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Abstract 
 

Sandwich composite structures are ideal configurations in which to incorporate additional 
functionality beyond load carrying capabilities. The inner core-walls can be layered to incorporate 
other functions such as power storage for a battery. In this work we investigate an assemblage of 
analytical tools to compute effective properties that allow complex layered core architectures to 
be homogenized into a single continuum layer. This provides a great increase in computational 
efficiency to numerically simulate the structural response of multifunctional sandwich structures 
under applied loads. We present a coupled analytical method including an extensive numerical 
verification of the accuracy of this method. 
 
 

1. Introduction 

Multifunctional structures seek to maximize operational efficiency by using materials that can 
perform several functions simultaneously. Sandwich composites are ideally suited for 
incorporating additional functions beyond load carrying capabilities. These composite structures 
are composed of two faceplates separated by a core material to increase bending stiffness and 
provide a light, stiff structure. A representative honeycomb core geometry is shown in Figure 1 
and a depiction of a sandwich structure showing the attached faceplates in Figure 2.  
 

                                                      
 
 
 
Various multifunctional applications for composites have been discussed in the literature, such as 
piezoelectric actuators, self-healing, sensing, and battery functions [1-4]. In this study, we will 
focus on potential core functionality as a battery. Structural battery materials are those that can 
carry mechanical loads while also storing electrical energy. Because these core geometries possess 
an open architecture of repeating cells, the cell walls can be layered with a suitable choice of 
materials to function as electrodes and electrolytes as required in a battery. The general battery 
configuration and the scope of the analysis performed in the present investigation was developed 

Figure 1. A representative honeycomb core configuration. 
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in the NASA project entitled Multifunctional Structures for High Energy Lightweight Load-
bearing Storage (M-Shells) [5].  
 
 
 

   
              
                               Figure 2. A schematic of a typical sandwich structure. 
 
 
A core is typically configured as an array of cells which can assume many different geometrical 
architectures such as circular or polygonal cross sections [6]. Here we will focus on hexagonal 
honeycomb configurations that are sized to maintain a large bending stiffness in the sandwich 
panel. These cores are additionally assumed to include battery functionality. Figure 3 shows the 
idealized battery as a three-layer configuration with electrodes and electrolyte incorporated into 
the walls of the honeycomb.            
 
                  
 
 

                       
     
                Figure 3.  Walls of a honeycomb serving as a battery with materials that  
                                 can function as electrodes and electrolyte. 
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Composite structures are typically analyzed using the finite element method (FEM). Composite 
sandwich structures, however, present a modeling challenge because they consist of a core region 
composed of a large number of cells that also have a complex geometry. While certain analyses - 
such as simulating sequential failure propagation within the core - would require a detailed finite 
element modeling of a small representative region of the core to determine the material response 
in damage propagation, other simulations of sandwich composite behavior involving a complete 
panel would require modeling a large number of core cells making an explicit simulation 
computationally expensive. Therefore, some homogenization method is needed to replace the core 
with a simplified solid layer with effective (equivalent) material properties. Many research efforts 
have been published that present various analytical methods for determining effective mechanical 
properties of homogenized core geometries that can avoid explicit modeling of the honeycomb 
geometry [7-11]. In general, the effective material properties for honeycomb structures are 
obtained from analyzing a unit cell representing a repeating element in a honeycomb structure. 
The most prevalent unit cell model for effective property determination is the 1-D isotropic beam 
analysis approach of Gibson et al. [7]. Gibson assumes that the linear-elastic response of the 
honeycomb deformations and resulting core properties depend only on bending of the core cell 
walls. Other deformation modes have been investigated that include stretching and shear 
deformation of the cell walls [8]. Many other approaches have been published [6] to estimate the 
effective material properties of honeycomb structures using the finite element method. For 
multifunctional honeycomb sandwich structures with built in battery functionality, it is necessary 
to compute equivalent elastic properties of core-walls composed of an arbitrary number of layers 
possessing different material properties. In particular, the electrolyte layers can have moduli that 
are orders of magnitude less than the materials used for the electrodes. There is a need to develop 
analytical expressions to predict the homogenized effective material properties for multifunctional 
honeycomb sandwich cores. These analytical expressions can then be used for rapid prototyping 
of multifunctional sandwich composites during the design phase to size the core for the intended 
service loads and for projected energy requirements. 
 
Figure 4 illustrates the homogenization approach undertaken in this work. This approach is 
performed in two steps: (1) determine a single effective modulus for the multi-layered wall used 
in the core; and (2), use Gibson’s approach to obtain equivalent elastic properties of the full core 
configurations such that they can be used in a uniform solid material representation. The 
homogenized core is then utilized to simplify finite element modeling of a sandwich core. This 
procedure is depicted in Figure 5. 
 
Thus, the two objectives sought in this investigation are, first, to enhance the Gibson analysis by 
extending it to multi-layered isotropic walls, and second, to validate the methodology by 
comparing the analytical results with reference FEM simulations in which the multi-layered 
honeycomb geometry is explicitly modeled. All analyses are assumed to involve small 
deformations and exhibit an exclusively linear elastic response. 
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                                Figure 5. Simplified modeling of complex core geometry. 

