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Abstract
In this study, we estimate rice residue, associated burning emissions, and compare results with
existing emissions inventories employing a bottom-up approach. We first estimated field-level
post-harvest rice residues, including separate fuel-loading factors for rice straw and rice stubble.
Results suggested fuel-loading factors of 0.27 kgm−2 (±0.033), 0.61 kgm−2 (±0.076), and
0.88 kgm−2 (±0.083) for rice straw, stubble, and total post-harvest biomass, respectively. Using
these factors, we quantified potential emissions from rice residue burning and compared our
estimates with other studies. Our results suggest total rice residue burning emissions as 2.24Gg
PM2.5, 36.54Gg CO and 567.79Gg CO2 for Hanoi Province, which are significantly higher than
earlier studies. We attribute our higher emission estimates to improved fuel-loading factors;
moreover, we infer that some earlier studies relying on residue-to-product ratios could be
underestimating rice residue emissions by more than a factor of 2.3 for Hanoi, Vietnam. Using
the rice planted area data from the Vietnamese government, and combining our fuel-loading
factors, we also estimated rice residue PM2.5 emissions for the entirety of Vietnam and compared
these estimates with an existing all-sources emissions inventory, and the Global Fire Emissions
Database (GFED). Results suggest 75.98Gg of PM2.5 released from rice residue burning
accounting for 12.8% of total emissions for Vietnam. The GFED database suggests 42.56Gg
PM2.5 from biomass burning with 5.62Gg attributed to agricultural waste burning indicating
satellite-based methods may be significantly underestimating emissions. Our results not only
provide improved residue and emission estimates, but also highlight the need for emissions
mitigation from rice residue burning.
Introduction

Crop residue burning is an important source of
greenhouse gases and aerosols (Streets et al 2003,
Crutzen and Andreae 1990). The burning of crop
residues contributes to at least 34% of global biomass
burning emissions (Streets et al 2004). While these and
other studies provide useful general estimates, analyses
need to be region-specific to enable emissions
mitigation. Of the different crop residues, rice residues
are prevalently burned in South/Southeast Asian
© 2017 IOP Publishing Ltd
countries in addition to forest biomass burning
(Streets et al 2003, Biswas et al 2015).

Rice (Oryza sativa) is the staple crop for livelihood
in Southeast Asia and more specifically, Vietnam.
During 2015, Vietnam produced 45.2 million metric
tonnes of rice with most production in the Mekong
River Delta (57%) and the Red River Delta (15%)
(Vietnam Government 2015). The Red River Delta is
home to Hanoi, the capital of Vietnam which outside
of the immediate downtown area, exhibits a mosaic
landscape dominated by paddy rice, small-holder
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(a) (b)

Figure 1. (a) Typical machine-harvested field in Hanoi province with dry rice straw laid in neat rows; (b) typical rice straw pile prior to
burning near Hanoi City.

(a) (b)

Figure 2. (a) Rice straw pile burning. Piles are often burned nearby to the harvested field. (b) Typical post-burned rice field in Hanoi
Province, Vietnam. Most straw is burned efficiently, however much stubble is left incompletely combusted.
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farms, and plantations, all intermixed amongst a
growing peri-urban area (Pham et al 2015). Thus, in
Hanoi, many residential and commercial areas are
not only impacted by urban emissions, but also by
smoke from rice residue burning. Studies have
attributed crop residue burning to local and regional
impacts including long-range transport with effects
persisting for weeks or months impacting air quality,
atmospheric chemistry, weather, and biogeochemical
cycles (Badarinath et al 2007, 2009, Vadrevu et al
2012, 2014, 2015, Cristofanelli et al 2014, Reddington
et al 2014, Ponette-González et al 2016, Yan et al
2006, Le et al 2014). For Hanoi in particular,
nocturnal radiation inversions occur during the
October rice harvest and burning, greatly enhancing
the negative air quality impact of fine-particulate
matter emissions (Hien et al 2002).

