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Abstract: With satellite soil moisture (SM) retrievals becoming widely and continuously 18 

available, we aim to develop a method to objectively integrate the drought indices into one that is 19 

more accurate and consistently reliable. The datasets used in this paper include the Noah land 20 

surface model-based SM estimations, Atmosphere-Land-Exchange-Inverse model-based 21 

Evaporative Stress Index, and the satellite SM products from the Advanced Scatterometer, 22 

WindSat, Soil Moisture and Ocean Salinity, and Soil Moisture Operational Product System. Using 23 

the Triple Collocation Error Model (TCEM) to quantify the uncertainties of these data, we 24 

developed an optically blended drought index (BDI_b) that objectively integrates drought 25 

estimations with the lowest TCEM-derived root-mean-square-errors in this paper. With respect to 26 

the reported drought records and the drought monitoring benchmarks including the U.S. Drought 27 

Monitor, the Palmer Drought Severity Index and the standardized precipitation evapotranspiration 28 

index products, the BDI_b was compared with the sample average blending drought index (BDI_s) 29 

and the RMSE-weighted average blending drought indices (BDI_w). Relative to the BDI_s and 30 

the BDI_w, the BDI_b performs more consistently with the drought monitoring benchmarks. With 31 

respect to the official drought records, the developed BDI_b shows the best performance on 32 

tracking drought development in terms of time evolution and spatial patterns of 2010-Russia, 33 

2011-USA, 2013-New Zealand droughts and other reported agricultural drought occurrences over 34 

the 2009-2014 period. These results suggest that model simulations and remotely sensed 35 

observations of SM can be objectively translated into useful information for drought monitoring 36 

and early warning, in turn can reduce drought risk and impacts. 37 

Keywords: Drought monitoring, Soil moisture, Triple collocation, Blended drought index 38 

 39 
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1. Introduction 40 

Of all natural disasters, the economic and environmental consequences of drought are 41 

among the most serious due to the duration varying from weeks to decades, and widespread spatial 42 

extent (Lewis et al., 2011; Mu et al., 2013; Hao et al., 2014; Anderson et al., 2015; Mazdiyasni 43 

and AghaKouchak, 2015; AghaKouchak et al., 2015; Zhang et al., 2017). Associated with global 44 

climate change, the frequency, duration and severity of drought events show an increasing 45 

tendency in some parts of the world (Dai, 2013; Mazdiyasni and AghaKouchak, 2015). Drought 46 

indicator development is essential for monitoring drought conditions, providing timely seasonal 47 

forecasts, and consequently reducing drought risk and impacts (Tarhule and Lamb 2003; Pozzi et 48 

al. 2013; Sheffield et al., 2014).  49 

Agricultural drought is commonly defined as an event where root-zone soil moisture (SM) 50 

deficits result in a reduction in crop yields, plant biomass and ecologic productivity (Wilhite and 51 

Glantz 1985; Anderson et al., 2011; Bolten and Crow, 2012; McNally et al., 2015, Azmi et al., 52 

2016; Zhang et al., 2017). The SM status in various soil layers is an important indicator of 53 

agricultural drought, providing more information than the rainfall anomaly alone. Modern land 54 

surface models (LSMs) offer a complex parameterization of the surface energy balance and 55 

detailed vertical water balance physics in an attempt to more accurately characterize temporal 56 

variations in root-zone soil moisture availability (Koster et al, 2000; Yang et al, 2003; Ek et al., 57 

2003; Dai et al., 2003; Oleson et al., 2004; Kowalczyk et al, 2006; Crow et al., 2012; Yin et al., 58 

2015a). However, these model-based estimates are typically subject to errors in the model physics 59 

and parameterizations, and in the meteorological forcing data (Reichle and Koster, 2004; Yin et 60 

al., 2014; Yin et al., 2015b). Data assimilation techniques permit the modelled soil moisture (SM)  61 

to be corrected toward the observations with the correction degree determined by the error levels 62 
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associated with each (Reichle and Koster, 2004). With satellite SM retrievals becoming widely 63 

and continuously available, it is consequently believed that a land data assimilation system that 64 

merges satellite retrievals and model estimates of soil moisture may provide more reasonable 65 

values of land surface state variables (Crow and Wood, 2003; Reichle and Koster, 2004; Koster et 66 

al., 2009; Kumar et al. 2009; Xia et al., 2012; Hain et al. 2012; Zhan et al. 2012; Yin et al., 2015b, 67 

2015c). In the most widely used ensemble Kalman filter (EnKF), still, satellite SM observations 68 

need to be bias-corrected to respect the assumption that retrieval errors are Gaussian-distributed. 69 

The current bias-correction approaches used for the EnKF data assimilation might have caused 70 

useful information in the observations lost in the model simulations (Nearing et al., 2016).  71 

While in situ measurements of SM provide reasonable assessments of moisture conditions 72 

at the local scale, they are deficient in representing the soil moisture and drought dynamics at large 73 

scales due to insufficient data coverage (Yuan et al., 2015). In contrast, microwave (MW, active 74 

or passive) remote sensing observations can provide spatially consistent estimates of the SM state. 75 

Although they can only sense the surface soil depth, usually within 0-5 cm (Kerr et al., 2001; 76 

Njoku et al., 2003; Naeimi et al., 2009; Yin et al., 2015b; Wang et al., 2015), there is generally a 77 

close relationship between surface SM and SM in the deeper soil layers at weekly and longer time 78 

scale (Albergel et al., 2008). The SM status in surface soil layer represents the fastest response soil 79 

moisture dynamics to meteorological anomalies and provides a measure for short-term droughts 80 

(Yuan et al., 2015); and the surface information propagating to deeper soil layers is very important 81 

to early warning agricultural droughts and monitoring flash droughts that can occur very rapidly 82 

