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Abstract 16 

A method to assess global land surface water (fw) inundation dynamics was developed by 17 

exploiting the enhanced fw sensitivity of L-band (1.4 GHz) passive microwave observations 18 

from the Soil Moisture Active Passive (SMAP) mission. The L-band fw (fwLBand) retrievals were 19 

derived using SMAP H-polarization brightness temperature (Tb) observations and predefined 20 

https://ntrs.nasa.gov/search.jsp?R=20180003020 2019-08-31T13:54:25+00:00Z
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L-band reference microwave emissivities for water and land endmembers. Potential soil moisture 21 

and vegetation contributions to the microwave signal were represented from overlapping higher 22 

frequency Tb observations from AMSR2. The resulting fwLBand global record has high temporal 23 

sampling (1-3 days) and 36-km spatial resolution. The fwLBand annual averages corresponded 24 

favourably (R=0.85, p-value<0.001) with a 250-m resolution static global water map (MOD44W) 25 

aggregated at the same spatial scale, while capturing significant inundation variations worldwide. 26 

The monthly fwLBand averages also showed seasonal inundation changes consistent with river 27 

discharge records within six major US river basins. An uncertainty analysis indicated generally 28 

reliable fwLBand performance for major land cover areas and under low to moderate vegetation 29 

cover, but with lower accuracy for detecting water bodies covered by dense vegetation. Finer 30 

resolution (30-m) fwLBand results were obtained for three sub-regions in North America using an 31 

empirical downscaling approach and ancillary global Water Occurrence Dataset (WOD) derived 32 

from the historical Landsat record. The resulting 30-m fwLBand retrievals showed favourable 33 

spatial accuracy for water (commission error 31.46%, omission error 30.20%) and land 34 

(commission error 0.87%, omission error 0.96%) classifications and seasonal wet and dry 35 

periods when compared to independent water maps derived from Landsat-8 imagery. The new 36 

fwLBand algorithms and continuing SMAP and AMSR2 operations provide for near real-time, 37 

multi-scale monitoring of global surface water inundation dynamics and potential flood risk.  38 

Keywords:  SMAP; Landsat; AMSR2; surface water inundation; flood risk 39 

 40 
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1. INTRODUCTION 41 

 42 

The fractional cover of land surface water (fw) inundation is a key component of the global 43 

water budget and a controlling factor in hydrology, climate and ecosystem modelling (Pham-Duc 44 

et al., 2017; Melton et al., 2013; Watts et al., 2014). The fw dynamics reflect spatial and temporal 45 

changes in a number of environmental factors including anomalous rainfall-driven flood events 46 

(Sun et al., 2011), seasonal thawing and snowmelt in spring (Watts et al., 2012), and longer-term 47 

environmental changes (Lin et al., 2011). Characterizing fw variations has become a prerequisite 48 

for improved understanding of hydrological and ecological processes (Alsdorf et al., 2007; Fu et 49 

al., 2009), while providing essential support for a broad range of applications including water 50 

resources management (Sánchez-Carrillo et al., 2004), wetland monitoring (Melton et al., 2013), 51 

vector borne disease control (Chuang et al., 2012), and flood and drought risk assessment (Komi 52 

et al., 2017). Dynamic fw mapping has also been used as a prerequisite for the retrievals of 53 

higher-order land surface parameters from microwave remote sensing (Jones et al., 2010; Ye et 54 

al., 2015). 55 

  Previous approaches for satellite remote sensing of global fw dynamics have involved 56 

relatively low-temporal frequency but fine spatial resolution (10-100 m) fw mapping from optical 57 

and/or infrared (IR) imagery (Brakenridge and Anderson, 2006; Carroll et al., 2009; Verpoorter 58 

et al., 2014) or radar backscatter data (Bourgeau-Chavez et al., 2001; Bartsch et al., 2012; Kim et 59 

al., 2016). Passive microwave radiometry has also been used for fw mapping with relatively high 60 

temporal frequency (daily to 10-day) but at coarser (5 km to 25 km) spatial scales (Prigent et al., 61 
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2007; Schroeder et al., 2014; Du et al., 2016). Passive microwave sensors used for fw mapping 62 

include the Advanced Microwave Scanning Radiometer for the Earth Observing System 63 

(AMSR-E) (Kawanishi et al., 2003), Advanced Microwave Scanning Radiometer 2 (AMSR2) 64 

(Imaoka et al., 2012) and the Special Sensor Microwave/Imager (SSM/I) (Ferraro et al., 1996), 65 

which provide relatively high-frequency (18 GHz to 89 GHz) brightness temperature (Tb) 66 

observations.  67 

    Passive microwave remote sensing allows for global daily fw monitoring due to global 68 

coverage of current operational sensors, combined with strong microwave sensitivity to surface 69 

water and relative insensitivity to weather constraints. However, the resulting fw retrievals tend 70 

to underestimate surface water inundation extent in closed canopy areas due to the attenuation of 71 

surface microwave emissions by vegetation, with generally greater vegetation constraints for 72 

higher microwave frequencies (Du et al., 2016). Alternatively, the ESA Soil Moisture and Ocean 73 

Salinity (SMOS) (Kerr et al., 2001; Parrens et al., 2017) and NASA Soil Moisture Active Passive 74 

(SMAP) radiometers (Entekhabi et al., 2010) provide global coverage and frequent (mean 3-day) 75 

sampling, with potentially enhanced sensitivity to water signals underlying vegetation due to 76 

relatively greater canopy transmission of low frequency (L-band) microwave emissions 77 

(Entekhabi et al., 2010).  78 

Better capabilities are needed for near real-time assessment of surface water inundation 79 

dynamics at finer spatial scales commensurate with local landscape heterogeneity for monitoring 80 

extreme hydrological events (e.g. flood and droughts) and environmental changes (Fu et al., 81 

2009; Fluet-Chouinard et al., 2015).  Planned next generation satellite missions propose both 82 
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high spatial and temporal resolution mapping of global surface water inundation dynamics 83 

designed for landscape assessments, including the NASA-ISRO Synthetic Aperture Radar 84 

(NISAR) and Surface Water Ocean Topography (SWOT) radar altimetry mission 85 

(Alvarez-Salazar et al., 2014; Fu and Ubelmann, 2014; Chapman et al., 2015; Prigent et al., 86 

2016). However, other approaches have been developed for spatial downscaling of coarser 87 

resolution fw estimates from current operational passive microwave sensors (Galantowicz, 2002; 88 

Fluet-Chouinard et al., 2015; AER, 2017; Aires et al., 2017). The spatial downscaling process 89 

generally relies on the use of finer scale ancillary information, including flood potential maps 90 

derived from hydrologic analyses, to inform empirical spatial interpolation and downscaling of 91 

coarser resolution fw retrievals (Wu and Liu, 2015). Suitable downscaling methods applied to fw 92 

retrievals from available satellite passive microwave sensors allow for both near real-time and 93 

long-term global inundation mapping with high spatio-temporal resolutions. 94 

In this investigation, we developed and tested an approach for estimating global fw dynamics 95 

using SMAP radiometer data that exploit enhanced L-band (1.4 GHz) microwave sensitivity to 96 

surface water; SMAP also provides observations at constant incidence angle and high Tb 97 

calibration accuracy (radiometric uncertainty ~1K) (Piepmeier et al., 2017) for potentially robust 98 

fw retrievals. Our algorithm approach also uses other land parameter information derived from 99 

overlapping AMSR2 higher frequency Tb observations to represent the influence of soil moisture 100 

and vegetation on the surface water signal. The resulting fw retrievals (hereby denoted as fwLBand) 101 

provide global coverage with 1-3 day temporal sampling and 36-km resolution, and extend over 102 

the 19-month period from June 2015 to December 2016. Here the fwLBand parameter defines the 103 
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areal proportion of standing water within a 36-km SMAP grid cell. Furthermore, an empirical 104 

approach using ancillary surface water persistence information from the historical Landsat record 105 

(Pekel et al., 2016) was used to downscale the 36-km fwLBand retrievals to 30-m resolution to 106 

evaluate the potential for finer landscape level monitoring of fw inundation dynamics from 107 

SMAP.  108 

The paper continues with a presentation of the data and methods (section 2). The fwLBand 109 

results were evaluated against alternative global fw maps derived from other available satellite 110 

records, while relative differences in fw cover from these products were evaluated over the 111 

global gradient in vegetation optical depth (VOD) derived from SMOS L-band Tb observations 112 

(section 3.1). The fwLBand seasonal variations were evaluated against monthly river discharge 113 

measurements for selected large basins (section 3.2). The spatially downscaled fwLBand results 114 

were also evaluated over other selected sub-regions in relation to independent surface water 115 

maps representing seasonal wet and dry periods obtained from Landsat-8 observations (section 116 

3.3). Inundation dynamics derived from SMAP were compared with MODIS and Landsat results 117 

(section 3.4). A sensitivity analysis was also conducted to document expected fwLBand 118 

performance for major global land cover types based on uncertainty in the underlying model 119 

assumptions and parameterizations (section 3.5). Finally, further discussion (section 4) and 120 

conclusions (section 5) were presented.  121 

2. METHODS  122 

 123 



 7 

2.1. Algorithm Development  124 

The fwLBand algorithm was developed from a retrieval scheme originally used with AMSR-E 125 

W-band (89 GHz) Tb observations for detecting pan-Arctic inundation dynamics (Du et al., 2016). 126 

In the W-band fw (hereby denoted as fwWBand) algorithm, a look-up table (LUT) was first 127 

established to provide reference microwave emissivities at 89 GHz for pure land and water 128 

endmembers under a range of global land and atmosphere conditions characterized by other 129 

AMSR-E land parameter retrievals and Tb frequency ratios (Du et al., 2016). The fwWBand 130 

retrievals were then obtained on a per pixel basis by computing H-polarization (pol) difference 131 

ratio (DR) or combined H-pol and V-pol double difference ratio (DDR) Tb or emissivity 132 

deviations from reference conditions established for pure land and water endmember grid cells. 133 

