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Abstract 

 

Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea 

surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the 

magnitude of SST anomalies. Observational counterparts to such patterned interactions are still 

needed. Here we show that distinct large-scale patterns of SST and low-cloud cover (LCC) 

emerge naturally from objective analyses of observations and demonstrate their close coupling in 

a positive local SST-LCC feedback loop that may be important for both internal variability and 

climate change. The two patterns that explain the maximum amount of covariance between SST 

and LCC correspond to the Interdecadal Pacific Oscillation (IPO) and the Atlantic Multidecadal 

Oscillation (AMO), leading modes of multidecadal internal variability. Spatial patterns and time 

series of SST and LCC anomalies associated with both modes point to a strong positive local 

SST-LCC feedback. In many current climate models, our analyses suggest that SST-LCC 

feedback strength is too weak compared to observations. Modeled local SST-LCC feedback 

strength affects simulated internal variability so that stronger feedback produces more intense 

and more realistic patterns of internal variability. To the extent that the physics of the local 

positive SST-LCC feedback inferred from observed climate variability applies to future 

greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC 

feedback when anthropogenic SST warming eventually overwhelm the effects of internal 

variability that may mute anthropogenic warming over parts of the ocean. We postulate that 

many climate models may be underestimating both future warming and the magnitude of 

modeled internal variability because of their weak SST-LCC feedback. 
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1. Introduction 

Global scale climate change can be described in an energy balance framework[Gregory et al., 

2002]: 𝐹(𝑡) = 𝑁(𝑡) + 𝛼(𝑡)𝑇(𝑡) + 𝜀. Radiative forcing, 𝐹(𝑡), imposed on the climate system is 

balanced by the sum of net downward radiative flux, 𝑁(𝑡), radiative response 𝛼(𝑡)𝑇(𝑡), and a 

small residual 𝜀. 𝛼(𝑡), the time-dependent climate feedback parameter, measures the global 

radiative response per degree of surface air temperature 𝑇 change. Its reciprocal 𝜆(𝑡) = 1
𝛼(𝑡)⁄ , 

called the climate sensitivity parameter, measures the warming per unit increase in radiative 

forcing [Gregory and Andrews, 2016]. Assuming 𝛼(𝑡)to be constant, equilibrium climate 

sensitivity can be estimated by quantifying changes in temperature (∆𝑇), ocean heat uptake 

(excellent proxy for ∆𝑁) and radiative forcing (∆𝐹) over a period according to 𝜆𝑒𝑞 =
∆𝑇

(∆𝐹 − ∆𝑁)⁄ .  

 

In the instrumental record, the global mean warming rate, ∆𝑇
∆𝑡⁄ , is not constant and undergoes 

periods of acceleration and deceleration (Figure 1A) [Morice et al., 2012; Hansen et al., 2010]. 

The warming rate is also spatially heterogeneous with characteristic large-scale patterns (Figures 

1B and 1C). Both internal variability and changing (𝐹(𝑡)) can make ∆𝑇
∆𝑡⁄  and warming 

patterns change with time (Figures 1B and 1C). Model analyses suggest that time-varying 

patterns of sea surface temperature (SST) can actively change 𝛼(𝑡), and therefore∆𝑇
∆𝑡⁄ , by 

convolving with individual feedback processes [Held et al., 2010; Armour et al., 2013; Andrews 

et al., 2015]. The low cloud feedback plays a critical role in this process [Andrews et al., 2012; 

Rose et al., 2014; Andrews et al., 2015; Gregory and Andrews, 2016; Zhou et al., 2016]. It is 

perhaps best illustrated in an idealized model experiment where simply changing the SST 

pattern, without altering the global mean 𝑇, produces a nonzero  𝑁(𝑡) due to cloud anomalies 

[Andrews et al., 2015; Zhou et al., 2016]. Recent modeling studies also show that observed time-

varying patterns of SST in recent decades have significantly changed 𝛼(𝑡) [Gregory and 

Andrews, 2016; Zhou et al., 2016; Marvel et al., 2018]. Low cloud feedback can in turn affect 

modeled SST internal variability[Zhang et al., 2010; Brown et al., 2014; Bellomo et al., 2014b; 

Myers et al., 2017]. However, direct observational evidence of patterned coupling between SST 

and low clouds are needed. 