(Otkin et al., 2015). However, the MW SM products suffer from the instrument noise and 83 

uncertainty in microwave emission modeling. Land surface temperature (LST)- and green 84 

vegetation fraction (GVF)-based quality control of the satellite SM retrievals can decrease the 85 
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impacts of these uncertainties, but the empirical approaches are hard to be widely used  (Kumar et 86 

al., 2009; Yin et al., 2014).  87 

Comparison of MW SM products to ground-based SM observations is the most common error 88 

estimation approach; however, the in situ observational data from low density networks in which 89 

one or two measurements are generally available per satellite footprint can lead to significant 90 

differences in the spatial sampling scale (Crow et al., 2005; Koster et al., 2009; Miralles et al., 91 

2010). A triple collocation error model (TCEM) methodology was introduced to estimate the root 92 

mean square errors (RMSE) while simultaneously solving for systematic differences in the 93 

climatologies of a set of three independent data sources (Scipal et al., 2008; Miralles et al., 2010; 94 

Crow et al., 2015; Pan et al., 2015). Based on three separate time series assumed to approximate 95 

grid-scale SM products, the TCEM in previous reports exhibited robust capability to assess novel 96 

remotely sensed SM data sets in comparison with LSM estimations and in-situ observations in a 97 

limited number of well sampled pixels (Miralles et al., 2010; Draper et al., 2013).  98 

Drought monitoring is a complex and multi-faceted endeavor, warranting use of multiple 99 

tools and indicators; the nature of drought monitoring efforts should thus be based on multiple 100 

variables/indicators to provide a more robust and integrated measure of drought through a 101 

convergence-of-evidence methodology (AghaKouchak et al., 2015). Current operational drought 102 

monitoring products (Svoboda et al., 2002; Heim, 2002; Xia et al., 2014) are generally produced 103 

via integrating multiple data sources and derivative products based on a synthesis of 104 

indicators/model-simulations and subjective interpretation of how different indicators/model-105 

simulations should be merged in the final analysis. These routinely running drought monitoring 106 

products are thus sensitive to the experts’ experiences/judgment and the model uncertainties from 107 

errors in the indicators. These types of artificial and product errors can be compensated for by 108 
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objectively merging multi-sources drought evaluations through uncertainty-based optimization of 109 

remotely sensed observations and model estimations. 110 

 Additionally, to capture different drought characteristic, numerous multivariate drought 111 

indices have been recently proposed. The ordinal regression model permits to estimate the 112 

probability of each drought category, and in turn to highlight probabilistic drought characterization 113 

in the categorical form (Hao et al., 2016). Yet its properly implement is limited by optimal choice 114 

of three drought indices in different regions and seasons. Besides, other blended drought indicators 115 

including the principal component analysis-based multivariate Aggregate Drought Index 116 

(Keyantash and Dracup, 2004; Rajsekhar et al., 2015), the joint distribution of the accumulated 117 

precipitation and streamflow-based Joint Drought Index (Kao and Govindaraju, 2010) and 118 

Multivariate Standardized Drought Index (Hao and AghaKouchak, 2013) are basically based on 119 

the water balance model and multivariate analysis (Hao et al., 2015). Thus, development of a 120 

method for objectively integrating soil moisture satellite observations and model simulations 121 

toward a blended drought index is still challenging. This paper is an attempt in this direction 122 

In this paper, we aim to objectively determine uncertainties of satellite observation- and 123 

model simulation-based drought estimations, and in turn to optimally merge any collection of 124 

drought indicators in a fully automated statistical framework. With respect to the drought 125 

monitoring benchmarks and the reported drought records, the advantages of the optimally 126 

objectively blended drought index over the traditional subjectively integrated drought indices are 127 

demonstrated. The specifics of the method are described in the next section. The results and 128 

validations are then presented in sections 3-5. The potential of applying the method in drought 129 

monitoring operation is discussed in section 6, and a brief summary is given in last section. 130 

2. Data and Method 131 
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2.1 Data 132 

For this study, we use 6 different SM products. The first is a land surface model estimate 133 

of SM from the Noah version 3.2 (referred to as the NLSM). The layer thickness-weighted average 134 

of SM estimates in the top three soil layer (0-10 cm; 10-40 cm; 40-100 cm) is used to characterize 135 

root zone (0-100 cm) SM. The NLSM simulations were conducted on a near-global gridded 136 

domain (from -60ºS, -180ºW to 90ºN, 180ºE) at 25 km spatial resolution. The model was spun up 137 

by cycling 50 times through the period from 2001 to 2007. Then the simulation was run over the 138 

2008-2014 period with one half hour time-step inputs and daily outputs. Atmospheric forcing 139 

(Table 2) was taken from 3-hourly 25-km Global Land Data Assimilation System (GLDAS) 140 

precipitation (Rodell et al., 2004) and Global Data Assimilation System (GDAS) meteorological 141 

data (Derber et al., 1991). Various updates to the specification of vegetation in Noah have been 142 

implemented. For example, 2007-2010 Moderate Resolution Imaging Spectroradiometer 143 

(MODIS) collection 5 land cover maps and 8-day MODIS leaf area index (LAI)-based green 144 

vegetation fraction (GVF) were used to update the climatological fields in Noah (Yin et al, 2015a; 145 

Yin et al., 2016). 146 

The next drought indicator (Table 2) used in the analysis is the Evaporative Stress Index 147 

(ESI), generated with the Atmosphere Land Exchange Inverse (ALEXI) model using land surface 148 

temperature data retrieved from satellite thermal infrared imagery (Anderson et al., 1997; 2011). 149 

The ESI represents temporal anomalies in the ratio of actual evapotranspiration (ET) to potential 150 

ET (PET) and requires no information about antecedent precipitation or subsurface soil 151 

characteristics (Anderson et al. 2011; Hain et al., 2012). Until recently, ALEXI ESI data 152 

production has been limited to areas with high resolution temporal sampling of geostationary 153 

sensors (Hain et al., 2016). However, our research team has developed a new and novel method of 154 
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using twice-daily observations from polar sensors such as MODIS and Visible Infrared Imaging 155 

Radiometer Suite (VIIRS) to estimate the mid-morning rise in LST that is used to drive the energy 156 

balance estimations within ALEXI. This allows the method to be applied globally using the sensors 157 

onboard polar-orbiting satellites rather than a global composite of all available geostationary 158 

datasets. The global ALEXI ESI product is available at a spatial resolution of 5 km and a period 159 

of record from 2001 to 2014, reprocessed to weekly time-steps and 25-km resolution for this study.  160 

