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Overview

« National Aeronautic and Space Administration
» Definitions
« NASA Near Term Activities

« Energy Storage and Power
- Batteries
* Fuel Cells
* Regenerative Fuel Cells
» Electrolysis

ISRU

Cryogenics

Review
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NASA has many development activities supported by a number of high quality people across the

country. This list only includes the most significant contributors to the development of this presentation.
Headquarters
* Lee Mason, Space Technology Mission Directorate, Deputy Chief Engineer
» Gerald (Jerry) Sanders, Lead for In-Situ Resource Utilization (ISRU) System Capability Leadership Team
Jet Propulsion Laboratory
 Erik Brandon, Ph.D, Electrochemical Technologies
« Ratnakumar Bugga, Ph.D, Electrochemical Technologies
Marshall Space Flight Center
« Kevin Takada, Environmental Control Systems
Kennedy Space Center
 Erik Dirschka, PE, Propellant Management
Glenn Research Center
« William R. Bennett, Photovoltaic and Electrochemical Systems
» Fred Elliott, Space Technology Project Office
* Ryan Gilligan, Cryogenic and Fluid Systems
* Wesley L. Johnson, Cryogenic and Fluid Systems
 Lisa Kohout, Photovoltaic and Electrochemical Systems
« Dianne Linne, ISRU Project Manager
* Phillip J. Smith, Photovoltaic and Electrochemical Systems
» Tim Smith, Chief, Space Technology Project Office



' EIectrOchemiCéI System Definitions

Primary Power
Discharge Power Only

Description

* Energy conversion system that
supplies electricity to customer system

 Operation limited by initial stored
energy

Examples

* Nuclear (e.g. RTG, KiloPower)
* Primary Batteries

* Primary Fuel Cells

NASA Applications:

Missions without access to continuous

power (e.g. PV)

 All NASA applications require electrical
power

» Each primary power solution fits a
particular suite of NASA missions

Energy Storage
Charge + Store + Discharge

Description

» Stores excess energy for later use

» Supplies power when baseline power
supply (e.g. PV) is no longer available

 Tied to external energy source

Examples

» Rechargeable Batteries
» Regenerative Fuel Cells

NASA Applications:

Ensuring Continuous Power
- Satellites (PV + Battery)
*|SS (PV + Battery)

 Surface Systems
(exploration platforms, ISRU, crewed)

« Platforms to survive Lunar Night

Commodity Generation

Chemical Conversion

Description

» Converts supplied chemical feedstock
into useful commodities

» Requires external energy source (e.g.
thermal, chemical, electrical, etc.)

Examples

* ISS Oxygen Generators
(OGA, Elektron)
* ISRU Propellant Generation

NASA Applications:

Life-support, ISRU

» Oxygen Generation

 Propellant Generation

» Material Processing

» Recharging Regenerative Fuel Cells



| EIectrOchemicéI Syster'n. Definitions

Primary Fuel Cell

Discharge Power Only
2H, + O, — 2H,0 + 4e" + Heat

QELE
Discharging

Regenerative Fuel Cell
Charge + Store + Discharge

o Neyele = ~20%

QELE QELE
Discharging Charging

Electrolysis

Chemical Conversion
2H,0 + 4e- — 2H, + O, + Heat

Charging

Regenerative Fuel Cell = Fuel Cell + Interconnecting Fluidic System + Electrolysis



POWER to explore the

LUNARgS

Multiple power technologies
comprise the Lunar Surface Power
Architecture
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Each power technology contributes to an integrated Regenerative Fuel Cells (RFCs) for Lunar Exploration

« Batteries meet energy storage needs for low energy applications

+ RFCs address high energy storage requirements where nuclear power may not be an option (in locations near humans)
* Nuclear and radio isotope power systems provide constant power independent of sunlight




Energy Storage Options for Space
- Applications |

Battery = TRL 9
Primary Fuel Cell=TRL5
Regenerative Fuel Cell=TRL 3

Energy Options for
Space Applications

Use Battery Use Fuel Cell
€ 3>
Typical > Lunar Night &
Terrestrial 8
Applications ad : 5 :
. : : :
" E » Current energy storage technologies are
@ insufficient for NASA exploration missions
? « Availability of flight-qualified fuel cells ended with the
9 Fuel Cell System Space Shuttle Program
m - -
7  Terrestrial fuel cells not directly portable to space
applications
J;’f;ﬁﬁ; Gemini - Different wetted material requirements (air vs. pure O.)
Applications Days Weeks  Discharge Time Different internal flow characteristics
~10to 18 hours * No space-gualified high-pressure electrolyzer exists

(Energy dependent)
* ISS O, Generators are low pressure electrolyzers

» Terrestrial electrolyzers have demonstrated >200 ATM operation



Low temperature electrolytes to extend operating temperatures for outer
planetary missions

High temperature batteries for Venus missions
Non-flammable separator/electrolyte systems

Solid-state high specific energy, high power batteries

Li-air batteries for aircraft applications

Improved cathode and electrolyte stability in Lithium-Oxygen batteries
Multi-functional load-bearing energy storage
X-57 Maxwell distributed electric propulsion flight demonstration

Safe battery designs and assessments for aerospace applications

Al

Porous cathode
r | (Carbon skeleton)

Anode
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Energy Storage System Needs for'Future Planetary

‘. Missions

Primary Batteries/Fuel Cells for Surface Probes:

