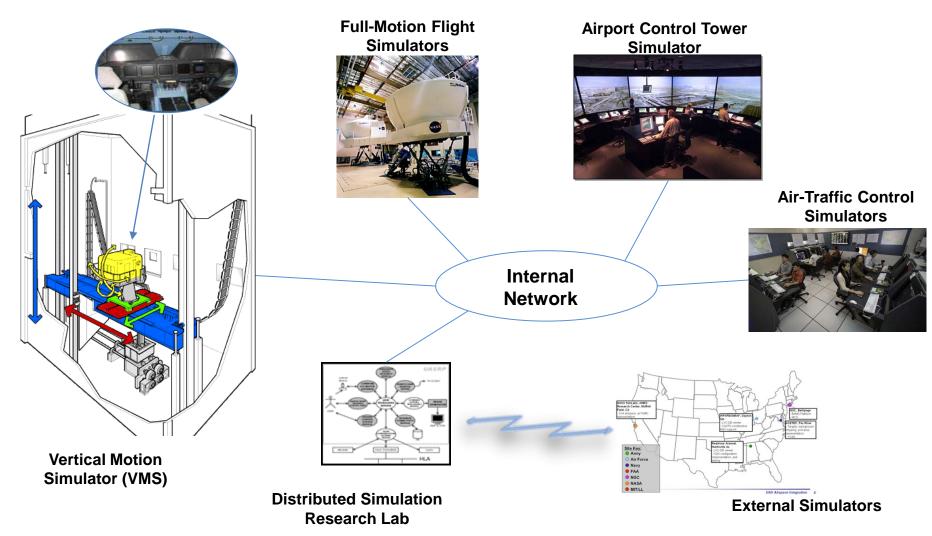


Outline

- Overview of simulation capability at NASA
 - Ames Research Center
 - Other facilities
- LVC development and uses
- Research uses and trends
- Limitations
- Thoughts on solutions

Simulation Uses at NASA



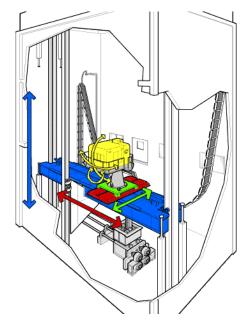
- Support Research and Development Projects
 - Vehicle Systems and Safety Technologies
 - System-wide Safety and Assurance Technologies
 - NextGen Concept and Technology Development
 - NextGen Systems Analysis and Integration
 - Fixed- and Rotary-Wing Technologies
 - UAS Integration in the NAS
- Support Human Spaceflight Program
 - Shuttle Orbiter Engineering Development
 - Shuttle Orbiter Flight Training
 - Orion Crew Vehicle/Space Launch System
 - Commercial Space Transportation
- Support Government and Industry R&D
 - Leverages high-fidelity simulation facilities and expertise
 - Users include FAA, DoD, major Aerospace companies

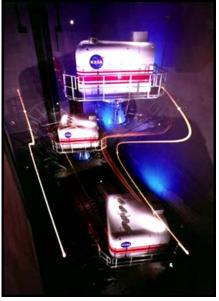
Simulation Facilities at NASA Ames

Unique, high-fidelity, simulation facilities and skilled staff enable a wide range of aerospace systems research

Vertical Motion Simulator (VMS)

- Large amplitude motion system
 - Accurate motion cues for precision maneuvering tasks
 - Customizable motion parameters
- Interchangeable cabs
 - Five cabs with varying visual fields-of-view and cockpit layouts
 - Programmable multi-function displays
 - Programmable force-feel systems with a variety of inceptors
- High-fidelity visual systems
- Flexible simulation architecture
 - Tailored to research applications
 - Accepts user software and hardware modules




Unparalleled Visual/Motion Cueing

VMS Motion System

- Six independent degrees-offreedom
 - One-to-one motion possible
- Large displacement
 - ±30 ft vertical
 - ±20 ft lateral
 - ±4 ft longitudinal
- Longitudinal and lateral axes can be swapped by orienting cab
- 0.7 g vertical acceleration capability

Vehicles Simulated on the VMS

Crew Exp. Vehicle

Lunar Surf. Acc. Module

X-32B

X-35B

Space Shuttle

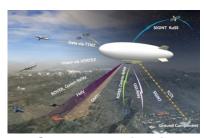
Speed Agile Concept

C-17

Tilt-Rotor

USAir 427

AV-8B


RAH-66

High Speed Civil Transport

UH-60

USAF MAV6 Airship

CH-47 with slung loads

NT-33

Crew Vehicle Systems Research Facility (CVSRF)

- Boeing 747-400 full-flight simulator
 - Certified to FAA Level D
 - NASA has access to model and display software
- Advanced Concepts Flight Simulator (ACFS)
 - Configurable for research
 - B737-800W, C-17, Generic twin-jet models
- Research applications include:
 - NextGen concepts/procedures
 - Quiet arrival/departure procedures
 - Avionics concepts
 - Cockpit human factors

