or dangling edges. On the one hand,
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Figure 5.13: Example of removing boundary points (p2, p7, and p10), line points (p13) and
outlier points (p15): (a) the original footprints, with the points to be removed labelled with
stars; (b) the result after removing the starred points.

if all the opposite darts of p are inside darts, there will be a hole formed by those opposite

darts. On the other hand, if one or more of the opposite darts of p are boundary darts, those

boundary darts will become dangling darts, and there might be new regions formed by other

darts.

5.6.2.2 Adding new points

When adding a new point to the boundary, we need to traverse the current boundary and detect

whether there are boundary darts connecting with the edge. In order to avoid such a traversal,

we add another label for outside points: transition, and consider those transition points first

when updating the AOI-shapes.

• Transition . A transition point is a point in P , but that shares a triangle with a

boundary edge, a dangling edge or an outlier point (i.e., it is the opposite vertex of the

twin dart of a boundary or a dangling edge, or it directly connects with an outlier point).

Since transition points are the closest to existing boundary edges, dangling edges or outlier

points, we first consider such points. It is obvious that: (1) adding a transition point p′ to an

outlier point p results in a dangling edge pp′; (2) adding a transition point p′′ to a dangling

edge pp′ results in a new triangle pp′p′′ (if the three points are non-collinear): p, p′ and p′′ will

become three boundary points.



5.7. A DEMONSTRATION SYSTEM 123

Figure 5.14: Demonstration of the incremental AOI scenario: (a) the user refines his query
from Figure 5.1 by further selecting those regions within 30-min train to the city, (b) the user
continues to do filtering on the dimension “school_rank”; (c) the user only wants those areas
that have properties within 1 million dollars; (d) individual properties in the AOI are shown to
the user.

A major challenge while adding new points is that multiple disconnected components may

become connected, and we need to merge such components. In such a case (i.e., a new point

p connects with multiple regions), we re-label all the affected darts (those darts connect p and

those darts that have p as opposite points), connect those boundary edges (related to p) and

obtain the region boundary.

5.6.3 Time complexity of the incremental algorithms

Suppose that, the number of points in the new point set is n, the number of points to be

added and deleted are a and d, respectively. Then the time complexity of both two incremental

AOI-shapes methods is O(MIN(n, a+ d)).

5.7 A demonstration system

We have implemented an online demo system1 using Australia’s real estate data (Chapter 3) to

demonstrate the usefulness of the proposed AOI-shapes for interactive visualizations of urban

AOIs. Besides the AOI-shapes, we have also implemented several state-of-the-art alternatives.

In the demo, we allow users to switch freely among different methods and compare both the

quality and efficiency of them. We also provide a slider for users to change the parameter if the

alternative method (e.g., χ-shapes [Duckham et al., 2008]) needs one.
1http://aoishapes.com

http://aoishapes.com
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Our demonstration is based on the scenario that a user, John, tries to find a place to live

in Melbourne. Our system helps him explore and understand different urban areas to cater to

his own preferences on various dimensions before he tries to find a particular house.

Example 5.6. John first plays with the system to check where he could buy a house within

a budget of one million dollars. He gradually filters the properties on the “price” dimension

(Figure 5.14), and the regions on the map view keep changing as he moves the slider. He finds

that most of the regions in North and West Melbourne satisfy his query (i.e., he could afford

houses in those regions); but if he wants to buy houses in the South and East Melbourne, he

might need to live quite far away from the city (where he works).

Example 5.7. Living far away from the city is not a big problem since John could take the

train. He then issues a new query and selects the region within 15-minute walk to the nearest

train station. There are a large number of regions satisfying his requirement, so he refines his

requirements by limiting the travel time to the city within half an hour (Figure 5.14(a-1)). As he

keeps checking the changes of the region, he notices that the dimension “school_rank” does not

follow a Normal distribution (Figure 5.14(a-2)). Considering his child’s education, he continues

to refine his query and selects those regions within a top-20% secondary schools (Figure 5.14(b)).

After that, he applies his budget-limitation (1 million dollars) again and checks those regions

in Figure 5.14(c). Finally, John checks the individual properties within the urban area of his

interest (Figure 5.14(d)).

