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2 

ABSTRACT 20 

Detecting climate trends of atmospheric temperature, moisture, cloud, and surface 21 

temperature requires accurately calibrated satellite instruments such as the Climate 22 

Absolute Radiance and Reflectivity Observatory (CLARREO).  Wielicki et al. have studied 23 

the CLARREO measurement requirements for achieving climate change accuracy goals in 24 

orbit.  Our study further quantifies the spectrally dependent IR instrument calibration 25 

requirement for detecting trends of atmospheric temperature and moisture profiles. The 26 

temperature, water vapor, and surface skin temperature variability and the associated 27 

correlation time are derived using Modern Era Retrospective-Analysis for Research and 28 

Applications (MERRA) and European Center for Medium-Range Weather Forecasts 29 

(ECMWF) reanalysis data.  The results are further validated using climate model 30 

simulation results. With the derived natural variability as the reference, the calibration 31 

requirement is established by carrying out a simulation study for CLARREO observations 32 

of various atmospheric states under all-sky.  We derive a 0.04 K (k=2, or 95% confidence) 33 

radiometric calibration requirement baseline using a spectral fingerprinting method.  We 34 

also demonstrate that the requirement is spectrally dependent and some spectral regions 35 

can be relaxed due to the hyperspectral nature of the CLARREO instrument.  We further 36 

discuss relaxing the requirement to 0.06 K (k=2) based on the uncertainties associated with 37 

the temperature and water vapor natural variability and relatively small delay in time-to-38 

detect for trends relative to the baseline case. The methodology used in this study can be 39 

extended to other parameters (such as clouds and CO2) and other instrument configurations. 40 

1. Introduction41 
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 The CLARREO mission has been proposed to provide the essential observations 42 

for climate change on decadal timescales with high accuracy that are traceable to 43 

International System of Units (SI) standards. The demand for high absolute calibration 44 

accuracy of the CLARREO instrument is driven by the need to accurately determine the 45 

climate trend with minimum time delay relative to a perfect observation system (Wielicki 46 

et al. 2013) and by the need to accurately calibrate other satellite instruments so that data 47 

such as those from operational weather sounders and from the Earth energy budget 48 

instruments can be used to improve climate change detection.  49 

To detect an accurate trend for a geophysical parameter, the observation system has 50 

to be able to separate the natural variability from anthropogenic climate changes. 51 

Therefore, even for a perfect observation system, one has to make sufficiently long 52 

observations to minimize the contribution from the natural variability. For a perfect 53 

observation system, the trend uncertainty for a selected geophysical parameter is 54 

statistically determined by its variability, σvar,, and autocorrelation time, τvar, as has been 55 

explained in both Weatherhead’s (Weatherhead et al. 1998) and Leroy’s (Leroy et al. 56 

2008a) papers. How the measurement uncertainty affects the trend detection uncertainty is 57 

quantified by the accuracy uncertainty factor Ua (Wielicki et al. 2013), where Ua is given 58 

as 59 

                𝑈𝑎 = √1 + (𝜎𝑐𝑎𝑙
2 𝜏𝑐𝑎𝑙 + 𝜎𝑖𝑛𝑠𝑡𝑟𝑢

2 𝜏𝑖𝑛𝑠𝑡𝑟𝑢 + 𝜎𝑜𝑟𝑏𝑖𝑡
2 𝜏𝑜𝑟𝑏𝑖𝑡)/(𝜎𝑣𝑎𝑟

2 𝜏𝑣𝑎𝑟)                (1) 60 

Ua defines the ratio of the trend detection uncertainty of a real system over that of a perfect 61 

system. The measurement uncertainty includes the calibration, σcal, instrument noise, 62 
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σinstru, and orbit sampling error, σorbit, uncertainties, with their associated autocorrelation 63 

times, τcal, τinstru, and τorbit. We can derive the calibration requirement to be 64 

               𝜎𝑐𝑎𝑙 = √
(𝑈𝑎

2−1)𝜎𝑣𝑎𝑟
2 𝜏𝑣𝑎𝑟−𝜎𝑖𝑛𝑠𝑡𝑟𝑢

2 𝜏𝑖𝑛𝑠𝑡𝑟𝑢−𝜎𝑜𝑟𝑏𝑖𝑡
2 𝜏𝑜𝑟𝑏𝑖𝑡

𝜏𝑐𝑎𝑙
                                     (2) 65 

In this paper, we assume that calibration uncertainty is the dominant factor of the total 66 

measurement uncertainty. Other factors such as the uncertainty due to instrument random 67 

noise can be minimized by performing spatial and temporal averaging of the observed 68 

spectra.  Wielicki et al. (2013) have concluded that the orbital sampling error is small 69 

compared to natural variability even with just one 90o orbit.  Eq. (2) can be further 70 

simplified as  71 

                             𝜎𝑐𝑎𝑙 = √
(𝑈𝑎

2−1)𝜏𝑣𝑎𝑟

𝜏𝑐𝑎𝑙
  𝜎𝑣𝑎𝑟                                                            (3) 72 

where σcal is the observation accuracy for a geophysical parameter that can be achieved 73 

assuming some value for the trend detection uncertainty factor, Ua. It should be noted here 74 

that the calibration requirement, σcal, defined in Eq. (2) and Eq. (3) is not the direct spectral 75 

calibration requirement imposed on the instrument. It is the observation accuracy 76 

uncertainty of geophysical parameters that are essential to climate change study. To obtain 77 

the spectral calibration requirement for the Fourier Transform based IR instrument of 78 

CLARREO, the inverse relationship between the spectral calibration error and the 79 

associated error for the geophysical variables needs to be established. The attribution of 80 

the change in the measured IR spectra to climate change signals (i.e. changes in 81 

temperature, water vapor, cloud property, surface property, etc.) has been studied using 82 

spectral fingerprinting methods (Leroy et al. 2008b, Huang et al. 2010, and Kato et al. 83 

2011). We use a similar method to perform the inversion of radiance change to the 84 
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geophysical parameter change. Our goal is to characterize a spectrally dependent 85 

instrument calibration requirement so that we can accurately detect the atmospheric 86 

temperature and moisture profile changes within the uncertainties defined by σcal.   87 

The nominal design of the IR spectrometer of CLARREO has a 0.5 cm-1 spectral 88 

resolution with a spectral coverage from 200 to 2000 cm-1. The additional spectral coverage 89 

of the Far-IR from 200 to 645 cm-1 , which is not currently included in hyperspectral 90 

sounders such as the Cross-track Infrared Sounder (CrIS), the Atmospheric Infrared 91 

Sounder (AIRS), and the Infrared Atmospheric Sounding Interferometer (IASI), will allow 92 

the CLARREO instrument to measure nearly half of the outgoing longwave radiation 93 

currently unobserved by current sounders and will provide additional information on cirrus 94 

clouds and upper tropospheric water vapor. The CO2 atmospheric emission lines with 95 

various transmittances will provide vertical temperature profile information.  The H2O 96 

emission lines will provide vertical water vapor vertical profile information. The window 97 

spectral regions will provide information on surface skin temperature and surface 98 

emissivity. The broad spectral coverage will enable the CLARREO instrument to 99 

characterize cloud top height, cloud phase, cloud amount, and cloud particle size.   100 

Due to the hyperspectral nature of the IR instrument, information from one channel 101 

may be highly correlated with others.  For example, the CO2 v2 perpendicular vibrational 102 

band near 15 m has P, Q, and R branches.  The R-branch, which is located on the shorter 103 

wavelength side of the Q-branch, has similar information content as the P-branch, which 104 

is on the longer wavelength side of the Q-branch.  We can tolerate larger calibration errors 105 

for those channels in the CO2 P-branch as long as we can accurately calibrate the spectral 106 

region that covers the R-branch (or vice versa).  Based on this rationale, we may be able to 107 
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relax the calibration requirement for spectral regions where the transmittances of the FTS 108 

optics or the detector sensitivities are low (e.g., at spectral band edges). 109 

The details of this study is conatained in Sections 2 and 3.  Section 2 of this paper 110 

describes the efforts to derive natural variability values using de-seasonalized MERRA 111 

(Rienecker at al. 2011) and ECMWF ERA-Interim (Dee et al. 2011) data, which include 112 

the information from multiple decades of satellite data. Our approach follows the trend 113 

analysis methodology of Weatherhead et al. (Weatherhead et al. 1998) and Leroy et al. 114 