High Temperature Operation (> 465C)

High Specific Energy (>400 Wh/kg)

Operation in Corrosive Environments
Rechargeable Batteries for Aerial Platforms:

High Temperature Operation (300-465C)

Operation in Corrosive Environments

Low-Medium Cycle Life

High Specific Energy (>200 Wh/kg)
Operation in High Pressures

Inner Planets

Primary Batteries/Fuel cells for planetary landers/probes: Outer Planets
High Specific Energy (> 500 Wh/kg), Icy Giants
Long Life (> 15 years),
Radiation Tolerance & Sterilizable by heat or radiation
Rechargeable Batteries for flyby/orbital missions:
High Specific Energy (> 250 Wh/kg)
Long Life (> 15 years)
Radiation Tolerance & Sterilizable by heat or radiation.
Low temperature Batteries for Probes and Landers: “Europa Lan
Low Temperature Primary batteries (< -80C) Europa Orbiter Europa Lander

Low Temperature Rechargeable Batteries (< -60 C) All images are Artist's Concepts 10

Uranus/Neptune missions




Lunar RFC Trade Study Results

10 kW H,/O, REC Energy Storage System for Lunar Outpost
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RFCs enable missions to survive the lunar night

Moon Equator Moon South Pole

RFC specific energy dependent on location.
Battery specific energy independent of location.
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Venus Power Conceépt for Variable Altitude Balloon

Solar power
Electrolyze H,O

60 km

Above the clouds
+ SOEC recharges H, & O, from H,O
« Consumes stored H,O

Solar array powers probe

H, from balloon into H, from hydride into
hydride to descend balloon to ascend
below the clouds above the clouds

Below the clouds
+ SOFC generates power from H, & O,

to power probe
+ Store H,O byproduct

[;] H./O, Fuel cell
10-20 km

« Asolar array powers the probe at high altitude and generates H, and O, with Solid Oxide Electrolysis
Cell (SOEC) using water carried from ground as a closed-system.

« Metal hydride H, storage and compressed gas O, storage

« Solid Oxide Fuel Cell (SOFC) will powers the probe at low altitudes from the stored H, and O.,.

« H,-filled balloon will be used for buoyancy and altitude control (60-15 km).
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H,0O

Electrolysis within NASA -

Fundamental Process
» Electrochemically dissociating water into gaseous hydrogen and oxygen
» Multiple chemistries — Polymer Electrolyte Membrane (PEM), Alkaline,
Solid Oxide
« Multiple pressure ranges
o ISRU & Life support = low pressure
o Energy storage = high pressure

Life Support: Process recovered H,O to release oxygen to source breathing
oxygen
* Redesign ISS Oxygen Generator assembly for increased safety,
pressure, reliability, and life
» Evaluate Hydrogen safety sensors

Energy Storage: Recharge RFC system by processing fuel cell product H,O
into H, fuel and O, oxidizer for fuel cell operation

ISRU: Process recovered H,O to utilizing the resulting H, and O,
« Hydrogen Reduction — Hydrogen for material processing
« Life Support — Oxygen to source breathing oxygen
» Propellant Generation — Oxygen for liquefaction and storage
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Modular Power

Functions/ Elements

= Power Generation

= Power Distribution

= Energy Storage (O, & H,)

Support Functions

/[Elements

= |[SRU

= Life Support & EVA

= O,, H,, and CH, Storage
and Transfer

Shared Hardware to

Reduce Mass & Cost

= Solar arrays/nuclear reactor
Water Electrolysis

Reactant Storage

= Cryogenic Storage

Mobility

= /7

In-Space Construction

Civil Engineering, Shielding, & 6ons

ISRU Resources & Processing

Resource & Site
Characterization

Regolith/Soil Excavation
& Sorting

¢ Regolith/Soil Transport

Water/Volatile
Extraction

Regolith for
0O, & Metals

Regolith Crushing &
Processing

H,O, CO, from
Soil/Regolith

CO, from Mars
Atmosphere

S 5 S
, & wn e
truction Parts, Repair, & Assembly

In-Space Manufacturing

Modular Power
Systems

Life Support
& EVA

: S Regenerative
CO; & Habitats Fuel Cell

Trash/
Waste

Vit

Propellant Depot

Consumable Storage Lander/Ascent
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‘Lunar ISRU Mission. Capa',lo'iiify?'Conceiots |

d

Excavation & Reg.olith
Processing for O, Production €

£ £,

Carbothermal Processing
with Altair Lander Assets

Consumable Depots for Crew & Power




ISRU is Slmllar tg Establlshlng Remote Mining /

Communications
* To/From Site

Maintenance
& Repair Living Quarters
& Crew Support

Services

Logistics
Management

Construction and
Emplacement

Transportation to/from Site:
 Navigation Aids
 Loading & Off-loading Aids
* Fuel & Support Services

Power:
» Generation
» Storage
* Distribution

P

Planned, Mapped, and Coordinated Mining Ops:
Areas for: i) Excavation, ii) Processing, and iii) Tailings




Oxygen Hydrogen

MOXIE O, Generator Oxygen Tank-to-Tank Transfer Zero Boil-Off Tank (ZBOT) Experiment
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computer
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Zero Boll-off Cryogéhics

Zero Bolil-Off Tank (ZBOT) Experiment: 19 (1W), 90% Self-Pressurization
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Thank you for your attention.

Questions?




