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Agenda

NASA’s In Space Manufacturing Initiative (ISM)
• The Case for ISM: WHY

• ISM Path to Exploration 

• In Space Robotic Manufacturing and Assembly (IRMA)

Additive Manufacturing (AM) Development For Liquid Rocket 
Engine Space Flight Hardware

MSFC Standard and Specification For Additively Manufactured 
Space Flight Hardware

Summary
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The Case for ISM: WHY

Current maintenance logistics strategy 
will not be effective for deep space 
exploration missions

Benefits from Incorporation of ISM
ISM offers the potential to: 

• Significantly reduce maintenance 
logistics mass requirements

• Enable the use of recycled materials 
and in-situ resources for more 
dramatic reductions in mass 
requirements

• Enable flexibility, giving systems a 
broad capability to adapt to 
unanticipated circumstances

• Mitigate risks that are not covered by 
current approaches to maintainability
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The First Step: 3D Printer International Space Station (ISS)
Technology Demonstration

• A total of 21 parts were printed on ISS, including the uplinked ratchet handle.
• Comprehensive nondestructive inspection and testing performed on all articles
• Mechanical property differences observed between flight and ground samples
• Phase ll ISS prints targeted extruder standoff distance as probable cause for 

differences observed in Phase I data.
• Overall, we cannot attribute any of the observations to microgravity effects. 
• Lessons Learned were incorporated into the next generation 3D Printer for ISS –

Additive Manufacturing Facility (AMF) by Made In Space

Mechanical Property
Test Articles Functional Tools



ISM Utilization and the Additive Manufacturing Facility 
(AMF): Material Characterization and Functional Parts
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• Additive Manufacturing Facility (AMF), the second 
generation printer, is a commercial, multi-user 
facility developed by Made in Space, Inc.  

• Upgrades beyond 3DP include:
a) Print with multiple material (ABS, ULTEM 9085, 

and HDPE
b) Integral cameras/sensors for automated 

monitoring
c) Maintenance procedures reduce crew time
d) Leveling and calibration with on-board systems

• Materials characterization task developing baseline 
mechanical properties on ABS (test matrix below)

SPHERES Tow Hitch

REM Shield Enclosure

Antenna Feed Horn

OGS AAA Adapter

AMF on ISS with printed multi-purpose tool floating in front 
(photos courtesy of MIS)
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Phase A (18 months)
Goal: Demonstrate a scalable ground-based 
PROTOTYPE of an ISM FabLab System able to 
mature into flight demonstrations on the ISS 
within three years.

DESIGN

Phase B (12 months)
Goal: Mature the Phase A ISM FabLab System 
prototype into a flight integration 
deliverable. Phase B criteria and needed path 
are informed by Phase A results and will be 
released under a follow-on BAA.

BUILD

Phase C (18 months)
Goal: Demonstrate the capability of a Phase B 
ISM FabLab System on the ISS and evaluate 
risk. Phase C criteria are informed by Phase B 
results and will be released as a follow-on 
BAA or other acquisition vehicle.

FLY

WE ARE HERE! 

 NASA solicited proposals for the 
development of a Multi-Material 
Fabrication Laboratory (FabLab) capable 
of end-to-end manufacturing of 
precision parts for sparing, repair, and 
logistics support. during space missions. 
♦ High degree of autonomy
♦ On-demand manufacturing of 

metallics and other materials in the 
microgravity environment

♦ Minimum build envelope of 6”x6”x6”
♦ Earth-based remote commanding
♦ In-line remote/autonomous 

inspection and quality control

 This is the first step toward a fully-
integrated, on-demand manufacturing 
capability that is able to produce 
finished, ready-to-use metallic, plastic, 
and/or electronic products during 
Exploration missions.

 The Phase B solicitation will be openly 
competed and is anticipated to be 
released late in CY 2019. 

NextSTEP Multi-Material Fabrication Laboratory (FabLab)
Broad Agency Announcement (BAA) 



AES Mid-year Review March 2017

Archinaut Dragonfly CIRAS
A Versatile In-Space Precision Manufacturing 
and Assembly System

In-Space Robotic Manufacturing, Assembly
and Reconfiguration of Large Solid Radio 
Frequency (RF) Reflectors

A Commercial Infrastructure for Robotic 
Assembly and Services

Tipping Point Objective
A ground demonstration of additive 
manufacturing of extended structures and 
assembly of those structures in a relevant 
space environment. 

