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Abstract

Laminated composites are prone to delamination failure due to the lack of reinforcement through

the thickness. Therefore, during the design process the initiation and propagation of delaminations

should be accounted for as early as possible. This paper presents computationally efficient nine

degree-of-freedom (dof) and eight-dof shear locking-free beam elements using the mixed form of

the refined zigzag theory (RZT(m)). The corresponding nine-dof and eight-dof elements use the

anisoparametric and constrained anisoparametric interpolation schemes, respectively, to eliminate

shear locking in slender beams. The advantage of the present element over previous RZT beam

elements is that no post-processing is required to accurately model the transverse shear stress while

maintaining the computational efficiency of a low-order beam element. Comparisons with high-

fidelity finite element models and three-dimensional elasticity solutions show that the elements

can robustly and accurately predict the displacement field, axial stress and transverse shear stress

through the thickness of a sandwich beam or a composite laminate with an embedded delamination.

In fact, the accuracy and computational efficiency of predicting stresses in laminates with embedded

delaminations make the present elements attractive choices for RZT-based delamination initiation

and propagation methodologies available in the literature.
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1. Introduction

Laminated composites are prone to delamination failure due to the lack of reinforcement through

the thickness, and this failure mode adversely affects the structural integrity of composite struc-
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tures. Hence, the initiation and propagation of delaminations should be accounted for at the early

stages in the design process. In this respect, tools for accurate stress predictions are an important

prerequisite.

Currently, the standard approach in industry is to use three-dimensional finite element (3-D

FE) models or layerwise theories to predict accurate 3-D stress fields. At the preliminary design

stage, detailed yet computationally expensive 3-D FE solutions are prohibitive for rapid design as

meshes with multiple elements per layer are typically required for converged results. Therefore, 3-D

layerwise models are often only used on a component-scale level in areas of high stress concentration

or for safety-critical components.

For most composite laminates the thickness dimension is at least an order of magnitude smaller

than representative in-plane dimensions, which allows these structures to be modeled as thin beams,

plates or shells. This feature facilitates a reduction from a 3-D problem to a 2-D one coincident

with a chosen reference axis or surface. The major advantage of this approximation is a significant

reduction in the total number of variables and computational effort required.

In multi-layered composite structures the effects of transverse shear and normal deformations

are especially pronounced because the ratios of longitudinal to transverse moduli are approximately

one order of magnitude greater than for isotropic materials (Eisoxx /G
iso
xz = 2.6, E11/G13 ≈ 140/5 =

28 and Eisoxx /E
iso
zz = 1, E11/E33 ≈ 150/10 = 15). Second, differences in layerwise transverse

shear and normal moduli lead to abrupt changes in the slopes of the three displacement fields

ux, uy, uz at layer interfaces. This is known as the zigzag phenomenon (see Figure 1) and, as shown

by Demasi [1], the zigzag form of the displacements ux, uy and uz can be derived directly from

interfacial continuity requirements of the through-thickness stresses.

The classical theory of plates (CTP) [2, 3] and its extension to laminated structures, namely

classical laminate analysis (CLA) [4], are commonly regarded as inadequate for predicting accurate

through-thickness stresses under the conditions described in the previous paragraph. This theory

neglects the effects of transverse shear and transverse normal strains, the displacement fields neglect

the zigzag effect, and the transverse displacement is assumed to be constant through the thickness.

To overcome these deficiencies a large number of approximate higher-order 2-D theories have

been formulated with the aim of predicting accurate 3-D stress fields while maintaining low compu-

tational expense. Refinements of CLA along these lines have focused mainly on displacement-based
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models due to the relatively intuitive physical meaning of the displacement variables that govern

the distortion of the plate cross-section. These theories extend from first-order shear deformation

theories by Mindlin [5] and Yang, Norris and Stavsky [6] to higher-order Levinson-Reddy-type

shear deformation models that enforce vanishing shear strains at the top and bottom surfaces in

the displacement field a priori [7, 8], and further to generalized higher-order theories that do not

make this initial assumption and may account for transverse normal deformation, i.e. thickness

stretching [9, 10]. Finally, starting with the works of Lekhnitskii [11] and Ambartsumyan [12] in

the Russian literature, and Di Sciuva [13] and Murakami [14] in the Western literature, attempts

were made to incorporate changes in the layerwise slopes of the in-plane displacements ux and uy

via unknown zigzag bending rotations multiplied by layup-dependent zigzag functions. Since then,

more accurate zigzag functions have been proposed by Tessler et al. [15–18] and Icardi [19], with

the latter work providing the most recent assessment of different zigzag theories.

A fundamental characteristic of purely displacement-based theories is that all strains and

stresses are derived from the displacement assumptions using the kinematic and constitutive equa-

tions, respectively, and transverse strains and transverse stresses are typically not recovered ac-

curately in this manner [20]. More accurate transverse stresses can be recovered a posteriori by

integrating the in-plane stresses in Cauchy’s 3-D indefinite equilibrium equations [21], and various

techniques exist to achieve this within the displacement-based finite element method (FEM) [22–

25]. The disadvantage of this technique is that the post-processed transverse stresses no longer

satisfy the underlying equilibrium equations, and are therefore variationally inconsistent.

The aforementioned post-processing operation can be precluded if independent assumptions

for the transverse stresses are made. This results in a mixed displacement/stress-based approach,

whereby the governing equilibrium equations and boundary conditions are derived by means of

a mixed-variational statement. For example, in the Hellinger-Reissner mixed variational princi-

ple [26, 27], the strain energy is expressed in complementary form in terms of in-plane and trans-

verse stresses, and Cauchy’s 3-D equilibrium equations are introduced as constraints via Lagrange

multipliers. This has the advantage that the six stress fields are always equilibrated and provide

very accurate predictions of through-thickness stresses [28, 29].

Forty years after publishing his work on the Hellinger-Reissner principle, Reissner [30] had

the insight that it is sufficient to make separate assumptions for the transverse stresses because
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only these have to be specified independently to guarantee interfacial continuity requirements. This

variational statement is known as Reissner’s mixed-variational theorem (RMVT), and makes model

assumptions for the three displacements ux, uy, uz and independent assumptions for the transverse

shear stresses τxz, τyz and transverse normal stress σz. Compatibility of the transverse strains from

kinematic relations, i.e. from ux, uy and uz, and constitutive equations, i.e. from τxz, τyz and σz,

is enforced by means of Lagrange multipliers.

Murakami [14] was one of the first authors to use RMVT for composites and simultaneously

enhance the axiomatic first-order displacement field of Yang, Norris and Stavsky [6] by including a

zigzag function. Murakami made piecewise-parabolic assumptions for the transverse shear stresses

that satisfy the interlaminar and surface traction conditions. Even so, Murakami’s transverse shear

stress assumptions lead to poor results for laminates with more than three layers [31] because the

assumptions do not equilibrate with the axial stresses at each point through the thickness, but

rather only in an average sense via the equivalent-single layer equilibrium equations. Thus, the

particular choice of the transverse shear stress assumption is of great importance when applying

RMVT.

Furthermore, Murakami’s zigzag function suffers from certain limitations for sandwiches with

large face-to-core stiffness ratios and arbitrary layups as it is not based on actual transverse shear

moduli that drive the underlying physics of the problem [31, 32]. As an alternative, the zigzag

function of the refined zigzag theory (RZT) developed by Tessler, Di Sciuva and Gherlone [15–

18] may be used. In this theory, the zigzag slopes β
(k)
i are defined by the difference between the

transverse shear rigidities G
(k)
iz of layer k, and the effective transverse shear rigidity Gi of the entire

layup

β
(k)
i =

Gi

G
(k)
iz

− 1, where Gi =

[
1

2h

Nl∑
k=1

2h(k)

G
(k)
iz

]−1
, i = x, y (1)

where Nl is the total number of layers, and 2h(k) and 2h are the thickness of layer k and total

laminate thickness, respectively. Thus, the zigzag slopes β
(k)
i vanish when the transverse shear

modulus of a layer is equal to the effective “spring-in-series” stiffness Gi, and a non-zero value

quantifies the normalized difference from Gi.

The early displacement-based versions of RZT require stress recovery steps for accurate trans-

verse stress predictions. To remedy this deficiency, Tessler [33] developed a mixed-variational

approach of RZT, known as RZT(m) for 1-D beams using RMVT. The novelty of this work is
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that the assumption for the transverse shear stresses is based on the equilibrium condition be-

tween in-plane stress and the transverse shear stress. As a result of enforcing the critical condition

of equlibrated stresses, very accurate through-thickness stresses can be computed directly from

the underlying model assumptions. In recent work, the formulation was further extended to 2-D

plates [34].