A detailed description of the DR and DDR methods used for the AMSR-E fwWBand retrievals are 134 

provided elsewhere (Du et al., 2016). In this study, a similar DR algorithm is used with SMAP 135 

L-band Tb observations for estimating fwLBand. Here, the DR algorithm was established using a 136 

two-step procedure similar to the previous AMSR-E W-band algorithm application, but adapted 137 

for use with SMAP L-band Tb observations. 138 

2.1.1 Algorithm Theoretical Basis  139 

The satellite observed L-band emissivity of the land surface ( ) under non-frozen and 140 

snow-free conditions can be described by the Tau-Omega model (Eq. 1) with negligible 141 

atmosphere effects considered (Mo et al., 1982; Jones et al., 2010): 142 

 143 

e
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Where subscript p denotes microwave polarization and subscripts w and l denote water and land 145 

variables, respectively; 
bT is satellite observed brightness temperature; T is the effective surface 146 

temperature within the SMAP L-band penetration depth of pure land or water; fw is the fraction 147 

of open water within the sensor footprint;  is the effective scattering albedo (Kurum, 2013); 148 

is the one-way microwave transmissivity of the canopy, which decreases exponentially with 149 

VOD; is the effective microwave reflectivity of bare soil with surface roughness effects 150 

considered; denotes pure water permittivity, and  is the water surface roughness 151 

parameter. According to Eq. (1), L-band  is determined by microwave absorption and 152 

scattering properties of vegetation, surface soil and standing water, which are primarily 153 

represented by respective VOD, soil moisture and surface temperature conditions (Du et al., 154 

2016).  155 

An algorithm lookup table (LUT) of reference microwave emissivities for pure land and water 156 

endmember conditions at L-band was constructed a priori over a global range of vegetation and 157 

soil conditions defined by daily VOD and volumetric soil moisture (mv) retrievals from an 158 

existing AMSR (AMSR-E and AMSR2) global land parameter data record (LPDR; Du et al., 159 

2017) (Table 1). Considering the dependence of land feature permittivity on temperature, the Tl 160 

and Tw derived from surface temperature (Ts) records of the NASA Goddard Earth Observing 161 

System Model version 5 (GEOS-5) land model (Lucchesi 2013; Chan et al., 2016a) were also 162 





sR
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used to represent the daily surface temperature influence on the fwLBand estimates (Table 1). 163 

Other ancillary data were used to define suitable conditions for the fwLBand retrieval, including fw 164 

derived from K-band (18.7 GHz and 23.8 GHz) AMSR2 Tb observations (hereby denoted as 165 

fwKBand) (Du et al., 2017) and a MODIS IGBP land cover classification (Friedl et al., 2002). A 166 

pure land endmember condition was identified if no water presence was indicated for a 36-km 167 

SMAP grid cell by the ancillary MODIS land cover map and where minimum fractional water 168 

(<0.01) was detected by the corresponding fwKBand record. A conservative 0.01 threshold was set 169 

by considering the AMSR LPDR retrieval uncertainties and fwKBand positive retrieval biases (0.01 170 

to 0.02) (Du et al., 2017). The L-band emissivity of the identified land endmembers was 171 

calculated as the ratio of SMAP 36-km Tb observations and Tl (or Tw). A collection of pure land 172 

and water endmembers was assembled from a one year (June 2015 to May 2016) record of 173 

SMAP Tb observations and Tl and Tw records; the averaged emissivity of the land endmembers 174 

for each surface condition defined in LUT was assigned as the final reference emissivity for land 175 

( ). The reference open water emissivity endmember ( ) in the LUT was theoretically 176 

calculated for fresh water using the Fresnel Equations and Double-Debye dielectric model 177 

(Ulaby et al., 2014).  178 

Table 1 179 

Global land surface parameter ranges considered in the algorithm Look-up Table (LUT) used for the SMAP 180 

fwLBand retrievals.  181 

 From  To Interval 

Vegetation Optical Depth (VOD) 0.0 3.0  0.05  

Volumetric Soil Moisture (Mv) 0.0 m3/m3 0.5 m3/m3 0.01 m3/m3 

Effective soil and water surface 

temperature (Tl and Tw) 

0 °C 42.5 °C 2.5°C 

ref

ple ref

pwe
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 182 

In this study, SMAP L-band H-polarization is used for inundation retrievals due to its larger 183 

emissivity range and higher sensitivity to water signals relative to V-polarization (Du et al., 184 

2016). The fwLBand of a given 36-km grid cell under the soil and vegetation conditions defined by 185 

the AMSR LPDR can be inferred from the SMAP observed emissivity at H-polarization and the 186 

corresponding LUT reference emissivities under the same conditions. Based on Eq. (1) and the 187 

available literature (Du et al., 2016), the fwLBand is determined using a Difference Ratio (DR):    188 

( )

( )

 

ref obs

bhl bh
LBand ref ref

bhl bhw

ref ref

bhl hl l

ref ref

bhw hw w

T T
fw

T T

T e T

T e T






 

 

                                        (2) 189 

Here 
wT  is assumed to be approximately equivalent to 

lT  (Tw ≈ Tl; section 2.2.2). An 190 

alternative Double Difference Ratio (DDR) method utilizing V-pol and H-pol 
bT differences 191 

bv bhT T  for deriving fw (Du et al., 2016) was not used in the current study. The DDR shows 192 

higher retrieval uncertainties than the DR method in sparsely vegetated and barren land regions 193 

where relatively large V and H polarization differences resemble the characteristics of open 194 

water emissions (Du et al., 2016). Compared with higher microwave frequencies, the SMAP 195 

L-band Tb observations tend to have larger polarization differences due to more dielectrically 196 

transparent vegetation cover and smoother soil surface (Entekhabi et al., 2010; Huang et al., 197 

2010). Higher noise level is expected in the 
bv bhT T  observations relative to the single-channel 198 

bhT  measurements. 199 

2.1.2 Downscaling of fwLBand Retrievals 200 
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An empirical approach is demonstrated in this study for spatial downscaling of 36-km 201 

resolution SMAP fw time series using the ancillary 30-m resolution Landsat Water Occurrence 202 

Dataset (WOD) (Pekel et al., 2016). The WOD maps represent an estimate of the inundation 203 

frequency of 30-m pixels over the globe determined from a 32-year Landsat image collection. 204 

For a given 36-km SMAP grid cell, the inundation occurrence defined from all WOD 30-m 205 

pixels within the cell is extracted and sorted in descending order. Inundation areas estimated by 206 

the 36-km fwLBand retrieval are allocated sequentially, first to pixels with higher occurrence 207 

frequency, or most likely to be inundated, followed by allocations to pixels with lower 208 

occurrence frequency. The allocation stops when the area represented by 30-m open water pixels 209 

is equivalent to the fwLBand coverage of the overlying SMAP grid cell or only 30-m pixels with 210 

zero water occurrences remain. This approach allows for potential 30-m resolution binary 211 

(flooded or non-flooded) inundation area maps to be defined globally at a near daily time step 212 

consistent with SMAP observations and WOD spatial coverage. However, for this study we only 213 

conducted the fw spatial downscaling and assessments for selected sub-regions and paired 214 

seasonal wet and dry snapshots.   215 

2.2. Study Domain and Data Utilized   216 

2.2.1 Study domain 217 

This study focuses on SMAP fwLband retrieval over the global terrestrial domain, excluding 218 

permanent ice and snow covered areas. Six major river basins within the continental US 219 

(CONUS) were also selected for comparing the fwLBand results against basin river discharge (Q) 220 
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measurements (Section 2.2.3). The selections include the Sacramento, Rio Grande, Des Moines, 221 

Cumberland, Apalachicola and Minnesota basins (Fig. 1); these basins are defined by U.S. 222 

Geological Survey (USGS) hydrologic units (Seaber et al., 1987), delineated using the USGS 223 

Watershed Boundary Database (Berelson et al., 2004; WBD, 2004). For the Rio Grande, four 224 

smaller hydrologic catchments (Headwaters, Elephant Butte, Mimbres and Amistad) were 225 

examined within the larger basin, corresponding to drainage areas represented by the available 226 

river discharge measurement stations (Fig. 1). The six large river basins cover a diversity of 227 

climate, hydrologic and ecological conditions. The Apalachicola basin contains significant areas 228 

of forests with high biological diversity (White et al., 1998), while large portions of the 229 

Sacramento and Des Moines basins are dominated by croplands and intensive agriculture 230 

(Georgakakos et al., 1998). The Minnesota basin is affected by significant winter snow cover and 231 

seasonal freeze-thaw events (Cherkauer and Lettenmaier, 1999), while the Rio Grande basin is 232 

characterized by a semi-arid climate and strong vertical gradients in precipitation and vegetation 233 

(Klein and Barnett, 2003). Flow regulations by major dams across the Rio Grande (Graf, 1999), 234 

Sacramento (Singer, 2007) and Des Moines (Georgakakos et al., 1998) rivers strongly influence 235 

the observed seasonal river discharge in these basins relative to natural flow conditions. 236 

Three other sub-regions were used for quantitative comparisons between the 30-m downscaled 237 

fwLBand data and independent water cover maps derived from Landsat-8 imagery. The three 238 

sub-regions (region 1 centered at -143.79°, 66.91°; region 2 centered at -93.88°, 38.89°; region 3 239 

centered at -91.28°, 31.73°) are distributed across a North American latitudinal gradient 240 

extending from the Alaskan arctic to the US southern coastal plain (Fig. 1). Each sub-region 241 
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represented a ~31,450 km2 area consistent with the size of a single Landsat scene. The selected 242 

sub-regions included portions of the lower Mississippi River Valley that experienced major 243 

flooding during the 2015/2016 winter season (Emerton et al., 2017). A smaller area (0.1°× 0.1° 244 

rectangle centered at -91.55°, 31.27°) within region 3 was selected for evaluating the finer scale 245 

inundation patterns. 246 

 247 

Fig.1 Location of six river basins and three regions used in the evaluation of SMAP L-band fractional water inundation (fwLBand) 248 

dynamics and fwLBand downscaled results at 30-m resolution, respectively. The river basins include the Sacramento (dark purple), 249 