(Leroy et al. 2008a). Both methods assume the representation of climate anomalies in a 115 

time series using a linear trend model with noise processes (natural variability) embedded 116 

and correlated among successive measurements. Climate anomalies here can be viewed as 117 

a linear combination of the climate trends (ao in Equation 5), the climate variations 118 

associated with known climate forcing factors, and the natural variability,  119 

𝑌(𝑡) =  𝑎0𝑡 + 𝐶(𝑡) + ε,                                                          (5) 120 

where 𝑌 is the climate anomalies as a function of time 𝑡, 𝐶 is the contribution of climate 121 

forcing factors and ε is the natural variability. The effects of major climate forcing factors 122 

including volcanic eruptions, solar cycle forcing, El Niño-Southern Oscillation (ENSO) 123 

variability, and the quasi-biennial oscillation (QBO) in the time series data have been 124 

accounted for in our linear regression analysis. Although ENSO and QBO are classified as 125 

‘internal’ forcing factors, the success of including them in the climate model simulations 126 

(Philander, et.al. 1992; Takahashi, 1999) proves the feasibility of separating them from 127 

other uncharacterized natural variations. If the response of the climate variation to major 128 

climate forcing factors can be reliably estimated using representative indices (to be 129 

discussed in Section 2), removing these climate signals from the anomalies will greatly 130 
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facilitate the linear trend analysis by reducing the uncertainties caused by the naturally 131 

occurring variations. Other contributors to natural variability including Pacific Decadal 132 

Oscillation (PDO) and Atlantic Meridional Overturning Circulation (AMOC) are not 133 

included in this analysis due to their insignificant impact within a decadal scale as 134 

compared with ENSO. Our goal in this paper is not to derive an accurate climate trend, but 135 

rather to systematically characterize the temperature and water vapor anomalies in order to 136 

derive the magnitude of natural variability at all significant atmospheric altitudes. Our 137 

results obtained from one set of reanalysis data (e.g. MERRA) can be validated using the 138 

results from the other reanalysis data set (e.g. ECMWF).  139 

In addition to the comparison study between results from the MERRA data and 140 

those from ECMWF data, we further compare the reanalysis results with those from a 141 

General Circulation Model (GCM) simulation made by the NOAA Geophysical Fluid 142 

Dynamics Laboratory (GFDL) for the Coupled Model Intercomparison Project Phase 5 143 

(CMIP5). Natural variability for the vertical profile of temperature and moisture and the 144 

surface skin temperature are calculated and presented. Our goal is to derive reliable natural 145 

variability values, σvar, that can be used to define the calibration requirement, σcal.  146 

 Section 3 discusses the simulation study to establish the baseline for the spectral 

calibration requirement and how the requirements for specific channels are modified to 

accommodate the instrumentation concerns. We summarize the information content 

difference between channels in various wavelength regions and illustrate how σcal changes 

in correspondence to the change in spectral calibration errors. Limiting factors that 

determine the calibration requirement are discussed. We then present feasible spectral 

calibration requirement solutions that take potential engineering concerns into 
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consideration. In Section 3, we also discuss the impact of calibration errors on the time to 

detect climate trends and how the CLARREO IR can be used in synergy with current and 

future operational sounders to decrease the time needed to detect the temperature climate 

trends accurately.  Fig. 1 shows a flowchart summarizing the procedures used in Sections 

2 and 3 to derive the instrument calibration requirement. 

Finally, we present our conclusions on the methodology developed in this study 

and how we can improve the work in future studies.   

2. Natural variability study     147 

Continuous time series for temperature, water vapor and surface skin temperature 148 

are obtained from MERRA and ERA-interim data. Both time series data sets consist of 149 

monthly mean results of the satellite observation era (from January 1979 to December 150 

2013). The MERRA data are obtained from Goddard Earth Sciences Data and Information 151 

Service Center as daily means for 1.25o✕1.25o latitude/longitude grid boxes. The monthly 152 

mean values are derived from the daily means. The ECMWF data are available as monthly 153 

means for 3o✕3o latitude/longitude grid boxes. Global mean or zonal mean values are 154 

calculated as the weighted average of all the non-missing, grid-box values. The weights 155 

used are the cosines of the central latitudes of each grid box. Anomalies are calculated 156 

using the de-seasonalized global mean time series data by subtracting the monthly mean 157 

data in all years from each individual monthly data value. Both temperature and water 158 

vapor data of MERRA and ECMWF are collected as vertical profile layer quantities on 159 

pressure grids extending from 1000 hPa to 1 hPa. Both pressure grids are divided into 37 160 

levels, although their pressure level values are not identical.  Atmospheric temperature and 161 
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water vapor variability are obtained by applying trend analyses on the time series anomalies 162 

for each layer and estimating the standard errors.  163 

 The pre-industrial control run (piControl) from the GFDL CM3 model (Donner et 164 

al., 2011) is also used in this study. Global mean values are again calculated as the weighted 165 

average of all the grid-box values with a 2o✕1.5o latitude/longitude spatial resolution and 166 

a 23-layer pressure grid (1 hPa ~ 1000 hPa). We apply a similar procedure as mentioned in 167 

the previous paragraph to de-seasonalize the time series data and extract trend and natural 168 

variability out of the de-seasonalized data.   169 

 

a. Temperature 170 

Major climate forcing factors that have been taken into consideration for the global 171 

temperature trend study generally consist of ‘external forcings’ which include short-term 172 

volcanic eruption and solar variability and ‘internal variability’ which includes ENSO and 173 

QBO. The relative influence of each climate forcing factor can be estimated by performing 174 

multiple regression of temperature against their proxy data. By removing contributions 175 

from these factors, a linear trend, which represents the climate change due to anthropogenic 176 

factors, can then be derived. Previous climate trend studies have focused on the impact of 177 

the above known factors on temperature variations in different atmospheric regions. Effects 178 

of ENSO and volcanoes on the global surface temperature trend were illustrated in various 179 

papers (Wigley et al. 2000, Lean et al. 2008, Foster et al. 2011). Angell et al. (2000) studied 180 

the influence of ENSO in tropospheric temperature variations. Santer et al. (2001) 181 

accounted for the effects of both volcanoes and ENSO in tropospheric temperature trends.  182 

The influence of solar activity on surface temperature was addressed by both Lean and 183 
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Foster (Lean et al. 2008, Foster et al. 2011). Crooks et al. (2005) used an ECMWF dataset 184 

of the period 1979-2001 to study the influence of the 11-year solar cycle on atmospheric 185 

temperature and zonal winds with volcanic, ENSO, and quasi-biennial oscillation (QBO) 186 

signatures being extracted as part of the multivariate regression analysis. Chiodo et al. 187 

(2014) investigated the relative role of volcanic eruptions, ENSO, and QBO in the quasi-188 

decadal signal in the tropical stratosphere with regard to temperature and ozone attributed 189 

to the 11-year solar cycle. Although the QBO’s signature in the low troposphere to surface 190 

region has been neglected in the papers as mentioned above, Powell et al. (2013) showed 191 

the globally distributed response of tropospheric temperature to the QBO, and that the most 192 

of the statistically significant area was over the mid-high latitudes.  193 

ENSO is usually characterized by the southern oscillation index (SOI) (Wigley et 194 

al. 2000, Santer et al. 2001), the multivariate ENSO index (MEI) (Lean et al. 2008, Foster 195 

et al. 2011), or sea surface temperatures for the Niño3 and 3.4 regions (Angell et al. 2000, 196 

Santer et al. 2001). Solar influence can be characterized using monthly sun spot numbers 197 

(Foster et al. 2011), the solar 10.7-cm radio flux (Crooks et al. 2005, Powell et al. 2013), 198 

ultraviolet solar radiation flux integrated in the Hartley band (240–270 nm) (Chiodo et al. 199 

2014), or total solar irradiance (Lean et al. 2008, Foster et al. 2011). The choice of QBO 200 

proxy indices include zonal wind time series at 30 and 10 hPa (Chiodo et al. 2014, Powell 201 

et al. 2013) or principal components of averaged stratospheric zonal wind indices (Crooks 202 

et al. 2005). The volcanic aerosol effect has been estimated using global stratospheric 203 

aerosol optical depth (AOD) (Foster et al. 2011, Powell et al. 2013, Crooks et al. 2005). 204 