Finally, we use four microwave-based SM products (Table 2), referred to as MWSM. 161 

These products include SM data from the Advanced Scatterometer (ASCAT, Wagner et al., 1999), 162 

WindSat (Li et al., 2010) the Soil Moisture and Ocean Salinity (SMOS, Kerr et al, 2001) 163 

instruments, and a blended product from the NOAA Soil Moisture Operational Product System 164 

(SMOPS, Yin et al., 2015b). The SMOPS has been developed to process satellite soil moisture 165 

observational data at the NOAA National Environmental Satellite, Data, and Information Service 166 

(NESDIS) for improving numerical weather prediction models at the NOAA National Weather 167 

Service (Yin et al, 2014). SMOPS scales the soil moisture data products from the European Space 168 

Agency SMOS satellite, ASCAT on EUMETSAT's Metop-A and Metop-B satellites, and WindSat 169 

of Naval Research Lab to the climatology of the Noah land surface model, and merges them to a 170 

blended global soil moisture data product (Yin et al, 2015b).  In this study, daily ASCAT, WindSat 171 

and SMOPS blended SM products are used from 2008 to 2014, along with SMOS SM data derived 172 

during the 2011-2014 period. These global microwave SM retrievals are all at 25 km spatial 173 

resolution.  174 

Weekly United States Drought Monitor (USDM) data sets from 2008 to 2014 are used to 175 

evaluate the performance of the various blended drought indices (BDIs) over the contiguous 176 

United States (CONUS). USDM is the drought map that policymakers and media use in 177 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QFjAAahUKEwjZ3vaG58TIAhUGdx4KHUE4BSc&url=http%3A%2F%2Fdroughtmonitor.unl.edu%2F&usg=AFQjCNHp0TiTFR_AZlGrnaMujl3t_fCBXQ&sig2=xoiHHKqjAyr2u51giwy2sw&bvm=bv.105039540,d.dmo
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discussions of drought and for allocating drought relief, reflecting drought signals conveyed in one 178 

or more indices, and reporting impacts and observations from more than 350 contributors around 179 

the country (Svoboda et al. 2002). In addition, the global BDIs’ drought monitoring capabilities 180 

are also evaluated against the standard anomalies of the monthly Palmer Drought Severity Index 181 

(PDSI) (against the 1985-2014 climatology) at 2.5 degree spatial resolution and the monthly 3-182 

month standardized precipitation evapotranspiration index (SPEI) standard anomalies (against the 183 

1985-2014 climatology) at 0.5 degree spatial resolution for the 2008-2014 time period (Vicente-184 

Serrano et al., 2010; Dai et al., 2013). As a landmark in the development of drought indices, PDSI 185 

uses readily available temperature and precipitation data to estimate relative dryness and has been 186 

reasonably successful at quantifying long-term drought (Dai et al., 2013). SPEI is similar to the 187 

standardized precipitation index (SPI), but it includes the role of temperature (Vicente-Serrano et 188 

al., 2010). SPEI was developed in 2010 and has been used in an increasing number of climatology 189 

and hydrology studies (Beguería et al., 2014).  190 

2.2 Method 191 

The Triple Collocation Error Model (TCEM) assumed that the uncertainties or errors of 192 

the three retrieval sources are from mutually distinct sources and are independent from each other 193 

(Janssen et al., 2007; Scipal et al., 2008; Miralles et al., 2010; Draper et al., 2013, Pan et al., 2015). 194 

In this paper, the TCEM is based on three categories of soil moisture datasets that provide 25 km 195 

grid-scale SM estimations: (1) the NLSM, which is subject to errors in the model representation 196 

and in the meteorological forcing data; (2) the ALEXI model-based ESI, which does not use any 197 

precipitation input, but is sensitive to the accuracy of the thermal infrared (TIR) satellite LST and 198 

other model inputs (e.g., vegetation cover, available energy); and (3) the microwave satellite 199 

http://journals.ametsoc.org/author/Vicente-Serrano%2C+Sergio+M
http://journals.ametsoc.org/author/Vicente-Serrano%2C+Sergio+M
http://journals.ametsoc.org/author/Vicente-Serrano%2C+Sergio+M
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retrievals which is based on land surface microwave radiation physics with error sources being 200 

microwave satellite sensor signal/noise ratio and soil moisture retrieval algorithm accuracy.  201 

All of the SM data used in this study were temporally composited over 4-week intervals. 202 

Then the uncertainty or RMSE for each of the four MW SM products was individually computed 203 

in combination with NLSM and ESI in TCEM in order to meet the error independence requirement 204 

of the three data sets used in TCEM. Meanwhile, the NLSM and ESI data sets were evaluated four 205 

times with each corresponding to a different MW SM data set. Their errors were calculated as the 206 

average of the four RMSE values respectively. The climatology of each of the above-mentioned 207 

soil moisture datasets was generated by assembling the variable values for a particular calendar 208 

week for all years of the study periods. Once the climatology was assembled, the standardized 209 

anomalies (ψ) were computed for week w, year y, and grid location (i, j),  as 210 
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where  indicates the true drought status, and  ,   and   denote the unknown errors in the 217 

MWSM, ESI and NLSM cases. First we assume that the three kinds of errors are uncorrelated 218 

and: 219 

           0,0,0                                                                                                                 (3) 220 

Then the RMSE values for MWSM (
MWSM ), ESI (

ESI ) and NLSM (
NLSM ) are given by 221 

(Stoffelen, 1998; Scipal et al., 2008; Miralles et al., 2010) 222 
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Thus, based on the TCEM, the monthly RMSEs for each of the data sets can be estimated grid by 224 

grid within the global domain.  225 

3. Blended Drought Index (BDI) 226 

Three techniques for combining the available retrievals into a blended index were 227 

evaluated. These include an equal weighted-average blending, an objectively weighted approach, 228 

and an optimal integration technique. Three blended drought indices are all generated on a near-229 

global gridded domain (from -60ºS, -180ºW to 90ºN, 180ºE) at 25 km spatial resolution over 2008-230 

