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Strategic time-based metering that assures separation for
integrated operations in a terminal airspace

A. Sadovsky, M. Jastrzebski

This paper reports an algorithm for strategic time-based metering of air traffic arriving and depart-
ing from a large (~ tens of nautical miles) area (called here, the commitment region) around an airport
or metroplex. The algorithm assures separation continuously in time and avoids a dictation of intent
to an aircraft crew. This is accomplished by allowing an aircraft (specifically, its Flight Management
System) to specify, and commit to, an intended route and ground speed profile along that route within
the commitment region, and by supplying the time at which to enter the region to the aircraft crew.
The airspace that comprises the commitment region need not be confined to the terminal airspace
and can include some of the en-route space: the size and shape of the commitment region are param-
eters in the algorithm. An exact formula for including speed profile uncertainty in the algorithm is
provided. The algorithm is applied to a number of data sets recorded during actual air traffic oper-
ations in the Southern California TRACON in July of 2014 and the Atlanta TRACON in November
and December of 2013. The results of the numerical simulations indicate that the algorithm succeeds
at keeping the aircraft separated, but introduces, in its current implementation, more separation
than that observed in actual operations. This excess separation can be reduced by modeling more
accurately the Visual Flight Rules separation practices, a direction for future research.

I. Introduction

Air Traffic Operations (ATO) in terminal airspace differ from those in en route airspace in several key aspects [1].
Two such distinctions are, (i), the abundance in a terminal airspace of merging arrival routes and shortage of room for
maneuvers, for absorbing delay, such as holding patterns, and, (ii), the absence in a terminal airspace of a full route
specification for an arriving flight all the way to the runways; see, e.g., Ref. [1, section II.B.1]. These characteristics of
current ATO in terminal airspace limit the means available to Air Traffic Control (ATC) to enforce the Federal Aviation
Administration’s (FAA) requirement of separation assurance [2]. This limitation also affects areas of research in Air
Traffic Management (ATM) that involves separation assurance; in particular, research aimed at providing automated
decision support for ATC in terminal airspace.

Two areas of such research are Precision Air Traffic Operations in terminal airspace [3, 4, 5, 6, 1, 7], including
the research sub-area called Time Advance [8, 9], and Integrated Arrival-Departure Operations [10] (see also the
references cited in Ref. [10]). To have value in the field, an automated decision support solution sought in these
areas must, in some way, reach an acceptable compromise between the interdependent and, in part, competing goals
listed in Table 1. Being interdependent, these goals must be pursued simultaneously; for example, if the optimization

Table 1: Operational goals pursued in the design of an automated decision support solution for ATM.

* operational safety
* schedule efficiency
* actual executability of the proposed solutions

* adaptability and robustness of the proposed solutions to unpredictable perturbations (e.g.,
wind or lapses in runway availability)

* correctness and sufficiently fast performance of the algorithms underlying the automa-
tion

and separation assurance for an ATO are addressed consecutively, not concurrently, then the latter stage (separation
assurance) may disturb the results of the former (optimality). Similarly, the last goal in Table 1 is concerned with
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how reliable and timely the automation will be in its function. This goal is, hence, closely related to the first goal
(operational safety). A detailed discussion of these goals and challenges is found in [1].

The objective of this paper is automated decision support for fulfilling simultaneously two tasks, scheduling and
separation assurance (treated separately in most of the literature). The algorithm developed in this paper is an attempt
provide this capability. Aircraft separation is assured continuously in time. The input to the algorithm consists of: a
region (of a diameter on the scale of tens of nautical miles) surrounding a given airport or metroplex; the aerial route
network in that region; a sequence of flights that are arrivals to, and departures from, that region; and the route and
speed profile intent of each flight. As output, the algorithm computes for each flight, the time instant at which that
flight should enter the region (for departing flights, entrance into the region is defined as the takeoff) so that, if all
flights hold to their intended routes and (with some error margin) speed profiles, separation will be assured within the
region at all times during the ATO.