Our multiple-regression experiments show that the choice of characteristic proxy for 205 

climate forcing factors in general is believed to have an insignificant effect on the trend 206 
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analysis and the uncertainty of a certain climate forcing signal due to the inaccuracy of the 207 

proxy indices has negligible impact on the analysis for other climate forcing signals.  208 

We choose MEI from the NOAA MEI website to characterize ENSO. The 209 

multivariate ENSO index, which is derived from sea-level pressure, sea surface wind, sea 210 

surface temperature, air temperature, and cloud fraction,  provides a more complete and 211 

flexible description of the nature of the coupled ocean-atmosphere system and is less 212 

vulnerable to occasional data glitches in the monthly update cycles and thus more suitable 213 

for the global ENSO impact study (Wolter et al., 2011). We use zonal average of the 30 214 

hPa zonal wind at the equator as the QBO index, and monthly sun spot numbers are used 215 

as a proxy for solar activity. We characterize volcanic influence by the AOD data from the 216 

NASA Goddard Institute for Space Studies website, which are derived from optical 217 

extinction data (Sato et al. 1993).  218 

Considering the delayed response of temperature anomaly to the climate forcing 219 

factors, the multiple regression analysis is carried out with optimally lagged climate forcing 220 

signals and the naturally occurring temperature, ε, is given as  221 

 ε =  𝑇(𝑡) − 𝑎0𝑡 − 𝑎1𝐸(𝑡 − τ1) − 𝑎2𝑄(𝑡 + τ2) − 𝑎3𝑆(𝑡 + τ3) − 𝑎4𝑉(𝑡 + τ4)         (6) 222 

where T(t) is the temperature anomaly and E(t), Q(t), S(t), and V(t) are MEI, QBO index, 223 

Sun spot number, and AOD in time series. We carry out the lag-correlation analysis using 224 

values from 0 to 24 months for each of the four factors, and then select the lag values (τ 1,  225 

τ 2,  τ 3 , τ 4) that correspond to the best fit.  Once the lag values are obtained a multiple 226 

regression is performed to obtain the ε(t) with climate trend (ao) and other factors removed. 227 

Fig. 2 and Fig. 3 are examples that demonstrate the influence of climate forcing factors on 228 

global temperature data from MERRA and ECMWF at 70 hPa and 975 hPa. Those two 229 
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figures clearly illustrate the difference between the climate forcing signature in the 230 

stratosphere and that in the troposphere. Generally speaking, volcanic aerosol induces 231 

strong heating in the stratosphere and cooling in the troposphere. Solar activity influence 232 

is much stronger in the stratosphere as compared with its influence in the troposphere, 233 

while ENSO influence is stronger in the troposphere. Fig. 4 illustrates the influence of 234 

different forcing factors on the global surface skin temperature trend. The multiple 235 

regression analysis gives similar results for both MERRA and ECMWF temperature 236 

records. Both results demonstrate a cooling temperature trend at 70 hPa and a warming 237 

trend in lower tropospheric and surface temperature. With the attribution of different 238 

climate forcings fully accounted for, naturally occurring variations of temperature at 239 

specific altitudes can then be estimated and validated with the climate model simulation 240 

results.  241 

Fig. 5 compares the temperature variability from reanalysis data with that from the 242 

35-year-long GFDL CM3 model piControl output. The CMIP5 piControl experiment with 243 

CM3 imposes non-evolving, pre-industrial conditions that do not include volcanic eruption 244 

influences and assumes constant solar forcing (Taylor et al., 2009).  The difference between 245 

tropospheric temperature variation from MERRA, ECMWF and the GFDL CM3 model is 246 

smaller than 0.05 K after we subtract those two external forcing influences from the 247 

reanalysis temperature anomaly data. The discrepancy among the three sets of results is 248 

much larger at high altitude, starting from the tropopause (located 100 ~ 200 hPa) and 249 

extending into the stratosphere. Errors embedded in the multiple regression analysis, 250 

uncertainties associated with the reanalysis data, and the inaccuracies of the climate model 251 

can all affect the accuracies of the derived temperature variance. But the consistency 252 
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among the tropospheric temperature variance from both reanalysis and climate model 253 

results gives us confidence to establish a solid standard error estimation baseline for 254 

temperature variance that is key to set the calibration requirement of CLARREO.  255 

Fig. 5 also demonstrates that although ENSO and QBO make trivial contribution to 256 

the temperature variation in the stratosphere, their contribution below 100 hPa can be as 257 

large as 0.1 K. It should be noted that ENSO plays a much more dominant role than QBO 258 

in the troposphere as illustrated in Fig. 3. The σvar value shown on the left panel of Fig. 5 259 

is the standard deviation of the temperature residual after we subtract the linear trends and 260 

prescribed forcing effects from the time series data. The proper estimation of natural 261 

temperature variation also requires the autoregressive analysis to estimate the 262 

autocorrelation time, τvar. Leroy et al. (2008a) presented a theoretical way to define an 263 

accurate way to calculate autocorrelation time, which requires the calculation of 264 

autocorrelation coefficients at all lags.  A method by Weatherhead et al. (1998) have been 265 

widely used for the climate trend detection.  Phojanamongkolkij et al. (2014) compared the 266 

two methods and concluded that the choice of the method depends on the auto correlation 267 

characteristics of the data.  For simplicity, we follow the method used by Weatherhead et 268 

al. (1998) and treat the residual as a first-order autoregressive, AR(1), process.  Different 269 

autocorrelation time values are plotted in the right panel of Fig. 5.  270 

We use Eq. (3) to establish different CLARREO calibration requirements defined 271 

by σvar and τvar in Fig. 5. Fig. 6 shows the calculated σcal, given a trend accuracy uncertainty 272 

factor, Ua, of 1.2 and an instrument defined autocorrelation time, τcal, of 5 years. The value 273 

of Ua and τcal are chosen to be consistent with those used by Leroy et al. (2008a) and 274 

Wielicki et al. (2013).  The most stringent calibration requirement comes from the 275 



 14 

observation requirement for low tropospheric temperature. Depending on whether we 276 

include the internal climate forcing (QBO and ENSO) as natural variability or not, the σcal 277 

ranges from 0.033 to 0.055 K (k=2, 95% confidence). It means that a CLARREO-like 278 

satellite system needs to achieve an observation accuracy of 0.033~0.055 K (k=2) for low 279 

tropospheric temperature to ensure the desired climate trend detection ability. The 280 

observation requirement for surface skin temperature trend detection is approximately 281 

0.045 K (k=2) when QBO and ENSO contributions are excluded from the natural 282 

variability.  283 

 

b. Water vapor 284 

 Similar to the analysis applied to temperature, we seek to decompose the water vapor 285 

in an observational time series with a multiple linear regression form, and investigate the 286 

attribution of the known climate forcing factors to the global water vapor variations. The 287 

naturally occurring water vapor variations can thus be given by subtracting the linear trend 288 

and associated climate forcing contributions from the globally distributed water vapor 289 

anomaly data, 290 

ε =  𝐻(𝑡) −  𝑎0𝑡 −  𝑎1𝐸(𝑡 + τ1)                                                 (7) 291 

Our studies show that the dominant climate forcing factor that affects the water vapor 292 

variations in the troposphere region is the ENSO.  Including volcanic contribution in 293 

Equation 7 produces insignificant difference.  Li and Sharma (2013) concluded that 294 

although CMIP3 data show strong negative correlation between volcanic aerosol optical 295 

depth and water vapor, the reanalysis data only show weak correlation on a global scale, 296 

which is consistent with our finding.  Fig. 7 and Fig. 8 demonstrate global average water 297 
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vapor variation from MERRA and ECMWF ERA Interim. The poor agreement of long-298 

term water vapor trend between the reanalysis outputs is well known, but reasonable 299 

agreement for short‐ term fluctuations can be expected (Dessler et al. 2010). The ENSO 300 

signals from two reanalysis models agree well since they correlate more strongly with 301 

short-term fluctuations than the long-term trend. The standard deviation plots demonstrated 302 

in Fig. 9 also show much better agreement between water vapor variations than the 303 

comparison between trends from the two reanalysis models. We apply a similar analysis as 304 

has been applied to the temperature anomalies in Section 2.1 to establish the observation 305 

requirements for the global water vapor trend study. The requirements are plotted in Fig. 306 