Around Hanoi, the typical paddy rice field size
ranges from 150–2280m2 (Patanothai 1996) with an
average of 790m2 (s = 625m2) (this study). Hanoi is
located within the heart of the Red River Delta which is
Vietnam’s second largest rice producing hub with over
35% of the land dedicated to rice (Vietnam
Government 2015). Rice is routinely irrigated and
double-cropped in Hanoi Province with winter rice
harvested during June and spring rice harvested
during late September–October. After harvest, a large
volume of rice straw is left in rows or piles on the field
2

as well as uncut stubble (figures 1(a) and (b)). In order
to prepare the field for the next harvest, farmers
routinely burn the residues. Typical burning of a rice
straw pile and post-burned field in Hanoi are shown
(figures 2(a) and (b)). Mostly, the straw is burned or
reincorporated into the soil while some is used for
cattle feed, cook stoves, composting, and mushroom
cultivation (Trach 1998, Hong Van et al 2014, Duong
and Yoshiro 2015, Nguyen 2012, Oritate et al 2015). In
comparison to the rural areas, suburban areas such as
Hanoi typically burn a higher proportion of rice straw
as these areas have fewer cattle relying on it for food
(Duong and Yoshiro 2015). Thus, with a higher
proportion of residue burned in Hanoi, there is
amplified impact from emissions. Further, post-
harvest rice straw is assumed to have moisture content
of about 15% or less, however this varies depending on
conditions, and residue structure/density can also have
an impact on resulting emissions (Korenaga et al 2001,
Arai et al 2015). In order to estimate emissions impact,
accurate bottom-up quantification of residue produc-
tion and burning is needed.

Earlier studies on estimating emissions from crop
residue burning have used agricultural production
data, a crop specific residue-to-product ratio, an
estimate of theproportionof residue subject to burning,
emission factors, and a combustion factor (Streets
et al 2003, Yevich and Logan 2003, Yan et al 2006,
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Cao et al 2008, Gadde et al 2009, Kanabkaew andOanh
2011, Vadrevu andLasko 2015, Zhang et al 2015).While
these studies yield insight on emissions estimation, they
can be improved by incorporating field-based locally/
regionally estimated fuel-loads or emissions factors
established from field measurements (Oanh et al 2011,
Kanokkanjana et al 2011, Rajput et al 2014, Hong Van
et al 2014, Arai et al 2015).We note that comprehensive
province-level field-estimates of rice straw and rice
stubble have yet to be generated for northern Vietnam.

Field studies estimating rice straw, stubble, and
total post-harvest biomass production are labor
intensive and costly. Accordingly, remote sensing with
its synoptic and consistent coverage can be used for
estimating these factors. In Southeast Asia and
Vietnam, forecasting of rice yield or biomass has
been done using X-band synthetic aperture radar
(SAR) (Gebhardt et al 2012, Bouvet et al 2014),
C-band SAR (Ribbes and Le Toan 1999, Chakraborty
et al 2005, Lam-Dao et al 2009, Inoue et al 2014, Karila
et al 2014), and L-band SAR (Zhang et al 2009,
Torbick et al 2011). Further details on these and related
mapping applications are available in recent reviews
(Kuenzer and Knauer 2013, Mosleh et al 2015, Dong
and Xiao 2016). Developing a relationship between
field-estimated rice biomass and SAR signal is useful
for upscaling field studies to broader regions and time
periods. Thus, it contributes to systematic and
operational monitoring of rice residue production
useful for not only estimating emissions from burning,
but also emissions mitigation such as bioenergy
generation.

In this study, we develop and assess a straightfor-
wardmethod for efficient and accurate field estimation
of rice residue fuel-loading factors for straw, stubble,
and total post-harvest biomass. We use these as inputs
to calculate resulting potential residue burning
emissions for Hanoi, Vietnam and compare results
using fuel-loading factors from other studies. Using
our fuel-loading factors and those from other studies
we upscale our results to the entirety of Vietnam and
compare with an existing emissions inventory to assess
rice residue burning contribution to total emissions
from all sources. We also compare our emission
estimates with the satellite-derived estimates from the
Global Fire Emissions Database (GFED). We then
explore the potential forecasting of rice residue using
field and SAR data.

We specifically address the following questions: (1)
how much rice straw, stubble, and total post-harvest
biomass is left in the field, and how does this compare
to other regional studies? (2) What are the resulting
rice residue burning emissions for major pollutants
(PM2.5, CO, and CO2) in Hanoi Province? (3) What
are the resulting rice residue burning emissions for the
entire Vietnam and how do they compare to the
existing emissions inventories from different sources?
(4) How well does SAR data enable forecasting of post-
harvest biomass? We addressed these questions using a
3

field and remote sensing based approach representa-
tive of a typical double-cropped rice region in Hanoi
Province, Vietnam.
Datasets and methods