The following facts were taken into account during the design of the algorithm. Inside a Terminal Radar Approach
Control (TRACON) [1] airspace, aircraft speeds are subject to a number of restrictions. Some of these are mandated
by the FAA, and others are a matter of preferred practice. Specifically, anecdotal knowledge obtained by the authors
from a former controller suggests that controllers generally prefer to hold the flights arriving in a TRACON to certain
speed profiles. This preference, controllers believe, simplifies the task of visual assessment of aircraft separation. It is,
therefore, common in current ATO that an aircraft be committed to following, at least with a certain degree of accu-
racy, a specified speed profile while inside the TRACON. Furthermore, ATC and representatives of commercial FMS
manufacturers [11] dislike a system wherein intent is dictated to ATC or to aircraft crew. (For more details on attempts
to design such systems, see Section II.) ATC and crews prefer, instead, that the aircraft use its Flight Management
System (FMS) to compute intent based on the aircraft’s individual characteristics and the airline’s preferences. The
main merit of the algorithm proposed herein is, therefore, twofold: it accommodates, rather than dictates, the intent of
the aircraft, and assures separation in continuous time.

The algorithm is described in Section III. It solves a class of problems wherein it is assumed that the given flights
are sequenced and routed. If this assumption is dropped, the problem becomes an instance of the Asymmetric Traveling
Salesman Problem with Precedence Constraints (ATSPPC) [12] The ATSPPC is discussed briefly in Section VI.

The algorithm is tested on a data set that consists of radar track recordings of actual flights. The data and the test
results are described in Sections IV and V. A computation necessary in each iteration of the algorithm is described in
a separate Subsection, B, of IIl. A formula for estimating the sensitivity of solutions to various perturbations to the
aircraft’s speed (e.g., wind) is derived in Appendix A. Such perturbations are not simulated in the numerical examples
provided in this paper.

II. Prior research and its lessons

A trend in ATM research that began approximately in the early 1970’s (see Ref. [1, section V] for a comprehen-
sive review and list of citations) has been to compute air traffic schedules, including those optimized to an objective
function, using a model with the spatial variables being discrete (as opposed to successively refined discretizations of
a model with continuous spatial variables). This trend can be traced to the introduction of the concept of time-based
metering [13, 14] for en-route air traffic that led to the development of the Traffic Management Advisor (TMA) [15].

Recent literature also documents attempts to research automation of terminal air traffic management using the
discrete variable modeling approach. The two most prevalent approaches in the algorithms based on such models
(see, e.g., Ref. [16], the references cited therein, and the research review in [1, section V]) are Mixed-Integer Lin-
ear Programming and Dynamic Programming (see, e.g., Ref. [17]). Almost all these efforts, however, are various
attempts to model air traffic as a network flow [18] using an inherently discrete model. In algorithms based on such
models, however, aircraft separation is enforced only at a finite number of airspace waypoints and runways, and hence
have questionable applicability to the terminal airspace setting. Many of the solutions were obtained for problems
concerning en-route (not terminal) air traffic and are, consequently, concerned primarily with traffic flow, assuming
there is enough space to assure separation and conduct the necessary aircraft holding procedures to absorb delay.
Some of these models rely on heuristics-based algorithms that are difficult to verify for correctness and to analyze for
performance. The assumption of sufficient space, however, often fails in terminal airspace, and the complexity and
incomplete understanding of an algorithm casts doubt on its applicability in real time.

The more recent works, e.g. [9, 4, 5, 8, 6, 19], have, by contrast, attempted to model the motion of the aircraft
and to enforce separation continuously in time. These works, however, tend to run into the challenge of unrealistic
computed speed profiles, which hinders executability in real time. The alternative of imposing sufficient constraints
to obtain executable speed profiles, on the other hand, is hindered by the absence of uniform standards of aircraft
performance and airport regulations, and is likely to increase the computational demand substantially, once again
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compromising real-time applicability.

In summary, research experience suggests that, when pursuing the goals listed in Table 1, a modeling effort aimed
at designing and deploying an automation system tends to become a tradeoff between combinatorial (i.e., growing
factorially with problem size) complexity, model fidelity, and the degree to which the algorithms used are currently
understood. The approach formulated in the present paper gives priority to operational safety (by assuring separation
continuously in time) and executability, and yet achieves computational scalability to manage up to tens of aircraft.

III. The algorithm
A. Input and output

\‘ (X(8a),Y (sa), Alt(sa))

Vo (Sa)

Altitude

X Y
Figure 1: A projection of the route, and of a tangent velocity vector, onto the XY -coordinate (flat Earth) plane.

The input to the algorithm consists of the following data:

(i) An airspace region C, henceforth called the commitment region (for reasons explained below), that includes an
airport or a metroplex.