   Figure 4. Overview of homogenization methodology sought in the current investigation. 
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This report is organized into several sections:  Section 2 defines unit cell models for the honeycomb 
structure used in the present investigation.  Next, in Section 3, Gibson’s analytical solutions for 
the effective in-plane elastic core properties are presented. In Section 4, the validity of the 
analytical approach is examined by using 1-D, 2-D, and 3-D finite element simulations to predict 
the elastic properties. The calculation of an equivalent modulus for multi-layered core-walls is 
contained in Section 5. This equivalent modulus will be used in the Gibson equations to simulate 
the elastic behavior of core-walls that are representative of multifunctional battery construction. 
In Section 6, various layer configurations are identified and the enhanced Gibson equations are 
used to compute effective moduli of the core. These moduli are validated by comparing them to 
elastic properties computed through unit cell finite element simulations. This is followed, in 
Section 7, by the development of reference solutions for several sandwich composite 
configurations with different layered cores. Homogenized 2-D shell and 3-D solid element models 
are developed in Section 8 to illustrate the use and accuracy of homogenizing sandwich cores that 
allow simplified finite element models to be used for rapid simulations. These models incorporate 
the derived effective core properties and, in Section 9, their maximum center deflection is 
compared to the reference solutions to verify the overall procedure for modeling multifunctional 
sandwich composite structures. Finally, a discussion is presented in Section 10 that focuses on the 
major issues examined in this report.  
 
 
2. The unit cell approach for a honeycomb core structure 

 
The effective homogenized material properties for a honeycomb structure are derived from 
analyzing the unit cell (repeating element) of the honeycomb. The geometry of the unit cell 
depends upon the method used to fabricate the honeycomb core. In this report, the honeycomb 
structure is assumed to be constructed from corrugated sheet-based technology [6]. The corrugated 
sheets are joined together by an adhesive to form the honeycomb geometry. The thin layer of 
adhesive material bonding the cells walls is considered to add negligible stiffness. In addition, the 
adhesive used in the manufacturing process can produce fillets where the honeycomb walls join, 
but the influence of a fillet on stiffness of the unit cell representation is assumed to have only a 
second order contribution and is neglected. However, with other geometries, the effect of fillet 
radius can be important in the failure modes exhibited by core cell structures under applied loads 
[6] and will be addressed in future work.  In addition, at the interface at which the core is bonded 
to the faceplates, various fillets or adhesive layers can be formed but are assumed to be of 
secondary influence compared to the large stiffness of the faceplates [11]. 
 
The unit cell selected for this study is shown in Figures 6 and 7. The cell size ( )d , angle ( ) , 
thickness ( )t and width (w) completely define any honeycomb geometry of the unit cell. The length 

of the sides of the hexagonal honeycomb core ( )L can be determined from d and as shown in 
Figure 6. For a regular hexagonal honeycomb structure, the angle   equals30 degrees.  
 
The definition of the width, w, of the honeycomb geometry is shown in Figure 7. The width of the 
unit cells represents the separation of the faceplates. 
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In this report, all finite element models have a honeycomb cell size of d = 4.8 mm. 
 

3. Analytical expressions for effective material properties of honeycomb 
structures 

The most widely used analytical expressions for the effective material properties of a honeycomb 
core were derived by Gibson [7]. These analytical expressions were derived assuming the walls of 
the honeycomb unit cell deform solely due to bending of the inclined walls. The effective in-plane 
moduli are given by  

2cos( )

d
L




,L t
30  degrees

unit cell

L

t

‐Thickness of the wall

d
L ‐Length of the side
t

‐Cell size

,L t

,L t

,L t

,L t

,L t
/ 2,2L t / 2,2L t



x

y

d

Figure 6. Unit cell derived as a repeating substructure of the core. 

Figure 7. The unit cell width dimension  
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where Ec is the elastic modulus of the wall. The out-of-plane elastic properties derived using 
Gibson’s assumptions are presented in Reference [12] and are represented by 
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where c and Gc are the Poisson’s ratio and shear modulus of the wall.  The Gibson’s Equations 
(1) - (8) are valid only for a uniformly isotropic wall material.  
 
Constraint effects on the effective in situ core properties are an important consideration. At the 
boundary where the core cells are bonded to the face plates, bending in the honeycomb cells is 
constrained and the core deformation is limited to the stretching of the face plates. Effective in-
plane moduli for core deformation solely due to cell wall stretching modes, as shown in Figure 8, 
have been derived by Masters and Evans [8] and are given by Equations 9 – 12 for the in-plane 
properties. This effect would be expected to diminish within a region extending out from this 
interface. In this region the effective core moduli should transition from stretching-dominated 
elastic properties to bending-dominated elastic properties. Assuming a wall modulus, Ec, of unity, 
Table 1 shows a comparison of calculated effective moduli considering separately bending or 
stretching deformation modes for t/L ratios between 0.01 and 0.1. The lower magnitude modulus 
in bending indicates a naturally preferred deformation mode from an energy standpoint. 
Constraining the honeycomb cell to only deform through stretching can have a large effect on the 
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local core properties, and various aspects of this effect have been investigated in References [18] 
and [19]. For the remainder of this report, all deformations of the core cells are assumed to be 
unconstrained and consist only of bending in the core walls; however, a study of the effect of 
deformation mode transitioning on in situ core properties is planned for future work. 
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Table 1. Comparison of effective moduli due to flexural (Gibson) and stretching (Masters) 

deformations. 
 