B747-400 FFS

ACFS

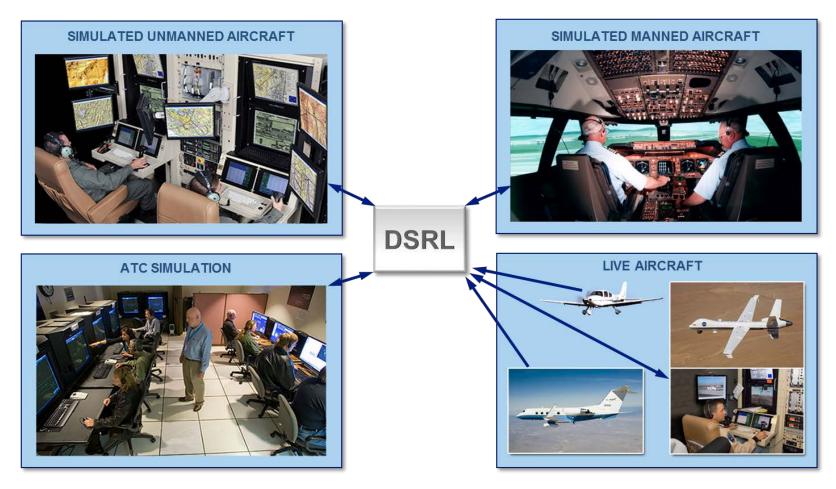
High-fidelity simulation for flight operations/procedures research and training

Air Traffic Control Simulators

- Realistic emulation of the National Airspace System (NAS)
 - Aircraft performance
 - Airspace definitions
- FAA standard controller stations
 - DSR and STARS display simulations
- Actual STARS systems
- Pseudo-pilot stations
- Voice switched audio communication system
- Data and video recording system

Adaptable, high-fidelity simulation environment for testing ATC concepts and procedures

Air Traffic Control Tower Simulator


- Full-scale, 20-ft diameter, airport control tower simulator
- 360-degree high-resolution out-the-tower displays
- Realistic traffic/environment simulation
- Adaptable software/hardware architecture for testing future concepts and systems
- Research applications include:
- NextGen concepts/procedures
- Airport design and safety research
- Remote robotic operation command and control

High-fidelity, adaptable, visual environment for research and training

Distributed Simulation Research Laboratory

Flexible development environment for networked distributed simulation

Operational Based Vision Assessment Simulator

- USAF needed to correlate clinical vision standards with aircrew operational performance
- Required simulator with visual acuity of 20/10 or better using COTS hardware/software
- System researched, designed, and built at NASA Ames with USAF funding
- Flexible simulation architecture using COTS hardware and software
- Complete simulator system installed at WPAFB in 2012



NASA Ames LVC Experience

- 2004 Now: NASA Air Traffic Management Research leveraging AVSimNet and Virtual Airspace Simulation Technology (VAST)
- 2009 & 2010: Navy BAMS (RQ-4N) Live Virtual Constructive Distributed Environment (LVC-DE)
- 2011: American Recovery & Reinvestment Act (ARRA)
 - TCAS & GCS Automation Study
- NASA UAS-NAS Project IT&E
 - Progressive build-up and test of LVC capability

NASA UAS-NAS Project Research Themes

UAS Integration

 Airspace integration procedures and performance standards to enable UAS integration in the air transportation system

Test Infrastructure

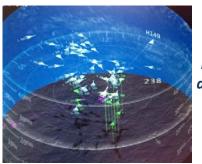
 Test infrastructure to enable development and validation of airspace integration procedures and performance standards.

LVC

An adaptable, scalable, and schedulable relevant test environment for validating concepts and technologies for unmanned aircraft systems to safely operate in the NAS

Early Equipment Integration and Checkout

ADS-B Integration on the Ikhana UAS


- Integrated a COTS (Garmin GDL-90) ADS-B onto a large UAS
 - Full ADS-B Out and In functionality
 - Unprecedented traffic situational awareness to UAS pilots
- Collected ADS-B "as installed" performance flight test data
 - Accuracy, uncertainty of position, velocity, and altitude reports
- Flight test results (Flight Test Series 1)
 - Verified ADS-B Out met FAA Advisory
 Circular AC 20-165 for ADS-B Out equipage
 - Valuable FAA Tech Center support with validated data analysis tools
 - Connected Armstrong to LVC and Verified data exchange of live, virtual, and constructive traffic information between all participants