A ground demonstration of robotic assembly 
interfaces and additive manufacture of 
antenna support structures meeting EHF 
performance requirements.

A ground demonstration of reversible and 
repeatable robotic joining methods for 
mechanical and electrical connections feasible 
for multiple space assembly geometries.

Team
Made In Space, Northrop Grumman Corp., 
Oceaneering Space Systems, Ames Research 
Center 

Space Systems/Loral, Langley Research 
Center, Ames Research Center, Tethers 
Unlimited, MDA US & Brampton

Orbital ATK, Glenn Research Center, Langley 
Research Center, Naval Research Laboratory

Concept by Made In Space

In-space Robotic Manufacturing 
and Assembly (IRMA): Phase 1 Concepts

Concept by Space 
Systems/Loral Concept by Orbital ATK

Status: 2-year risk reduction developments completed. Phase 2 proposals selected for flight demo



Additive Manufacturing
at Marshall Space Flight Center
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Additive Manufacturing Development for 
Liquid Rocket Engine Space Flight Hardware



Strategic Vision:
• Defining the Development Philosophy

of the Future
• Building Foundational Industrial Base
• Building Experience 
• Developing “Smart Buyers” to enable 

Commercial Partners
• Enabling and Developing Revolutionary Technology
• SLM Material Property Data, Technology, and Testbed shared with US Industry

Focus Areas:
• SLS Core Stage Engine, RS-25

• Process development and characterization
• Material property characterization and database development (Inconel 718)
• Pathfinder component fabrication

• In Space Propulsion Class Additive Manufacturing Demonstrator Engine (AMDE)
• Chambers  Valves
• Injectors  Turbomachinery
• Nozzles

• Small Satellite Propulsion Components
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Additive Manufacturing Design and Development for 
Space Propulsion System Applications 

TestManufacture

Test

Test

Manufacture

Manufacture

Concurrent Development Model

Analyze



SLS Program / RS-25 Engine Example Pogo Z-Baffle

Inconel 718
Used existing design with additive manufacturing to reduce complexity from 127 
welds to 4 welds
• 1 of 35 part opportunities being considered for RS-25 engine
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Additive Manufacturing Demonstrator Engine (AMDE)  Development

Injector Development

Copper Main Combustion Chamber Development

Liquid Oxygen Turbopump Development

4K Methane

1.2K LOX Hydrogen 20K AMDE Lox 
Hydrogen

20K AMDE  Lox Hydrogen

35k Methane GG

Valve Development

100 lb LOX 
Propane

Oxidizer Turbine 
Bypass

Main Oxidizer 
Valve (MOV)

Main Fuel Valve/
Coolant Control

Fuel Turbopump Development

Turbopump Assembly

Turbine Stage

Rotating 
Assembly

Turbopump Assembly

Inducer Assembly

StatorTurbine
Impeller

Pump Housing

Turbine Housing

Shaft 
Baffle
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Additive Combustion Chambers Assembly and Testing 

GRCop-84 AM Chamber Accumulated 2365 sec 
hot-fire time at full power with no issues

Ox-Rich Staged Combustion Subscale Main 
Injector Testing of 3D-Printed Faceplate

LOX/Methane Testing of 3D-Printed Chamber
Methane Cooled, tested full power

GRCop-84 3D printing process developed at NASA and infused into industry

Morgan, K. L., Gradl, P., “Additive Manufacturing Overview: Recent Propulsion Applications,” Additive Manufacturing for Defense and Government Conference, July 2017



Small Satellite Propulsion Components Design and 
Development
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CubeSat cuboidal tank design: 
• Topology optimized 
• Printed
• Successfully hydrostatic proof tested

AM Thruster Components
• Monopropellant thruster 

thermal standoff - topology 
optimized with integrated 
flow passages

• Injector
• Reactor

Detailed design and 
fabrication of 3U and 6U 
CubeSat Propulsion 
Modules

CubeSat propulsion system 
(1 Newton SLA Model)



Additive Manufacturing
at Marshall Space Flight Center
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MSFC Standard and Specification for 
Additively Manufactured Spaceflight Hardware



NASA’s Plans for Development of Standards for Additive 
Manufactured Components

NASA MSFC has developed AM standards in response to near term 
Programmatic Needs

