National Aeronautics and Space Administration

INTRODUCTION

- During long-duration space flights, crewmembers and ground-support staff experience irregular sleep schedules, erratic natural light patterns, and high workload due to mission demands.
- Such conditions can cause circadian misalignment and sleep loss, which in turn cause deficits in cognitive performance.
- The accuracy and usability of bio-mathematical sleepwake models under conditions of non-traditional shiftwork is little known.

OBJECTIVE

To evaluate the validity of 3 sleep-wake models (e.g., the Statespace Model, the Unified Model of Performance, and the SAFTE-FAST Model) designed to predict human performance and fatigue against objective measures of performance in the Human Exploration Research Analog (HERA), a spaceflight analog mission located at Johnson Space Center.

<u>Model</u>	<u>Interface</u>	Input Values	Input Data	<u>Output</u>
State-space	DOS- executable interface	Time, sleep/wake state	Sleep schedule (diary)	PVT Lapses
Unified	Web-based interface	Time, sleep/wake state, caffeine dose (optional)	Sleep schedule (diary)	PVT Lapses, PVT reaction time, PVT response speed
SAFTE -FAST	Standalone software program	Time, sleep/wake state, work schedule	Sleep schedule (diary)	Cognitive Effectiveness

Table 1. Description of model interface, possible inputs, input data, and output.

METHODS

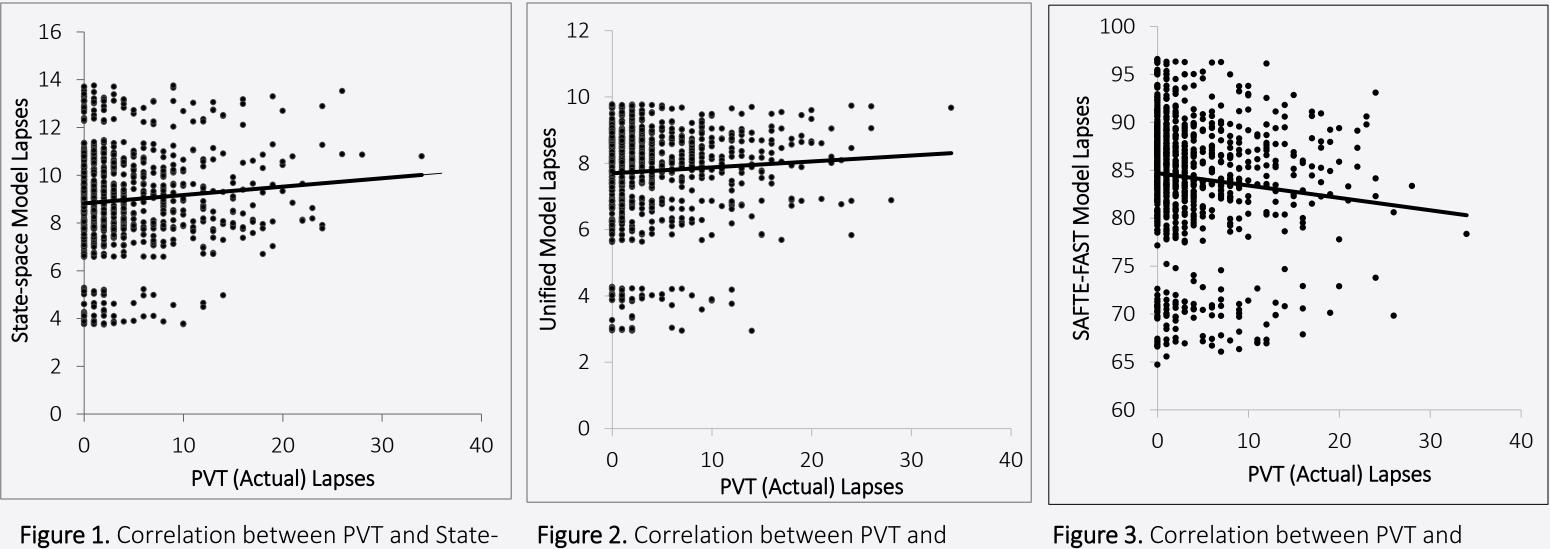
- Four crews (n=16) inhabited the HERA for a period of 45 days.
- Each week, participants slept for 8 hours for two nights, then underwent a five-day period of 5-hour sleep restriction.
- Participants completed the Psychomotor Vigilance Task (PVT), a simple reaction time test assessing performance, 5 times a day every 3 days.