Ikhana flight path as tracked by the national ITT ADS-B Surveillance Network

ADS-B Ground Tests on Ikhana UAS

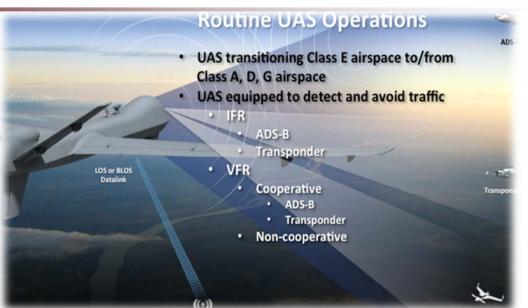
Live ADS-B and TIS-B data shown on virtual cockpit display

Distributed Connectivity Demonstration

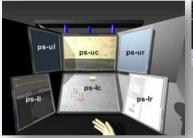
Initial test of distributed simulation capability among multiple participants

Boeing Palmdale B737 **SWA785** TENA **NASA Ames BOEING NAV AIR** LABNET **RQ7 Shadow** Boeing PHL VULT24 V22 **NASA Langley** TENA V221 **AvSimNet** DoD NavAir Pax River NASA AMES B747 **Boeing Palmdale BOE325** ROSSLYN RIVER TENA **Boeing Philadelphia** FAA **EXTERNAL** NISN DREN **FAA Technical Center ENCLAVE** NASA LARC B757 AAL123 TENA **August 2012: Demonstration** of simulated targets on ATC NIEC scopes and virtual tower. **ATC Tower** Presented at ITEA conference FAA NIEC A320 in September 2012. TGF **CKPT 320 AvSimNet**

Integrated Human-in-the-Loop Simulation


Completed Summer 2014

C2
Data Link Model



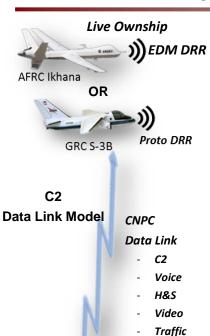
Virtual/Constructive Intruders

UAS Pilot as Subject

Research GCS

Basic and Advanced Displays of Proximal Traffic

ATC as Subject

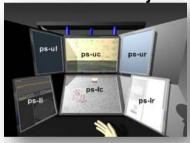


Multi-Aircraft Control System

UAS Flight Test

Summer 2015, Spring 2016

Live Intruders ADS-B TCAS II High speed


Virtual Intruder(s) (Pseudo Pilots)

Multi-Aircraft Control System

UAS Pilot as Subject

Research GCS

Displays of Proximal Traffic

Distributed Environment/Connectivity

Assets Connected to UAS LVC

Live

- Ikhana (NASA's MQ-9)
- T-34C (Manned Intruder)
- S-3B (Viking) (Surrogate UAS)
- Virtual
 - B747 Flight Simulator (NASA Ames)
 - Ikhana Sim (NASA Armstrong)
 - Multi-Aircraft Control System (MACS) ATC Emulator
 - Research Ground Control Station (GCS)
 - Vigilant Spirit Control Station (VSCS)
 - Multiple UAS Simulation (MUSIM)
 - Future Flight Central (NASA Ames)
- Constructive
 - NASA Airspace Simulation (MACS) Pseudo Pilot

Specific LVC Limitations

- Connection tested with a limited set of clients
- LVC infrastructure tested for a small number of aircraft (<100)
- Translate the location of the a live aircraft into an emulation of another real airspace (under development)
 - Magnetic variance
 - Altitude difference
 - Wind variance
- Matching live and virtual aircraft for precision maneuvers
 - Real vs. predicted wind variance
- Replacement of live target with virtual target
- Lack of aircraft and trajectory modeling for many aircraft classes
 - Small UAS
- Missing Emulation of ADS-B In and Out

Current Limitations

- Simulation modeling capability
 - Integrated high-fidelity fluid and structural dynamic effects for simulating, aerial refueling, close formation flight, etc.
- Consistency in modeling
 - Consistent coordinate systems, variable definitions, portable visual databases, etc.
- Network throughput for LVC simulation
 - Reduce simulation update times
- Quantify benefits of simulation relative to:
 - Risk mitigation
 - Transfer-of-training/"required level of fidelity"
- Funding to maintain/upgrade technical capabilities
- Workforce replenishment

Overcoming Limitations

- Dedicated funding stream to upgrade/maintain simulators to meet future simulation needs
- Improve perceptions on the benefits of simulation
 - Quantify cost/benefit in terms of risk-mitigation
 - Quantify transfer-of-training benefits
- "Plug-and-play" capability for LVC environments

Thoughts on Solutions

- Provide dedicated funding stream for maintaining and upgrading relevant simulation facilities
- Develop guidelines for interfacing distributed simulations model interactions, communication protocols, IT security, etc.
- Develop guidelines on simulation fidelity requirements based on task
 - Modeling requirements
 - Human-system interface fidelity
 - Visual and motion fidelity

QUESTIONS?