2014 time period.  231 

3.1 Simple Equal Weighted-Average Blended Drought Index (BDI_s) 232 

BDI_s samples all SM products with equal importance. To increase the spatial coverage of 233 

drought estimations, BDI_s integrates all of the six SM retrievals using a weighted-average 234 

blending technique. For the BDI_s, all of the available data sets are assigned the same weight, 235 
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where the weightings determine the relative importance of each quantity on the average. When the 236 

six SM retrievals are all available, the BDI_s for each pixel within the global domain is 237 

6
_

WindSatASCATSMOSSMOPSESINLSM
sBDI


                               (5)

 

238 

If an index is missing at a given pixel, the BDI_s is computed as an average of the available 239 

drought estimations. 240 

3.2 Objectively Weighted Blended Drought Index (BDI_w) 241 

Relative to the BDI_s, the BDI_w treats SM products with lower RMSE as higher quality 242 

data and assigns that dataset a greater weight. Thus, the BDI_w is objectively developed according 243 

to monthly TCEM-based RMSE values computed in Equation (4).  And a weight f(x) for an 244 

available index is  245 
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When the drought assessments are all available, then N is 6, and the BDI_w for each pixel over 247 

the global domain is 248 
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249 

Given N values from 1 to 5 in Equation (6), the BDI_w in Equation (7) will be the summation 250 

without counting the unavailable drought estimations. 251 

3.3 Optimal Blended Drought Index (BDI_b) 252 
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The procedure of generating BDI_b for each pixel in the global domain is described in 253 

Figure 1. Each pixel is filled by the retrieval that is estimated to have the lowest RMSE based on 254 

its TCEM estimate, which ensures that all pixels across the global domain can be covered by the 255 

optimal drought estimation information, instead of integrating the evaluations by building their 256 

weights. The monthly TCEM-based RMSE for each of the 6 retrievals used here can characterize 257 

their time series throughout the year.  258 

-------------------------------------------------- 259 

Please Insert Figure 1 here. 260 

-------------------------------------------------- 261 

4. Evaluation with Benchmark Drought Monitor Products 262 

Drought intensity is classified in the USDM into five categories (Table 1) including D0, 263 

abnormally dry (percentile < 30%); D1, moderate drought (percentile < 20%); D2, severe drought 264 

(percentile < 10%); D3, extreme drought (percentile < 5%); and D4, exceptional drought 265 

(percentile < 2%). The statistics of frequency probability for each case here was collected on the 266 

global domain over the study period. The large sample size indicates the statistical results here are 267 

qualitatively stable and high likely representative of common conditions. Thus, all the indices are 268 

classified into 5 categories using the thresholds in Table 1.  269 

-------------------------------------------------- 270 

Please Insert Table 1 here. 271 

-------------------------------------------------- 272 

Based on the assumptions that the drought categories are continuous numbers, Figures 2 273 

and 3 show maps describing the temporal correlation between the USDM and each of the drought 274 

indices classified using the thresholds in Table 1, which are considered in the inter-comparison of 275 
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linear correlation in weekly climate-division-based ranking of moisture conditions. The CONUS 276 

domain-averaged correlation coefficients (R) for the ASCAT (sample size N = 364, there are 364 277 

weeks during the period 2008-2014), SMOS (N = 208, there are 208 weeks during the period 2011-278 

2014), WindSat (N = 364), SMOPS (N = 364), NLSM (N = 364) and ESI (N = 364) retrievals are 279 

0.38, 0.11, 0.18, 0.28, 0.40 and 0.35, respectively. The spatial patterns of the correlations between 280 

the USDM and the three BDIs agree well (Figure 3). Stronger correlations are observed over the 281 

Great Plains and the northeastern United States. These are areas of LST and vegetation indices 282 

tending to be anticorrelated, which indicates moisture-limiting vegetation growth conditions 283 

(Karnieli et al., 2010). The soil moisture-based BDIs are more sensitive to moisture condition 284 

changes. Reduced correlations between USDM and each BDI are observed over parts of the 285 

western and eastern US. In southwestern and southeastern US, the moisture changes are driven 286 

more by radiation and climate, and thus less tightly coupled with moisture-drought (Anderson et 287 

al., 2011). And in northwestern US, the short term precipitation indices used in the USDM may 288 

become desynchronized from land surface moisture conditions, because of the hydrologic delays 289 

in snowpack-forming regions (Shukla and Wood, 2008). In comparison with the USDM, the 290 

average temporal correlation coefficients for BDI_s and BDI_w are 0.36 and 0.34; while the 291 

BDI_b yields the highest correlation (R=0.43) in all of the drought estimations.  292 

----------------------------------------------------------- 293 

Please Insert Figures 2 and 3 here. 294 

----------------------------------------------------------- 295 

Based on 30-year (1985-2014) PDSI means, the correlation coefficients between PDSI 296 

standard anomalies and the drought assessments for each of the three BDIs can be found in Figure 297 

4. The sample size for each BDI is 84, because there are 84 months during the 2008-2014 period. 298 
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The higher correlation coefficients for each BDI are found in the areas where the weather stations 299 

are relatively dense, such as in the eastern U.S, Australia and portions of Eurasia (Chen et al., 300 

2002; Mu et al., 2013). The correlation coefficients for BDI_s, BDI_w and BDI_b in CONUS 301 

(23º~48ºN, -125º~-65ºE) are 0.45, 0.47 and 0.47, respectively, and in Australia (-40º~-10ºN, 302 

115º~165ºE) are 0.50, 0.53, and 0.59, respectively. The BDI_b (0.48) also yields the highest 303 

correlation coefficient in South Africa (-35º~-50ºN, -30º~165ºE) in comparison with the BDI_s 304 

(0.42) and BDI_w (0.44). Relative to BDI_s (0.36) and BDI_w (0.38), the BDI_b (0.40) presents 305 

successful to increase the correlation in Eurasia (-10º~55ºN, -20º~175ºE). In South America (-306 

