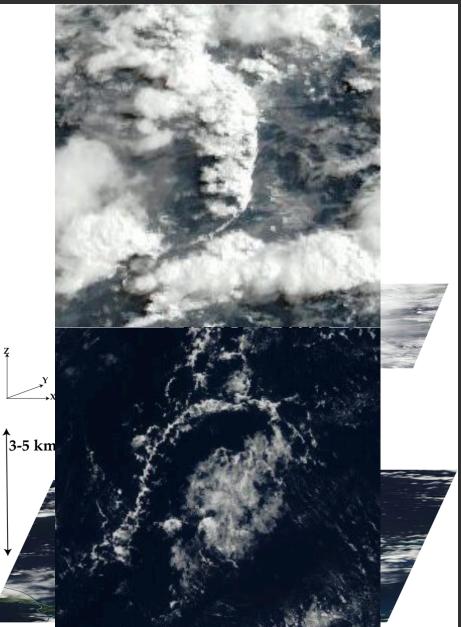
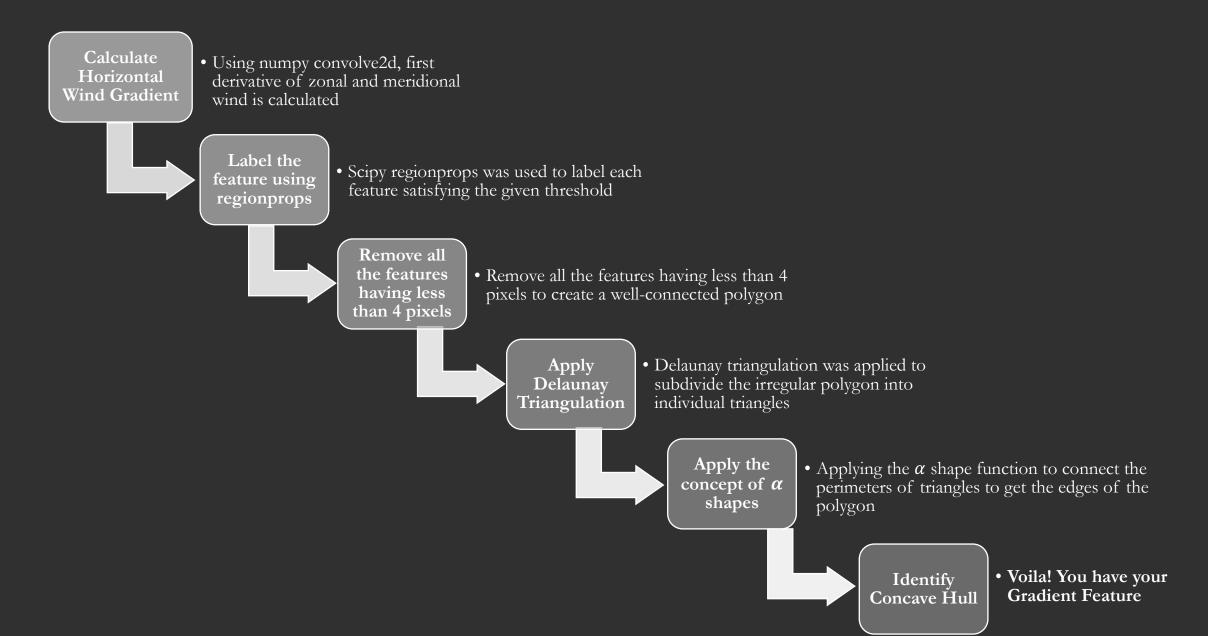
Identification and Characterization of Tropical Atmospheric Cold Pools using Spaceborne Scatterometer, Precipitation and Modeling

Piyush Garg¹, Stephen W. Nesbitt¹, Timothy J. Lang², George Priftis³, Jeffrey D. Thayer¹, Deanna A. Hence¹ ¹University of Illinois Urbana Champaign ²NASA Marshall Space Flight Center, Alabama ³University of Alabama, Huntsville