11. Although there is a large discrepancy between the trend derived from ECMWF water 307 

vapor anomaly and that from MERRA, the ENSO signals extracted from both water vapor 308 

data sets are similar in scale.  The magnitudes of the long-term water vapor natural 309 

variations obtained by subtracting the linear trend and the ENSO signals are in reasonable 310 

agreement.   311 

 

3. IR Instrument Calibration Requirement Trade Study 312 

 The CLARREO IR instrument is designed to have sufficient spectral resolution, 313 

spectral coverage, and global spatial sampling so that the space-time averaged spectra can 314 

be used to “fingerprint” climate change signals. The radiometric calibration requirement 315 

for the CLARREO IR instrument is based on the consideration that the errors in the 316 

attributed climate signals introduced by the radiometric calibration inaccuracy should be 317 

less than the natural variability measurements requirements. The natural variability 318 

measurement requirements, predominantly driven by the requirements for temperature and 319 
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the water vapor observations, are established in Section 2.1 and 2.2. We first derive the 320 

inverse relationship to quantify the attribution of the spectral radiance change to 321 

temperature and moisture, and then carry out a simulation study by using synthetic spectral 322 

errors that resemble realistic CLARREO instrument characteristics.  A practical calibration 323 

requirement can thus be established by considering possible calibration errors due to low 324 

detector sensitivity and low optical transmittance near band edges and by checking the 325 

corresponding error introduced in temperature and moisture, using the natural variability 326 

measurement requirements as the reference.  327 

The spectral dependent relationship between the outgoing IR radiation change and 328 

the temperature and water vapor fingerprints can be characterized as  329 

∆𝑹 = 𝑺𝑨 + 𝒓                                                      (8) 330 

where ΔR represents the IR spectral fingerprints, S is the spectral signature (fingerprint) 331 

matrix, A represents the climate forcing factors, and r is the error vector that accounts for 332 

errors such as the radiation fluctuation caused by natural variability and the nonlinearity 333 

residual due to ignoring higher order contributions. For climate Observation Simulation 334 

Study Experiments (OSSEs) using different climate models, signal shape uncertainty is 335 

also included in r (Leroy et al. 2008b, Huang et al. 2010). Optimal detection techniques 336 

can be used to determine the amplitude of multiple climate signals with a prescribed 337 

signature matrix, S. The least square solution (Hasselmann, 1997) is given as 338 

                                               𝑨 = (𝑺𝑇𝚺−1𝑺)−1𝑺𝑇𝚺−1∆𝑹                                               (9) 339 

where Σ is the covariance of the residual r.  340 

In this study, we take into account of the instrument calibration error in the 341 

inversion process explicitly.  Our goal is to find out how much calibration error we can 342 
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tolerate in order to detect a climate variable change to a required accuracy. The spectral 343 

calibration error,  ∆𝑅𝑐𝑎𝑙, will introduce errors in the geophysical variables such as 344 

atmospheric temperature and moisture profiles              345 

                               ∆𝑋 = (𝑺𝑇𝚺−1𝑺)−1𝑺𝑇𝚺−1∆𝑹𝑐𝑎𝑙      (10) 346 

To have a direct illustration of the effect that spectral calibration errors imposed on the 347 

temperature and water vapor retrieval, spectral signatures of various climate-forcing factors 348 

can be decomposed into the linear combination of the radiance change due to the change 349 

of geophysical parameters associated with each corresponding climate-forcing factor:                                               350 

𝑺𝑨 =
𝑑𝑅

𝑑𝑋
𝛥𝑿

̅̅ ̅̅ ̅̅ ̅
.                                                          (11) 351 

Eq. (8) can thus be rewritten as 352 

𝛥𝑹̅̅ ̅̅ = 𝑲𝛥𝑿 + 𝒓𝟎
′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                                   (12) 353 

where 𝛥𝑅̅̅ ̅̅  is the space-time averaged radiance change, and K is the Jacobian (dR/dX) for 354 

instantaneous observation and defines the spectral shape and magnitude of the response of 355 

radiance to the change of atmospheric parameters. ΔX represents the change of atmospheric 356 

parameters at a certain geographical location after a certain observation time interval. 357 

Residual term 𝑟0
′ is the nonlinear residual [𝑅(𝑋 + 𝛥𝑋) − 𝑅(𝑋)] − 𝐾𝛥𝑋. Eq. (12) can be 358 

further expanded as: 359 

𝛥𝑹̅̅ ̅̅ = �̅�𝛥𝑿̅̅ ̅̅ + 𝑲(𝛥𝑿 − 𝛥𝑿̅̅ ̅̅ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝒓𝟎
′̅̅ ̅.                                               (13) 360 

The residual in Eq. (13) includes two parts: the space-time averaged radiance signal 361 

uncertainty due to the natural variability of atmospheric parameters and the space-time 362 

averaged nonlinearity errors. The optimal detection method can be used to give the 363 

solution: 364 

∆𝑿̅̅ ̅̅ = (�̅�𝑇Σ𝑠
−1�̅�)−1�̅�𝑇𝚺𝑠

−1∆𝑹̅̅ ̅̅                                                  (14) 365 
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where Σ𝑠  is the covariance matrix that accounts for both post fit residuals in Eq. (13).  366 

Hence, the effect of calibration error (∆𝑅𝑐𝑎𝑙) on the retrieved atmospheric parameters can 367 

be established as: 368 

∆𝑿𝑐𝑎𝑙 = (�̅�𝑇𝚺𝑠
−1�̅�)−1�̅�𝑇𝚺𝑠

−1∆𝑹𝑐𝑎𝑙.                                            (15) 369 

How ∆𝑋𝑐𝑎𝑙 is affected by ∆𝑅𝑐𝑎𝑙 can be partially illustrated by the spectral characteristics 370 

of the Jacobian, K. Fig. 11, Fig. 12, and Fig. 13 are sample plots of temperature, water 371 

vapor, and skin temperature Jacobians, respectively. We can see from Fig. 11 that spectral 372 

change in the narrow CO2 absorption band (600 cm-1 ~ 800 cm-1) can be attributed to the 373 

change in the vertical atmospheric temperature. Fig. 11 and Fig. 12 together show that 374 

observation errors of temperature and water profiles in the lower troposphere (about 200 375 

hPa ~ 900 hPa) can be ascribed to radiance errors in the 200 cm-1 ~ 600 cm-1 and 1210 cm-
376 

1 ~ 2000 cm-1 wavenumber regions. The hyper-spectral feature of CLARREO allows the 377 

vertical profiling of atmospheric properties with high vertical resolution. We also expect 378 

that a CLARREO-like instrument can, under a wide range of cloudy sky conditions, 379 

provide atmospheric information from below clouds as long as the cloud optical depth is 380 

not too high.  Fig. 14 plots the effective emissivity of water and ice clouds as a function of 381 

cloud optical depth. Even with cloud optical depth as high as 4, the effective cloud 382 

emissivity is less than 0.9 in most spectral regions (non-opaque).  This conclusion is further 383 

supported by the non-zero values of the temperature, water vapor, and surface skin 384 

temperature Jacobians below clouds as shown in Fig. 11, Fig. 12, and Fig. 13.   It should 385 

be noted that the cloud optical depth values are in reference to a visible wavelength at 550 386 

nm. The infrared cloud optical depths can be estimated from the visible cloud optical 387 

depth according to the formula: 388 
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𝜏(𝜈) =
𝑄𝑒(𝜐)

𝑄𝑒(𝑣𝑖𝑠)
𝜏(𝑣𝑖𝑠)                                                 (16) 389 

where 𝜏 is the optical thickness and Qe is the cloud extinction coefficient, 𝜐 represents 390 

the infrared channel frequency, and vis represents the visible wavelength (550 nm). The 391 

infrared cloud optical depths are usually smaller than those at 550 nm because Qe(vis) is 392 

usually 2 and Qe in the IR spectral region is usually smaller than 2. The Jacobians are 393 

shown as the change of top-of-atmosphere (TOA) brightness temperature (BT) to the 394 

change of the geophysical parameters. The upper left panels of Fig. 11, Fig. 12, and Fig. 395 

