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Introduction

The 2018 Strategic Implementation Plan sets forth the
NASA Aeronautics Research Mission Directorate
(ARMD) vision for aeronautical research aimed at the
next 25 years and beyond. It encompasses a broad range
of technologies to meet future needs of the aviation
community. Two key areas of focus are the transition to
ultra-efficient subsonic transports as well as the transition
to safe, quiet and affordable vertical lift air vehicles. In
support of these technology areas, NASA has been
researching hybrid-electric as well as fully -electric
alrcraft designs.

Both designs necessitate the development of higher
energy density battery systems. Lithium-oxygen batteries
have been proposed as a potential enabling technology
owing to Its high theoretical energy density, to date the
highest of any proposed battery technology.
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However, there are immense technical challenges facing
their development, including the development of more
stable cathodes and electrolytes. Through a synergistic
approach  utilizing computational modeling and
experimental screening, several new cathode and
electrolyte candidates have been screened. Concurrently,
decomposition analysis of candidate electrolyte systems
using nuclear magnetic resonance (NMR) spectroscopy
has yielded mechanistic iInsight into decomposition
pathway, which is vital to the development of future
stable electrolyte candidates.

State-of-the-art Electrolyte
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Figure 1: OER/ORR ratio of selected electrolytes and
DEMS analysis of state-of-the-art electrolyte DME
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Experimental

Differential electrochemical mass spectrometry (DEMS) and nuclear magnetic resonance (NMR)
spectroscopy were performed on a series of amides and ureas to elucidate the decomposition
mechanism of these two classes of electrolytes. Figure 2 shows the series of amides and ureas
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Figure 2. Series of acetamide, linear urea and cyclic urea electrolyte candidates
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Scheme 1. Baeyer-Villiger Oxidation of acetamide electrolytes
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Figure 3: NMR spectra of neat NMA and the products formed after 1 cycle
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Figure 4: NMR spectra of neat DMA and the products formed after 1 cycle
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Figure 5. DEMS analysis performed for NMA and
DMA in 1M LiNOj,
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Figure 6: CO, evolution overview of selected amide
and urea electrolytes with a focus on solvent 12C

Conclusions
Linear Amides (NMA, DMA)

A Interestingly more 2C**QO is formed during charge relative to
other solvents, suggesting more simple products are formed

1 Low amounts of ?C*8.180Q, is formed, suggesting solvent is
relatively stable towards Li,0, and its intermediates

d DMA shows the best stability of the amides/ureas tested, but
decomposes through a Baeyer-Villiger oxidation method

L_inear Urea (TMU)

1 Relatively low amounts of 12C*8180, formed, is more stable
towards Li,18180,/Li'8180,/18180, than linear amides

Cyclic Ureas (DMI and DMPU)

1 Large amounts of 12C16.18Q, and 12C*8.180, are formed while
low amounts of *2C61eQ, is formed

d This suggests an increased activation of a different pathway
where CO, Is formed from Li,0, induced solvent reduction
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