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 29 

Abstract 30 

The assimilation of remotely sensed soil moisture information into a land surface model 31 

has been shown in past studies to contribute accuracy to the simulated hydrological variables.  32 

Remotely sensed data, however, can also be used to improve the model itself through the 33 

calibration of the model’s parameters, and this can also increase the accuracy of model products.  34 

Here, data provided by the Soil Moisture Active/Passive (SMAP) satellite mission are applied to 35 

the land surface component of the NASA GEOS Earth system model using both data 36 

assimilation and model calibration in order to quantify the relative degrees to which each 37 

strategy improves the estimation of near-surface soil moisture and streamflow.  The two 38 

approaches show significant complementarity in their ability to extract useful information from 39 

the SMAP data record.  Data assimilation reduces the ubRMSE (the RMSE after removing the 40 

long-term bias) of soil moisture estimates and improves the timing of streamflow variations, 41 

whereas model calibration reduces the model biases in both soil moisture and streamflow.  While 42 

both approaches lead to an improved timing of simulated soil moisture, these contributions are 43 

largely independent; joint use of both approaches provides the highest soil moisture simulation 44 

accuracy. 45 

 46 

 47 

  48 
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1. Introduction 49 

One of the flagship science data products of the National Aeronautics and Space 50 

Administration’s (NASA’s) Soil Moisture Active Passive (SMAP) satellite mission (Entekhabi et 51 

al. 2010a) is an extensive set of estimates (retrievals) of moisture content in the top several 52 

centimeters of soil.  These retrievals, provided on a global ~36km grid with a repeat time of 3 53 

days or less, are derived from L-band measurements taken with a passive radiometer and feature 54 

significantly reduced errors from the radiofrequency interference that can plague such datasets 55 

(Piepmeier et al, 2014, 2017; Kerr et al. 2016).  Overall SMAP soil moisture retrieval accuracy 56 

has been shown to be quite high (Chan et al. 2016a, 2018). 57 

A unique feature of the core SMAP mission is the publication of an enhanced Level-4 58 

Soil Moisture (L4_SM) product through the assimilation of the observed brightness temperatures 59 

into a land surface model (LSM).  Through the assimilation process (Reichle et al. 2017a), the 60 

LSM combines the SMAP brightness temperatures with observations-based meteorological 61 

forcing to produce a soil moisture product that is superior to an “open loop” LSM-based product, 62 

i.e., the LSM product generated without the assimilation of SMAP data.  The development of the 63 

SMAP L4_SM product is based on an extensive body of research into soil moisture data 64 

assimilation (Reichle et al. 2002a, Reichle 2008, Kumar et al. 2008, Drusch et al. 2009, Draper et 65 

al. 2012, de Rosnay et al. 2013, Carrera et al. 2015, De Lannoy and Reichle 2016ab,).  The 66 

L4_SM product has already been evaluated successfully against a host of in-situ soil moisture 67 

observations (Reichle et al. 2017a) and in the context of key assimilation diagnostics (Reichle et 68 

al. 2017b).  69 

SMAP data, however, can potentially interface with an LSM in another useful way: 70 

through the calibration of model parameters.  Calibration in this context involves identifying the 71 
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values of targeted parameters (typically, parameters that cannot be easily quantified with direct 72 

measurements) that lead, in a model simulation, to the most accurate reproduction of the 73 

satellite-measured variable.  Using similar L-band soil moisture retrievals from the Soil Moisture 74 

and Ocean Salinity mission (Kerr et al. 2010), Shellito et al. (2016) calibrated an LSM’s soil 75 

hydraulic properties, improving its simulation of soil moisture; their study calls to mind earlier 76 

calibrations of LSM soil and vegetation parameters using satellite-based surface temperatures 77 

(e.g., Crow et al. 2003, Gutmann and Small 2010, Corbari and Mancini 2014). 78 

L-band soil moisture retrievals indeed reveal important timescales of near-surface soil 79 

moisture dynamics (McColl et al. 2017) – timescales that could serve as targets for a model 80 

calibration exercise.  To demonstrate the potential of calibration more clearly, we present here an 81 

example taken from the analysis performed later in this paper.  Consider the time series plots 82 

shown in Figure 1, obtained for a grid cell in the Little Washita watershed of southwestern 83 

Oklahoma (O’Neill et al. 2016) during the period May – September 2016.  Figure 1a shows the 84 

gauge-based precipitation rates recorded there, and Figure 1b shows the contemporaneous SMAP 85 

Level-2 (non-assimilated) soil moisture retrievals.  The retrieved soil moisture increases as 86 

expected during precipitation events (e.g., on day 164), and it subsequently dries down with a 87 

time scale of a few days.   Now consider the soil moisture time series in Figure 1c, which was 88 

produced at the site by an LSM without the benefit of data assimilation but with the precipitation 89 

information contained in Figure 1a.  The LSM used here is the Catchment LSM of the NASA 90 

Global Earth Observing System (GEOS) – the LSM underlying the L4_SM product, as discussed 91 

in Section 2b.  The modeled soil moisture also increases as desired during precipitation events, 92 

but the time scale of drydown is noticeably longer – the drydown occurs over a span of 1-2 93 

weeks.  In this context the model does not behave like nature, at least nature as represented by 94 
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SMAP.  This particular facet of Catchment LSM behavior was in fact heretofore never carefully 95 

examined.   96 

Now consider the soil moisture time series in Figure 1d, which was produced by the same 97 

LSM after calibrating a particular parameter.  (Details are provided below in Section 2c.)  While 98 

the model results still differ somewhat from the observations in terms of absolute magnitude, the 99 

timescale of the drydown is more in line with that captured by the SMAP retrievals.  We thus 100 

might expect the calibrated model results in Figure 1d to be more realistic than the uncalibrated 101 

results in Figure 1c – they might agree better with independent in-situ soil moisture observations.  102 

Data assimilation and model calibration are in fact expected to improve soil moisture 103 

estimation in different ways.   Model calibration specifically addresses deficiencies in the 104 

model’s representations of physical processes, improvements that can manifest themselves at 105 

every simulation time step.  Data assimilation corrects for such deficiencies “after the fact” and 106 

only at selected times and locations, depending on the availability of the satellite data; however, 107 

unlike calibration, data assimilation also corrects for potentially important deficiencies in the 108 

meteorological forcing.  To some extent the contributions of the two approaches to improved soil 109 

moisture estimation are complementary.  They may indeed build on each other, so that applying 110 

both approaches together may lead to soil moisture estimates of unprecedented accuracy. 111 

We explore this potential complementarity in the present paper.  We use the Catchment 112 