5.8 Experiments

In this section, we conduct experiments to evaluate the effectiveness and efficiency of our

proposed AOI-shapes based on both synthetic and real-world datasets and compared it with the

state-of-the-art alternatives shown in Table 5.2. All experiments have been done in JavaScript

on a quad-core i7-5500U CPU (2.4GHz) with 8GB RAM.

5.8.1 Quality of the AOI-shapes

We first evaluate the quality of our proposed AOI-shapes and compare it with the state-of-the-

art alternatives (Table 5.2). We present both the qualitative and quantitative comparisons in

this subsection.

Since most alternative methods need one parameter, for each method, we have either tried

5-10 different values within the range or chosen the optimal value suggested by the original
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Table 5.2: Alternative methods compared in the experiment.

Short name Parameter range Default value

KNN-based concave hull [Moreira and Santos, 2007] kNN [3, n] d n/10 e

Convex+“digging” [Rosén et al., 2014] digging [0,1] 0.2

ConcaveMan [Park and Oh, 2012a] ConcaveMan [0,] 1

α-shapes [Radke, 1983] α-shapes [-1,1] 0.2

χ-shapes [Duckham et al., 2008] χ-shapes [0,1] 0.1

χ-outliers [Zhong and Duckham, 2016] χ-outliers [0,2] 0.2

baseline method (Section 5.4) AOI-baseline - -
n: number of points in P

(a) Thr proposed
AOI-shapes: 0.06s

(b) AOI-baseline:
0.12s

(c) α-shapes (α =
100): 3.8s

(d) χ-outlier
(χ=0.15): 24.3s

(e) KNN (k=2270):
58s

(f) Digging (λ=0.05):
3.8s

(g) Concaveman
(concave=1): 1.36s

(h) χ-shapes (χ=0.1):
0.1s

Figure 5.15: Results of the “footprint” generated based on each method and the construction
time (P is properties within 15min to the nearest train stations in Melbourne).

authors. For example, for χ-shapes, the authors suggested that a parameter in [0.05, 0.2] out of

the range [0, 1] often provides optimal or near-optimal characteristic shapes; in our experiments,

we have used different χ values within the suggested range.
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(a) The proposed
AOI-shapes: 0.12s

(b) AOI-baseline:
0.40s

(c) α-shapes
(α=100): 10.8s

(d) χ-outlier (χ=1.0):
57.6s

Figure 5.16: Results and construction time of the “footprint” generated based on four
methods that is able to recognize multiple regions (P is properties sold within 1 million dollars
in Melbourne).

5.8.1.1 Qualitative evaluation

Besides those real-world AOI-visualization scenarios supported by AOI-shapes presented in

Chapter 5.7, here we present the footprint results and the construction time for eight different

methods, using a user query (properties within a 15-minute walk to the nearest train station)

as an example.

As shown in Figure 5.15, the proposed AOI-shapes can recognize multiple regions and inner

holes, and is one of the most efficient ones. On the one hand, only those four methods on the top

row (AOI-shapes, AOI-baseline, α-shapes and χ-outliers) can recognize multiple regions and

outliers. While those four methods present similar results, the construction of AOI-shapes and

the AOI-baseline are much more efficient compared to the other two methods (more details are

given in section 5.8.1.2). On the other hand, the AOI-shapes and AOI-baseline can detect holes

inside the region (e.g., those regions in the middle of two train lines as shown in Figure 5.1(d));

α-shapes with a negative α are also possible for hole detection, however, the sign of α needs to

be pre-defined based on whether the final shape has a hole or not (which might be unknown to

system designers); all the other five methods cannot detect holes.