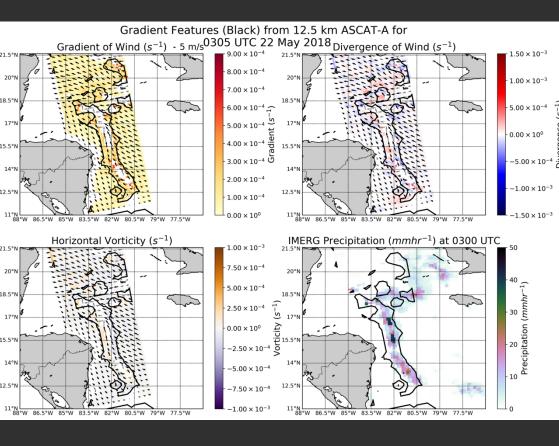
Motivation


- Cold pool tracking and representation is an arduous task as they intersect and new cold pools form on their boundaries (Tompkins 2001; Feng et al., 2015).
- We aim to get a deeper insight into the evolution of tropical oceanic cold pools to better characterize the multi-scale tropical storm dynamics.
- Cold pools from older thunderstorms can merge into a mesoscale cold pools and can initiate secondary convection as observed in MCSs (Fujita, 1969; Johnson and Hamilton, 1988).
- Therefore we are trying to create a new identification metric to better identify these cold pools and their storm environments over tropics.
- We are also matching the ASCAT overpasses with TRMM and GPM-IMERG precipitation in combination with MERRA-2 reanalysis products to get a holistic perspective of cold pools over oceans.

Gradient Features (GFs) Identification


• The hypothesis lies on identifying closed areas of steep gradients in horizontal winds, termed as Gradient Features (GFs).

$$|\nabla \vec{V}| = \begin{bmatrix} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \end{bmatrix}$$


- We have developed a new storm-centric, tensor-based approach to identify horizontal wind gradient.
- The figure shows two examples of cold pools that can be identified from ASCAT, (a) MCS and (b) shallow cumulus cloud clusters.

