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Background
• Intro

– In the Fall of 2017 in Den Haag, CNES presented a concept paper, SLS-CS 17-07, to extend the set 
of modulations and coding options for the CCSDS 131.3-B-1, DVB-S2 Blue Book.

– In the following Spring meeting 2018 in Gaithersburg, ESA presented SLS-CS 18-04, a similar 
proposal to extend the CCSDS 131.2-B-1, the SCCC Blue Book

– Goal: NASA/GSFC was directed to study and develop a minimal set of transmitter distortions 
to evaluate both proposals.

•Objectives:
–Review documents: SLS-RFM 09-09 “ESA advanced coding and modulation performance 

under realistic channel conditions”, CCSDS 130.12-G-1 CCSDS Protocols over DVB-S2, 
CCSDS 130.11-G-0 DRAFT SCCC - Summary of Definition and Performance for relevance.

–Analyze through theory and simulations, the BER performance of 256APSK and 128APSK 
with channel distortions.

–Develop a set of baseline distortion characteristics to evaluate the DVB-S2X and SCCC-X 
proposals based on analysis and simulations.
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Theoretical Foundation
•Constellation Diagram and Voronoi Regions for SCCC-X
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Theoretical Foundation(2)
•Predicting BER performance
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where �2 is the Gaussian noise variance which 2�2 = No is the AWGN noise density and
K{l} = 6 is the number of triangles. Then the total probability of symbol error is:

Pe =
NX

1

Pe,l

N
(2)

where N = 256, the cardinality of the modulation symbol set. In many cases, we are
interested in the probability of a bit error or the bit error rate (BER), Pb. We can find
the exact BER by weighting every term in (1) by the fraction of bit errors caused by
every boundary. In the interest of time, for gray mapped constellations, we can use the
approximation:

Pb ⇡
1

log2N
Pe (3)

which is known to be very tight with increase signal-to-noise ratio (SNR).

Figure 3 shows a plot of (3) with a simulation of 256APSK. Note that the simulations are
performed with 8000 symbol errors and match the theory exactly.

3 Channel Distortions

SLS-RFM 09-09 defines four impairments: 1. non-linear distortions, 2. phase noise, 3. I/Q
imbalance, and 4. group delay. One of the weaknesses in our method of analysis is that by
using the constellation diagram in Section 2, we cannot assess the impact of group delay
since it is a linear distortion on the waveform and/or pulse-shape. We assume that it can
be mitigated by some mechanism of filtering at the receiver. Therefore we focus our study
on the first three impairments.

3.1 I/Q imbalance

I/Q imbalance can be characterize by two parameters: angle imbalance � and amplitude
imbalance �. We can define two coe�cients:

C1 = (1 + � exp(�j�))/2 (4)

C2 = (1� � exp(�j�))/2 (5)

If X defines the set of constellation points in complex values and Y defines the set of
constellation points with I/Q imbalance then [5]:
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modulation example used for describing the theory in Sections 2 and 3 is 256APSK however
128APSK can easily be extrapolated as well. Section 4 focuses on end-to-end analysis of
both 256APSK and 128APSK. Section 5 defines the recommended set of parameter values
for the channel definition and performance evaluation. Section 5 concludes with a summary
and remarks.

2 Theoretical Foundation

For any modulation over an additive white Gaussian Noise channel, the error performance
is first examined by plotting it’s constellation diagram. Figure 1 shows a constellation
diagram for the 256APSK from SLS-CS 18-04 where every “x” represents a symbol position.
Also shown are the Voronoi regions [1, 2] which define the decisions for deciding one symbol
over another symbol. These regions are outlined as polygons surrounding each symbol. A
complex matched filter receiver will decide in favor of the symbol within it’s region over
other symbols. In so doing, maximum likelihood detection is performed if the modulation
is corrupted by additive white Gaussian noise (AWGN) [2]. The receiver makes a symbol
error when noise has perturbed the received symbol away from it’s intended Voronoi region
and into another.

Fundamentally, we can find the error probability of receiving a particular symbol by in-
tegrating the region outside of it’s Voronoi region over a two-dimensional Gaussian dis-
tribution. We can repeat this procedure for every other symbol and weight every sum
equally with a factor that is one over the cardinality of the constellation set or 1/256.
This is then summed in totality. In practice, this approach is not performed since the re-
gions are not rectangular and integration over rectangular coordinates can be intractable.
What is commonly done for an arbitrary constellation configuration is to simulate the
performance.