55º~10ºN, -90º~-30ºE), the BDI_s (0.35) and BDI_w (0.43) exhibit relatively low correlations 307 

with respect to the PDSI standard anomalies, while this situation is significantly improved by the 308 

BDI_b (0.48). However, in the areas with weather stations and rain gauges sparsely distributed, 309 

the correlations between PDSI and BDIs are relatively low, such as northern Africa and the high 310 

latitude areas (Chen et al., 2002; Mu et al., 2013).      311 

        ----------------------------------------------------------- 312 

Please Insert Figures 4 here. 313 

----------------------------------------------------------- 314 

With respect to the monthly 0.5 degree 3-month SPEI standard anomalies (against 1985-315 

2014 averages) during the period 2008-2014 (sample size is 84), the correlation coefficients over 316 

global domain for each of the three BDIs are exhibited in Figure 5. The higher correlation 317 

coefficients for each BDI are shown in CONUS, Europe, Australia, the eastern China and southern 318 

South America, where the rain gauges are relatively dense (Chen et al., 2002). The correlation 319 

coefficients for BDI_s, BDI_w and BDI_b in CONUS are 0.46, 0.48 and 0.56, respectively, and 320 
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in Australia are 0.54, 0.58, and 0.59, respectively. Relative to BDI_s (0.33) and BDI_w (0.37), the 321 

BDI_b (0.41) presents successful to increase the correlation in Eurasia. The BDI_b (0.40) also 322 

yields the highest correlation coefficient in South Africa in comparison with the BDI_s (0.33) and 323 

BDI_w (0.37). In South America, the BDI_s (0.27) and BDI_w (0.32) exhibit relatively low 324 

correlations with respect to the SPEI standard anomalies, while this situation is improved by the 325 

BDI_b (0.37). Similar to Figure 4, the low correlations between SPEI and BDIs can be found in 326 

the areas where the weather stations and rain gauges are sparsely, such as Amazon basin, northern 327 

Africa and the high latitude areas (Chen et al., 2002; Mu et al., 2013).     328 

----------------------------------------------------------- 329 

Please Insert Figures 5 here. 330 

----------------------------------------------------------- 331 

5. Evaluation of Drought Events using BDIs 332 

BDI performance was also evaluated in relation to reported drought events over the 2009-333 

2014 period (Figure 6). In general, the major annual drought patterns are captured by each BDI 334 

product at this coarse time scale. All of the three BDIs can well capture the western Russian 335 

drought of 2010 that was very long and intensive, and caused serious damage to the environment 336 

and economy (Kogan et al., 2013; Mu et al., 2013) with BDI_s showing a relatively weak signal. 337 

And both 2011 Texas drought and the US-Great Plains drought in summer 2012 (Hoerling et al., 338 

2014; Otkin et al., 2015) are reasonably represented by the three BDIs, while major differences 339 

are noted in 2012 with BDI_s and BDI_w missing drought signals in the Eastern and Southern 340 

U.S. 341 

 According to Australian National Climate Centre (NCC) records (2009a, 2009b), an 342 

exceptional drought hit Australia in 2009, which was mitigated by the widespread heavy rainfall 343 
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throughout northern and central Australia in 2010, while the remaining drought was found in the 344 

western Australia (NCC, 2010). Frequent heavy rain events from spring 2010 to autumn 2011, and 345 

again in late 2011, lead to Australia's wettest two-year period on record, which was heavily 346 

influenced by La Niña conditions (NCC, 2012). During 2013, serious rainfall deficiencies created 347 

significant drought conditions that began to develop again and lasted over 2013-2014 period 348 

(NCC, 2013, 2014). These documented dry and wet conditions in Australia over 2009-2014 period 349 

are effectively exhibited by the annual BDIs (Figure 6) with both BDI_s and BDI_w exhibiting 350 

slight drought intensity. 351 

Several other extreme droughts, such as 2010 Amazon drought (Lewis et al., 2011; Xu et 352 

al., 2011; Atkinson et al., 2011) and the continuous droughts during 2009-2012 period in East 353 

Africa (Lyon and DeWitt, 2012), are all well captured by the BDI_b [Figure 6(c)]. However, 354 

BDI_s tends to reduce drought intensity for above drought episodes and BDI_w cannot reasonably 355 

reflect the East Africa drought. In addition, Figure 6(c) illustrates how the western U.S. 356 

experienced abnormally dry conditions during the 2013-14 period with the most severe conditions 357 

in California, which had been experiencing its worst drought in more than a century 358 

(AghaKouchak et al., 2015; Cheng et al., 2015); yet both BDI_s and BDI_w basically miss the 359 

drought signals for the California drought event [Figures 6(a) and 6(b)]. 360 

----------------------------------------------------------- 361 

Please Insert Figure 6 here. 362 

----------------------------------------------------------- 363 

The severe drought caused by the great Russian heat wave of 2010 lead to extensive 364 

wildfires and thousands of human deaths (Barriopedro et al. 2011). The 2010 western Russia 365 

drought started in May and lasted through November with response to the record-breaking high 366 
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temperature caused by a very strong La Niña event (Barriopedro et al. 2011; Kogan et al., 2013; 367 

Mu et al., 2013). Both BDI_s and BDI_w show the drought event ends in October 2011 with 368 

BDI_s showing lower intensity [Figures 7(a) and 7(b)]; while the monthly BDI_b results 369 

effectively capture the documented droughts in western Russia in 2010 [Figure 7(c)].  370 