A driving factor in the development of RZT and RZT(m) is that the theories be amenable to

the development of C0-continuous finite elements. A nine degree-of-freedom (dof) and eight-dof

beam element based on RZT were developed by Gherlone et al. [35] using the anisoparametric

interpolation scheme proposed by Tessler and Dong [36] where the transverse displacement vari-

able w is interpolated with one polynomial order greater than the bending rotation θ to prevent

shear locking. These lower order two- and three-noded elements were then extended to an en-

tire class of higher-order elements by Di Sciuva et al. [37]. The same interpolation scheme was

also used in a version of RZT(m) with cubic in-plane displacement field and quadratic transverse

displacement [38].

The aim of this paper is to develop robust beam elements based on Tessler’s RZT(m) that provide

computationally efficient in-plane stress and transverse shear stress predictions for laminates and

sandwich beams with embedded delaminations which can be modeled explicitly within RZT by

means of thin resin-rich layers. The motivation for this work is that accurate stress field predictions

within these interply resin-rich zones are critical for predicting accurately the onset and propagation

of delaminations using the damage frameworks developed for RZT [39, 40].

The rest of the paper is structured as follows. Section 2 provides a background to RZT which

is then extended to RZT(m) in Section 3. An eight-dof constrained anisoparametric and nine-

dof anisoparametric beam element based on RZT(m) are then developed in Section 4. Detailed

comparisons of through-thickness stresses with benchmark 3-D elasticity and 3-D FE results are

presented in Section 5 and a discussion of the accuracy of the different interpolation schemes is

provided. Finally, conclusions are drawn in Section 6.
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2. Refined zigzag theory from the principle of virtual displacements

Following the standard definition of the displacement field in RZT we make the assumption

that

u(k)x (x, z) = u(x) + zθ(x) + φ(k)(z)ψ(x) (2a)

uz(x) = w(x) (2b)

where u and w are the axial displacement and average transverse displacement of the reference

plane, respectively, θ is the average bending rotation, ψ is the zigzag rotation and φ(k) is the

layerwise zigzag function of RZT. The zigzag function is defined by

φ(k)(z) = (z + h)

(
G

G
(k)
xz

− 1

)
+

k∑
i=2

2h(i−1)

(
G

G
(i−1)
xz

− G

G
(k)
xz

)
(3)

where the summation term vanishes for k = 1, and G is the equivalent “springs-in-series” transverse

shear rigidity of the laminate defined by

G =

[
1

h

Nl∑
k=1

h(k)

G
(k)
xz

]−1
. (4)

Given the piecewise linear form of the zigzag function, Eq. (3) can be written in a more concise

form as

φ(k)(z) = zβ(k) + α(k) (5)

where

β(k) =
dφ(k)

dz
=

G

G
(k)
xz

− 1 (6a)

α(k) = β(k)h+
k∑
i=2

2h(i−1)

(
G

G
(i−1)
xz

− G

G
(k)
xz

)
. (6b)

Here β(k) is the layerwise slope of the zigzag function and α(k) enforces interlaminar continuity.

For a linear elastic material undergoing infinitesimal strains and small displacements, the axial

stress is derived from Hooke’s law as follows

σ(k)xx = E(k)ε(k)xx = E(k)∂u
(k)
x

∂x
= E(k)

(
u,x + zθ,x + φ(k)(z)ψ,x

)
(7)

where the comma notation has been used to denote partial differentiation. For a beam in plane
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strain in the width direction E(k) = E(k)
xx /

(
1− ν(k)xy ν

(k)
yx

)
and for a beam in plane stress E(k) = E(k)

xx ,

where E(k)
xx is the Young’s modulus of the kth layer in the axial direction, and ν(k)xy and ν(k)yx are the

major and minor Poisson’s ratios, respectively.

Similarly, the transverse shear stress is given by

τ (k)xz = G(k)
xz γ

(k)
xz = G(k)

xz

(
∂u

(k)
x

∂z
+
∂uz
∂x

)
= G(k)

xz

(
γ + β(k)ψ

)
(8)

where G(k)
xz is the transverse shear modulus of the kth layer in the xz-plane, and

γ = w,x + θ (8a)

is an average shear strain [33].

In the RZT beam theory a set of stress resultants is defined by integrating the stresses over the

cross-sectional area, A, of the beam. Hence,

(
N M Mφ V V φ

)>
=

∫
A
f (k)>

σ
(k)
xx

τ (k)xz

dA =

(
b

∫ h

−h
f (k)>Cf (k)dz

)
ε (9)

where b is the uniform width of the beam and the through-thickness matrix f (k), constitutive

matrix C and strain vector ε are given by

f (k) =

1 z φ(k)(z) 0 0

0 0 0 1 β(k)

 , C =

E(k) 0

0 G(k)
xz

 , ε =
(
u,x θ,x ψ,x γ ψ

)>
.

(10)

The integral S = b

∫ h

−h
f (k)>Cf (k)dz is the reduced stiffness matrix of the RZT beam theory

S =



A11 B11 B12 0 0

B11 D11 D12 0 0

B12 D12 D13 0 0

0 0 0 Q11 Q12

0 0 0 Q12 Q22


(11)

where

(A11, B11, B12, D11, D12, D13) = b

∫ h

−h

(
1, z, φ(k)(z), z2, zφ(k)(z), φ(k)

2
(z)
)
E(k)dz (12a)
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(Q11, Q12, Q22) = b

∫ h

−h

(
1, β(k), φ(k)

2
)
G(k)
xz dz. (12b)

A set of variationally consistent governing field equations and boundary conditions is derived

by substituting the RZT stresses and strains into the principle of virtual displacements. Hence,

δΠ =

∫
V

[
δε(k)

>
xx σ(k)xx + δγ(k)

>
xz τ (k)xz

]
dV−

∫∫ [
T̂tδu

(Nl)
x (x, h)− T̂bδu(1)x (x,−h) +

(
P̂t − P̂b

)
δw(x)

]
dxdy

−
∫
A

[
−σ̂(k)xx (xa, z)δu

(k)
x (xa, z) + σ̂(k)xx (xb, z)δu

(k)
x (xb, z)− τ̂ (k)xz (xa, z)δw(xa) + τ̂ (k)xz (xb, z)δw(xb)

]
dA = 0

(13)

where xa and xb are the two ends of the beam with σ̂(k)xx (xa, z) and σ̂(k)xx (xb, z) denoting the corre-

sponding prescribed axial stresses, and τ̂ (k)xz (xa, z) and τ̂ (k)xz (xb, z) the prescribed transverse shear

stresses; T̂t and T̂b are the shear tractions along the x-axis at the top and bottom surfaces of

the laminate, respectively; and P̂t and P̂b are the normal pressures acting on the top and bottom

surfaces of the laminate, respectively.

Integrating over the cross-section, performing integration by parts to eliminate derivatives from

variations of the functional variables and collecting like terms, we obtain the following set of four

equilibrium equations:

δu : N,x + T̂d = 0, δw : V,x + P̂ = 0 (14a-b)

δθ : M,x − V + hT̂s = 0, δψ : Mφ
,x − V φ = 0 (14c-d)

where

T̂d = b
(
T̂t − T̂b

)
, T̂s = b

(
T̂t + T̂b

)
, P̂ = b

(
P̂t − P̂b

)
. (15)

The equilibrium equations in Eq. (14) are used in the next section to derive a more accurate

model assumption for the transverse shear stress.

3. Refined zigzag theory based on Reissner’s variational principle

The transverse shear stresses in Eq. (8) are layerwise constant functions that do not satisfy the

equilibrium of interlaminar and surface tractions. Moreover, these transverse shear stresses vary

linearly through the thickness of the beam, whereas from Cauchy’s equilibrium equations the linear

axial stresses of Eq. (7) are equilibrated by quadratic transverse shear stresses. For these reasons, a
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more accurate assumption for the transverse shear stress is needed, and is briefly described herein

according to [33].