We further compare all the methods based on another example, where the AOI query is de-

fined as “regions with properties sold below 1 million dollars”. The result of AOI-shapes (Figure

5.16(a)) reveals that: house prices in most of the areas in South and East Melbourne are above

1 million dollars. Figure 5.15(b) presents similar patterns, but there are unexpected region

connections on top of the water, and the region boundary is not optimal. χ-outliers (Figure

5.16(d)) also presents similar results but it takes much longer time (1 minute vs 0.1 seconds)

to construct. χ-shapes (Figure 5.16(c)) is not able to recognize the empty areas. Similar to

that in Figure 5.15, all the four other methods present similar results to χ-shapes; readers can
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(a) The proposed
AOI-shapes: 5ms

(b) AOI-baseline:
15ms

(c) α-shapes (α = 100):
183ms

(d) χ-outlier (χ=1.5):
998ms

(e) KNN (k=100):
1104ms

(f) Digging (λ=0.05):
50ms

(g) Concaveman
(concave=1): 78ms

(h) χ-shapes
(χ=0.1): 56ms

(i) χ-outliers (χ=0.15):
1205s

Figure 5.17: Properties in Melbourne CBD (blue: generated footprint; red: ground truth
shape).
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(a) The proposed
AOI-shapes: 16ms

(b) AOI-baseline:
33ms

(c) α-shapes (α =
100): 471ms

(d) χ-outlier (χ=1.5):
1517ms

(e) KNN (k=100):
5007ms

(f) Digging (λ=0.05):
108ms

(g) Concaveman
(concave=1): 115ms

(h) χ-shapes(χ=0.1):
85ms

Figure 5.18: Properties in Berwick, Victoria (blue: generated footprint; red: ground truth
shape).

(a) Orginal
synthetic letters

(b)
AOI-shapes:
25ms

(c)
AOI-baseline:
56ms

(d) α-shapes
(α=0.5):
130ms

(e) χ-outlier
(χ=0.2):
240ms

Figure 5.19: Footprint results based on the letter dataset.
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(a) KNN (k=100):
17ms

(b) Digging
(λ=0.05): 49ms

(c) Concaveman
(concave=1): 37ms

(d) χ-shapes(χ=0.2):
85ms

Figure 5.20: Footprint results based on an individual letter “H”.

Figure 5.21: Region-based F1-score for quantitative evaluation.

check the results by exploring the online demo1.

5.8.1.2 Quantitative evaluation

Since the boundary of AOI is usually vague and unknown, there is no ground truth of AOI for

quantitative evaluation. To quantitatively compare our algorithms with existing methods, we

conduct experiments by reconstructing “footprints” derived from known “ground truth” regions.

Experimental setup. Since all the alternative methods cannot detect inner holes and only

two of them can recognize multiple regions, the “ground truth” regions are designed to be simple
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hulls (no holes). The purpose of this experiment is to compare our methods with state-of-the-art

methods regarding constructing simple hulls. Particularly, we designed the following datasets.

• Dataset 1: administrative districts (Melbourne CBD) + real estate data

points. The first dataset is based on the region of Melbourne CBD and the real estate

data (defined in Chapter 3) mapped in Melbourne CBD (1500 properties are included af-

ter removing duplicate locations). The “ground truth” shape is the geometry boundaries

of Melbourne CBD, and the real estate data in the region form the P .

• Dataset 2: administrative districts (Berwick) + real estate data points. Similar

to dataset 1, we select the suburb of Berwick (which has one of the highest numbers of

properties sold in the regional Victoria, Australia) as the ground truth shape; and the

properties mapped in the region are denoted as P (9350 properties).

• Dataset 3: synthetic letters + synthetic points. We adopt the letter-based dataset

defined in [Zhong and Duckham, 2016], where six hole-free letters were arbitrarily chosen:

“H”, “E”, “X”, “C”, “S”, and “W” are placed on a 2×3 grid, which is the “ground truth”

shape (Figure 5.19(a)). It is worth noting that, since only the proposed methods and

α-shapes with appropriate parameter settings can recognize holes, it is not fair to other

methods if we generate letters with holes. We then generate the point set as described in

[Zhong and Duckham, 2016], which are P in our algorithm.

• Dataset 4: individual letter + synthetic points. Since half of the methods cannot

recognize multiple regions, we also generate six datasets with each individual letter as the

ground truth shape.

Evaluation metric. Same as existing work (e.g., [Duckham et al., 2008, Asaeedi et al., 2017,

Zhong and Duckham, 2016]), we use the area-based F1-score, to evaluate the differences of the

footprints based on the input points from the “ground truth” shape. The score is calculated as

the harmonic mean of area-based precision and recall:

F1 =
2× precision× recall
precision+ recall

× 100% (5.1)

where precision is the proportion of the footprint area that intersects the true shapes, and the

recall is the proportion of the true area that is captured by the footprint.