LSM to produce four sets of soil moisture estimates: (i) open-loop estimates with the default 113 

version of the LSM, (ii) estimates obtained through the assimilation of SMAP data into the 114 

default LSM, (iii) open-loop estimates obtained after the LSM has been calibrated with SMAP 115 

data, and (iv) estimates obtained through the assimilation of SMAP data into the calibrated LSM.  116 

By evaluating the relative accuracies of the four sets of estimates against independent in-situ 117 
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data, we can isolate the contributions of data assimilation and model calibration to hydrological 118 

estimation as well as quantify their joint impact.   119 

Section 2 below describes data used in the analysis as well as the LSM, the calibration 120 

procedure, and the data assimilation system.  Section 3 presents the results, focusing on the 121 

accuracy of the simulated near-surface soil moisture and streamflow.  Section 4 provides a 122 

summary and discussion. 123 

 124 

2. Data and Models Used 125 

 126 

a. SMAP Soil Moisture and Brightness Temperature Data 127 

Different components of the SMAP data suite are used in this study.   For the calibration 128 

exercise (Section 2c), we use Version 4 of the SMAP Level-2 soil moisture retrievals (O’Neill et 129 

al. 2016), a set of retrievals derived from L-band radiometer measurements that represent 130 

volumetric soil moisture in roughly the top 5 cm of soil.  We use the data associated with the 131 

descending overpasses, which correspond to a 6AM local collection time.  The data are provided 132 

on the 36-km Equal Area Scalable Earth (EASE) grid (Brodzik et al. 2012), with retrieval values 133 

provided at a given grid cell at least once every three days.  We achieve extensive spatial and 134 

temporal coverage of soil moisture data for our analysis by utilizing the retrievals flagged as 135 

having “uncertain quality” along with those flagged as having “recommended quality”. 136 

For the data assimilation exercise (Section 2d), we use Version 3 of the 36-km resolution 137 

SMAP Level-1C brightness temperature observations (Chan et al. 2016b).  The assimilated 138 

SMAP observations include horizontal-polarization and vertical-polarization brightness 139 
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temperatures from ascending and descending half-orbits (after first averaging over fore- and aft-140 

looking data). 141 

 142 

b. Land Surface Modeling System 143 

The LSM used for all simulations is the Catchment LSM (Koster et al. 2000, Ducharne et 144 

al. 2000), the LSM underlying the MERRA-2 reanalysis (Gelaro et al. 2017, Reichle et al. 145 

2017c) and the SMAP L4_SM product (Reichle et al. 2017a).  It solves the land surface energy 146 

and water balance at every simulation time step, partitioning precipitation inputs into runoff, 147 

evapotranspiration, and changes in water storage, and partitioning radiative energy inputs into 148 

latent heat, sensible heat, and changes in energy storage.  A key feature of the LSM is its explicit 149 

treatment of spatial soil moisture heterogeneity (as determined from topographic conditions) and 150 

its effects on the surface water fluxes – evapotranspiration and runoff generation, for example, 151 

both occur more efficiently in the (dynamically varying) sub-catchment areas characterized by 152 

wetter conditions. 153 

The Catchment LSM follows a prognostic soil water variable representing the top 5 cm of 154 

soil, and the average soil moisture in the top 5 cm is a standard simulation output.   This depth is 155 

consistent with the ostensible sensing depth of the SMAP radiometer (section 2a).  Also 156 

standardly produced are surface runoff and baseflow fluxes, the sum of which are averaged here 157 

in space and time for comparison against streamflow measurements. 158 

 159 

c. Land Surface Model Calibration Strategy 160 

While the Catchment LSM’s performance has been evaluated in numerous venues (e.g., 161 

Bowling et al. 2003, Boone et al. 2004, Reichle et al. 2011), its treatment of near-surface 162 
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moisture and how it relates to the root zone has never been properly calibrated.  Indeed, one 163 

study (Kumar et al. 2009) suggests that the connection between the near-surface and deeper soil 164 

moisture in the model may be too strong – it is, in any case, stronger than that seen in some other 165 

models.  This particular aspect of the LSM can thus be considered ripe for calibration.  166 

The Catchment LSM’s formulation of near-surface soil moisture dynamics uses two 167 

independent processes to replenish drying soil via recharge from below (see Koster et al. [2000] 168 

for details).  First, replenishment occurs through changes in the equilibrium moisture state of the 169 

catchment; as this equilibrium water increases, some of the increase is deposited in the near-170 

surface soil.  Second, the upward flow of soil moisture between the root zone and the near-171 

surface soil in non-equilibrium situations is determined through parameterized fits of detailed 172 

Richards equation calculations – in effect, as the near-surface soil dries, the increasing vertical 173 

gradient in matric potential overcomes gravity, allowing upward moisture flow. 174 

 Of relevance to the present study is the recent inclusion of a time-invariant parameter, α, 175 

into the formulation of the second process.  In the new version of the formulation, any upward 176 

moisture flux in non-equilibrium situations is multiplied by α, where α lies between 0 and 1.  The 177 

imposed reduction in upward flow can be considered a reflection of the fact that near-surface 178 

soils in nature are more heterogeneous than those tested in laboratories, making upward flow 179 

more difficult than laboratory-established soil parameters would suggest.  This interpretation, 180 

however, is rather loose, since the equilibrium profile of soil moisture is not similarly adjusted; α 181 

is thus perhaps best considered here to be a simple tuning parameter.  The value of α turns out to 182 

have a first order impact on the character of the simulated soil moisture, as illustrated earlier in 183 

Figure 1d.  At this grid cell, replacing α’s default value of 1 with a value of 0.01 produced a 184 
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better match (in terms of temporal variability and the speed of drydown) of simulated soil 185 

moisture with the SMAP data. 186 

In a calibration exercise, a number of open-loop (land model only) simulations, each 187 

utilizing a different value for α, generated soil moisture time series for 2015-2016 across the 188 

continental US and portions of Canada and Mexico.  This region was chosen for study because it 189 

offers two key advantages: (i) high quality precipitation measurements based on a dense rain 190 

gauge network, and (ii) a broad range of climates, with wetter conditions in the east and much 191 

drier conditions in the west.  The forcing data applied in these simulations were derived from 192 

atmospheric analysis, with the analysis-generated precipitation corrected by gauge observations; 193 

the forcing data essentially match those used in the generation of the Version 2 L4_SM product 194 

for 2015-2017 and those used in the production of the corresponding 2000-2014 model-only 195 

simulation for the SMAP project (Nature Run v4; Reichle et al. 2017a). 196 

At a given SMAP grid cell, and for a given simulation, we evaluated the agreement 197 