3.1. Assumed transverse shear stress

Using the insight that the transverse shear stress τ (k)xz needs to be in equilibrium with the axial

stress σ(k)xx we use Cauchy’s equilibrium equation in Cartesian coordinates

σ(k)xx,x + τ (k)xz,z + fx = 0 (16)

to derive a new expression for the transverse shear stresses denoted by τ
(k)
xz(e). Disregarding the

influence of the body force fx we have

τ
(k)
xz(e)(x, z) = −τ (k)u (z)u,xx(x)− τ (k)θ (z)θ,xx(x)− τ (k)ψ (z)ψ,xx(x) + f0(x) (17)

where the through thickness functions τ (k)u , τ
(k)
θ and τ

(k)
ψ are defined as

(
τ (k)u (z), τ

(k)
θ (z), τ

(k)
ψ (z)

)
=

(
E(k)
xx z + a(k), E(k)

xx

z2

2
+ b(k), E(k)

xx β
(k) z

2

2
+ E(k)

xx α
(k)z + c(k)

)
(18)

where the terms a(k), b(k) and c(k) are integration constants that enforce the interlaminar continuity

of the shear stress. Hence,

(
a(k), b(k)

)
=

(
k∑
i=1

(
E(i−1)
xx − E(i)

xx

)
zi−1 + E(1)

xx z0,
k∑
i=1

(
E(i−1)
xx − E(i)

xx

) z2i−1
2

+ E(1)
xx

z20
2

)

c(k) =
k∑
i=1

(
E(i−1)
xx β(i−1) − E(i)

xxβ
(i)
) z2i−1

2
+

k∑
i=1

(
E(i−1)
xx α(i−1) − E(i)

xxα
(i)
)
zi−1 + E(1)

xx β
(1) z

2
0

2
+ E(1)

xx α
(1)z0.

(19)

Part of the integration constant, namely f0, has been factored out from a(k), b(k) and c(k) in

order to enforce the condition that the through-thickness integral of the equilibrated transverse

shear stress in Eq. (17) is equal to the shear force V :

V (x) =

∫ h

−h
τ
(k)
xz(e)dA = −b

∫ h

−h

[
τ (k)u (z)u,xx(x) + τ

(k)
θ (z)θ,xx(x) + τ

(k)
ψ (z)ψ,xx(x)

]
dz + f0(x)A.

(20)

Solving for f0(x) results in

f0(x) =
V (x)

A
+

1

2h

∫ h

−h

[
τ (k)u (z)u,xx(x) + τ

(k)
θ (z)θ,xx(x) + τ

(k)
ψ (z)ψ,xx(x)

]
dz. (21)
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As a result, we can now enforce equilibrium between the transverse shear force V , bending moment

M and the applied surface shear tractions as defined by Eq. (14c). By eliminating V in this manner

f0 =
1

A

(
B11u,xx +D11θ,xx +D12ψ,xx + hT̂s

)
+

1

2h

∫ h

−h

[
τ (k)u u,xx + τ

(k)
θ θ,xx + τ

(k)
ψ ψ,xx

]
dz (22)

where the bending moment M has been replaced using the constitutive relation Eq. (9). Finally,

using the axial equilibrium equation, Eq. (14a), the second derivate of u,xx is eliminated from

Eq. (17) and Eq. (22). Using equilibrium equation Eq. (14a) and substituting for N using the

constitutive relation Eq. (9), there results

u,xx = − 1

A11

(
B11θ,xx +B12ψ,xx + T̂d

)
(23)

which alongside Eq. (17) and Eq. (22) gives

τ
(k)
xz(e)(x, z) = T

(k)
0 (x, z) + T

(k)
θ (z)θ,xx(x) + T

(k)
ψ (z)ψ,xx(x) (24)

where

T
(k)
0 (x, z) =

T̂s(x)

2b
− T̂d(x)

A11

[
B11

A
+

1

2h

∫ h

−h
τ (k)u dz − τ (k)u (z)

]
(25a)

T
(k)
θ (z) = −B11

A11

[
B11

A
+

1

2h

∫ h

−h
τ (k)u dz − τ (k)u (z)

]
+
D11

A
+

1

2h

∫ h

−h
τ
(k)
θ dz − τ (k)θ (z) (25b)

T
(k)
ψ (z) = −B12

A11

[
B11

A
+

1

2h

∫ h

−h
τ (k)u dz − τ (k)u (z)

]
+
D12

A
+

1

2h

∫ h

−h
τ
(k)
ψ dz − τ (k)ψ (z). (25c)

As is demonstrated in Appendix A, the above substitution for the integration constant f0(x)

is the critical step in guaranteeing that the transverse shear stress at the bottom and top surfaces

of the laminate is always equilibrated with the applied shear tractions T̂b and T̂t, respectively.

In essence, the interlaminar continuity of τ (k)u , τ
(k)
θ and τ

(k)
ψ , and the axial equilibrium equation

enforced in f0 ensures that τ
(k)
xz(e) satisfies all interlaminar and surface traction conditions. In fact,

the mathematical consistency of enforcing the interlaminar and surface traction conditions via the

integration constants and the axial equilibrium equation was demonstrated in [31, 41, 42] using a

different assumption for the transverse shear stress.

Due to the presence of second-order derivatives in Eq. (24), this shear stress assumption is

not amenable to the development of C0-continuous finite elements. Therefore, the second-order

derivatives θ,xx and ψ,xx are replaced by two unknown functions fθ and fψ to produce a new
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transverse shear stress assumption

τ
(k)
xz(a)(x, z) = T

(k)
0 (x, z) + T

(k)
θ (z)fθ(x) + T

(k)
ψ (z)fψ(x) (26)

where fθ and fψ are determined via Reissner’s mixed variational statement in the next section

and the subscript (a) in τ
(k)
xz(a) denotes an assumption. Note that Eq. (26) preserves the same

interlaminar continuity characteristics as Eq. (24).

3.2. Reissner’s mixed variational statement

In Reissner’s mixed variational statement an independent assumption is made for some of the

stress fields, typically the transverse shear and/or transverse normal stresses, and the compatibility

of the transverse shear/normal strains derived from Hooke’s law and the kinematic relations are

enforced via Lagrange multipliers. As shown by Reissner [30], the Lagrange multipliers are in

fact the corresponding transverse shear/normal stresses. Hence, in the present case the variational

statement reads∫
V

(
σ(k)xx δε

(k)
xx + τ

(k)
xz(a)δγ

(k)
xz

)
dV +

∫
V
δτ

(k)
xz(a)

(
γ(k)xz − γ

(k)
xz(a)

)
dV − δWe = 0 (27)

where We is the work done by the external forces acting on the beam and the Lagrange multiplier

part has been underlined. By substituting Eq. (26) we can see that the only variational terms

in the Lagrange multiplier part of Eq. (27) are δfθ and δfψ. As these terms do not appear in

either the internal nor the external work portions of Eq. (27), the Lagrange multiplier term can be

considered separately first. Hence,∫∫ (
T
(k)
θ δfθ + T

(k)
ψ δfψ

)(
γ + β(k)ψ − Γ

(k)
0 − Γ

(k)
θ fθ − Γ

(k)
ψ fψ

)
dAdx (28a)

where

Γ
(k)
0 (x, z) =

T
(k)
0 (x, z)

G
(k)
xz

=
T̂s(x)

2bG
(k)
xz

− T̂d(x)

A11G
(k)
xz

[
B11

A
+

1

2h

∫ h

−h
τ (k)u dz − τ (k)u (z)

]
= L

(k)
1 (z)T̂s(x) + L

(k)
2 (z)T̂d(x) (28b)

(
Γ
(k)
θ (z), Γ

(k)
ψ (z)

)
=

T (k)
θ (z)

G
(k)
xz

,
T
(k)
ψ (z)

G
(k)
xz

 . (28c)
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Factoring out the variations δfθ and δfψ, Eq. (28a) is re-written as∫ xb

xa

δfθ

[∫
A
T
(k)
θ

(
γ + β(k)ψ − Γ

(k)
θ fθ − Γ

(k)
ψ fψ

)
dA− T̂s

∫
A
L
(k)
1 T

(k)
θ dA− T̂d

∫
A
L
(k)
2 T

(k)
θ dA

]
dx+∫ xb

xa

δfψ

[∫
A
T
(k)
ψ

(
γ + β(k)ψ − Γ

(k)
θ fθ − Γ

(k)
ψ fψ

)
dA− T̂s

∫
A
L
(k)
1 T

(k)
ψ dA− T̂d

∫
A
L
(k)
2 T

(k)
ψ dA

]
dx

(29)

and because the variations δfθ(x) and δfψ(x) are arbitrary over the length of the beam we have

the following set of coupled algebraic equations
∫
T
(k)
θ Γ

(k)
θ dA

∫
T
(k)
θ Γ

(k)
ψ dA∫

T
(k)
ψ Γ

(k)
θ dA

∫
T
(k)
ψ Γ

(k)
ψ dA


fθfψ

 =


∫
T
(k)
θ dA

∫
T
(k)
θ β(k)dA∫

T
(k)
ψ dA

∫
T
(k)
ψ β(k)dA


γψ
−

T̂s


∫
T
(k)
θ L

(k)
1 dA∫

T
(k)
ψ L

(k)
1 dA

− T̂d

∫
T
(k)
θ L

(k)
2 dA∫

T
(k)
ψ L

(k)
2 dA

 . (30)

Equations (30) are readily solved for fθ and fψ which are then substituted into Eq. (26) to

define τ
(k)
xz(a) as

τ
(k)
xz(a)(x, z) = T̄

(k)
0 (x, z) + T̄ (k)

γ (z)γ(x) + T̄
(k)
ψ (z)ψ(x) (31)

where T̄
(k)
0 , T̄ (k)

γ and T̄
(k)
ψ are obtained by solving Eq. (30).

