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Objectives
• Develop luminescence-based diagnostics for temperature mapping 

and damage monitoring below TBC for turbine engine components.
– Extend surface temperature mapping to subsurface (at TBC/bond coat 

interface) temperature mapping.
– Extend room temperature damage (delamination/erosion) monitoring to 

engine temperatures.
– Combine delamination/erosion monitoring and subsurface temperature 

mapping.
• Evaluate degradation of thermal protection associated with TBC damage.

Background
• Temperature mapping is typically performed for TBC surfaces even 

though it is the temperature below the TBC that is critical to thermal 
protection.
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Approach
• Select thermographic phosphor with temperature sensitivity to 1200 °C that 

overcomes challenges of temperature sensing by luminescence lifetime 
imaging from the TBC/bond coat interface:

– Sufficient high temperature emission intensity after attenuation from overlying TBC.
– Nonintrusive integration into TBC at the TBC/bond coat interface.
– YSZ:Er(0.8%) meets requirement of nonintrusive integration into bottom of YSZ TBC.
– Hypersensitive excitation at 517 nm provides necessary high emission intensity.

• Intentional localized delamination produced by scratch test.
• Intentional localized erosion produced by alumina particle bombardment.
• TBC-coated superalloy button specimens tested in NASA GRC high heat 

flux laser for simultaneous temperature monitoring and damage detection.
• TBC-coated superalloy plates with cooling holes tested in NASA GRC Mach 

0.3 burner rig to compare air film cooling effectiveness above and below 
TBC.
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Air film-cooling in burner rigHigh heat flux laser testing
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I0(Er3+) > 80* I0(Dy3+)
Hypersensitive excitation of Er3+ provides much higher S/N decay measurements, 
enabling below TBC temperature mapping with expanded laser beam.
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YSZ:Dy previously used for bottom of TBC spot temperature measurements*

YSZ:Er advantages: 
• Extended temperature range (RT to 1200 °C vs. 500 to 1150 °C) 
• Much higher (80x) emission intensity produces greater temperature measurement precision. 
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– Step 1: Fit luminescence decay curve at each pixel to produce decay time map (Matlab routine). 

– Step 2: Use calibration data to convert decay time map to temperature map.

700

720

740

760

780

800

820

840

860

0 10 20 30 40 50

Te
m

pe
ra

tu
re

 (°
C)

Distance (mm)

Temperature Line Scan

Decay Time Map

Temperature Map

µs

°C

2D Temperature Maps from Luminescence Lifetime Imaging

95% Confidence Interval
°C

1 cm

߬ = [ ଵܹ଴(1 − ݁ି
∆ா
௣భ௞்)ି௣భ + ଶܹ଴(1 − ݁ି

∆ா
௣మ௞்)ି௣మ]ିଵ

YSZ:Er
Dual effective 
phonon energy model



Mapping Thermal Gradients Produced by 
High-Heat-Flux Laser
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• Excellent spatial (submillimeter) and temperature (less than 5°C) 
resolution demonstrated in surface temperature maps.

• No observable “thermal test pattern” at bottom of TBC where 
TBC is in contact with thermally conductive bond coat.
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Simultaneous Delamination Monitoring and 
Subsurface Temperature Mapping above 1000 °C
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Simultaneous Erosion Monitoring and 
Subsurface Temperature Mapping above 1000 °C
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Examining Air Film Cooling Effectiveness below TBC
in NASA GRC Mach 0.3 Burner Rig
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• In-hole convection cooling dominates at all blowing ratios. 
• Weak, indistinct air jet cooling.

• Air film cooling by air jets effective at surface.
• Air film cooling diminishes at high blowing ratios (air jet lift-off).
• In-hole convective cooling becomes prominent at high blowing ratios.

2D Temperature Maps in Vicinity of Cooling Holes

Above 
TBC

Above 
TBC

Below 
TBC

Below 
TBC

cooling holes Air jet 
film 

cooling

In-hole 
convective 

cooling

Increasing blowing ratio M′

2D temperature maps show TBC degrades air jet film 
cooling but enhances in-hole convective cooling.



• Luminescence lifetime imaging of TBCs with thin Er-doped YSZ 
base layer produces temperature mapping of the TBC/bond coat 
interface, which is more relevant to thermal protection than 
surface temperature mapping.

• Combining at-temperature delamination/erosion monitoring with 
TBC/bond coat temperature mapping identifies TBC damage 
and quantifies associated thermal protection degradation.

• TBC/bond coat temperature mapping can be used as a new tool 
to examine the non-additive interplay between the TBC and air 
film cooling towards achieving thermal protection of the metal 
below the TBC.

Conclusions
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