Operational Impact of an Onboard Pharmacy: Mission Impact and Risk Considerations

Rob Mulcahy, MD, MPH
Tina Bayuse, Pharm.D
James Pattarini, MD, MPH
Rebecca Blue, MD, MPH

* Discuss the operational impacts of the onboard pharmacy
* Discuss risks associated with the inability to supply a safe, robust, and comprehensive formulary for long-duration spaceflight outside of low-Earth orbit (LEO)
* Discuss implications of these risks
* Discuss potential mitigation strategies to address this risk
- Introduction
* Concerns/Risks
- Implications
*Potential Solutions

Introduction

*Pharmaceutical intervention is essential component of risk management for astronaut healthcare during exploration spaceflight

* Historically, medication use has not been comprehensively monitored (largely due to crew time constraints)
\& Currently, certain medications can be used without prior consultation with a flight surgeon (e.g. OTCs for headache or congestion)
*Such use may be reported during weekly Private Medical Conferences (PMCs), but there is currently no requirement to do so
*However, due to delayed reporting, information such as indication, dose, timing, or side effects may not be reported or recorded

Introduction

*Medication use reporting has improved over time (as discussed by previous presenter)

* Common complaints: headache, congestion, sleep disturbance, space motion sickness

Introduction

*With stricter reporting, the significance of an on-board pharmacy becomes clear

* NASA's Human Research Roadmap (HRR) identifies medication use as a potential countermeasure for prevention or management of several conditions
- Examples include:
- Potassium citrate for nephrolithiasis prophylaxis
- Pain medication for EVA-induced pain or injuries
- Antidepressants or antipsychotics for adverse cognitive or behavioral conditions and psychiatric disorders
- Bisphosphonates for bone fracture due to spaceflight-induced changes to bone
* In analysis of medical capabilities needed for a Mars transit mission, NASA's Exploration Medical Capability (ExMC) element preliminarily identified onboard pharmacy as the largest single component of a complete medical system (>25\% of all medical interventions)

Concerns/Risks

*Anecdotal evidence that medications may be less efficacious in spaceflight

- Space Shuttle - Putcha (1999)
- 13 different medications "not effective" or "mildly effective"
- Space Shuttle/ISS - Barger (2014)
- Sleep medication - 17-19\% of cases required second dose
- Medication stability
- 87% of medications flown on ISS have shelf lives <24 months
- Many may be repackaged to save weight/volume, especially for exploration missions
- Radiation can play a role in degradation of API (active pharmaceutical ingredient)
- Significant limitation for exploration-class missions

Concerns/Risks

*PK/PD may be altered

- Pharmacokinetics (body effects on medications)
- Pharmacodynamics (medication effects on body)
*Altered microbial growth and antimicrobial susceptibility
* Inability to evacuate to Earth quickly

Implications

* Bottom Line:
- These concerns/risks may lead to a medication being unavailable when needed without the ability to resupply or evacuate the patient
- Without a safe and comprehensive on-board pharmacy, may not be able to fully address certain medical issues in an astronaut during an exploration-class mission
*If unable to fully treat medical condition:
- Potential performance decrements that could impact successful completion of science and/or mission
- Additional time/resources in space and on the ground devoted to a problem that may have been rectified with appropriate medication
- Use of sub-optimal medication to manage condition may mean that this medication is unavailable to treat another better-suited issue later in the mission

Potential Solutions

*Goal: Supply a safe, robust, and comprehensive pharmacy for long-duration spaceflight outside of LEO

* Standardized documentation or medication tracking to provide better physician awareness and allow for more accurate inventory management
* Better medical condition/risk prediction in order to appropriately weigh trades when optimizing the on-board exploration medical system
* Investigation/research into:
- Stability and/or shelf-life extension
- Ground-based radiation exposure
- PK/PD

Human

Thank you

References

* Daniels, V. \& Bayuse, T. Risk of ineffective or toxic medications during long-duration exploration spaceflight. Oral Presentation, NASA Human Systems Risk Board (2018).
* Dose tracker application for monitoring medication usage, symptoms, and adverse effects during missions. https://www.nasa.gov/mission_pages/station/research/experiments /1933.html.
* O'Rangers, E. Medication use in the U.S. manned spaceflight program. Ad Astra 13, 10-11 (2001).
*Putcha, L., Berens, K., Marshburn, T., Ortega, H. \& Billica, R. Pharmaceutical use by u.s. astronauts on space shuttle missions. Aviat Space Environ Med 70, 705-8 (1999).
* Barger, L. et al. Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol 13, 904-12 (2014).