SAR data
Sentinel-1 carries a 12m long C-Band SAR yielding a
unique ability to penetrate most cloud coverage.
Sentinel-1 is a constellation of two satellites including
Sentinel-1A with data since October 2014 and
Sentinel-1B launched in spring of 2016. The
constellation has a repeat-pass of approximately six
days for many regions. From the Alaska Satellite
Facility, we obtained a single ground-range detected,
interferometric wide-swath (IW), dual-polarized
image from Sentinel-1A just prior to harvest for
Hanoi Province on September 18, 2016. We processed
the imagery following detailed guidelines from
European Space Agency using the freely-available S1
toolbox (Zuhlke et al 2015) including thermal noise
reduction, multi-looking azimuthal compressions to
20m spatial resolution to reduce noise, terrain
correction using the SRTM 30m DEM, speckle filter,
and radiometric adjustments to correct for viewing
geometry effects (Liang 2005). We first generated a rice
map from a full time-series of Sentinel-1A time-series
imagery for 2016 using a support vector machine
classification method (figures 3(a) and (b)) and
validated it using field data and fine-resolution
imagery from Google Earth and field photos; the
resulting map had an overall accuracy of 94.3% and
approximately 220 000 ha of rice land area. The
resulting rice map built upon results from related
studies (Torbick et al 2017, Nguyen et al 2015) and was
used to delineate rice from non-rice for field sampling
(figure 3(b)).

The field data for generating the fuel-loading
factors were collected from Hanoi Province and
include georeferenced photos of rice and non-rice
areas used in our rice area mapping classification
training or accuracy assessment. For relating our
field-level fuel-loading data to SAR, we used the
Sentinel-1 VH-polarized image obtained approxi-
mately 2 weeks prior to harvest (September 18, 2016).
The field data collection is described in the
subsequent section.

Rice residue and emissions estimation
We developed a field-based approach to estimate total
post-harvest rice residues including straw and stubble
left in the field for burning. Using two-stage cluster
sampling with the validated rice map generated from
Sentinel-1A time-series imagery (figures 3(a) and (b))
we divided the study area into 5 km equal-area grid
cells and randomly selected 13 rice-containing cells
where four randomly selected machine-harvested
fields were sampled in each cell for a total of 52 field
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Figure 3. (a) A multitemporal subset of our processed SAR data. Areas of purple, pink, and green are indicative of paddy rice; (b) Our
SAR classified rice map was used to delineate rice and non-rice grid cells for field sampling.
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samples (C.I.= 9.6%, C.L.= 95%) (Sutherland 2006)
(figure 3(b)). Within each harvested field, we
measured the total straw and stubble weight in four
randomly selected 0.5m× 0.5m quadrats using a
Salter-Brecknell digital scale, bag with known weight,
and an Extech MO290 moisture device for relative
moisture content. Stubble was cut at the base before
weighing, and the weight of the bag was subtracted
from the measurements. We also collected ancillary
data including field length, width, and number of
straw rows. We estimated the amount of straw per
square meter for a given field based on the following
(equation (1)):

Qrs ¼
ðRSw � ð1� RSmÞÞ � SR � Rl

A
ð1Þ

whereQrs is the quantity of dry rice straw in kgm−2 for
a given field, RSw is the wet rice straw weight per linear
meter of a straw row averaged from the quadrat
measurements, RSm is the average field-measured
relative moisture content, SR is the number of straw
rows in the field, Rl is the length of the straw rows in
meters, and A is the field area in m2.

We estimated the amount of rice stubble for a
given field based on a similar (equation (2)):

Qsr ¼ SRw � ð1� SRmÞ � A ð2Þ

where Qsr is the quantity of dry rice stubble in kg for a
given field, SRw is the average weight of rice stubble
per m2 from the quadrat measurements, SRm is the
average measured rice stubble relative moisture
content, and A is the area of the field measured in
m2. The resulting Qsr yields a maximum rice stubble
fuel-loading factor in kg. We also measured the
4

number of plants in each quadrat for a measure of rice
planting density.

Thus, we have three separate fuel-loading factors:
straw, stubble, and total post-harvest biomass factors.
Using these fuel-loading factors we estimated rice
residue burning emissions based on three scenarios (1)
all rice straw is burned; (2) all rice straw and stubble
are burned; (3) most-likely amount burned based on
the previously-mentioned surveys from the literature
and our field experience.We compared these estimates
to the typical approach used in most studies which
relies on a residue-to-product ratio from government
data on crop production. In addition, we also
compared maximum potential burning estimates
derived using fuel-loading factors from two smaller-
scale field studies in villages in Thailand, and factors
from another small-scale study in Can Tho, Vietnam
located in the Mekong Delta.