• Program partners in manned space flight programs (Commercial Crew, 
SLS, and Orion) are actively developing AM parts
• AM parts are currently used for commercial space flight
• MSFC standard is currently being used for certification via tailoring

• MSFC-STD-3716 lists 65 unique Additive Manufacturing Requirements
• MSFC-SPEC-3717 lists 45 unique Process Control and Qualification 

Requirements
• Although the MSFC standard was written specifically for the Laser 

Powder Bed Fusion process it’s principles can be applied to any AM 
process for the purpose of certification

• The NESC formed a team to explore creation of Agency Standards         
and Specifications for Additive Manufactured (AM) components. 
• This team includes representatives from nine NASA centers along with 

representatives from the FAA, Air Force, Navy and Army.
• One standard each for Crewed, Non-Crewed, and Aeronautic Projects

• Separate specification to cover Equipment and Facility Process Control
• Standards are planned to be ready for Agency-wide review in late 2020



Summary: In Space Manufacturing Applications

Conclusions from Systems Analysis of ISM Utilization for the Evolvable Mars Campaign: 
Why ISM

• Current maintenance logistics strategy will not be effective for deep space 
missions

• ISM has the potential to significantly reduce maintenance logistics mass 
requirements by enabling material commonality and the possibility of material 
recycling and ISRU for spares

• ISM should be considered and developed in parallel with the systems design
NASA is actively working to develop ISM capabilities: 

• Within Pressurized Volume: Reduce the logistics challenges and keep astronauts 
safe and healthy in transit and on extraterrestrial surfaces. ISS is a critical testbed. 

• External/Free Space - IRMA: Develop new commercial capabilities for robotic 
spacecraft construction, repair, refurbishment, and repurposing  in Earth orbit 

To achieve functional capability supporting the Exploration timeline, ISM must 
work with Exploration systems designers now to promote culture change; identify 

high-value application areas; and influence the design and maintainability 
philosophy.
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Summary: Space Propulsion System Applications

MSFC has made a major thrust in the application of AM for development of liquid 
rocket engines ranging from the Space Launch System Core Stage RS-25 engine, to 
In-Space Class prototype engines, to Cubesat propulsion systems.

• Process development, material property characterization, and component fabrication 
trials for RS-25 Inconel 718 material applications. 

• New design and development philosophy successfully exercised to build AMDE, a 
prototype in-space class engine incorporating additive manufacturing to reduce costs, 
schedule and parts counts. 

• Designed and additively manufactured > 150 rocket engine parts in 2.5 years
• Encompassed every major component and assembly of the engine
• Developed and demonstrated capability to additively manufacture with copper. 
• Data, expertise, and testbed shared with industry for current/future developments

• Capabilities developed through AMDE experience have been extended to small satellite 
propulsion systems components design and development

NASA MSFC created a Standard and a Specification for AM Spaceflight Hardware in 
response to near-term programmatic demand.

• Shaped the approach to additive parts for current human-rated space flight programs 
through early release of Draft Quality Standard approach.

• Standard and Specification provide a framework for consistent evaluation of AM Laser 
Powder Bed Fusion processes, properties, and components.
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The First Step: The 3D Printing in Zero G 
Technology Demonstration Mission

7

The 3DP in Zero G Tech Demo delivered the 
first 3D printer to ISS and investigated the 
effects of consistent microgravity on fused 
deposition modeling

Printer inside Microgravity 
Science Glovebox (MSG)

Phase I Prints (Nov-Dec 2014): mechanical 
property test articles; range coupons; and 
functional tools

• Tensile and Flexure: Flight specimens stronger and stiffer than ground specimens
• Compression: Flight specimens are weaker than ground specimens
• Density: Flight specimens slightly more dense than ground specimens;

compression specimens show opposite trend
• Structured Light Scanning: Protrusions along bottom edges 

(more pronounced for flight prints)
• Microscopy: Greater Densification of Bottom Layers 

(flight tensile and flexure) 

Conclusions
• Z-Calibration distance variation suspected to be primary factor driving 

differences between flight and ground samples
• Potential influence of feedstock aging are being evaluated further

Key Observations:



Key Results: The 3D Printing in Zero G Technology 
Demonstration Mission (Phase II)

9

• Phase II Prints: 
• 25 specimens (tensile + compression) built 

at an optimal extruder standoff distance. 
• 9 specimens printed with intentionally 

decreased extruder standoff distance to 
mimic Phase I flight process conditions 

• Key findings:
• No substantive chemical changes in feedstock 
• No evidence of microgravity effects noted in 