Experimental result. We visualize the results of all generated footprints (compared with

the ground truth) in Figure 5.17-5.20 for each of the datasets. The F1-scores are presented in
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Figure 5.21. Since our method considers P , we can see that almost all the boundaries from AOI-

shapes are within the actual ground truth shapes, corresponding to a better precision score.

The reasons why our proposed AOI-shapes does not have significant advantages regarding F1-

scores (Figure 5.21) include: (1) all the datasets do not have multiple regions and/or inner

holes (which are the main strengths of our methods), (2) the ground truth of suburb geometry

boundary has a significant proportion of gardens where there are no real estate properties;

although the AOI-shapes correctly excludes those regions (shown in Figure 5.17(a) and Figure

5.18(a)), it results as a worse recall score compared to other methods.

It is worth noting that, parameter-free is one of the biggest strengths of the proposed AOI-

shapes, since all the alternatives need a parameter which is hard to specify for users. For

example, for χ-outliers, the range of parameter χ is [0, 2]. We have chosen an optimal χ as

0.15 in Figure 5.15(d) and 0.10 in Figure 5.16(d). However, as shown in Figure 5.17(i), a χ of

0.15 will result that most of the data points become outliers and thus give us multiple small

regions; and after comparison of the F1-score, a χ of 1.5 gives us the best result, as shown in

Figure 5.17(d) and 5.18(d).

5.8.2 Efficiency of the AOI-shapes

We evaluate the efficiency of the proposed AOI-shapes by comparing the construction time of

AOI-shapes with the alternatives (Table 5.2). Since AOI-baseline is the only method whose

complexity is based on N instead of n, in our implementation of AOI-baseline, we store a

mapping from points to triangles in DT to make the baseline step 1 more efficient, so the

AOI-baseline can also have a time complexity of O(n), instead of O(N).

Simulated user query. As shown in Figure 5.4(a), the AOI is often generated based on

range queries (for quantitative attributes). Therefore, for efficiency evaluation, we simulated

user queries based on the attribute range. For example, for a real estate dataset with 50k

properties (Figure 5.22), we first sort the data based on the distance to the nearest train

station. Simulated query (P ) is selected as the first 2k, 4k, ..., 50k rows of the sorted data.

Each of the user queries will correspond to a specific user query (e.g., 20k corresponds to a

15-minute walk to the nearest train station (Figure 5.15)).

For those alternative footprint methods which all need parameters, the choice of parameters

might influence their construction time. For example, for χ-shapes, a larger χ will terminate

the algorithm earlier than a smaller χ, and thus takes a shorter time to construct the footprint.

As discussed in Example 2, the choice of χ will also influence the complexity of the resulted
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Figure 5.22: 50k real estate dataset in Melbourne (query: distance to train station).

(a) Query: distance to train station (b) Query: distance to supermarket

Figure 5.23: Construction time (500k real estate dataset).

shape, which can be measured by the number of boundary points. Our experiment shows that:

the AOI-shapes can deliver a more complex shape (with more boundary points) in the least of

construction time, compared to the alternatives with default parameters. As shown in Figure

5.22(a), four methods (AOI-shapes, χ-shapes, Concaveman, and AOI-baseline) are the most

efficient ones, the construction of which are much shorter than the other four methods; however,
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Figure 5.24: Experiment result of the incremental methods (based on 50k properties)

both χ-shapes and Concaveman only generate simple shapes (shown in Figure 5.22(b)). The

only method that can generate complex shapes as AOI-shapes and AOI-baseline is χ-outliers;

however, its construction time is at least a thousand times more compared to AOI-shapes.

For AOI-shapes and AOI-baseline, both the number of boundary points and the construction

time decrease after around 40k since different regions might merge. Also, AOI-shapes takes

about half of the construction time of AOI-baseline thanks to the DCEL structure, although

AOI-shapes has an extra digging process.