 

Here we examine large-scale patterns of low-cloud cover (LCC) and SST and their coupling at 

near-global scales (60oS ~60oN) using satellite data and compare them with patterns produced by 

global climate models. LCC feedback is a major component of the overall cloud feedback 

[Clement et al., 2009] [Qu et al., 2014; Zelinka et al., 2016]. Previous regression analyses have 

shown that SST exerts a prime control on local and regional mean LCC variations, with 

inversion strength, a proxy for lower troposphere stability, being the next most important factor 

[Qu et al., 2014; Brient and Schneider, 2016]. Patterns of large-scale LCC variability at 

interannual and longer time scales and their coupling with SST have received less attention, 

however. Here we focus on large-scale spatial patterns and associated temporal variations. The 

LCC-SST feedback analyzed here is assumed to encompass both the direct influence of SST on 

LCC as well as the indirect meteorological influences (e.g., stability) that vary in concert with 

SST. Our analysis does not separate out the remote impact of SST anomaly on LCC through 

modifying troposphere stability in remote areas [Qu et al., 2014; Zhou et al., 2017].  



 

2. Data and analysis methods 

2.1 Data sets 

We use the bias corrected International Satellite Cloud Climatology Project (ISCCP) cloud 

fraction data [Norris and Evan, 2015]. Artifacts removed include those associated with changes 

in viewing geometry, satellite transitions, and other factors. The process for removing spurious 

variability also removes any real variability occurring in the 60oS ~ 60oN, but has little impact on 

investigations of regional changes examined in this study. Here the sum of low and mid-level 

cloud fraction is used to better represent the true total low cloud fraction [Yuan et al., 2016]. 

Aqua MODIS level-3 monthly products are also used to derive low cloud fraction [Platnick et 

al., 2016]. MODIS onboard Aqua is well calibrated. Specifically, we divide the total number of 

pixels whose cloud top pressure is higher than 680hPa by the total number of pixels in a grid. We 

compare the climatology of MODIS and ISCCP LCC using these definitions and their spatial 

patterns are broadly similar with each other, with noticeable differences in places such as tropical 

Eastern Pacific (see Fig S1).  

 

We use CRUTEM4 [Smith et al., 2008] for surface air temperature and Extended Reconstructed 

Sea Surface Temperature (ERSST) from the NOAA Climatic Data Center[Dee et al., 2011] for 

SST data. Meteorological variables from ECMWF Re-analysis (ERA) interim (ERA-Interim) is 

used to derive the estimated inversion strength (EIS) [Wood and Bretherton, 2006].  

 

2.2 Methods 

We apply maximum covariance analysis (MCA) [Bretherton et al., 1992] and empirical 

orthogonal function (EOF) analysis to objectively obtain patterns naturally emerging from 

observations and their time series. MCA performs a singular value decomposition of the 

covariance matrix between two different variables. The spatial patterns of each variable are the 

singular vectors, and the temporal variability is obtained by projecting the spatial patterns back 

onto the original data fields. The leading modes of MCA maximize the covariance between the 

two variables. The method identifies modes (with spatial patterns and temporal variability) that 

both dominate the variability in the two variables and are potentially strongly correlated with one 

another. The correlation coefficients between expansion coefficients, i.e. the temporal variability 

of corresponding spatial patterns, indicate how tightly the two are related. EOF performed on 

individual data sets finds dominant patterns that explain the most variance and their time series 

by projecting each pattern back onto the original data. Here we present spatial patterns of each 

mode by regressing its time series, after normalization, onto the original data set. Each grid value 

in the pattern quantifies the amount of change in this variable associated with one standard 

deviation of change in the time series.  

 

We address the challenge of interpreting decadal changes of LCC by examining two independent 

global satellite data records and analyzing characteristic patterns instead of local or regional 

trends i.e. the bias-corrected monthly mean gridded ISCCP LCC between 1984 and 2009 and the 

Aqua MODIS LCC between 2003-2015. Seasonal cycle of LCC is removed. Concurrent EIS and 

SST are also brought into the fold to illustrate their accompanying changes.  

 

3. Results 



The leading MCA mode corresponds to the Interdecadal Pacific Oscillation (IPO) [Power et al., 

1999] and its SST and LCC patterns consistently suggest a positive LCC-SST feedback across 

different oceans. In the leading SST pattern (Figure 2A), the largest SST anomalies are found in 

the tropical East Pacific cold tongue region and they are flanked by two middle latitude 

anomalies of opposite sign in both hemispheres to the west. SST anomalies along west coasts of 

the Americas have the same sign as the tropical peak. This pattern can also be roughly discerned 

in Figures 1B and 1C. The corresponding pattern of LCC nearly mirrors that of the SST mode, 

only with reversed sign (Figure 2B): Areas with negative SST anomalies are associated with 

positive LCC anomalies, which suggests a positive SST-LCC feedback: the effect of reduced 

LCC has a warming effect and reinforces positive SST anomalies. For example, LCC in the 

Eastern Tropical Pacific strongly increases when a La Nina-like, cool SST anomaly dominates. 