(ii) A sequence of aircraft, indexed o = 1,2, ..., A in the pre-determined order of entering the commitment region
C. Entrance into C for a departing flight is defined as departing from an airport in C'. Here A denotes the total
number of flights.

(iii) For each flight «, a route contained entirely in C, parameterized by the ground arc length s, of the route’s
projection onto the flat Earth (see Figure 1), and a ground speed profile v,, (s, ) specified, with some margin of
error, for that entire route and assumed to be sufficiently smooth to assure the existence of all the derivatives
required in subsequent calculations.

A notional illustration of the commitment region C'is given in figure 2. The two routes shown are a departure (left)
and an arrival (right). The airport or metroplex is shown as a hatched circle. The portion of each route contained in
the commitment region is shown thicker than the route outside the region. The diameter of the region is on the scale
of tens of NMI. The algorithm will apply to an integrated ATO; i.e., one that involves both arrivals and departures. A
specific example in which the commitment region C' is a circular cylinder of radius 60 NMI, with a the bottom base
centered at the Los Angeles International Airport, is shown in Figure 3.

The specification of s, of v, (54 ), and of the time t0 at which flight « enters C' at location s, = s completely
determines the solution of the initial value problem

—2 =0,(50), Sa(th) =52, (1)
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commitment region

airport or metroplex

Figure 2: A notional illustration of a commitment region, shown here as a cylinder with one base on the ap-
proximately flat Earth surface.

which describes the motion of the aircraft in C'. Knowledge of this motion for each aircraft allows the computation of
minimal required differences between two consecutive entrance times tgl , tg2 required to assure that the two aircraft
remain separated at all times while both are in C'. This computation is described in detail in Section B. See, in
particular, the notation At(«q, 1), defined by the right-hand side of (5), for the minimal required time gap between
aircraft o1, o entering C, in that order, for these two aircraft to be separated at all times.

The output of the algorithm is a sequence t0, o = 1,2,..., A, defined by the following recursion:

a?

0 =max{ 0+ At(a,a—1), t2 5+ Ata,a—2), ..., t]+Ata,1) }. (2)

B. Computation of the minimal difference between consecutive entrance times

From the ordinary differential equations in (1), one can compute, for each aircraft pair a1, aa, the region in the s,, 54,
- coordinate plane consisting of all points (s, Sa,) that correspond to the two aircraft violating separation. This
region will be denoted R(«,as); see Figure 4. (For the details of this computation, see [4, 5, 6].) Furthermore,
assuming aircraft vy enters C at time ¢ = 0, and aircraft as does so at a later time At > 0, one obtains a point

(Say (D), Say (AL)) 3)

in the s, 54, - coordinate plane which can serve as the initial state for the system

d [sm } _ [ Vo, (S ) ] )

% Sao Vagy (5042)

Equation system (4) and state (3) together constitute an initial value problem (IVP) that, with certain smoothness
assumptions on the ground speed profiles v(-), has a unique solution. (Figure 4 gives a notional illustration of such a
solution.) One can therefore determine all such At that the solution (sq, (%), Sa, (t))¢>4¢ of the IVP never enters the
interior of R(«1, ), i.e. corresponds to a separation-compliant motion of the aircraft pair.

The minimal required value of At will be denoted by At(aq,aq). It is computed herein using the following
method.
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KLAX ; radius = 60 n miles
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Figure 3: An example of a commitment region at the Los Angeles International Airport (here C' is a circular
cylinder of radius 60 NMI). The colored curves show radar track hit data for arrivals (blue) and departures
(orange) that entered C' in the time window from 1:48 PM to 2:18 PM on July 7, 2014.
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Figure 4: A notional illustration of a phase curve (s,, (), So, (t)) that avoids the interior of the set R(a, a2)
separation-violating states.

Sample the trajectories of the two aircraft at points

0 1 2
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S
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with every two consecutive points on a trajectory being some fixed distance, h, apart:

sl gt —p

J+1 J s
o o by fswfh, 1,7 =0,1,....

For each pair (sfx L sd) 2) that corresponds to a violation of the separation requirement for the aircraft pair o, aq,

determine the corresponding times ¢/, , ¢/, :

Say (tgl) =54, Sas (téz) = siZ.
The value of At(as, o) is chosen to be the largest of the differences th — tﬁxlz

At(ag, o) = max (8, ~ 1h,) 5)
Because the execution of a ground speed profile always contains some error, analysis of sensitivity to such errors
is carried out in Appendix A.