(using the temporal correlation coefficient, R) between the local time series of SMAP retrievals 198 

and the model-simulated surface soil moisture time series.   We then repeated the process with 199 

data at that grid cell from each of the other simulations.  By comparing the different R values, we 200 

were able to determine for the grid cell the single value of α that allows the best reproduction of 201 

the behavior of the SMAP retrievals.  The spatial distribution of these optimized α values is 202 

shown in Figure 2.  The optimal values clearly vary in space, with smaller values in the east.  203 

Notice that the default value of 1 works best at only a handful of locations.  204 

 205 

d. Data Assimilation System 206 
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           The data assimilation system used in this study is essentially the same as that used to 207 

generate the SMAP L4_SM product (Reichle et al. 2017a,b). It uses an ensemble Kalman filter 208 

(Evensen, 2003) and assimilates horizontally and vertically polarized SMAP brightness 209 

temperature observations from the Version 3 SMAP L1C_TB product (Chan et al. 2016b) from 210 

both ascending and descending half-orbits.  The observed brightness temperatures are 211 

differenced with corresponding brightness temperatures generated from the Catchment model’s 212 

soil moisture and temperature estimates, which are calculated using a zero-order “tau-omega” 213 

radiative transfer model (De Lannoy et al. 2013).  The brightness temperature differences are 214 

then inverted into corrections of the model forecast soil moistures and surface temperatures 215 

based on the modeled error covariances, which are diagnosed from the ensemble.  The analysis is 216 

bias-corrected by a rescaling – prior to assimilation – of the SMAP brightness temperature 217 

observations into the spatially and seasonally varying climatology of the modeled brightness 218 

temperature.  Reichle et al. (2017a, see their section 2d) provide a detailed description of the 219 

different facets of the data assimilation system, including the model and observation error 220 

parameters. 221 

 222 

e. Simulations Performed 223 

Results from four offline simulations with the Catchment LSM were evaluated for this 224 

study: 225 

(i) A model-only “baseline” simulation (BL) with the default version of the Catchment 226 

LSM, i.e., the version used to produce the Version 2 L4_SM product (Reichle et 227 

al. 2017a).  Note that in the default model, α is set to 1 everywhere. 228 
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(ii) A data assimilation simulation (BL_DA) with the default version of the Catchment 229 

LSM that includes the assimilation of SMAP brightness temperatures, as outlined 230 

in Section 2d above. 231 

(iii) A model-only simulation (OPT, for “optimized parameters”) with a version of the 232 

Catchment LSM that uses the spatial distribution of optimized parameters 233 

illustrated in Figure 2. 234 

(iv) A data assimilation simulation (OPT_DA) with both the use of the optimized 235 

parameters from Figure 2 and the assimilation of SMAP brightness temperatures.   236 

All four simulations covered the period April 2015 – March 2017 and were run across the 237 

conterminous United States (CONUS) on the SMAP 36-km EASE grid (section 2a).  The BL and 238 

OPT simulations were spun up independently for 30 years. The BL_DA and OPT_DA 239 

simulations used the same perturbation and radiative transfer model parameters as used for the 240 

SMAP L4_SM product (Reichle et al. 2017 a,b). The SMAP brightness temperatures were 241 

assimilated after removing their seasonally-varying bias relative to the model forecast brightness 242 

temperatures. The rescaling parameters were constructed separately for the BL and OPT 243 

simulations using the (version 6) brightness temperature from the Soil Moisture Ocean Salinity 244 

mission (Kerr et al. 2016) for the period July 2010 to June 2016 and the underlying Catchment 245 

LSM.  Output diagnostics produced by each simulation include 3-hourly near-surface (top 5 cm) 246 

soil moistures and total runoff fluxes. 247 

 248 

f. Validation Data 249 
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For validating simulated near-surface soil moisture, we utilize a number of in-situ soil 250 

moisture measurement sites encompassed by the USDA Natural Resources Conservation Service 251 

Soil Climate Analysis Network (SCAN; Schaefer et al. 2007) and the US Climate Reference 252 

Network (USCRN; Diamond et al. 2013, Bell et al. 2013).  Quality control was applied to the 253 

hourly in-situ measurements at these sites; we eliminated measurements indicating volumetric 254 

soil moisture below 0 m3m-3 or greater than 0.6 m3m-3 as well as measurements taken when the 255 

contemporaneous soil temperature was below 4oC.  We also filtered out obviously unphysical 256 

measurements associated with spikes, sudden dry-downs, or high-frequency oscillations. The 257 

quality-controlled hourly data were averaged into 3-hourly time series, on which we base the soil 258 

moisture-related evaluations in section 3a.  259 

Some caveats regarding the use of such in-situ observations for validation are worth 260 

noting.  First, the site measurements are highly localized, whereas the soil moisture estimates 261 

produced by the simulations represent a large-scale spatial average.  This leads to a potentially 262 

important spatial representativeness error – the local measurement may not properly represent 263 

the large-scale average. Second, the LSM’s near-surface soil moisture variable represents an 264 

average over the top 5 cm of soil, whereas the in-situ measurements do not represent such a 265 

depth average – for the sites examined here, the surface soil moisture measurements instead 266 

represent conditions at a depth of about 5 cm.  Time variability of soil moisture at a 5 cm depth 267 

can differ from that of the depth-averaged soil moisture above it (Shellito et al. 2016); 268 

presumably, time scales for the depth-averaged moisture will be shorter than those at 5 cm depth.  269 

The spatial representativeness error and the vertical mismatch between the in-situ measurements 270 

and the modeled soil moisture variable will influence (and will presumably inflate 271 

inappropriately, though perhaps to only a small degree) the error metrics we compute for the 272 
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simulations.  We make the assumption here that these issues affect to some extent all four of our 273 

simulations, so that the relative magnitudes of the skill metrics across the simulations are still 274 

telling.  In addition, we emphasize the key advantage of the SCAN and USCRN networks: they 275 

encompass the continental US and thereby cover a broad range of soil textures and background 276 

climates (Reichle et al. 2017c). 277 

For the validation of simulated streamflow, we examine a subset of the 573 unregulated 278 