4. Beam finite element formulations

4.1. Stiffness matrix and external force vector

Having obtained an expression for the assumed transverse shear stress τ
(k)
xz(a) from the Lagrange

multiplier portion of Reissner’s mixed variational statement, the internal and external virtual work

expressions of Eq. (27) are now used to develop the eight- and nine-dof, shear locking-free beam

elements. Using Eq. (27) and substituting the RZT strain expressions from Eq. (7) and Eq. (8)

12



gives

δWi =

∫
V
δ
[
ε(k)xx γ(k)xz

] σ(k)xx

τ
(k)
xz(a)

 dV =

∫ xb

xa

∫
A
δ



u,x

θ,x

ψ,x

w,x

θ

ψ



> 

1 0

z 0

φ(k) 0

0 1

0 1

0 β(k)



 σ(k)xx

τ
(k)
xz(a)

dAdx =

∫ xb

xa

δω>Rdx

(32)

where ω is a vector of strain components and R is a vector of stress resultants

ω =
[
u,x θ,x ψ,x w,x θ ψ

]>
(33)

R =
[
N M Mφ V V V φ

]>
=

∫
A

[
σ(k)xx zσ(k)xx φ(k)σ(k)xx τ

(k)
xz(a) τ

(k)
xz(a) β(k)τ

(k)
xz(a)

]>
dA.

(34)

Note that the transverse shear force V is included twice in the resultant vector R of Eq. (34) to

allow for a straightforward computational implementation.

As the axial stress remains unchanged from Eq. (7), the definitions of the membrane force N

and bending moments M and Mφ remain unchanged. Hence, the axial reduced stiffness terms of

Eq. (11) also remain the same. However, the transverse shear reduced stiffness terms change due

to the new definition of τ
(k)
xz(a)

(Qm10, Q
m
11, Q

m
12) = b

∫ h

−h

(
T̄
(k)
0 , T̄ (k)

γ , T̄
(k)
ψ

)
dz (35)

(Qm20, Q
m
21, Q

m
22) = b

∫ h

−h
β(k)

(
T̄
(k)
0 , T̄ (k)

γ , T̄
(k)
ψ

)
dz. (36)

Therefore the stress resultants R are related to the strain components ω as follows,

R =



N

M

Mφ

V

V

V φ


=



A11 B11 B12 0 0 0

B11 D11 D12 0 0 0

B12 D12 D13 0 0 0

0 0 0 Qm11 Qm11 Qm12

0 0 0 Qm11 Qm11 Qm12

0 0 0 Qm21 Qm21 Qm22


ω +



0

0

0

Qm10

Qm10

Qm20


= Dω +D0. (37)
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Using Eq. (37) the internal virtual work expression given by Eq. (32) is simplified to

δWi =

∫ xb

xa

(
δω>Dω + δω>D0

)
dx. (38)

In a displacement-based finite element setting the displacement field in each element is inter-

polated using element shape functions and nodal variables. Therefore, the element displacements

u(e) = (u, w, θ, ψ)(e) and strain components ω(e) = (u,x, θ,x, ψ,x, w,x, θ, ψ)(e) can be expressed

as

u(e) = H(e)ū(e), ω(e) = B(e)ū(e) (39)

where ū(e) are the nodal variables, and H(e) and B(e) are the displacement and strain shape

function matrices of element e, respectively, which are defined for the eight- and nine-dof beam

elements described in the next two sections. Substituting Eq. (39) into the internal virtual work

expression given by Eq. (38), results in

δWi = δū(e)>
(∫ xb

xa

B(e)>D(e)B(e)dx

)
ū(e) + δū(e)>

∫ xb

xa

B(e)>D
(e)
0 dx (40)

and because δū(e) is arbitrary we have

f
(e)
int = K

(e)
L u

(e) with K
(e)
L =

∫ xb

xa

B(e)>D(e)B(e)dx, (41)

f (e)
τ =

∫ xb

xa

B(e)>D
(e)
0 dx (42)

where K
(e)
L is the linear stiffness matrix and f (e)

τ is an external force vector due to applied surface

shear tractions. Finally, the virtual work done by the external forces is derived from Eq. (13) as

δWe = −
∫ [

T̂dδu+
h

2
T̂sδθ + P̂ δw

]
dx+N̂(xa)δu(xa)−N̂(xb)δu(xb)+M̂(xa)δθ(xa)−M̂(xb)δθ(xb)

+ M̂φ(xa)δψ(xa)− M̂φ(xb)δψ(xb) + V̂ (xa)δw(xa)− V̂ (xb)δw(xb). (43)

Note that the distributed loads in the integral of Eq. (43) do not feature the term δψ since the zigzag

function φ(k), by definition, vanishes on the top and bottom surfaces of the laminate. Introducing
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the element discretization into the external virtual work expression of Eq. (43) we have

δWe = −
∫ xb

xa

δ
[
u θ w

]
T̂d

hT̂s

P̂

dx+ δ
[
u θ w ψ

]
xa



N̂

M̂

M̂φ

V̂


xa

− δ
[
u θ w ψ

]
xb



N̂

M̂

M̂φ

V̂


xb

= −δū(e)>
∫ xb

xa

Ĥ
(e)>

q̂(e)dx+ δū(e)>
[
H(e)(xa)

>Q̂
(e)
a −H(e)(xb)

>Q̂
(e)
b

]
(44)

where Ĥ
(e)

is the shape function matrix H(e) that only includes the rows corresponding to u,w

and θ. Also vector q̂(e) includes the applied surface tractions, whereas vectors Q̂a and Q̂b feature

the applied nodal forces. Finally, the external force vector is identified from Eq. (44) as

f
(e)
ext =

∫ xb

xa

Ĥ
(e)>

q̂(e)dx−H(e)(xa)
>Q(e)

a +H(e)(xb)
>Q

(e)
b . (45)

Thus, by combining Eq. (41), Eq. (42) and Eq. (45), and assembling the contributions from all

elements we arrive at the usual linear algebraic problem of the finite element method

KLū = f ext − f τ . (46)

4.2. Element interpolation

Most Timoshenko-type beam elements using the typical linear or quadratic Lagrange shape

functions and full Gaussian integration produce overly stiff results (with near-zero bending curva-

ture) as the thickness to length ratio approaches zero. This type of behavior is known as shear

locking and, as pointed out by Tessler and Dong [36], occurs because the shear strain γ = w,x + θ

is interpolated using two inconsistent polynomials. Namely, if w and θ are interpolated using the

same linear or quadratic shape functions then the order of the polynomial approximating w,x will

be one order lower than the polynomial approximating θ, and hence the pure bending state of

w,x → −θ cannot be represented. If the polynomial order of w and θ is large, say of the fifth order,

this condition can be met with negligible error, but for lower order linear and quadratic elements

this is not the case.

In an anisoparametric interpolation strategy, w is interpolated using a polynomial one degree

greater than the polynomial interpolating θ, and therefore one more degree of freedom is required

for w than any of the other variables. As a result, the transverse shear strain γ and the transverse
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shear force V are interpolated with a polynomial one order greater than the axial strain and bending

moment. To obtain an element with a standard nodal configuration, it is possible to constrain the

element by coupling the interpolation of w to the rotation θ, and in the case of RZT also to the

zigzag rotation ψ. This coupling is achieved by reducing the polynomial degree of the shear strain

or shear force, and thereby removing the extra w degree of freedom.