IV. Methods

A. Dates and time windows

In the sample solutions shown here, the commitment region C' was taken to be a circular cylinder, with the lower
base centered at the indicated airport, of radius 60 NMI. The input data are recordings of the actual radar tracks in the
Center-TRACON Automation System (CTAS) [14]. The two airports for which data are shown in the figures below
are Charlotte Douglas International (CLT) and Los Angeles International (LAX). Each figure showing a data plot is
accompanied by a specification (printed above the plots) of the airport and the time window during which the traffic
was recorded.

For LAX, the algorithm described in Section III was tested using traffic recording data from July 3 through 5 of
2014. To compare the traffic behavior to that on a date away from a holiday, an analogous test was run on traffic data
recorded July 18, 2014. For Charlotte Douglas International (CLT) and Atlanta International (ATL), the algorithm was
tested on traffic data from November 27 through 29 (Nov. 28 was the U.S. Thanksgiving holiday). To compare the
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traffic behavior to that on a date away from a holiday, an analogous test was run on traffic data recorded on November
20, 2013. On each date, the data were chosen from a midday window, in an attempt to capture a typical traffic density
(that has time to build up since early morning) and typical flight conditions (daylight).

B. Data collection method

For each of a number of dates in 2013 and 2014, a collection of 50 flights recorded in the track data entered the com-
mitment region during the specified time window. The flights were sampled in the order of entering the commitment
region. The flights in which the altitude was not a monotonically increasing or decreasing function of time (i.e., flights
that were not a clear arrival and not a clear departure) and did not reach both the airport and the boundary of the
commitment region were discarded. (The monotonicity was measured as statistical correlation between the recorded
trajectory and a theoretical linear trajectory.) A failure to classify the flight as either a departure or an arrival using this
method has several possible explanations in terms of actual operations. One explanation is that the flight experienced
a missed approach. Another is that radar track data on the same flight collected by different radars, or collected past
the landing moment of an arriving flight, may contain spurious artifacts (e.g., poor alignment between the track hits).

The sampling continued until the total number of flights reached 50. The number of flights that ended up being
discarded in this process is given in each figure’s top section.

All the times of entry into the commitment region, both actual and computed, are given in offset UNIX time
recorded in the CTAS file. The time is the number of seconds elapsed since a time instant specific to the operation on
that date.

C. How the algorithm was tested on data

In the analysis carried out, each flight’s path and speed profile, as recorded in the CTAS, was assumed to coincide
with the flight’s (actually unknown) intent. For these assumed intents, the algorithm described in Section III was run
to compute the minimally spaced separation-compliant times of entering the commitment region, with the first flight
entering at the time recorded in the data. The runway separation standards (for in-trail pairs of flights arriving on the
same runway) assumed in the algorithm are listed in Table 2. The values in the table were used with scalings described
in Section D.

Table 2: The benchmark separation matrix used in the calculations for in-trail arrival pairs on the same runway.
The rows are indexed by the possible models of the leading aircraft; e.g., a Boeing 757 arriving directly behind
an Extra Heavy Jet must maintain separation of at least 8.0 NMI.

< aircraft behind —
HI LJ LT ST SP 757 XH

40 50 50 60 60 50 50 HI
jet
turbopropeller
heavy
light
small
Boeing 757
extra

35 35 35 40 40 35 35 LI 7
35 35 35 40 40 35 35 LT  aircraft Legend:

35 35 35 35 35 35 35 ST ahead

Rl
3

35 35 35 35 35 35 35 SP |

40 40 40 50 50 40 40 757

80 100 100 100 100 80 6.0 XH

D. Sources of error

In cases when two flights consecutively arrived on the same runway, the separation standards (given in NMI) listed in
Table 2 were used in the computation. For LAX and ATL, enforcement in the algorithm of the standards listed in Table
2 for every pair of in-trail arrivals on the same runway (indicated, perhaps with some error, in the CTAS data) yielded
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makespans® substantially greater than those recorded live. In the opinion of the authors, as well as of the author of
[20] and other SMEs, this is explained by the predominance of VFR (Visual Flight Rules) Approach [20] landings
in daylight, which results in separations substantially smaller than those prescribed by the standards in Table 2. To
explore this possibility, for LAX and ATL, the algorithm was run, for each of these airports and for each date near or
on a holiday, with runway separation standards (see the value ‘RWY sep. frac.” in the figure legends) ranging over the
following values:

¢ 1.0x those in Table 2
¢ (.75 those in Table 2
¢ (0.5x those in Table 2

Another source of error is the inaccuracy, in the recorded data, of the data field specifying the flight’s arrival
runway. The runways specified are the best inference that could be made by the software [14] from the data available
about the flight (e.g., the flight plan and subsequent amendments to it).