Gradient Feature Identification Algorithm Version 2.0

Example of GF on 22 May 2018

21 5°N

18.5

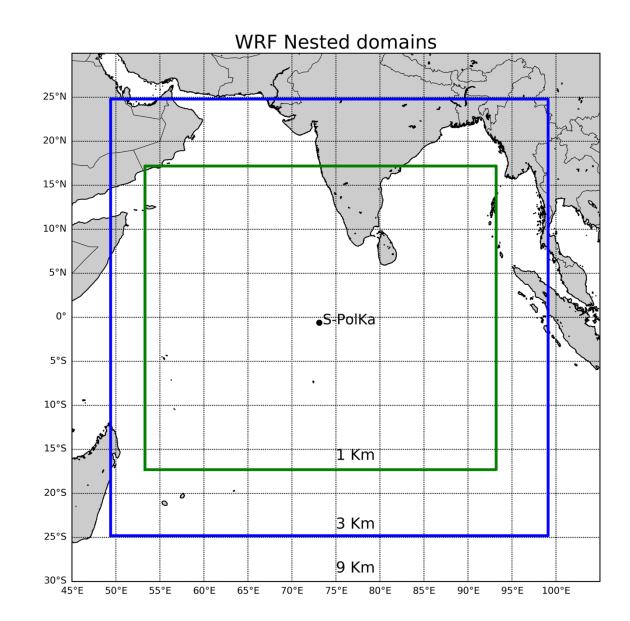
12.5°

21.5

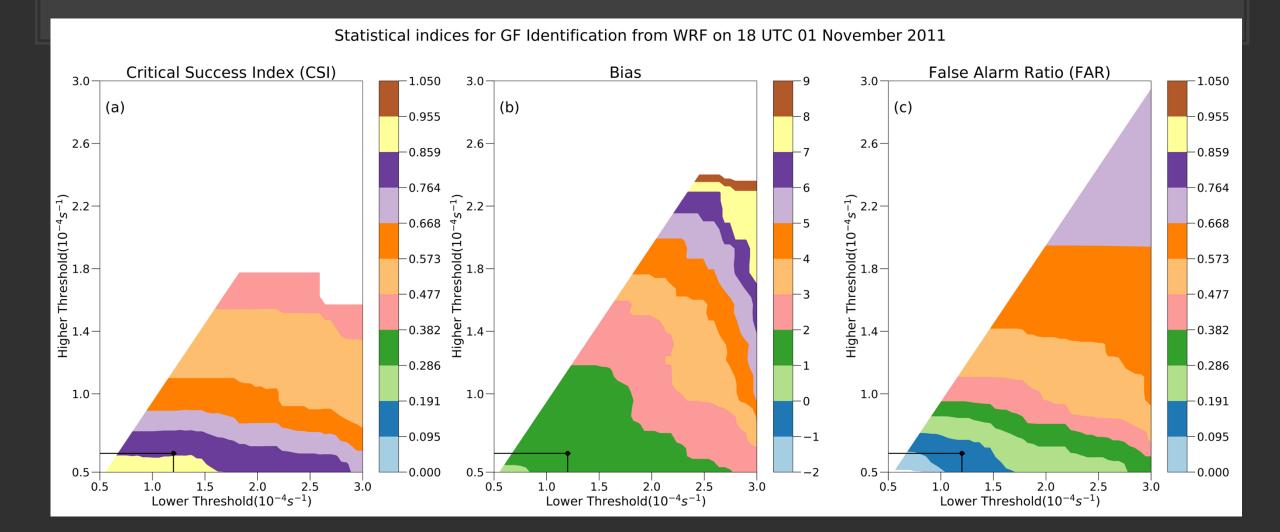
18.5

17

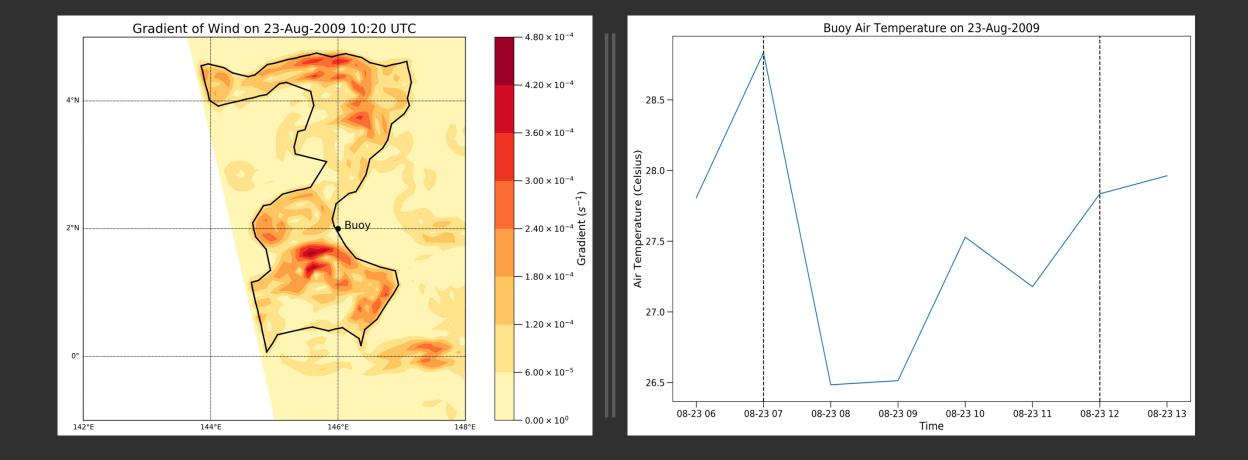
15.5

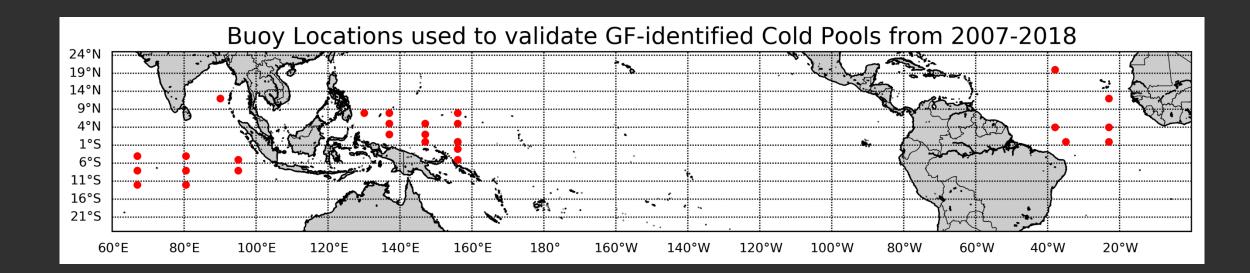

12.5

0300 UTC 22 May 2018 21.5° 20° 18.5°N 17°N 15.5°N 14°N 12.5°N 11°N 86.5°W 82°W 79°W 77.5°W 88°W 85°W 83.5°W 80.5°W


MODIS TERRA Reflectance with ASCAT-Identified Gradient Features (GFs in cyan) on

WRF-ARW Validation of GF Thresholds


- WRF v4.0 simulated 9-km data regridded to 12.5 km was used to validate the threshold and the performance of GF technique.
- The model ran for 15 days (00Z 17 October 2011 to 18Z 01 November 2011 during active MJO period.