CONUS hydrological basins analyzed by Kumar et al. (2014): the 240 basins that lie within the 279 

intermediate size range (2,000—10,000 km2).  Daily streamflow data for the 240 basins were 280 

obtained from the U.S. Geological Survey (USGS; http://nwis.waterdata.usgs.gov/nwis) for the 281 

period 1980 through September 2017.  For each basin, observed river discharges were 282 

normalized by basin area to convert the discharges to units of mm d-1.  Conversions between the 283 

irregular basin areas and the SMAP EASE grid cells were facilitated by EASE grid arrays 284 

containing the fractions of each basin held within each grid element.  285 

 286 

g. Skill Metrics 287 

We evaluate model simulation skill against the in-situ observations using three metrics: 288 

the unbiased root mean square error (ubRMSE), the bias, and the temporal correlation (R).  The 289 

bias, of course, is simply the long-term mean of the simulation variable minus the long-term 290 

mean of the corresponding set of observations.  The ubRMSE at a given site can be computed 291 

from the bias and the traditional root mean square error (RMSE) via  292 

ubRMSE2 = RMSE2  –  bias2.      (1) 293 
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In essence, (1) recognizes the fact that the error characterized by the traditional RMSE stems 294 

both from a mean bias and from residual, time-varying errors that remain after the mean bias is 295 

removed from the time series.  We represent the latter error contribution with the ubRMSE, 296 

using (1) (see Entekhabi et al. 2010b).   297 

The final metric, the temporal correlation R (the traditional Pearson correlation 298 

coefficient), concerns itself with the timing and relative magnitudes of anomalies in a time series.  299 

For the near-surface soil moisture comparisons below, both R and ubRMSE are computed from 300 

time series of 3-hourly data.  For the streamflow comparisons, R is computed from the smoothed 301 

time series obtained by applying a 10-day moving average window to the daily observed and 302 

simulated totals during warm season months (April through September of 2015 and 2016).   We 303 

limit the streamflow R calculation to warm season months in order to avoid, for most of 304 

CONUS, intense periods of snowmelt-dominated runoff generation.  We use the 10-day moving 305 

window to minimize errors associated with streamflow routing times (the time it takes for 306 

locally-generated runoff to reach a stream gauge observations site), given that a routing model is 307 

not employed in this analysis. 308 

For both near-surface soil moisture and streamflow, when averaging the skill metrics 309 

across CONUS, we account for spatial correlations in the site values, so that clusters of nearby 310 

similar measurements do not contribute excessively to the computed averages (Reichle et al. 311 

2017a).    For soil moisture, we also compute 95% confidence intervals for the averages using 312 

the approach in Reichle et al. (2017a), indicating these uncertainty estimates with lines (or “error 313 

bars”) in the histograms showing average skill across CONUS.  Note that the estimation of these 314 

uncertainty estimates is far from perfect.  The estimation approach assumes that the errors in the 315 

simulation products are completely random, which is not the case for a model that, for example, 316 
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always produces an overly extended drydown period after a storm event (as the Catchment LSM 317 

appears to do in Figure 1).  Because presumably not all of the simulation errors examined here 318 

are random, the estimated uncertainty levels provided here are probably overestimated, perhaps 319 

significantly so.  As for streamflow, we avoid assigning uncertainty estimates due to the small 320 

sample size of the temporal data relative to that for soil moisture – again, for the streamflow R 321 

metric, we are considering 10-day averages during the warm season of two years.  We instead 322 

qualitatively address the relevance of any streamflow simulation improvements in terms of “field 323 

significance”, i.e., the preponderance of sites that show improvement over those that show 324 

degradation. 325 

 326 

3. Results 327 

 328 

a. Near-Surface Soil Moisture 329 

1) Time Series Comparison at a Representative Site 330 

A representative comparison of the soil moisture time series produced in the four 331 

simulations is shown in Figure 3.   The Prairie View site (30.08°N, 95.98°W), a SCAN site 332 

located west of Houston, Texas, provides sub-diurnal soil moisture measurements at multiple 333 

depths throughout the SMAP period.  The site measurements at the 5-cm depth, averaged over 334 

each day during February-July 2016, are plotted in both panels of the figure as a heavy black 335 

curve.  The daily-averaged simulated soil moistures at the corresponding grid cell are also 336 

plotted, with BL and BL_DA included in Figure 3a and OPT and OPT_DA in Figure 3b.  For 337 

ease of considering the ubRMSE and R metrics, the mean bias of each simulated time series 338 

computed over the February-July 2016 period was removed.  These biases at this location and for 339 
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this time period amount to 0.18 m3/m3 for BL, 0.072 m3/m3 for OPT, 0.15 m3/m3 for BL_DA, 340 

and 0.066 m3/m3 for OPT_DA. 341 

 The baseline simulation (BL) is seen to follow the ups and downs of the observations 342 

fairly well, indicating that the applied rainfall forcing for the period – the timing of the storms 343 

and interstorm periods – is reasonably accurate.  As already suggested in Figure 1, however, the 344 

timescale of post-storm drydowns is excessive in the model; the simulated soil moisture in BL 345 

(blue curve in Figure 3a) takes about a month to dry following the storm occurring just prior to 346 

mid-March, whereas significant drydown for the in-situ measurements occurs within a week.  347 

The assimilation of SMAP brightness temperatures into the baseline model (BL_DA) leads to 348 

more realistic amplitudes of soil moisture variation (particularly in June and July) and a 349 

somewhat more accurate drydown timescale, with a faster drydown, for example, in late June 350 

and early July. 351 

Using the calibrated α parameter in OPT clearly leads to faster, and thus generally more 352 

realistic, drydowns (Figure 3b).  For example, unlike BL and BL_DA, both OPT and OPT_DA 353 

produce reasonable drydowns in late March.  While the large June drydown is simulated better in 354 

OPT than in either BL or BL_DA, OPT_DA performs better still.  Also, note that while the plots 355 

appear to suggest that OPT and OPT_DA are wetter than BL and BL_DA following rainfall 356 

events in late February and mid-March, the soil moisture maxima achieved then by the four 357 

simulations are in fact roughly the same – a significantly larger bias (by about 0.1 m3/m3) had 358 

been subtracted from the BL and BL_DA results prior to plotting (see above).  The soil moisture 359 

minima for the four simulations are accordingly very different, with significantly lower minima 360 

obtained for OPT and OPT_DA.  The precipitation event in late February had a larger impact on 361 
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soil moisture in OPT than in BL presumably because the pre-storm soil in the former was much 362 

drier. 363 

The ubRMSE for BL, BL_DA, OPT, and OPT_DA over the particular time period shown 364 

in Figure 3 are, respectively, 0.066, 0.053, 0.069, and 0.052.  Thus, according to the ubRMSE 365 

metric, and for this particular site and time period, only data assimilation produces an improved 366 

simulation of soil moisture – the excessive amplitude of variation (relative to observations) 367 

produced in the OPT simulation apparently counteracts the effects of the improved drydown 368 

timescale.  The temporal correlation metric R, which focuses less on such amplitudes, tells a 369 

