UTM Integration of Weather Information

By Daniel Mulfinger

Outline

- Introduction
- Service Architecture
- Case Study Conformance Buffer
- Case Study Operation Wind Constraint
- Conclusion

USS – Service Architecture

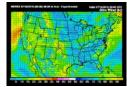
• (insert service architecture chart)

Case Study 1: Conformance Buffer Calculation Server

Goal: Calculate conformance buffer of operations based on weather and vehicle performance.

Approach: Create a server to process operation, vehicle performance, and wind data.

Airspace Buffering


UTM Creates	Geography Types		Notes
	Flight Plan	Volume	
Flight Geography	LineString()	Polygon()	Submitted by client
Conformance Geography	••		Used for determining non- conformance of position updates
Parameters	Buffer _{ConfHorizFP} Buffer _{ConfVertFP} Buffer _{ConfTimeFP}	Buffer _{ConfHorizVol} Buffer _{ConfVertVol} Buffer _{ConfTimeVol}	Calculated using wind data
Protected Geography			Used for separation when approving operations
Parameters	Buffer _{ProtHorizFP} Buffer _{ProtVertFP} Buffer _{ProtTimeFP}	Buffer _{ProtHorizVol} Buffer _{ProtVertVol} Buffer _{ProtTimeVol}	Based on GPS error

Conformance Buffer Calculation

- NOAA's HRRR Weather Model:
 - Applied for the Reno-Stead Area
 - Determined maximum wind component (u or v) at 10 meters altitude
 - Determined direction of wind from components
- SJSU Sonar Anemometer Data
 - Provides 3-dimensional wind vector data
 - Used this to determine the proportion of vertical wind to the horizontal wind: $n_{w,factor} = \frac{w}{\sqrt{u^2 + v^2 + w^2}} \Big|_{SJSU \, data}$

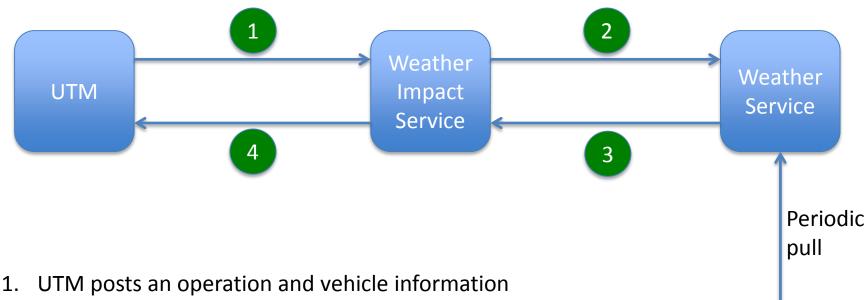
$$\vec{V}_{wind} = u_{HRRR}\hat{i} + v_{HRRR}\hat{j} + n_{w,factor}\sqrt{\frac{u_{HRRR}^2 + v_{HRRR}^2}{1 - n_{w,factor}^2}}\hat{k}$$

How Wind Velocity was Used?

- Wind vector was additive to the vehicle velocity: $\vec{V} = \vec{V}_{UAV} + \vec{V}_{wind}$
- A vertical and lateral buffer is calculated:

- Lateral:

$$d_{lateral} = 2R \arctan \left[\frac{\sqrt{\sin^2 \frac{\phi_{new} - \phi_{fp}}{2} + \cos \phi_{fp} \cos \phi_{new} \sin^2 \frac{\theta_{new} - \theta_{fp}}{2}}}{\sqrt{1 - \sin^2 \frac{\phi_{new} - \phi_{fp}}{2} + \cos \phi_{fp} \cos \phi_{new} \sin^2 \frac{\theta_{new} - \theta_{fp}}{2}}} \right]$$
where ϕ_{new} and θ_{new} are a function of \vec{V} and other variables


- Vertical: $h_{vertical} = t_{control} V \sin \gamma_{wind}$ where V is the magnitude of \vec{V} , $t_{control}$ is an estimate of UAV recovery time, and γ_{wind} is the flight path angle cause by the wind vector

Case Study 2: HRRR Wind Impact Server

Goal: Evaluate the impact of forecasted winds on UTM operations

Approach: Create a wind data provider and wind impact server.