- FFT filtered T_v anomaly threshold of -1.5 K was used to identify thermal cold pools in the model.
- GF-identified cold pools were then tested against thermal cold pools to obtain various success indices.


Horizontal Wind Gradient (s⁻¹) and Virtual Temperature Anomaly (K) on 18Z 01 November 2011

Buoy Validation Results



Buoys used for GF validation

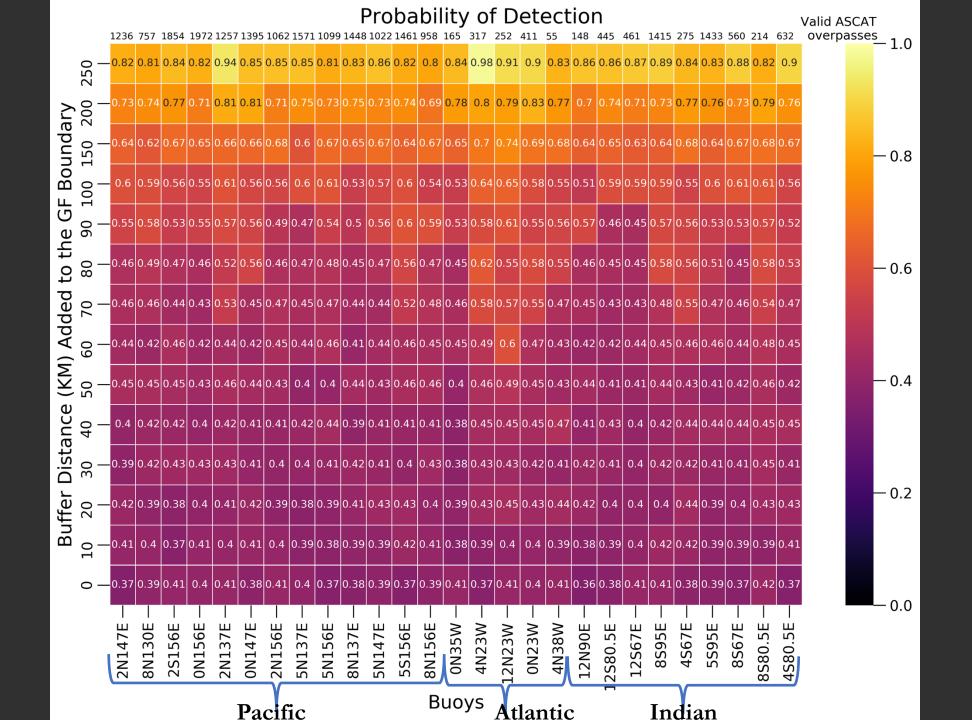
Thermal Cold Pools are identified if: (Kilpatrick et al., 2015) $\begin{cases} T(t+1) - T(t) \ge -1.5 \ ^{o}C \\ T(t+2) - T(t) \ge -2 \ ^{o}C \end{cases}$

Gradient Features (GFs) Polygon Buffer

Gradient Feature (GF)

ΈS	A = Hits (If GF exists within the thermal cold pool period)	B = Missed events (No GF Present even though a thermal cold pool exists)

NO C = False alarms (GF is present although no thermal cold pool exists).