Des Moines (light purple), Cumberland (dark blue), Rio Grande (light blue), Minnesota (dark green) and Apalachicola (light 250 

green) basins, with river discharge stations indicated by red star symbols. The three regions (red rectangles) are defined by 251 

individual Landsat-8 image scenes, while a smaller (0.1°× 0.1°) area (blue dot) was used to highlight finer inundation details in 252 

region 3. 253 

 2.2.2 Datasets used for Algorithm Development 254 

The fwLBand algorithm approach developed in this study uses synergistic inputs from several 255 

different satellite data records, including SMAP, AMSR2, MODIS and Landsat. Satellite L-band 256 

region 1 

region 2 

region 3 
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(1.4 GHz), H-pol microwave Tb observations from the NASA SMAP mission provide primary 257 

information for delineating fw cover in the algorithm. Surface soil moisture conditions 258 

potentially influencing the SMAP Tb and fw retrievals were defined from the AMSR LPDR 259 

(version 2; Du et al., 2017). Daily Ts potentially influencing the SMAP Tb and fw retrievals were 260 

defined from the GEOS-5 forward processing system (De Lannoy et al., 2013; Chan et al., 261 

2016a). A Boston University MOD12Q1 V004 MODIS 1 km IGBP land cover classification 262 

(Friedl et al., 2002) was used to identify permanent water bodies and associated surface water 263 

dominant grid cells for establishing the LUT used for the coarser SMAP fw retrievals (section 264 

2.1.1). The global WOD is derived from a 32-year Landsat historical image archive (Pekel et al., 265 

2016) and was used for spatial downscaling of the SMAP 36-km resolution fwLBand retrievals to 266 

30-m resolution over the selected sub-regions.  267 

The NASA SMAP satellite provides global vertically (V) and horizontally (H) polarized 268 

microwave Tb observations over land and ocean with descending/ascending orbital equatorial 269 

crossings at 6:00 AM/PM local time extending from 31 March 2015 to the present (Entekhabi et 270 

al., 2010). The SMAP observations have enhanced microwave L-band sensitivity to surface and 271 

soil moisture conditions under low to moderate vegetation cover within approximately 5 kg/m2 272 

of above-ground vegetation biomass water content, relative to optical-IR and higher frequency 273 

microwave sensors (Chan et al., 2016a). For this study, we used the 19-month (June 2015 to 274 

December 2016) SMAP Level-1C half-orbit ascending and descending Tb record (SPL1CTB 275 

version 3) for mapping global fw dynamics. The SPL1CTB Tb data are provided in a 36 km 276 

resolution global EASE-Grid v2 projection similar to the native sensor footprint (Chan et al., 277 
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2016a), while the resulting fwLBand record was derived in the same resolution and projection 278 

format.  279 

The AMSR2 portion of the LPDR is temporally overlapping with SMAP observations and 280 

was used to define other environmental factors potentially affecting the SMAP fw retrievals. 281 

The LPDR exploits calibrated AMSR multi-frequency Tb observations for global daily mapping 282 

of multiple synergistic atmosphere and land parameters (Du et al., 2017). No LPDR daily 283 

retrievals are available for days with active precipitation or areas with identified X-band Radio 284 

Frequency Interference (RFI); the LPDR also excludes snow and frozen surface conditions, and 285 

large water bodies covering more than half of a 25-km grid cell (Du et al., 2017). Since the 286 

atmosphere is almost transparent to SMAP L-band observations (O'Neill et al., 2016), only 287 

LPDR VOD and mv data, which account for the influence of dynamic surface water (fwKBand) 288 

variations on the microwave signal, were used to represent vegetation and soil moisture 289 

conditions in the SMAP fwLBand retrievals; here, the AMSR2 X-band VOD and mv retrievals are 290 

used as a proxy for similar conditions influencing the SMAP L-band Tb observations.  291 

The Tl processed for SMAP from GEOS-5 Ts represents the effective soil temperature within 292 

the L-band penetration depth (Holmes et al., 2012; Chan et al., 2016a) and is provided with the 293 

NASA SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture product Version 4 294 

(SPL3SMP) (O'Neill et al., 2016). To evaluate the uncertainty associated with the assumption of 295 

Tw ≈ Tl, alternative surface water temperature (Twater) inputs were tested for the fwLBand retrieval. 296 

Here Twater was calculated using the GEOS-5 hourly surface temperature analysis (Tsurf) 297 

averaged over each entire grid cell; surface temperature for land tiles only (Tland); and a static 298 
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data set describing fractions of land (FRland), permanent water (FRwater) and permanent ice 299 

(https://opendap.nccs.nasa.gov/dods/GEOS-5/fp/0.25_deg/assim).  300 

The WOD is derived from Landsat imagery extending from 1984 to 2015 (Pekel et al., 2016). 301 

The WOD provides a consistent characterization of Landsat derived surface water inundation 302 

persistence over the historical sensor record, while open water occurrence is expressed as a 303 

percentage of the available Landsat observations over time identified as water covered (Pekel et 304 

al., 2016). The WOD data used for this study were obtained in a native 0.00025 degree 305 

resolution geographic projection format, representing approximately 30-m spatial resolution.  306 

2.2.3 Datasets used for global fwLBand validation  307 

The fwLBand results were compared with monthly Q observations for six major North 308 

American basins (Section 2.2.1), and detailed observations for selected sub-regions, including 309 

30-m open water maps defined from Landsat-8 imagery. A global comparison of the SMAP 310 

fwLBand results was conducted against other global fw, land cover and vegetation maps from the 311 

MODIS-SRTM (MOD44W) static open water database (Carroll et al., 2009), the LPDR fwKBand 312 

retrievals derived from AMSR2 (Du et al., 2017), and an estimated L-band nadir VOD record 313 

included with the SMOS Level 3 (CLF31) soil moisture product (Al Bitar et al., 2017).  314 

Monthly Q measurements (June 2015 to December 2016) were obtained from downstream 315 

stations within the six US river basins (USGS, 2001) (Fig. 1) for evaluating fwLBand seasonal 316 

dynamics; here, we assume that seasonal variations in surface water storage defined from the 317 
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SMAP fw record are proportional to river discharge from the major basins (Yamazaki et al., 2011; 318 

Du et al., 2016).  319 

For validating the downscaled fwLBand results and inundation dynamics, a 30-m resolution land 320 

and water mask was derived from selected Landsat-7 Enhanced Thematic Mapper Plus (ETM+), 321 

Landsat-8 Optical Land Imager (OLI) and Thermal Infrared Sensor (TIRS) scenes for each 322 

sub-region using Fmask software (version 3.3) (Zhu et al., 2015). The Fmask algorithm shows 323 

high accuracy in classifying land, water, cloud, and cloud shadow with a documented 2% 324 

omission error and 14% commission error (Zhu and Woodcock, 2014). The paired Landsat 325 

scenes acquired for each sub-region represent seasonal wet and dry conditions depicted by the 326 

Fmask classification results, and meet requirements for having less than 10% cloud coverage and 327 

best image quality as indicated in the Landsat-8 metadata files.  328 

The SMAP derived inundation dynamics were evaluated over the lower Mississippi River 329 

Valley sub-region (region 3) by comparing the fwLBand results against independent 14-day, 250-m 330 

resolution water occurrence maps (14x3D3OT; version 6.2) from the NASA MODIS near 331 

real-time global flood mapping product (https://floodmap.modaps.eosdis.nasa.gov) (Brakenridge 332 

and Anderson, 2006; Nigro et al., 2014). The 14-day MODIS flood product is derived from 333 

multiple 3-day products and has less cloud cover impacts than a single 3-day product (Nigro et al., 334 

2014). A prior assessment of the MODIS dynamic flood record indicates that the 3-day product 335 

was successful in capturing flooded areas, with 44% of flood events classified with good, 336 

excellent or almost perfect accuracy, 23% of events classified as poor or fair, and 33% of events 337 

undetermined due to cloud contamination (Nigro et al., 2014).  338 
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The 250-m resolution MOD44W product is derived from a compilation of the SRTM (Shuttle 339 

Radar Topography Mission) Water Body dataset (SWBD) and the MODIS (MOD44C) 340 

Collection 5 (2000–2002) open water classification product (Carroll et al., 2009). The static 341 

global water body map derived from MOD44C data has a reported 2% commission error in the 342 

region between 60° and 90° N in North America relative to the National Land Cover Dataset 343 

(NLCD) (Carroll et al., 2009).  344 

The AMSR LPDR fwKBand record is capable of monitoring global water inundation dynamics 345 

(Du et al., 2017), but is expected to have different sensitivity to surface water than the SMAP 346 

fwLBand retrievals owing to different sensor view geometries and frequency dependent sensitivity 347 

to surface conditions and vegetation cover. The annual mean (June 2015 – May 2016) of the 348 

descending SMOS Level 3 nadir VOD record (6:00 PM equatorial crossing time) was used in 349 

evaluating the SMAP ascending orbit fwLBand record and relative differences with other fw 350 

records over the global domain. The microwave VOD parameter is a measure of the attenuation 351 

of microwave radiation by the vegetation canopy (Fernandez-Moran et al., 2017), which is a 352 

frequency-dependent function of vegetation water content (VWC) (Jackson and Schmugge, 1991; 353 

Jones et al., 2013). The Level 3 SMOS daily VOD record was derived simultaneously with soil 354 

moisture from dual polarization (H, V) and multi-angular SMOS measurements (Wigneron et al., 355 