 

 

 

t/L Flexural Exx,Eyy Stretching Exx,Eyy 
0.010 2.31E-6 7.70E-3 
0.033 7.94E-5 2.50E-2 
0.055 3.84E-4 4.23E-2 
0.078 1.07E-3 5.97E-2 
0.100 2.31E-3 7.70E-2 

                        Figure 8. Stretching modes in a honeycomb core unit cell. 
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4. FEM analysis of a unit cell 

Numerical simulations of the hexagonal unit cell for the honeycomb core were performed using 
FEM with appropriate periodic boundary conditions. The FEM solution simulates all pertinent 
deformation modes including bending, stretching and shear, and is a reference solution for the 
analytical Gibson solution which assumes only bending deformations. The Gibson formula for the 
in-plane moduli is independent of the core width. To evaluate the assumptions of the Gibson 
analysis, three different models were analyzed to account for 1-D, 2-D and 3-D stress states in the 
walls of the unit cell. These models are: 

(a)   1-D beam model 
(b)   2-D shell model 
(c)   3-D solid model 

The results from these studies are compared with the analytical results of Gibson et al. [7] which 
are based solely on the 1-D elasticity of beam bending. Linear elastic isotropic properties were 
used with t = 0.052 mm, Ec = 3150 MPa, Gc = 1125 MPa and cas used in Reference [18]. 
With these values, Gibson’s formula predicts the in-plane moduli of the core to be: Exx = Eyy = 
0.04806 MPa. 

 4.1 In-plane analysis of a unit cell using a 1-D beam model 

The unit cell beam model shown in Figure 9 was analyzed using ABAQUS [16] with B21 linear 
beam elements. The width was fixed at 1.0 mm and the effective in-plane moduli Exx and Eyy were 
calculated. In this model, the cell width effects the moment of inertia of the cross section but cannot 
alter the 1-D stress state. The results from FEM unit cell analysis are compared with analytical 
results from Gibson in Table 2. The beam FEM model predicts effective properties within one 
percent of Gibson’s analytical model and shows that any axial deformation is negligible.  
 
 

               
                Figure 9. Unit cell beam FEM model 
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Table 2. Effective core moduli for a beam model: Comparison of Gibson (Exx = Eyy =  0.04806 

MPa) and  numerical FEM results. 

 
 
 
4.2 In-plane analysis of a unit cell honeycomb structure with 2-D shell elements 
 
The FEM for the unit-cell shell model is shown in Figure 10. The shell model was analyzed for 
different honeycomb widths ranging from 0.125 mm to 10 mm. Simulations were performed using 
ABAQUS with 4-node S4R reduced integration shell elements. The results from FEM analyses 
are compared with the analytical solution of Gibson [7] in Table 3. For widths greater than 5 mm, 
the maximum difference between the FEM and the Gibson’s analytical solution is around 15 
percent, indicating a departure of a 1-D beam solution from a 2-D stress state obtained using shell 
elements. With increasing width, this maximum difference is approached asymptotically and, 
therefore, is bounded.     
 
 
 

         
 
 
 

xxE (MPa)  yyE (MPa) 

FEM 
% difference of Gibson 

solution from FEM 
FEM 

% difference of Gibson 
solution from FEM 

0.0476  0.96  0.0477  0.96 

       Figure 10. Unit cell shell FEM model 
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  Table 3. Effective core moduli for a shell model: Comparison of Gibson (Exx = Eyy =  0.04806 MPa) 
and numerical FEM results. 

 

Width 
Mm 

xxE (MPa)  yyE (MPa) 

FEM 
% difference of 
Gibson solution 

from FEM 
FEM 

% difference of 
Gibson solution 

from FEM 
0.125  0.0477  0.6  0.0477  0.6 

0.25  0.0478  0.6  0.0478  0.6 

0.5  0.0491  2.2  0.0491  2.2 

1  0.0513  6.7  0.0512  6.6 

5  0.0546  14.0  0.0546  14.0 

10  0.0550  15.0  0.0550  15.0 
 

 

4.3 In-plane analysis of a unit cell honeycomb structure with 3-D solid 
elements 

 
The unit cell model was analyzed using ABAQUS 8-node solid continuum elements and is shown 
in Figure 11. The ABAQUS C3D8I element incorporates incompatible modes and full integration. 
Solid elements can represent a complete 3-D state of stress which was not expected in these 
simulations due to the small thickness-to-length ratio of the honeycomb walls. Here a similar 
parametric study as made in Section 4.2 was performed with the widths of the unit cell model 
varied from 0.125 mm to 10 mm.   
 
 
             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Number of 3D brick elements = 6720
Number of Nodes = 10004

Figure 11. Unit cell 3-D solid FEM model. 
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The 3-D elastic solid elements prediction of effective moduli are compared with Gibson’s 
analytical predictions in Table 4. For widths greater than 5 mm, the difference between the FEM 
and the Gibson’s analytical solutions asymptotically approach approximately18 percent.  

 
 
          Table 4. Comparison of Gibson (Exx = Eyy =  0.04806 MPa) and numerical results for effective 

core moduli using a solid FEM model. 
 

   Width (mm) 

xxE (MPa)  

 
yyE (MPa) 

 

FEM 
% difference of 
Gibson solution 

from FEM 
FEM 

% difference of 
Gibson solution 

from FEM 
0.125 0.0484 1.0 0.0483 1.0 
0.25 0.0498 3.8 0.0496 3.3 
0.5 0.0526 9.6 0.0519 8.0 
1 0.0547 14.0 0.0540 13.0 
5 0.0566 18.0 0.0558 16.0 
10 0.0568 18.0 0.0561 17.0 

 
 
 
 
From the analyses using both 2-D shell and 3-D solid models, it is clear that the unit-cell FEM 
model predicts the effective modulus of the material to agree with Gibson’s analysis for small 
widths but asymptotically increases to an 18 percent difference for larger widths. A comparison of 
results from the shell and solid element models indicates that 2-D shell elements are sufficient to 
represent the stress state of honeycomb cores. This will be further corroborated in Section 8 where 
cores with different layer properties are investigated.  