----------------------------------------------------------- 371 

Please Insert Figure 7 here. 372 

----------------------------------------------------------- 373 

The 2011 drought over the U.S. Southern Great Plains seriously affected agriculture, 374 

severely impacted crop and livestock sectors and significantly influenced food prices at the retail 375 

level (Grigg, 2014; Arndt and Blunden, 2012; Tadesse et al., 2014) with the state of Texas 376 

experiencing its driest year since 1895 (Combs, 2012; Hoerling et al., 2013). This severe drought 377 

started in November 2010 and lasted through October 2011, and the dry situation was mitigated 378 

across the southeast Texas Panhandle and eastern Rolling plains in November 2011 by heavy 379 

precipitation (Combs, 2012; Tadesse et al., 2014). The BDIs are shown to the capture the evolution 380 

of the 2011 U.S drought with BDI_b providing a more reasonable representation of the observed 381 

drought conditions in in October and November 2011 [Figure 8]. 382 

----------------------------------------------------------- 383 

Please Insert Figures 8 here. 384 

----------------------------------------------------------- 385 

The 2013 drought in New Zealand was one of the most extreme on record for this country. 386 

During the period of 2012-2013, the dry conditions were unusually widespread across New 387 

Zealand, and particularly serious in the North Island (National Institute of Water and Atmospheric 388 

Research, 2013a); which reduced agricultural production and cost the national economy at least 389 

US$1.3 billion (Herring et al., 2014). The New Zealand Drought Monitor shows the progression 390 

https://en.wikipedia.org/wiki/La_Ni%C3%B1a
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and recession of the drought from October 2012 to May 2013 with the entire New Zealand 391 

experiencing the severe drought in March 2013 (National Institute of Water and Atmospheric 392 

Research, 2013b). Figures 9(a) and 9(b) show both BDI_s and BDI_w cannot correctly capture the 393 

situations of 2012-2013 New Zealand drought events; while the BDI_b in Figure 9(c) perfectly 394 

exhibits the drought episodes. 395 

----------------------------------------------------------- 396 

Please Insert Figure 9 here. 397 

----------------------------------------------------------- 398 

6. Discussion  399 

The results shown in Sections 4 and 5 indicate that the BDI_b technique, which objectively 400 

integrates drought estimations with the lowest TCEM-based RMSEs, can present more robust 401 

capability to track drought development with respect to historical records. However, there are 402 

several considerations relevant for interpreting these results. The challenges and opportunities are 403 

discussed further here associated with integration approaches and drought characteristics. 404 

6.1 Shallow Sensing Depth of Microwave Soil Moisture 405 

One issue that must be considered is the shallow sensing depth afforded by the microwave 406 

SM products used in this paper. The LSM modeled drought estimates are based on 0-100 cm 407 

averages which are much deeper than the top few centimeters sampling depth of the microwave 408 

SM-based retrievals. And the ESI represents temporal standardized anomalies in the ratio of actual 409 

ET to potential ET (PET), which is also dependent on the root zone SM content related to the 410 

rooting depth of the active vegetation (Hain et al., 2009; 2011; Anderson et al., 2015; Otkin et al., 411 

2015). In fact, using the surface-only microwave remote sensing product over sparsely vegetated 412 
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areas is consistent with the properties of NLSM and ESI proxy (Yilmaz et al., 2012); and the 413 

potential vertical inconsistencies over densely vegetated areas can be effectively resolved at 414 

weekly time scales in terms of the strong linear relation between the surface and the vegetation-415 

adjusted soil moisture simulations in Noah land surface model (Albergel et al., 2008; Yilmaz et 416 

al., 2012). Although the satellite SM retrievals can only penetrate a few centimeters depth, they 417 

represent the fastest response SM dynamics to meteorological anomalies and provide a measure 418 

for short-term droughts (Yuan et al., 2015).  419 

6.2 Uncertainties from Defining the Errors and the Use of Standardized Anomalies   420 

TCEM has been implemented in previous studies using in situ observations, and it shows 421 

a surprisingly robust ability of accurate evaluation on the time series (Janssen et al., 2007; Scipal 422 

et al., 2008; Miralles et al., 2010; Draper et al., 2013, Pan et al., 2015). The three retrieval sources 423 

in this study sufficiently meet the assumption that their errors should be from mutually distinct 424 

sources and are not cross-correlated. Prior to the application of TCEM, we transform all the SM 425 

time series into standardized anomalies; and their error variances thus are transformed into the 426 

same scale, satisfying the assumptions used in the TCEM to quantify the original accuracy for all 427 

of the SM retrievals (Miralles et al. 2010; Yilmaz et al., 2012; Yilmaz and Crow, 2013). However, 428 

with narrowing our focus to drought assessments in this paper, the information content of the SM-429 

based drought estimates can absolutely reflect the possibility that certain products are of higher 430 

quality than others (Miralles et al. 2010). 431 

6.3 Timescale of Compositing Window and Length of Record   432 

For this study, composites are generated at 28-day time steps over 4-week moving windows 433 

for each of 6 SM retrievals. Across 2011-2014 (SMOS) and 2008-2014 (ASCAT, WindSat and 434 

SMOPS) years, the climatologies are based on samples of 112 (28 days × 4 years) for SMOS and 435 
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196 (28 days × 7 years) for ASCAT, WindSat and SMOPS. Additionally, the SM-based BDIs are 436 

also validated against PDSI and SPEI standardized anomalies with respect their 1985-2014 437 

averages that should well capture climatological distributions. The large sample size and the 438 

regarded 30-year PDSI and SPEI averages indicate that the results shown in this paper are 439 

qualitatively stable and high likely representative of longer period, although the research periods 440 

for SMOS and other three MW SM products are 4-year and 7-year, respectively.  441 

6.4 Errors Specific to Individual MW SM Products 442 

Microwave remote sensing SM products suffer from the instrument noise and uncertainty 443 

in microwave emission modeling, which hampers their use in operational drought monitoring. The 444 

ASCAT SM-based drought estimations exhibit higher correlations with the USDM data sets at the 445 

regional scale and the PDSI and SPEI products on a global domain in comparison with the passive 446 

microwave SM products including WindSat and SMOS. This suggests that the weights of the 447 

active SM signals should be increased to enhance the drought monitoring capabilities of the 448 

blended products that integrate satellite SM retrievals from multiple single sensors. However, 449 

active microwave sensors such as ASCAT, have been shown to have greater uncertainty over high-450 

elevation areas (Wagner et al., 2013), which leads to the modest ASCAT performance (e.g., central 451 