4.2.1. Three-node, nine-dof anisoparametric element

In the anisoparametric setting the lowest order element is a two-node beam with an extra node

for the w degree of freedom. Hence, (u,w, θ, ψ) are defined at the two end nodes and w is also

defined at a central node. In this case the nodal dof vector, ū(e), element shape function matrix

H(e) and strain matrix B(e) are defined as

ū(e) =
[
u1 w1 θ1 ψ1 w3 u2 w2 θ2 ψ2

]>
(47)

H(e) =


HL

1 0 0 0 0 HL
2 0 0 0

0 HQ
1 0 0 HQ

3 0 HQ
2 0 0

0 0 HL
1 0 0 0 0 HL

2 0

0 0 0 HL
1 0 0 0 0 HL

2

 (48)

B(e) =
2

L(e)



HL
1,ξ 0 0 0 0 HL

2,ξ 0 0 0

0 0 HL
1,ξ 0 0 0 0 HL

2,ξ 0

0 0 0 HL
1,ξ 0 0 0 0 HL

2,ξ

0 HQ
1,ξ 0 0 HQ

3,ξ 0 HQ
2,ξ 0 0

0 0
L(e)

2
HL

1 0 0 0 0
L(e)

2
HL

2 0

0 0 0
L(e)

2
HL

1 0 0 0 0
L(e)

2
HL

2


(49)

where L(e) is the length of an element, the superscripts L and Q refer to the standard linear

and quadratic Lagrange shape functions, respectively, defined in terms of the natural coordinate

ξ ∈ [−1, 1] and the subscripts refer to the corresponding node numbers with the comma notation

denoting differentiation:

{
HL

1 , H
L
2

}
=

{
1

2
(1− ξ) , 1

2
(1 + ξ)

}
(50a){

HQ
1 , H

Q
2 , H

Q
3

}
=

{
1

2
ξ (ξ − 1) , 1− ξ2, 1

2
ξ (ξ + 1)

}
. (50b)
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Also note that in all the integrals in Eq. (41), (42) and (45) the differential dx is replaced with the

transformation to natural coordinates L(e)/2dξ and the limits of integration change from [xa, xb]

to [−1, 1]. By simple inspection of Eqs. (33), (37) and (38) with the shape functions above, we

can see that the resultants N , M and Mφ are constant over the beam domain (u,x, θ,x and ψ,x

are constant) but V and V φ are linear (w,x, θ and ψ are linear), such that a two-point Gauss

integration scheme is required.

4.2.2. Two-node, eight-dof constrained anisoparametric element

In the constrained anisoparametric element the nodal interpolation is recast by either constrain-

ing the transverse shear force V , the average shear strain γ = w,x + θ or the zigzag strain measure

η = γ −ψ to be constant across an element. Gherlone et al. [35] have shown that constraining the

average shear strain γ to be constant leads to inaccurate results as the zigzag rotation ψ is not

included in the constraining equation. Hence, only the constraints V is constant and η is constant

are considered herein (see Appendix B for details on the constraining process).

As a result of the constraint equation the deflection dof at the element midspan, w3, can be

condensed out by expressing it in terms of the end-node values of w, θ and ψ. Hence,

w3 =
w1 + w2

2
+
L(e)

8
[θ2 − θ1 + c (ψ2 − ψ1)] (51)

where c = Qm12/Q
m
11 = r if V is constant and c = −1 if η is constant. Therefore, the constrained

interpolation for w(x) in terms of the natural coordinate ξ can be expressed as

w = HL
1 (ξ)w1 +HL

2 (ξ)w2 +
L(e)

8
HQ

3 [θ2 − θ1 + c (ψ2 − ψ1)] . (52)

Consequently, the nodal dof vector, ū(e), element shape function matrix H(e) and strain matrix

B(e) are

ū(e) =
[
u1 w1 θ1 ψ1 u2 w2 θ2 ψ2

]>
(53)

H(e) =



HL
1 0 0 0 HL

2 0 0 0

0 HL
1 −L

(e)

8
HQ

3 −cL
(e)

8
HQ

3 0 HL
2

L(e)

8
HQ

3 c
L(e)

8
HQ

3

0 0 HL
1 0 0 0 HL

2 0

0 0 0 HL
1 0 0 0 HL

2


(54)
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B(e) =
2

L(e)



HL
1,ξ 0 0 0 HL

2,ξ 0 0 0

0 0 HL
1,ξ 0 0 0 HL

2,ξ 0

0 0 0 HL
1,ξ 0 0 0 HL

2,ξ

0 HL
1,ξ −

L(e)

8
HQ

3,ξ −c
L(e)

8
HQ

3,ξ 0 HL
2,ξ

L(e)

8
HQ

3,ξ c
L(e)

8
HQ

3,ξ

0 0
L(e)

2
HL

1 0 0 0
L(e)

2
HL

2 0

0 0 0
L(e)

2
HL

1 0 0 0
L(e)

2
HL

2


. (55)

Again by simple inspection of Eqs. (33), (37) and (41) with the chosen shape functions above,

we can show that a two-point Gauss integration scheme is required when c = r and when c = −1.

As for the nine-dof element, the resultants N , M and Mφ for both eight-dof elements are constant

over the beam domain because u,x, θ,x and ψ,x are constant. For c = r, V is of course constrained

to be constant but V φ nevertheless remains linear because Qm22−
Qm12Q

m
21

Qm11
6= 0. Hence, constraining

V to be constant via the shape functions does not equally constrain V φ because the stiffness terms

involved are different. For c = −1, both V and V φ are linear over the beam domain. Thus, for

both eight-dof elements the stiffness matrix integrand is a quadratic polynomial and a two-point

Gauss rule is required to compute this term exactly.

5. Results

The accuracy and robustness of the two eight-dof beam elements, i.e. for c = r (V constant,

denoted by RZT
(m)
2V ) and c = −1 (η constant, denoted by RZT

(m)
2η ) in Eq. (52), and the nine-

dof beam element (denoted by RZT
(m)
3 ) are examined by means of a number of benchmark tests.

Section 5.1 shows the convergence of the tip deflection and midspan axial stress of a cantilevered

beam with increasing mesh density.

In Section 5.2 through-thickness distributions of the axial displacement, axial stress and trans-

verse shear stress of a beam clamped at both ends and loaded by normal pressure and shear

tractions on both surfaces is compared against a high-fidelity finite element solution. Finally, in

Section 5.3 the beam element results are validated against a closed-form 3-D elasticity solution.

These results not only showcase the excellent predictive capabilities of the present beam elements

in terms of stresses and displacements, but also demonstrate that the RZT zigzag function can

successfully account for the presence of a delamination at very low computational cost.
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5.1. A convergence study and discussion of interpolation

A convergence study is conducted for a cantilevered beam of length L = 0.2 m, depth 2h = 0.04

m and width b = 0.04 m loaded by a tip shear force of F = 2000 N in the state of plane stress. The

beam comprises three different materials as defined in Table 1 and these form the stacking sequence

defined in Table 2 with layers numbered from bottom to top. All stresses, forces and moments are

evaluated at the Gauss integration points, where these quantities have optimal accuracy.

Table 1: Mechanical properties of materials a, b and c.

Material E(k)
xx (GPa) G(k)

xz (GPa)

a 73.0 29.2
b 21.9 8.76
c 0.073 0.029

Table 2: Beam stacking sequence for a cantilevered beam starting from the bottom layer.

Layer thicknesses (m) Materials

[0.004/0.032/0.004] [a/c/b]

Figure 2a and Figure 2b show, respectively, the convergence of the deflection at the tip of the

cantilever and the midspan axial stress at the bottom of the laminate (z = -h) with increasing mesh

density. The eight-dof beam elements RZT
(m)
2V and RZT

(m)
2η converge at basically the same rate and

slightly faster than the nine-dof element RZT
(m)
3 . The same relative convergence behavior between

unconstrained nine-dof and constrained eight-dof classic RZT elements has also been observed in

ref. [37].

In Figure 3a the normalized transverse shear force, V/F , is plotted versus the normalized axial

coordinate, x/L, of the cantilevered beam. For this problem V is constant along the length of the

beam. Both elements provide the correct value of V along the span. To compute V at the clamped

end, x = 0, Gauss point values can be extrapolated to that location.

Figure 3b depicts the transverse shear stress through the thickness of the cantilevered beam at

x = L/8. The results for RZT
(m)
2V and RZT

(m)
2η are indistinguishable from each other and correlate

closely with a reference solution. The reference solution is obtained using the commercial FE code

Abaqus, where a planar slice in the thickness-length plane of the beam was modeled using 326,400

linear reduced integration S4R elements — 1600 elements were used along the length with [21,
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162, 21] elements through the thickness of the three layers, respectively. All degrees of freedom

were constrained at the clamped end and the shear force at the free end was applied as a line load

through the thickness.

In the validation examples of Sections 5.2 and 5.3 only the eight-dof beam element RZT
(m)
2V

and the nine-dof beam element RZT
(m)
3 are examined. Based on the convergence study presented

above, a mesh of 100 elements is used for RZT
(m)
2V and a mesh of 74 elements for RZT

(m)
3 . With

these meshes the results produced by the two elements are graphically indistinguishable, and hence

a single dataset denoted by RZTm
(all) is shown for all results.