YES

D = Correct rejections (Both the parameters don't have a cold pool)

NO

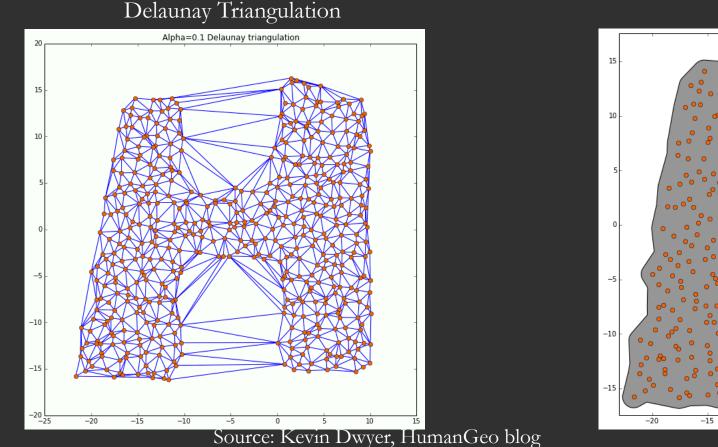
Calculation of Success Indices from Buoys

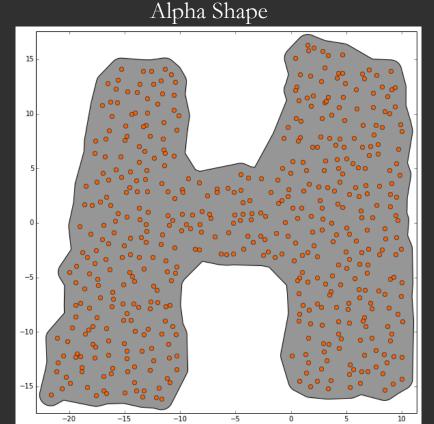
Probability of Detection False Alarm Ratio Success Ratio $POD = \frac{A}{A+B}$ $FAR = \frac{C}{(A+C)}$ SR = 1 - FAR