Among those four more efficient methods, we further evaluate their scalability on a larger

dataset which has 500k real estate properties. The query is constructed based on the distance to

the nearest train station (Figure 5.23(a)) and the distance to the nearest supermarket (Figure

5.23(b)). Both results reveal that the AOI-shapes is the most efficient one. Compared to Figure

5.23(a) and (b), we find that with distance_to_supermarket as input, the construction time of

all footprints are shorter than the one using distance_to_train_station as input. The reason

is that the resulted region of the query related to the supermarket is less complex with the

same number of points in P . Also, if we compare Figure 5.22(a) and Figure 5.23, the size of D

has no significant effect on the construction time of AOI-shapes, since only the edges connected

with P will be visited for constructing the AOI-shapes (the size of D affects the construction

time of the global DT, which is not included here).
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5.8.3 Efficiency of the incremental AOI-shapes

We further evaluate and discuss whether the proposed two incremental methods can improve

the efficiency compared with the original AOI-shapes. For evaluation purposes, we skip the

process of comparing Pnew and ppre for the incremental methods (Lines 5-3.7 in Algorithm 3 &

4).

Similar to Section 5.8.1.2, we simulated the user query based on data ranges with the

real estate data. Here we use the 50k real estate dataset as D. We select five attributes

to define the range query: price, distance_to_train_station, distance_to_supermakert,

distance_to_hospital, school_rank. We sort the data based on each attribute, and then

choose the first n% (n is a random number between 10 and 50) of the data as the original

P . Then we gradually add or delete data based on P and report whether the two incremental

methods will speed up the construction process based on the ratio of updated point number

and original point number (the speed-up percentage is average score based on the five chosen

attributes).

As shown in Figure 5.24, when there are more than 35%-40% of data to delete, both the

incremental methods are worse than the original method. The second incremental method

(which updates the final shapes) works well when there are only a few data points (less than

20%) to be updated, while the first incremental method (which improves the efficiency at the

labeling process) works better when there are more data points to update. The incremental

methods will not speed up the process when there are more than about 35% (incremental_2)

and 80% (incremental_1) of data points to be updated. The reason is that the updating process

based on the final points (incremental_2) takes much longer time than the original construction

process; for incremental_1, more added data points might also result in more original point

labels to be revisited.

5.8.4 Discussion

In this subsection, we discuss the strengths and weaknesses of the proposed AOI-shapes, appli-

cations and extensions.

Strengths. Based on the experimental results, the proposed AOI-shapes has several advan-

tages over the state-of-art footprint methods. First, all the alternatives need a parameter, which

often has no real-life meaning and is hard to define, and the optimal parameter setting for the

same method varies for different applications. Second, compared with χ-outliers and α-shapes

which possibly present similar results with an appropriate choice of χ, the construction of AOI-
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shapes is normally thousands of times faster. Third, compared with the proposed AOI-baseline,

AOI-shapes is faster and more accurate on boundary detection (especially when P is sparse, as

shown in Figure 5.16). Finally, compared to all the other methods, AOI-shapes takes at least a

similar time as the most efficient state-of-the-art χ-shapes, but can recognize multiple regions

and inner holes.

Limitations. One obvious limitation of AOI-shapes is the need for P . Without P , the AOI-

baseline will return a convex hull (Figure 5.11(b)), while the AOI-shapes might return a shape

“better” than the convex hull (Figure 5.4(b)), but there is no guarantee of the quality of the

result. While there is no parameter setting in AOI-shapes, other methods such as χ-shapes and

χ-outliers might be more robust for applications with no available P . One possible extension

of the AOI-shapes is to introduce a parameter related to the angle in the “digging” process.

Another limitation of the method is the pre-computation part of DT. Since DT computation

is based on the global dataset D, more storage space is needed compared to the alternative

methods.

Applications. AOI-shapes is more suitable for applications where both P and P are available.

Besides the real estate domain presented throughout the chapter, there are many other possible

applied scenarios of the method. For example, in traffic analysis, those road points that have

traffic jams can form a P , while other uncongested points can form a P ; for facility deployment,

P and P can also be easily obtained based on online geo-tags.