2007; Kerr et al., 2012), and optimized using a multi-orbit approach considering temporal 356 

auto-correlation of vegetation optical depth (Al Bitar et al., 2017). 357 

2.2.4 Data processing 358 
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 For generating the fwLBand estimates, the SMAP Tb data were averaged from SPL1CTB 359 

fore-looking and aft-looking Tb observations, which were not corrected for open water effects as 360 

those processed for the SPL3SMP soil moisture retrievals. The SMAP SPL1CTB half-orbit files 361 

for each day were composited to a global 36-km EASE-Grid v2 format. For a given grid cell 362 

having multiple SPL1CTB data points represented, the data point with local solar time nearest to 363 

the SMAP orbital equatorial crossing time was selected for the daily composite, similar to the 364 

process used to derive the SMAP SPL3SMP product (Chan et al., 2016a). The above processing 365 

was carried out separately for SMAP ascending and descending orbit data. The AMSR2 LPDR 366 

VOD and mv record was reprocessed from the original 25-km EASE-Grid v1 projection format 367 

(Armstrong and Brodzik, 1995; Ashcroft and Wentz, 1999) to the SMAP 36-km EASE-Grid v2 368 

format (Brodzik et al., 2012; Brodzik et al., 2014) using Nearest Neighbor resampling. In 369 

addition, a temporal linear interpolation approach was used to gap-fill missing daily AMSR2 370 

LPDR grid cell observations using temporally adjacent LPDR retrievals (Kim et al., 2012). The 371 

LPDR interpolation enables the utilization of all available SMAP observations for global fwLBand 372 

mapping despite possible mismatch between SMAP and AMSR2 swath coverages, though the 373 

underlying assumption of temporally linear changes of VOD and mv may lead to additional 374 

retrieval uncertainties. Due to overlapping SMAP polar orbital swaths, there is greater fwLBand 375 

temporal coverage (~ 1 to 2 days) at higher latitudes (>45°) relative to the equatorial zones (~3 376 

days).  377 

Similar to the AMSR LPDR, the SMOS VOD and GEOS-5 Twater records were re-sampled to 378 

a 36-km EASE-Grid v2 format using the Nearest Neighbor method. The 1-km MODIS land 379 
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cover and 250-m MOD44W data were also re-projected to the same 36 km EASE-Grid v2 380 

format consistent with the fwLBand results.  381 

2.3. Evaluation of the fwLBand Retrievals 382 

 A global fw comparison was conducted using the MOD44W static water map and one-year 383 

(June 2015 to May 2016) averages of SMAP fwLBand and AMSR2 fwKBand results. Quantitative 384 

metrics used to evaluate the relationships included correlation coefficient (R), root mean square 385 

difference (RMSD) and mean difference. The global inundation areas derived from MOD44W, 386 

fwLBand, and fwKBand annual averages were also compared under different vegetation biomass 387 

levels indicated by the SMOS VOD map.  388 

  In addition, the fwLBand dynamics were examined using fwLBand monthly mean values and 389 

corresponding monthly Q records for the six CONUS river basins over the 1.5-year study period 390 

(June 2015 to December 2016). To ensure consistent basin coverage in space and time, the 391 

fwLBand monthly composites were generated from daily fwLBand retrievals covering over 75% of a 392 

given basin area at least six times per month. Correlations between monthly Q and 393 

basin-averaged fwLBand were then evaluated for each basin.  394 

  The downscaled 30-m fwLBand results were validated against corresponding Landsat-8 (OLI and 395 

TIRS) based land and water classifications for the three selected sub-regions. For each 396 

sub-region, the fwLBand accuracy relative to Landsat-8 in discriminating water and land pixels at 397 

30-m resolution was summarized for two Landsat acquisition dates with contrasting dry and wet 398 

surface conditions. The metrics for accuracy assessment include commission error, omission 399 
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error and overall accuracy. Considering Nji represents the number of the pixels belonging to 400 

feature j but classified as feature i, the commission error for feature j is Nij/(Njj+Nij), the omission 401 

error for feature j is Nji/(Njj+Nji), and overall accuracy is (Nii+Njj)/(Nii +Njj+Nij+Nji). No 402 

comparisons were made for pixels identified as cloud covered or cloud shadowed by the Landsat 403 

Fmask algorithm. 404 

  The downscaled results over the lower Mississippi River Valley (region 3 in Fig.1) obtained 405 

from 14-day fwLBand averages from June 1, 2015 to May 31, 2016 were compared with MODIS 406 

14-day water occurrence maps generated from the NASA near real-time flood mapping system, 407 

Landsat 8 OLI and Landsat 7 ETM+ land and water classifications derived from the Fmask 408 

algorithm. The striped data degradation areas in the ETM+ images were excluded from the 409 

analysis. 410 

2.4.Estimation of fwLBand Uncertainty 411 

The assumption of Tw ≈ Tl (section 2.1.1) was evaluated by comparing differences between 412 

15-day fwLBand retrievals over July 1-15, 2015 derived using Tw ≈ Tl and those estimated using Tw 413 

≈ Twater. The GEOS-5 Twater is calculated for grid cells without permanent snow and ice as: 414 

Twater = (Tsurf - FRland · Tland) / FRwater              (3) 415 

The 36-km fwLBand algorithm uncertainties strongly depend on the accuracy of the LUT 416 

reference emissivities and AMSR2 LPDR temporal interpolation. These uncertainties were 417 

quantified by considering the standard deviation (SD) of each LUT reference emissivity and 418 

comparing fwLBand results derived with and without LPDR interpolation. The emissivity SDs for 419 
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pure land endmembers were acquired while assembling the global LUT (section 2.2.2). An 420 

additional process was performed for identifying water endmembers and their corresponding 421 

SDs. Pure water endmembers were assigned if the 36-km SMAP grid cells over land were 422 

designated as open water bodies in the ancillary MODIS IGBP land cover map and if the fwKBand 423 

value of the nearest AMSR2 25-km grid cell was over 75%. The associated SDs derived from the 424 

water endmembers are assumed representative of the uncertainty associated with variations in 425 

water salinity and surface roughness, which are not accounted for in the theoretically calculated 426 

LUT reference values.  427 

We assumed that the fwLBand retrievals are impacted by random errors associated with the 428 

reference emissivity SDs and follow a normal distribution; we also assumed that the retrievals 429 

are affected by LPDR interpolation uncertainties. The estimated “true” fwLBand retrievals were 430 

then derived using the same LUT approach, but with reference emissivity random errors 431 

subtracted and using un-interpolated LPDR inputs. The resulting algorithm uncertainties were 432 

then represented by the differences between one-year (June 2015 to May 2016) composites of the 433 

estimated “true” and baseline fwLBand retrievals for the major MODIS IGBP land cover classes 434 

over the global domain. Other uncertainties associated with fwLBand retrievals obscured by 435 

overlying vegetation (VOD) and the fwLBand downscaling process are discussed separately 436 

(Section 4).  437 

 438 
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3. RESULTS  439 

 440 

3.1. Comparisons of fwLBand, fwKBand and MOD44W 441 

The annual mean SMAP fwLBand results (Fig. 2a) show similar global inundation patterns 442 

relative to the AMSR2 fwKBand retrievals (Fig. 2b) and MOD44W global water map (Fig. 2c). All 443 

three products show extensive wetland complexes in northern Canada and Eurasia, and along 444 

major river systems such as the Amazon, Yangtze and Lena. The SMAP fwLBand mean annual 445 

composite corresponds favorably with the MOD44W open water map (R=0.85, RMSD=0.064, 446 

p<0.001), while the SMAP retrievals are wetter, with a mean difference of 0.032. The above 447 

results are based on SMAP ascending orbit fwLBand estimates while alternative estimates derived 448 

from descending orbit observations show similar, but slightly lower correspondence with 449 

MOD44W (R=0.80). Therefore, the following analysis is based on ascending results only. For 450 

temporal consistency, fwKBand results derived from AMSR2 ascending orbit (equator crossing 451 

time 1:30 PM) observations were used in this study. The AMSR2 fwKBand results show similar 452 

strong correspondence (R=0.81, RMSD=0.058) and a smaller mean wet difference (0.010) 453 

relative to the MOD44W record. In contrast to the static MOD44W map (Fig. 2c), significant 454 

inundation presence was detected by both the fwLBand and fwKBand observations in areas associated 455 

with more recent flooding during the 2015-2016 observation period, including the Mississippi 456 

river valley, South American Pampas, Ganges river delta, and lower Yangtze river valley (Fig. 457 

2a and 2b). The high inundation levels observed by SMAP in southeastern South America and 458 

central Asia (Fig. 2a) were consistent with documented climate patterns of 2015-2016 including 459 
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severer flooding in South America and abnormally wet conditions observed for central Asia 460 

(Blunden et al., 2016; Blunden et al., 2017). Comparisons were also made between SMAP fwLBand 461 

and MOD44W data for five latitude zones as summarized in the Supplementary material. 462 

The fwLBand record shows large seasonal inundation variability along major river corridors, 463 

including the Amazon, Darling, Euphrates, Mekong and Yenisei (Fig. 2d). Large fwLBand 464 

seasonal variations were also found over the Missouri and Mississippi basins, northern 465 

Venezuela, eastern Europe, west-central Asia, central and eastern China, the Indian sub-continent, 466 

Sahel region and southeastern Australia (Fig. 2d). The large fwLBand variations in these areas are 467 

consistent with characteristic seasonal wet and dry cycles, and anomalous flooding associated 468 

with 2015-2016 El Niño–Southern Oscillation (ENSO) activity (Emerton et al., 2017).  469 

Comparisons were also made between the fwLband, fwKband and MOD44W records for 36-km 470 

grid cells with low water fraction (MOD44W fw < 0.1). The correlation (R) between SMAP 471 

fwLBand and MOD44W under these low water conditions is reduced to 0.38, while a relatively 472 

strong correlation (R=0.62) still exists between the two dynamic products fwLBand and fwKband. 473 