In terms of computational efficiency, the high-fidelity Abaqus model is composed of a numerical

system with 656,410 dofs (2 dofs per 328,205 nodes) which required around 2 min to solve on a Dell

Precision Tower 3620 x64-based PC with an Intel 4-Core i7-6700 CPU at 3.4 GHz with 16.0 GB

RAM. The RZT
(m)
2V and RZT

(m)
3 elements feature 404 dofs (4 dofs per 101 nodes) and 374 dofs (4

dofs per 75 end nodes, and 1 dof per 74 central nodes), respectively, and require around 2 seconds

of run time in Matlab.

5.2. Clamped-clamped beam with sinusoidal pressure and shear tractions

The second validation example is carried out for a beam of length L = 1 m, width b = 1 m and

thickness 2h = 0.1 m clamped at both ends, and in a state of plane stress. The beam is loaded

by a normal pressure of P̂t = −0.5 sin(πx) MPa and a shear traction of T̂t = −4 cos(πx) MPa on

the top surface, a normal pressure of P̂b = 0.5 sin(πx) MPa and a shear traction of T̂b = 2 cos(πx)

MPa on the bottom surface.

Results are presented for two different stacking sequences, laminates A and B, shown in Table 3

using the material properties in Table 1. Laminate A is the soft-core non-symmetric stacking

sequence used in the previous section and tests the capability of the beam elements to predict

displacements and stresses in thick sandwich beams. Laminate B represents a non-symmetric

four-layer laminate with an additional thin layer in between the repeating block of a/b layers. As

the constitutive properties of this thin layer are orders of magnitude less than the two adjacent

a/b-blocks, this layer models a damaged resin-rich zone in between the two blocks and can thus

effectively be regarded as a delamination. Hence, laminate B is a test case to demonstrate that

the RZT zigzag function can account for changes in the displacement and stress fields due to the

presence of a delamination.
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Table 3: Stacking sequences for the clamped-clamped beam starting from the bottom layer.

Laminate Layer thicknesses (m) Materials

A [0.01/0.08/0.01] [a/c/b]
B [0.025/0.025/0.001/0.025/0.025] [a/b/c/a/b]

The results presented in the figures have been normalized as follows

ū(z) =
106(2h)2

|p0|L3
u(k)x (0.25L, z), σ̄(z) =

(2h)2

|p0|L2
σ(k)xx (0.5L, z) , τ̄(z) =

1

|p0|
τ (k)xz (0.25L, z), ζ =

z

h
(56)

where p0 is the magnitude of the total normal pressure, 1 MPa.

The RZT
(m)
2V and RZT

(m)
3 results are compared against a high-fidelity reference solution obtained

using the commercial FE code Abaqus. In this case, a planar slice in the thickness-length plane of

the beam was modeled using 326,400 linear reduced integration S4R elements. For both laminate

A and B, 1600 elements were used along the length with [21, 162, 21] elements for the layers of

laminate A and [50, 50, 4, 50, 50] elements for layers of laminate B. All degrees of freedom were

constrained at either end to model the clamped boundary condition, and the tractions on the top

and bottom surfaces of the laminate were imposed via line loads.

Figures 4 and 5 compare the through-thickness axial displacement, axial stress and transverse

shear stress of the RZT(m) models against the FE benchmark. In all cases the results closely

compare to the reference solutions. What is especially noteworthy is that the piecewise parabolic

transverse shear stresses in Figures 4c and 5c are predicted very accurately from the underlying

RZT(m) assumptions without the need for stress-recovery steps. As the transverse shear stress

assumption used in the present implementation of RMVT is inherently equilibrated in a local

and average sense through the thickness of the laminate, the surface tractions are mathematically

guaranteed to be recovered accurately, and as shown in Figures 4c and 5c, this is indeed the case.

Table 4 shows that at specific points through the cross-section of the beam the percent differences

for the displacement, axial stress and transverse shear stress results are no more than 5% compared

to the FE benchmark and are often within 1%.

The presence of the thin and compliant resin layer in laminate B causes a pronounced zigzag

function, as shown in Figure 6, which allows the two a/b-blocks in laminate B to slide over each

other. In 3-D finite elements the displacement jump across a cohesive layer is often used to predict
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Table 4: Comparison of normalized displacement, axial stress and transverse shear stress results of RZT
(m)
(all)

and a 3-D FE reference solution. z1 is the interface between the bottommost and second plies in
the laminates. The axial locations of the quantities ū, σ̄ and τ̄ are defined explicitly in Eq. (56)
as x = 0.25L, 0.5L and 0.25L, respectively.

Laminate A Laminate B

RZT
(m)
(all) Reference Difference (%) RZT

(m)
(all) Reference Difference (%)

ū (z = h) 2.763× 10−6 2.756× 10−6 -0.3 5.867× 10−7 5.623× 10−7 -4.3
σ̄ (z = h) -0.2608 -0.2615 0.3 -0.06872 -0.06489 -5.9
τ̄ (z = z1) -2.323 -2.316 -0.3 -2.023 -2.025 0.1

the propagation of delamination damage via a cohesive damage law. In the framework of RZT, a

thin resin layer within the stacking sequence can therefore serve the same purpose and the RZT

beam elements presented here could be used to predict damage progression in a computationally

efficient manner. For example, a continuum damage law can be chosen to govern the degradation

process of the resin-rich layer [39]. This displacement jump across the thin resin layer of laminate

B is clearly appreciable in Figure 5a.

Figure 5a shows two different displacement distributions. The first using the standard definition

of the RZT zigzag function of Eq. (3). The second uses the modified RZT zigzag function defined

by Gherlone [32]. The modification by Gherlone is inspired by the phenomenological observation

that for laminates with more than three layers an external layer, i.e. k = 1 and k = Nl, with

transverse shear modulus less than the adjacent internal layer, i.e. k = 2 and k = Nl − 1, will not

give rise to a significant zigzag effect. The layers are aptly called externally weak layers (EWLs)

and the following modification is made when calculating the RZT zigzag function

• If Nl > 3 and G(1)
xz < G(2)

xz , then G(1)
xz = G(2)

xz

• If Nl > 3 and G(Nl)
xz < G(Nl−1)

xz , then G(Nl)
xz = G(Nl−1)

xz .

This modification only applies when calculating the zigzag function φ(k) and the slopes β(k) and not

any of the actual constitutive matrices. The difference in zigzag functions is evident in Figure 6,

where the EWL curve does not show a change of slope at the uppermost interface (the top layer is

an EWL), whereas the standard definition of the RZT zigzag function does. For most laminates

studied in the literature, e.g. [31–33], Gherlone’s modification has lead to superior results for

laminates with EWLs. However, Figure 5a shows that when a thin delamination is present, the
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original RZT zigzag function leads to slightly more accurate results.

5.3. Simply supported beam with sinusoidal pressure

The final example considers a beam of length L = 1 inch, width b = 0.1 inch and thickness

2h = 0.1 inch simply-supported at both ends. The beam is loaded by a sinusoidally varying pressure

on the top and bottom surfaces equal to P̂t = −1.5 × 106 sin(πx) psi and P̂b = 1.5 × 106 sin(πx)

psi, respectively.

For some specific material properties and stacking sequences this problem can be solved using

the 3-D elasticity solution by Pagano [43]. Hence, material p1 in Table 5 corresponds to the high

modulus graphite/epoxy composite defined by Pagano [43], material p2 is a version of p1 degraded

by a factor of 1000 and p3 represents a low modulus graphite/epoxy composite. Individual layers of

these materials comprise the laminates listed in Table 6. Laminate C is the soft-core non-symmetric

stacking sequence used in the previous sections, whereas laminate D is a non-symmetric laminate

split into two sublaminates by a thin delamination between the first and third layers from the

bottom.

Table 5: Mechanical properties of materials p1, p2 and p3.

Material E(k)
xx (psi) G(k)

xz (psi)

p1 25× 106 2× 105

p2 25× 103 2× 102

p3 8.333× 106 6.667× 104

Table 6: Beam stacking sequences for a simply supported beam with applied sinusoidal pressure starting
from the bottom layer.