 
4.4  General 3-D analysis of a unit cell for a complete set of elastic moduli 

A final set of computations was performed to obtain the six in-plane and out-of-plane moduli of a 
unit cell model with various cell widths. These equivalent moduli are presented in Table 5. When 
the calculated Gibson values for these moduli are normalized by the FEM predictions, the 
normalized moduli for Exx and Eyy, and for Ezz and Gyz follow the same curve and have been 
perturbed slightly to be visible in Figure 12. 
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      Table 5. Complete set of equivalent elastic moduli of a honeycomb core as a function of            

cell width, w. 
 

 

 

 

 

 

 
                                                       

 
   
 
 
 
In Figure 12, the in-plane moduli, Exx, Eyy and Gxy, show a dependence on cell width when the 
width becomes lower than 15.0. This is presumed to be due to the stress state transitioning from a 
1-D beam bending stress state to a 2-D stress state. This is corroborated by the results in Tables 3 
and 4 that show an asymptotic convergence to in-plane moduli after a core width of approximately 
5 mm. The other out-of-plane elastic moduli appear to be relatively independent of the cell width 
and are effectively constant for the dimensions investigated.  

Elastic 
Component 

Numerical FEM, w = 
0.125 mm   0.25 mm    2.00 mm     14.0 mm    24.0 mm 

Analytical 
Gibson 

Exx (MPa) 0.04899 0.04831 0.0532 0.0552 0.0553 0.0481 
Eyy (MPa) 0.04899 0.04831 0.0532 0.0552 0.0553 0.0481 
Ezz (MPa) 91.0000 90.9727 91.013 91.003 90.003 91.000 
Gxy (MPa) 0.01493 0.01576 0.0175 0.0173 0.0173 0.0120 
Gxz (MPa) 10.564 10.565 10.564 10.564 10.563 12.188 
Gyz (MPa) 12.205 12.205 12.205 12.199 12.197 12.188 

  Figure 12. The six in-plane and out-of-plane elastic moduli for a unit hexagonal core cell. 
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5. Equivalent isotropic single layer material properties to represent a 
       multi-layered honeycomb wall  

 
In order to rapidly assess design variations and sizing requirements of configurations with multi-
layered cell walls, the multi-layer wall must be replaced with a single equivalent isotropic layer. 
To store energy as a battery, the honeycomb walls consist of three distinct materials to function as 
an anode, a cathode, and an electrolyte. The modulus of the equivalent wall layer is then used 
within the analytical expressions derived by Gibson et al. [7] to allow multi-layered cores to be 
modeled as a simple homogeneous material. In this section, classical lamination theory (CLT) is 
used to compute equivalent single-layer in-plane elastic properties of the laminated walls. 

For a multi-layered wall, effective in-plane properties can be computed via CLT using the laminate 
A, B and D matrices [13,14]. 
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Where ijQ are the reduced stiffnesses of the kth layer, zk is the location of the layer interface through 

the thickness of the core-wall, and n is the number of layers in the laminate. The constitutive 
matrix relating strains and curvatures with force and moment resultants for the laminate is given 
by 
 

                                                        
     
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                                                                        (17) 

where                        
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T T

a b A B

b d B D
                                                                        (18) 

 
The equivalent in-plane material properties for a layered wall obtained by CLT are given by  
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Chen and Chan [15] derive a set of modified in-plane moduli that account for induced shear and 
bending deformation in the equivalent single layer. These moduli are defined by elements of a P 
matrix defined as: 
 

                                                              1  T
P a b d b                                                                         (20)  

such that 
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where  
                                                         2

1 11 22 12  P P P                                                                       (22) 

 
Averaged properties defined for an equivalent single layer using CLT in Equation (19) or by the 
Chen-Chan Equations (21) are then used in the Gibson Equations (1) through (8) to obtain the 
effective homogenized material properties of a honeycomb core possessing a layered wall. It 
should be noted that if the laminate is balanced such that the coupling B matrix is null, the Chen-
Chan Equations and the CLT Equations yield identical results. The homogenized effective core 
properties obtained using Gibson’s equations together with the averaged single layer properties 
are validated using a unit cell finite element analysis in the following section.  
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6. Comparison of equivalent single layer isotropic properties for layered  
      honeycomb structures using a finite element analysis of a unit cell 

The equivalent single layer properties defined using CLT Equations (19) or the modified Chen-
Chan Equations (21) have to be verified before using Gibson’s equations (1) to (8) to approximate 
the entire core. In this section, the equivalent single layer properties are validated using finite 
element analysis of a honeycomb unit cell. For finite element simulation, the single layer walls of 
the unit cell defined in Figures (6) and (7) are replaced by a three-layered laminate, as shown in 
Figure 13. 
 

                         
 
 
Three different laminates were considered for the three-layered honeycomb wall. The lay-ups were 
selected to have an increasing difference in elastic moduli and to transition from a symmetric to 
an unbalanced laminate.   
 
Laminate-1 consists of three isotropic layers with properties characteristic of lightweight Nomex 
core material. These properties are listed in Table 6.  
 
                       Table 6.  Laminate-1 multi-layer core-wall for [Nomex/Nomex/Nomex]. 
 