Evaluation of the Validity of Bio-Mathematical Models in Predicting Fatigue in an Operational Environment

Olivia Shin¹, Kevin Gregory¹, Crystal Kirkley¹, Gregory Costedoat¹, Erin Flynn-Evans, Ph.D.²

¹San José State Research Foundation, ²NASA Ames Research Center

METHODS (cont.)


Predictions from the three bio-mathematical models were compared to participants' actual PVT scores collected in the study by matching the time points from the model with the timing of each PVT session.

RESULTS

Spearman rank correlations were calculated to examine association between model predictions and PVT data.

PVT (Actual Performance)	State-space	Unified	SAFTE-FAST
1	-	_	_
0.07*	1	_	_
0.05	0.69**	1	_
-0.12**	-0.50**	-0.42**	1
	Performance) 1 0.07* 0.05	Performance) State-space 1 - 0.07* 1 0.05 0.69**	Performance) State-space Onified 1 - - 0.07* 1 - 0.05 0.69** 1

Table 2. Correlation coefficients for PVT and three bio-mathematical models *Note*. * = p < 0.05, ** = p < 0.01

space model.

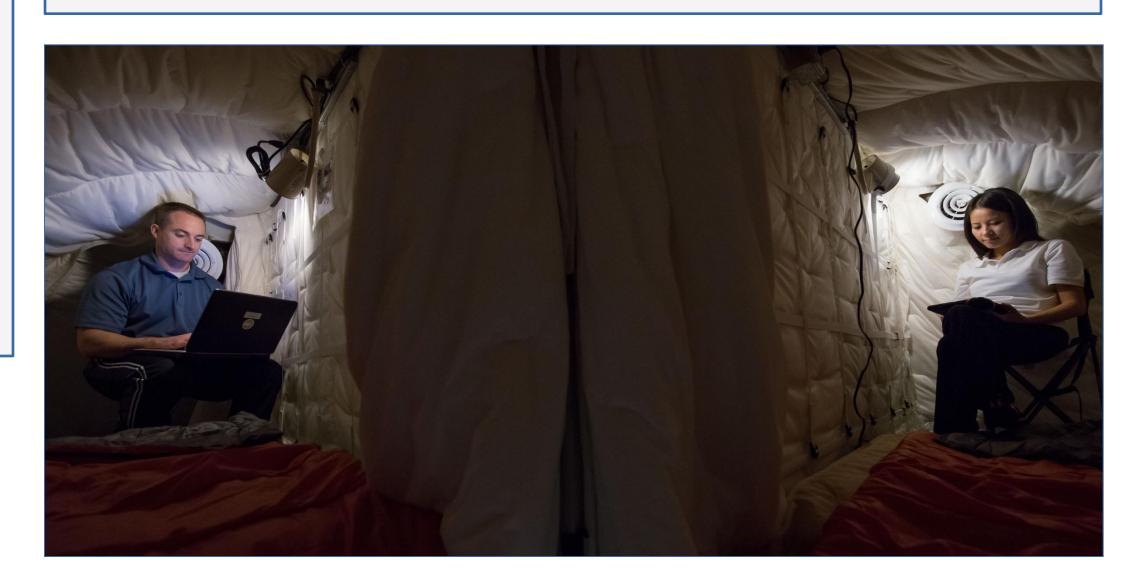
Unified Model.

SAFTE-FAST model.

Weak trends were detected for two of the three bio-mathematical models. • **Positive association** between State-space model predictions and PVT lapses

- **Negative association** between SAFTE-FAST Cognitive Effectiveness and PVT lapses.
- There was no correlation between the Unified Model and PVT lapses.
- All three models were highly correlated with one another.

DISCUSSION


- The present study examined associations between 3 biomathematical model predictions and actual performance in an operational environment.
- Both the State-space and the SAFTE-FAST models were significantly associated with the PVT.
- Evaluation of bio-mathematical models will help inform work scheduling and implementation of effective countermeasures (e.g., caffeine, lighting) to improve work efficiency and combat fatigue in future space exploration missions.

REFERENCES

- Caddick, Z. A., Gregory, K. and Flynn-Evans, E. E. (2017). Sleep environment recommendations for future spaceflight vehicles. In Advances in Human Aspects of Transportation, 923–933. Springer.
- Gregory, K., et al. (*under review*). Comparison of fatigue predictions from four biomathematical models to psychomotor vigilance task data in short-haul daytime aviation operations.

ACKNOWLEDGEMENTS

I would like to my fellow lab members at the Fatigue Countermeasures Laboratory for their support. All photos credited to NASA.