different story – R for BL, BL_DA, OPT, and OPT_DA is 0.73, 0.82, 0.85, and 0.85, 370 

respectively.  According to the R metric, both model calibration and data assimilation contribute 371 

accuracy to simulated soil moisture at this site. 372 

Regarding the somewhat excessive amplitude seen in the OPT results and its apparent 373 

effect on the ubRMSE metric, it is worth remembering (section 2f) that the depth of the in-situ 374 

measurements is inconsistent with the depth represented by the land model and of the SMAP 375 

signal used in the calibration, which ostensibly corresponds to average soil moisture conditions 376 

within the top 5 cm.  A SMAP-calibrated model might indeed be expected to produce such 377 

higher amplitudes – because soil moisture variations tend to decrease with increasing depth into 378 

the soil, the variations at 5 cm depth (where the in-situ measurements are taken) should show a 379 

reduced amplitude relative to those in the soil above.  This may artificially increase the estimated 380 

ubRMSE. 381 

 382 

2) Results across CONUS 383 
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The results in Figure 3 for the Prairie View site are in fact typical, as indicated in Figure 384 

4.  Figure 4a first shows the distribution of ubRMSE across the USCRN and SCAN sites within 385 

CONUS over the April 2015 – March 2017 period.  Some large errors appear in the Southeast 386 

and up through the Mississippi Valley.  The smallest errors are seen in the Southwest, perhaps 387 

reflecting the drier soils there and the associated lower temporal variability. 388 

Figures 4b, 4c, and 4d then show, respectively, the changes in ubRMSE obtained in the 389 

BL_DA, OPT, and OPT_DA experiments with respect to the BL simulation.  Warm colors 390 

(yellow to red) in the latter three panels indicate an increase in ubRMSE and thus a degradation 391 

in simulation skill compared to BL, whereas blue shading indicates a reduction in ubRMSE and a 392 

more accurate simulation.  Each map shows a mix of improvements and degradations.  Note that 393 

we can expect some degradations even for the OPT_DA simulation simply because the in situ 394 

validation data are themselves imperfect; the in situ data are subject, for example, to spatial and 395 

vertical representativeness error (section 2f).  As noted above, vertical representativeness issues 396 

are particularly relevant to the ubRMSE calculation and can complicate skill comparisons 397 

between the simulations.  Spot checks of ubRMSE degradations seen for OPT_DA, for example, 398 

show that the amplitudes of soil moisture variations in OPT_DA can be greater than those for 399 

BL, which look more like those of the in situ measurements.  Again, this does not necessarily 400 

imply a reduction in true skill relative to BL, given that the model data effectively (and properly) 401 

represent soil moisture at a depth shallower than 5 cm, which should indeed vary somewhat more 402 

than the in situ values.  Some of the degradations seen in the maps, however, are suggestive for 403 

other reasons.   The higher ubRMSE for the OPT experiment along the Mississippi-Arkansas 404 

border (Figure 4c), for example, may reflect difficulties in calibrating the model in such regions 405 
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of extensive irrigation (Kumar et al. 2015), given that irrigation is not explicitly treated in the 406 

model.   407 

Such issues aside, the maps show that overall, reductions outweigh increases in ubRMSE, 408 

particularly for BL_DA and OPT_DA.  This implies that SMAP data indeed contribute to 409 

improved soil moisture estimation through both data assimilation and (to a lesser extent) the 410 

optimization of the model parameters. 411 

This result is summarized in Figure 4e, which shows the average ubRMSE across the 412 

CONUS validation points for each of the four simulations.  While all three experiment 413 

simulations (BL_DA, OPT, and OPT_DA) on average perform better than the baseline run, the 414 

improvement seen with OPT is very small; the improvements are clearly larger when data 415 

assimilation is employed.  Note that the improvements obtained with data assimilation are likely 416 

to be more significant than suggested by the overlapping 95% uncertainty ranges, given that 417 

these ranges are themselves likely to be overestimated (section 2g). 418 

The temporal correlation metric R is examined in Figure 5.  Curiously, despite the 419 

baseline simulation’s relatively poor performance in the Southeast according to the ubRMSE 420 

metric (Figure 4a), the R values produced there are high (Figure 5a).  We also see that for the R 421 

metric, all three experiment simulations show a general improvement (Figures 5b,c,d) over the 422 

baseline simulation, with the increases in R overwhelming the handful of decreases. 423 

The CONUS-wide averages of R shown in Figure 5e are especially telling.  First, the 424 

average R values for all three experiment simulations (BL_DA, OPT, and OPT_DA) lie 425 

significantly above that for BL (as indicated by the non-overlapping 95% confidence intervals, 426 

which, again, are likely to be overestimated anyway).  Second, the contributions of data 427 
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assimilation and parameter calibration to the average R values in Figure 5e appear largely 428 

complementary – the increase in R from data assimilation (BL_DA minus BL) added to that 429 

obtained from parameter estimation (OPT minus BL) roughly equals the increase obtained when 430 

data assimilation and parameter calibration are employed together (OPT_DA minus BL).  Such 431 

complementarity speaks to the value of considering multiple facets of SMAP data together when 432 

attempting to maximize the data’s usefulness. 433 

Results for bias are shown in Figure 6.  Data assimilation is seen to have little impact on 434 

the bias (Figure 6b).  In contrast, model calibration has a large impact, sometimes increasing the 435 

absolute value of the bias and sometimes decreasing it (Figure 6c).  Generally, though, the 436 

calibration leads to an improvement, as indicated by the averages in Figure 6e. 437 

The relative impacts of data assimilation and model calibration on model bias in Figure 6 438 

are not unexpected.  By design, our data assimilation procedure ingests SMAP data after 439 

transforming the data to be consistent with the host model’s climatology, so that data 440 

assimilation by itself should have minimal impact on bias.  The calibration of the model 441 

parameters, on the other hand, has a first order impact on the model’s physics and thus on any 442 

biases generated.  The bias reductions found for OPT and OPT_DA indicate that this overall 443 

impact is, on average, positive. 444 

 445 

b. Streamflow in Small, Unregulated Basins 446 

The above analysis shows that SMAP soil moisture retrievals and associated brightness 447 

temperatures have a positive impact on soil moisture simulation, with complementary 448 

contributions from data assimilation and model calibration.  To what extent, though, do the 449 
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different strategies for using SMAP data lead to improvements in overall hydrological simulation 450 

– in the partitioning, for example, of incident precipitation into streamflow, evapotranspiration, 451 

and changes in storage?  In this section we focus specifically on the simulation of streamflow 452 