Layer Thickness Modulus Poisson’s Ratio 
Nomex Paper 0.01733 mm 3150 MPa 0.40 
Nomex Paper 0.01733 mm 3150 MPa 0.40 
Nomex Paper 0.01733 mm 3150 MPa 0.40 

 
Laminate-2 consists of aluminum and copper layers. The properties for Laminate-2 are given in  
Table 7. 

 Figure 13. Honeycomb unit cell geometry with a three-layered laminated wall 
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                                Table 7.  Laminate-2 multi-layer core-wall for [Al/Cu/Al]. 
 

Layer Thickness Modulus Poisson’s Ratio 
Aluminum 0.01733 mm 70,300 MPa 0.330 

Copper 0.01733 mm 110,000 MPa 0.343 
Aluminum 0.01733 mm 70,300 MPa 0.330 

 
Laminate-3 consists of Aluminum, Epoxy and Copper layers. The properties for Laminate-3 are 
given in Table 8. Laminate-3 is selected to represent realistic battery wall properties. The outer 
layers represent cathode and anode materials while the middle epoxy layer represents the separator 
to prevent contact between the electrodes.  
 
                           Table 8. Laminate-3 multi-layer battery wall for [Al/Epoxy/Cu]. 
 

Layer Thickness Modulus Poisson’s Ratio 
Aluminum 0.05 mm 70,300 MPa 0.330 

Epoxy 0.20 mm 4237 MPa 0.450 
Copper 0.05 mm 110,000 MPa 0.343 

 
Laminate-1 and Laminate-2 possess a balanced assemblage of layers and the B matrix is identically 
zero. As stated above, this results in the CLT and Chen-Chan in-plane effective moduli being 
equal. However, for Laminate-3, the layer properties are not balanced and the computed wall 
modulus for the CLT and Chen-Chan in-plane moduli are different.  The computed equivalent 
single layer isotropic wall moduli for the three laminates considered are given in Tables 9 to 11.  
 
                         Table 9. Laminate-1: Equivalent single layer isotropic wall modulus 
 

Effective Core 
Wall Properties 

In-plane Moduli using 
CLT relations 

In-plane Moduli using 
Chen-Chan relations 

Exx, Eyy 3150.0 MPa 3150.0 MPa 
Gxy 1125.0 MPa 1125.0 MPa 
xy 0.4 0.4 

                       
                      
                        Table 10. Laminate-2: Equivalent single layer isotropic wall modulus 
 
 
 
 
 
                       
 
                       
 
                       

Effective Core 
Wall Properties 

In-plane Moduli using 
CLT relations 

In-plane Moduli using 
Chen-Chan relations 

Exx, Eyy 83537.2 MPa 83537.2 MPa 
Gxy 31270.0 MPa 31270.0 MPa 
xy 0.336 0.336 
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                       Table 11. Laminate-3: Equivalent single layer isotropic wall modulus 
 

Effective Core 
Wall Properties 

In-plane Moduli using 
CLT relations 

In-plane Moduli using 
Chen-Chan relations 

Exx, Eyy 31,507.5 MPa 32,916.3 MPa 
Gxy 11,698.6 MPa 12,204.3 MPa 
xy 0.347 0.349 

 
 
 
The homogenized effective elastic properties for the unit cell are obtained using FEM analysis 
modeling the walls of the unit cell as a three-layered composite. The width of the modeled cell 
was 14.5 mm. The unit cell finite element model was created using 8064 4-node shell elements 
(S4R in ABAQUS) and 8193 nodes. For each of the 9 elastic constants a different set of loads and 
support conditions are applied to an FEM model and the response simulated. For example, the 
displacement boundary conditions applied to the unit cell to compute the effective in-plane xxE  

and yyE  moduli are shown in Figure 14. In this approach, the strains are determined from the 

applied displacements divided by the model length in the x or y direction, and the stresses are 
obtained from the recovered reaction forces due to the imposed loading divided by the area over 
which the reaction forces are obtained. The 1-D moduli then become a simple calculation of the 
stress divided by the strain along these axes. A succinct enumeration of the boundary conditions 
used for each set of boundary conditions is contained in Reference 12 and are not elaborated here. 
 
 

     
                                              
           
 
 

Figure 14. Applied displacements boundary conditions to impose unit cell strains 
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The estimated homogenized effective material properties for the unit cell from FEM simulations 
are compared with the calculated effective core elastic properties from the Gibson’s equations 
(using conventional CLT and the Chen-Chan modified properties as presented in Section 5). 
Because the Chen-Chan equations are identical to the CLT equations for balanced laminates, only 
one set of results is shown for Laminate-1 and Laminate-2, whereas for Laminate-3, which is 
nonsymmetric, two separate tables are shown for these two sets of effective properties. These 
results are presented in Tables 12 - 15. The percent difference provides a measure of how well the 
effective wall properties used in Gibson’s equations are representing the elastic response of the 
core-walls. 
 
 
 
Table 12. Laminate-1: Effective honeycomb core elastic properties obtained from FEM and the  
                Gibson equations modified using the Chen-Chan relations. 
 

 
 
 
 
Table 13. Laminate-2: Effective honeycomb core elastic properties obtained from FEM and the 
                Gibson equations modified using the Chen-Chan relations. 
       