Asia). The error propagation for the remotely sensed SM products can be easily tracked in the 452 

weighting-based BDI_s and BDI_w datasets with BDI_s being significantly impacted, while this 453 

kind of uncertainty is unreasonably identified in BDI_b maps. Using uniform weighting, the BDI_s 454 

is determined by the relative importance of each quantity on the average. The improvements 455 

related to the use of high quality data and degradations related to datasets with poor retrieval 456 

quality have equal opportunities to impact the BDI_s capabilities in monitoring drought events. 457 

Although BDI_w is objectively developed according to TCEM RMSE-based weights and the 458 
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fractions of high (low) quality signals are increased (decreased), the lower weights of drought 459 

evaluations that have larger uncertainties can still strongly degrade BDI_w’s performance. 460 

Relative to weights-based BDI_s and BDI_w, the BDI_b can merge the drought estimation that 461 

has lower uncertainty with ignoring the poor representation of the soil moisture condition.  462 

6.5 Seasonal Issues 463 

Drought monitoring and warning studies are generally focused on the drought events 464 

occurred during the growing season; however, recent studies have claimed that much more 465 

attention should be paid to cold season droughts since their occurrence and intensity are increasing, 466 

such as the California drought during November-April winters of 2011/12–2013/14, the 2010-467 

2012 China Southwest drought, and consecutive and worsening winter drought conditions in Nepal 468 

during 2000-2009 period (Wang et al., 2013; Yin et al., 2015a; Seager et al., 2015). However, the 469 

remotely sensed observations used in drought monitoring are greatly hampered by the frozen soil 470 

and low evapotranspiration, which can lead to the poor performance of weights-based BDI_s and 471 

BDI_w in cold season with missing the drought signals. This situation can be significantly 472 

improved by BDI_b with integrating the drought assessments that can exhibit the lowest TCEM-473 

based RMSE values. The statistical results show that the satellite SM signals assembled into BDI_b 474 

are around 12%, 22%, 29% and 25% in winter (December, January and February), spring (March, 475 

April and May), summer (June, July and August) and autumn (September, October and 476 

November), respectively with shifting their detection toward North in the warm season (April-477 

September) and toward South during October-March period.  478 

6.6 Additional future works 479 

a. Development of Finer Resolution BDI_b 480 
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Microwave satellite sensors have proven to be effective for remotely-sensed SM because of 481 

the large contrast of dielectric properties between liquid water and dry soil (Wang et al., 1980; 482 

Njoku and Kong, 1997). However, because of the current limitation of satellite antenna 483 

technology, the spatial resolutions of the microwave SM products are generally tens of kilometers. 484 

To overcome the coarse spatial scale limitation of relatively accurate microwave SM data, several 485 

downscaling algorithms have been proposed in recent literatures (Merlin et al., 2006; Narayan et 486 

al, 2006; Zhan et al, 2006; Piles et al, 2011; Parinussa et al, 2014,  Peng et al, 2016).  Additionally, 487 

the land surface temperature can be retrieved from thermal infrared imagery over a broad range of 488 

spatiotemporal resolutions from several meters to couple kilometers, which allows developing the 489 

finer spatial resolution ESI product on the whole global domain (Anderson et al., 2014; Hain et 490 

al., 2017). Based on the downscaled satellite SM products and the tens of meters ESI data, the finer 491 

spatial resolution BDI_b in drought occurrence areas, which can provide much more details for 492 

decision makers, is expected to be developed in near future. 493 

b. Integrating More Available Drought Evaluations   494 

We proposed to objectively integrate the SM satellite observations and model simulations 495 

based on quantitative evaluations of their uncertainties derived from the TCEM. TCEM requires 496 

three data sets with their errors totally independent from each other. This requirement will be met 497 

by selecting two independent data sets as anchors and use them to evaluate other data sets that are 498 

independent from the two anchor data sets and probably similar to each other. Thus we will have 499 

the general form for Equations (2-4): 500 
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where 1 , 2  and e  are the standardized anomalies of the two anchor data sets and the 502 

evaluating product, respectively; and 
 , 

  and 
  are the corresponding unknown errors. With 503 

assumption the three kinds of errors are uncorrelated ( 0,0,0    ), their 504 

RMSE values can be given by 505 
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                                                                                                   (6) 506 

Specifically, for agricultural drought—the water deficit is the negative soil moisture anomaly 507 

that crop could not tolerate (Wilhite and Glantz, 1985; Anderson et al., 2011), the LSM simulations 508 

and the thermal infrared/near-infrared satellite observations-based ESI/Vegetation Health Index 509 

(Kogan, 1997) can be used as the anchors. Current existing and upcoming microwave SM products 510 

and in situ SM measurements are thus able to be quantitative evaluated, and in turn to be 511 

objectively integrated toward the BDI_b.  512 

In recent years, increased attention has also been paid to the role of previously neglected water 513 

source (e.g., irrigation, water storage) processes on the surface energy balance, since traditional 514 

soil water balance modeling is only based on vertical water flow and neglecting secondary water 515 

source due to processes (Hain et al., 2015; Kumar et al., 2016). Thus time series datasets of existing 516 

meteorological (e.g., satellite precipitation) and hydrological (e.g., satellite irrigation/water 517 

storage retrievals) drought monitoring indicators will be scaled to their standard anomalies. 518 

Based on quantitative evaluations of the TCEM-based uncertainties, short- and long-term BDI_b 519 

products are expected to be further improved with integrating meteorological and hydrological 520 

drought assessments, respectively.   521 
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7. Conclusions 522 

We integrated the commonly used satellite SM products, ALEXI-based ESI and LSM 523 

simulations into a subjective BDI_s and two objective BDIs (BDI_w and BDI_b) based on 524 

quantitative evaluations of the relative uncertainties of these products derived from a TCEM. 525 

Performance of the three BDIs was analyzed in comparison with drought monitoring benchmarks 526 

and the official drought records. BDI_s using the subjective weighting exhibits modest 527 

performance with trending to underestimate drought intensity. Relative to the weighting-based 528 