We calculated the maximum potential emissions
from rice residue burning based on the following
(equation (3)):

Ea ¼ A � FL � EFa � PB � CF ð3Þ

where Ea is the maximum potential rice residue
burning emissions for a given pollutant in gigagrams,
A is the paddy rice planted area in hectares based on
the Vietnam government statistics, FL is the fuel-
loading factor or that estimated from crop production
data in kg ha−1, EFa is the emissions factor for a given
pollutant species in g kg−1, PB is the proportion of
residue subjected to burning (from 0%–100%, i.e.
residue left in the field to be burned), and CF is the
combustion factor indicating the burn completeness
(from 0%–100%) for the residues subjected to
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burning. For all scenarios estimating emissions in
Hanoi Province, we selected a combustion factor
of 0.8 (Aalde et al 2006) as the best available factor
representative of croplands in general, the rice area
in Hanoi Province based on Vietnam government
statistics of 200.8 ha (Vietnam Government 2015), the
emission factors for each species: CO 102 g kg−1

(±33 g kg−1), CO2 1585 g kg−1 (±100 g kg−1), and
PM2.5 6.26 g kg−1 (±2.36 g kg−1) (Akagi et al 2011),
the proportion burned as 100% for the maximum
emissions scenario, and 50% straw and 10% stubble
for the most-likely scenario based on the literature and
our field experience (Tran et al 2014, Nguyen 2012,
Duong and Yoshiro 2015). To estimate the fuel-
loading factor for the production-statistics based
scenario, we used a regionally-estimated residue-to-
product ratio for rice straw of 0.75 (Gadde et al 2009b)
combined with the production data from the
government statistics (Vietnam Government 2015)
resulting in a fuel-loading factor of 3803 kg ha−1. For
the other smaller-scale studies, we used their fuel-
loading factors of 3600 kg ha−1 (Kanokkanjana et al
2011), 5800 kg ha−1 (Oanh et al 2011), and 3470 kg
ha−1 (Hong Van et al 2014). The latter factor was
derived by averaging the reported seasonal fuel-
loading factors of 3500 kg ha−1 (spring–summer),
4300 kg ha−1 (winter–spring), and 2600 kg ha−1 (sum-
mer–autumn). For each scenario, all factors were held
constant except for the fuel-loading factor and
proportion burned.

As our study measurements are representative of a
typical double-cropped paddy rice landscape and
results from (Hong Van et al 2014) cover triple
cropping in Mekong Delta Vietnam, we up-scaled the
results from both studies to estimate contribution of
PM2.5 emissions from rice residue burning for the
entire Vietnam. The rice planted area for 2008 was
obtained from Vietnam Statistics Office (Vietnam
2015). We applied the triple cropping factors to the
Mekong Delta rice area, and our study’s fuel-loading
factors to the rest of the rice area in Vietnam. We
compared the resulting rice burning emissions
estimates with an existing emissions inventory
(regional emission inventory in Asia (REAS)) for
the latest available year, 2008 (Kurokawa et al 2013).
We calculated Vietnam’s total emissions (equation (3))
for different scenarios including the maximum
potential emissions (all residue burned), and the
most-likely scenarios of straw and stubble burning
based on the literature and our field experience
suggesting approximately 50% of straw burned and
10% of stubble burned (Nguyen 2012, Hong Van et al
2014, Tran et al 2014, Duong and Yoshiro 2015,
Oritate et al 2015).

While comparison of rice residue burning
emissions with REAS yields insight into the relative
contribution to total PM2.5 emissions, this does not
address how our field-derived estimates compare
with available satellite-derived estimates. The latest
5

available GFED version 4.1s at 0.25 × 0.25 degree was
used to derive total biomass burning emissions for
Vietnam, GFED also includes the portion contributed
from agricultural waste burning (van der Werf et al
2010) based on MODIS burned area (Giglio et al
2013), and supplemented by small fire burned area
(Randerson et al 2012). We calculated the emissions
for the same year as REAS (2008) using the monthly
datasets, and the same emission factors as our field
study to maintain consistency. Accordingly, the
emissions were derived using the amount of dry
matter burned (DM) from GFED and multiplied with
the aforementioned emission factors and summed for
entire Vietnam.

We also evaluated the accuracy of our field-based
straw measurements in eight additional randomly
selected fields within Hanoi Province. First, following
the same procedure as the initial field data collection
we calculated the expected dry straw weight. To
calculate the observed dry straw weight, we collected
all rice straw within the field and weighed it. After
factoring in the weight of the measuring bags and the
average moisture content we arrived at an observed
dry straw weight. We then compared this to our
expected dry rice straw weight (kgm−2) estimated
from our field calculation (equation (1)). Using these
observed and expected rice straw values we calculate
an area-weighted root mean square error (RMSE). We
also generated a residual plot to check for systematic
errors. As the stubble measurement is more straight-
forward, we assumed the same accuracy as the straw
measurement.

