
2. Does moulin geometry matter?

A Physical Model of Moulin Formation and Evolution 
Lauren C. Andrews1 & Kristin Poinar2

E-mail: lauren.c.andrews@nasa.gov
Web: gmao.gsfc.nasa.gov

Global Modeling & Assimilation Office

1.Moulin formation & subglacial   
processes

3. Developing moulin geometry
• Moulins persist over months or years when elastic 

opening and melting due to the dissipation of 
turbulent and heat energy are equivalent or 
exceed creep closure and refreezing.

• Geometries become more complex over time, 
potentially impacting the discharge-pressure 
relationship in individual moulins.

• In many cases, nearly all supraglacial melt is routed englacially via 
moulins and crevasses. 

• Crevasse and moulin formation is dependent on persistent 
(crevasses) or transient (moulin initiation) stresses which result in 
surface-to-bed hydrofracture (e.g., Hoffman et al., 2018; 
Christoffersen et al., 2018).

• Understanding the conditions, including both the transient stress 
state and the surface runoff flux, needed to form and maintain a 
moulin are an important component to developing a stochastic 
model for englacial connections.

• Constraints on moulin formation and density are valuable for 
understanding the behavior of both future and past ice sheets, 
including the interpretation of geomorphological features.

• Moulin may reasonably compose ~10% of the englacial-subglacial 
hydrologic system and are likely larger than subglacial conduits.

• Moulin shape can alter the equilibrium response time and modify the 
magnitude of diurnal variability even when the mean radius is the same.
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Water levels from constant 
or sinusoidal inputs and 
constant gravity driven 
drainage.

4.Turbulent melting &
creep closure

5. Thermal & elastic considerations

• Creep closure equations are modified 
from borehole observations from 
Blinov and Dmitriev (1987) and 
Salamatin et al (1998) with 
modifications from Talalay and Hooke 
(2007).

• Dissipation of turbulent energy and 
associated ice melting are modified 
from Spring and Hutter (1981, 1982) 
and Clarke (2003). Results also 
include a simplistic, non-conservative 
treatment of water temperature 
evolution (see next section).

• Discharge from the moulin is driven 
by subglacial channel geometry and 
hydraulic gradient.

• Diurnal variations in melt input result 
in substantial moulin geometry 
evolution.

Solution: Include elastic ice deformation.

• Crevasse opening and large diurnal 
swings in water pressure suggest elastic 
deformation may be an important part of 
moulin geometry, particularly in stiff ice.

Issue: Realistic ice and meltwater discharge characteristics, but 
potentially unrealistic geometries and water levels.

Solution: Conservation of heat: explicit representation of ice and 
water temperatures and an evolving phase boundary. 

• Warming of the surrounding ice and the evolution of moulin geometry is 
a classical Stefan problem with the added complication of time varying 
presence of 
water.  

6. Linking physics & stochastic behavior

Moulin pressure and 
basal water temp. 
observed  in 
Greenland in 2012.

Aadnøy, 1987Illustration of the analytic model for the ice-sheet surface response (top surface) to a basal 
slipperiness perturbation. Ice flow is from left to right. Ice flow is extensive upstream of the slippery 
patch; this region may seed crevasses. 
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