Property FEM Gibson % Difference 
Exx MPa 1.177 1.275 -8.32 
Eyy  MPa 1.194 1.275 -6.78 
Ezz  MPa 2413.0 2413.0 -0.0002 

xy 0.9994 1.00 -0.06 
xz 1.614E-4 1.748E-4 -8.30 
yz 1.637E-4 1.748E-4 -6.78 

Gxy  MPa 0.3928 0.3186 18.89 
Gxz  MPa 356.3 338.8 4.91 
Gyz  MPa 339.1 338.8E 0.09 

 
 
 

Property FEM Gibson % Difference 
Exx MPa 0.05518 0.04806 12.90 
Eyy  MPa 0.05516 0.04806 12.87 
Ezz  MPa 91.00 91.00 0.0031 

xy 0.9985 1.00 –0.15 
xz 2.425E-4 2.112E-4 12.91 
yz 2.424E-4 2.112E-4 12.90 

Gxy  MPa 0.01680 0.01201 28.51 
Gxz  MPa 10.43 12.19 -16.87 
Gyz  MPa 12.20 12.19 0.082 
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 Table 14. Laminate-3: Effective honeycomb core elastic properties obtained from FEM and the  
                 Gibson equations modified using the Chen-Chan relations. 
 

Property FEM Gibson % Difference 
Exx MPa 97.92 96.43 1.52 
Eyy  MPa 97.55 96.43 1.14 
Ezz  MPa 5466.0 5486.0 -0.35 

xy 0.9630 1.00 -3.84 
xz 6.253E-3 6.135E-3 1.88 
yz 6.229E-3 6.135E-3 1.49 

Gxy  MPa 26.35 24.11 8.44 
Gxz  MPa 816.7 762.8 6.60 
Gyz  MPa 757.8 762.8 -0.66 

 
 
 Table 15. Laminate-3: Effective honeycomb core elastic properties obtained from FEM and the   
                 Gibson equations modified using CLT approximations. 
 

Property FEM Gibson % Difference 
Exx MPa 97.92 92.31  5.73  
Eyy  MPa 97.55 92.31 5.37 
Ezz  MPa 5466.0 5251.0 3.93 

xy 0.9630 1.00 -3.80 
xz 6.253E-3 6.100E-3 2.44 
yz 6.229E-3 6.100E-3 2.07 

Gxy  MPa 26.35 23.08 12.41 
Gxz  MPa 816.7 731.2 10.47 
Gyz  MPa 757.8 731.2 3.51 

 
 
The Gibson equations that are modified by the Chen-Chan approximations to obtain effective core 
properties presented in Tables 12 through 14, demonstrated a reasonably close agreement with the 
same quantities obtained through finite element simulations. It should be noted that, in Sections 
4.2 and 4.3, it was shown that there is a departure of the Gibson results from the FEM predictions 
with increasing width of the cell due to the 1-D beam solutions not fully accounting for the 2-D 
stress state in deflections, and possibly due to deformation modes other than bending that are not 
included in Gibson’s analysis. These modeling effects will influence the deviation of the elastic 
properties using Gibson’s equations from the FEM predictions. In the three laminates examined, 
the least deviation is seen in the in-plane normal moduli which varied between 1.1% and 12.9%. 
The Poisson ratios showed a similar range of deviations for the different laminates, a trend that 
was also observed by Sorohan et al. [2]. In general, the shear moduli showed a larger deviation, 
which was also noted by Penado [17] in a study of effective moduli determination in which it was 
observed that a discrepancy in the calculation of the in-plane shear modulus, Gxy, could be 
explained by its relatively small magnitude compared to the out-of-plane shear moduli, which were 
1-3 orders of magnitude greater and less susceptible to numerical precision issues.  
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7. Reference solution for sandwich honeycomb structures with layered core-
walls 

 
A high-fidelity FEM of a sandwich structure consisting of a 10 x 10 unit cell honeycomb core and 
two faceplates was developed as shown in Figure 15.  The model contained a complete 
representation of the core architecture with multi-layered cell walls. The deflection response of 
this model under uniform pressure on the upper face plate provided reference solutions to compare 
with simulations using homogenized effective properties of the core. These homogenized cores 
simplify the finite element modeling which, in turn, minimize the computational cost and the 
overall simulation times.    
 
   
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
Three reference solutions were generated with the three laminates described in Sections 5 and 6.  
The materials used for faceplates and the core for the three reference solutions are given in Table 
16. Each model consists of 661,600 4-node S4R elements and 644,462 nodes.           

 
         Table 16. Materials and thickness of faceplates and cores used in the reference solutions. 
 

Reference Solution Lower Faceplate Honeycomb Core Upper Faceplate 
1 Nomex, w=0.25mm Laminate-1, w=14.0mm Nomex, w=0.25mm 
2    Steel, w=0.25mm Laminate-2, w=14.0mm     Steel, w=0.25mm 
3 Aluminum, w=0.25 mm   Laminate-3, w=14.0mm Aluminum, w=0.25mm 

  
The loading and boundary conditions are shown schematically in Figure 16. The nodes on the 
vertical faces that extend up from the outer edges of the model were assigned clamped boundary 
conditions, and a uniform normal pressure of 1.0 MPa was applied over the upper face. 
 

      Figure 15. Sandwich composite configuration used to obtain the reference 
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             Figure 16. Schematic of applied surface loads and edge boundary conditions. 
 
 
High fidelity finite element analyses of the three reference sandwich panels were performed. The 
maximum center deflection obtained from the analyses are given in Table 17.  
 