Because some of these values exceed the minima required at some of the runways, and because some consecutive
arrivals on the same runway are visual approaches [20], some of the computed time gaps At(aq, ) are expected to
exceed those recorded in the actual operations. This is, indeed, so for most of the cases presented.

Commitment region entrance times (blue actual, green computed)

4000 A
53000
[0}
@
& 2000 veo
— (X ]
-— 0 ®
ooO°..
1000 - cessece®®®?®
......
.....
..ooo"'
0- »o2°®®
T T T T T T
0 10 20 30 40 50

sample flight

Figure 5: LAX. July 3, 2014. Runway separation standards scaled by factor 1.

Figure 5 shows the results of running the algorithm on one of the dates, with the following details:

LAX: 2014-07-03 13:50:51 to 2014-07-03 14:23:08

2 flights rejected from sample

Separation imposed: 12 to 40 NMI within aiport

Separation minima — lateral: 3 NMI; vertical: 0.164579 NMI
Runway separation fraction enforced: 1

Delay/fit (sec): avg 1722.6 ; std 846.6 ; min: -99 ; max: 2702
Departures: 50 %

V. Results

Table 3 gives a summary of the average delays per flight introduced by the algorithm for the dates and time
windows specified in Section IV.
This summary suggests the statements listed next:

2The makespan of an ATO is the total duration of the operation.
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Table 3: A summary of the delays per flight introduced by the algorithm. The holidays are marked with an *.

date (yyyy-mm-dd) airport RWY sep’nscale avg. delay/fit (sec) % departures

2014-07-03 LAX 0.5 1549.5 50
2014-07-03 LAX 0.75 1635.1 50
2014-07-03 LAX 1 1722.6 50
*2014-07-04 LAX 0.5 563.1 40
*2014-07-04 LAX 0.75 899.3 40
*2014-07-04 LAX 1 1084.6 40
2014-07-05 LAX 0.5 1195.9 40
2014-07-05 LAX 0.75 1240.1 40
2014-07-05 LAX 1 1568.1 40
2014-07-18 LAX 0.5 1059.3 50
2014-07-18 LAX 0.75 1100.7 50
2014-07-18 LAX 1 1159.4 50
2013-11-27 ATL 0.5 796.8 50
2013-11-27 ATL 0.75 847.8 50
2013-11-27 ATL 1 963.4 50
*2013-11-28 ATL 0.5 594.3 50
*2013-11-28 ATL 0.75 643.8 50
*2013-11-28 ATL 1 721.4 50
2013-11-29 ATL 0.5 1430.6 50
2013-11-29 ATL 0.75 1433.5 50
2013-11-29 ATL 1 1437.6 50
2013-11-20 ATL 0.5 2811.4 70
2013-11-20 ATL 0.75 2821.7 70
2013-11-20 ATL 1 2843 70
2013-11-27 CLT 0.5 119.1 50
2013-11-27 CLT 0.75 130 50
2013-11-27 CLT 1 142.6 50
*2013-11-28 CLT 0.5 130.7 40
*2013-11-28 CLT 0.75 134.7 40
*2013-11-28 CLT 1 142.7 40
2013-11-29 CLT 0.5 122.8 50
2013-11-29 CLT 0.75 129.3 50
2013-11-29 CLT 1 150.1 50
2013-11-20 CLT 0.5 198 50
2013-11-20 CLT 0.75 207.4 50
2013-11-20 CLT 1 221.1 50
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(1) Average delays at LAX and ATL listed in Table 3 exhibit the following patterns:

* At LAX, on non-holiday dates, the average delay per flight introduced by the algorithm at full scale runway
separation was at least 1, 100 seconds (~ 18 minutes).

* At ATL, on non-holiday dates, the average delay per flight introduced by the algorithm at full scale runway
separation was at least 963 seconds (~ 16 minutes).

Since the algorithm assumes minimal separation (in particular, at the runway), it follows from these patterns that
most of the arrivals at LAX and ATL were carried out at separations considerably less than those in the separation
matrix in Table 2. This is known to occur widely in practice under VFR [20] and is consistent with the fact that
the actual operations were carried out during daylight.