In addition to fuel-loading factor error, we also
calculated the resulting emissions error rates through
the simplified error propagation equations using
reported error rates for emission factors, and fuel-
loading factors while also accounting for constants
with unknown error such as rice area (Harvard 2013).
Results

Fuel-loading factors
Results on field-level distribution of values for rice
straw, stubble, total post-harvest biomass, straw
moisture content, stubble moisture content, and field
area are shown in figure (4). The average fuel-loading
factors as measured were: rice straw 0.27 kgm−2, rice
stubble 0.61 kgm−2, and total post-harvest residue
0.88 kgm−2; table (1) lists more details including
standard deviation and moisture content. The range of
standard deviations suggests some spatial variability
for the fuel-loading factors and higher ranges for the
moisture content attributed to recent rain events. We
also found an average field size of 790m2 (s = 625 m2),
and average number of rice plants of 35.1 per m2

(s = 5.2). Based on the Vietnam government’s rice
planted area data for 2015 and our fuel-loading
factor, we estimated total straw production for Hanoi
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Table 1. Field-derived fuel-loading factors for rice straw, rice stubble, and combined total post-harvest rice residues. Uncertainty: rice
straw (±0.033), rice stubble (±0.076), total residue (±0.083) kgm−2, moisture content (±3%).

Rice Straw Rice Stubble Total Residue

Average Dry Fuel Load 0.27 kg m−2 0.61 kg m−2 0.88 kg m−2

St. Dev. Dry Fuel Load 0.08 kg m−2 0.16 kg m−2 0.19 kg m−2

Average Fuel Moisture Content 13.2% 51.5% 32.4%

St. Dev. Fuel Moisture Content 7.3% 5.7% 6.5%
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Province at 433.7Ggof dry rice straw.We also estimated
total dry rice stubble as 979.9Gg, and total post-harvest
rice biomass as 1413.6Gg of residue.

We observed strong correlations between different
field parameters (figures 5(a) and (d)) i.e. field area
and estimated rice stubble (r2= 0.84), field area and
estimated rice straw (r2= 0.88), field area and total
post-harvest biomass (r2= 0.89) and number of straw
rows and field width (r2= 0.92). We also conducted an
accuracy assessment of the field-estimated fuel-
loading factors. Based on our field measurements of
rice straw, we found an RMSE of 0.041 kgm−2 between
the observed and expected values (equation (1)). After
also factoring in error propagation from the moisture
content device (3% lab-estimated) and scale (0.4%)
we arrived at our final fuel-loading factor estimates;
dry rice straw is estimated to be 0.27 kgm−2 (±0.033),
dry rice stubble at 0.61 kgm−2 (±0.076), and total
post-harvest biomass at 0.88 kgm−2 (±0.083). Further,
for our fuel-loading factors we observed a moderate
relationship between the observed and expected rice
straw values (r2= 0.63, p < 0.05) (figure 6) suggesting
slight overestimation in our expected rice straw values
attributed to field variability including occasional
degraded/cut stalk included in measurements.

As compared with the rice straw amount derived
from the crop production statistics, our rice straw
factor is slightly lower (3803 kg ha−1 vs. 2700 kg ha−1).
However, when incorporating stubble, we account for
a total biomass estimate which is not calculated in the
6

production statistics method. We note other studies
outside Vietnam found higher fuel-loading factors
including 3600 kg ha−1 and 5800 kg ha−1 in two
separate studies in Thailand (Kanokkanjana et al 2011,
Oanh et al 2011), while the other study in the Mekong
Delta, Vietnam had a lower average of 3470 kg ha−1

(Hong Van et al 2014). This wide variation suggests
region specific fuel-loading factors are an important
base for emissions estimates.

Emissions estimates
In Hanoi Province, we used our resulting fuel-loading
estimates for quantifying rice residue emissions. We
used the cropped area data, combustion factor, and
emission factors for CO, CO2, and PM2.5 as described
above. We present the emissions for each scenario
including: maximum emissions from typical produc-
tion-statistics, maximum emissions using fuel-load
factors from field-based study in Can Tho, Vietnam
(Hong Van et al 2014), and maximum potential and
most-likely emissions using our fuel-load factors of
rice straw, and total post-harvest biomass. We also
estimated maximum potential emissions using fuel-
load factors from two village-level studies in Thailand
(Kanokkanjana et al 2011, Oanh et al 2011) using their
respective rice straw fuel-loading factors of 3600 kg
ha−1 and 5800 kg ha−1. Our results suggest maximum
emissions ranges for CO (44.24–144.19Gg), CO2

(687–2240Gg), and PM2.5 (2.72–8.85Gg) in table (2).
Based on averaging the residue burning survey data
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Figure 5. Plots of our field-measured rice residue parameters highlighting a strong relationship between field area and (a) rice stubble;
(b) rice straw; (c) total post-harvest rice residue; as well as (d) field width and number of rice straw rows per field.
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and from our field experience, the most likely
proportion burned is 50% straw and 10% stubble.
We find the most-likely combined straw and
stubble emissions for Hanoi as CO (36.54Gg), CO2

(567.79Gg), and PM2.5 (2.24Gg). The individual
scenario results are presented in table 2 including the
error rates for each value in parentheses.