SEM, SLS, CT analysis. Some internal structure 
variation between builds and with changes in 
process settings (primarily compression)

• All prints to date with 3DP appear to be 
broadly part of the same family of data

• Phase I data variations appear traceable to:
o Differences in manufacturing process 

settings (extruder standoff distance)
o Data scatter - characteristic of many 

additively manufactured materials and 
processes. 

o Printer variability

Cross-section of PII tensile specimen manufactured at 
optimal extruder setting (left) compared with specimen 
manufactured at a reduced extruder standoff distance 
(right).  Right image has a cross-section characteristic 
with PI flight prints.

Specimen set
Average ultimate 
tensile strength 

(KSI)

Coefficient of 
variation

Phase II 3.68 6.71
Phase II optimal 3.63 6.61
Phase II off-
suboptimal

3.93 0.07

Phase I ground 3.46 1.71
Phase I flight 4.04 5.95

Overall, we cannot attribute any of the observations to microgravity effects. 



Mission Goal of Refabricator
Demonstrate how the integrated polymer Recycler/3D Printer 
can increase mission sustainability by providing a repeatable, 
closed-loop process for recycling plastic materials/parts in the 
microgravity environment into useable feedstock for 
fabrication of new and/or different parts. 

In-Space Recycling & Reuse: ISS Refabricator 
Closing the Manufacturing Loop

• Technology Demonstration Mission 
conducted under SBIR contract with 
Tethers Unlimited, Inc. (TUI)

• Refabricator is an integrated 3D 
printer (FDM) which recycles ULTEM 
plastic into filament feedstock 
through a novel TUI process which 
requires no grinding. 

• Designed to be self-contained and 
highly automated.

• Installation and activation on the ISS 
EXPRESS Rack on 2/14/19

Refabricator 
(Top) and 
Printed 

Parts 
(Bottom)



”The Techshot FabLab” -
Techshot, Inc. (Greenville, IN)  
Partners: nScrypt, TM Vacuum 

Products, University of 
Louisville, VITO 

NextSTEP FabLab: Phase A Selectees

“Microgravity Multiple Materials Additive Manufacturing 
(M3AM) Technology” - Interlog (Anaheim, CA) 

Partners: Argonne National Labs, Micro Aerospace Solutions, 
Illinois Institute of Technology 

“Empyrean- Sustainable, In-Space 
Fabrication Laboratory for Multiple 
Material Manufacturing, Handling, 

and Verification/Validation” - Tethers 
Unlimited, Inc. (Bothell, WA) 
Partners: IERUS, Olis Robotics 

• These companies will have 18 months 
to deliver the prototype, after which 
NASA will select partners to further 
mature the technologies for an ISS 
demonstration and 1st generation 
Exploration system. .

NASA 12/7/17 Selection Announcement: https://www.nasa.gov/press-release/nasa-selects-three-companies-to-develop-fablab-prototypes

https://www.nasa.gov/press-release/nasa-selects-three-companies-to-develop-fablab-prototypes


In Space Manufacturing Challenges
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• Lack of demonstrated metallic AM capability in microgravity. 
o MSFC has 4 SBIR projects working on metallic AM systems targeted for use in 

microgravity
o MSFC is currently evaluating proposals submitted in response to our FabLab

solicitation, which is expected to include a metallic AM printing capability.
• Operating in the space environment. 

o Space operations face constraints that terrestrial operation do not such as power, 
volume, and environmental limitations 

o Operations of these capabilities and resulting printed parts must be safe for the 
astronauts. 

o Certification of parts fabricated on orbit or in transit
o Overall, the technologies developed must be much smaller, safer, and much more 

autonomous than earth-based counterparts.
• Culture change. 

o Systems that plan to use on-demand manufactured parts must institute a ‘design for 
maintainability’ approach. 

o ISM team needs to be working with exploration system designers now to identify high-
value application areas and influence design

o ISM is a necessary paradigm shift in space operations, not a ‘bonus’



SLM GRCop-84 Chamber Testing
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Exploration Systems Development  
ORION and SLS

Commercial Crew Program (CCP)
DRAGON V2

NASA Exploration Programs and Program Partners have embraced AM for its 
affordability, shorter manufacturing times, and flexible design solutions. 

AM in the Human Exploration and Operations Portfolio
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