(given the wealth of available streamflow data relative to large-scale evapotranspiration data); 453 

we compare the abilities of the baseline simulation and the three experiment simulations to 454 

reproduce streamflow characteristics observed across CONUS. 455 

Figure 7a shows, for the baseline simulation, the error in the runoff ratio at each of the 456 

unregulated, medium-sized basins described in section 2f.  For both the simulation and the 457 

observations, we divide a given basin’s total streamflow, Q, for September 2015 through August 458 

2017 by the total precipitation, P, in that basin over the same period (computed directly from the 459 

gridded precipitation data used in the four simulations).  We then plot in Figure 7a the difference 460 

between the modeled and observed ratios, with the dots positioned on the centroid of the basin.  461 

Because the Catchment LSM tends to underestimate streamflow, the raw errors in Figure 7a tend 462 

to be negative.  (This problem is discussed in more detail, along with a potential solution, by 463 

Koster and Mahanama (2012)).  The runoff ratio errors for BL are especially large in parts of the 464 

Northwest, in the upper Midwest, and in Appalachia. 465 

Figures 7b, 7c, and 7d show, respectively, the changes in the absolute runoff ratio error 466 

(compared to BL) for simulations BL_DA, OPT, and OPT_DA, with the color of the dots 467 

indicating an improvement (blue shading) or degradation (yellow to red shading) in the 468 

simulated runoff ratio.  Averages (section 2g) across the basins for the different simulations are 469 

provided in Figure 7e.  The averages indicate an improvement in runoff ratio estimation 470 

stemming from the use of the calibrated model parameters – an improvement that appears 471 

significant, given the preponderance of blue dots in Figures 7c and (to a lesser extent) 7d.  Data 472 
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assimilation by itself is seen to have little impact on Q/P accuracy and even seems, for this 473 

metric, to reduce slightly the ability of model calibration to have a positive impact, as seen by the 474 

higher average error for OPT_DA relative to OPT. 475 

Figure 8 shows results for an alternative measure of runoff simulation skill: the temporal 476 

correlation, R, between observed and simulated runoff totals.  For the warm period (April 477 

through September) of both 2015 and 2016, time series of observed 10-day basin streamflows 478 

were correlated against the corresponding streamflows simulated in BL.  The resulting R value 479 

for each basin is plotted at the basin’s centroid in Figure 8a; correlations are seen to be 480 

reasonably high, particularly in the east (except in Florida and Maine) and the Pacific Northwest. 481 

Figures 8b, 8c, and 8d show, respectively, the change in R obtained in simulations 482 

BL_DA, OPT, and OPT_DA.  Improvements strongly overwhelm degradations for BL_DA 483 

(Figure 8b).  The average of R for all four simulations is provided in Figure 8e.  For this metric, 484 

model calibration has little impact, whereas the impact of data assimilation is relatively strong.  485 

This is presumably because only data assimilation corrects for errors in the timing of 486 

precipitation, which necessarily has a first order impact on the timing of streamflow volumes. 487 

Note that using both data assimilation and model calibration together (simulation 488 

OPT_DA) leads to an increase in R relative to the BL and OPT simulations, but not to the extent 489 

seen in simulation BL_DA.  For this particular evaluation, the effects of the two data utilization 490 

strategies do not appear independent and additive.  Potential “destructive interference” of the two 491 

approaches in the generation of higher level fields such as runoff may be a fundamental 492 

characteristic of their joint application. 493 
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Alternatively, we can speculate that the apparent non-additivity in Figure 8e reflects an 494 

insufficient tuning of the data assimilation system underlying the OPT_DA simulation.  Unlike 495 

the system underlying BL_DA, which underwent extensive development and testing for the 496 

generation of the SMAP L4_SM product, the system underlying OPT_DA has only been 497 

exercised in the present study.  The system underlying OPT_DA lacks, for example, a proper 498 

tuning of model and observation error settings.  Moreover, recalibration of the parameters 499 

underlying the radiative transfer model would bring the modeled brightness temperatures closer 500 

to the observations in a climatological sense and lessen the work left to the rescaling process, 501 

which might further improve the assimilation estimates.  Further investigation of these potential 502 

improvements is left for future work. 503 

 504 

4. Summary and Discussion  505 

In the present study, two different approaches are used to integrate SMAP data into a land 506 

surface model’s representation of near-surface soil moisture and hydrological fluxes.  These 507 

approaches are distinct and largely complementary.  In a standard open-loop land modeling 508 

exercise, a land model driven with observations-based meteorological forcing (rainfall, air 509 

temperature, etc.) produces, as a matter of course, estimates for hydrological states (e.g., soil 510 

moisture) and fluxes (e.g., evapotranspiration and runoff).  Data assimilation, the first approach 511 

toward integrating SMAP data into these estimates, operates as a “course correction” to the 512 

evolving states, intermittently adjusting the states toward measured values and thereby correcting 513 

for errors that stem from inadequate model parameterizations and uncertainty in the 514 

meteorological forcing.  The second approach, model calibration, utilizes the SMAP data to 515 

improve the performance of the land model itself by increasing the realism of its underlying 516 

parameterizations. 517 
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Our four simulations quantify the skill of reproducing both observed near-surface soil 518 

moisture and observed streamflow when: (i) neither approach is used (simulation BL); (ii) 519 

SMAP data are assimilated into the system (simulation BL_DA); (iii) SMAP data are used to 520 

calibrate a particularly relevant model parameter (simulation OPT); and (iv) SMAP data are used 521 

for both model calibration and assimilation (simulation OPT_DA).  The results indeed 522 

demonstrate some complementarity in the contributions of the two approaches to simulation 523 

accuracy.  For near-surface soil moisture, data assimilation produces the largest reductions in 524 

ubRMSE (Figure 4), but model calibration produces the greatest reduction in bias (Figure 6).  525 

Both data assimilation and model calibration produce significant improvements in the temporal 526 

correlation R, and these improvements appear independent; the sum of these improvements, as 527 

obtained from simulations BL_DA and OPT, roughly equals the improvement obtained in 528 