13 illustrate a case with a cloud visible optical depth as thick as 3.95.  The spectral signature 396 

of water vapor absorption from below the clouds is still clear (upper left panel of Fig. 12), 397 

and the contribution of surface emission to TOA radiance is non-negligible (upper left 398 

panel of Fig. 13), indicating non-opaqueness of the cloud. 399 

The effect of spectrally dependent radiometric calibration errors of the CLARREO 400 

IR instrument on the fingerprints of the space-time averaged variations of temperature and 401 

water vapor vertical profiles, being mathematically expressed in Eq. 15, are estimated via 402 

simulation studies. We used a global atmospheric profile database (Borbas et al. 2005), 403 

which consists of 15704 globally selected temperature, water vapor, and ozone profiles at 404 

101 vertical pressure levels.  We chose this database because it was carefully selected from 405 

global radiosondes, ECMWF forecast profiles, and various other data sources (Susanne et 406 

al. 2007, Martins et al. 2017).  Both temperature and water vapor profiles have large 407 

dynamic ranges and representative global coverage (Martins et al. 2017).  There is no cloud 408 

information in the database, so we matched these atmospheric profiles with various cloud 409 

conditions, including clear sky, thin cloud, and opaque cloud cases. The phase of the cloud 410 

is determined according to the temperatures at the cloud altitude. The cloud optical depth 411 
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at 550 nm and cloud particle sizes are randomly assigned.  The ranges of effective radius 412 

for water and ice clouds are 2.5-15 micrometers and 5-35 micrometers, respectively. We 413 

use a fast principal component based radiative transfer model (PCRTM) to simulate TOA 414 

radiance and generate the Jacobians associated with the temperature, water vapor, surface 415 

properties and cloud parameters (Liu et al., 2006, 2009, 2016, Yang et al. 2016).  The 416 

advantages of the PCRTM model include fast computational speed and high accuracy.  It 417 

takes about 0.06 of a second to compute one CLARREO radiance spectrum using an Intel 418 

1.6 GHz CPU.  The Root-mean-squares errors of the PCRTM model relative to a line-by-419 

line radiative transfer model (Clough et al. 1992) are less than 0.03 K.  The fast speed of 420 

the PCRTM is achieved by compressing the CLARREO spectra into the Principal 421 

Component (PC) domain and by removing redundant radiative transfer calculations at 422 

numerous monochromatic frequencies (Liu et al 2006).  For the CLARREO IR instrument 423 

with 0.5 cm-1 spectral resolution, only a few hundred monochromatic radiative transfer 424 

calculations are needed to accurately represent the whole spectrum. PCRTM has been used 425 

to retrieve atmospheric and cloud properties from hyperspectral IR measurements (Liu et 426 

al., 2009) and in an atmospheric fingerprinting study (Kato et al., 2011). PCRTM provides 427 

analytical solutions of the Jacobians as direct outputs and is a well-suited tool for the 428 

calibration study presented here.   429 

Numerically, the Jacobian, K, is a linear approximation for radiative transfer 430 

equations. 𝐾𝑇Σ𝑠
−1�̅� is usually ill-conditioned and regularization is needed to solve for ∆𝑋 431 

in Eq. (15). We have applied two constraints in our spectral fingerprinting process.  One is 432 

to reduce correlations between matrix elements by projecting temperature and moisture 433 

vertical profiles onto Principal Component (PC) space as describe by Liu et al (2009). The 434 
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other one is to add the Tikhonov regularization to the cost function. By converting the 435 

profiles into PC-space using selected leading principal components, we can improve the 436 

conditional number of the 𝐾𝑇Σ𝑠
−1𝐾 matrix. In this study, the vertical temperature and water 437 

vapor profiles have 101 pressure levels when calculating the Jacobian matrix, K.  After PC-438 

compressing, we only need to retain 20 temperature PC scores and 15 water vapor PC 439 

scores.  The Tikhonov regularization method, if applied here to find the solution to Eq. 440 

(15), amounts to finding the solution of ∆𝑋 which gives a least-square fit to ∆𝑅, but 441 

penalizes solutions by minimizing the cost function 442 

(𝐾𝑇∆𝑋 − ∆𝑅)𝑇Σ𝑠
−1(𝐾𝑇∆𝑋 − ∆𝑅) + ‖𝛤∆𝑿‖2                                                   (17) 443 

The solution to Eq. (15) can be rewritten as  444 

∆𝑿̅̅ ̅̅ = (𝐾𝑇Σ𝑠
−1𝐾 + 𝛤𝑇𝛤)−1𝐾𝑇Σ𝑠

−1∆𝑹̅̅ ̅̅                                               (18) 445 

with the calibration error being introduced as  446 

∆𝑿𝑐𝑎𝑙 = (𝐾𝑇Σ𝑠
−1�̅� + 𝛤𝑇𝛤)−1�̅�𝑇Σ𝑠

−1∆𝑹𝑐𝑎𝑙 .                                     (19) 447 

The Tikhonov matrix, 𝛤, is introduced here to improve the matrix condition of 448 

𝐾𝑇Σ𝑠
−1�̅� and in many cases is chosen as a multiple of the identity matrix, 𝐼, such that 𝛤 =449 

𝜆𝐼. The damping factor, 𝜆, is chosen in the way that the subspaces of the kernel matrix 450 

𝐾𝑇Σ𝑠
−1�̅� with smallest singular values can be dampened so that the inversion operation 451 

will not amplify the contribution of trivial features. We adopt a regularization scheme that 452 

employs different damping factors for temperature and water vapor of the kernel matrix 453 

𝐾𝑇Σ𝑠
−1�̅�.  The scheme is based on our experience in temperature and water vapor retrievals 454 

using hyperspectral data such as IASI (Liu et al 2009).  Since the atmospheric temperature 455 

and water profiles have different units and they are compressed into Principal Component 456 

(PC) domain, the state vector (X) elements have large difference in values.  To reduce the 457 
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contributions from PCs with small scores, we take the diagonal elements of the 458 

regularization matrix, which correspond to temperature and water vapor elements, to be 459 

the mean values of the corresponding diagonal elements of the K̅TΣs
−1K̅ matrix.  We always 460 

check our posterior fiting error in the spectral domain to ensure that they are smaller than 461 

the calibration errors.  462 

With the inversion relationship defined by Eq. (15) being established, we carried 463 

out a series of spectral fingerprinting trade studies by assuming different instrument 464 

calibration errors. Fig. 15 plots a 0.04 K (k=2) radiometric calibration error and the 465 

corresponding fingerprinting errors. The blue solid line on the top panel shows the 0.04 K 466 

spectrally independent calibration error. The corresponding errors (k=2) introduced in 467 

temperature and water vapor vertical profiles are shown as solid blue curves on the bottom 468 

left and right panels.  As a reference, the calibration requirements for temperature and water 469 

vapor that have been derived from the MERRA, ECMWF, and GFDL CM3 data sets are 470 

plotted as dashed lines in the lower panels. The 0.04 K (k=2) calibration error is marginally 471 

tolerable because the corresponding fingerprint error in near surface temperature is 472 

approaching the calibration requirement defined by MERRA and ECMWF data.  473 

In this study, we assume that the CLARREO IR FTS (Mlynczak, 2010) will use a 474 

pyroelectric detector for its far-infrared band (Band 1: 200 cm-1 ~ 645 cm-1) and 475 

photoconductive or photovoltaic mercury cadmium telluride (MCT) detectors for its two 476 

infrared bands (Band 2: 645 cm-1 ~ 1210 cm-1, Band 3: 1210 cm-1 ~ 2000 cm-1). Usually, 477 

calibration errors tend to be larger at the spectral band edges due to larger instrument 478 

response uncertainties. We expect larger errors near 200 cm-1 due to the low transmittance 479 

of the beam splitter and larger errors near 645 cm-1, 1210 cm-1, and 2000 cm-1 due to the 480 
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band edge effect of the MCT detector and optical filters used for each band. Considering 481 

that the pyroelectric detector has sensitivity extending to the mid-IR, we can assume that 482 

there is no band edge effect to the left of 645 cm-1.  The red curve on the middle panel of 483 

Fig. 15 represents a more realistic, spectrally dependent calibration error curve of the 484 

CLARREO IR instrument. The corresponding spectral fingerprinting error for temperature 485 

and water vapor vertical profiles are shown as solid red curves on the bottom left and right 486 

panels of Fig. 15.  487 

By comparing the effects of calibration errors shown as blue and red lines in the 488 

lower panels of Fig. 15, we can see that the large band edge errors in the P-branch of the 489 

