Atmospheric Chemistry Modeling and Air Quality Forecasting using Machine Learning

Christoph A. Keller

NASA Global Modeling and Assimilation Office (GMAO) Universities Space Research Association (USRA)

Mat J. Evans

Wolfson Atmospheric Chemistry Laboratories, University of York National Centre for Atmospheric Sciences, University of York

> 1st NOAA Workshop on Leveraging AI 23-25 April 2019

Air pollution is a global problem

World Bank: ~\$5 trillion in welfare losses in 2013

Figure 4: Global estimated deaths (millions) by pollution risk factor, 2005–15 Using data from the GBD study⁴² and WHO.⁹⁹ IHME=Institute for Health Metrics and Evaluation.

The Lancet (2017): Air pollution is responsible for 6-7 millions death / year

Need models to fill gaps in observations

Surface observations are not global

Satellite observations are also discontinuous

Numerical simulation of atmospheric chemistry

2017-10-01 00:30 UTC

> 0.25° resolution (~ 25km), 72 levels, 250 chemical species

Numerical simulation of atmospheric chemistry

Transport process: Move chemicals across grid boxes

GMAO gmao.gsfc.nasa.gov

Numerical simulation of atmospheric chemistry

Transport process: Move chemicals across grid boxes

Chemistry process: In each grid box, solve chemical reactions, i.e. solve stiff ordinary differential equations (ODEs)

 $A + B \rightarrow C + D$

GMAC

its rate is calculated as

 $-\frac{d}{dt}[A] = -\frac{d}{dt}[B] = \frac{d}{dt}[C] = \frac{d}{dt}[D] = k[A][B]$

Atmospheric chemistry models are computationally expensive

High-resolution chemistry simulation requires >1000 CPU's
Throughput: approx. 20 days in 24 hours

Replace chemical integrator with machine learning model

Numerical model

Replace chemical integrator with machine learning model

Numerical model

Replace chemical integrator with machine learning model

Machine learning for atmospheric chemistry modeling

Separate model for each species

- 143 chemical species
- 91 photolysis rates
- Temperature
- Pressure
- Rel. humidity
- Solar zenith angle

Concentrations after chemistry

- Training data set: 2.7 billion data points (44 GB)
- Tested: (neural network), random forest and XGBoost

Many input features have multiple modes

Impose chemical constraints on ML model to improve (long-term) accuracy

1. Distinguish between short-term vs. long-term species

Long-lived (tendencies): $[X_i]_{T+\Delta T} = [X_i]_T + f(\mathbf{k}, \mathbf{J}, [\mathbf{X}])$ Short-lived (steady state): $[X_i]_{T+\Delta T} = f(\mathbf{k}, \mathbf{J}, [\mathbf{X}])$

2. Predict NO + NO₂ combined (NOx family approach)

VOC / HO_x
$$\leftrightarrow$$
 (NO_{11}) \rightarrow O_{x} (Ozone)

Random forest / XGBoost training benchmarks

Random forest / XGBoost training benchmarks

Random forest / XGBoost training benchmarks

Random forest / XGBoost reproduce target concentrations well (single-step prediction)

Random forest / XGBoost reproduce target concentrations well (single-step prediction)

GIODAL Modeling and Assimilation Office gmao.gsfc.nasa.gov

1-month simulation with random forest emulator

Random forest overestimates ozone surface concentrations over remote regions

Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

GM

Model with NOx family prediction

Model without NOx family prediction

Surface concentrations over polluted regions are well reproduced by ML model

Speedup potential

Offline evaluation of single forest is 1000x faster than numerical integration

- \succ Current implementation is very inefficient (2x slower than full chemistry)
- Currently working on seamless integration of XGBoost

Summary

- > Tree models do a decent job at simulating atmospheric chemistry
- Adding constraints (e.g., chemical families) to the machine learning model is critical
- Potential applications:
 - Chemical data assimilation
 - (Short-term) air quality forecasting
- Issues:
 - Train on very large data sets (>1 TB)
 - Dynamics for >200 chemical species is still slow

Keller and Evans: Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem chemistry model v10, GMD, 2019.