OPT_DA, the simulation that combines the two approaches (Figure 5).  The two approaches 529 

appear particularly complementary in their contributions to the simulation of streamflow.  Model 530 

calibration with SMAP data leads to improvements in the simulation of the long-term runoff 531 

ratio (Figure 7) but has little impact on the timing of streamflow (Figure 8).  In contrast, data 532 

assimilation has little impact on simulated runoff ratio but a positive impact on streamflow 533 

timing. 534 

We emphasize again that this complementarity is not surprising.  The data assimilation 535 

strategy employed here (which in fact underlies the generation of the SMAP L4_SM product) 536 

transforms the SMAP brightness temperatures into values consistent with the climatology of the 537 

model before ingesting them into the model.  Assimilating the SMAP data will thus have 538 

relatively small impacts on the climatology of the model products, as represented here by biases 539 

in both the near-surface soil moisture and the runoff ratio.  The assimilation will, however, have 540 
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important impacts on the timing of the variables produced, since it corrects for errors in the 541 

meteorological forcing data that drive the model.  Correcting forcing-related errors should 542 

improve both ubRMSE and R. 543 

In contrast, model calibration directly affects the climatology of the model, and thus 544 

associated improvements can be seen in the model biases.  Model calibration also improves the R 545 

metric for near-surface soil moisture (computed from 3-hourly values), presumably through its 546 

improvement of drydown behavior (Figure 3).  This, however, does not translate here into an 547 

improvement in R for 10-day streamflow totals (Figure 8c); the 10-day runoff averaging period, 548 

necessitated by the comparisons against the stream gauge measurements, may have precluded 549 

this benefit.  In any case, unlike data assimilation, model calibration cannot correct for errors in 550 

the precipitation forcing. 551 

It is important to note that the data assimilation and model calibration exercises 552 

performed and compared here utilized different subsets of the SMAP data product, subsets 553 

specific to the needs of the given procedure.  For example, as noted above, the model calibration 554 

exercise utilized soil moisture retrievals flagged as having “uncertain quality” as well as 555 

“recommended quality”.  This was necessary to extend spatially the areas in which calibration 556 

could be performed; by allowing the additional data, calibrations could be performed for this 557 

study, for better or worse, across CONUS.  (Note that in Figures 5-7, the OPT experiment does 558 

show improvements over the baseline experiment even in the far eastern part of CONUS, where 559 

almost all of the data are flagged as “uncertain”.)  The data assimilation procedure used here, 560 

however, follows that of the SMAP Level 4 system and therefore only assimilates brightness 561 

temperatures flagged as having “recommended quality”.  While the different flag criteria across 562 

the experiments may appear inconsistent, note that ensuring flag consistency is somewhat 563 
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inappropriate given that the flags for soil moisture retrievals and brightness temperatures are 564 

themselves different – SMAP brightness temperature measurements are often flagged as 565 

“recommended” even when the soil moisture retrievals themselves are flagged as “uncertain”.  566 

Given the varying degrees to which even “recommended quality” brightness temperatures are 567 

allowed to affect soil moisture in a data assimilation system, perfect consistency in this regard is 568 

presumably unattainable. 569 

Another SMAP data subsetting difference involves the use of only descending (6AM) 570 

passes for the model calibration experiments versus the use of both descending and ascending 571 

(6AM and 6PM) passes in the data assimilation experiments.  Here again this difference reflects 572 

the specific needs of the two procedures; we used what we felt to be optimal for each.  The 6AM 573 

data on their own have an acceptable revisit interval (typically less than three days) to address 574 

the timescale calibration problem, and these data have slightly better error characteristics (Chan 575 

et al. 2018) than the 6PM data, making them desirable for capturing second order properties such 576 

as drydown timescales.  Data assimilation, on the other hand, does not focus on such second 577 

order properties, considering both the 6AM and 6PM data as appropriate inputs to guide the 578 

model states. 579 

Also worth mentioning here are a number of limitations associated with the two 580 

approaches, particularly when applied on the global scale.  It is not possible to extract soil 581 

moisture information from the SMAP data where the observed brightness temperatures are not 582 

sensitive to soil moisture or have limited quality, such as in regions with dense vegetation or 583 

strong radio-frequency interference (e.g., Japan).  Model calibration, as employed in this study, 584 

further requires suitably accurate meteorological forcing data (particularly precipitation 585 

information) during the calibration period, and because the quality of meteorological information 586 
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is poor in many regions of the globe, calibration in these areas may prove difficult or even 587 

impossible.  The veracity of the dry-down time scales implied by the SMAP retrievals (Figure 1), 588 

upon which the model calibration relies, may also be impacted by errors in the radiative transfer 589 

model underlying the retrieval algorithm.  More work is indeed needed to determine the impact 590 

of errors in the SMAP retrievals on the effectiveness of model calibration. 591 

Also worth pointing out is the seemingly small ubRMSE improvement in soil moisture 592 

estimation obtained here with the two approaches – the largest improvement in Figure 4e is 593 

associated with data assimilation, but this improvement amounts to only about 0.003 m3m-3.  594 

Presumably this reflects to some degree the nature of the in-situ data networks examined.  The 595 

SMAP core validation sites (Reichle et al. 2017a), for example, have the relative advantage of 596 

providing careful, spatially-distributed measurements that are more relevant to the spatial scales 597 

of SMAP data.  Reichle et al. (2017a) show that when the impacts of data assimilation (using the 598 

same systems as used here) are quantified at the SMAP core validation sites rather than at sparse 599 

network sites, the improvements in ubRMSE increase by a factor of about 2; furthermore, 600 

quantified improvements in temporal correlation R are about twice as large for the core sites as 601 

they are for sparse network sites.  The core validation sites, however, have the distinct 602 

disadvantage of being far fewer in number, leading to greater noise in the multi-site skill metrics.  603 

Applying our analyses to the core sites instead (not shown) produces similar results that are 604 

nevertheless affected by the smaller sample size.  Here, for our joint analysis of data assimilation 605 

and model calibration, we take advantage of the broader range of conditions covered by the 606 

much more numerous SCAN and USCRN sites, accepting the disadvantage of the point-scale 607 

nature of the measurements at these sites.  608 
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The results of the present study – in particular the demonstrated complementarity of the 609 

data assimilation and model calibration approaches – have important implications for 610 

maximizing the effective utilization of SMAP data in hydrological simulation.  For maximum 611 

simulation accuracy, use of both approaches should be considered, since they each effectively 612 

access independent information contained within the SMAP data.  Indeed, the two approaches 613 

together underline the wealth of hydrological information inherent in these data.  The full 614 

hydrological information content of the SMAP data record – accessed through these two 615 

approaches or through other approaches not described here – will undoubtedly be easier to 616 

ascertain as the data record grows with time. 617 
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Figure Captions 755 

