https://ntrs.nasa.gov/search.jsp?R=20190014038 2019-08-31T13:38:20+00:00Z

UNCLASSIFIED

The Advanced Topographic Laser Altimeter System (ATLAS) for NASA's Ice Cloud and Land Elevation Satellite-2 (ICESat-2)

Design, Development, and On-Orbit Performance

John Cavanaugh NASA Goddard Space Flight Center Instrument/Payload Systems Engineering Branch Code 592

ATLAS Measurement Concept

ICESat Background

UNCLASSIFIED

- ICESat
 - Launch : January 13, 2003
 - Decommissioned August 17, 2010
 - Instrument : Geoscience Laser Altimeter System (GLAS)
 - Diode Pumped-Nd:YAG Solid-state laser transmitter
 - 4-ns pulse
 - 40-Hz Pulse Repetition Frequency
 - 1064-nm altimeter
 - 70-m footprint
 - 532-nm atmospheric sounder
 - 1-m telescope receiver
 - Silicon Avalanche Photodiode (Si-APD) altimeter detector
 - Analog waveform capture
 - Single Photon Counting Modules (Geiger-mode Si-APDs) for atmospheric detectors
 - Photon-counting atmospheric profiles
- Despite laser issues, ICESat collected a valuable dataset used to evaluate global ice sheets
 - This set the stage for ICESat-2

GLAS Instrument

GLAS Laser

ICESat sample data

ATLAS Design **Instrument Overview**

UNCLASSIFIED

Transmitter

- Solid-state Nd:YVO₄ Master Oscillator Power Amplifier (MOPA) Architecture
- 10-kHz pulse rate
- 1.2-ns output pulses •
- 532.292-nm wavelength, tunable ± 15 picometers
- Diffractive beam splitter
 - 6 signal beams : 3 strong, 3 weak

Receiver

- 80-cm reflector telescope
- 30-pm bandpass filter
 - Temperature-tuned to match transmitter
- Single photon detection w/ 16-pixel photomultipliers
- Timing
 - 100-MHz Ultra Stable Oscillator w/ gate-delay Field Programmable Gate Array (FPGA)
 - Range tracking algorithm utilizing on-board Digital Elevation Model/Digital Relief Model and position/attitude updates from spacecraft
- Alignment
 - Active Transmit/Receive co-boresight alignment
 - Alignment Monitoring and Control System (AMCS)
 - UNCLASSIFIED

ATLAS Optical Bench

ATLAS Optical Block Diagram

LASER SAMPLING ASSEMBLY

ATLAS Ground Track Illumination Pattern

UNCLASSIFIED

- Diffractive Optical Element (DOE) splits single input laser beam into 6 beams
- 3 x 2 array 3 "Strong", 3 "Weak"
 - 4:1 energy ratio (Strong:Weak)
- 13.22 x 5.0 mrad angular separation
- Each spot <25µrad divergence (same as input beam)
 - Each spot is ~12 m diameter on ground

ATLAS Laser Overview

UNCLASSIFIED

- Pulse energy: ~250 μ J 900 μ J/pulse, programmable
- Master Oscillator Power Amplifier
 - Diode laser end-pumped Nd:YVO₄
- Oscillator :
 - Volume Bragg Grating output coupler for wavelength control
 - Active Q-switch
- Nd:YVO₄ slab fractured during test in 2016, prompting re-design
 - Design for flight:
 - Eliminated gold plating
 - Minimized mount induced stresses on slab
 - Selected crystals with the fewest flaws

UNCLASSIFIED

ATLAS Laser

ATLAS Receiver

9

ATLAS Timing and Algorithms

- Photon Counting Electronics
 - Time-tag each detected photon event from the Detector Electronics Module
 - Range gate determined by an on-board algorithm using
 - Digital Elevation/Relief maps (World Geodetic System 1984 ellipsoid)
 - Real-time spacecraft position and attitude (1-Hz, interpolated)
 - 100-MHz oscillator referenced to GPS 1-pps provides coarse time count
 - Gate delay FPGA provides fine time count with ~150-ps resolution
 - Time tags are histogrammed and likely ground signal selected for downlink by evaluating background, signal strength over time, and cloud cover

ATLAS Instrument Overview

MASS	470 kg
POWER	420 W
DAILY DATA VOLUME	~500 Gbits

On orbit laser pulse energy: 450 µJ

UNCLASSIFIED

Transmit Optics Lifetime

- Optical coatings exposed to laser beams in vacuum tend to damage/degrade
- ATLAS lifetime requirement = 1T shots
- Mitigations:
 - Maintain 1 atm pressure inside laser
 - Expand laser beam inside pressurized laser before impinging on transmit optics in vacuum
 - Perform Laser Induced Damage Threshold testing to screen all optics
 - House transmit optics in heated enclosure to maintain temperature at 20°C
 - Optical Coatings Life Test (OCLT)
 - Exposed coated optics to laser energy with varying levels of expected contaminants in vacuum.