(i) At LAX and ATL, the average delay per flight introduced by the algorithm appears significantly less on the
holiday than on the other days.
Items (i) and (ii) are interpreted collectively at the end of this section.

(iii)) AtLAX, the average delay introduced by the algorithm exhibits no apparent dependence on the ratio of departures

to arrivals within the sample. Specifically, for the computations with the runway separation enforced at full scale,
1.0, the relevant data from Table 3 are reproduced in Table 4.

Table 4: The data on average delay and percentage of departures at LAX with runway fully enforced.

July 3,2015  July 4,2015 July 5,2015 July 18, 2015
Avg. delay/fit  1722.6 1084.6 1568.1 1159.4
% departures 50 40 40 50

The statistical correlation coefficient between the latter two rows of numerical data in Table 4 is 0.21341 (weak
positive).

(iv) At ATL, the average delay introduced by the algorithm appears somewhat to depend on the ratio of departures to
arrivals within the sample. Specifically, for the computations with the runway separation enforced at full scale,
1.0, the relevant data from Table 3 are reproduced in Table 5.

Table 5: The data on average delay and percentage of departures at ATL with runway fully enforced.

Nov. 20,2015 Nov. 27,2015 Nov. 28,2015 Nov. 29, 2015
Avg. delay/fit  2843.0 963.4 721.4 1437.6
% departures 70 50 50 50

The statistical correlation coefficient between the latter two rows of numerical data in Table 5 is 0.94960. Al-
though such a value of the correlation coefficient is generally considered strong, it is based in this case on limited
data and cannot serve as convincing evidence of an interdependence.

The phenomenological difference between LAX and ATL outlined in statements (iii) and (iv) may be caused by
the difference in route network topology, traffic patterns, and ATO practices between the two airports.

(v) At CLT, the average delay per flight introduced by the algorithm for runway separation scale 1.0 ranged from
142.6 to 221.1 seconds (approximately from 2.4 to 3.7 minutes). A delay on the order of minutes is not significant
in the sense that it is at least one order of magnitude less than the duration of even a short fight. Consequently,
the data indicate that the actual flights proceeded at separation standards close to those in Table 2.

A possible explanation for the phenomena for statements (i) and (ii) is that air travel subsides on the day of the
holiday, as most passengers have already arrived at their holiday destination and are not yet departing. Evidentiary
support for this explanation can be seen in Table 6. The Table shows the total operation counts at the airport, taken
on the same day of the week in: the holiday week, the four weeks immediately preceding the holiday, and the week
following the holiday. At each of the examined three airports (LAX, ATL, CLT), the operational count on the day of
the holiday is substantially lower than those in the other weeks on the same day of the week.
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Table 6: Comparison between air travel (by operation count) on a holiday and on non-holidays on the same day

of the week. The holiday dates are marked with an *. Data source: FAA OPSNET.

LAX ATL CLT

Total Total Total
Date Operation Date Operation Date Operation

Count Count Count
2014-06-06 1,875 2013-10-31 2,400 2013-10-31 1,581
2014-06-13 1,916 2013-11-07 2,568 2013-11-07 1,636
2014-06-20 1,931 2013-11-14 2,597 2013-11-14 1,696
2014-06-27 1,916 2013-11-21 2,593 2013-11-21 1,657
*2014-07-04 1,572 *2013-11-28 1,638 *2013-11-28 847
2014-07-11 1,959 2013-12-05 2,461 2013-12-05 1,545

VI. Conclusions and Future Work

The algorithm presented in Section III is aimed at addressing aircraft separation for a collective of aircraft in flight
within a given zone (comparable in size with the terminal airspace). A key assumption is that the flights have been
sequenced and routed. Each flight is to commit to a speed profile provided by the flight’s FMS. The output of the
algorithm can be corrected for perturbations to the execution of the speed profile and to departure times using the
methodology described in Appendix A. The main goal of the algorithm is to provide automated support for separation
assurance that, according to the FAA requirements, must be maintained continuously at all times.

Numerical experiments, described in Section IV and summarized in Section V, suggest that the current implemen-
tation of the algorithm succeeds at keeping the aircraft separated according to the required standards. At the same
time, the numerical evidence indicates that the algorithm generally introduces excess separation (resulting in flight
delay). This delay can be reduced or removed by modeling more accurately the separation practices for separating
arriving aircraft at the runway. The dependence of the amount of this excess delay on the ratio of departures to arrivals
within a given operation cannot, in the authors’ opinion, be clearly characterized from the above results and requires
further research.