The data flow

NOAA

(HRRR

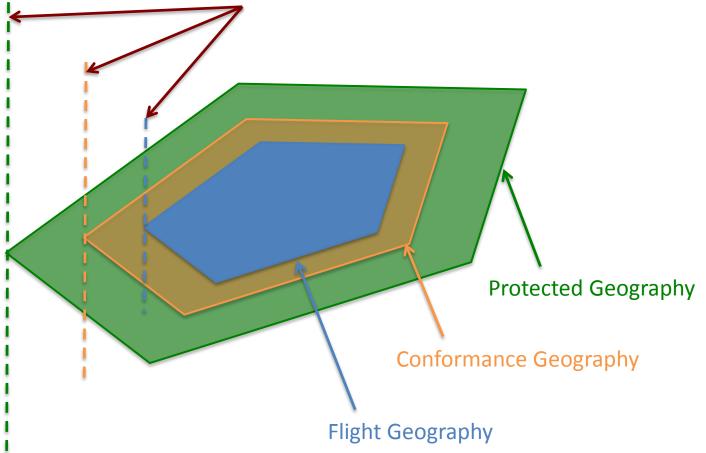
data)

- 2. Weather impact service pulls weather information for the specific operation region (space and time)
- 3. Weather service returns the smallest grid that contains the operation region
- 4. Weather impact service compares vehicle rating with the weather grid and returns any concerns to UTM

Input/Output

- Input:
 - Operation plan
 - Vehicle performance
 - HRRR data

- Output:
 - Weather-checking result:
 - ACCEPT, WARNING, REJECT
 - Explanation

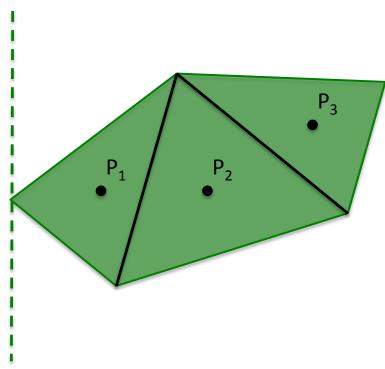

Operation Plan

- Multiple flights
- One flight = Multiple Segments
- One segment: Geography + min/max altitudes
 - 1. Flight geography: LINESTRING or POLYGON
 - NOTE: in the example operation received from the software group 100% are POLYGON
 - 2. Conformance geography: POLYGON
 - 3. Protected geography: POLYGON

This is based on the sample file provided by the software team

Operation Volume (i.e., Segment)

Min/max Altitudes for Flight/Conformance/Protected Volumes

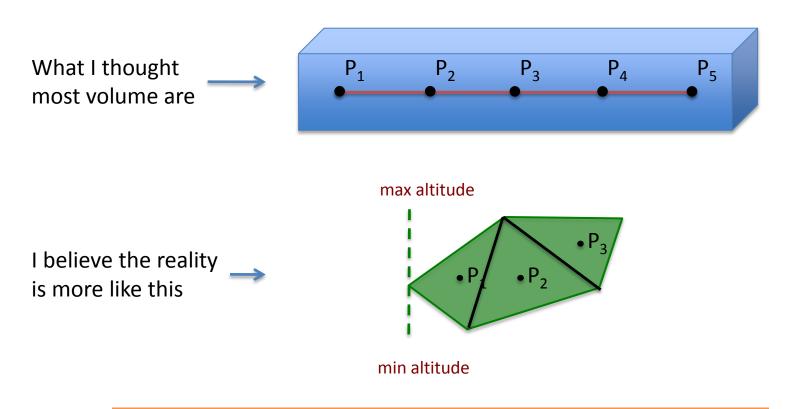


Wind Checking Algorithm

- 1. Sample points within the **PROTECTED VOLUME**
- 2. Compute wind velocity at the sample points
- 3. Check wind-velocity against vehicle performance data
- 4. Made decision for each segment & flight
 - Then make the decision for each flight

Step 1: Sample 4D Points

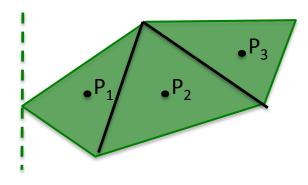
min altitude


• Time: whole duration [protected-time-begin, protected-time-end]