Small water bodies may have large intra-annual and inter-annual variations (Song et al., 2014), 474 

which may contribute to the lower correspondence between dynamic and static inundation 475 

products. The retrieval errors translated from the uncertainties of reference land emissivity are 476 

proportional to the land fractional cover and larger retrieval uncertainties are also expected in 477 

regions with little water presence.    478 
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 480 
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 483 

(a) fwLBand 

(b) fwKBand 

(c) MOD44W 
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 484 

 485 

Fig. 2. Comparison of global fractional water products derived from: (a) SMAP L-band retrievals (fwLBand), (b) AMSR2 K-band 486 

retrievals (fwKBand), and (c) MOD44W surface water map. The SMAP fwLBand and AMSR2 fwKBand results represent June 2015 to 487 

May 2016 time averages, while the SMAP fwLBand seasonal variation (SD) is also shown (d). The SMAP fwLBand data are in a 36 488 

km global EASE-Grid (v2) format, while the fwKBand and MOD44W products were spatially aggregated from their respective 489 

25-km and 250-m native resolutions to the same 36 km EASE (v2) grid as the fwLBand results.  490 

The fwLBand, fwKBand and MOD44W results are expected to be less able to detect standing 491 

water under increasing vegetation cover due to the obstruction of satellite observations by 492 

intervening vegetation biomass. The sensitivity of the fwLBand retrievals to vegetation cover is 493 

also expected to be less than the fwKBand or optical-IR observations due to the greater vegetation 494 

transparency of L-band microwave emissions. The estimated global surface water inundation 495 

results were compared under different vegetation biomass conditions represented by the SMOS 496 

VOD map (Fig. 3). The fwLBand results show greater surface water cover than fwKBand and 497 

MOD44W under low to moderate vegetation levels, while the product differences are smaller for 498 

more densely vegetated areas (e.g. VOD ≥0.9), which are mainly covered by evergreen broadleaf 499 

forests (Fig. 3b, 3c). All three surface water products show a general inundation increase with 500 

VOD in sparsely vegetated areas (VOD<0.2), followed by a decline in inundation under higher 501 

VOD levels. The global fw and VOD pattern is consistent with generally sparse vegetation cover 502 

(d) fwLBand seasonal variation 
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and lower inundation levels in arid climate zones, whereas the declining fw trend at higher VOD 503 

levels may reflect increasing limitations of the satellite observations to detect surface inundation 504 

in more densely vegetated areas. While the fwLBand results indicate potentially enhanced L-band 505 

sensitivity to standing water under low to moderate vegetation cover, similar fwLBand, fwKBand and 506 

MOD44W results at higher VOD levels indicate minimal added value of the fwLBand retrievals in 507 

more densely vegetated areas, including forests. These results may explain lower-than-expected 508 

inundation levels in wet tropical forest areas, including Amazonia, central Africa and Southeast 509 

Asia (e.g. Fig. 2).  510 

 511 

 512 

 513 

(a) 

(b) 
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 514 

Fig.3 Comparisons of annual mean (June 2015 to May 2016) global water inundation areas derived from MOD44W, AMSR2 515 

fwKBand, and SMAP fwLBand records plotted against the global mean annual gradient in L-band vegetation optical depth (VOD) 516 

from SMOS (a). The SMOS VOD annual averages (b) were processed from the daily VOD record included in the official SMOS 517 

Level 3 soil moisture product. The VOD retrievals exclude ocean (blue), permanent snow and ice (white) and desert regions (dark 518 

grey). The MODIS IGBP global land cover map (c) is presented including regions with VOD ≥ 0.9 (hatch patterns) where there 519 

the SMAP fwLBand retrievals are degraded by dense vegetation and show no meaningful difference from the other surface water 520 

products. All products were converted to the same 36 km EASE-Grid (v2) format consistent with the fwLBand and VOD results. 521 

 522 

3.2. Comparisons Between fwLBand and River Discharge Data  523 

River discharge (Q) and surface water inundation are integral components of the hydrological 524 

cycle and are closely connected with each other. Both Q and fw are sensitive to seasonal and 525 

inter-annual climate variations, and are affected by precipitation, evaporation and seasonal 526 

freeze/thaw transitions within a basin (McClelland et al., 2004; Watts et al., 2012). The 527 

basin-average fwLBand results were compared with associated Q observations at the outlets of the 528 

six CONUS river basins examined (Fig. 1). The monthly fwLBand results were significantly and 529 

positively correlated with the monthly Q observations (mean R=0.70 across the six basins) (Fig. 530 

(c) 
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4). The Apalachicola river basin showed the strongest correlation (R=0.86) (Fig. 4a) among all 531 

basins examined, due to temporal consistency between river flow peaks and maximum 532 

inundation areas for this basin. Relatively low correlation (R=0.56) was found for the Des 533 

Moines river basin, where a temporal phase shift of fwLBand relative to Q occurred in the summer 534 

seasons (Fig. 4c). Missing monthly fwLBand estimates for the Des Moines and Minnesota basins 535 

(Fig. 4c and 4d) reflect predominantly frozen conditions in the winter months for these areas, 536 

since no fwLBand retrievals were made under frozen conditions. In addition, comparisons between 537 

SMAP fwLBand and river discharge data were made for Amazon river basin as described in the 538 

Supplementary material. 539 

540 

541 

  542 

Fig.4 Monthly mean river discharge (Q, m3/s) and corresponding inundation areas (km2) derived from SMAP 36 km fwLBand 543 

monthly averages for the Apalachicola (a), Cumberland (b), Des Moines (c), Minnesota (d), Rio Grande (e), and Sacramento (f) 544 

river basins over the June 2015 to December 2016 record. Temporal gaps in the time series denote either missing Q observations 545 

or frozen conditions when no fwLBand retrievals were made. 546 

(d) 

(a) (b) 

(c) 

(e) (f) 
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3.3. Comparisons between 30-m fwLBand downscaled retrievals and Landsat-8 results 547 

The downscaled fwLBand retrievals exhibit spatial details of inundation patterns consistent with 548 

30-m Landsat-8 (OLI, TIRS) observations representing seasonal dry and wet conditions within 549 

the three sub-regions (Fig. 5-7). In particular, major winter flooding events associated with 550 

2015-2016 ENSO activity (Section 3.1; Fig.2a) in the lower Mississippi River Valley were 551 

captured by both datasets as widespread inundation was shown in the region for Jan. 16, 2016 552 

(Fig. 7c and 7d) in contrast to the dry conditions illustrated in the Jul. 24, 2015 images (Fig. 7a 553 

and 7b). The inundation details for the selected focus area in region 3 confirm similar seasonal 554 

surface water patterns between the downscaled 30-m SMAP fwLBand results and corresponding 555 

surface water maps from Landsat-8 (Fig. 8). Quantitative assessment of the fwLBand downscaled 556 

data shows overall favorable agreement with the Landsat-8 results, with respective 30-m fwLBand 557 

mean spatial classification accuracies of 70.71% for water and 98.99% for land pixels (Table 2). 558 

For all regions, the 30-m fwLBand classification accuracy for water pixels was lower (mean 559 

accuracy 62.23%) under dry conditions than for flooded conditions (mean accuracy 79.19%). 560 

The average fw values detected by SMAP and Landsat-8 for the three regions are 3.07% and 561 

2.92%, respectively. The fwLBand results show an overall 0.15% or relative 5.1% higher estimated 562 

inundation than Landsat-8, consistent with the previous analysis (Section 3.1 and Fig. 3); 563 

however, the river channel gaps shown in the SMAP downscaled results (Fig.6a and 7a) indicate 564 

possible uncertainties associated with the fwLBand retrieval and downscaling algorithms, which are 565 

discussed in Section 4.    566 

 567 
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Table 2  568 

Water and land spatial classification accuracy of 30-m downscaled results relative to the corresponding 569 

classifications derived from Landsat-8 (OLI, TIRS) imagery. 570 

 571 

       Land Water Total 

Location and Date Commission 

Error 

Omission 

Error 

Commission 

Error 

Omission 

Error 

Overall 

Accuracy 

Region 1, Aug. 04, 2015 0.67% 0.54% 29.89% 34.66% 98.82% 

Region 1, Sep. 05, 2015 0.57% 0.75% 25.72% 20.83% 98.72% 

Region 2, Oct. 01, 2015 0.65% 0.34% 28.78% 43.63% 99.02% 

Region 2, Dec. 04, 2015 0.38% 1.02% 33.38% 15.53% 98.64% 

Region 3, Jul. 24, 2015 0.98% 1.20% 44.37% 39.36% 97.88% 

Region 3, Jan. 16, 2016 1.96% 1.91% 26.62% 27.17% 96.40% 

    Overall  0.87% 0.96% 31.46% 30.20% 98.24% 

  572 

   573 

Fig.5 SMAP downscaled results (a, c) and Landsat-8 (OLI, TIRS) (b, d) classifications of surface water (blue) and land (white) 574 

pixels for region 1 (Alaska) on Aug. 04, 2015 and Sep. 05, 2015, representing relatively dry and wet conditions. Cloud pixels in 575 

the Landsat results are marked by grey shading. SMAP classifications were based on 30-m results downscaled from the 36-km 576 

(a) Downscaled result (Aug. 04,2015) 

(c) Downscaled result (Sep. 05,2015) (d) Landsat-8 (Sep. 05,2015) 

 

(b) Landsat-8 (Aug. 04,2015) 
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fwLBand record using the climatological Landsat-based Water Occurrence Dataset. Landsat-8 classifications were derived using the 577 

Fmask algorithm (Zhu et al., 2015). 578 

 579 

 580 

Fig.6 SMAP downscaled results (a, c) and Landsat-8 (OLI, TIRS) (b, d) classifications of water (blue) and land (white) pixels for 581 

region 2 (western Missouri) on Oct. 01, 2015 and Dec. 04, 2015, representing relatively dry and wet conditions. Cloud pixels in 582 

the Landsat results are marked by grey shading. 583 

 584 

  585 

(a) Downscaled result (Oct.01, 2015) 