CO2 spectral region (near 650 cm-1) can be tolerated due to the redundant spectral 490 

information carried by the R-branch CO2 spectral region.  The spectral regions near 1210 491 

cm-1 and 2000 cm-1 contain spectral channels mainly sensitive to surface and cloud 492 

properties.  Our studies show that as long as we include the error estimation for these 493 

spectral regions in the error covariance matrix, ΣS, the surface skin temperature and cloud 494 

property retrievals are not impacted by them, again due to the redundant information from 495 

other surface and cloud-sensitive channels. The spectral-dependent red curve shown in the 496 

middle panel of Fig. 14 is a stringent calibration accuracy requirement that can ensure that 497 

CLARREO’s observation accuracy for climate trend detection falls within 20% of the 498 

accuracy of a perfect system. The observation accuracy for low tropospheric temperature 499 

will be better than 0.04 K (k=2) and that for the stratospheric temperature should be 0.08 500 

K (k=2). The water vapor observation error near surface will be smaller than 0.03 g/kg 501 

(k=2).  502 



 24 

The value of a CLARREO-like observation system with a 0.04 K (k=2) calibration 503 

accuracy in climate trend detection can be illustrated by plotting the dependence of low 504 

tropospheric temperature (at 975 hPa) trend detection uncertainty on instrument calibration 505 

accuracy (shown in Fig. 16). The curves are calculated using a 0.25 K (k=2) temperature 506 

variance and a 3 month autocorrelation time which are obtained from the ECMWF data 507 

(plotted as a dashed green curve in Fig. 5). Using values obtained from MERRA data will 508 

give similar results. We can see from Fig. 16 that a perfect observation system needs about 509 

12.3 years in order to reach a trend detection uncertainty of 0.1 K/decade, while a system 510 

with a 0.04 K calibration accuracy requires 13.7 years, lagging 1.4 years behind. Changing 511 

the calibration accuracy requirement to 0.06 K (k=2) means 15.1 years are needed to reach 512 

the 0.1 K/decade trend detection uncertainty, further delaying the trend detection time by 513 

another 1.4 years.  514 

Graphs like those in Fig. 16 are useful in studying the synergistic usage of the 515 

CLARREO IR instrument and operational sounders. The current hyperspectral IR sounders 516 

have provided valuable data for improving Numerical Weather Prediction (NWP) forecasts 517 

for many years and the data records will continue for many decades.  However, since these 518 

sounders were designed for weather applications, the radiometric calibration specifications 519 

of these instruments are less accurate as compared to the CLARREO IR instrument.  As 520 

referenced in Wielicki et al (2013), the absolute accuracy of the operational sounders such 521 

as CrIS, AIRS, and IASI ranges from 0.2 to 0.4 K (k=2).  Wang et al. (2015) have compared 522 

the radiometric consistency of the CrIS, the IASI-A and IASI-B on Meteorological 523 

Operational satellites, and the AIRS using one year (2013) of simultaneous nadir overpass 524 

data.  They concluded that the radiometric consistency between CrIS and IASI is on the 525 
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order of 0.1 to 0.2 K (68% confidence level, k=1) for longwave IR (LWIR) band and mid-526 

wave IR (MWIR) band. For CrIS and AIRS, the LWIR and MWLR differences are around 527 

0.1 K (k=1) for most of the spectrally averaged regions they have studied. For some spectral 528 

regions in LWIR and MWIR, the differences are in the range of 0.15 to 0.21 K (k=1).  The 529 

radiometric differences between these four instruments in the shortwave IR band are larger 530 

as compared to the LWIR and MWIR bands.  Using Figure 16, we can compare detection 531 

times needed to accurately determine near surface atmospheric temperature using various 532 

satellite instruments. For the purpose of quantitative comparison, we assume that the 533 

absolute calibration accuracy of the CrIS, AIRS, and IASI is about 0.24 K (k=2).  It will 534 

take 30 years of operation time to achieve the temperature detection uncertainty of 0.1 535 

K/decade.  This means that a CLARREO-like instrument with a 0.04 K (k=2) calibration 536 

accuracy can save more than 16 years as compared with existing hyperspectral IR systems. 537 

Furthermore, if a CLARREO IR Pathfinder instrument is mounted on International Space 538 

Station with the CLARREO RS Pathfinder instrument, or if a CLARREO IR instrument is 539 

mounted on a free-flyer, we will be able to perform on-orbit inter-satellite calibration and 540 

reduce the calibration uncertainty of the sounder instruments.  We can then take advantages 541 

of the sounders’ long time records and more diverse temporal and spatial coverages to 542 

further improve the accuracy of the global temperature climate trend detection.   543 

It should be noted that the CLARREO IR instrument not only has SI-traceable 544 

blackbody temperature measurements, it also has an independent onboard verification 545 

system to check absolute calibrations at various scene temperatures.  The highly accurate 546 

hyperspectral radiance spectra observed by the CLARREO IR instrument can be used as 547 

absolute references for inter-satellite calibration and can be used to identify potential error 548 
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sources such as the blackbody temperature measurement and non-linearity correction.  549 

Since the operational sounders provide swath widths larger than 2000 km, we will have 550 

improved diurnal sampling and spatial sampling for climate trend detection by leveraging 551 

the CLARREO inter-calibrated sounder data,   The combined data will provide better 552 

characterization of climate changes in different climate zones or regions, which in turn will 553 

provide a detection for global temperature and water vapor changes. 554 

Our study demonstrates that atmospheric temperature trend observations between 555 

the middle troposphere and the stratosphere region are less sensitive to instrument 556 

calibration error than that between the surface and low troposphere region since the 557 

temperature natural variability are larger in the upper atmosphere. Fig. 17 shows the impact 558 

of instrument calibration errors on the delay of climate trend detection in stratospheric 559 

temperature at 70 hPa.  If we assume a 0.48 K (k=2) natural variability and an 560 

autocorrelation time of 5.6 months that come from the GFDL CM3 simulation, a system 561 

with a 0.06 K (k=2) calibration accuracy will save more than 10 years of operational time 562 

to achieve a 0.1 K/decade (k=2) trend uncertainty as compared with the current IR 563 

instruments in orbit, and will only lag behind a perfect observation system by one year.  564 

The impact of instrument calibration accuracy on the surface water vapor trend 565 

observation is illustrated in Fig. 18.  A significant global-scale increase in surface water 566 

vapor has been identified (Dai, 2006, Willett et al., 2007), and the reported global surface 567 

water vapor anomalies are in a similar scale to the water vapor anomaly derived from 568 

MERRA data (shown in Fig. 8). By taking the linear trend difference (about 0.1 569 

g/kg/decade) between the MERRA result and the ECMWF result (red lines in Fig. 8) as a 570 

rough estimation for the surface water vapor trend uncertainty, a system with a 0.06 K 571 
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(k=2) calibration accuracy has the potential to reduce the detection time by more than 6 572 

years relative to the current IR instruments in orbit.  573 

 574 

4. Conclusions 575 

 We have studied the spectrally dependent radiometric calibration requirement of 576 

the CLARREO IR instrument based on the climate trend detection uncertainty requirement. 577 

The validity of the presented calibration requirement depends on the accuracy of the 578 

reanalysis and the climate model data from which the magnitude of naturally occurring 579 

variations are calculated. Our analysis shows a good agreement between the temperature 580 

variance derived from ERA-Interim data and that from MERRA data. Also demonstrated 581 

is the consistency between the reanalysis results and the GFDL CM3 climate model results 582 

in the troposphere region which validates the use of multiple-regression to obtain reliable 583 

natural variability free of major forcing factors.  Although the uncertainty of temperature 584 

variance in the stratosphere is large -- the discrepancy between reanalysis variability and 585 

GFDL CM3 variability in the stratosphere can be bigger than 100%-- only a narrow 586 

spectral region’s calibration requirement is associated with the stratospheric temperature 587 

observation requirement. The differences in the prescriptions of water vapor variance, 588 

especially those between reanalyses and the GCM, introduce uncertainty in the calibration 589 

requirement for monitoring tropospheric water vapor in the infrared spectra; however, our 590 

simulation study demonstrates that the radiometric calibration requirement imposed by the 591 

atmospheric temperature trend observation needs will be more stringent than that derived 592 

from the most conservative water vapor natural variability value. It is the observation 593 
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requirement for the temperature of the troposphere and surface that determines the spectral 594 

calibration baseline in the IR measurement band. 595 

The 0.04 K (k=2, 95% confidence level) calibration baseline demonstrated in Fig. 596 