Concurrent negative SST anomalies in the Californian and Peruvian stratocumulus regions, to 

the north and south of tropical anomalies, are accompanied by LCC increase. Meanwhile, LCC 

decreases in areas where warm SST anomalies prevail in the southern and northern flanks of the 

tropical cold anomalies. This MCA mode explains 50% of the interannual covariance between 

SST and ISCCP LCC. 

 

The second MCA mode corresponds to the Atlantic Multidecadal Oscillation (AMO) [Enfield 

and Nuñez, 2001], the dominant multidecadal variability in the Atlantic Basin, and its SST and 

LCC patterns also suggest a positive LCC feedback. The SST pattern of the second MCA mode 

(Figure 2D) has strong anomalies in both the Pacific and the Atlantic Oceans. In the North 

Atlantic, the anomalies form a horseshoe pattern with two arms, one in the middle latitudes and 

another in the tropical Atlantic [Figure 2D], which is a characteristic of the AMO. Large positive 

SST anomalies are found in the Eastern Pacific and in the North Pacific. The Eastern Pacific 

anomalies are much more spatially confined than those of a typical ENSO signal, while the 

North Pacific anomalies are quite similar to the Pacific Decadal Oscillation[Deser et al., 2004]. 

The overall Pacific pattern is strikingly similar to the modeled pattern that represents the impact 

of AMO on the Pacific [Zhang and Delworth, 2007; Li et al., 2016]. The corresponding LCC 

pattern [Figure 2E] is nearly identical to the pattern produced by regressing LCC onto the AMO 

index in the Atlantic [Yuan et al., 2016]. Positive LCC anomalies are again found over regions 

with negative SST anomalies. In the Pacific, the same negative coupling (i.e. positive feedback) 

between SST and LCC anomalies exists. For example, positive LCC anomalies are found over 

cold tropical Eastern Pacific SST anomalies; similar negative coupling is observed for LCC and 

SST anomalies in the North Pacific, which again suggests a positive LCC-SST feedback. This 

MCA mode explains 19% of the covariance. It should be emphasized that both patterns emerge 

naturally from the objective analysis method and they resemble known modes (IPO and AMO) 

of coupled internal variability. The emergence of such congruent and physically meaningful SST 

and LCC patterns from observations suggest a physical underpinning. 

 

Our new observational evidence of the systematic large-scale patterns of positive SST-LCC 

feedback is consistent with both theoretical [e.g. summarized in [Bretherton, 2015]and previous 

empirical evidence [Qu et al., 2014; 2015; Brient and Schneider, 2016]. Physically, an increase 

in SST tends to decrease the inversion strength, promote mixing of dry and warm free-

troposphere air into the cloudy layer, and therefore reduce cloud fraction. Regression analyses 

show SST often exerts the primary control on LCC in current climate [Qu et al., 2014; Brient 

and Schneider, 2016]. The patterns of cloud change and its connection with SST are also 



physically consistent with variations in estimated inversion strength (EIS) as shown in Figure 2F. 

The leading pattern of EIS has excellent agreement with those from SST and LCC in both 

datasets, which suggests an SST-driven local stability response in which warm SST anomalies 

reduce EIS.  

 

Additional analysis further confirms the presence of a positive SST-LCC feedback that spans the 

decadal time scale and has coherent spatial structures. For example, expansion coefficients of 

both patterns of LCC and SST are significantly correlated with each other (r = 0.92 for the first 

mode, and r = 0.7 for the second). They are also highly correlated with indices of IPO [Power et 

al., 1999] (r= 0.98 and r= -0.89 for the first mode of SST and LCC, respectively) and AMO 

[Enfield and Nuñez, 2001] (r = 0.83 and r=-0.59 for the second mode of SST and LCC, 

respectively). These results reaffirm the similarity in spatial patterns and prove the link between 