Laminate Layer thicknesses (in) Materials

C [0.01/0.08/0.01] [p1/p2/p3]
D [0.05/0.001/0.025/0.025] [p1/p2/p3/p1]

The displacement and stress results are non-dimensionalized using the following expressions

ū(z) =
106(2h)2

|p0|L3
u(k)x (0, z), σ̄(z) =

(2h)2

|p0|L2
σ(k)xx (0.5L, z) , τ̄(z) =

1

|p0|
τ (k)xz (0, z), ζ =

z

h
. (57)

Figures 7-8 again show the good correlation of through-thickness displacements, axial stresses

and transverse shear stresses of the present beam elements and the benchmark solution. The
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displacement jump across the delamination is predicted with high accuracy as shown in Figure 8a.

Furthermore, the fully reversed axial stress distributions of the sublaminates in Figure 8b and the

two parabolas apexed at the mid-thickness of the sublaminates suggest that the sublaminates are

bending independently. Hence, the physical behavior of two sublaminates shearing over each other

due to a delamination is modeled correctly.

For this particular problem, the displacement results in Figures 7a and 8a show greater dis-

crepancies as a result of the cubic deformation in the soft core. This effect is known as “stress

channeling” [44] and occurs as the orthotropy ratio λ =
Exx
Gxz

(
2h

L

)2

increases. The effect can be

readily modelled by including a third-order term z3 in the assumed displacement field of Eq. (2) as

demonstrated within RZT by Groh and Weaver [31] and Iurlaro et al. [38]. This effect, however, is

not the predominant factor for most composite laminates used in practical industrial applications.

Since the aim of this work is a computationally efficient beam element for the purpose of studying

delaminations within the framework of RZT, this higher-order effect has been neglected in favor of

the reduced computational expense.

6. Conclusions

Laminated composites are prone to delamination failure due to the lack of reinforcement through

the thickness, and hence the initiation and propagation of delaminations should be accounted for

as early as possible in the design process. In this paper computationally efficient eight degree-of-

freedom (dof) and nine-dof elements, that are free of shear locking, were developed based on the

mixed form of the refined zigzag theory, RZT(m).

As shown in this study the beam elements can robustly and accurately predict the displacement

field, axial stress and transverse shear stress through the thickness of a sandwich beam or a laminate

with an embedded delamination. The advantage of the present element over previous beam ele-

ments is that no post-processing is required to compute the transverse shear stress accurately while

maintaining the computational efficiency of an eight-dof beam or three-noded nine-dof elements.

Eliminating the commonly used stress-recovery steps by means of Cauchy’s equilibrium equations

not only helps to minimize the computational expense but also ensures that the transverse shear

stress results are variationally consistent. Indeed, as shown in this paper, using inherently equili-

brated shear stress assumptions enabled by Reissner’s mixed variational theorem means the surface

and interlaminar tractions are mathematically guaranteed to be recovered correctly.
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Accurate predictions of stresses within interply resin-rich zones is crucial for accurately predict-

ing the onset and subsequent propagation of delaminations within damage frameworks developed

for RZT [39, 40]. Research is currently ongoing to integrate these or other continuum damage

models within the present beam elements to model the delamination initiation and propagation of

a number of benchmark problems. Future work will also focus on extending the developed damage

onset and propagation framework to 2-D plates.

25



2h(N )

2h(3)

2h(2)

2h(1)

h

-h

z

xO

(Nl)

(3)
(2)
(1)

…
z0

z1

z2

zN

ZN  -1

z3

l

l

l

Figure 1: Arbitrary laminate configuration with co-ordinate system and approximate in-plane displace-
ments. The dashed line shows a classical solution of the in-plane displacements, whereas the
solid line accounts for zigzag effects.
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Figure 4: Through-thickness distributions of the normalized (a) axial displacement, ū (x = 0.25L), (b)
axial stress, σ̄ (x = 0.5L), and (c) transverse shear stress, τ̄ (x = 0.25L), for laminate A.
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Figure 5: Through-thickness distributions of the normalized (a) axial displacement, ū (x = 0.25L), (b)
axial stress, σ̄ (x = 0.5L), and (c) transverse shear stress, τ̄ (x = 0.25L), for laminate B.
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-1

-0.5

0

0.5

1

T
h
ic
k
n
es
s
co
o
rd
in
a
te
,
ζ

Reference

RZT(m)
(all)

(a)

-40 -20 0 20 40
Axial stress, σ̄

-1

-0.5

0

0.5

1

T
h
ic
k
n
es
s
co
o
rd
in
a
te
,
ζ

Reference

RZT(m)
(all)

(b)

-25 -20 -15 -10 -5 0
Transverse shear stress, τ̄

-1

-0.5

0

0.5

1

T
h
ic
k
n
es
s
co
o
rd
in
a
te
,
ζ

Reference

RZT(m)
(all)

(c)

Figure 7: Through-thickness distributions of the normalized (a) axial displacement, ū (x = 0), (b) axial
stress, σ̄ (x = 0.5L), and (c) transverse shear stress, τ̄ (x = 0), for laminate C.
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Figure 8: Through-thickness distributions of the normalized (a) axial displacement, ū (x = 0), (b) axial
stress, σ̄ (x = 0.5L), and (c) transverse shear stress, τ̄ (x = 0), for laminate D.
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Appendix A. Equilibrium of surface tractions

The assumed transverse shear stress is given by Eq. (26)

τ
(k)
xz(a) = T

(k)
0 + T

(k)
θ fθ + T

(k)
ψ fψ (A.1)

where T
(k)
0 , T

(k)
θ and T

(k)
ψ are defined in Eq. (25), respectively.

Interlaminar continuity of Eq. (A.1) is guaranteed by means of the integration constants a(k), b(k)

and c(k) in the expressions for τ (k)u , τ
(k)
θ and τ

(k)
ψ , respectively. As shown in the proof below,

the equilibrium of the surface tractions is automatically enforced by means of eliminating the

integration constant f0 introduced in Eq. (17). This is achieved by enforcing the through-thickness

integral of Eq. (A.1) to equal the RZT transverse shear force V .

To prove that equilibrium of the surface tractions is guaranteed by the assumed transverse

shear stress we evaluate Eq. (A.1) at the top and bottom of the laminate. Hence,

τ (Nl)
u (zNl

) =E(Nl)
xx zNl

+ a(Nl)

=E(Nl)
xx zNl

+
(
E(1)
xx − E(2)

xx

)
z1 + · · ·+

(
E(Nl−1)
xx − E(Nl)

xx

)
zNl−1

=E(1)
xx (z1 − z0) + · · ·+ E(Nl)

xx (zNl
− zNl−1) + E(1)

xx z0

=
A11

b
+ E(1)

xx z0 (A.2)

τ (1)u (z0) =E(1)
xx z0 + a(1) = E(1)

xx z0. (A.3)

Using the same algebraic sequence of steps for τ
(Nl)
θ (zNl

) and τ
(1)
θ (z0) we obtain

τ
(Nl)
θ (zNl

) =
B11

b
+ E(1)

xx

z20
2

(A.4)

τ
(1)
θ (z0) = E(1)

xx

z20
2
. (A.5)

Similarly, the expressions for τ
(Nl)
ψ (zNl

) and τ
(1)
ψ (z0) result in

τ
(Nl)
ψ (zNl

) =
B12

b
+ E(1)

xx

(
β(1)

z20
2

+ α(1)z0

)
(A.6)

τ
(1)
ψ (z0) = E(1)

xx

(
β(1)

z20
2

+ α(1)z0

)
. (A.7)
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Next, we need to express each of the constants

B11

A
+

1

2h

∫ zNl

z0

τ (k)u dz,
D11

A
+

1

2h

∫ zNl

z0

τ
(k)
θ dz,

D12

A
+

1

2h

∫ zNl

z0

τ
(k)
ψ dz (A.8)

in terms of components of the higher-order stiffness matrix D, i.e. Eq. (37), and known laminate

constants. For the first term in Eq. (A.8) we have

B11

A
+

1

2h

∫ zNl

z0

(
E(k)
xx z + a(k)

)
dz =

1

2bh

Nl∑
k=1

bE(k)
xx

z2k − z2k−1
2

+
1

2h

Nl∑
k=1

(
E(k)
xx

z2k − z2k−1
2

+ a(k)2h(k)

)

=
2

2h

Nl∑
k=1

E(k)
xx

z2k − z2k−1
2

+
1

2h

Nl∑
k=1

2h(k)
k∑
i=1

(
E(i−1)
xx − E(i)

xx

)
zi−1 + E(1)

xx z0

=
1

2h

[
E(1)
xx (z1 + z0) 2h(1) +

{
E(2)
xx (z2 + z1) +

(
E(1)
xx − E(2)

xx

)
z1

}
2h(2)+{

E(3)
xx (z3 + z2) +

(
E(2)
xx − E(3)

xx

)
z2 +

(
E(1)
xx − E(2)

xx

)
z1

}
2h(3) + . . .