(c) Downscaled result (Dec.04, 2015) 

(b) Landsat-8 (Oct.01, 2015) 

(d) Landsat-8 (Dec.04, 2015) 

 

(a) Downscaled result (Jul.24, 2015) (b) Landsat (Jul.24, 2015) 
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 586 

Fig.7 SMAP downscaled results (a, c) and Landsat-8 (OLI, TIRS) (b, d) classifications of water (blue) and land (white) pixels for 587 

region 3 (lower Mississippi River Valley) on Jul. 24, 2015 and Jan. 16, 2016, representing relatively dry and wet conditions. 588 

Cloud pixels in the Landsat results are marked by grey shading. 589 

 590 

 591 

    592 (a) Downscaled result (Jul.24, 2015) (b) Landsat-8 (Jul.24, 2015) 

(c) Downscaled result (Jan.16, 2016) (d) Landsat (Jan.16, 2016) 
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    593 

 594 

Fig.8 SMAP downscaled results (a, c) and Landsat-8 (OLI, TIRS) (b, d) classifications of water (blue) pixels overlaid on Google 595 

Earth images (Google imagery date 12/07/2014) over a selected focus area (0.1°× 0.1° rectangle centered at -91.55°, 31.27°) 596 

within region 3 and representing respective seasonal dry and wet conditions for Jul. 24, 2015 and Jan. 16, 2016.  597 

3.4. Comparisons between Dynamic Inundation Products 598 

To evaluate the ability of the SMAP retrievals to capture fw dynamics, comparisons were 599 

made between available Landsat water and land classifications, MODIS near real-time global 600 

flood mapping products and SMAP downscaled retrievals for the lower Mississippi River Valley 601 

sub-region. The resulting comparisons show overall similar inundation patterns and seasonal 602 

dynamics (Fig. 9) among the three products (R= 0.63 between MODIS and SMAP; 0.70 between 603 

OLI/ETM+ and SMAP; and 0.80 between MODIS and OLI/ETM+). The dry-down process from 604 

June to September 2015 as well as the Texas and Louisiana flooding event with losses exceeding 605 

one billion dollars in March 2016 (Blunden et al., 2017) are captured in the SMAP results and 606 

also represented in the Landsat classifications. All three products respond to the winter flooding 607 

of the region from December 2015 to January 2016 (Holmes et al., 2016) and show peak 608 

(c) Downscaled result (Jan.16, 2016) (d) Landsat-8 (Jan. 16, 2016) 
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inundation in January 2016. Considering the presence of vast woody wetland in the region (King 609 

and Keeland, 1999), the prolonged high inundation level observed by SMAP from December 610 

2015 to January 2016 may reflect the higher sensitivity of SMAP L-band retrievals to water 611 

under the vegetation canopy. However, the relative wet bias from SMAP over the one-year 612 

period may also reflect the inability of the algorithm to distinguish standing water from saturated 613 

surface soil conditions, leading to possible fwLband overestimation.  614 

 615 

Fig. 9 Inundation dynamics derived from SMAP downscaled fw retrievals, the MODIS near real-time global flood mapping 616 

product, Landsat 7/ETM+ and Landsat 8/OLI water and land classifications over the lower Mississippi River Valley sub-region 617 

from June 2015 to May 2016, which encompasses a documented rainfall-driven extreme winter flood event. 618 

3.5. Uncertainty of fwLBand Retrievals  619 

The mean absolute difference between fwLBand 15-day (July 1-15, 2015) retrievals derived 620 

using the GEOS-5 water temperature inputs Tw ≈ Twater and alternative algorithm assumption Tw ≈ 621 

Ts was found to be negligible (0.001) over the globe. These results indicate that the fwLBand 622 

algorithm assumption for Tw ≈ Tl has a negligible impact on the global fwLBand performance. 623 
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The results of the fwLBand uncertainty analysis using error perturbation and un-interpolated 624 

LPDR inputs are summarized in Table 3. The overall fw estimation errors are within ± 0.82% 625 

over 89.45% of the global terrestrial domain, excluding permanent snow and ice. The lowest 626 

retrieval errors (<0.6%) are indicated for forests and wetlands, while the largest uncertainty is 627 

shown for urban areas (1.13%) followed by grasslands (1.00%), closed shrublands (0.99%) and 628 

croplands (0.96%). The estimated retrieval error for wetland areas is small (0.22%) in contrast to 629 

a previous investigation of AMSR-E 89 GHz fw retrievals over the northern high latitudes, where 630 

the largest retrieval uncertainty was found for wetlands (Du et al., 2016). Similar to the analysis 631 

for the global land domain, algorithm uncertainties were also estimated on a continental-basis. The 632 

corresponding fw estimation errors slightly fluctuate around the global mean level, with the 633 

smallest uncertainty (± 0.73%) for South America and the largest error (± 0.89%) for Oceania. 634 

The above uncertainty analysis assumes that open water bodies and other land features are 635 

spatially separated within a grid cell without overlapping each other. For densely vegetated areas 636 

where standing water is obscured by overlying vegetation, the fwLBand retrieval accuracy is likely 637 

degraded as implied from Fig. 3a and discussed in Section 4. 638 

 639 

 640 

 641 

 642 

 643 

 644 
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Table 3 645 

Summary of estimated 36 km fwLBand retrieval uncertainties for major global IGBP land cover types. The 646 

uncertainties are associated with the L-band LUT reference emissivity and temporal interpolation of the AMSR 647 

LPDR parameters. The original un-interpolated LPDR and random emissivity errors following a standard 648 

Normal Distribution with zero mean and Standard Deviation adopted from the LUT emissivity database were 649 

considered. 650 

 651 

IGBP Land Cover Type    MAE * RMSE* Proportion* 

Permanent wetlands 0.16% 0.22% 0.20% 

Deciduous needleleaf forest 0.36% 0.45% 0.63% 

Deciduous broadleaf forest 0.42% 0.50% 1.58% 

Mixed forests 0.41% 0.52% 4.73% 

Evergreen needleleaf forest 0.45% 0.58% 3.99% 

Evergreen broadleaf forest 0.51% 0.59% 10.09% 

Woody savannas 0.57% 0.67% 7.57% 

Barren or sparsely vegetated 0.67% 0.79% 13.75% 

   Cropland/natural vegetation mosaic 0.75% 0.88% 2.10% 

Open shrublands 0.75% 0.89% 18.42% 

Savannas 0.81% 0.91% 6.99% 

Croplands 0.77% 0.96% 9.03% 

Closed shrublands 0.90% 0.99% 0.52% 

      Grasslands 0.80% 1.00% 9.33% 

   Urban and built-up 0.87% 1.13% 0.49% 

*Overall Performance 0.67% 0.82% 89.45% 

 652 

* MAE is the spatial mean absolute error; RMSE is the root mean square error; Proportion is the areal 653 

proportion of the land cover category relative to the global land domain. Overall Performance represents the 654 

statistics made for all the pixels of the listed land cover types. 655 

   656 

4. DISCUSSION 657 

This investigation presents a new approach for satellite monitoring of global fw dynamics 658 

from SMAP, with enhanced L-band microwave sensitivity to surface water. This study also 659 

demonstrates potential downscaling of the SMAP fwLBand retrievals using synergistic information 660 
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from the Landsat historical record for finer (30-m) landscape delineation of fw inundation 661 

dynamics. The fwLBand results show overall spatial consistency with MOD44W, but with major 662 

differences in regions where large seasonal variations (e.g. Sahel Belt) or flooding events (e.g. 663 

lower Mississippi River Valley) occurred that were not represented by the static water map. In 664 

particular, widespread inundation along the lower Mississippi river highlighted in the SMAP 665 

fwLBand results (Fig. 2a and 2d) and also detected to a lesser extent by the AMSR2 fwKBand 666 

retrievals (Fig. 2b) coincides with major 2015/2016 winter flooding events in the region from 667 

documented ENSO driven rainfall extremes (Emerton et al., 2017). The positive fwLBand seasonal 668 

anomalies occurring over the Indian sub-continent (Fig. 2d) are consistent with abundant 669 

precipitation brought by the summer monsoon in this region. Of the two dynamic surface water 670 

products examined in this study, the fwLBand results show generally higher inundation levels than 671 

the fwKBand results (Fig. 2a and 2b), which is consistent with expected enhanced SMAP L-band 672 

sensitivity to surface water signals underlying vegetation relative to higher frequency (K-band) 673 

retrievals from AMSR2. The differences in global inundation areas estimated from MOD44W, 674 

fwKBand and fwLBand datasets (Fig. 3) illustrate their different capabilities in capturing water signals 675 

under varying vegetation conditions.  676 

Generally greater fwLBand inundation levels are consistent with the expected enhanced 677 

penetration ability of SMAP L-band observations relative to the AMSR2 K-band and MODIS 678 

optical-IR observations. Smaller differences among fwLBand, fwKBand and MOD44W in forested 679 

regions are consistent with reduced microwave sensitivity to surface water under dense 680 

vegetation. Similar to prior sensitivity studies using AMSR-E fwWBand retrievals (Du et al., 2016), 681 
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the SMAP fwLBand accuracy may be degraded by overlying vegetation, especially in areas with 682 

higher canopy density (e.g. forests), though the lower frequency L-band observations indicate 683 

improved sampling under low to moderate VOD levels, complementing other fw products 684 

derived from satellite optical-IR and higher frequency microwave observations.    685 

The fwLBand results show favorable temporal correspondence with monthly river discharge 686 

measurements and reflect consistent seasonal dry and wet cycles over the six basins examined. 687 

Though strongly correlated, differences in the dynamics of fw extent and downstream Q 688 

measurements are also expected because Q may vary independently from surface water storage 689 

fluctuations due to river regulation (Papa et al., 2008; Landerer et al., 2010; Watts et al., 2012). 690 