	1236	757	1854	1972	1257	1305	1062	1571	1099	1//8	1022					Ra 252			148	445	461	1/15	275	1433	560	214		Valid AS overpa		
	0.78					0.66										0.53													13303	- 1.0
/ 0 250 	0.84	0.68	0.69	0.68	0.67	0.69	0.66	0.84	0.84	0.71	0.8	0.72	0.69	0.67	0.8	0.53	0.58	0.99	0.71	0.59	0.56	0.56	0.66	0.66	0.72	0.61	0.92			
Boundary 0 150 200	0.86	0.82	0.64	0.66	0.68	0.7	0.77	0.81	0.87	0 60	0.8	0.60	0.71	0 66	0.80	0.54	0.58	0 00	0.7	0.64	0.61	0.61	0.81	0.65	0.69	0.63	0.95			
ound 150 																													-	- 0.8
GF B 100	0.81	0.85	0.71	0.85	0.67	0.84	0.8	0.87	0.8	0.71	0.79	0.72	0.67	0.65	0.9	0.59	0.64	0.61	0.67	0.64	0.53	0.6	0.81	0.61	0.73	0.85	0.96			
the G	0.86	0.78	0.8	0.78	0.79	0.84	0.74	0.85	0.85	0.71	0.78	0.67	0.67	0.81	0.93	0.6	0.59	0.65	0.81	0.62	0.57	0.56	0.83	0.7	0.66	0.79	0.92			
to tl 80 	0.85	0.79	0.8	0.85	0.85	0.77	0.72	0.8	0.85	0.71	0.8	0.68	0.66	0.66	0.91	0.59	0.62	0.61	0.74	0.61	0.6	0.57	0.83	0.62	0.68	0.85	0.98		-	-0.6
Added 0 70 	0.84	0.83	0.81	0.79	0.83	0.85	0.79	0.87	0.84	0.7	0.8	0.71	0.83	0.87	0.91	0.66	0.65	0.62	0.62	0.63	0.6	0.63	0.88	0.7	0.71	0.83	0.92			
) Ad(60	0.81	0.79	0.81	0.81	0.8	0.85	0.77	0.82	0.79	0.72	0.82	0.64	0.78	0.81	0.94	0.65	0.63	0.62	0.72	0.63	0.62	0.6	0.92	0.65	0.79	0.85	0.98			
(KM) 50 6 	0.86	0.84	0.84	0.81	0.83	0.84	0.71	0.87	0.79	0.72	0.81	0.65	0.85	0.86	0.95	0.61	0.65	0.71	0.84	0.73	0.6	0.55	0.86	0.59	0.84	0.83	0.95			-0.4
	0.84	0.83	0.85	0.84	0.77	0.82	0.8	0.83	0.84	0.72	0.8	0.75	0.87	0.83	0.91	0.67	0.84	0.75	0.78	0.66	0.55	0.56	0.88	0.62	0.65	0.82	0.61			
Distance 30 40 	0.87	0.66	0.79	0.82	0.79	0.89	0.84	0.87	0.81	0.69	0.82	0.72	0.83	0.89	0.62	0.79	0.82	0.67	0.77	0.64	0.59	0.62	0.92	0.62	0.68	0.91	0.64			
<u> </u>	0.84	0.69	0.86	0.8	0.82	0.89	0.81	0.84	0.88	0.8	0.8	0.73	0.85	0.62	0.68	0.88	0.83	0.8	0.86	0.73	0.58	0.67	0.98	0.61	0.81	0.91	0.64			- 0.2
n	0.86	0.66	0.82	0.85	0.84	0.91	0.83	0.89	0.92	0.82	0.85	0.85	0.87	0.99	0.62	0.7	0.63	0.86	0.92	0.84	0.68	0.61	0.93	0.68	0.78	0.94	0.62			
0 —	0.95	0.68	0.82	0.85	0.85	0.89	0.89	0.84	0.98	0.84	0.81	0.85	0.83	0.95	0.93	0.59	0.81	0.75	0.78	0.9	0.66	0.62	0.98	0.66	0.88	0.65	0.98			
	 	 Ш	 	 Ш	 	 Ш	 	 	Т Ш	 Ш	 	 	 Ш	>	 >	>	>	 >	 	 Ш			 Ш	 	 Ш	 Ш	 Ш			- 0.0
	2N147E	8N130E	2S156E	0N156E	2N137E	0N147E	2N156E	5N137B	5N156E	8N137E	5N147E	5S156E	8N156E	0N35W	4N23W	12N23W	0N23W	4N38W	12N90E	2S80.5E	12S67E	8S95E	4S67E	5S95E	8S67E	8S80.5E	4S80.5E			
					-	Pa	Υ							uo	ys	At	lan				Indian									

Global Climatology of ASCAT-Identified Cold Pools

Summary and Conclusions


- GF technique is able to identify pockets of mesoscale downdrafts corresponding to tropical oceanic convective systems.
- WRF-simulated wind gradient-identified cold pools match well with thermal cold pools.
- ASCAT-identified gradient features validates well with in-situ buoy-identified thermal cold pools over tropical Indian, Pacific and Atlantic Ocean.
- Global climatology of GFs (Number) is corresponding well with TRMM precipitation, thus providing evidence that GFs are related to parent convective signatures.


Questions?

Delaunay Triangulation and Alpha Shapes

Mathematically, Delaunay triangulation says that for a set P of points in d-dimensional Euclidian space, no point in P is inside the circum-hypersphere of any d-simplex.

Alpha Shape is the concave hull of the triangulated polygon to give the connected outer edges of the polygon.

Source: Kevin Dwyer, HumanGeo blog

	Gradient Feature (GF)											
ure $(\mathrm{T_v})$		YES	NO									
mperat	YES	A = Hits (Intersection of GF and T_v is >= 50% of area of T_v)	B = Missed events (Intersection of GF and $T_{\rm v}$ is $< 50\%$ of the area of $T_{\rm v})$									
Virtual Temperature	NO	C = False alarms (No intersection between GF and T_v).	D = Correct rejections (Both the parameters don't have a cold pool)									
$\nabla_{\mathbf{i}}$												

Calculation of Success Indices from WRF

Critical Success Index \boldsymbol{A}

 $CSI = \frac{1}{(A+B+C)}$

False Alarm Ratio

$$FAR = \frac{C}{(A+C)}$$

$$Bias = \frac{(A+B)}{(A+C)}$$