Typical Beam Quality Degradation

ATLAS GSE Bench Checkout Equipment

UNCLASSIFIED

MAAT Main Alignment & Altimetry Target

- Retro-reflector & beam steering
 - Laser Beam Diagnostics
 - Camera, Integrating Sphere, Fiber pickoff

Star Target

Fixed star pattern for LRS

Optical Test Port Stimulator System Diode laser sources, delay generators fiber coupled to ATLAS

<u>Receiver Telescope</u> <u>Aperture Cover</u>

- Path for aperture signal sources
 - Showerhead
- Thermal target
- Stray light block

UNCLASSIFIED

<u>LOAS</u> Laser Optical Attenuator and Sampler

- Attenuates/stops and samples ATLAS laser beam
 - Neutral Density
 filter stack
 - Single mode fiber pick-off
 - Integrating Sphere

ATLAS Instrument Performance

UNCLASSIFIED

Transmitter

- Laser energy
 - Stable to within ±2% of ground test values _ _
- Beam Quality
 - Nominal as indicated by slope of Alignment Monitoring and Control System (AMCS) sweeps
 - Plots show received beam convolved with RTA field of view
- Pointing
 - No change post-launch
 - Orbit variation ~30 µrad p-p

ATLAS Instrument Performance

Receiver

UNCLASSIFIED

- Receiver performance nominal
 - Impulse response as expected (Transmit Echo Pulse)
 - Solar background noise as expected

Transmit Echo Pulses

Photomultiplier responding to radiation over South Atlantic Anomaly prior to opening of aperture door. Counts are much lower than solar background rates

ATLAS Observations Ocean surface waves

- With the strong beam, there is a well defined wave structure
- This example depicts wavelengths on the order of 140 m

ATLAS Observations Trees in Russia, daytime acquisition

UNCLASSIFIED

ATLAS Observations Ice Sheet Elevation - Antarctica

Atmospheric Observations Smoke from California Fires UNCLASSIFIED

UNCLASSIFIED

Northrop Grumman Gilbert Facility

NASA

Acknowledgements

UNCLASSIFIED

- Donya Douglas-Bradshaw/ NASA Instrument Mgr.
- Phil Luers/NASA Deputy ISE
- Tony Martino/NASA Instrument Scientist
- Tom Neumann/NASA Project Scientist
- Mike Bay/Bay Engineering Instrument Systems
- Megan Bock/NASA Instrument Systems
- Dann Brown/NASA Safety & Mission Assurance
- Jim Buchheit/NASA Instrument Systems
- Claudia Carabajal/Sigma Space- Algorithms
- John Chambers/NASA Optics
- Tom Correll/NASA Laser Reference System
- Pete Gonzales/Bay Engineering Instrument Systems

- Jake Hageman/NASA Instrument Systems
- Pete Liiva/Sigma Space Bench Checkout Equipment
- Manuel Maldonado/NASA Instrument Flight Software
- Jan MacGarry/NASA Algorithms Lead
- Deepak Patel/NASA Thermal Engineer
- Luis Ramos-Izquierdo/NASA Optics
- Nick Sawruk/Fibertek Laser
- Oren Sheinman/NASA Mechanical Systems
- Kathy Strickler/Alcyon Tech. Services I&T Manager
- Joseph-Paul Swinski/NASA Instrument Software
- Elisavet Troupaki/NASA Laser
- Bonnieblue Valentin-Santiago/SGT Contamination

Acronyms

AMCS	Alignment Monitoring and Control Subsystem
ATLAS	Advanced Topographic Laser Altimeter System
AZ	Azimuth
BCE	Bench Check-Out Equipment
BSM	Beam Steering Mechanism
ССНР	Constant Conductance Heat Pipe
CFD	Constant Fraction Discriminator
DAA	Detector Array Assembly
DEM	Detector Electronics Module
DOE	Diffractive Optical Element
DOM	Detector Optics Module
DRM	Digital Relief Model
EL	Elevation
FM	Fold Mirror
HV	High Voltage

ICESat-2	Ice Cloud and Land Elevation Satellite - 2
IMSC	Instrument-Mounted Spacecraft Components
LHP	Loop Heat Pipe
LRS	Laser Reference System
LSA	Laser Sampling Assembly
MOPA	Master Oscillator - Power Amplifier
Nd:YAG	Neodymium-doped Yttrium Aluminum Garnet
Nd:YVO4	Neodymium-doped Yttrium Orthovanadate
PBC	Polarization Beam Combiner
РМТ	Photomultiplier
RTA	Receiver Telescope Assembly
SHG	Second Harmonic Generator
Si-APD	Silicon Avalanche Photodiode
SPCM	Single Photon Counting Module
TAMS-LS	Telescope Alignment Monitoring System Light Source
USO	Ultra Stable Oscillator