- Altitude: (min-alt + max-alt) / 2
- Sample Lat/lon:
 - Triangulation.
 - Center points of all triangles (P₁, P₂, P₃)

Delaunay Triangulation: <u>https://en.wikipedia.org/wiki/Delaunay_triangulation</u> Java package used: <u>https://www.cs.bgu.ac.il/~benmoshe/DT/Delaunay%20Triangulation%20in%20Java.htm</u>

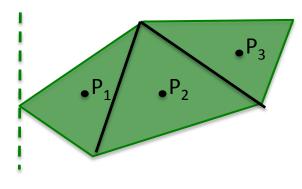
Step 1: Sample 4D Points (cont.)


different from what discussed last meeting

triangulation is more flexible & works well for any polygon (compared to trying to divide the volume into cubes)

Step 1: Sample 4D Points -- Timing

max altitude


Use **all** relevant HRRR points relevant to the time spending in the protected area

Reason: don't know how UAS spends time within the area/polygon

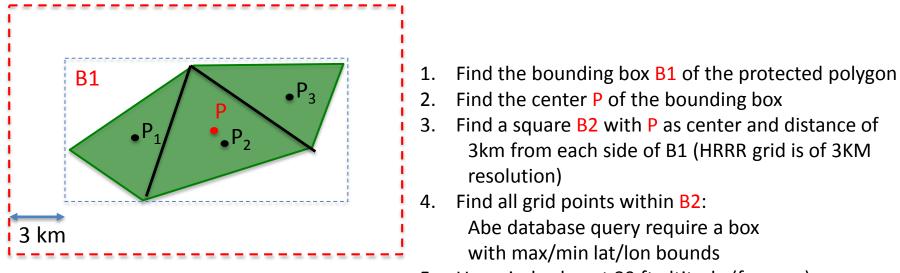
min altitude

Step 1: Sample 4D Points -- Example

max altitude

min altitude

Min-altitude: 10 ft Max-altitude: 170 ft

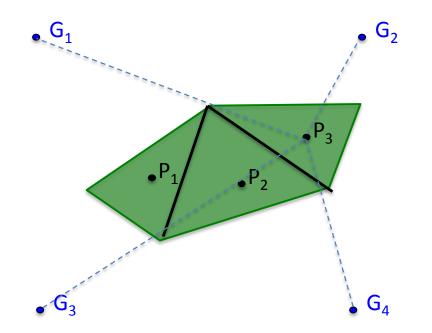

Protected time begin: 1:50PM Protected time end: 2:13PM

Coordinates: $P_1 = (x_1, y_1), P_2 = (x_2, y_2), P_3 = (x_3, y_3)$

Sample 4D points to check against HRRR data (which available every 15') are: $(x_1,y_1,90ft,1:45PM), (x_1,y_1,90ft,2:00PM)$ $(x_2,y_2,90ft,1:45PM), (x_2,y_2,90ft,2:00PM)$ $(x_3,y_3,90ft,1:45PM), (x_3,y_3,2:00PM)$

Step 2: Find the relevant HRRR grid data

B2



5. Use wind value at 80 ft altitude (for now)

NOTE: without being able to connect to the HRRR database, current test data are generated with:

- Corners of B1 act as wind grid points
- Wind-strength at each grid point is randomly generated.

Step 3: Compute wind-strength at each sample points

Wind strength at each P_i point is **interpolated** using wind-strength values at the relevant HRRR wind grid points G_i: Actual Implementation: **Inverse Distance Interpolation** (https://en.wikipedia.org/wiki/Inverse_distance_weighting)

Step 4: Weather Recommendation

- Decision Point: wind-strength vs max-air-speed
 >= 3 x : REJECT
 - 1x 3x: WARNING
 - 0 1x : ACCEPT
- Segment:
 - One point REJECT \rightarrow whole segment REJECT
 - Else, one point WARNING \rightarrow whole segment WARNING
 - Else, ACCEPT segment
- Submitted Flight:
 - One segment REJECT \rightarrow whole flight REJECT
 - Else, one segment WARNING \rightarrow whole flight WARNING
 - Else, ACCEPT flight

Questions?

daniel.g.mulfinger@nasa.gov