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Air pollution is a global problem

World Bank: ~$5 trillion
in welfare losses in 2013
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therapy such as oral rehydration therapy;60 and improved 
nutrition of young children and pregnant women.61

By contrast, the numbers of deaths caused by ambient 
air, chemical, and soil pollution—the forms of pollution 
associated with modern industrial and urban 
development—are increasing. The number of deaths 
attributable to PM2·5 air pollution is estimated to have 
risen from 3·5 million (95% CI 3·0 million–4·0 million) 
in 1990 to 4·2 million (3·7 million–4·8 million) in 2015, a 
20% increase. Among the world’s 10 most populous 
countries in 2015, the largest increases in numbers of 
pollution-related deaths were seen in India and 
Bangladesh, as reported by the Health Effects Institute. 
The increase in the absolute number of deaths and 
DALYs attributable to pollution reflects an increased 
population size, an ageing population, and increased 
levels of air pollution in low-income and middle-income 
countries.23

An analysis of future trends in mortality associated with 
ambient PM2·5 air pollution finds that, under a “business 
as usual scenario”, in which it is assumed that no new 
pollution controls will be put into place, the numbers of 
deaths due to pollution will rise over the next three 
decades, with sharpest increases in the cities of south and 
east Asia.35,121 These trends are projected to produce a more 
than 50% increase in mortality related to ambient air 
pollution, from 4·2 million deaths in 2015 to 6·6 million 
deaths in 2050 (95% CI 3·4 million–9·3 million).35,122 
These projections are corroborated by an analysis107 of the 
health effects of coal combustion in China. Population 
ageing are major contributors to these projections of 
growth and absolute increased numbers of deaths from 
pollution-related disease.

A second analysis123 examining the potential benefits of 
reducing PM2·5 pollution projects that aggressive controls 
could avoid 23% of current deaths related to air pollution. 
However, because of population ageing and consequent 
increases in age-related mortality from cardiovascular 
disease, chronic obstructive pulmonary disease, and lung 
cancer, and also because the exposure–response 
association between PM2·5 pollution and non-
communicable diseases is relatively strong at lower levels 
of exposure but weaker at higher levels, Apte and 
colleagues124 note that it will be easier to achieve reductions 
in mortality in less heavily polluted areas of western 

(Panel 3 continued from previous page)

Mercury
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Convention on Mercury and has developed guidance for 
phasing out mercury-containing instruments in the health 
sector.120 Urgent attention by health departments and ministries 
is needed to address the phase out of import, export, and 
manufacture of mercury thermometers, sphygmomanometers, 
and other mercury-containing instruments in health care.

Cancer
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(IARC) has the responsibility of determining whether 
chemicals are human carcinogens and conducts a range of 
research on cancer worldwide. IARC provides evidence-
based guidance on cancer control to countries around 
the world.

Figure 4: Global estimated deaths (millions) by pollution risk factor, 2005–15
Using data from the GBD study42 and WHO.99 IHME=Institute for Health Metrics and Evaluation.
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Figure 5: Global estimated deaths by major risk factor and cause, 2015
Using data from the GBD Study, 2016.41
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For the Health Effects Institute 
special report on the state of 

global air see https://www.
stateofglobalair.org

The Lancet (2017): Air pollution is
responsible for 6-7 millions death / year
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Need models to fill gaps in observations
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Surface observations are not global

TOAR (Schulz et al., 2017)

Satellite observations are 
also discontinuous
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Ø 0.25° resolution (~ 25km), 72 levels, 250 chemical species

Numerical simulation of atmospheric chemistry
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Numerical simulation of atmospheric chemical compositions

Transport process: Move chemicals across 
grid boxes

Chemistry process: In each grid box, solve 
chemical reactions, i.e. solve stiff ordinary 
differential equations (ODEs)
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Numerical simulation of atmospheric chemistry
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Numerical simulation of atmospheric chemistry
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Other I/O Dynamics Chemistry

Atmospheric chemistry models are computationally expensive
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www.nccs.nasa.gov

Ø High-resolution chemistry simulation requires >1000 CPU’s
Ø Throughput: approx. 20 days in 24 hours

4x
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Replace chemical integrator with machine learning model
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Machine learning for atmospheric chemistry modeling

Ø Training data set: 2.7 billion data points (44 GB)
Ø Tested: (neural network), random forest and XGBoost

• 143 chemical species
• 91 photolysis rates
• Temperature
• Pressure
• Rel. humidity
• Solar zenith angle

Concentrations 
after chemistry

christoph.a.keller@nasa.gov
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Many input features have multiple modes
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Impose chemical constraints on ML model to 
improve (long-term) accuracy

christoph.a.keller@nasa.gov

1. Distinguish between short-term vs. long-term species

2. Predict NO + NO2 combined (NOx family approach)

Long-lived (tendencies):    [Xi]T+△T = [Xi]T + f( k, J, [X] )
Short-lived (steady state): [Xi]T+△T = f( k, J, [X] )

NO

NO2

VOC / HOx Ox (Ozone)
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Random forest / XGBoost training benchmarks
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Random forest / XGBoost reproduce target concentrations 
well (single-step prediction)
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Random forest / XGBoost solutions 
reflect known features of chemical kinetics
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Random forest / XGBoost solutions 
reflect known features of chemical kinetics
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NOx chemistry
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reflect known features of chemical kinetics
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NOx chemistry

VOC chemistry
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Random forest / XGBoost solutions 
reflect known features of chemical kinetics
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NOx chemistry

VOC chemistry

Photolysis
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1-month simulation with random forest emulator
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Random forest overestimates ozone surface 
concentrations over remote regions
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Machine learning model remains stable over the long-term 
(but only if NOx is predicted as a family)
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Model with NOx family prediction

Model without NOx family prediction
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Surface concentrations over polluted regions are well 
reproduced by ML model
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Speedup potential
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Other I/O Dynamics Chemistry

Ø Offline evaluation of single forest is 1000x faster than numerical integration
Ø Current implementation is very inefficient (2x slower than full chemistry)
Ø Currently working on seamless integration of XGBoost
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Summary

Ø Tree models do a decent job at simulating atmospheric chemistry
Ø Adding constraints (e.g., chemical families) to the machine learning 

model is critical
Ø Potential applications:

• Chemical data assimilation
• (Short-term) air quality forecasting

Ø Issues:
• Train on very large data sets (>1 TB)
• Dynamics for >200 chemical species is still slow

Keller and Evans: Application of random forest regression to the calculation of gas-phase chemistry within the 
GEOS-Chem chemistry model v10, GMD, 2019.

christoph.a.keller@nasa.gov