 756 

Figure 1.  Time series of precipitation (a), SMAP Level-2 soil moisture retrievals (b), and model-757 

simulated near-surface soil moisture (c,d) at a grid cell centered on the Little Washita 758 

watershed in southwestern Oklahoma.  The model simulated time series in (c) uses a 759 

value of 1 for the calibrated parameter α (the default value in GEOS systems), and the 760 

time series in (d) uses an α value of 0.01.  For ease of comparison, model values are 761 

plotted only on the dates of SMAP retrievals. 762 

Figure 2.  Optimal values of the studied model parameter α (dimensionless), as determined by 763 

optimization against SMAP retrieval time series.  These are the values used in the OPT 764 

and OPT_DA simulations; in the BL and BL_DA simulations, α is set to 1 everywhere. 765 

Figure 3.  Time series (February – July 2016) of daily-averaged soil moisture (in m3m-3) at the 766 

EASE grid cell containing the Prairie View SCAN measurement site located in Texas, 767 

USA.  The observations are shown as the heavy black curves in both panels.  The top 768 

panel shows the simulated time series from BL (blue) and BL_DA (red), while the 769 

bottom panel shows the simulated time series from OPT (blue) and OPT_DA (red).  For 770 

ease of comparison, the mean simulated bias February – July 2016 was removed from all 771 

simulation results prior to plotting.  The BL and BL_DA simulations used the default 772 

value of 1 for α, whereas the OPT and OPT_DA simulations used an α of 0.001, the 773 

optimized value for this location. 774 

Figure 4.  (a) Spatial distribution of the ubRMSE of surface soil moisture estimation for the 775 

baseline (BL) simulation.  Circles refer to SCAN sites and triangles refer to USCRN 776 

sites.  (b) Differences in ubRMSE: BL_DA minus BL.  Blue shades indicate improved 777 
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near-surface soil moisture estimation.  (c) Same, but for OPT minus BL.  (d) Same, but 778 

for OPT_DA minus BL.  (e) Average ubRMSE across the CONUS sites for each 779 

simulation (see text for details). 780 

Figure 5.  Same as Figure 4, but for the temporal correlation metric R.  As in Figure 4, blue 781 

shading in (b)-(d) indicates improvement, though here the blue shading indicates a 782 

positive difference. 783 

Figure 6.  Same as Figure 4, but for bias (a) and for differences in the absolute values of the 784 

biases (b-d).  As in Figure 4, blue shading in (b)-(d) indicates improvement. 785 

Figure 7.  (a) The baseline (BL) simulation’s bias in long-term average runoff ratio (ratio of total 786 

2-year streamflow to total 2-year precipitation) in multiple unregulated basins.  Values 787 

are plotted at the centroids of the basins.  (b) Differences in the absolute value of the bias: 788 

BL_DA minus BL.  Blue shades indicate an improved estimation of runoff ratio.  (c) 789 

Same as (b), but for OPT minus BL.  (d) Same as (b), but for OPT_DA minus BL.  (e) 790 

Average absolute bias across the unregulated basins (see text for details).      791 

Figure 8.  Same as Figure 7, but for the temporal correlation R between observed and simulated 792 

10-day streamflow totals in the warm season (April-September of 2015-2016) in multiple 793 

unregulated basins.  R values and R differences are plotted at the centroids of the basins.  794 

As in Figure 4, blue shading in (b)-(d) indicates improvement.   795 

 796 

 797 

  798 
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 799 

 800 

Figure 1.  Time series of precipitation (a), SMAP Level-2 soil moisture retrievals (b), and model-801 

simulated near-surface soil moisture (c,d) at a grid cell centered on the Little Washita watershed 802 

in southwestern Oklahoma.  The model simulated time series in (c) uses a value of 1 for the 803 

calibrated parameter α (the default value in GEOS systems), and the time series in (d) uses an α 804 

value of 0.01.  For ease of comparison, model values are plotted only on the dates of SMAP 805 

retrievals. 806 
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808 

 809 

Figure 2.  Optimal values of the studied model parameter α (dimensionless), as determined by 810 

optimization against SMAP retrieval time series.  These are the values used in the OPT and 811 

OPT_DA simulations; in the BL and BL_DA simulations, α is set to 1 everywhere. 812 
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 823 

 824 

 825 

Figure 3.  Time series (February – July 2016) of daily-averaged soil moisture (in m3m-3) at the 826 

EASE grid cell containing the Prairie View SCAN measurement site located in Texas, USA.  827 

The observations are shown as the heavy black curves in both panels.  The top panel shows the 828 

simulated time series from BL (blue) and BL_DA (red), while the bottom panel shows the 829 

simulated time series from OPT (blue) and OPT_DA (red).  For ease of comparison, the mean 830 

simulated bias for February – July 2016 was removed from all simulation results prior to 831 

plotting.  The BL and BL_DA simulations used the default value of 1 for α, whereas the OPT 832 

and OPT_DA simulations used an α of 0.001, the optimized value for this location. 833 

  834 
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 835 

 836 

 837 

Figure 4.  (a) Spatial distribution of the ubRMSE of surface soil moisture estimation for the 838 

baseline (BL) simulation.  Circles refer to SCAN sites and triangles refer to USCRN sites.  (b) 839 

Differences in ubRMSE: BL_DA minus BL.  Blue shades indicate improved near-surface soil 840 

moisture estimation.  (c) Same as (b), but for OPT minus BL.  (d) Same as (b), but for OPT_DA 841 

minus BL.  (e) Average ubRMSE across the CONUS sites for each simulation (see text for 842 

details).  843 
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 844 

 845 

Figure 5.  Same as Figure 4, but for the temporal correlation metric R.  As in Figure 4, blue 846 

shading in (b)-(d) indicates improvement, though here the blue shading indicates a positive 847 

difference. 848 

  849 
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 850 

 851 

Figure 6.  Same as Figure 4, but for bias (a) and for differences in the absolute values of the 852 

biases (b-d).  As in Figure 4, blue shading in (b)-(d) indicates improvement.  853 
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 855 

Figure 7.  (a) The baseline (BL) simulation’s bias in long-term average runoff ratio (ratio of total 856 

2-year streamflow to total 2-year precipitation) in multiple unregulated basins.  Values are 857 

plotted at the centroids of the basins.  (b) Differences in the absolute value of the bias: BL_DA 858 

minus BL.  Blue shades indicate an improved estimation of runoff ratio.  (c) Same as (b), but for 859 

OPT minus BL.  (d) Same as (b), but for OPT_DA minus BL.  (e) Average absolute bias across 860 

the unregulated basins (see text for details).    861 
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 863 

 864 

Figure 8.  Same as Figure 7, but for the temporal correlation R between observed and simulated 865 

10-day streamflow totals in the warm season (April-September of 2015-2016) in multiple 866 

unregulated basins.  R values and R differences are plotted at the centroids of the basins.  As in 867 

Figure 4, blue shading in (b)-(d) indicates improvement.   868 