A little known approach to analyzing the error performance to an arbitrary constellation
was developed by Craig [3] and subsequently used in [4]. Craig’s approach was to de-
compose the Voronoi region or polygon into a set of non-overlapping triangles using polar
coordinates. Figure 2 is an example of the lth symbol and it’s Voronoi region. The central
vertex is the symbol location. There are 6 triangles and each triangle has an edge that
identifies the distance to the boundary, ⇠i, the angle the edge makes with the boundary  i,
and the angle formed to adjoined edge at the symbol location ✓i. The probability of error,
Pe,l for the lth symbol is:

Pe,l =
1

2⇡

K{l}X

k=1

Z ✓
{l}
k

0
exp

 
�

⇠{l}2k sin2( {l}
k )

2�2 sin2(✓ +  {l}
k )

!
d✓ (1)
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Theoretical Foundation(3)
•Predicting BER performance
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where �2 is the Gaussian noise variance which 2�2 = No is the AWGN noise density and
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Y = C1 ·X + C2 ·X⇤ (6)

where the notation ()⇤ identifies the complex conjugate operation.

Figure 4 shows the 256APSK constellation diagram before and after imbalance of � = 0.1
dB and � = 0.1 dB. We apply the theoretical procedure defined in Section 2 to the
imbalanced constellation and find the result in Figure 5. The simulated values are plotted
in the same figure. We see that the theory predicts the imbalance exactly.
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3.2 Non-linear Distortions

The CCSDS TWTA model used in SLS-RFM 09-09 is shown in Figure 6. Plotted with it is
the associated 9th order memory polynomial whose coe�cients are created using a Least-
Squares algorithm [6]. The memory polynomial was proposed in [7]. It is a simplified
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Non-linear Distortions
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version of the Volterra series and we can write polynomial in the form found in [8]:

f(n) =
KX

k=1

QX

q=0

akqx(n� q)|x(n� q)|k�1 (7)

where x(n) is the discrete input signal, f(n) is output signal, K is the nonlinearity order,
Q are the memory depth and akq are the memory polynomial kernels.

Since our TWTA model has no memory defined, we can simplify (7):

f(n) =
KX

k=1

akx(n)|x(n)|k�1 (8)
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Figure 6: CCSDS TWTA Model Fitted with an 9th Order Memory Polynomial

The advantage of the memory polynomial is that the function can be used with higher
orders to extrapolate the behavior to lower power levels. An extended plot for lower power
levels is shown in Figure 7 using an 18th order polynomial. The lower range is extended to
-23 dB. Any values below this will be very non-linear. The values for ak can be found in
Table 1.
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0.168219331188666 + 0.0108707027652633i
-1.90396419138291 - 0.172928588413047i
44.4980770985467 + 0.621184506201673i
-257.130730617467 + 11.7256819339566i
897.304215044059 - 178.692731323500i
-2070.99561499126 + 750.801997897041i
3010.07199352395 - 1512.61874985406i
-2146.92499436427 + 1389.92271298938i
-695.429406871075 + 170.631105923232i
2782.84747075165 - 1626.18059517225i
-1542.20595666305 + 1069.12047494355i
-1639.74798152804 + 885.586789437163i
3380.30494836889 - 2057.00084143893i
-2733.47576088479 + 1712.04093333675i
1284.74818382355 - 815.403557197373i
-366.353360080971 + 234.220978480231i
59.1209847713142 - 37.9719767396993i
-4.16336885230580 + 2.68312358970457i

Table 1: 18 Complex Coe�cients
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Non-linear Distortions(4)
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Phase Noise
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•Following the approach of [Blahut, 2010]:
– Define the residual phase noise as an approximated Gaussian distribution at the output of phase 

synchronizer then:
– Multiply the constellation points by a random rotation:                         where       is a Gaussian RV with 

STD =       and a mean of zero.
– Then probability distribution function:

– Therefore:

– Discretely:                                                                             where                        and     num. points
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Figure 10: BER Performance at 13 dB Back O↵

3.3 Phase Noise

SLS-RFM 09-09 considers phase noise as a random Gaussian distributed noise that’s colored
according to a frequency distribution. In our analysis, we define it as the residual phase
noise from all sources resulting at the output of the carrier synchronization circuit. In
so doing, it can be approximated as a Gaussian distribution that is defined only with a
standard deviation and mean. This is the approach defined in [2]. A Gaussian distribution
can be truncated from [�3�, 3�] containing 99.7% of the total area which is typically
normalized to 1, where � is the standard deviation. The approach is to multiple the complex
representation of the constellation points by a random rotation, exp(�i!), where ! is a
Gaussian random variable with standard deviation of �! and a mean of zero. Therefore
the probability distribution function PDF:
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where !(n) ranges from [�3�, 3�] in steps of �! = 6�/N!.