15(b) is established based on a given uncertainty factor (Ua = 1.2). It can be viewed as a 597 

conservative and stringent solution. The natural variability values used here are obtained 598 

after subtracting the contributions of volcanic eruptions, solar cycle, ENSO, and QBO from 599 

the temperature and water vapor anomalies. Our study is based on the assumption that the 600 

climate fingerprints of ENSO and QBO can be effectively and accurately separated from 601 

the climate anomalies. If QBO and ENSO (especially ENSO, which is a key climate forcing 602 

factor contributing to the low tropospheric temperature variation) are included as part of 603 

the natural variability, the magnitude of the temperature variance will be larger, as can be 604 

seen from the difference between the dashed curves and the solid curves in Fig. 5. The 605 

corresponding temperature calibration requirement will be relaxed to 0.055 K (k=2) in the 606 

troposphere region. Whether to include ENSO-caused water vapor fluctuations as a part of 607 

the naturally occurring process or not has negligent impact on calibration requirements for 608 

water vapor observations (shown in Fig. 9 and Fig. 10). Following the same inversion 609 

process described in Section 3, the relaxed temperature calibration requirement will 610 

transfer into a less stringent spectral calibration requirement of 0.06 K (k=2). 611 

The calibration requirement study here is based on the temperature and water vapor 612 

data with statistics obtained from NWP reanalysis data and climate model simulation 613 

results. The demonstrated spectral calibration baseline is established as a ‘safe’ estimation 614 

that can be adjusted based on the finalization of the trend observation uncertainty 615 

requirement and the potential improvement in the accuracy of natural variability values in 616 



 29 

the future. The calibration trade study methodology presented in Section 3 can be used for 617 

any future calibration requirement study based on the observation requirement for other 618 

key climate change parameters such as clouds and CO2.  The current study mainly focused 619 

on the spectral fingerprinting and we used global mean anomalies to derive atmospheric 620 

temperature and water vapor natural variabilities. It should be noted that a lot of 621 

information is available in the spatial patterns of the climate signals.  In the future, we will 622 

perform Observing System Simulation Experiments (OSSEs) using either ERA-interim or 623 

MERRA to detect climate trends in different climate regions and to study the longwave 624 

radiative feedbacks using CLARREO IR spectra. 625 
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TABLE 1. Statistics of surface skin temperature variability (Ua=1.2, τcal=5 years) 759 

Tskin anomaly σvar (K) τvar (month) σcal (K) 

ECMWF 

(free of external forcing) 
0.27 4.4 0.045 

MERRA 

(free of external forcing) 
0.28 5.1 0.054 

GFDL CM3 

(pi-Control run) 
0.31 8.6 0.078 

ECMWF 

(free of all forcing) 
0.24 3.1 0.041 

MERRA 

(free of all forcing) 
0.24 3.4 0.045 

760 
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 762 

Fig. 1.  Flow Diagram describing the procedures used in Section 2 and Section 3. 

 763 

Fig. 2. Global air temperature anomaly at 70 hPa derived using MERRA (left column) and 764 

ERA-Interim (right column) data. The subplots in the first row illustrate the 765 

temperature anomaly without accounting for ENSO, volcanic eruption, and solar 766 

cycle effects (blue curves), temperature anomaly after the subtraction of the 767 

volcanic eruption effect and the solar signals (dark green curves), and the derived 768 

linear trend (red lines) after the subtraction. Regression based estimations for 769 

ENSO (red curves), volcanic influence (black curves), solar signal (green curves), 770 

and QBO (cyan curves) are plotted in the second, the third, the fourth, and the fifth 771 

rows, respectively.  772 

 

Fig. 3. Global air temperature anomaly at 975 hPa derived using MERRA (left column) 773 

and ERA-Interim (right column) data. See Figure 2 caption for more details. 774 

 775 

Fig. 4. Similar to Figure 3 but for the global surface skin temperature anomaly derived 776 

using MERRA (left column) and ERA-Interim (right column) data. See Figure 3 777 

caption for more details. 778 

 

Fig. 5. Standard deviation of the temperature anomaly residual derived from MERRA, 779 

ECMWF reanalysis, and GFDL CM3 data. Left panel: Blue and green solid curves 780 



 39 

– standard deviation derived for MERRA and ECMWF temperature anomaly free 781 

of volcanic and solar forcing; Red solid curve – variance of GFDL CM3 782 

temperature; Blue and green dashed curves – standard deviation of MERRA and 783 

ECMWF reanalysis obtained after subtracting the linear trend and all four major 784 

climate forcing influences. Right Panel: Corresponding autocorrelation time, τvar, 785 

calculated using the first-order autoregressive (AR1) model. The legend for the 786 

curves on the right panel is the same as those shown on the left panel. 787 

 

Fig. 6. Calibration requirement associated with the temperature variance and the 788 

autocorrelation time shown in Figure 5, given a trend accuracy uncertainty factor, 789 

Ua, of 1.2 and an instrument defined autocorrelation time, τcal, of 5 years. 790 

 

Fig. 7. Global water vapor anomaly at 800 hPa derived using MERRA (left column) and 791 

ERA-Interim (right column) data. The subplots in the top row illustrate the water 792 

vapor anomaly without accounting for ENSO effects (blue curves), water vapor 793 

anomaly after the subtraction of ENSO effects (dark green curves), and the derived 794 

linear trend (red lines) after the subtraction. Regression based estimations for 795 

ENSO (red curves) signals are plotted in the bottom row. 796 

 

Fig. 8. Same as Figure 7 but for the global water vapor anomaly at 1000 hPa derived using 797 

MERRA (left column) and ERA-Interim (right column) data. 798 
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Fig. 9. Left panel: Standard deviation of the water vapor anomaly derived from the 799 

MERRA (blue curves) and the ECMWF reanalysis (green curves). Solid curves – 800 

standard deviation derived from the global average water vapor times series data; 801 

Dashed curves – standard deviation calculated after the subtraction of the ENSO 802 

signal. Red curve - standard deviation for GFDL water vapor. Right panel: 803 

corresponding lag 1 autocorrelation time. 804 

 

Fig. 10. Calibration requirement associated with the water vapor variance and the 805 

autocorrelation time shown in Figure 9, given a trend accuracy uncertainty factor, 806 

Ua, of 1.2 and an instrument defined autocorrelation time, τcal, of 5 years. 807 

 

Fig. 11. Temperature Jacobian (dBT/dT, BT - Brightness Temperature, T – air temperature) 808 

plots under different sky conditions. Upper left: Cloud located at 106.6 hPa with a 809 

visible optical depth of 3.95. Upper right: Cloud located at 205.5 hPa with a visible 810 

optical depth of 2.21. Lower left: Cloud located at 397.0 hPa with a visible optical 811 

depth of 1.36. Lower right: Clear sky. 812 

 

Fig. 12. Water vapor Jacobian (dBT/dlog(h2o)) plots under different sky conditions. Upper 813 

left: Cloud located at 106.6 hPa with a visible optical depth of 3.95. Upper right: 814 

Cloud located at 205.5 hPa with a visible optical depth of 2.21. Lower left: Cloud 815 

located at 397.0 hPa with a visible optical depth of 1.36. Lower right: Clear sky. 816 
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Fig. 13. Same as Fig. 11 and 12 but showing sample Jacobian plots for surface skin 817 

temperature (dBT/dTskin). 818 

 

Fig. 14. Water and ice cloud emissivity in the CLARREO IR measurement band as 819 

functions of cloud visible optical depth (at 500 nm wavelength), 𝝉. 820 

 

Fig. 15. The calibration errors and the corresponding errors introduced in temperature and 821 

water vapor observation. Upper panels: Spectral calibration error in brightness 822 

temperature (a. blue solid curve – 0.04 K (k=2) baseline error; b. red solid curve – 823 

potential calibration error based on a 0.04 K (k=2) baseline with detection band 824 

edge errors added); Lower panels: Corresponding calibration introduced 825 

temperature (c) and water vapor (d) fingerprinting errors (solid lines in matched 826 

colors). Calibration requirements for temperature and water vapor based on natural 827 

variability estimation results are plotted as dashed lines in lower panels as 828 

references: σcal ECMWF –derived from ECMWF reanalysis data, σcal MERRA – derived 829 

from MERRA data, σcal GFDL – derived from GFDL CM3 data. These calibration 830 

requirements are also plotted in Figs. 6 and 10. 831 

 