The seasonal phase difference in fwLBand and Q monthly time series for the Des Moines river 691 

basin (Fig. 4c) is likely caused by reservoir operations for flood risk management (Georgakakos 692 

et al., 1998). In addition, the correlation between downstream Q measurements and 693 

basin-average fw also depends on basin size and relative homogeneity of basin climatic and 694 

physical conditions (Du et al., 2016).   695 

The empirical downscaling of SMAP 36-km fwLBand retrievals using finer (30-m) scale surface 696 

water persistence maps from the historical Landsat record demonstrates a simple approach to 697 

incorporate coarser fw retrievals in delineating finer landscape level inundation. These results 698 

also demonstrate the potential added value of integrated satellite observations that leverage 699 

complementary information from different sensors; here, the downscaled fwLBand record 700 

combines enhanced L-band sensitivity and global 1-3 day repeat monitoring capabilities from 701 

SMAP with finer resolution water mapping capabilities from Landsat. The frequent temporal 702 
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sampling and the favorable accuracy of the downscaled 30-m fwLBand results indicate the strong 703 

potential for SMAP data to contribute to more effective monitoring of surface inundation 704 

dynamics and flood risk.  705 

Differences in fw patterns and associated classification accuracy between the fwLBand and 706 

Landsat-8 results are influenced by several factors, including uncertainties related to fwLBand and 707 

Fmask algorithms, potentially higher fw detection ability of SMAP over denser vegetated regions, 708 

and differences between Landsat-8 observed flooding during the 2015-2016 study period and 709 

ancillary 30-m WOD inundation patterns defined by the historical Landsat record used for 710 

fwLBand downscaling. The overall positive difference of fwLBand relative to the Landsat-8 results 711 

(section 3.3) may be due to higher fwLBand sensitivity to surface water under low to moderate 712 

vegetation cover than the optical-IR retrievals from Landsat, and uncertainties associated with 713 

the Fmask algorithm (Zhu and Woodcock, 2014). The fwLBand algorithm may also under- or 714 

over-estimate inundation areas when the predefined LUT reference emissivities deviate from 715 

“true” pure pixel emissivities. For example, the discontinuity of river channels delineated by the 716 

30-m fwLBand results (Fig. 6a and 7a) is caused by underestimated inundation within the overlying 717 

fwLBand 36-km grid cells. In addition to the quantified uncertainties in the 36-km fwLBand retrievals 718 

that may propagate into the downscaling process, additional errors may occur if a flooding event 719 

does not follow the same inundation likelihood of the recorded past, especially for regions 720 

having an extensive variety of surface inundation in both spatial and temporal dimensions. For 721 

example, the associated errors are expected to be larger in situations where an extreme flooding 722 

event exceeds the historical inundation record indicated from the Landsat WOD. Since the 723 
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Landsat WOD generally records the occurrence of open water without overlying vegetation, 724 

potential under-canopy water detected by the fwLBand may be mis-located in the downscaling 725 

process using WOD defined open water areas. The downscaling approach may be enhanced 726 

using a refined flood potential map which weights inundation by other topographic and 727 

hydrographic variables such as slope, distance from and elevation above the nearest water body, 728 

and other river network and basin boundary information (Galantowicz, 2002; AER, 2017; 729 

Fluet-Chouinard et al., 2015); the remotely sensed fwLBand retrievals may also be integrated with 730 

more detailed information from hydraulic models to improve accuracy (Bates, 2012). 731 

Inundation dynamics derived from MODIS, OLI/ETM+ and SMAP show similar temporal 732 

patterns and seasonal dynamics. The agreement between the optical and microwave remotely 733 

sensed inundations depends on the degree to which the microwave signal is affected by soil 734 

moisture, the amount of under-canopy flooding and the spatial and temporal distribution of 735 

flooded areas where scattered small water bodies or floods too short in duration may not be 736 

detected by optical sensors (Nigro et al., 2014).  737 

The overall algorithm uncertainty estimates are within ± 0.82% (RMSD), indicating generally 738 

reliable 36-km fwLBand retrievals for discriminating global surface inundation dynamics. The fw 739 

retrieval uncertainties are mainly associated with LUT reference emissivity and temporal 740 

interpolation of the ancillary AMSR LPDR. Reference LUT emissivities were derived under soil 741 

and vegetation conditions defined by LPDR X-band VOD and mv retrievals. Different from 742 

available SMOS and SMAP global land products, the AMSR LPDR retrievals account for the 743 

influence of surface water dynamics (Du et al., 2017). The LPDR mv retrievals show favorable 744 
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accuracy as assessed by watershed soil moisture measurements (0.63 ≤ R ≤0.84), while the 745 

LPDR VOD record corresponds strongly (R ≥ 0.88) with optical-IR derived Normalized 746 

Difference Vegetation Index (Du et al., 2017). However, the microwave soil penetration depth 747 

and VOD are frequency-dependent, and the inconsistency in orbital crossing time, observation 748 

geometry and frequency between AMSR2 and SMAP is expected to contribute uncertainty to the 749 

fwLBand estimates. In particular, larger estimated retrieval uncertainties (RMSE>0.91%) (Table 3) 750 

in croplands, closed shrublands and grasslands reflect lower correspondence between soil and 751 

vegetation conditions sensed by SMAP and AMSR2 under these land cover types; thus, 752 

enhanced SMAP sensitivity to soil moisture unaccounted for by AMSR2 may lead to fwLBand 753 

overestimation. The known RFI affecting both AMSR2 X-band and SMAP L-band Tb 754 

observations occurs mostly near densely populated locations and likely contributes to degraded 755 

fwLBand performance over urban areas (Njoku et al., 2005; Aksoy et al., 2016).  756 

The gridded SPL1CTB Tb data and resulting fwLBand retrievals are assumed uniformly 757 

representative of the 36-km grid cells. However, the native SMAP radiometer retrievals are 758 

acquired within an approximate 36 km x 47 km elliptical footprint (Piepmeier et al., 2016) and 759 

contain Tb contributions from adjacent areas outside of the fixed Earth grid cell, which can 760 

contribute fwLBand retrieval uncertainty depending on the Tb heterogeneity of the observed scene. 761 

Accordingly, fwLBand temporal variations associated with sensor geolocation changes are 762 

expected for grid cells along coastlines and large lake bodies.  763 

The algorithm uncertainty analysis in this study (section 2.4) is based on the assumption of 764 

exposed open water bodies surrounded by vegetation. Under this assumption, the lowest retrieval 765 
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errors (<0.6%) are expected in forested areas due to the large contrast between high emissivity 766 

forest and low emissivity water surfaces. In contrast, the fw accuracy is expected to decrease 767 

exponentially under higher VOD levels in situations where standing water is obscured by 768 

overlying vegetation cover (Du et al., 2016). The fw signal-to-noise is more sensitive to VOD for 769 

higher microwave frequency (e.g. 89 GHz) retrievals relative to lower frequency observations 770 

(Du et al., 2016), while the SMAP fwLBand results from this study show favorable performance 771 

under low to moderate VOD conditions (section 3.5). For open water under dense forests, strong 772 

microwave attenuation from the forest canopy may block the detection of underlying water 773 

signals from both L-band and higher microwave frequency observations (Fig. 3). These results 774 

are also consistent with a recent study for the Amazon basin, which shows SMOS Tb 775 

observations at lower incidence angles (e.g. 32°±5°) having shorter VOD slant paths that are 776 

more suitable to detect open water under dense forest than higher incidence angle observations 777 

(e.g. >47°±5°) (Parrens et al., 2017). The MODIS-SRTM (MOD44W) derived fw retrievals 778 

indicate similar degradation at higher VOD levels, while satellite optical-IR sensors are expected 779 

to have less sensitivity to surface water under sparse to moderate vegetation cover than 780 

microwave sensors (Smith, 1997).  781 

5. CONCLUSIONS  782 

Satellite mapping of global surface water inundation at high spatio-temporal resolutions are 783 

urgently needed for improving understanding of climate and disturbance related impacts on 784 

surface water storage and associated effects on land-atmosphere water, energy and carbon 785 
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exchange. In this study we present a new approach to estimate and downscale fw from SMAP 786 

L-band Tb observations, incorporating ancillary information from an existing AMSR2 land 787 

parameter record and ancillary fine scale (30-m) inundation patterns derived from Landsat 788 

historical image archives.  789 

The resulting SMAP 36-km fwLBand retrievals show strong agreement (R=0.85) with a 790 

MODIS-SRTM derived static water map (MOD44W) over the global domain. The fwLBand results 791 

also capture characteristic patterns and seasonal variations in open water inundation enabled by 792 

1-3 day global repeat observations from SMAP. The fwLBand retrievals also reveal anomalous 793 

regional inundation extremes consistent with documented ENSO-driven flooding that occurred 794 

during the 2015/2016 winter season. Compared to other available global fw records derived from 795 

optical-IR and higher-frequency microwave observations, the SMAP fwLBand retrievals show 796 

enhanced surface water detection by exploiting the greater L-band microwave sensitivity to 797 

surface water. While dynamic inundation products derived from optical and radar observations at 798 

moderate to high resolution are becoming increasingly available (Brakenridge and Anderson, 799 

2006; Nigro et al., 2014; Twele et al., 2016), the SMAP L-band observations provide consistent 800 

global coverage and frequent (3-day) sampling needed for more effective monitoring. These 801 

capabilities are especially valuable in areas where finer resolution retrievals from optical and 802 

radar sensors may be constrained by satellite orbital swath gaps, vegetation and cloud cover, 803 

complex terrain, and low solar illumination.  804 

The estimated 36-km fwLBand uncertainty contributed by the underlying algorithm is relatively 805 

small (within ± 0.82%) over the globe, while the actual fwLBand accuracy is more strongly 806 
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affected by and inversely proportional to overlying vegetation (VOD) cover. However, our 807 

results indicate that the SMAP fwLBand retrievals provide enhanced surface water detection and 808 

monitoring capabilities in most areas except under dense forest cover (VOD > 0.9). The 809 

empirically downscaled 30-m fwLBand results show favorable accuracy in discriminating land 810 