We highlight notable variation between the
different scenarios. While all rice stubble is not
necessarily burned in the study area, in other regions
such as India both the straw and stubble are routinely
7

burned (Gadde et al 2009, Gupta et al 2001, Vadrevu
et al 2015). However, many studies estimating
emissions from rice residue burning rely on resi-
due-to-product ratios. Without accounting for rice
stubble that is actually burnt on field, these and other
studies may be underestimating emissions by a factor
of about 2.3 (table 2).

We also estimated total rice residue burning
emissions for the entire Vietnam during 2008 and
compared with the existing emission inventory
(Kurokawa et al 2013). Based on the most-likely



Table 2. Potential emissions for Hanoi Province, Vietnam using fuel-loading factors from the literature and our study. Gg =
gigagrams. Maximum potential emissions assume 100% burned for first five listed scenarios, while the bottom three scenarios are the
most-likely emissions based on survey and field data on residue proportion subject to burning.

Scenario Fuel load

(kg ha−1)

PM2.5 Emissions

(Gg)

CO Emissions

(Gg)

CO2 Emissions

(Gg)

Crop Production Stats-based FL 3803 3.824 62.31 968.30

Can Tho, Vietnam straw FL (Hong Van et al 2014) 3470 (±830) 3.489 (±7.759) 56.86 (±113.93) 883.51 (±10884)

Can Tho, Vietnam FL (Straw & Stubble) 7330 (±1730) 7.371 (±16.327) 120.10 (±239.53) 1866.32 (±22706)

This study (straw only) 2700 (±330) 2.715 (±5.359) 44.24 (±76.20) 687.46 (±4709)

This study (straw and stubble) 8800 (±830) 8.849 (±17.126) 144.19 (±241.99) 2240.61 (±12662)

This study, most-likely emissions (straw) 2700 (±330) 1.629 (±3.215) 26.54 (±45.72) 412.48 (±2825)

This study, most-likely emissions (stubble) 6100 (±760) 0.613 (±1.219) 10.00 (±17.38) 155.31 (±1126)

This study, most-likely emissions (straw and stubble) — 2.243 (±5.309) 36.54 (±75.02) 567.79 (±3925)
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emissions scenario (10% stubble, 50% straw burned),
75.98 Gg of PM2.5 are emitted from rice residue
burning in Vietnam with stubble accounting for
18.36 Gg and straw 57.62 Gg. The total rice residue
burning accounts for 12.8% of Vietnam’s total PM2.5

emissions and is the 2nd highest PM2.5 combustion
source after fuelwood burning. However, if all rice
residue is burned, rice emissions could result in up to
36.49% of total PM2.5 emissions. We also add our
emissions estimates to the original total from the
emissions inventory of 519.81Gg (Kurokawa et al
2013) and arrive at new maximum of 818.50Gg
and most-likely total PM2.5 emissions of 595.79 Gg
for the entire Vietnam. Table (3) contains the factors
used for estimation, and the individual scenario
results including error estimates for residue burning
emissions.

GFED-derived PM2.5 total biomass burning
emissions suggested 42.56Gg (±16.0Gg) with
5.62Gg (±2.1 Gg) attributed to agricultural waste
burning for the entire Vietnam. Accordingly, when
agricultural waste burning emissions are compared
with our field-derived residue burning emission
estimates this suggests GFED underestimation by a
factor of 13.5. Even if all biomass burning emissions
(42.56Gg) were attributed to residue burning, this
would still be less than our field-derived estimates by a
factor of 1.8. We also highlight the region-level
amount of biomass burning, amount of crop residue
burning, and associated emissions in table (4)
suggesting the highest fraction of crop waste burning
to occur in the Mekong River Delta and Red River
Delta where rice is the predominant land cover. The
spatial variation of biomass burning and emission
estimates is highlighted in figure (7).