Extensions. Based on our experiments, AOI-shapes works well over dataset under 500k

records (most of the query can be returned within 0.5s). There are several directions to extend

the AOI-shapes to support a dataset that is above 500k and avoid interactive latency. On the

one hand, we could divide the global D into subsets based on either the administrative districts

(e.g., states, suburbs) or using geospatial data structures such as Quadtree [Samet, 2006], then

we can compute and store the DT for each subset of D. On the other hand, only a subset of

the AOI might be of interest to the user even when the actual number of points in P is large.

For example, the map returned to the user might only contain 10% of the points in P when

the map is zoomed in; while when the map is zoomed out, the details of the boundaries might

not be important to the user anymore.

5.9 Summary

In this chapter, we studied the problem of visualizing user-defined urban areas of interest

(AOIs). First, we summarized the existing “footprint” methods. To address the drawbacks of
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the existing studies, we proposed a novel parameter-free footprint method, named AOI-shapes,

to generate the region boundary of user-defined urban AOIs to visualize on the map. Specifically,

the proposed AOI-shapes is able to recognize multiple regions, outliers and inner holes of the

AOI. To effectively update the AOI after users update their queries, we proposed two efficient

and scalable algorithms to generate the AOI in an incremental manner. We designed and

developed an online system which demonstrates the usefulness of the proposed AOI-shapes for

interactive visualizations of urban AOIs. Extensive experiments on both synthetic and real-

world datasets proved the effectiveness and efficiency of our proposed methods.



Chapter 6

Conclusion and Future Work
“To the future or to the past, to a time when thought is free, when men are different

from one another and do not live alone - to a time when truth exists and what is

done cannot be undone: From the age of uniformity, from the age of solitude, from

the age of Big Brother, from the age of doublethink - greetings!”

— George Orwell, Nineteen Eighty-Four

In this chapter, we first conclude the whole thesis and then present some research directions

for future work.

6.1 Conclusion

In this thesis, we studied the problem of visualizing geo-related multidimensional data. We

solved three research questions proposed in our introduction, focusing on the visualization

design (RQ1) and the scalability problems (RQ2 & RQ3). Specifically,

• In our first research question (Chapter 3), we proposed a visual analytics framework of geo-

related multidimensional data using the real estate domain as an example. We designed

and developed HomeSeeker1 which augments existing commercial systems to help users

understand the local real estate market, find preferred properties based on their personal

preferences and compare properties from the aspects that they are concerned about.

We presented a systematic visualization design study following with justifications. Case

studies based on real-world datasets demonstrated the usefulness of our system, and users

with different levels of knowledge on the market and different requirements (either general

home buyers or investors) could benefit from the system.
1http://115.146.89.158
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• In the second research question (Chapter 4), we studied the problem of supporting visual

analytics for large-scale geo-related multidimensional data. Specifically, we first proposed

a cluster-based visualization abstraction of geographic data. Second, we designed a con-

cave hull algorithm which includes geographical points in each cluster as compactly as

possible. Third, we proposed a cluster-based data cube (ConcaveCubes) to support inter-

active response to users’ visualized exploration on large-scale geographic multidimensional

data. Fourth, we built a demo system2 to demonstrate the design of cluster-based geo-

graphic visualization. We conducted extensive experiments using real-world datasets and

compared ConcaveCubes with state-of-the-art cube-based data structures.

• Our third research question (Chapter 5) focused on the problem of visualizing user-defined

urban areas of interest. We first described visualization idioms for visualizing AOIs and

illustrated why a novel footprint method is needed. Then we proposed a novel footprint

algorithm named AOI-shapes to calculate the geographic shape of disconnected AOIs

based on geographic data points. AOI-shapes could be easily extended to incrementally

compute the boundary of AOIs after user interaction and avoid the interactive scalability

problem. Finally, we developed an online demo3 and conducted extensive experiments to

demonstrate both the efficiency and effectiveness of the proposed AOI-shapes algorithm.

6.2 Future work

We propose the following directions for future research regarding the visual analytics problem

of geo-related multidimensional data.

1. Data and tasks. We have used Australian’s real estate domain as an example to study

geo-related multidimensional data. Future research directions include continuing to collect

data related to the real estate domain, cleaning the data, and applying the visual analytics

framework on other datasets and domains.