SST and LCC patterns in the time dimension (Figure 3). Analysis of Aqua MODIS LCC data 

during 2003~2015 gives independent support to SST-LCC feedback. MODIS data coverage is 

shorter, and its patterns may have stronger signals of higher frequency variability. Nevertheless, 

when applying the same procedure, patterns of leading modes of SST and MODIS LCC are also 

found to be negatively correlated, and their spatial patterns and temporal variability are closely 

related to IPO (mode 1), r = 0.78, and AMO, r = 0.62, (mode 3) indices, broadly similar to 

ISCCP LCC [Figure 2C] with notable differences at a few areas. This is significant because 

sampling, sensor characteristics, and algorithms used for MODIS and ISCCP are all different, 

and they cover different periods. The consistent and emergent results from independent data 

suggest a robust patterned SST-LCC coupling. Similar patterns also emerge from EOF analysis 

performed on individual fields which reveal that their principal components are strongly 

correlated with each other. The fact that EOF analysis corroborates the MCA analysis suggests 

that these patterns and their relationships are robust. 

 

We evaluate how skillful models are in simulating LCC response to SST by applying similar 

analyses to cloud data from 10 models that have run atmospheric model intercomparison project 

(AMIP) experiments, where each model is driven by observed boundary conditions such as SST 

and sea ice concentration accompanied by best-estimate concentrations of forcing agents 

[TAYLOR et al., 2012]. An ISCCP simulator [Klein and Jakob, 1999; Webb et al., 2001]was 

applied to model cloud data to facilitate a more meaningful observation-model comparison. To 

simplify the analysis, we regress both observed and modeled cloud data against IPO and AMO 

monthly indices, which can be taken as less strict test for the models since it does not require the 

model to correctly model the covariance structure between SST and modeled LCC. Models are 

rather skillful at capturing the overall pattern of SST-LCC coupling as pattern correlation 

coefficients between modeled and observed regression patterns are above 0.44 (see Table S1) for 

IPO. However, the strength of SST-LCC coupling, measured by percent change in LCC per 

degree of SST change, exhibits large variations across different models with the majority being 

too weak in the critical subtropical low cloud regions (see Figures S5 and S6 and Tables S1 and 

S2). HadGem2-ES is one of the best performing models with pattern correlation coefficients 

among the highest for both modes of variability and regression values between SST and LCC for 

both Pacific and Atlantic basins (Figs. 4A, 4B and S2) that are closest to the observed values in 

high LCC regions (Figure 4A and B and Tables S1 and S2). 

 



Our observational analysis shows that large-scale SST anomaly patterns introduced by coupled 

atmosphere-ocean internal variability are amplified by a robust SST-LCC feedback. Simulated 

SST-LCC feedback strength, in turn, has been shown to affect the amplitude of SST internal 

variability in models [Bellomo et al., 2014a; Brown et al., 2016; Myers et al., 2017]. We test the 

effect of feedback strength on modeled internal SST amplitude by contrasting models with 

strong and weak SST-LCC feedback magnitude. First, we select two regions that are dominated 

by low level clouds, one off Californian coast and the other in the tropical North Atlantic as 

indicated by the red boxes in Figure 4 {Klein:1993vk}. The latitudinal and longitudinal boundaries 

for the two boxes are 10N to 30N and 100W to 120W, and 5N to 25N and 25W to 45W. We then 

regress detrended AMIP LCC anomalies against detrended observed SST anomalies and pick 

three models with the highest regression slopes and three with the lowest. This AMIP-based 

calculation selects models that have strong and weak LCC responses to SST. For both groups of 

models, we calculate detrended SST anomalies at each oceanic grid point and regress it against 

box mean SST anomalies in respectively regions, which is used a measure of the internal 

variability[Bellomo et al., 2014a][Myers et al., 2017]. We then use CMIP5 historical simulations 

of coupled version of each selected model to highlight the potential effect of SST-LCC on 

coupled simulations. Since we normalize the box mean SST anomaly time series, regression 

slopes for each grid point are SST anomaly amplitude associated with one standard deviation of 

box-mean SST anomalies. These amplitudes represent amplitude of internal SST variability 

linearly associated with the variability in the boxed region, which has been used as a proxy for 

amplitude of internal SST variability [Myers et al., 2017]. We plot the three-model mean in 

Figure 4. Global maps of these quantities can be seen in Fig S4. 