SAR data and biomass relationship
To evaluate the relationship of SAR backscatter with
rice straw and total post-harvest biomass, we selected
a single Sentinel-1A image just prior to harvest for
the Hanoi Province. We found a moderately-weak
relationship between the SAR backscatter and field-
measured rice straw (r2= 0.323, p < 0.01), while a
moderate relationship was observed with the total
8

rice biomass (r2= 0.560, p < 0.01) (figures 8(a) and
(b)). We observed a negative, linear relationship
suggesting fields with lower backscatter values prior
to harvest have more post-harvest biomass. The
relationship is promising, however it needs more
refinement in order to be useful for estimating rice
biomass and rice straw production prior to harvest.
Other studies have found good results using SAR to
estimate different rice field properties, biomass, or
yield (Lam-Dao et al 2009, McNairn and Brisco 2004,
Ribbes and Le Toan 1999, Wiseman et al 2014,
Paloscia et al 1999, Bouvet et al 2014, Erten et al 2016,
Inoue et al 2014, Satalino et al 2015).
Discussion

In this study, we focused on measuring residue
amounts from machine-harvested fields. With the
increasing urbanization, infrastructure, wealth, and
interconnectedness, we anticipate most fields to switch
from hand-harvesting to machine-harvesting (Nguyen
et al 2016). Hand-harvested fields are typically cut
slightly higher from the ground, thus they have more
stubble and less straw to potentially burn. Thus as
machine-harvested fields become increasingly preva-
lent, residue burning emissions will be exacerbated, as
it is more difficult to collect straw after machine
harvest (Nguyen et al 2016). Some studies ignore the
stubble that is left on the ground, thus under-
estimating total residue and resulting emissions.
However, as undertaken in this study we quantify
fuel-loading factors for straw and stubble which
provides an improved assessment of rice residue
burning emissions, as other studies often ignore the
stubble factor. Our estimates incorporating fuel-
loading factors for rice straw, rice stubble, and total
rice biomass were useful in refining emissions in
the Hanoi Province and the entirety of Vietnam.
The results can be extended to similar small-holder
rice production lands. We note that farmers may burn
rice straw either in a pile or in an open-manner
including the stubble and straw. Thus, in addition to
variable fuel-loads from different harvest methods, the



Table 3. Potential emissions from rice residue burning for Vietnam. Comparison with the REAS emission inventory (Kurokawa et al 2013) and contribution of rice residues to total PM2.5 emissions are also shown. Error
estimates for emissions are in parentheses. MRD = Mekong River Delta.

Scenario Rice area

Mekong

Delta

(ha)

Rice area

rest of

Vietnam

(ha)

Fuel load

rest of

Vietnam

(kg ha−1)

Fuel load

Mekong

Delta

(kg ha−1)

Combustion

factor

Proportion

burned

PM2.5

EF

g kg−1

Rice

burned

MRD

(Gg)

Rice

burned rest

of Vietnam

(Gg)

Rice residue

PM2.5 (Gg)

Emissions

inventory

total PM2.5

(Gg)

New total

emissions

inventory

PM2.5 (Gg)

Percent of

total emissions

from rice

residue

Entirety of Vietnam: Maximum potential emissions

(100% straw and stubble burned)

3858900 3563300 8800 7330 0.8 1 6.26 22628.59 25086.72 298.70 (±87.72) 519.81 818.50 36.49

Entirety of Vietnam: Most likely Scenario (50% straw) 3858900 3563300 2700 3470 0.8 0.5 6.26 5356.15 3848.36 57.62 (±17.76) 519.81 577.43 9.98

Entirety of Vietnam: Most likely Scenario (10% stubble) 3858900 3563300 6100 3867 0.8 0.1 6.26 1193.79 1738.89 18.36 (±5.22) 519.81 538.17 3.41

Entirety of Vietnam: Most likely Scenario (above two

combined)

– – – – – – – 6549.94 5587.25 75.98 (±22.97) 519.81 595.79 13.39
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Table 4. GFED-derived region-wise total biomass burned, total biomass burning PM2.5 emissions, crop waste amount burned (derived
from GFED subset), crop waste burning PM2.5 emissions, as well as the percentage of crop waste burning out of total biomass
burning.