BDI_s and BDI_w, the BDI_b can more reasonably measure drought severity according to 529 

intensity and duration, and can provide better capability to identify the onset and end of drought 530 

episodes. Over the BDI_s and BDI_w, the BDI_b presents an advantage of higher consistence with 531 

the climatological PDSI and SPEI datasets and current operational USDM product. In addition to 532 

operational insights, the BDI_b is recommended as an indicator which can merge new upcoming 533 

satellite SM products and more available drought evaluations when they can respect to the TCEM 534 

assumptions.    535 
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Table 1. Drought severity information in the original standardized scale. 840 

Categories NLSM ESI ASCAT SMOS SMOPS 

D0 0 to -0.56 0 to -0.81 0 to -0.58 0 to -0.63 0 to -0.57 

D1  -0.57 to -0.90 -0.82 to -1.12 -0.59 to -0.84 -0.64 to -1.00 -0.58 to -0.85 

D2 -0.91 to -1.18 -1.13 to -1.37 -0.85 to -1.04 -1.01 to -1.23 -0.86 to -1.06 

D3 -1.19 to -1.48 -1.38 to -1.67 -1.05 to -1.27 -1.23 to -1.42 -1.07 to -1.29 

D4 -1.49 or less -1.68 or less -1.27 or less -1.43 or less -1.3 or less 

Table 1(continue). Drought severity information in the original standardized scale. 841 

Categories WindSat BDI_s BDI_w BDI_b 

D0 0 to -0.58 0 to -0.34 0 to -0.31 0 to -0.51 

D1  -0.59 to -0.91 -0.35 to -0.56 -0.32 to -0.47 -0.52 to -0.77 

D2 -0.92 to -1.18 -0.57 to -0.87 -0.48 to -0.68 -0.78 to -1.00 
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D3 -1.19 to -1.48 -0.88 to -1.14 -0.69 to -0.87 -1.01 to -1.40 

D4 -1.49 or less -1.15 or less -0.88 or less -1.41 or less 

Table 2 Summary of the commonly used data sets in this paper. 842 

Data Data Type 
Spatial 

Resolution 

Spatial 

Resolution 
Period Citations 

GLDAS Prep Forcing data 0.25˚ 3-hourly 2001-2014 Rodell et al., 2004 

ESI Drought Index 0.05˚ weekly 2001-2014 Hain et al., 2016 

ASCAT Microwave SM 0.25˚ daily 2008-2014 Wagner et al., 1999 

WindSat Microwave SM 0.25˚ daily 2008-2014 Li et al., 2010 

SMOS Microwave SM 0.25˚ daily 2008-2014 Kerr et al, 2001 

SMOPS Microwave SM 0.25˚ daily 2008-2014 Yin et al., 2015b 

PDSI Drought Index 2.5˚ monthly 1985-2014 Dai et al., 2013 

SPEI Drought Index 0.5˚ monthly 1985-2014 
Vicente-Serrano et 

al., 2010; 

 843 

 844 

 845 

http://journals.ametsoc.org/author/Vicente-Serrano%2C+Sergio+M


42 
 

 
Figure 1 The procedure for constructing the BDI_b using the RMSEs estimated from the Triple 

Collocation Error Model implemented for each grid in each calendar month. RMSEmin is the 

minimum RMSE for a grid. And RMSESMOPS, RMSENLSM and RMSEESI are the monthly RMSE 

values for soil moisture data sets from SMOPS, NLSM and ESI cases, respectively. 
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Figure 2 Correlation coefficients (R) between USDM and (a) ASCAT, (b) SMOS, (c) WindSat, 

(d) SMOPS, (e) NLSM and (f) ESI. The grey color indicates insignificant correlations. 

 

Figure 3 Correlation coefficients (R) between USDM and BDIs over the 2008-2014 period. The 

grey color indicates insignificant correlations. 
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 849 

 

Figure 4 Correlation coefficients between PDSI standard anomalies (against 1985-2014 

averages) and BDIs over 2008-2014 period. The grey color indicates insignificance. 
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Figure 5 Correlation coefficients between SPEI standard anomalies (against 1985-2014 

averages) and BDIs over 2008-2014 period. The grey color indicates insignificance. 
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Figure 6(a) Annual global terrestrial BDI_s patterns over the 2009-2014 period. The BDI_s 

ranges from negative (red) to positive (green) values indicating dry to wet conditions.   

 



47 
 

Figure 6(b) Annual global terrestrial BDI_w patterns over the 2009-2014 period. The BDI_w 

ranges from negative (red) to positive (green) values indicating dry to wet conditions.   

 

Figure 6(c) Annual global terrestrial BDI_b patterns over the 2009-2014 period. The BDI_b 

ranges from negative (red) to positive (green) values indicating dry to wet conditions.   
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Figure 7(a) Monthly BDI_s on the sub-region (from 40ºN, 20ºE to 70ºN, 80ºE) domain in 2010. 

 

Figure 7(b) Monthly BDI_w on the sub-region (from 40ºN, 20ºE to 70ºN, 80ºE) domain in 2010. 
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Figure 7(c) Monthly BDI_b on the sub-region (from 40ºN, 20ºE to 70ºN, 80ºE) domain in 2010. 
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Figure 8(a) Monthly BDI_s on the sub-region (from 25ºN, -115ºW to 40ºN, -90ºW) domain in 

2011.   
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Figure 8(b)  Monthly BDI_w on the sub-region (from 25ºN, -115ºW to 40ºN, -90ºW) domain in 

2011.   

 

Figure 8(c)  Monthly BDI_b on the sub-region (from 25ºN, -115ºW to 40ºN, -90ºW) domain in 

2011. 
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Figure 9(a) Monthly BDI_s across the New Zealand domain (from 48ºS, 165ºE to -33ºS, 180ºE) 

from August 2012 to July 2013.   
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Figure 9(b) Monthly BDI_w across the New Zealand domain (from 48ºS, 165ºE to -33ºS, 180ºE) 

from August 2012 to July 2013. 

 

Figure 9(c) Monthly BDI_b across the New Zealand domain (from 48ºS, 165ºE to -33ºS, 180ºE) 

from August 2012 to July 2013. 
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