]
=

1

2h

[
E(1)
xx z12h

(1) +
{
E(2)
xx z2 + E(1)

xx (z1 − z0)
}

2h(2) +
{
E(3)
xx z3 + E(2)

xx (z2 − z1) + E(1)
xx (z1 − z0)

}
2h(3) + . . .

]
+

1

2h
E(1)
xx z0

Nl∑
k=1

2h(k)

=
1

2h

[
E(1)
xx z12h

(1) +
(
E(2)
xx z2 + E(1)

xx 2h(1)
)

2h(2) +
(
E(3)
xx z3 + E(2)

xx 2h(2) + E(1)
xx 2h(1)

)
2h(3) + . . .

]
+ E(1)

xx z0

=
1

2h

[
E(1)
xx 2h(1)

(
z1 +

Nl∑
k=2

2h(k)

)
+ E(2)

xx 2h(2)

(
z2 +

Nl∑
k=3

2h(k)

)
+ E(3)

xx 2h(3)

(
z3 +

Nl∑
k=4

2h(k)

)
+ . . .

]
+ E(1)

xx z0

=
1

2h

Nl∑
k=1

E(k)
xx 2h(k)

2h

2
+ E(1)

xx z0 (A.9)

and because b

Nl∑
k=1

E(k)
xx 2h(k) = A11 we simplify to

∴
B11

A
+

1

2h

∫ zNl

z0

τ (k)u dz =
A11

2b
+ E(1)

xx z0. (A.10)

For the second term in Eq. (A.8) we use the same algebraic sequence of steps with

D11 = b

Nl∑
k=1

E(k)
xx

(
z2k + zkzk−1 + z2k−1

) 2h(k)

3

1

2h

∫ zNl

z0

τ
(k)
θ dz =

1

2h

Nl∑
k=1

{
E(k)
xx

(
z2k + zkzk−1 + z2k−1

) 2h(k)

6
+ b(k)2h(k)

}
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and make the final substitution b

Nl∑
k=1

E(k)
xx (zk + zk−1)

2h(k)

2
= B11 to obtain the expression

∴
D11

A
+

1

2h

∫ zNl

z0

τ
(k)
θ dz =

B11

2b
+ E(1)

xx

z20
2
. (A.11)

For the third term in Eq. (A.8) we again use the same algebraic sequence of steps with

D12 = b

Nl∑
k=1

E(k)
xx

{
β(k)

(
z2k + zkzk−1 + z2k−1

) 2h(k)

3
+ α(k) (zk + zk−1)

2h(k)

2

}
1

2h

∫ zNl

z0

τ
(k)
ψ dz =

1

2h

Nl∑
k=1

E(k)
xx

{
β(k)

(
z2k + zkzk−1 + z2k−1

) 2h(k)

6
+ α(k) (zk + zk−1)

2h(k)

2
+ c(k)2h(k)

}

and finally using b

Nl∑
k=1

E(k)
xx

[
β(k) (zk + zk−1)

2h(k)

2
+ α(k)2h(k)

]
= B12 we arrive at

∴
D12

A
+

1

2h

∫ zNl

z0

τ
(k)
ψ dz =

B12

2b
+ E(1)

xx

(
β(1)

z20
2

+ α(1)z0

)
(A.12)

Now using Eqs. (A.3), (A.5), (A.7), (A.10), (A.11) and (A.12) at the bottom of the laminate

we obtain

T
(1)
0 (z0) =

T̂s
2b
− T̂d
A11

[
A11

2b
+ E(1)

xx z0 − E(1)
xx z0

]
=
b
(
T̂t + T̂b

)
2b

−
b
(
T̂t − T̂b

)
2b

= T̂b (A.13)

T
(1)
θ (z0) = −B11

A11

[
A11

2b
+ E(1)

xx z0 − E(1)
xx z0

]
+
B11

2b
+ E(1)

xx

z20
2
− E(1)

xx

z20
2

= −B11

2b
+
B11

2b
= 0 (A.14)

T
(1)
ψ (z0) = −B12

A11

[
A11

2b
+ E(1)

xx z0 − E(1)
xx z0

]
+
B12

2b
+ E(1)

xx

(
β(1)

z20
2

+ α(1)z0

)
− E(1)

xx

(
β(1)

z20
2

+ α(1)z0

)
= −B12

2b
+
B12

2b
= 0 (A.15)

Similarly using Eqs. (A.2), (A.4), (A.6), (A.10), (A.11) and (A.12) at the top of the laminate

we obtain

T
(Nl)
0 (zNl

) =
T̂s
2b
− T̂d
A11

[
A11

2b
+ E(1)

xx z0 −
A11

b
− E(1)

xx z0

]
=
b
(
T̂t + T̂b

)
2b

+
b
(
T̂t − T̂b

)
2b

= T̂t (A.16)

T
(Nl)
θ (zNl

) =− B11

A11

[
A11

2b
+ E(1)

xx z0 −
A11

b
− E(1)

xx z0

]
+
B11

2b
+ E(1)

xx

z20
2
− B11

b
− E(1)

xx

z20
2

=
B11

2b
− B11

2b
= 0

(A.17)

T
(Nl)
ψ (zNl

) =− B12

A11

[
A11

2b
+ E(1)

xx z0 −
A11

b
− E(1)

xx z0

]
+
B12

2b
+ E(1)

xx

(
β(1)

z20
2

+ α(1)z0

)
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− B12

b
− E(1)

xx

(
β(1)

z20
2

+ α(1)z0

)
=
B12

2b
− B12

2b
= 0 (A.18)

Therefore, by substituting the expressions of Eq. (A.13)-(A.18) into Eq. (A.1) we have

τ
(1)
xz(a) (z0) = T̂b + 0× fθ + 0× fψ = T̂b

τ
(Nl)
xz(a) (zNl

) = T̂t + 0× fθ + 0× fψ = T̂t

and therefore the transverse shear stresses at the top and bottom of the laminate are exactly

recovered.

Appendix B. Constrained anisoparametric shape functions

In RZT(m) the transverse shear force is given by Eq. (37). Hence,

V = Qm11 (w,x + θ) +Qm12ψ +Qm10 = Qm11 {(w,x + θ) + rψ}+Qm10 (B.1)

where r = Qm12/Q
m
11. Using the anisoparametric shape functions in Eq. (50) we can write:

(w,x + θ) + rψ =
2

L(e)

(
ξ − 1

2

)
w1 −

4

L(e)
ξw3 +

2

L(e)

(
ξ +

1

2

)
w2 +

1

2
(1− ξ) θ1 +

1

2
(1 + ξ) θ2+

r

2
(1− ξ)ψ1 +

r

2
(1 + ξ)ψ2

(w,x + θ) + rψ = ξ

{
2

L(e)
w1 −

4

L(e)
w3 +

2

L(e)
w2 +

1

2
(θ2 − θ1) +

r

2
(ψ2 − ψ1)

}
+(

w2 − w1

L(e)
+
θ1 + θ2

2
+ r

ψ1 + ψ2

2

)
. (B.2)

Now if we choose to constrain the shear force component associated with the kinematics, i.e.

Qm11 {(w,x + θ) + rψ} in Eq. (B.1), to be constant, then the coefficient of the ξ term in Eq. (B.2)

must vanish. Hence, using this condition we can find an expression for the mid-element nodal

deflection w3:

2

L(e)
w1 −

4

L(e)
w3 +

2

L(e)
w2 +

1

2
(θ2 − θ1) +

r

2
(ψ2 − ψ1) = 0

∴ w3 =
w1 + w2

2
+
L(e)

8
{θ2 − θ1 + r (ψ2 − ψ1)} (B.3)

As a result, the w3 degree of freedom in the standard quadratic Lagrange shape functions of
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Eq. (50), i.e.

w = HQ
1 w1 +HQ

3 w3 +HQ
2 w2, (B.4)

can be replaced to give

w = HL
1 w1 +HL

2 w2 +
L(e)

8

(
1− ξ2

)
{θ2 − θ1 + r (ψ2 − ψ1)} . (B.5)

Finally, if we constrain η = w,x + θ−ψ to be constant, then the term rψ in Eq. (B.5) becomes

−ψ and hence

w3 =
w1 + w2

2
+
L(e)

8
{θ2 − θ1 − (ψ2 − ψ1)} (B.6)

and subsequently

w = HL
1 w1 +HL

2 w2 +
L(e)

8

(
1− ξ2

)
{θ2 − θ1 − (ψ2 − ψ1)} . (B.7)
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