Region Total biomass

burned (Gg)

Total biomass burning

PM2.5 (Gg)

Crop waste

burned (Gg)

Crop waste burning

PM2.5 (Gg)

Contribution from crop

waste burning

Central

Highlands

3215.18 20.13 258.16 1.62 8.0%

Mekong River

Delta

384.43 2.41 277.01 1.73 72.1%

North Central

Coast

438.20 2.74 41.54 0.26 9.5%

North East 423.84 2.65 26.60 0.17 6.3%

North West 925.75 5.80 86.21 0.54 9.3%

Red River

Delta

29.52 0.18 20.40 0.13 69.1%

South Central

Coast

595.82 3.73 91.87 0.57 15.4%

South East 785.76 4.92 96.54 0.60 12.3%

Total 6798.50 42.56 898.33 5.62 13.2%

Biomass burned

Biomass Burning PM2.5

Gg Gg

GgGg

Crop waste burned

Crop waste PM2.5

500 500

500500

Kilometers

Kilometers Kilometers

KilometersN

N N

N

High : 253.85

High : 1.589

Low : 0 Low : 0

Low : 0Low : 0

High : 40.63

High : 0.254

Figure 7. GFED-based spatial variation with region boundaries overlaid for: total biomass burned, crop waste amount burned, and
resulting PM2.5 emissions from the same.
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orientation of the rice straw and piling might play a role
in the combustion, moisture content, emissions factor,
and resulting emissions impact; some of which have
been explored, but further quantification is needed
10
(Arai et al 2015, Heinsch et al 2016). Understanding the
variation in residuemanagementpractices andhow they
impact emissions, may provide useful additional
information on emissions mitigation.
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Although the total estimated rice burning emis-
sions may be relatively small as compared to other
combustion and non-combustion sources (Kurokawa
et al 2013), rice residue burning in Hanoi is practiced
two times per year, amplifying and temporally-
concentrating the impact from burning. Accordingly,
the air quality in Hanoi is frequently degraded as seen
by local haze, and a high air quality index (Nguyen
et al 2015). Thus, emissions mitigation from rice
residue burning is one critical aspect for improving air
quality and human health.

Uncertainty with regard to different aspects of fuel-
loading and emissions are important to characterize.
Further, due to limited availability of data we highlight
some future needs which could improve upon the rice
stubble and straw burning emissions estimates.
Accordingly, improvements could be made by: using
separate combustion factors and emission factors for
straw and stubble, deriving improved emissions factors
specific to rice in both the Red River Delta andMekong
River Delta, improved mapped rice areal estimates,
region/crop specific combustion factors for straw and
stubble, and machine versus hand-harvested fuel-
loading factor comparisons. We note the government
estimates of rice land area for Hanoi are different:
government statistics (201 000 ha) versus mapped area
(220 000 ha). Accordingly, these variations could have
significant impact on resulting emissions estimates,
especially once aggregating results to the national scale
and accounting for both seasons.

Notably low GFED emission estimates could be
attributed to a variety of factors such as prevalent
cloud cover impacting satellite observations (Wilson
and Walter 2016), small size of agricultural fires in
Vietnam, ephemeral agricultural fires, active field
management, or burning after MODIS overpass time.
All of these factors may lead to satellite-based
underestimation of fires and resulting emissions
regardless of the fire detection algorithm strength in
GFED or any other emission database. We further note
that the GFED agricultural waste burning data
includes emissions from all agricultural sources, yet
the emissions are still notably lower than rice residue
11
burning alone. However, these results are presented
with the caveat that the field-based emission estimates
could be improved through refinements mentioned in
the limitations section. We also note for GFED
emissions error rates that emission factor error is
included, but not burned area error.
Conclusion

The first part of our study characterized total post-
harvest rice residues for the small-holder rice-
dominated province of Hanoi, Vietnam. From the
field, we developed separate straw, stubble, and total
biomass fuel-loading factors representative of a typical
double-cropped rice region of Vietnam. Our results on
rice residues suggested relatively higher total post-
harvest residue factor than the earlier studies. We used
Sentinel-1 C-band SAR data for field sampling of
residues and to infer the relationship between post-
harvest biomass and SAR. We found a moderately
weak relationship between the SAR backscatter and
field-measured rice straw, while a moderate relation-
ship was observed with the total rice biomass. These
results are promising, however, more advanced
modelling might be necessary for forecasting the
post-harvest biomass using SAR data. We note that not
all field data was available for SAR modeling due to
GPS or geolocation issues.

Using field data from multiple studies, we then
estimate residue burning emissions. We found that
rice residue burning accounts for about ∼13% of
total PM2.5 emissions in Vietnam, and is the second
largest PM2.5 source after fuelwood burning. We
compared GFED-derived biomass burning emissions
and crop waste burning emissions with our field-
derived residue burning emissions. We found a likely
notable underestimation by GFED for Vietnam by a
factor of over 13. These results suggest a need for
improved satellite-derived estimates. Further, emis-
sions mitigation in this sector may be more critical
than previously known and is increasingly important
for health and air quality concerns in Hanoi, Vietnam.
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