• Data collection and integration. Our current real estate data include 1.42 million

properties in Australia. Each property has 72 attributes falling into one of the five pro-

files. Most of the data profiles (Section 3.3.2) that we have defined are very common

considerations to home buyers from all over the world, such as the information related
2http://115.146.89.158/ConcaveCubes
3http://www.aoishapes.com

http://115.146.89.158/ConcaveCubes
http://www.aoishapes.com
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to children’s education, and the distance to work and supermarkets. Regarding data col-

lection and integration, on the one hand, future research can continue to collect other

data related to the real estate domain in Australia, such as the crime rate of each region

(which indicates the safety of the neighbourhood) and the accessibility to the freeway.

On the other hand, our data integration framework can also be applied on the real estate

domain in other countries, with some of the factors slightly modified. For example, in

China, people might be more familiar with the price of units per m2. Certainly, there

are different considerations across countries; we believe that our framework can inspire

researchers from other countries to work on their real estate data.

• Data cleaning supported by visual analytics. This thesis has focused more on the

data analytics part, instead of the data cleaning part. However, when playing with the

HomeSeeker system, we found that visual analytics might help clean the original dataset.

Example 6.1 illustrates the idea.

Example 6.1. At the property-level exploration, HomeSeeker visualizes each property

on maps. Users could filter the properties from the multidimensional view. As shown

in Figure 6.1, when we filtered out the properties based on the property type, and only

selected “houses”, we found that there was only a single “house” in the Melbourne CBD.

We tried to make sense of that and had a hypothesis that Melbourne CBD might only

have apartments but not houses. After confirming the hypothesis with real estate agents,

we clicked on the single “house”, and found that the “house” is a parking slot for sale but

was mistakenly labelled as a “house” (possibly by the real estate agent who uploaded the

property information) at the original data source.

Such kinds of anomalies (in Example 6.1) could be very hard to find without visualization,

and even domain experts (e.g., real estate agents) might not remember all those domain-

specific knowledge (so it is hard to pre-define all data cleaning rules). Visual analytics

can help data wranglers define the rules of cleaning which can be applied on the same

kind of anomalies.

• Other geo-related multidimensional data. While the process of visual analytics

design has been believed to be extremely domain-specific, requiring customization and

fine-tuning for any new applications [Parameswaran, 2018, Munzner, 2014], we encour-

age researchers to apply the visual analytics techniques (including those visualization
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Figure 6.1: Illustration of the single “house” in Melbourne CBD.

designs presented in Section 3.5) on other geo-related multidimensional data (such as the

restaurant data, crime data and census data) to solve practical problems.

2. Large-scale data visualization. We have used visualization-based data cubes to solve

the scalability problem of large scale geographic visualization. Future works in this direction

include the extension of the proposed ConcaveCubes, and the use of other methods to support

large-scale visual analytics of geo-related multidimensional data.

• Extension of ConcaveCubes. The first extension of ConcaveCubes is to combine

geospatial data structures to support faster response after map operations (e.g., zooming

and panning). Map operations will change the window size (w). The change of w cor-

responds to the level of geographic semantics in ConcaveCubes. Therefore, after users

apply zooming or panning on the map, we calculate a set subtraction between the current

(wc) and previous (wp) map windows and then refresh the visualization based on the sub-

traction result. In our current implementation, we store a minimum bounding rectangle

for each geo-boundary to approximately calculate the subtraction process. This process

can be improved by indexing the geo-boundaries using geospatial data structures such as

R-Tree and Quadtree [Samet, 2006]. Another extension of ConcaveCubes is to adapt the
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method with dynamic data. To insert, update or delete a data item in ConcaveCubes

after it is constructed, we might need to change the affected nodes in the hierarchical

structure.

• Combining with visualization reduction methods. ConcaveCubes (as a data re-

duction method) can be combined with visualization reduction methods (e.g., predictive

methods, progressive methods) to support large-scale data visualization. For example,

it is possible to predict further user interactions (e.g., whether the user is going to do

filtering, map panning or zooming) based on methods defined by Chan et al. [2008] and

pre-load some of the visualization results to shorten the interactive latency.

3. Visualization of urban areas of interest. Following our third research questions, we

have the following future directions related to footprint methods and the proposed AOI-shapes.