 

The amplitudes of internal SST variability at interannual time scales in models with high SST-

LCC feedback magnitude are nearly twice as large in Coupled Model Intercomparison Project 

Phase 5 (CMIP5) coupled historical simulations in both the Pacific and Atlantic (Figure 4C to F 

and Figures S3 and S4). Their SST regression patterns (Fig S4) are also more realistic when 

compared to observed patterns (Fig S3. The critical role of low cloud feedback in modulating the 

amplitude and persistence of internal variability is supported by recent studies [Zhang et al., 

2010; Brown et al., 2014; Bellomo et al., 2014b; Myers et al., 2017]. Improving the overall SST-

LCC coupling, which includes both the direct SST influence and co-varying meteorological 

influences, is therefore important in order for models to simulate internal variability better. 

 

4. Summary and Discussion: Relevance to future warming 

 

Results here give new observational support to positive SST-LCC feedback with characteristic 

spatial patterns that can be decomposed into familiar IPO and AMO modes. Current models can 

capture the IPO SST-LCC coupling pattern rather well, but their feedback magnitudes are 

weaker than those inferred from observations. The SST-LCC feedback strength as measured by 

the regression slope between them is important in determining model simulated magnitude and 

patterns of internal variability. Models with stronger SST-LCC feedback tend to have better 

representation of internal variability patterns and larger amplitudes. The patterned coupling 

between SST and LCC fields may serve as a holistic constraint for model evaluation. 

 

Similar physics will operate in the global warming context with regard to SST-LCC feedback. 

Analyses of CO2 quadrupling experiments have demonstrated that implied climate sensitivity 



generally increases with time. It happens when forced SST warming eventually overwhelms SST 

cooling due to internal variability or ocean heat uptake in the upwelling regions, which gets 

further amplified by positive cloud feedback [Andrews et al., 2015]. We refer this warming as 

latent warming here. Intriguingly, the spatial pattern of additional cloud feedback that drives the 

latent warming (Figs 4 and 5 in [Andrews et al., 2015]), i.e. the delayed warming that is 

amplified by cloud feedbacks, matches the leading LCC pattern reported here (Figure 2B). This 

pattern also bears resemblance to the slow warming pattern in the Pacific from another state-of-

the-art model [Held et al., 2010]. Our observational analysis when considered together with these 

modeling results imply stronger latent warming and possibly higher climate sensitivity than 

current estimates for many models because the SST-LCC feedback of current models is too 

weak. SST-LCC feedback being too weak in many models suggests that a higher equilibrium 

climate sensitivity might be more realistic (see [Klein et al., 2017] and references therein). 

Indeed, we find that models capturing better the SST-LCC coupling, as measured by the spatial 

correlation, have higher values of equilibrium climate sensitivity (Figure S7), which may be a 

result of both stronger overall positive cloud feedback and stronger latent warming. For example, 

HadGEM2-ES, the best overall performing model using our metric, has one of the highest 

climate sensitivities and strong latent warming[Andrews et al., 2015].  

 

  



 

Figures 

 
Figure 1: A) HadCRUT4 global mean surface temperature time series with a 10-year smoothing 

applied. For each decade, a 15-year trend is calculated. Red triangles correspond to warming 

trends and blue triangles to cooling trends. B) map of local surface temperature trends 

between1960 and 1990. C) the same as b, but for 1985-2015.  

 

 



 
Figure 2: A) and D) SST anomalies corresponding to one standard deviation of expansion 

coefficients from MCA analysis, representing IPO and AMO for the period 1984-2009. B) and 

E) the same for LCC using ISCCP data. C) the same for IPO mode of LCC using MODIS data. 

F) the same for estimated inversion strength (EIS) using ERA-Interim during 1984 and 2009 for 

the IPO mode. In A, B, D and E, the area with longitudes between 30E and 110 E is masked out 

because the lack of geostationary satellite data makes the ISCCP LCC variance meaningless.  

 



 
 

Figure 3: A) IPO index (black) between 1984 and 2015 plotted alongside time series of the first 

MCA mode indices for LCC (blue), SST (red), and the first EOF of estimated inversion strength 

(inverted, cyan). A 12-month moving average is applied to all indices. B) Similar to (A), but for 

AMO index and the second MCA/EOF modes.  



 
Figure 4: A) and B) regression patterns of LCC onto IPO and AMO, respectively, for the 

HadGEM2-ES AMIP simulation. We compare the amplitude of internal variability of SST in 

coupled historical simulations as defined in the text for models that have the highest (C and E) 

and lowest (D and F) SST-LCC feedback strength in AMIP simulations.  
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