                    Table 17.  Maximum Center deflection for the three reference solutions 
 

Reference Solution Maximum center deflection (mm) 
1 -1.4758 
2 -.04594 
3 -.02768 

 
 
These reference solutions will be used to verify the center deflection of the homogenized models 
in the next section. 

 
8. Homogenized finite element models used to assess effective core properties 

A 2-D shell model and a 3-D solid model of the sandwich structure were created to assess the 
accuracy of replacing the honeycomb core configurations with an effective homogenized layer to 
improve computational efficiency. The shell model is composed of 7,104 4-node S4R elements 
and 7,280 nodes, while the solid model is composed of 478,080 8-node C3D8R elements and 
502,169 nodes. These models are depicted in Figures 17 and 18. 
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The homogenized 2-D shell model and 3-D solid models were analyzed using the same boundary 
conditions and loading used in the reference solution as depicted in Figure 16. The maximum 
displacements obtained using the homogenized core properties obtained for the three laminates 
described in Section 5 (Tables 9 to 12) are compared with the three reference solutions in the next 
section. 
 
 

Figure 17. 2-D shell model with a homogenized core. 

Figure 18. 3-D solid model with a homogenized core. 
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9. Comparison of maximum center deflection with reference solutions 
 
This section completes the investigation into the coupled methodology to compute effective elastic 
properties of honeycomb cores with multi-layered walls. The reference problem selected in Section 
7 represents a complex multi-cell model of a sandwich panel with realistic load conditions. The 
simplified FEM models developed in Section 8 contain homogenized representations of the central 
core and will necessarily contain various modeling aspects inherent to finite element simulations 
that may introduce differences in deflections predicted by the reference model and by the 
simplified homogenized models. Two sets of comparisons were made, one consisting of finite 
element predictions of deflections using FEM-derived effective moduli - which are considered the 
most accurate - and the second, consisting of finite element predictions using Gibson’s 
approximations to the effective moduli of the core layer. It was assumed that the calculated 
deviations of the homogenized model deformations from the reference solution deformations 
represents inherent modeling differences between the different FEM representations, and the 
deviation of the same homogenized model using Gibson’s effective moduli as the core material 
properties would yield a different percent deviation with the difference between the two due solely 
to the approximations inherent to Gibson’s analytical method. It is shown in the following 
subsections that the difference between the homogenized models with the reference solutions is 
small, less than a maximum of 11.5%, but, more importantly, the difference between the 
homogenized models using effective FEM-derived core properties and Gibson’s effective moduli 
were very small, less than two percent. This good agreement may be partly explained by the close 
agreement of the FEM-derived and the Gibson-derived effective modulus Ezz for the out-of-plane 
properties as shown in Tables 11 – 13.  

9.1 Deflection comparison of a three-layered isotropic [Nomex/Nomex/Nomex] Laminate-1 
core in a Sandwich plate with reference and homogenized solutions 

 
The faceplates were assigned isotropic properties corresponding to a Nomex material with 

3150E  MPa, 0.4xy   and 0.25t  mm. Note that for Laminate-1, the homogenized effective 

core properties are the same using both CLT and the Chen-Chan equations due to the vanishing of 
the coupling matrix, B. The core in the homogenized model was assigned material properties from 
Table 12. The central deflections are listed in Table 18 where the percent deviation from the 
reference solution is also presented.  

Table 18.  Laminate-1 homogeneous model results compared to the reference model solution. The 
reference solution calculated a maximum center deflection of  = -1.4758 mm. 

 
Homogeneous 

Models 
Maximum 

deflection using 
effective moduli 

from FEM analysis 

Deviation from 
reference 
solution 

Maximum deflection 
using effective 
moduli from 

Gibson’s equations 

Deviation from 
reference 
solution 

2-D Shell -1.5660 mm 6.1% -1.5672 mm 6.1% 

3-D Solid -1.5364 mm 4.1% -1.5376 mm 4.2% 

 



 

25 

 

 
 
This analysis shows a good agreement between the simplified homogeneous models compared to 
the high-fidelity reference solution for approximating the behavior of the honeycomb core replaced 
by effective material properties. Comparing the maximum center deflection of the homogeneous 
models using FEM-derived and Gibson-derived effective core properties, the solutions are 
virtually identical, differing only by at most 0.1% 
 

9.2 Deflection comparison of a symmetric three-layer isotropic [Al/Cu/Al] Laminate-2 core 
      in a sandwich plate with reference and homogenized solutions  

The faceplates were assigned steel properties with 1.0 6E E MPa, 0.3xy  and 0.25t  mm. 

Note that for Laminate-2, the homogenized effective properties are the same using both the CLT 
and the Chen-Chan equations. The core in the homogenized model was assigned material 
properties from Table 13. The central deflections are listed in Table 19 where the percent deviation 
from the reference solution is also presented. 
 
 
 
  Table 19.  Laminate-2 homogeneous model results compared to reference model solution. The 

reference solution calculated a maximum center deflection of  = -.04594 mm. 
 

Homogeneous 
models 

Maximum deflection 
using effective moduli 

from FEM analysis 

Deviation from 
reference 
solution 

Maximum deflection 
using effective moduli 

from Gibson’s equations 

Deviation from 
reference 
solution 

2-D Shell -.05065 mm 10.2% -.05122 mm 11.5% 

3-D Solid -.04950 mm 7.74% -.05007 mm 8.98% 

 
 
This analysis shows a good agreement between the simplified homogeneous models compared to 
the high-fidelity reference solution for approximating the behavior of the honeycomb core replaced 
by effective material properties. The maximum percent difference is about 12 percent. Comparison 
of the maximum center deflection of the homogeneous models using FEM-derived and Gibson-
derived effective core properties shows that the solutions are virtually identical, differing by at 
most 1.3% 
 

9.3   Deflection comparison of a nonsymmetric three-layer isotropic [Al/Epoxy/Cu]  
      Laminate-3 core in a sandwich plate with reference and homogenized solutions. 
    