• Online comparison of existing footprint methods. In Chapter 5, we have surveyed

existing footprint methods and presented both the construction process and the charac-

teristics of them in Table 5.1. While different methods might present different footprint

results, there is no standard which one is the best; and different applications might have

different requirements. For example, in our second research question (Chapter 4) when

we design ConcaveCubes, we need a method that returns a single hull for points in each

cluster; while in our AOI visualization problem (Chapter 5), the result might contain

multiple regions. Therefore, an online comparison system of footprint methods that allow

users to upload their own data could help users choose the most appropriate footprint

method in their own application.

• Extension of AOI-shapes. There are several directions to extend the AOI-shapes to

support larger dataset and avoid interactive latency. On the one hand, the global dataset

can be divided into subsets based on either the administrative districts (e.g., states,

suburbs) or using geospatial data structures such as Quadtree [Samet, 2006]; then the

DT for each subset of D can computed and stored. On the other hand, only a subset of

the AOI might be of interest to the user even when the actual number of points in P is

large. For example, the map returned to the user might only contain 10% of the points

in P when the map is zoomed in; while when the map is zoomed out, the details of the

boundaries might not be important to the user anymore.

• Application on other domains. Besides the real estate domain presented in the thesis,

there are many other possible applied scenarios of AOI-shapes. For example, in traffic
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analysis, those road points that have traffic jams can form a P , while other uncongested

points can form a P ; for facility deployment, P and P can also be easily obtained based

on online geo-tags.

4. Evaluations. One of the most common challenges of any visualization research is the

need for an in-depth, effective quantitative or qualitative evaluation. Related to this thesis, the

following user studies might be useful for future research.

• Comparing cluster maps with other geoVis methods. In Section 4, we have pre-

sented boundary-based cluster maps to support cluster-based geographic visualization.

We have discussed both the advantages and disadvantages of cluster maps compared with

other geoVis methods such as heatmaps, binned plots; those statements could be the hy-

potheses of a well-design user study. We encourage future researchers to conduct formal

user studies and compare those geographic visualization methods including but not lim-

ited to heatmaps, dot maps, bubble maps, Choropleth maps, Voronoi diagrams, binned

plots, bubble-based cluster maps and boundary-based cluster maps.

• User study of visual analytics systems. While visual analytics systems always involve

human interactions, it is a challenge to conduct user study and check how the system can

help users with their original purposes. Taking our proposed HomeSeeker system as an

example, we have defined several levels of visual exploration in the system. A proper

laboratory user study might help to answer whether those explorations help the user

with their home-seeking purposes and if it does, how much it might shorten users’ time

compared to the use of other systems.

5. Combination of other research fields. Another future direction to study the geo-related

multidimensional data is to combine visual analytics with other research fields such as virtual

reality and deep learning. On the one hand, augmented reality techniques might help users to

understand both the data patterns in a visual analytics system and check environment-based

information near the geo-location [ElSayed et al., 2013]. For example, in the real estate domain,

visual analytics systems in a virtual reality environment can help the user understand the real

estate market in a region while they check the surrounding environment of the region (e.g.,

whether the region has tree-lined streets). On the other hand, visual analytics might help to

make the process of a black-box deep learning algorithm available for users. For example, we

might design a multilayer perceptron (MLP) deep learning algorithm to predict house prices.
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A proper visual analytics design will revel the parameter learning process so that humans can

change the parameters in the middle of the learning process.

6. Automatic visualization design for geo-related multidimensional data.

The problem of automatic visualization (i.e., visualization ranking/recommendations) has

attracted the attention of data scientists in multiple areas [Luo et al., 2018, Wongsuphasawat

et al., 2016, Bouali et al., 2016]. Different techniques have been proposed to address the problem,

including Rank-by-Feature [Seo and Shneiderman, 2006], diversification [Mafrur et al., 2018],

etc. However, most of the existing work only focus on simple charts such as bar charts and

line charts. When users have a geo-related multidimensional dataset, they might be wondering

what kind of map designs (i.e., heat maps, choropleth maps) they should use and on which

dimensions they should apply the method (e.g., should they use the colour to represent house

prices or property types). Therefore, there is a need to design an automatic visualization system

for geo-related multidimensional data.
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