In the above algorithm, the sequence in which the flights enter the commitment zone was assumed given. If
the sequence is not given and must be computed as part of the algorithm, then the problem (regarding the flights
as the nodes, and the time separations /At as distances) becomes an Asymmetric Traveling Salesman Problem [21],
further complicated by two circumstances: the distances may not conform to the triangle inequality, and the possibility
of multiple flights lined up on the same route impose additional constraints, known in the literature as precedence
constraints [12].

Among the possible directions of further research are: methods of addressing the sources of error described in
Section IV.D, a refinement of the separation requirements to remove the excessive excessive constraints and obtain
more accurate estimates of delay, and a number of computations in which the intended speed profiles are perturbed,
leading to a need to run the algorithm again.

Consideration of how the algorithm, when refined for use in the field, might be implemented highlights two re-
quirements in data communication. One is that the computer on which the algorithm is run must be able to receive
sufficiently early the intent (computed by the FMS) of all the aircraft involved. The second requirement is that the
times of entry into the commitment zone, when they have been computed, must be conveyed to the corresponding
flights. Only one numerical value per flight need be broadcast.
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A. Sensitivity to perturbations of the speed profile and of the departure times

Suppose an aircraft is to fly along its route with arc length coordinate s. In general, the ground speed profile v(s)
to which that aircraft is committed in region C' is not executable exactly, but will rather experience perturbations (e.g.,
caused by the wind). If €(s) denotes the perturbation (e.g., caused by wind) to the aircraft’s execution of the speed
profile v(s) at position s, then the kinematic equation describing the motion of the aircraft along its route is

d
d—i =v(s) + €(s).
The question central to this Appendix is as follows: if the aircraft starts in position s!) at time ¢(!) and in the absence
of perturbations (e = 0) reaches position s(2) at time ¢(2), how will the perturbation €(s) affect the time ) (changing
it to a time ¢(2):€) of reaching position s(2)?

To answer this question, solve the latter differential equation for dt and integrate from (1) to ¢(*) for the unper-

turbed case,
(2 2)

s(
+(2) _ (1) — / dt = / ﬁ’
+(1) s v(s)

£2)e 2)

s
{2 _ 4 _ / it = / 4 (©)
£ s v(s) + €(s)

The above question asks what the difference is between ¢(2)-¢ and ¢(2). An exact expression for this difference will
now be obtained in terms of the difference between the integrands on the right-hand sides of the latter two equations.
Expand the latter integrand in powers of €(x):

ﬁ B %) <1+e<i>/v<s>> N v(ls> i (-i%)m

m=0

and also for the perturbed case,

Consequently, the difference between the integrands 1/(v(s) + €(s)) and 1/v(s) is

and the change in ¢(?) that results from the perturbation is

m=1

<@

@) _ 4(2) _ _e(s) | els)? .
t t /s<1> [ o(5)? + BE + (hlgher powers of e(s)) ds.

If the absolute perturbation |e(s)| is at every s smaller than |v(s)|® (thus guaranteeing convergence of the power series),
then the latter expression in square brackets can be bounded using the following facts from calculus:
* In the special case ZE?) > 0, the power series > -_, (—€(s)/v(s))™ in (7) is an alternating series. Therefore,

the M -th partial sum
M m
Yo (-4
v(s)

m=1

approximates the sum of the series with an error not exceeding |e(s) /v(s)|M*1.

* In the general case, the approximation error for the M-th partial sum equals

S (-8) -2 (-8)” - S ()
- ()" o ()’

= (-8 e

where the last equality follows from the formula for the sum of a convergent geometric series.

bThe precise statement would be |e(s)/v(s)| < (some constant independent of s) < 1 for all s.
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The computed expression for the correction of ¢(2) for the perturbation ¢(s) gives time buffers by which one may

wish to “pad” the time separations At in (2).

A way to correct also for perturbations to the departure times is to introduced an additive error term to the right-

hand side of equation (6) in the Appendix:

©)
s d
(e — () = / L + (error in the departure time for that flight),
s v(s) +e(s)

which gives the worst-case bound
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/S(2> ds
s v(s)+e(s)

’t(Q)’E —tM ’ < + (upper bound on the error in the departure time for that flight).
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