Figure 14 shows the constellation with phase noise of standard deviation �! = 0.7 degrees.
The outer ring has the largest phase noise spread. The performance with phase noise is
shown in Figure 15 with the summation in (13) occurring over N! = 10 discrete values. The
results shown again that the simulations and analytical approach are exact and therefore
the analytical approach is sound.

Figure 14: Constellation with Phase Noise

4 End-to-End Analysis

Now that we have established the theoretical foundation and also validated it with simu-
lations, we will combine the distortions into a single analysis and draw recommendations.
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Figure 16: Constellation with Compression and Imbalance
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Figure 17: Performance with Compression and Imbalance

BER degradation at 1e-3 is about 4 dB which is consistent with our target for 256APSK
analysis.

4.1 Doppler Profile

While not included in our analysis, we can define an additional frequency distortion created
by the Doppler profile defined be a low Earth orbiting overhead pass at an altitude of 160
Km at sea level for a carrier frequency of 26.25 GHz. Figure 21 shows the Doppler frequency
shift as well as the rate of change of the Doppler shift. The maximum Doppler frequency
shift is ±6.643e5 Hz and the minimum rate of change is -3.253e4 Hz/s. We make no e↵ort
to analyze the e↵ect on BER performance.

5 Recommended Target Testing Configurations

From the results of the previous section, it is our finding that the setup listed in Table 2 will
achieve the targeted goals defined in the previous section which are: 1) contain the mean
of all distortions within dmin/2, 2) avoid operating in error floor regions, and 3) maintain
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Figure 18: Constellation with Compression, Imbalance and Phase Noise
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Doppler Profile
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• Defined for Ka band carrier 
frequency of 26.25 GHz

• LEO orbit at 160 Km direct 
overhead pass.

• Maximum Doppler freq. shift = 
6.643e5 Hz

• Minimum Doppler rate = -
3.253e4 Hz/s



Test Configuration
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256APSK Testing Parameters Values
Phase Imbalance 0.5 degrees

Amplitude Imbalance 0.1 dB
CCSDS TWTA Back O↵ 13.9 dB

Phase Noise Standard Deviation 0.5 degrees

128APSK Testing Parameters Values
Phase Imbalance 0.5 degrees

Amplitude Imbalance 0.1 dB
CCSDS TWTA Back O↵ 13.3 dB

Phase Noise Standard Deviation 0.5 degrees

max Doppler frequency shift ± 6.643e5 Hz
min Doppler rate of change -3.253e4 Hz/s

Table 2: Summary of Test Configuration

implementation losses at 1e-3 to within 5 dB. These conditions can be achieved with this
scenario. As a secondary requirement, we believe that the parameters can be measured or
verified with test equipment. It is worth reiterating that with pulse-shaping, the expected
error performance should be worse.

6 Conclusion

We have successfully developed an analytical theory that exactly predicts the end-to-end
error performance of 256APSK and 128APSK with and without distortions, which to our
knowledge has not be published before. We have found a set of baseline parameters to
evaluate and compare the DVB-S2X and the SCCC-X proposals which we believe should
provide a good indicate of the BER performance of each set of the extended modulations
and coding combinations.
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CCSDS: Consultative Committee on Space Data Standards
CNES: Centre National d’Etudes Spatiales
ESA: European Space Agency
DVB-S2: Digital Video Broadcast Second Generation
DVB-S2X: Digital Video Broadcast Second Generation Extension
SCCC: Serially Concatenated Convolutional Codes
SCCC-X: Serially Concatenated Convolutional Codes Extension
SLS-RFM: Space Link Services-Radio Frequency and Modulation
SLS-CS: Space Link Services-Coding and Synchronization
BER: Bit Error Rate
STD: Standard Deviation
RV: Random Variable
PDF: Probability Distribution Function
LEO: Low Earth Orbit
NASA: National Aeronautic and Space Administration
GSFC: Goddard Space Flight Center
APSK: Amplitude Phase Shift Keying
GHz: Giga Hertz
Hz: Hertz
Hz/s: Hertz per second
dB: decibels