(commission error 31.46%, omission error 30.20%) and water (commission error 0.87%, 811 

omission error 0.96%) pixels relative to independent surface water classifications from Landsat-8 812 

(OLI, TIRS) imagery, suggesting potential SMAP utility for finer landscape level flood risk 813 

assessments.  814 

The global SMAP fwLBand record and the empirical downscaling approach described in this 815 

study provide science data support for a broad range of research and application communities, 816 

while providing baseline information for future NASA satellite missions addressing surface 817 

water monitoring, including NISAR and SWOT. In particular, the dynamic fwLBand record 818 

provides the potential for developing enhanced flood monitoring systems in conjunction with 819 

more detailed hydraulic modelling (Bates, 2012). The fwLBand retrievals also benefit the SMAP 820 

mission by providing a more direct measure of dynamic surface water cover variations that can 821 

strongly impact SMAP Tb and soil moisture observations.   822 
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Figure Captions 1232 

 1233 

Fig.1 Location of six river basins and three regions used in the evaluation of SMAP L-band fractional water inundation (fwLBand) 1234 

dynamics and fwLBand downscaled results at 30-m resolution, respectively. The river basins include the Sacramento (dark purple), 1235 

Des Moines (light purple), Cumberland (dark blue), Rio Grande (light blue), Minnesota (dark green) and Apalachicola (light 1236 

green) basins, with river discharge stations indicated by red star symbols. The three regions (red rectangles) are defined by 1237 

individual Landsat-8 image scenes, while a smaller (0.1°× 0.1°) area (blue dot) was used to highlight finer inundation details in 1238 

region 3. 1239 

 1240 

Fig. 2. Comparison of global fractional water products derived from: (a) SMAP L-band retrievals (fwLBand), (b) AMSR2 K-band 1241 

retrievals (fwKBand), and (c) MOD44W surface water map. The SMAP fwLBand and AMSR2 fwKBand results represent June 2015 to 1242 

May 2016 time averages, while the SMAP fwLBand seasonal variation (SD) is also shown (d). The SMAP fwLBand data are in a 36 1243 

km global EASE-Grid (v2) format, while the fwKBand and MOD44W products were spatially aggregated from their respective 1244 

25-km and 250-m native resolutions to the same 36 km EASE (v2) grid as the fwLBand results.  1245 

 1246 

Fig.3 Comparisons of annual mean (June 2015 to May 2016) global water inundation areas derived from MOD44W, AMSR2 1247 

fwKBand, and SMAP fwLBand records plotted against the global mean annual gradient in L-band vegetation optical depth (VOD) 1248 

from SMOS (a). The SMOS VOD annual averages (b) were processed from the daily VOD record included in the official SMOS 1249 

Level 3 soil moisture product. The VOD retrievals exclude ocean (blue), permanent snow and ice (white) and desert regions (dark 1250 

grey). The MODIS IGBP global land cover map (c) is presented including regions with VOD ≥ 0.9 (hatch patterns) where there 1251 

the SMAP fwLBand retrievals are degraded by dense vegetation and show no meaningful difference from the other surface water 1252 

products. All products were converted to the same 36 km EASE-Grid (v2) format consistent with the fwLBand and VOD results. 1253 

 1254 

Fig.4 Monthly mean river discharge (Q, m3/s) and corresponding inundation areas (km2) derived from SMAP 36 km fwLBand 1255 

monthly averages for the Apalachicola (a), Cumberland (b), Des Moines (c), Minnesota (d), Rio Grande (e), and Sacramento (f) 1256 

river basins over the June 2015 to December 2016 record. Temporal gaps in the time series denote either missing Q observations 1257 

or frozen conditions when no fwLBand retrievals were made. 1258 

 1259 

Fig.5 SMAP downscaled results (a, c) and Landsat-8 (OLI, TIRS) (b, d) classifications of surface water (blue) and land (white) 1260 

pixels for region 1 (Alaska) on Aug. 04, 2015 and Sep. 05, 2015, representing relatively dry and wet conditions. Cloud pixels in 1261 

the Landsat results are marked by grey shading. SMAP classifications were based on 30-m results downscaled from the 36-km 1262 

fwLBand record using the climatological Landsat-based Water Occurrence Dataset. Landsat-8 classifications were derived using the 1263 

Fmask algorithm (Zhu et al., 2015). 1264 

 1265 

Fig.6 SMAP downscaled results (a, c) and Landsat-8 (OLI, TIRS) (b, d) classifications of water (blue) and land (white) pixels for 1266 

region 2 (western Missouri) on Oct. 01, 2015 and Dec. 04, 2015, representing relatively dry and wet conditions. Cloud pixels in 1267 

the Landsat results are marked by grey shading. 1268 

 1269 



 64 

Fig.7 SMAP downscaled results (a, c) and Landsat-8 (OLI, TIRS) (b, d) classifications of water (blue) and land (white) pixels for 1270 

region 3 (lower Mississippi River Valley) on Jul. 24, 2015 and Jan. 16, 2016, representing relatively dry and wet conditions. 1271 

Cloud pixels in the Landsat results are marked by grey shading. 1272 

 1273 

Fig.8 SMAP downscaled results (a, c) and Landsat-8 (OLI, TIRS) (b, d) classifications of water (blue) pixels overlaid on Google 1274 

Earth images (Google imagery date 12/07/2014) over a selected focus area (0.1°× 0.1° rectangle centered at -91.55°, 31.27°) 1275 

within region 3 and representing respective seasonal dry and wet conditions for Jul. 24, 2015 and Jan. 16, 2016.  1276 

 1277 

Fig. 9 Inundation dynamics derived from SMAP downscaled fw retrievals, the MODIS near real-time global flood mapping 1278 

product, Landsat 7/ETM+ and Landsat 8/OLI water and land classifications over the lower Mississippi River Valley sub-region 1279 

from June 2015 to May 2016, which encompasses a documented rainfall-driven extreme winter flood event. 1280 

 1281 

Fig. S1 Location of Amazon river basin, with river discharge station indicated by red star symbol. 1282 

 1283 

Fig.S2 Monthly mean river discharge (Q, m3/s) and corresponding inundation areas (km2) derived from SMAP 36 km fwLBand 1284 

monthly averages for the Amazon river basin. 1285 

 1286 

 1287 

 1288 
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Supplementary of  1 

Assessing global surface water inundation dynamics using combined satellite information 2 

from SMAP, AMSR2 and Landsat  3 

 4 

1. Comparisons of fwLBand and MOD44W for different latitude zones 5 

   Inundation areas derived from SMAP fwLBand and MOD44W data were compared for five 6 

latitude zones. The comparisons were based on fwLBand monthly composites from June 2015 to 7 

May 2016, and with both SMAP and MOD44W data projected in the same 36-km EASE-Grid v2 8 

format. We excluded grid cells dominated by large water bodies (coverage ≥ 50%) to mitigate 9 

coastal contamination (Schroeder et al., 2015); we also excluded grid cells dominated by 10 

permanent snow/ice cover, identified by a MODIS IGBP land cover classification. Both monthly 11 

maximum SMAP fwLBand and MOD44W results show that the largest inundation areas are 12 

spatially distributed in tropical and Northern high latitude regions, while the SMAP results 13 

generally detect greater inundation than the MOD44W results (Table S1). 14 

Table S1  15 

Inundation areas estimated by SMAP monthly fwLBand composites and MOD44W over the global domain and 16 

five major latitudinal zones, excluding 36-km grid cells with open water or permanent snow/ice coverage ≥ 17 

50%. 18 

 19 

Latitude Zone SMAP water extent (MKM2) MOD44W water 

extent (MKM2) Minimum Maximum Average 

90°S-90°N 4.61 7.15 6.16 4.04 

50°N-90°N 0.24 2.17 1.25 1.95 



 2 

30°N-50°N 1.19 2.13 1.57 0.70 

30°S-30°N 2.51 3.22 2.83 1.18 

30°S-50°S 0.32 0.62 0.45 0.17 

50°S-90°S 0.04 0.05 0.05 0.04 

 20 

2. Comparisons Between SMAP fwLBand and River Discharge Data for Amazon river basin 21 

    The Amazon basin (Fig. S1) is one of the most important and largest river basins, where the 22 

Amazon river and its tributaries carry water through the world largest tropical rain forest. We 23 

analyzed the performance of the SMAP fwLBand retrievals over the Amazon basin by comparing 24 

SMAP derived inundation areas against monthly mean discharge measured at Obidos, Brazil 25 

located near the mouth of Amazon river. The discharge data were provided by the Observation 26 

Service for the Geodynamical, Hydrological and Biogeochemical Control of Erosion/Alteration 27 

and Material Transport in the Amazon, Orinoco, and Congo basins (SO HYBAM) 28 

(http://www.ore-hybam.org/). Strong correlation (R=0.72) was found between the monthly 29 

fwLBand inundation dynamics and observed river discharge data (Fig.2S). The fwLBand 30 

correspondence was further enhanced (R= 0.95) after introducing a one-month lag between 31 

surface inundation and downstream river discharge to account for the delayed movement of 32 

water from the uplands to the basin outlet. The relatively strong correlation occurs despite 67.2% 33 

of the basin having VOD levels above the expected threshold for reliable SMAP L-band fw 34 

retrievals (e.g. Fig. 3). However, the favourable correspondence is consistent with a prior 35 

regional study of fw dynamics in Amazon rainforests using similar L-band Tb retrievals from 36 

SMOS (Parrens et al., 2017). 37 

http://www.ore-hybam.org/
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 38 

Fig.S1 Location of Amazon river basin, with river discharge station indicated by red star symbol. 39 

 40 

 41 

Fig.S2 Monthly mean river discharge (Q, m3/s) and corresponding inundation areas (km2) derived from SMAP 36 km fwLBand 42 

monthly averages for the Amazon river basin. 43 
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