The faceplates were assigned Aluminum properties with 70,300E  MPa, 0.33xy  and 0.25t 
mm. For Laminate-3, the homogenized effective properties using CLT and the Chen-Chan  
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equations are different. Hence, both the homogenized properties obtained using CLT (Table 15) 
and obtained by Chen-Chan (Table 14) were analyzed and compared with the reference solution. 
  
The central deflections obtained using Chen-Chan properties are compared with the corresponding 
center deflection from the reference in Table 20 where the deviation from the reference solution is 
also presented. 
 
 

  Table 20.  Laminate-3 homogeneous model results using Chen-Chan effective wall modulus in 
Gibson’s equations. The reference solution calculated a maximum center deflection of                         
 = -0.027685 mm. 

 
Homogeneous 

models 
Maximum deflection 

using effective moduli 
from FEM analysis 

Deviation from 
reference 
solution 

Maximum deflection 
using effective moduli 

from Gibson’s equations 

Deviation from 
reference 
solution 

2-D Shell -.028913 mm 4.4% -.028523 mm 3.9% 

3-D Solid -.028327 mm 2.3% -.027921 mm 0.85% 

 
 
 
Comparison of the maximum center deflection of the homogeneous models using FEM-derived 
and Gibson-derived effective core properties shows that the solutions are virtually identical, 
differing by at most 1.45%.  The central deflections obtained using conventional CLT properties 
are compared with the corresponding center deflection from the reference solution, in Table 21.  
 
 
Table 21.  Increase in error of center deflection using CLT in Laminate-3 for the effective wall 

modulus in Gibson’s equations. The reference solution calculated a center deflection    
 = -0.027685 mm. 

 
  
 
 
 
 
 
 
 
 
Results obtained using homogenized effective properties from the Chen-Chan equations result in 
more accurate predictions of the center deflection for Laminate-3, which consists of materials 
representative of electrodes and electrolyte that could be used in a battery. 
 
 

Homogeneous 
Models 

Maximum deflection 
using effective moduli 

from Gibson’s equations 

Deviation from 
reference 
solution 

2-D Shell -.025772 mm 8.9% 

3-D Solid -.028951 mm 4.6% 
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10. Summary 
 
The homogenization of complex core architectures is important to decrease the overall 
computational requirements in the simulation of multifunctional sandwich composites. This has a 
direct impact on the rapid assessment and optimization of design prototypes accounting for 
geometric sizing and material applications. A primary objective of this study was to investigate 
the accuracy of extending the widely used Gibson’s approach to cellular structures with multi-
layered walls that are designed for multifunctionality.  
  
This work investigated a coupled approach using Chen-Chan’s correction to classical lamination 
theory to compute equivalent moduli for multi-layered core-walls for use in the beam bending 
solutions of Gibson. The generality of this approach makes it extendable to wall configurations 
with an arbitrary number of layers. An equivalent wall modulus and the effective core properties 
can be calculated using a small set of closed-form analytical expressions. It was demonstrated that, 
as the width of the face plate separation increased, Gibson’s 1-D elasticity solutions departed from 
the FEM simulation of the effective core moduli as the 2-D stress state became more pronounced 
and that a plate bending solution was more accurate in capturing the cell deformations. This 
departure, however, was shown to approach a bounded maximum value as the core width increased 
beyond a few multiples of the cell size. For the core widths examined, this maximum departure 
was 18% for the in-plane moduli, Exx and Eyy. 
 
For illustration, several multi-layered wall configurations were selected with differing material 
properties and symmetry across the midline. It was shown through comparison to unit cell finite 
element calculations that the analytically estimated equivalent core properties are obtained with 
good accuracy for the different multi-layered wall layers considered. 
 
As a final test, a highly refined model of a 10 x 10 cell sandwich composite panel with all cells 
explicitly modeled was generated to serve as a reference solution to compare the accuracy of 
simplified FEM models incorporating homogenized cores. The panel was clamped along the edges 
and subjected to a normal pressure over the upper surface. A simplified 2-D shell element model 
and a 3-D solid element model were developed to simulate the sandwich panel with a homogenized 
core. For each model, two different simulations were performed and compared to the reference 
solution. One used FEM-derived equivalent moduli for the core – which are considered the most 
accurate – and one used the analytical moduli based on Gibson’s approach. The difference in the 
maximum center deflection between the homogenized model with FEM-derived equivalent moduli 
and the reference solution were assumed to be based on various FEM modeling approximations 
inherent to the representation of the sandwich panel. The same deviation was calculated using 
effective core moduli obtained from Gibson’s analysis. All these departures from the reference 
solution were reasonably small, the maximum being 11.5%. However, it was also shown that the 
difference between the homogenized models using FEM-derived or Gibson’s effective moduli was 
within 2% for the three different laminated walls considered.    
 
In conclusion, the coupled analytical solution for effective core moduli investigated in this study 
demonstrated an efficient method to simplify the modeling of multifunctional sandwich composite 
cores while maintaining a high accuracy compared to a computationally intensive explicit 
simulation of complex core configurations.  
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