Fig. 16. Illustration of the dependence of the time to detect the low troposphere temperature 832 

trend on the observation systems’ absolute calibration accuracy (95% confidence). 833 

The relationships calculated using the temperature natural variability values 834 

obtained when QBO and ENSO contributions are excluded from the natural 835 

variability: σvar = 0.25 K, 𝝉var = 3.0 months (95% confidence 836 
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Fig. 17. Illustration of the dependence of the time to detect the stratospheric temperature 837 

(at 70 hPa with σvar = 0.48 K, 𝝉var = 5.6 months (95% confidence)) cooling trend 838 

on the observation systems’ calibration accuracy (95% confidence). 839 

Fig. 18. Illustration of the dependence of the time to detect the specific surface humidity 840 

(at 1000 hPa with σvar = 0.17 g/kg, 𝝉var = 9.6 months (95% confidence)) trend on 841 

the observation systems’ calibration accuracy (95% confidence). 842 
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 845 

Section 3 Instrument Calibration Requirement Trade Study846 

Fig. 1.  Flow Diagram describing the procedures used in Section 2 and Section 3. 
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Fig. 2. Global air temperature anomaly at 70 hPa derived using MERRA (left column) and 847 

ERA Interim (right column) data. The subplots in the first row illustrate the 848 

temperature anomaly without accounting for ENSO, volcanic eruption, and solar 849 

cycle effects (blue curves), temperature anomaly after the subtraction of the 850 

volcanic eruption effect and the solar signals (dark green curves), and the derived 851 

linear trend (red lines) after the subtraction. Regression based estimations for 852 

ENSO (red curves), volcanic influence (black curves), solar signal (green curves), 853 

and QBO (cyan curves) are plotted in the second, the third, the fourth, and the fifth 854 

rows, respectively.  855 
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FIG. 3. Global air temperature anomaly at 975 hPa derived using MERRA (left column) 856 

and ERA Interim (right column) data. See Figure 2 caption for more details. 857 
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FIG. 4. Similar to Figure 3 but for the global surface skin temperature anomaly derived 858 

using MERRA (left column) and ERA Interim (right column) data. See Figure 3 859 

caption for more details. 860 
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FIG. 5. Standard deviation of the temperature anomaly residual derived from MERRA, 862 

ECMWF reanalysis, and GFDL CM3 data. Left panel: Blue and green solid curves 863 

– standard deviation derived for MERRA and ECMWF reanalysis temperature 864 

anomaly free of volcanic and solar forcing; Red solid curve – variance of GFDL 865 

CM3 temperature; Blue and green dashed curves – standard deviation of MERRA 866 

and ECMWF obtained after subtracting the linear trend and all four major climate 867 

forcing influences. Right Panel: Corresponding autocorrelation time, τvar, 868 

calculated using the first-order autoregressive (AR1) model. The legend for the 869 

curves on the right panel is the same as those shown on the left panel. 870 
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FIG. 6. Calibration requirement associated with the temperature variance and the 871 

autocorrelation time shown in Figure 5, given a trend accuracy uncertainty factor, 872 

Ua, of 1.2 and an instrument defined autocorrelation time, τcal, of 5 years. 873 
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FIG 7. Global water vapor anomaly at 800 hPa derived using MERRA (left column) and 874 

ERA Interim (right column) data. The subplots in the top row illustrate the water 875 

vapor anomaly without accounting for ENSO effects (blue curves), water vapor 876 

anomaly after the subtraction of ENSO effects (dark green curves), and the derived 877 

linear trend (red lines) after the subtraction. Regression based estimations for 878 

ENSO (red curves) signals are plotted in the bottom row. 879 
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FIG. 8. Same as Figure 7 but for the global water vapor anomaly at 1000 hPa derived using 880 

MERRA (left column) and ERA Interim (right column) data.  881 
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FIG. 9. Left panel: Standard deviation of the water vapor anomaly derived from the 882 

MERRA (blue curves) and the ECMWF reanalysis (green curves). Solid curves – 883 

standard deviation derived from the global average water vapor times series data. 884 

Dashed curves – standard deviation calculated after the subtraction of the ENSO 885 

signal. Red curve - standard deviation for GFDL water vapor. Right panel: 886 

corresponding lag 1 autocorrelation time. 887 
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FIG. 10. Calibration requirement associated with the water vapor variance and the 888 

autocorrelation time shown in Figure 9, given a trend accuracy uncertainty factor 889 

Ua of 1.2 and an instrument defined autocorrelation time, τcal of 5 years. 890 
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FIG. 11. Temperature Jacobian (dBT/dT, BT - Brightness Temperature, T – air 891 

temperature) plots under different sky conditions. Upper left: Ice cloud located at 892 

106.6 hPa with a visible optical depth of 3.95. Upper right: Ice cloud located at 893 

205.5 hPa with a visible optical depth of 2.21. Lower left: Water cloud located at 894 

397.0 hPa with a visible optical depth of 1.36. Lower right: Clear sky. 895 
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FIG. 12. Water vapor Jacobian (dBT/dlog(h2o)) plots under different sky conditions. Upper 896 

left: Ice cloud located at 106.6 hPa with a visible optical depth of 3.95. Upper right: 897 

Ice cloud located at 205.5 hPa with a visible optical depth of 2.21. Lower left: Water 898 

cloud located at 397.0 hPa with a visible optical depth of 1.36. Lower right: Clear 899 

sky. 900 
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FIG. 13. Same as Figure 11 and 12 but showing sample Jacobian plots for surface skin 901 

temperature (dBT/dTskin). 902 
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FIG. 14. Water and ice cloud emissivity in the CLARREO IR measurement band as 903 

functions of cloud visible optical depth (at 500 nm wavelength), 𝝉. 904 
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FIG. 15. The calibration errors and the corresponding errors introduced in temperature and 905 

water vapor observation. Upper panels: Spectral calibration error in brightness 906 

temperature (a. blue solid curve – 0.04 K (k=2) baseline error; b. red solid curve – 907 

potential calibration error based on a 0.04 K (k=2) baseline with detection band 908 

edge errors added); Lower panels: Corresponding calibration introduced 909 

temperature (c) and water vapor (d) fingerprinting errors (solid lines in matched 910 

colors). Calibration requirements for temperature and water vapor based on natural 911 

variability estimation results are plotted as dashed lines in lower panels as 912 

references: σcal ECMWF –derived from ECMWF reanalysis data, σcal MERRA – derived 913 
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from MERRA data, σcal GFDL – derived from GFDL CM3 data. These calibration 914 

requirements are also plotted in Figs. 6 and 10.  915 

 

 

 
 

FIG. 16. Illustration of the dependence of the time to detect the low troposphere temperature 916 

trend on the observation systems’ absolute calibration accuracy (95% confidence). 917 

The relationships calculated using the temperature natural variability values 918 

obtained when QBO and ENSO contributions are excluded from the natural 919 

variability: σvar = 0.25 K, 𝝉var = 3.0 months (95% confidence).  920 

 

 

 

 
 

 

FIG. 17. Illustration of the dependence of the time to detect the stratospheric temperature 921 

(at 70 hPa with σvar = 0.48 K, 𝝉var = 5.6 months (95% confidence)) cooling trend 922 

on the observation systems’ calibration accuracy (95% confidence). 923 
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FIG. 18. Illustration of the dependence of the time to detect the specific surface humidity 924 

(at 1000 hPa with σvar = 0.17 g/kg, 𝝉var = 9.6 months (95% confidence)) trend on 925 

the observation systems’ calibration accuracy (95% confidence). 926 

 


	University of Michigan, Ann, Arbor, Michigan
	Seiji Kato, Yolanda. L. Shea, and Martin G. Mlynczak
	NASA Langley Research Center, Hampton, Virginia
	ABSTRACT
	REFERENCES
	1038/nature06207
	LIST OF TABLES
	Table 1.  Statistics of surface skin temperature variability (Ua=1.2, τcal=5 years)
	LIST OF FIGURES

